.
- | .

@
Q
o
o
Q@
[et
Q
oc
D
| .
()
£
£
o
(o)
O
Q.

INTRODUCTION

The information in this document is proprietary to ICL, and is
supplied to you in confidence on the understanding that you will
not disclose it to third parties or reproduce it, and that you
will use it solely for the purpose of developing applications
software for use with the ICL product or products described in
this document. :

Introduction ku)
2/0
IT-2

INTRODUCTION

This chapter provides a general introduction to programming for

the ICL ONE PER DESK. It describes the framework within which
applications are written, under the following headings:

Concepts

Application development
Menus

Application structure
System calls

1 Concepts iu)

The OPD has a number of special features that are essential
background to the development of applications to run on it. Two
are fundamental:

1 More than one application can run at the same time.

2 Only one application can use the screen and keyboard at a
time,

Applications must therefore make arrangements for periods when
they can and cannot use the screen and keyboard, and for sharing
the resources of the OPD with other applications when they are
running. :

1.1 SELECTING APPLICATIONS

* The application that has the use of the screen and keyboard i,)
is called the foreground application.

* The user selects an application to run by first pressing the
START key. This causes the display of the Top Level Menu,
which lists the primary options on the OPD.” The user chooses
from these by pressing the key corresponding to the number on
the list. One option is the Applications Menu, which lists
the applications stored on capsule or Rompack currently
plugged into the OPD, and any applications that have been
loaded from cartridge and are still running. The
Applications Menu has another option, the Cartridge Menu,
which provides a list of the programs stored on the
cartridges in the microdrives.

Built-in applications, such as Telephone Dikectory, are
accessed through other options on the Top Level Menu.

* The user can replace the foreground application with another
application, by pressing the START key, as described above.
The Top Level Menu is again displayed and the user can make a &N)
selection from it. Some applications may be able to continue
processing without the screen and keyboard; if so, they do
so, and are then running in the background. If not, they

Introduction
2/0
IT-3

must wait until they get the foreground again.

The user can return to an application that is waiting or
running in the background by pressing the RESUME key. A menu
is displayed if more than one application is in these states,
so that the user can make a selection.

Thus the OPD can start new jobs in response to demand, and go
back to unfinished jobs that were running previously.

The user can take a quick look at the data associated with an
application that is running (whether in the foreground or the
background) by pressing the REVIEW key. This causes the
Review menu to be displayed, and the user can choose what he
wants to review from this list. (Further details of the use
of Review are in the Handbook.) The resulting screen is only
displayed while the seTection key is held down: when it is
released, the OPD goes straight back to the interrupted
application.

A1l applications must therefore be able to give up the
foreground immediately when the user presses the REVIEW key,
and then restore the display following the review.

Applications are classified into two categories: extended and
transient. Extended applications are returned to after an
interruption (for example by START, RESUME or REVIEW).
Transient applications are lost if they are interrupted by
START or RESUME (although not by REVIEW). If the user wishes
to return to an interrupted transient application, he must
restart it from the beginning. The same application may be
classed as extended and transient at different times.

SHARING RESOURCES

* Execution of code in OPD is in activities. An activity is an
independent processing thread, with its own stack, registers,
program counter etc.

Activities are scheduled according to their priority by the
system software, 1ike a Tow level scheduler in a conventional
operating system. Thus, activities appear to run in parallel
and asynchronously, although where necessary they can be
synchronised by the use of events and semaphores.

Information is passed between activities by means of numbered
events, which indicate that particular conditions have
occurred; these may be predetermined by the system, or be
defined within an application. Also, an activity can suspend
itself until an (unspecified) event occurs.

Semaphores can ensure that only one activity uses a
particular resource at a time. The activity unlocks the

2.2

2.3

Introduction
2/0
IT-4

semaphore when it has finished using the resource, and the
semaphore (and thus the resource) is then available to the
next activity requiring it.

* The store is managed in a way that enables activities to
obtain the quantity of store they need at the time they need
it, and release it when they have finished with it. The
dynamic store (RAM) is divided into segments. Some segments
remain at the same address (for example, those containing
activity stacks), but most can be moved within store except
when being accessed by an activity. This is to prevent store
fragmentation.

Application development

LANGUAGE

Programs can be written for the OPD in Assembler, C or BASIC;
they can also be written in any high level language that can be
compiled directly into machine code.

For a summary of the diferent development routes for OPD
applications see the publication OPD Guide to Software

Development.

SUPPLY MEDIA

Programs can be supplied on either of the following media:

1 A capsule to be inserted into a Rompack (see the Handbook).
2 A cartridge to be inserted into one of the microdrives.

For normal applications, the medium does not affect the actual
code of the application.

Program formats for both media are given in Director Facilities
for Application Writers, PSD 76.97.3.2.

HARDWARE

The hardware components that are relevant when developing
applications are listed below. Some of them are represented for
input/output purposes by more than one logical device.

Screen (represented by the Application Screen and Noticeboard)
Keyboard

Telephone (represented by one or two telephone lines)

Modem

Voice synthesiser

J

2.4

2.5

Introduction
2/0
IT-5

Printer

Two microdrive storage units (represented by thé microdrive
filing system) :

Tone generator

Real time clock

Store (see section 2.4)

Permanent store

STORE

The store consists of the following elements:

1 128 Kbytes of dynamic RAM, known as the main store. The
"~ current screen image accounts for 32 Kbytes of this.

2 2 Kbytes of permanent RAM, used for long term storage of
parameters. The contents of this element are not lost if the
OPD is switched off or fails.

3 ROM containing system and other software.

These are supplemented by the following optional items of store:

1 Microdrive cartridges. These contain an endless tape’loop,
and provide storage for programs and conventional files. The
OPD has two microdrives, each of which can hold a single
cartridge.

2 A Rompack, which slots into the back of the OPD control unit.
It provides storage for:

‘(a) The Xchange applications, if supplied (see Xchange)

(b) Capsules, which may store the Computer Access application
(see the Handbook) and user-written applications

Further 1nformatidn about the management of the store is in the
Kernel Specification, PSD 76.97.3.1. '

SOFTWARE RULES

Applications written for the OPD should conform to a set of
rules, to provide consistency of approach across applications and
uniformity of user operation. Some of the rules are given in
section 1.1, for example the way in which the START, RESUME and
REVIEW keys work. Applications that conform to the rules are
called trusted applications.

U

Introduction
2/0
IT-6

At present, untrusted applications are not supported, and it is
recommended that normal applications should not use untrusted
programs or untrusted activities. However, information on
handling them is given in Director Facilities for Application
Writers, PSD 76.97.3.2.

Applications cannot be implemented to affect the operation of the
following:

1 The noticeboard area of the screen, except in a controlled
way (see the Kernel Specification, PSD 76.97.3.1).

2 The system keyboard (see the Kernel Specification). &‘)

3 The telephone facilities, except as specified in the
Telephone Handler document, PSD 76.97.3.3.

3 Menus

Standard OPD software uses menu screens to run applications, and
it is recommended that user-written applications adopt the same
approach. Each menu screen contains a list of options, with
suitable explanatory information or data; the user selects an
option from this list. A hierarchy of screens may be needed to
achieve a particular function, and a single menu may spread over
more than one screen. In the latter case, the 0 key is
conventionally used to proceed to the next screen.

When the user is going through a series of menus in this way,

there is a half second delay between the display of the menus. ,
The experienced user may be able to remember the sequence of keys &“)
used to reach what he wants to do; if, having made one selection,

he makes a further selection within the delay period, the

intervening screen is not displayed. For example, he may need to

press 2 in response to menu A to give menu B, and 3 in response

to menu B to give menu C. If he has menu A displayed, and

presses 2 and then 3 before menu B is displayed, the display will

go straight to menu C, and menu B will not be displayed.

4 Application structure

This section describes the structure of applications written for
the OPD, and defines a number of concepts used. How to invoke
and terminate applications is described in Director Facilities
for Application Writers, PSD 76.97.3.2.

An application is the unit in which high level scheduling is

performed by the OPD user. It corresponds to the job, or
session, of a conventional operating system. High level
scheduling on the OPD has two aspects: &u)

1 Control of when the application shall run and when it shall
terminate.

Introduction
2/0
IT-7

2 Control of when the application shall have the foreground.

The execution of an application comprises at least one actvity
(see section 1.2), known as the primary activity. This activity
is special in that it is responsible for coordinating the .
response of the application to the high level scheduling of work
on the OPD. The execution of an application may comprise
additional activities, known as secondary activities. The
application designer may choose to exploit these where the
application's function maps concurrently onto asynchronous tasks.
Secondary activities can be created and destroyed by the primary
activity, or by each other, to perform the application.

Application

Primary Activity

|
N I

Secondary Activities

Activities communicate with the basic software and logical
devices by means of system calls, each of which performs a
limited and specific action, in most cases defined by parameters.

Secondary activities communicate with the primary activity by
means of events, semaphores (see Kernel Specification, PSD -
76.97.3.1) and shared data. They can handle devices whose
actions are not synchronised with those of other devices used by
the application. For example, the primary activity may handle
the screen, while secondary activities handle the modem, which
may be required to operate continuously, whether the application
is using the screen or not. '

System calls

System calls specify a particular action to be taken, or request
information. In most cases information is returned following the
call.

For example, system calls enable an activity to:

* Request and use various input/output devices

* Request store on a permanent or temporary basis

Create and destroy other activities

Synchronise and communicate with other activities

Suspend itself or other activities until an event occurs

Introduction

2/0
IT-8

The calls all have the same general format. The generic type of
system call is entered in the TRAP name instruction. The name is
a symbolic form of the actual number that has to appear in the
machine code. The mapping of names to numbers is given in an
INCLUDE file (see Appendix 4).

Each activity has 16 registers, and the exact action required is
specified in the least significant byte of the activity's DO
register. Other input information is entered in other registers
of the activity: for example this may include the identifier of
an input/output channel, or an address where further information
can be found. Information is returned to the activity's
registers or sometimes to locations in the store.

Following a system call, a successful return is indicated by a
positive or zero value in the calling activity's 32-bit DO
register. A negative value indicates that the call has failed,
and the register then contains a value associated with a name of
the form:

ERR. cC

where cc defines the error detected. The codes are listed in the
Kernel Specification, PSD 76.97.3.1. The condition code register
is set according to the value returned in the calling activity's
DO register, as if a TST.L DO instruction had been executed (see
MC68000 16/32-Bit Microprocessor: Programmer's Reference Manual).

Descriptions and definitions of system calls are given in the
documents included in this binder. Their names are given in
capital letters, for easy identification. They are also listed
in the index in this way.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

