Director Facilities for Application Writers

PSD 76.97.3.2

(wy The information in this document is proprietary to ICL, and is
supplied to you in confidence on the understanding that you will
not disclose it to third parties or reproduce it, and that you
will use it solely for the purpose of developing applications
software for use with the ICL product or products described in
this document.

Product

specification restricted

Company PSD

76.97.3.2

Issue

4/0 W)

Sheet

DF-2

0. DOCUMENT CONTROL

0.

0.1 Contents

OCUMENT CONTROL

Contents List

Changes Since Previous Issue
Document Predecessors
Changes Forecast

Document Cross References

G1 B WA =

ENERAL

.1 Scope

1.2 Introduction
1.3 Terminology

D
0
0
0
0
0
G
1

SUMMARY

DIRECTOR INTERFACE
3.1 General

APPLICATIONS AND ACTIVITIES
4,1 Terminology
4.2 Application structure
4.3 Application types
4.4 Application invocation

4.4.1 Auto Entry to Applications

4.4.2 State of Activity on entry

4.4.2.1 Priority
Registers
Stack and dump area
Rank
. . Events

Application termination
Loading and calling programs
4.6.1 Loading programs
4.6.2 Calling programs
Secondary activity invocation
Loading from microdrive cartridge
Interfaces
Start Application
Start Activity
Load Program
Release Program
Destroy Application
Inhibit Application
Give System Version Numbers
Give Program Header Field

NSO~ SO
AR D
]] .
NN
L] L] [

G w N

RN
. -
o o

I~
WO 00~

O S N O .Y
. - . L] [. . L]
WO WO W W WWW
. - » .) L] .o »
O~NOYOT D WA =

SCREEN/KEYBOARD HANDLING

5.1 Introduction

5.2 Architectural Qverview

5.3 Mechanisms of foreground control
5.4 Foreground state response

O Product Company PSD 76.97.3.2
specification restricted 4/0
Issue
Sheet DF-3
5.5 Keyboard handling
5.6 Interfaces
5.6.1 Request Foreground
5.6.2 Release Foreground
5.6.3 Suspend Foreground
5.6.4 Read Menu Key
6. EVIEW

(“) 10.

REV
6.1 Purpose

6.2 User Interface

6.3 Handling of Review by application
6.4 Use of Keyboard during Review

6.5 Ephemeral System Applications

6.6 Interfaces

6.6.1 Read Review Key

6.6.2 Exit Review

6.6.3 Declare Final Review Screen

SEGMENTS
7.1 Segment names
7.2 Reviewable segments
7.3 Segment usage
7.4 Store Usage Report
7.5 Interfaces
7.5.1 Change Segment Properties
7.5.2 Destroy Segment
7.5.3 Get Segment Identifier
7.5.4 Request Read Access to Segment
7.5.5 Request Write Access to Segment
7.5.6
7.5.7

.5.6 Release Write Access to Segment
.5.7 Release Access to Segment
T

1 Description

2 Flags

3 Qutput Area

4 Telephony Noticeboard

5 Interfaces

8.5.1 Display Noticeboard Flag
8.5.2 Display Noticeboard Report

8.5.3 Cancel Noticeboard Report
8.5.4 Convert Date and Time

SOUND GENERATION
9.1 Description -
9.2 Standard sounds
9.3 Special sounds
9.4 Interfaces

9.4.,1 Make Sound

NAME TABLE

10.1 Description

10.2 Register of object types
10.3 Interfaces

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-4

Sheet

e

0.2

0.3

0.4

10.3.1 Register New Name
10.3.2 Find Name
10.3.3 Destroy Name

APPENDIX 1. PROGRAM FORMAT IN ROM
Al.1 Introduction
Al.2 ROM-unit format
Al.3 Program header format
Al.4 Program properties
Al.5 Name format
Al.6 Additional program header fields

APPENDIX 2. PROGRAM FORMAT IN FILESTORE

Changes Since Previous Issue

The document has been revised both to provide an accurate
specification applicable to all existing and anticipated releases
of the component, and also to define additional rules and
facilities which need to be taken into account by writers of
applications that are intended to run compatibly on both early
and later releases of the software and hardware.

The changes are as follows:

1. Rules are defined for writing programs that may be used in an
environment that supports paged store. A new property to
control page switching is defined in the program header.

2. The requirement for registration of use of a program by an
activity is clarified. LOAD PROGRAM and RELEASE PROGRAM are
extended to allow registration and de-registration of a
program identified by descriptor instead of by name.

3. The program header is extended to accommodate additional
fields, and a new interface GIVE PROGRAM HEADER FIELD is
provided to read such fields.

4. A new interface GIVE SYSTEM VERSION NUMBERS is provided.

5. The format of programs in ROM is clarified, and extended to
include ROM checksums.

6. Minor clarifications and corrections have been made
throughout the document.

Document Predecessors

OPD/DIR/1

Changes Forecast

Issue 4/0 of this document is intended to be the stable

N

. Product Company PSD 76.97.3.2
U JIcL specification restricted 4/0

Issue

DF -5

Sheet

definition of the component for use by writers of applications
that are intended to run compatibly on both early and later
releases of the software and hardware. No changes are expected
apart from clarifications and correction of errors.

Further issues may be made to describe facilities provided in
later releases.

0.5 Document Cross References

[11 PSD 76.97.3.1 OPD Kernel Specification
[2] R51002 OPD Handbook

Product Company PSD 76.97.3.2
specification restricted 40
issue
Sheet DF _6
1. GENERAL
1.1 Scope

1.2

This document defines the function of the Director component of the
OPD software, and the interfaces it provides for the support of OPD
applications. It states the rules for writing applications so that
they fit into the OPD system architecture. It does not set out to
specify how Director works: this is covered in internal design
documents. Certain intimate system applications and activities
will require information beyond the scope of this document.

Introduction

OPD can be regarded as two devices integrated into a single system:
a conventional telephone with advanced telephony features and a
personal computer capable of running applications, especially those
that exploit telephony.

The lowest level of OPD software is the Kernel, which is
responsible for functions such as resource allocation, device
access, event handling and low level scheduling. Director is a
further level of software, whose function is to provide a suitable
control interface for the end user, and to ensure consistent and
disciplined use by applications of the low Tevel Kernel facilities.
Applications will interface both with Kernel and with Director.

Director is a generic term applied to that part of the intimate
system software lying outside Kernel but not necessarily forming
part of any application directly perceived by the user. It
comprises a number of subsystems, in particular:

1. Application Handler

This subsystem is concerned with the control and support of
applications with respect to the computer aspect of OPD. It
acts as a high level scheduler, allowing the end user to
decide which applications shall be run, and which of these
shall at any time be using the screen and keyboard. It
interfaces with applications so that they respond
appropriately to built-in OPD architectural features such as
the REVIEW mechanism. It handles access by contending
applications to shared facilities such as the screen,
keyboard, noticeboard and sound generator.

2. Telephone Handler

This subsystem controls conventional use of the telephone by
the end user, and provides facilities for applications to use
the telephone. Details of the facilities are outside the
scope of this document.

OPD applications are constrained to obey certain rules in order to
support the OPD architecture. The rules are concerned particularly

Product Company PSD 76.97.3.2

specification restricted 4/0

lssue

Sheet DF -7

1.3

with the way in which the screen and keyboard are used and with
the response to use of special OPD keys such as START and REVIEW.
A11 machine code applications must obey the architectural rules;
the system software provides no environment for enveloping
machine code applications that do not obey the rules. Such
environments could be provided by higher levels of software. In
particular, interpreters or run time packages for applications
written in languages such as BASIC are expected to support the
OPD architecture on the application's behalf.

Terminology

See section 4.1.

76.97.3.2

Product Company PSD
specification restricted 4/0
Sheet DF —8
2. SUMMARY

This document defines the interfaces provided by OPD Director
software for the support and control of conventional applications,
and states rules and conventions for writing such applications to
conform to OPD architecture and philosophy.

U PrOdth Company PSD 76.97.3.2
specification restricted 4/0

Issue

DF-9

Sheet

3. DIRECTOR INTERFACE

3.1 General

As far as possible the mechanics of the Director interface are
designed to be compatible with the Kernel interfaces.

The bulk of the Director interface comprises a set of procedures,
which are called by obeying the instruction:

TRAP #T.DIRECTOR

- The particular Director interface required is specified by an

<./ action value in DO.B. Each procedure defined in this document has
a full name, used in descriptive material in the text, and an
abbreviated name. The formal definition of each procedure includes
an action value of the form D.abbreviated-name. These action
values are provided in the INCLUDE file D9VALUES. The variable
names are intended to be used in calling code for documentary
reasons. For example, the procedure REQUEST FOREGROUND is called
by setting DO.B to D.REQFG.

In all cases where a call parameter is specified as of byte or word
length, the value of the remainder of the register is immaterial.

The caller of a Director procedure must ensure that at least 128
bytes of stack space exists below the location addressed by A7(SP)
in (frozen or immobile) store owned by the caller.

On exit from a Director procedure, DO.L contains a response code,
which in general is negative if the call has failed and positive or
< zero if the call has succeeded. The discrete negative response
(.) codes which may be returned are identified in this document by
names of the form ERR.cc (or just cc); the ERR.cc values are
supplied in the Kernel INCLUDE file ERRORS, and a consolidated list
of them is given in [1].

Further data and/or address registers may be defined to contain
parameters and/or return values. Any register that is not defined
to return a value is preserved. In particular A7 is always
preserved. Following a failure (negative) response, any register
used to return a value is undefined unless stated otherwise.

The value of CCR (the Condition Code Register) on entry to a
Director procedure is immaterial. On exit, CCR is set as follows:

Set if DO.L is negative. Cleared otherwise.
Set if DO.L is zero. Cleared otherwise.
Always cleared.

Always cleared.

(;) Undefined.

MO =N =2

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-10

Sheet

4.2

APPLICATIONS AND ACTIVITIES

Terminology

A program is a named piece of executable or interpretable code.
It is the unit of code storage in ROM or on a file store medium
such as a microdrive cartridge. See Appendices 1 and 2 for
details of the formats and properties of programs.

A program can have the property that it is an application.
Application Handler acts as a high level scheduler for the
execution of applications, enabling them to be started by the

user or by another application, and to be moved to and from the
foreground (where they have use of the screen and keyboard) as the
user requires. A program that is not an application cannot be
separately scheduled in this way, but can be called by
applications.

An activity is one of a number of concurrent processing threads,
with associated registers etc. See the Kernel specification [1]
for further details. The Tow level scheduling of work on the OPD
is in terms of activities. The execution of an application
comprises one or more activities.

A segment is a slice of the RAM, and is the gross unit in which
Kernel provides RAM space for use by applications. A segment has
properties, and in some cases a name, which are controlled partly
by Kernel facilities (see Kernel specification [1]) and partly by
Application Handler (see section 7).

Application structure

Each machine code program is either trusted or untrusted. A
trusted machine code program is one that obeys the rules contained
in this document. The rules are largely concerned with the way the
screen and keyboard are used, in order to maintain the
architectural features of OPD.

(The ‘trusted' concept does not apply to non-machine code
programs. The interpreter for the language in question will be a
trusted machine code program and will obey the OPD architectural
rules on the program's behalf.)

An activity executing a trusted program is a trusted activity; an
activity executing an untrusted program is an untrusted activity.
An untrusted activity created by a trusted activity runs under the
control of that trusted activity. An untrusted activity created by
an untrusted activity runs under the control of the controller of
the creating untrusted activity. See the Kernel specification [1]
for details of the control mechanisms for untrusted activities.

A given execution of an application comprises, as a minimum, a
trusted activity called the primary activity of the application.
This activity is responsible for coordinating the response of the

W

v

-

Product Company PSD 76.97.3.2
specification restricted 470
DF-11

Sheet

4.3

application to changes in OPD system status. Only one instance of
a given application can be executing at any time.

An execution of an application may additionally include any number
of trusted secondary activities. These activities are created and
destroyed by the primary activity or by each other as necessary to
perform the application. They must communicate (via events,
semaphores or data) with the primary activity to achieve any
required response to changes in OPD system status. They are likely
to be used to handle devices whose actions are unsynchronised with
those of devices owned by other activities in the application. For
example, the primary activity might be responsible for handling the
screen while a secondary activity handles the modem, whose actions
may be required to continue whether or not the application is
currently in foreground mode.

Each primary or secondary activity may also control any number of
untrusted activities. It is not intended that applications
written specifically for OPD should normally need to use
untrusted activities, except in specialised cases such as
language interpreters.

Application types

The end user perceives the actions of the OPD computer in terms of
applications; the application is the unit which the user invokes,
terminates, moves to and from the foreground etc.

The intimate system software (such as Kernel and Director) and
certain standard applications such as Telephone Directory are built
into the OPD.

Further applications are provided in the Rompack, or in capsules,
or on file store media such as microdrive cartridges.

Once an application has been loaded into the machine, the
facilities it can use and the way it is controlled by the user are
not affected by the medium from which it was loaded. The
application writer must note, however, that applications in capsule
or loaded from files generally occupy unpredictable addresses,

and hence must be written in a position-independent manner.

Programs (in the sense of units of code in ROM or on file store
media) written for OPD may be marked as not representing
applications., They are intended to be loaded only by an
application (e.g. as an overlay or as code shared between
applications), and are not presented to the end user as
applications.

Programs representing applications may however be marked as
winvisible®. Such applications are concealed from the end user.
They can be started only by auto-entry or START APPLICATION. This
facility is intended to support add-on device drivers, and similar
mechanisms for extending or customising the basic machine. Such

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-12

Sheet

i

4.4

software is expected to exhibit the same level of integrity as the
intimate system software.

Application invocation

An application is invoked in one of the following ways:

1. By selection from the Top Level Menu (or one of its subsidiary
menus)

2. By selection from the Review Menu
3. By an existing application calling START APPLICATION
4, By Auto-Entry (see section 4.4.1)

The required application is identified by the name of the program
that is to be executed. If the program is in machine code and is
marked as trusted, it is directly entered as the primary activity
of an application named after the program (except in the Review
case, see below). See Appendix 1 and Appendix 2 for the way in
which program properties are recorded in ROM and on file store
media. An untrusted machine code program cannot be invoked as an
application,

If the target program is not a machine code program, a special
system program is entered as the primary activity of an
application named after the target program. The system program
determines and invokes the appropriate interpreter or other
execution environment for the target program. The details of
this mechanism are beyond the scope of this document.

The initial state of the new primary activity is defined in section
4.4.2,

An application invoked by START APPLICATION or Auto-Entry will
appear in the user's view in the same way as applications invoked
via the system menus (unless the application is marked as ‘
"invisible").

An application invoked by selection from the Top Level Menu (or one
of its subsidiary menus) is immediately moved to the foreground.

An application invoked by START APPLICATION or by Auto-Entry will
normally run initially in background mode, although if it uses the
screen it will become a contender for the foreground on the Top
Level Menus or Resume Menu. (See also section 4.4.1.)

Options are provided with START APPLICATION to enable an
application running in foreground mode to transfer the foreground
(the right to use the screen) to a newly started application, or to
an application already running in background mode. This provides a
way of CHAINing applications without user intervention.

A call on START APPLICATION can specify that this is a

O

\)

Product Company PSD 76.97.3.2

specification restricted 4/0
Issue

Sheet DF - 1 3

'tele-start', i.e. the request to start the application was
initiated from outside this machine (for example, a request
received via T-Link). The call will fail unless the target
application has the bit set in its program header (see Appendix
1) or, for a program in a file, in its file type qualifier (see
Appendix 2), indicating that the application is suitable for
tele-starting.

When an application is entered to perform a Review, the program
is entered within a permanent Director activity that handles such
occurrences, rather than an activity of its own. Details of
Review processing are given in section 6.

4.4,1 AUTO-ENTRY TO APPLICATIONS

There are two ways of causing automatic entry to applications on
power-up or following a System Reset:

1. An application in ROM can be marked as having this property
(see Appendix 1 for layout conventions for programs in ROM).
Such applications in ROM which are addressable at power-up or
reset time will be entered automatically, but not moved to the
foreground.

2. An application name can be configured into permanent store.
If this application cannot be found in ROM, a standard load
sequence will occur to load it from the available file
storage devices. The application will be entered
automatically, and will be moved to the foreground without
user intervention unless an error has occurred during the
initialisation sequence. This application is termed the
First Application. It does not itself need to be marked as
"auto-entry".

An application on a file store medium cannot be auto-entered
unless it is configured as the First Application.

The order in which the applications are invoked is undefined.

[If it becomes possible to insert capsules without causing a reset,
applications marked as "auto-entry" in a newly inserted capsule
will be auto-entered following the insertion.]

4.4,2 STATE OF ACTIVITY ON ENTRY

This section defines the initial state of an activity invoked by
the Director functions START APPLICATION and START ACTIVITY.

For an activity started by direct use of the Kernel interface

CREATE NEW ACTIVITY, the initial state of the activity is defined
in the Kernel specification [1].

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-14

Sheet

TR

4.4,2.1 Priority

For activities invoked by use of START APPLICATION or START
ACTIVITY the priority is set by the invoker.

For an application invoked via the Top Level Menu (or one of its
subsidiary menus) or auto-entered, the primary activity has an
initial priority of 63.

The activity in which a review entry is made has a priority of 63.

A priority greater than 63 should only be used where there is a
specifically evaluated requirement to achieve a faster than average
response to events. This might apply to activities handling the
lTower access levels of commmunications systems. The use of
priorities greater than 100 is likely to degrade system control and
telephony functions.

A primary activity must never be given a priority of 0, because it
would then be unable to respond to system events.

4,4,2.2 Registers

DO.L : 0 : entry by START ACTIVITY
1 : entry from Top Level Menu (or one of its
subsidiary menus)
2 : auto-entry
3 : entry by START APPLICATION
4 : entry to perform review

(Other values are used for ephemeral processes
other than Review. Such details are beyond the
scope of this document.)

D1.L : (Review entry only)
Review screen channel identifier (see section 6.3)

D5.L : (START APPLICATION and START ACTIVITY only)
Activity identifier of invoking activity

A2-Ad : (START APPLICATION and START ACTIVITY only)
Values as in the corresponding registers of the
invoking activity at the time of invocation

A7 (SP) Stack pointer (see section 4.4.2.3)
Other data and address registers and CC: Undefined.
4.4,.2.3 Stack and dump area
Each activity must have a 72-byte dump area (see Kernel
Specification [1]. Below the dump area is a space which the

activity uses as its initial stack space. On entry to the
activity, A7(SP) addresses the base of the dump area, and hence

C

Product Company PSD 76.97.3.2
specification restricted 4/0
DF-15

Sheet

is appropriately set up for accessing the déscending-address
stack.

Except in certain cases in the intimate system software, stack
space is always set up by Director. In the START APPLICATION
call, the space requirement is determined from the program header
of the target program. In the START ACTIVITY call, the
requirement is specified by the caller; the value will often be
that returned by a preceding call of LOAD PROGRAM. Director
creates an immobile normal segment of size sufficient to contain
the stack space plus the 72-byte register dump area. This
segment becomes owned and frozen by the new activity. On entry
to the activity, the contents of the stack and register dump area
are undefined.

When an application is entered to perform a Review, the only
assumption that can be made is that 512 bytes below the location
addressed by A7(SP) are available for use as a stack. If further
space is required, the reviewed application should acquire it
(and destroy it) in the standard way.

4.4.2.4 Rank

A primary activity (started by selection from the Top Level Menu
(or one of its subsidiary menus), or by Auto-Entry, or by START
APPLICATION) is of 'trusted' rank.

A non-primary activity (started by START ACTIVITY) is of
'trusted' or 'untrusted' rank, determined by the caller.

The activity in which Review (or other ephemeral) invocation
occurs is of 'trusted' rank. ’

4,4,2.5 Events

On entry to a primary activity, bits corresponding to the
following events are already set in the activity's Event Request
Register: ‘

Foreground Allocated
Suspend Foreground
Terminate

Abandon

Foreground Mode

One or more of these évents may already have occurred. A primary
activity should never clear these events from its Event Request
Register.

On entry to a non-primary activity, the Event Request Register is
clear.

On entry to an application for review (or other ephemeral
process), the bit corresponding to the Terminate event is set in

Product

specification

Company PSD 76.97.3.2
restricted 270

Issue

DF-16

Sheet

4.5

the activity's Event Request Register. The application should
not clear this event from the Register.

Application termination

An application may either terminate normally or be abandoned.

An application terminates normally under the following

circumstances:

1. It naturally completes its work, according to its
specification.

2. It is requested to terminate via its normal control interface
with the end user. A1l visible extended applications should
provide such an interface. A transient application may also
do so, or may rely on the effect of the START/RESUME keys
(see below).

3. The end user presses START or RESUME while the application is

in foreground mode and its style (see section 5.2) is
transient. In this case a Terminate event is caused in the
primary activity of the application.

The application should proceed as follows in normal termination:

1.

If it is in foreground mode (suspended or unsuspended), the
primary activity should call RELEASE FOREGROUND as soon as any
necessary screen interaction is complete. Following a
Terminate event it must do this at once.

It should complete its scheduled tasks according to its
specification. This may take some time if access to slow
devices is required.

It should release Tocks and resources as appropriate.

The primary activity should ensure that any secondary
activities are destroyed.

The primary activity should call DESTROY APPLICATION. This
deletes Director's records of the application invocation, and
causes an implicit call on the Kernel procedure DESTROY THIS
ACTIVITY. This Kernel procedure should never be called
directly by a primary activity. Any programs loaded into

RAM that are being used by an activity are deleted from RAM
when the activity is destroyed (unless another activity is
using them). ~

The user can choose to abandon an application using facilities
associated with the Store Report feature (see [2]). In this case,
an Abandon event is caused in the primary activity. The
application should proceed in the same manner as for normal
termination, except that it should not complete its scheduled

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-17

Sheet

4.6

tasks. Instead it should do the minimum necessary to leave data in
a consistent state, for example, by destroying a partially written
file.

Following an Abandon event, the end user is not able to re-invoke
the application or move it to the foreground until the termination
process is complete. (The status 'Abandoned' appears against the
application on the Top Level (or subsidiary) Menu.) The ability
to review the application may also be affected: see section 6.3
for details.

An application may also be instructed to abandon via its normal
control interface with the end user. Unless the abandon can be
achieved very quickly the application should call INHIBIT
APPLICATION to cause the 'Abandoned' status to appear in the system
menus. Access to the application is then restricted in the same
way as if the sequence leading to an Abandon event had occurred.

During normal termination (which may be a long process) the end
user may again select the application for foreground mode (a
Foreground Mode or Foreground Allocated event occurs) or may Review
it, and the application should respond in the normal way. If there
are particular technical difficulties in coping with this, the
application should call INHIBIT APPLICATION with the parameter
value which causes the 'Unavailable' status to appear in the system
menus, and restricts access to the application in the same way as
in the 'Abandoned' case. The end user is still able to cause an
Abandon event in the application, in which case normal termination
must be replaced by an abandon sequence. The 'Unavailable' state
(unlike the 'Abandoned' state) is reversible, and its use may be
appropriate at times other than during termination. INHIBIT
APPLICATION should be used with discretion since it Tocks out the
end user.

In the case of an application entered to perform a review (or other
ephemeral process), the application invocation ends when it
completes naturally and calls EXIT REVIEW, or when it receives a
Terminate event, whereat it immediately tidies up and calls EXIT
REVIEW.. There is no Abandon event in this case, and the procedure
INHIBIT APPLICATION is not used. Full details are given in section
6.

Terminate and Abandon events may exceptionally be caused by system
software, for example on certain System Errors or capsule
manipulations.

Loading and calling programs

4.6.1 LOADING PROGRAMS

An activity may wish to enter a distinct program within the same
activity, or to enter part of its original program or subsequently
Toaded program as a secondary activity (see section 4.7).

Product Company PSD 76.97.3.2

specification restricted 4/0
Issue

Sheet DF - 1 8

The Director interface LOAD PROGRAM returns a descriptor to a

named program, by which that program may be called (see section
4.6.2). If the program is not in ROM, nor already loaded into
RAM, options are provided to search for it on file store media.

The LOAD PROGRAM facility is provided to allow an application to
be overlaid in RAM or be distributed over different units in a
capsule (see Appendix 1), or to allow several applications to
share a common library.

A program loaded from a file is placed in an immobile normal
segment, which is frozen on behalf of the activity requesting it.
While a given program remains in ROM or RAM, new users gain
access to that same instance of the program. A program loaded
into RAM is deleted when it no longer has any users.

LOAD PROGRAM does not create a stack. It returns the size of stack

required by the loaded program, which may be used as input to START
ACTIVITY.

System software maintains a record of which activities are using
which programs. This is for two reasons: so that RAM can be
released when there are no longer any users of a program loaded
into RAM, and so that, on any future hardware which supports
insertion and removal of capsules with the power on, the effects
of capsule exchange can be controlled. LOAD PROGRAM registers
the calling activity as a user of the nominated program. When
the activity no longer requires the program, it should
de-register it by a call on RELEASE PROGRAM. De-registration
occurs implicitly when an activity dies. The program in which
execution commences in a new activity is implicitly registered to
that activity. LOAD PROGRAM provides an option whereby an
activity can register a program identified by a descriptor
instead of by name; the descriptor may have been passed from
another activity that has already loaded the program. START
APPLICATION registers the target program on behalf of the new
primary activity, and de-registers it on behalf of the caller of
START APPLICATION. Registration has no effect if the program in
question is already registered.

A program written for OPD can be marked as being suitable for entry
as an application, or suitable only for loading within an
application. 1In the latter case the program will not appear in the
user's Application Menu. LOAD PROGRAM will return an error
response if the target program has the 'application' property, and
if the target program is already running as an application, LOAD
PROGRAM will return its primary activity identifier. :

LOAD PROGRAM cannot be used to load a non-machine code program,
but it will nevertheless return the primary activity identifier
if the target program is a running application.

o

ICL

Product

Company PSD 76.97.3.2

specification restricted 4/0

issue

DF-19

Sheet

4.6.2 CALLING PROGRAMS

Calls within a program can be made without difficulty using
conventional methods. Calls between different programs are
complicated by the possibility that, in certain environments,
programs (and data in the program area) may be in paged address
space. The system and the application program have to co-operate
to ensure that, whenever a particular activity is running, the
correct page (if any is required) is selected for the code being
executed and the data being accessed. ~

The complexity is largely handled by the system software,
provided that the application code obeys the rules set out in
this section.

When a program is to be called, LOAD PROGRAM is used to obtain a
descriptor to the target program. A descriptor is a 32-bit value
that specifies both the address of the entry point to the program
and its page requirements. Details of the descriptor format will
be found in the version of the Kernel specification [1]
applicable to paged environments. Normal applications should
not need to know the format, and should not seek to modify a
descriptor (except possibly to add a small even displacement if
entry at an offset from the normal entry point is required).

To call the program, the descriptor is loaded into one of the
address registers A0 to A6, and the instruction JSR (An) is
executed. No other instruction or operand form is allowed. This
causes entry to the target program with the activity's page
requirements modified as appropriate. A 32-bit link is stacked
in a special format. Details of the link format will be found in
the version of the Kernel specification [1] applicable to paged
environments, but normal applications need only know that
execution of an RTS instruction will return control to the caller
in the expected way, with the activity's page requirements
restored to those of the caller. Return by RTS is the only
method allowed for normal programs.

When a program is called, it will often be necessary to pass to
it the address of data which may be in the caller's program area,
and hence in the caller's page. No means is provided of
executing in one page and accessing data in a different page, and
an attempt to call from one page to another will normally fail:
the effect of the JSR (An) instruction will be exactly as if a
MOVEQ #ERR.PE,DO had been executed instead. A callable program
should, by convention, return a response value in DO.L (and set
the Condition Code Register accordingly) so that the caller may
reliably detect the error PE (page error) condition.

This error does not arise if the programs are in the same page,
or if at least one of them is in unpaged store. The error can
also be inhibited by asserting the 'forced page switch' property
for the called program (a zero value in bit 5 of byte 25 of the
program header: see Appendix 1); this property should be asserted

Product

Company PSD 76.97.3.2

specification restricted 4/0

issue

DF-20

Sheet

4.7

if the called program does not access data passed by the caller
(except in the registers), or can reasonably require that such
data be in unpaged store (for example, in RAM). If the property
cannot justifiably be asserted, then the user documentation of
the program must explain that it and any program that calls it
cannot both be plugged into paged ROM slots.

Calls on system programs (such as Telephone Directory) using the
TRAP mechanism can in principle fail with error PE for the reason
described above. In practice, such programs will usually be in
unpaged store or will have the 'forced page switch' property
asserted. Calls on Kernel and Application Handler procedures
cannot fail in this way (although certain Kernel procedures can
return error PE as a result of an invalid attempt to manipulate
pages).

A called program should not return an address of data in its own
program area, which might be paged, and hence not easily (or at
all) accessible to the calling program. [System-oriented
programs will be able to use the Kernel procedure SET ACTIVITY'S
DATA PAGE to handle return of such addresses in restricted
circumstances. If a data page is set by this means, it should be
cancelled before any inter-program call or return. This
technique cannot conveniently be exploited by programs that are
required also to run on early releases of the system software.]

Simple addresses of data in the program area, constructed for
example by the LEA instruction, can be used within that program
and passed to called programs subject to the rules above. They
should not be passed to another activity, where they might be
used in a page context other than that required.

The system RAM, visible above Kernel as segments, is not paged,
and is not constrained by the rules above.

Secondary activity invocation

The procedure START ACTIVITY is used to start execution in a new
activity (secondary or untrusted) of code forming part of the
invoking program or of a program that the invoker has previously
loaded. The initial state of the new activity is defined in
section 4.4.2.

The code entry point at which execution is to start can be
specified in one of two ways:

1. By a descriptor returned by LOAD PROGRAM. The descriptor
defines the page (if any) required by the new activity.

2. As the address of an instruction within the current program.
If the address is in paged address space, the new activity's
page is set to that of the invoking activity.

START ACTIVITY creates a stack for the new activity and freezes it

Product Company PSD 76.97.3.2

specification restricted 4/0
Issue

Sheet DF-21

4.8

4.9

on behalf of the new activity. If the code entry point to the new
activity is in RAM, the segment containing the code is frozen on
behalf of the new activity; otherwise the new activity is
registered as a user of the capsule containing the code. The code
segment or capsule is not de-registered in the invoking activity;
if this is required, RELEASE PROGRAM should be used.

The Kernel procedure CREATE NEW ACTIVITY should be used directly

only by intimate system software, in circumstances which are
outside the scope of this document.

Asynchronous loading

A call to START APPLICATION or LOAD PROGRAM may not be completed
synchronously because of device or other long system actions. If
the call cannot be satisfied or failed at once, it will return
with response NC, and the bit corresponding to the 'Loading
Complete' global event will have been set in the activity's Event
Request Register. When the requested action has been completed
(successfully or not), that global event will be signalled. The
activity can then repeat the request, and will normally then
receive a success response or a failure response other than NC
(although a further NC response may occur if the Loading Complete
event referred to some other load request).

An outstanding request can be cancelled by use of RELEASE
PROGRAM. This does not clear the Loading Complete bit from the
Event Request Register. The caller should in all cases
explicitly clear this bit when he has no further load requests
outstanding, by means of the Kernel procedure CLEAR EVENT
REQUESTS.

Interfaces
4.9,1 START APPLICATION

Trap Name: T.DIRECTOR
Action Value (D0.B): D.STAPP

Additional Call Parameters:

A0 : address of buffer containing 12-byte name of target
program
D1.W : chaining control:

0 new application is to start in background mode
1 new application is to take over the foreground
2 new or already running application is to take over
the foreground (see section 4.4)
The value 4 added to any of the above values indicates
that this is a 'tele-start' request (see section 4.4)
D2.W : initial priority of new primary activity (1 to 127)
D4.W : specifies the devices to be searched if the program is
not found in ROM or already loaded into RAM., The
following (binary) values are allowed:

Product Company PSD 76.97.3.2
specification restricted 4/0
Issue
Sheet DF -2 2
0 search no devices
2 search the 'left microdrive'
4 search the 'right microdrive'
6 search all available file storage devices

Return Pa
DO.L :
D2.L

D4.L :

Error Ret

BP
NF

NA

DT
NP

oM
NO

IV

The parameter can alternatively be set to the less
significant word of the value returned in D4.L by a
previous successful call on START APPLICATION or LOAD
PROGRAM. This requests a search of the device (if any)
on which the previous program was found.

rameters:

activity identifier of primary activity of new
application
activity identifier of primary activity of existing
application. The value of this parameter is defined only
when error IU is returned in DO (See description of error
1U.)
load source
bits 0 to 2 may contain the following values:
1 target program is in ROM
2 target program was loaded from 'left microdrive'
4 target program was loaded from ‘right microdrive'
6 target program was loaded from some other device.
This value is provided for forwards compatibility.
Its precise significance is not yet defined, but the
value returned in D4.W can be used compatibly as a
call parameter to a subsequent call of START '
APPLICATION or LOAD PROGRAM.
bits 3 to 31 are not yet defined, but should not be
assumed to be zero.

urns:

bad parameter

program not found (this response can also occur in the
case of a non-machine code application if the system
program that handles entry to such applications cannot
be found)

calling activity is not allowed to do this (attempt to
transfer foreground by non-primary activity)

director tables full

target program unsuitable for this operation (attempt to
tele-start a non-tele-startable application; untrusted
machine code program; application is in Abandoned or
Unavailable state; program does not have 'application'
property)

out of memory

attempt to transfer foreground (Dl.W=1 or 2) but caller
does not have foreground or has been requested to release
it

target program already running as an application. If
DI.Wwas 0 or 1 (or 4 or 5), the target program is
unaffected and no implicit RELEASE FOREGROUND occurs in

U

Product Company PSD 76.97.3.2

specification restricted 4/0
Issue

Sheet DF -2 3

the invoking activity. If D1.W was 2 (or 6), foreground
is transferred to the target application, and RELEASE
FOREGROUND occurs in the invoking activity.
Response IU can also result from a failure to open a
program file because it is already open for writing. In
this case, zero is returned in D2 and no RELEASE
FOREGROUND occurs

UF : unformatted or no volume in specified drive

NV : volume removed or unserviceable

PF : file read failure

NC : operation not complete (see section 4.8)

This call invokes the nominated program as an application.

If the program is not in ROM or already loaded into RAM, it is

sought on the specified device(s) (if any). If a search of all

devices is requested the devices are searched in the same order
as for a Kernel OPEN CHANNEL call (see [1]).

If the program is not already running and is a non-machine code

or trusted machine code program, it is invoked as a new
application. The values in the caller's A2 to A4 are transm1tted

. to the new application.

If transfer of foreground is requested (which can only be by a
primary act1v1ty that currently has the foreground) the new
application is moved to the foreground, and RELEASE FOREGROUND (see
section 5) implicitly occurs in the calling activity.

If the target program is already running as an application, the
call fails except in the case D1.W=2 or 6 (see description of error
IU). In the Tatter case, the foreground is transferred but not
the registers A2 to A4.

4.9.2 START ACTIVITY

Trap Name: T.DIRECTOR
Action Value (DO.B): D.STACT

Additional Call Parameters:

A0 : entry point to new activity: the permitted values are
defined in section 4.7.

DI.W : rank of new activity (1 = untrusted, 2 = trusted)

D2.W : initial priority of new activity (0 to 127)

D3.L : size of stack space to be provided (number of bytes)

Return Parameters:

DO.L : activity identifier of new activity

Error Returns:

BP : bad parameter

o

Product Company PSD 76.97.3.2
specification restricted 2/0
Sheet DF = 2 4

i oM out of memory
| NA invalid rank specified
; NS invalid entry point specified

This call creates a new activity and associated stack, and enters
‘ the activity at the specified entry point.

|
|
|
i | 4.9.3 LOAD PROGRAM
|
\

Trap Name : T.DIRECTOR
Action Value (DO.B): D.LOADPR

! Additional Call Parameters:

‘ i A0 address of buffer containing 12-byte name of target
| ; program

i l Al : descriptor to program to be registered to calling

| ﬁ activity

! | D4 .W: specifies the devices to be searched, in the same way as
‘ in section 4.9.1.

In addition, bit 6 specifies the function of this call:

0 : the name is specified by AO; Al is ignored

1 : the name is specified by Al; A0 is ignored

| Note: early releases of Director assume that bit 6 is

| zero. An application that is to run on all versions of
the system software should supply both A0 and Al when bit
6 =1,

Return Parameters:

A0 : descriptor to target program (see section 4.6)

D1.L : 1 = target program is untrusted, 2 = trusted

D2.L : activity identifier of primary activity executing target
program. The value of this parameter is defined only if
error IU is returned, indicating that the target program is
an application which is already running. If the target
program is an application which is not running, error NP is
returned

D3.L : stack space requirement of target program (number of bytes)
D4.L : load source (see section 4.9.1)
Error Returns:

BP : bad parameter

NF : program not found

DT : director tables full
: NP : target program unsuitable for this operation (program has
! 'application' property; program is not machine code)

Product Company PSD 76.97.3.2

specification restricted 4/0
issue
Sheet DF -25
{ OM : out of memory
: IU : target program already running as an application (see

description of return parameter D2.L).

Response IU can also result from a failure to open a
program file because it is already open for writing. In
this case, zero is returned in D2.

UF : unformatted or no volume specified drive
NV volume removed or unserviceable
PF : file read failure

NC operation not complete (see section 4.8)
The function of this call depends on the value of bit 6 of D4.

If bit 6 is zero, the call searches for the nominated program in

. the same way as START APPLICATION (see section 4.9.1). If the

call is successful, it returns a descriptor to the program, which
may be used subsequently to call the program (see section 4.6).
The calling activity is registered as a user of the program.

If bit 6 is 1, the call registers the calling activity as a user
of the program identified by the descriptor (which will have been
passed from another activity that already has the program
registered). ’

4.9.4 RELEASE PROGRAM

Trap Name ¢ T.DIRECTOR
Action Value (DO.B): D.RELPR

Additional Call Parameters:

A0 : address of buffer containing 12-byte name of target
program

Al : descriptor to target program (returned by a call on LOAD
PROGRAM)

D4.W: bit 6 specifies which parameter identifies the target
program:

0 : the name is specified by AO; Al is ignored

H

1 : the descriptor is specified in Al; AQ is ignored
bits 0 to 5 and 7 to 15 should be set to zero

Note: early releases of Director assume that bit 6 is
zero. An application that is to run on all versions of
the system software should supply both A0 and Al when bit
6 = 1.

Error Returns:
None

This call de-registers the calling activity as a user of the
specified program, as described in section 4.6.

Product

Compan PSD 76.97.3.2)
pany U

specification restricted 4/0

Issue

DF-26

Sheet

4.9.5 DESTROY APPLICATION

Trap Name: T.DIRECTOR
Action Value (D0.B): D.XAPP

Error Returns:

NA : caller is not a primary activity
Unless error NA is returned, no return is made.

This call deletes Director's record of the application invocation, .
and destroys the primary activity that makes the call. ﬁ.a?

4.9.6 INHIBIT APPLICATION

Trap Name: T. DIRECTOR
Action Value(DO.B): D. INHAPP

Additional Call Parameter:

D1.W : bit 0 : 1 put application into 'Abandoned' state
0 do not
bit 1 : (actioned only if bit 0 is 0 and application
is not already in 'Abandoned' state)
1 put application into ‘Unavailable' state
0 remove application from 'Unavailable' state
bit 2 : (independant of bits 0 and 1)
1 inhibit entry to application for Feview
0 allow entry to application for Review
(see section 6 for details of when Review Qg}
may occur) i
bit 3 to 15 : reserved (zero)

Return Parameters:

DO.L : foreground state (see section 5.4)

Error Returns:

NA : caller is not a primary activity

This call sets the calling application into the specified state.
In the 'Abandoned' or 'Unavailable' state, the application cannot
be moved to the foreground by the end user. The 'Unavailable'
state is reversible. If the 'Abandoned' or 'Unavailable' state is
requested, the application's foreground phase (if any) is ended by
an implicit call of RELEASE FOREGROUND.

4,9.7 GIVE SYSTEM VERSION NUMBERS Q;;

Trap Name : T.DIRECTOR

Product Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-27

Sheet

Action Value (D0.B) : D.GIVVER
Additional Call Parameters:

D1.L : this register is reserved for future use; at present
it should be set to zero

Return Parameters:

Dl1.L :+ base software version number
D2.L : base software variant identifier

(~) D3.W : telephony module firmware version number
D4.L : undefined

Error Returns:

BP : call is not supported by current version of system
software. - This error will be returned by early
releases of the software.

This call returns information about the version of software and
firmware in use.

The generic version number of the base software is returned in
D1.L as the four graphic ASCII characters supplied when the
system was built, for example "F1.2". (Note that, in development
i builds, the value is usually set to binary zero.)

(;) : The variant identifier returned in D2.L also consists of four

‘ ’ graphic ASCII characters supplied when the system was built.
This identifier may be used to identify variants of the generic
base software for use in particular territories etc..

The telephony module firmware version number is returned as two
binary numbers in the bytes of D3.W. For example version 2.1 is
returned as $0201. ’

The more significant word of D3.L and the whole of D4.L are
returned with undefined contents., The values may be defined in
later releases.

The significance of the version numbers, and the use that may be
made of them, are outside the scope of this document.

4.9.8 GIVE PROGRAM HEADER FIELD
7 Trap Name : T.DIRECTOR
~ | Action Value (DO.B) : D.GIVPROG

Additional Call Parameters:

Product Company 76.97.3.2

specification restricted

4/0

DF-28

identifier of required field
length of buffer addressed by A2

bit 6 specifies which parameter identifies the target
program:

0 : the name is specified by AO; Al is ignored

1 : the descriptor is specified in Al; AO is
ignored

address of buffer containing 12-byte name of target
program

Al descriptor to target program (returned by a call on
LOAD PROGRAM)

A2 address of buffer (in RAM) into which the program
header field is to be copied

Return Parameters:
None
Error Returns:

NP the specified program is not in ROM nor currently
loaded into RAM

NF the specified program does not have a field with the
specified identifier

BP call is not supported by current version of system
software. This error will be returned by early
releases of the software ‘

This call returns one of the optional information fields from the
program header of a specified program. The format of these
fields is defined in Appendix 1.

The program must either be in ROM or currently loaded into RAM.
It need not be in the same page as the caller of this interface.

The information returned into the buffer addressed by A2 consists
of one byte containing the length (in bytes) of the specified
field as it appears in the program header, followed by that
number of data bytes copied from the header. If the supplied
buffer is too large, the spare bytes are unchanged. If the
supplied buffer is too small, the excess bytes are not returned;
the length byte indicates the number that could have been
returned (and no other warning of truncation is given).

B

Product Company PSD 76.97.3.2
specification restricted 4/0
Issue
Sheet DF -29
5. SCREEN/KEYBOARD HANDLING
5.1 Introduction
This section describes the standards and interfaces by which
applications conventionally access the screen and keyboard in a
manner that correctly supports the OPD functional architecture.
The objectives are as far as possible to conceal the complexities
of the architecture, to simplify the writing of applications, and
to encourage a consistent approach across the range of applications
as perceived by the end user.
5.2 Architectural Overview

OPD can perform several applications simultaneously, subject to
resource constraints. An application that needs a resource that is
currently unavailable must stop (or not start), or wait until the
resource becomes available, possibly meanwhile performing other
work not dependent on the resource.

The most critical resource is the screen. Only one application can
be using the screen at any time: this is called the foreground
application while it retains the screen, and is said to %e running
in foreground mode. Any other running applications are for the
time being background applications running in background mode.
Since the user's perception of what the OPD is doing is principally
through the screen, he can always choose which application is to be
in the foreground, and his choice is never pre-empted (except on a
System Error). The choice is made through the START and RESUME
keys, as described in the User Specification [2].

For ergonomic reasons, the foreground application is also the
(only) application to which the application keyboard can be
currently connected. The application keyboard is that part of the
keyboard that can be read by an application running under Director,
and comprises the whole keyboard excluding the dedicated OPD system
keys, the dedicated telephony keys, and, while the OPD is in a dial
state, the keys used for telephone dialling. Details of the
sub-allocation of the keyboard are given in the Kernel
specification [1]. The application itself does not need to be
aware of the current suballocation of the keyboard, but the
application designer must take this into account when designing the
user interface.

Within an instance of an application, several user-visible "tasks"
can be run simultaneously, and the screen and keyboard may be
shared between them. This subdivision is the responsibility of the
application; as far as the interaction with Director and the end
user's control of applications is concerned, it is a single
application. This approach is not in general recommended for OPD
applications, since it involves the user in two levels of control.

The user chooses which application is to be in the foreground by
means of the START and RESUME keys. The design intention of these

Product Company PSD 76.97.3.2

specification restricted 4/0
issue

Sheet OF -30

keys is to enable the user to select a new foreground application
(START) or to return to what he was doing previously (RESUME). The
effect of these keys on the current foreground application depends
on the application. To achieve a measure of consistency across the
range of applications, the OPD philosophy is that most applications
should fall into one of two styles:

1. Transient applications. Such applications are typified by
short access to the screen to perform single updates or
enquiries on information in the OPD, and are likely to be
invoked at unpredictable times while longer applications are
running. When the user selects a new foreground application
by START or RESUME, the assumption is that he has finished
with the transient application, which accordingly terminates.

2. Extended applications. Such applications are typified by
lengthy user interaction via screen and keyboard. The user is
likely to want to break off to perform other urgent tasks
while retaining the ability to return to the extended
application. When the user selects a new foreground
application by START or RESUME, the extended application will
go into background mode, relinquishing the screen and keyboard
until it is again selected as the foreground application, but
ifdap?ropriate still accessing other devices (such as the
modem) .

The terms 'transient' and 'extended' are part of the user view, and
can be used in user documentation of applications. The terms
describe broad styles, and cannot encompass every case. There may
be applications that are sometimes transient and sometimes extended
(e.g. a Viewdata application transiently handling stored pages or
handling an extended connection to a Viewdata service).

A further broad class of application is the spasmodic application.
Such an application is typically quiescent, waiting for the
occurrence of an event of interest to it, for example, the start or
end of a phone call, the arrival of an electronic message, or a
preselected time being reached. The application may then wish to
interact with the end user, and will become temporarily like a
transient, or more probably, extended application, before returning
to its quiescent state.

A general rule applicable to all applications (except those
marked as 'invisible'), and in particular to spasmodic
applications, is that they must present a display when selected
as the foreground application. Even if no user interaction is
relevant at the time, the application may allow the user to
change its control parameters or at least display a status
screen. (An application can become 'non-interruptible' during a
termination or abandon sequence: see section 4.)

The foreground application's use of the screen may also be

interrupted by use of the REVIEW key or one of the built-in
ephemeral functions which acts like REVIEW, e.g. SHIFT/RECALL and

O [icL] FProduct Company PSD 76.97.3.2
specification restricted 0
Sheet DF-31

5.3

SHIFT/REDIAL. Part of the definition of the function of these keys
is that they have no permanent effect on the application whose
foreground phase is interrupted by their use. The foreground
application, whether transient or extended, will therefore go into
background mode, but will continue normally when (and if) the
foreground is restored at the end of the Review sequence.

As well as expecting to be interruptéd by a Review sequence, each
application must also normally be prepared to be reviewed itself.
This aspect is covered in greater detail in section 6.

Mechanisms of foreground control

The logic necessary to give a correct and consistent response to
the occurrences which influence the allocation of the foreground is
complex. The approach in the OPD system is that such occurrences
are seen directly only by Director. Director then causes
appropriate events in the affected applications, some of which must
be acknowledged by the application making a call on Director. The
events are caused in a sequence which ensures a correct and
consistent response to the end user's commands.

The events are caused only in the primary activity of the
application. Acknowledgements, where required, are also made by
the primary activity. It will usually be most convenient if
screen handling is peformed by the primary activity. (See
section 5.5 for recommendations concerning keyboard handling.)

A period during which an application potentially uses the screen
is called a foreground phase. The application indicates that it
wishes to enter a foreground phase by calling REQUEST FOREGROUND.
A parameter to this procedure specifies whether the request is
Active or Passive. With an Active request, the application is
actively soliciting the end user's attention, perhaps because of
some external occurrence which the end user may not have
foreseen, such as unsolicited communications traffic. The
application will normally output an Event Report to the
Noticeboard (see section 8) when it makes an Active foreground
request (if it does not immediately acquire the foreground). With
a Passive request, the application is merely indicating that it
has a screen to display when the user selects it as the
foreground application. An Active request causes the status
'"Attention' to appear against the application on the Top Level
Menu (or its subsidiary menus); a Passive request causes a
'Waiting' status.

Following any successful call of REQUEST FOREGROUND, the
Foreground Allocated event will occur when (and if) the user
selects the application for foreground mode. The event will occur
within the REQUEST FOREGROUND call if the application is already
entitled to use the foreground.

The user may select an application for foreground mode when there
is no outstanding foreground request from the application. In

Product

Company PSD 76.97.3.2

specification restricted 40

Issue

DF-32

Sheet

particular this happens when a new application is started through
the Top Level Menu. It can also happen when an application is
chained by START APPLICATION, or when a spasmodic application is
quiescent, or when the foreground has been released and has not
been inhibited by INHIBIT APPLICATION and an Abandon event has not
been caused. A Foreground Mode event occurs in the application,
which must immediately respond by calling REQUEST FOREGROUND to
enter a foreground phase. However the application is still not
entitled to use the screen and keyboard until the Foreground
Allocated event occurs. Exceptionally, the invitation implied

by the Foreground Mode event can be refused by means of a call

on RELEASE FOREGROUND (or on one of the procedures that performs
RELEASE FOREGROUND implicitly); this technique should be used
only to cope with an event that arrives during a brief time when
the application has not yet made an appropriate call on INHIBIT
APPLICATION.

Once the foreground is allocated, the application is entitled to
write to the screen. The application can have screen channels open
at any time, but it is required not to use them in any way that
causes a display unless the foreground is allocated to it. The
primary activity must liaise with any secondary activities to
ensure that the application as a whole obeys the screen access
rules. Any untrusted activity can be unsuspended (given a priority
other than zero) only during a foreground phase, unless it is known
that it obeys the rules; this is the responsibility of its owning
trusted activity.

When the application has completed its foreground phase, it calls
RELEASE FOREGROUND. Before this call, the application must have
ceased issuing screen transfers, completed any outstanding
transfers, and suspended any untrusted activities as appropriate.
RELEASE FOREGROUND occurs implicitly when START APPLICATION is
successfully used to "chain" a further application, and in certain
other cases defined in sections 4 and 5.

Before the application naturally completes its foreground phase, it
may be instructed to yield the foreground to some other application
as the result of the end user pressing a system control key. The
effect on the current foreground application of pressing START or
RESUME depends on the current processing style of the application:
Transient or Extended, as described in section 5.2. A transient
application will terminate, whereas an extended application will
suspend screen processing until it is restored to the foreground.

The application declares its style as Transient or Extended in the
call on REQUEST FOREGROUND. The application can change its style
from time to time if appropriate by further calls of REQUEST
FOREGROUND. The declared style has no significance except during a
foreground phase.

There are other keys that always imply suspension of screen
processing, irrespective of style (e.g. REVIEW), and there may be
system occurrences that imply termination, irrespective of style.

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-33

Sheet

The application does not directly see these special keys and
occurrences. Instead it sees the Suspend Foreground and Terminate
events.

The Terminate event may occur at any time during the execution of
an application. The response of the application to this event is
described in section 4.5.

The Suspend Foreground event can occur only while the foreground is
allocated to the application. The application must immediately
stop initiating screen transfers and writing to the screen store
(in all its activities). It must suspend any untrusted activities
in the application that are liable to be accessing the screen.
Around the time of this event, screen transfers are liable to be
cancelled by Kernel (this can in theory occur at any time). The
application must ensure that it is capable of restoring the screen
display when the foreground is eventually restored.
Purpose-written OPD applications must be able to do this using
their stored data. Where untrusted activities are involved, the
only way of restoring the screen may be to copy the screen store
to a screen save area. The 30Kb save area is reserved by

Director (when necessary) during the call on REQUEST FOREGROUND

If sufficient space is not available, the foreground request is
rejected. For sizing purposes, the store usage of such an
application is 30Kb greater than the store it directly uses.

When the application has completed all the actions necessary to
suspend its use of the foreground, it must call SUSPEND FOREGROUND.
(The next user of the foreground will now be allowed to proceed.)

While the foreground is suspended, the application can continue to
perform other tasks, such as accessing the modem, provided it does
not access the screen (nor write to the screen store). It is for
the application designer to decide what processing is appropriate
while the user is not interacting with it.

While the foreground is suspended, the Active/Passive choice
associated with the original foreground request determines the
classification of the application in the Top Level and Resume
Menus.

When (and if) the foreground is eventually restored to the
application, the Foreground Allocated event occurs again. The
application must immediately restore the screen display. It can
then resume normal foreground phase processing. If a screen save
area is in use, the display will already have been restored by
Director.

During the foreground phase suspension the application may be
reviewed. Details of review handling are given in section 6.

Depending on the speed and sequence in which the user types system
control keys, more than one of the system events may appear to the

Product Company PSD 76.97.3.2
specification restricted 4/0

Issue

DF-34

Sheet

application to occur simultaneously. The application should act on
events in the following order of priority, ignoring any
'simultaneous’ event of lower priority: (event numbers are given in
parentheses):

Abandon (5)
Terminate (4)
Suspend Foreground (3)
Foreground Allocated (2)
Foreground Mode (6)

When the Foreground Allocated event first occurs in a foreground

phase, the hardware display mode of the screen is set as specified

in the call of REQUEST FOREGROUND that introduced the foreground

phase. On subsequent occasions in the foreground phase when the Qﬁg
foreground is restored (after having been suspended), the hardware
display mode is restored to its state at the corresponding

suspension. In either case, the entire application screen will ,
have been cleared to black (unless the display is automatically |
restored from a screen save area). The foreground interactions e
with Director have no effect on the application's screen %
channel(s). |

5.4 Foreground state response

The procedures that manipulate the foreground return a standard
response in DO.L when the call is successful. This is defined as

At most one of bits 2 to 5 is set.

This response is intended to be used as a 'reminder’ in
applications of modular structure, and as a debugging aid during
application development. It is not intended to provide an
alternative mechanism for manipulating the foreground: the]

follows: %
’ |

bit 0 : Set to 1 if there is a current (satisfied or |
unsatisfied) foreground request ‘

bit 1 : Set to 1 if foreground is currently allocated to the . |
application (whether or not there is a current QﬁQ |

foreground request) g

|

bit 2 : Set to 1 if a request to suspend the foreground is |
outstanding |

bit 3 : Set to 1 if a request to terminate is outstanding %
bit 4 : Set to 1 if application state is 'Abandoned’ E
bit 5 : Set to 1 if application state is 'Unavailable' l
|

| bits 6 to 30 : undefined {i
:

bit 31 : zero ﬁ
|

Qi

(:;

Product Company PSD 76.97.3.2

specification restricted 4/0
issue

Sheet DF-35

5.5

procedures and events previously described should be used.

Keyboard handling

While the application is in unsuspended foreground mode, it is
entitled to read the application keyboard (i.e. those keys that
are not dedicated to telephony, or to OPD system control, or
temporarily being used for telephone dialling). :

The application in this mode is permitted to call the Kernel
procedure SELECT NORMAL KEYBOARD CHANNEL (see [1]) to select an
open keyboard channel as the Current Normal Keyboard Channel, or
to open a keyboard channel using the Select option. Thereafter,
the codes corresponding to keys pressed will be fed into the
buffer associated with that channel, from whence they may be read
by conventional Kernel I/0 calls. This will continue until

(a) the channel is closed, or

(b) a new channel is selected by the foreground application, or

(c) a system control key is depressed implying the suspension or
termination of the current foreground phase.

Following a system control key, key depressions are seen only by
the system software until a new foreground user is established.
The application that receives the Foregound Allocated event is
then entitled to make a keyboard channel current and receive
subsequent key depressions.

A keyboard channel can be read using Kernel I/0 calls even if it
is not the Current Normal Keyboard Channel. No new characters
will be arriving in the channel's buffer, but the application can
successfully read characters which had been typed, but not
processed, before the system control key was pressed.

Thereafter, by suitable use of I/0 events, the activity can wait
until the channel is again selected and characters start arriving
again. Thus, for example, one part of the application could be
responsible for reading the keyboard, while another part ensures
that the keyboard channel is reselected on each entry or re-entry.
to foreground mode. It is, however, for the application designer
to decide whether such offline processing of keys is sensible, or
if the keys should be ignored.

The system control and telephony keys are not visible via normal
keyboard channels.

The handling of the keyboard by an application entered to perform
a Review (or other ephemeral process) is discussed in section
6.4.

When an application is entered via the Top Level Menu, (or one of
its subsidiary menus), the expert user may have typed the keys
that perform selection from the first application-specific
menu(s) in quick succession, before the application is
sufficiently active to read them directly. These key

Product Company PSD 76.97.3.2 |
specification restricted 40 @

Issue

DF-36

Sheet

depressions (up to a small number) are stored by Director and can
be read by the procedure READ MENU KEY. The action of the
application when the Foreground Allocated event occurs should
first be to select its own keyboard channel as the Current
channel. The application should then read keys using READ MENU
KEY, reverting to its own keyboard channel when READ MENU KEY
reports no characters available (or possibly when a point is
reached at which the user could not sensibly have pressed the
keys in advance). However, when the foreground is granted to an
application that was already running, it is assumed that the user
cannot sensibly press keys until he sees where he had got to;
Director will have ignored any keys pressed before the
application selected a Current Normal Keyboard Channel, and READ
MENU KEY will not return any keys. éﬁ% :
Such stored keys are lost when the foreground is suspended or
released.

A

READ MENU KEY will return a Buffer Overflow (BO) response if more
keys were pressed than could be stored. This response indicates

that keys read from the application's keyboard channel are not
consecutive with those obtained by READ MENU KEY; the application
may wish to flush its own keyboard channel so that the user may
make a clean restart.

5.6 Interfaces

5.6.1 REQUEST FOREGROUND

Trap Name: T.DIRECTOR
Action Value (DO.B): D.REQFG

Additional Call Parameters:

DI.W : bit 0 : O application can restore screen after
suspension

1 application cannot (Director will allocate
store to contain copy of screen image)
bit 1 : 0 request is Passive (see section 5.3)
1 request is Active
bit 2 : 0 application style is Transient (see section |
5.2) j
1 application style is Extended
bit 3 : 0 initial hardware display mode is 512-pixel
1 initial hardware display mode is 256-pixel

Return Parameter:
DO.L : foreground state (see section 5.4) %

Error Returns:

BP : bad parameter
oM : insufficient memory (for screen image copy)

C

Product

Company PSD 76.97.3.2

specification restricted 4/0

issue

DF-37

Sheet

N—

NA : caller is not a primary activity

This call establishes a requirement for foreground mode on behalf
of the application whose primary activity makes the call.

Once the foreground phase has been established (whether or not the
foreground is actually allocated), REQUEST FOREGROUND can be used
to change the Active/Passive and Transient/Extended values
associated with the application. (The screen-restore and
display-mode values cannot be changed within the foreground
phase.)

5.6.2 RELEASE FOREGROUND

Trap Name: T.DIRECTOR
Action Value (DO.B): D.RELFG

Return Parameter:
DO.L : foreground state (see section 5.4)
Error Returns:

NA : caller is not a primary activity
This call terminates the foreground phase of the application whose
primary activity makes the call. If an unsatisfied foreground
request is outstanding, the request is cancelled.

5.6.3 SUSPEND FOREGROUND

Trap Name: T.DIRECTOR
Action Value (D0.B): D.SUSPFG

Additional Call Parameter:

DI.W : 1 Review screen for this application is the current
screen as copied to screen save area (applicable
only if such a save area has been requested)

0 application will construct its own Review screen
Return Parameter:
DO.L : foreground state (see section 5.4)

Error Returns:

BP : bad parameter
NA : caller is not a primary activity

This call acknowledges that the application whose primary activity
makes the call has ceased issuing screen transfers and writing to
screen store, and will continue thus until foreground is restored.

Product Company PSD 76.97.3.2
specification restricted 4/0

Issue

DF-38

Sheet

5.6.4 READ MENU KEY

Trap Name: ~ T.DIRECTOR
Action Value (DO.B): D.READMENUKEY

Return Parameter:
D0.B : byte read from menu key buffer
Error Returns:

NB ¢ no byte available
BO . buffer overflow (see section 5.5)

This call reads an initial application menu selection key which the
end user may have pressed before the application was ready to
receive it. The intended use of this facility is described in
section 5.5. There is no event facility on this interface. If NB
is returned, the application should read its (already selected)
normal keyboard channel. Buffer overflow (B0) is reported in the
circumstances described in section 5.5 after all the stored keys
have been read; further calls will yield No byte available (NB).

0

ICL Product

Company PSD 76.97.3.2

6.2

@ specification restricted 4/0
issue
Sheet DF -39
6. REVIEW
6.1 Purpose

The REVIEW feature allows the user to make an unpremeditated
inspection of data associated with an active application or an
existing reviewable segment. The REVIEW action has no permanent
effect on the application or segment reviewed, nor on any
application active when REVIEW is invoked.

The choice of what to display during the Review is up to the
application. Typically it will be the current screen of an
active application, or the most recently accessed logical item in
a segment. It might instead, or as well, be a status report on
the area covered by the application. The general objective is to
provide the user with as useful a reminder as is possible (in a
single display) of what he was last doing with that application.
In some cases, there may be several displays which might be
appropriate. Wherever possible, the application should make the
choice itself; if it cannot reasonably do this, it will have to
present a menu to the user (possibly on a screen already
containing some basic data). However the use of a complex
hierarchy of screens is contrary to the philosophy of review,
which should act as a quick aide-memoire, and review capabilities
should not be over-engineered. Complex data review should be
handled by entering the application formally.

User Interface

The user can press the REVIEW key at any time once the OPD
power-up sequence is complete. The existing foreground user of
the screen is suspended from the foreground, and a Review menu is
displayed. The user selects from the menu, and then sees the
selected application's Review screen. Exceptionally this may be
preceded by intermediate menu-screens where there is an
unavoidable user choice.

The expert user may press a sequence of Review selection keys in
quick succession following REVIEW. The choice screens to which
these keys are the response are not then disp]ayed,

The final screen in the Review sequence normally remains displayed
only while the user contains to hold down a key on the application
keyboard. When the key is released, the application that was
interrupted by the Review sequence will be restored to the
foreground. (If that application has meanwhile ended its
foreground phase, the Top Level Menu will be displayed instead.)

The user may wish to hold the Review display without keeping a key
pressed, for example to study the display at length, or to use the
keyboard for dialling, or to apply the SHOW or PRINT facilities to
the Review display. This can be achieved by making the initial
selection from the Review Menu using a function key (f and
numberpad-digit) instead of the corresponding ordinary digit.

Product Company PSD 76.97.3.2

specification restricted /0 @

Sheet DF-40

6.3

The Review Menu screen and any intermediate selection screens
remain displayed without the need to keep a key depressed.

While the Review Menu or an intermediate selection screen or a

"held' final screen is displayed, the Review sequence can be
terminated by one of the following system keys:

RE SUME the application or system menu that was interrupted by
the Review sequence is restored to the foreground
(The Top Level Menu is displayed if that application
has ended its foreground phase.)

START the effect is as if that key had been pressed while

SHIFT/START the interrupted application or system menu was using
: the screen

REVIEW a new review sequence is entered

LIST these keys have the same effect as if they had been

LAST pressed to interrupt the already interrupted

LOOK application or system menu

SHOW these keys have their normal effect, and operate on

PRINT the current display of the Review sequence, but a

subsequent RESUME will return to the application or
system menu interrupted by the review sequence, not to
the review sequence itself

Telephony functions are not impaired by Review, provided that the
final Review screen is 'held' if the keyboard is required for
dialling.

Handling of Review by applications

Applications are selected to appear on the Review Menu according to
the following rules:

1. The application must be 'visible', and must be in ROM, or
already loaded into RAM,
2. If it is a non-machine code application, it must already be
running.
3. If it is running, it must not have inhibited Review by use of
INHIBIT APPLICATION (see section 4.9.6).
4. At least one of the following must apply:
(a) the application has the 'always reviewable' property (bit
6 in byte 24 of the program header, see Appendix 1)
(b) the application is running, and is not in the 'Abandoned’
or 'Unavailable' state
(c) there exists a reviewable segment (see below) of the same
name as the application

An application may declare to SUSPEND FOREGROUND that its Qg)
review screen is its current display as copied to the screen .
save area; such an application will be offered on the Review

Product Company PSD 76.97.3.2
(.) - specification restricted /0

Issue

DF-41

Sheet

Menu (subject to the rules above), but no Review entry to the
application will occur.

An application that expects no Review entry may nevertheless
be so entered at a moment when it has not established the
appropriate status; in this case it should immediately call
EXIT REVIEW and establish the status,

A reviewable segment is a permanent segment that contains data that
the user may wish to Review, for example a set of stored viewdata
screens. It is marked as "reviewable" by the application that owns
it, using the segment handling facilities described in section 7.
The name of the segment is the same as that of the application that

. owns it and can Review it. (There is an exception to this rule in

(;) the case of OPD system software; this is outside the scope of this
document.) It is sensible for the user to ask to Review this data
whether or not the corresponding application is currently running.
If the application is running at the time of the Review, it may be
appropriate to offer the user a choice of reviewing the current
action of the application or the stored segment.

(Note that it is irrelevant whether the reviewable segment
actually contains the reviewable data. The application could
choose to hold the data in another segment. It is merely the
existence of the reviewable segment that is used in constructing
the Review Menu.)

When a Review sequence occurs, the selected application is entered
at its normal entry point. The code executes within a trusted
Director activity dedicated to Review processing. The state of the
registers etc. is defined in section 4.4.2; in particular the value
4 is set in DO.L to indicate Review processing.

(_) A dedicated screen channel is provided for use by the Review
activity (and other ephemeral processes). Its identifier is
supplied in D1.L on Review entry to the application. At that time
the channel display mode is 80-column; the channel properties are
otherwise undefined. The hardware display mode is 512-pixel and
the entire application screen is black. [On entry to SHOW and
PRINT, the hardware display mode and screen contents are as left by
the preceding user of the screen.] On Review entry, the reviewed
application is already entitled to use the screen, and the normal
actions of requesting the foreground etc are not required (nor
allowed). The dedicated screen channel must not be closed.

The application will display any intermediate selection screens,
and read the keyboard response to these using the facilities
described in section 6.4. When it comes to display the final
Review screen (which may be at once), it must first call DECLARE
FINAL REVIEW SCREEN to activate the (Director) test on continued
key depression.

(;) Having completed display of the final screen, the application must
release any resources etc that it has acquired (but not the

Product

Company PSD 76.97.3.2

specification restricted , 4/0

Issue

DF-42

Sheet

6.4

6.5

dedicated screen channel), and call EXIT REVIEW. In particular it
must thaw or destroy any segments that it has frozen or created.

Throughout the Review process, the application must continually
lTook for a Terminate event. In particular it should do this after
output of every line or two to the screen. As soon as the
Terminate event occurs, the application should tidy up and call
EXIT REVIEW as if it had completed its processing.

The application must not destroy the stack space with which it is
provided, nor destroy the activity in which it is invoked. It is
not allowed to start an untrusted activity, and it should start
an additional trusted activity only where this is essential to
achieve the desired effect (in which case it must ensure that the
additional activity is destroyed at the end of the Review
sequence). It is permissible for an application being reviewed
to start another application (or even a non-review instance of
jtself), but it cannot pass the foreground using the 'chaining'
facilities of START APPLICATION.

Use of Keyboard during Review

In principle, the handling of the keyboard during a Review entry to
an application is analogous to that during a normal foreground
phase: the reviewed application can open a keyboard channel, select
it as the Current Normal Keyboard Channel, read any keys already
pressed using READ REVIEW KEY (rather than READ MENU KEY), and
revert to using its own channel when READ REVIEW KEY reports that
no key is available.

In practice, however, most Review sequences will not require any
keyboard input, or at most one or two menu selection keys. In such
cases the application should not open a keyboard channel, but
should use the channel underlying READ REVIEW KEY. To support this
usage, READ REVIEW KEY provides a facility whereby a local event
can be caused when a key becomes available (in the same way as the
Kernel procedure GET BYTE IMMEDIATE).

Ephemeral System Applications

Certain internal applications forming part of the system software
are invoked via the same mechanism as for review of a visible
application. These internal applications include those that handle
the following dedicated keys:

LIST (Priority telephone directory)

LAST (Recent number redial)

SHOW (Transmit current screen image)

LOOK (Receive screen image transmitted by SHOW)

PRINT variants (Output current screen image to printer)

Ephemeral processes (other than Review) should not call DECLARE
FINAL REVIEW SCREEN unless the specification of the ephemeral
process states that the user can maintain the final display by

Product Company PSD 76.97.3.2
U specification restricted 70
DF-43

Sheet

6.6

continued depression of a key.

The specification of the ephemeral process will also state the
circumstances (if any) in which the process will terminate (by
calling EXIT REVIEW), other than on receipt of a Terminate event.
(The Terminate event is caused by use of any System Control key, or
by key release following a call of DECLARE FINAL REVIEW SCREEN.)

On receipt of a Terminate event, the ephemeral process will
normally complete processing of any outstanding keys available via
READ REVIEW KEY or a specifically opened keyboard channel, but will
not perform further displays.

[The above ephemeral processes are not necessarily all provided at
first release. An attempt to use an unimplemented ephemeral
process will have no effect except to cause the screen to flicker
and to terminate Review or other ephemeral process if current.]

Interfaces

6.6.1 READ REVIEW KEY

Trap Name: T.DIRECTOR
Action Value (DO0.B): D.READREV

Additional Call Parameter:

D3.W : event number of a local event that is to be caused when
a byte becomes available, if no byte is available
immediately. An event number of -1 indicates that no
event is to be caused

Return Parameter:
DO.B : byte read from Review key channel
Error Returns:

NA : caller is not Review activity

NB : no byte available (the event, if any, specified in D3
will occur when a byte becomes available.)

BO : buffer overflow (more keys pressed than Director can
store)

This call reads the next byte from the keyboard that is intended
for the current Review process. The intended use of this facility
js described in section 6.4. The significance of Buffer overflow
(BO) is as described for READ MENU KEY (see section 5.6.4).

6.6.2 EXIT REVIEW

Trap Name: T.DIRECTOR
Action Value (DO.B): D.EXITREV

Product Company PSD 76.97.3.2
specification restricted 470 @ :

Issue

DF-44

Sheet

Error Returns:

NA : caller is not Review activity
Unless error NA is returned, no return is made.

This call causes exit from a reviewed application (or ephemeral
system application).

6.6.3 DECLARE FINAL REVIEW SCREEN :

Trap Name: T.DIRECTOR
Action Value (DO.B): D.FINALREV

Error Returns:
NA : caller is not Review activity

This call declares that the application is about to display its

final Review screen, and that it does not intend to read any ;
further bytes from the keyboard.

G

e

ICL Product Company PSD 76.97.3.2
specification restricted 4/0
issue
Sheet DF-45
7. SEGMENTS
7.1 Segment Names

7.2

7.3

The primitive concept of the segment, as an allocation of RAM, is
explained in the Kernel specification [1].

Each segment is either permanent or transient. A permanent segment
is used if it is required to survive when no application is
accessing it. A transient segment ceases to exist when there are
no applications accessing it (i.e. when its owning activity dies or
deletes the segment and no other activity has it frozen).

A permanent segment has a name. An application that wishes to
access a permanent segment that may already exist uses the Director
procedure GET SEGMENT IDENTIFIER to discover the segment identifier
of the named segment. The segment identifier must not be
remembered over a period when the application has not had the
segment in use, since the segment could have been saved and
subsequently loaded with a different segment identifier.

Transient segments do not have names.

The name of a permanent segment is 12 characters long, the
characters being chosen from ASCII $20 to $7A inclusive. (System
software may use names containing other characters to avoid
confusion with user application segments and to achieve special
system effects.) To avoid name clashes between segments belonging
to different applications, and to make the purpose of the segment
apparent to the end user, it is suggested that segment names be
derived in some obvious way from the name of the associated
application.

A segment is created by the Kernel procedure CREATE NEW SEGMENT
(see Kernel specification [1]). A newly created segment is
transient. A segment can be made permanent, and possibly
subsequently again made transient, by the Director procedure CHANGE
SEGMENT PROPERTIES. A permanent segment is destroyed by the
Director procedure DESTROY SEGMENT. The Kernel procedures CHANGE
SEGMENT OWNERSHIP and DESTROY SEGMENT must not be used for the
above purposes, and it is recommended that they be not used at all,
all manipulation being effected by the Director procedures.

Reviewable segments

A permanent segment may be declared to be reviewable by means of
the procedure CHANGE SEGMENT PROPERTIES. The significance of the
reviewable segment is described in section 6.

Segment usage

The OPD system software includes a Data Record feature, which
enables the user to Save permanent segments to a file, and
subsequently to Load those segments from the file. The full
details of Data Record and its effect on applications

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-46

Sheet

7.4

are outside the scope of this document, but the Director
procedures associated with Data Record are described below.

A successful Save cannot be performed while any application is
(potentially) writing to a permanent segment (or changing its cell
structure). A successful Load cannot be performed while any
application is (potentially) writing or reading a permanent
segment. To control this, Director maintains a record of
activities that have registered themselves as readers or writers of
a particular permanent segment.

REQUEST READ ACCESS TO SEGMENT registers the calling activity as a
reader of the segment. REQUEST WRITE ACCESS TO SEGMENT registers
the calling activity as both a reader and a writer. RELEASE WRITE
ACCESS TO SEGMENT deregisters the calling activity as a

writer, but retains registration as a reader. RELEASE ACCESS TO
SEGMENT deregisters the calling activity both as a writer and as a
reader. There is an option in CHANGE SEGMENT PROPERTIES to request
registration as a reader or reader and writer.

An application must achieve registration of the appropriate type
before accessing a permanent segment. A request may be rejected if
the Data Record feature is active at the time.

Note that registration is on an individual activity basis, but
where there are cooperating activities (for example, within a
single application) it may be sufficient for one of them to
register on behalf of them all. Coordination between activities or
applications concurrently accessing a segment is their own
responsibility.

A permanent segment cannot be destroyed while any activity is
registered as a reader or writer of that segment (even if the only
registered activity is the one attempting the deletion). Nor can a
permanent segment be destroyed if it is being Loaded or Saved by
Data Record. Registration thus prevents a permanent segment being
destroyed by another application or by the user while it is
temporarily thawed.

Registration and de-registration have no effect on the
frozen/thawed state of the segment.

There is no automatic de-registration when a registered activity
terminates: de-registration must be done explicitly.

Store Report

The user can request a Store Report, by a facility within the
Housekeeping subsystem (see [2]). This report 1ists the names and
sizes of existing permanent segments, and the names of running
applications with the total size of the transient segments owned by
each (including stack segments and code segments).

The user can choose to destroy a permanent segment Tisted in the

O

ICL

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-47

Sheet

7.5

Store Report or to abandon an application Tisted therein. He
cannot, however, destroy a permanent segment that has any
registered reader or writer.

Interfaces

7.5.1 CHANGE SEGMENT PROPERTIES

Trap Name: T.DIRECTOR
Action Value(D0.B): D.SEGPROPS

Additional Call Parameters:

D1.L : segment identifier
D2.W : new status of segment:
bit 0 : O=transient, l=permanent
bit 1 : O=non-reviewable, l=reviewable(only allowed if
bit 0=1
hit 2 : l=request read access (only allowed if bit 0=1)
bit 3 : l=request read and write access (only allowed if
bit 0=1)
bits 4 to 15 : reserved (zero)

D3.L : identifier of new owning activity (transient segment
only)
AO address of buffer containing 12-character name of

segment (permanent segment only)
Error Returns:

NA : invalid activity identifier

NS : invalid segment identifier

BP : bad parameter

oM : name table full v

EX : another segment already has the specified name

IU : action not possible because of existing read or write
registrations

SL : action not possible because of current Data Record
actions

This call establishes the specified status for the specified
segment, and sets/changes the owning activity identifier or segment
name. If any error is reported, no change is made to the
properties of a valid segment.

7.5.2 DESTROY SEGMENT

Trap Name: T.DIRECTOR
Action Value (D0.B): D.XSEG

Additional Call Parameter:

DL.L : segment identifier

Product Company PSD 76.97.3.2
specification restricted 4/0 W,
Issue
Sheet DF _48
Error Returns:
NS : invalid segment identifier
IU : the segment is frozen by another activity or there are
existing read or write registrations
St : action not possible because of current Data Record
actions
BP : bad parameter

This call destroys the specified segment in the same way as the
corresponding Kernel procedure (see [11]).

If the segment is successfully destroyed, the segment name (if any)
is also destroyed.),

7.5.3 GET SEGMENT IDENTIFIER (OF PERMANENT SEGMENT)

Trap Name: T.DIRECTOR
Action Value (D0.B): D.SEGID

Additional Call Parameter;
AQ : address of buffer containing 12-character segment name
Return Parameters:
DI.L : segment identifier
D2.L : bits 0 to 6 = count of activities registered as
writers

bit 7 =1 if segment is reviewable
bits 8 to 15= count of activities registered as

readers “
bits 16 to 31 undefined \“)
Error Returns:

NF : no such segment name is registered

SL : segment is not available because Data Record is
performing a Load

This call returns the specified values for the nominated segment.
7.5.4 REQUEST READ ACCESS TO SEGMENT

Trap Name: T. DIRECTOR
Action Value(DO.B): D.READSEG

Additional Call Parameters:

D1.L : segment identifier &‘)

| Product Company PSD 76.97.3.2
Q specification restricted 20

Issue

DF-49

Sheet

Error Returns:

NS : invalid segment identifier

SL : segment is not available because Data Record is
performing a Load

oM : name table full

This call requests registration of the calling activity as a reader
of the identified permanent segment.

7.5.5 REQUEST WRITE ACCESS TO SEGMENT

_— Trap Name: T.DIRECTOR
o Action Value (D0.B) D.WRITESEG

Additional Call Parameters:
Dl.L : segment identifier

Error Returns:

NS : invalid segment identifier
SL : segment is not available because Data Record is
performing Load or Save
! OM : name table full

This call requests registration of the calling activity as a reader
and writer of the identified permanent segment.

7.5.6 RELEASE WRITE ACCESS TO SEGMENT

(;) Trap Name: T.DIRECTOR
Action Value (DO.B) D.RELWRITE

Additional Call Parameters:

Dl.L : segment identifier

Error Returns:
NS : invalid segment identifier

This call cancels the registration (if any) of the calling activity
as a writer of the identified permanent segment. Registration (if
any) as a reader is unaffected.

7.5.7 RELEASE ACCESS TO SEGMENT

Trap Name: T.DIRECTOR
Action Value(DO0.B): D.RELSEG

(.) Additional Call Parameters:

S A

Product Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-50

Sheet

Dl1.L : segment identifier

Error Returns:
NS : invalid segment identifier

This call cancels the registration (if any) of the calling activity
both as a reader and as a writer of the identified permanent
segment.

J

S

O

ICL Product

Company PSD 76.97.3.2

specification restricted 4/0
issue
Sheet DF -5 1
8. NOTICEBOARD
8.1 Description

8.2

8.3

The Noticeboard is an area at the bottom of the screen which is
used to display status information about OPD and its applications
which cannot be accommodated in the main screen area. Most of the
Noticeboard is used for telephony status information. The parts
that concern ordinary applications are the Flags and the Output
Area. The format of the Noticeboard is described in the user
Specification [2].

Flags

Character positions 5 to 14 of the bottom row of the Noticeboard
are reserved for flags (the left hand character is position 1).
These are (usually) single character mnemonic indicators of aspects
of OPD system status or reminders of events that have occurred
(such as "electronic message received" or "save store failed").

Fach flag is an upper case letter (or, exceptionally, a digit).

The display attributes (PAPER and INK) are selected by the
application that causes display, and may be set so that the flag is
effectively cleared. A given flag position may display different
characters and intensities at different times. Flags do not flash.
Display is effected by calling the procedure DISPLAY NOTICEBOARD
FLAG. After power-up or reset all flags are clear. The flag at

a given position remains displayed until it is explicitly

changed, whether or not the application that caused its display

is still running. :

Tones are not generated to accompany changes in flags. Typically a
report will be placed in the Output Area accompanied by a tone, and
the flag will then be set as a reminder of the condition.

Flag positions and characters are allocated by ICL, and are
normally reserved for use by standard system applications provided
by or procured by ICL. Other applications must rely on the
facility to send a report to the Output Area and to put an
application into a state where it is actively soliciting user
attention (see section 5.3).

Qutput area

The Output Area occupies the first 20 character positions of the
upper-row of the Noticeboard, and is capable of displaying upper
case letters, digits, and other graphic characters which yield a
meaningful display at Noticeboard height (see Kernel specification
[11). This set does not include the "curly f" character (function
key qualifier).

The purposes of the Output Area are as follows:

1. For an application in background mode, to advise the user of

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-52

Sheet

an incident which may require his attention, such as the
receipt of an electronic message or a preset "alarm" time
being reached.

2. For an application in foreground mode, to report a similar
incident when there is no room on the main screen or when use
of the main screen would be confusing to the user.

3. For an application in foreground mode, to display a status
report which cannot be accommodated on the main screen, which
Tasts for a long time in user terms (greater than 1 second,
say) and where it may not be obvious to the user what is
happening. This might apply during long device or
communications actions. It is not necessary for a normal
application to report the progress of dialling (manual or
auto): this is dealt with by Telephone Handler in the
telephony parts of the Noticeboard. The status report
facility should not be used unnecessarily since it inhibits
display of the real time clock.

4, For system software to display status and event reports,

5. For the display of a real time clock when the Output Area is
not needed for a report.

Director provides interfaces designed to resolve, as far as
possible, the conflicts that potentially arise for access to the
Output Area. There is a Current Status Report associated with the
current foreground application. This is null at the start of each
new use of the foreground, and can be set, changed and cleared by
the current foreground application. It is displayed whenever the
Qutput Area is not required for an Event Report. It must be
restored (if non-null) by the application following a suspension of
the foreground.

Any application can also specify an Event Report, which may be
Urgent or Normal. An Urgent Event Report is one directly related
in real time to the current interaction with the end user, and is
likely to be generated only by the current foreground application.
The report is displayed at once, and persists until

(i) another Urgent Event Report is received, or

(ii) the current use of the foreground ends, or

(ii1) the application cancels the report, or

(iv) five seconds have elapsed and there is a non-null Current
Status Report or an outstanding Normal Event Report, or

(v) one minute has elapsed, when the clock display is restored

A Normal Event Report is one for which immediacy of display is not
critical within a few seconds. It is displayed as soon as any
preceding Event or Status Reports have each been displayed for five
seconds or have been cancelled by their owning applications. It
persists until

J

O

Product | Company PSD 76.97.3.2

specification restricted 4/0

Issue

Sheet DF - 5 3

8.5

(i) an Urgent Event Report is received, or

(i1) the application cancels the report, or

(iii) five seconds have elapsed and there is a non-null Current
Status Report or an outstanding Normal Event Report, or START
has been pressed since the start of the five second period
(enabling the user to recover the real time clock display).

(No compensation is provided for a report deprived of its
five-seconds-worth by an Urgent Event Report.)

It will be seen that a Normal Event Report can in theory remain
displayed indefinitely. The application must cancel such a
report as soon as it no longer applies, and should usually cancel
it in any case after a reasonable time (perhaps half a minute),
so that the real time clock display is restored.

The display attributes (PAPER and INK) of Output Area reports are
selected by the application that causes the display. Normally the
defaults provided by DISPLAY NOTICEBOARD REPORT should be used
(see section 8.5.2).

An application can specify a sound to be generated in conjunction
with an Event Report. The sound is output at the instant that the
report is displayed. The sounds are the same as the ‘standard
sounds' that can be generated directly using the facilities
described in section 9. No sounds should normally be required to
accompany changes of Current Status Report.

Report cancellation is achieved by calling CANCEL NOTICEBOARD
REPORT with (for a Normal Event Report) a parameter returned by
Director when the report was initiated.

Telephony Noticeboard

Special interfaces are provided for Telephone Handler to write to
those parts of the Noticeboard reserved for telephony information.
These interfaces are outside the scope of this document.

Interfaces

8.5.1 DISPLAY NOTICEBOARD FLAG

Trap Name: T.DIRECTOR
Action Value (DO.B): D.NBFLAG

Additional Call Parameters:

DI.W : character position for flag display in bottom row (5 to
14)
D2.B : internal code of character to be displayed

D3.W : paper colour for display
DA.W : ink colour for display
(0=black, 2=red, 4=green, 7=white)

Product Company PSD 76.97.3.2
specification restricted 4/0

Issue

DF-54

Sheet

Error Returns:
BP : bad parameter

This call causes the display of a flag in the Noticeboard. Display
is cancelled by displaying a space or black character on black
paper.

8.5.2 DISPLAY NOTICEBOARD REPORT

Trap Name: ~ T.DIRECTOR
Action Value (D0.B): D.NBREPORT

Additional Call Parameters:

Al . address of buffer containing report. The buffer may
contain 1 to 20 graphic characters, interspersed with 0
to 4 PAPER or INK control code sequences (see [11). At
the start of the display, the attributes are black INK
on green PAPER for an urgent event report, and green
INK on black PAPER for a normal event report or current
status report. Colours should be confined to 0 =
black, 2 = red , 4 = green , 7 = white
length of report (1 to 28)
report type:
0 current status report
1 normal event report
2 urgent event report
D3.W : associated sound: '

n(>0) standard sound identifier (see section 9.2)

-1 no sound

s ve

Return Parameter:
DI.W : event report identifier, for possible use in a call on
CANCEL NOTICEBOARD REPORT. Defined only for report
type 1 (Value undefined in other cases.)

Error Returns:

BP : bad parameter
oM : event report queue full

This call queues a report for display in the Qutput Area of the
Noticeboard. See section 8.3 for details.

8.5.3 CANCEL NOTICEBOARD REPORT

Trap Name: T.DIRECTOR
Action Value (DO.B): D.NBCANCEL

Additional Call Parameter:

D1.W
D2.W

event report identifier (normal event report only)
report type: 0 = current status report

O

J

Product Company PSD 76.97.3.2

O specification restricted 20
Issue
Sheet DF _5 5
1 = normal event report
2 = urgent event report

Error Returns:
BP : bad parameter

This call cancels a previously requested event report (deletes it
from the screen or removes it from the queue, together with any
associated sound). -

8.5.4 CONVERT DATE AND TIME

(;) Trap Name: T.DIRECTOR
Action Value (DO.B): D.DATETIME

Additional Call Parameters:

D1.L : time in seconds-format to be converted to readable
format

A2 . buffer to receive converted date and time in readable
format

D2.W : buffer size (1 to 27). No error is reported if the
buffer is less than 27 bytes; the date and time is
truncated on the right to the buffer length. If a
buffer size greater than 27 is specified, only the
first 27 bytes of the buffer are changed.

Error Returns:
BP ¢ bad parameter

(;) This call converts a time in seconds-format (as held by the Real
‘ Time Clock device) to the date and time in readable format.

In seconds-format, the time is expressed as a 32-bit unsigned
number, being the number of elapsed seconds since the midnight that
prefaced 1st January 1970.

In readable format, the date and time are expressed as follows:

bytes 0 to 2 : day of the week in 3-character form, e.g. WED

byte 3 . space

bytes 4 to 5 : day of the month; 2 digits

byte 6 : space

bytes 7 to 9 : month in 3-character form, e.g. JAN
byte 10 : space

bytes 11 to 14 : year including cehtury; 4 digits
bytes 15 to 18 : spaces (application may insert "AT")
byte 19 to 20 : hours on 24-hour clock; 2 digits

N byte 21 ¢ colon
(;) byte 22 to 23 : minutes; 2 digits
byte 24 : colon

bytes 25 to 26 : seconds; 2 digits

Product Company PSD 76.97.3.2
specification restricted 4/0 J

Issue

DF-56

Sheet

Zero suppression is not applied to numeric fields.

Example: TUE 03 JAN 1984 17:30:01

Product

Company PSD 76.97.3.2

specification restricted 4/0

Issue

DF-57

Sheet

9.1

9.2

SOUND GENERATION

Description

OPD includes a Tone Generator which can generate a tone of constant
frequency 2400/n Hz (n = 1 to 255). There is contention for access
to the Tone Generator, in particular between the foreground
application, Event Report tones, the keyboard, and the telephony
system. For this reason, and to achieve consistency of sounds
across applications, Director provides interfaces to allow sounds
to be generated in a controlled way.

The sounds that can be generated by a normal application fall into
two classes, standard sounds and special sounds, which are
described below. (There is a third class of sounds, available only
to Telephone Handler, which is outside the scope of this document.)

Applications are allowed to make sounds only by use of the Director
procedure MAKE SOUND. They must not directly call the
corresponding Kernel procedure.

Standard sounds

Standard sounds are provided to cater for situations which are
common to a wide range of applications. Standard sounds should be
used whenever possible, to provide consistency across the range of
applications.

A standard sound is identified by the value passed in D1.W to MAKE
SOUND. The values have names of the form TG.name, and are defined
in the Application Handler INCLUDE file TGVALUES.

The following standard sounds are provided:

TG.BADKEY Invalid key depression. (In some cases it may be
appropriate to ignore an invalid key rather than cause a
sound.)

TG.TYPE: Invitation to type (following a period when keyboard
input would have been inappropriate).

TG.EVENT An expected event has occurred (usually associated with
a Noticeboard Event Report).

TG.ERROR An unexpected event has occurred (often associated with
a Noticeboard Event Report).

TG.CART Request for attention to file storage medium.

Director queues standard (and special) sounds, and outputs them in
order of receipt, allowing a suitable gap between them to allow
them to be distinguished. If the ergonomics of the application
require other actions to be coordinated with the actual output of
the sound, the caller can request that a local event be notified at

Product Company PSD 76.97.3.2
specification - restricted 40
DF-58

Sheet

9.3

9.4

the start and/or at the end of the end of output of the sound.

If the response from MAKE SOUND indicates that the sound queue is
full, the application should normally abandon the attempt to make
the sound, since the user will already have more sounds than he can
cope with.

Telephone ringing tones are suspended while standard (and special)
sounds are output.

Special sounds

Special sounds can be output when there is no suitable standard
sound.

Output of a special sound is caused by passing the value TG.SPECIAL
in D1.W to MAKE SOUND.

A special sound is defined by a word-aligned buffer containing a
sequence of contiguous two-byte entries defined as follows:

low-address byte: n=1to 255 : sound frequency is 2400/n Hz
n=20 : no sound
high-address byte: n =1%o 254 : sound is to last for n
fiftieths of a second
n = 255 : sound is to last indefinitely
n=20 : sound sequence is to be

repeated from start of buffer
ad infinitum

The sound generated is the contiguous sequence of tones (or
silences) defined by the two-byte entries taken in ascending
address order.

The total duration of a special sound should not, without good
reason, exceed 2 seconds. After 2 seconds of a special sound have
been output, the sound will be aborted (and the end-of-sound event
caused) as soon as there is another standard, special or telephone
sound awaiting output.

An infinite or repeating special sound can be terminated (following
its allocated 2 seconds) by queuing another sound (e.g. a short
silence).

The sound buffer must not be modified until output of the sound is
complete. _

Interfaces

9.4.1 MAKE SOUND

Trap Name: T.DIRECTOR
Action Value (DO.B): D.SOUND

ICL Product Company PSD 76.97.3.2
specification restricted 0

Issue

O

DF-59

Sheet

Additional Call Parameters:

D1.W : required sound (see sections 9.2 and 9.3)
D2.W : length of sound buffer (special sound only)
Al : address of sound buffer (special sound only)

D3.W : number of a local event to be caused at
start of output of sound (-1 if no event required)
D4.W : number of a Tocal event to be caused at end of output
of sound (-1 if no event required)

Error Returns:

<;} BP : bad parameter
DT : sound queue full

This procedure requests the output of a sound.

Product Company PSD 76.97.3.2

specification restricted o 4/0 W,

Sheet DF-60

10. NAME TABLE

10.1 Description

Director provides a Name Table, together with procedures for
accessing it. The Name Table enables cooperating applications or
activities to assign fixed names to objects that have, as far as
other system interfaces are concerned, unpredictable values or
identifiers.

Each entry in the Name Table describes a notional 'object', and
comprises:

. an object name, consisting of 12 characters Q,)
(recommended to be graphic)

. an object type

. an object subtype

. an object value

An object type may be one applicable to many applications (e.g. a
Kernel resource such as a semaphore), or it may be some object
private to one or a few applications. The only object types that
can be used are those registered in section 10.2 of this

document. (An up to date register is maintained by ICL, and new
entries will be made on request on behalf of independent software
writers.)

There are logically separate name tables for each object type. The
names of the objects of a given type must be distinct; the usual
convention is to derive the names from those of the applications
that 'own' the objects.

The values of the objects of a given type should also be §“>
distinct, although Director does not necessarily check this when

an object is entered into the name table. The semantics of the

object value are up to those who access objects of that type.

Usually the semantics will be obvious, for example, the resource

identifier for an object type corresponding to a Kernel

resource.

The semantics of the object subtype are entirely up to those who
access objects of a given type.

Parallel facilities for the naming of permanent segments are
described in section 7, and there should be no general requirement
to register objects of type 'segment' in the visible Name Table,
although particular applications may choose to register private
objects related to segments.

10.2 Register of object types

The following object types may legally be used: Q’)

(0 reserved for internal use by Director)

O

O

ICL

Product Company PSD 76.97.3.2
specification restricted 4/0

issue

DF-61

Sheet

1 semaphore
10.3 Interfaces
10.3.1 REGISTER NEW NAME

Trap Name: T.DIRECTOR
Action Value (D0.B): D.NEWNAME

Additional Call Parameters:

A0 : address of buffer containing 12-character name of
object

Dl.L: object value

D2.L: bits 0 to 7 : object type (see section 10.2)
bits 8 to 15: object sub-type (defined by caller)

Error Returns:

OM : name table full :
EX : object of this name and type already exists

This call inserts the specified name and associated values into the
Name Table.

10.3.2 FIND NAME

Trap Name: T.DIRECTOR
Action Value(D0.B): D.FINDNAME

Additional Call Parameters:
A0 : address of buffer containing l12-character name of
object
D2.B: object type (see section 10.2)
Return Parameters:
D1.L: object value
D2.L: bits 0 to 7 : object type
bits 8 to 15: object subtype
bits 16 to 31: undefined
Error Returns:

NF : no such name of this object type

This call searches the Name Table for the specified name and
object type, and returns the associated values.

10.3.3 DESTROY NAME

Trap Name: T.DIRECTOR
Action Value(Do.B): D. XNAME

Product Company PSD 76.97.3.2
specification restricted 4/0 J

Issue

DF-62

Sheet

Additional Cé]l Parameters: L

D1.L: object value
D2.B: object type (see section 10.2)

Error Returns:

NF : no name with this type and value

This call deletes from the Name Table the entry with the
specified object value and type.

Product
specific

Company PSD 76.97.3.2

ation restricted 4/0

Issue

DF-63

Sheet

Al.1l

Al.2

APPENDIX 1. PROGRAM FORMAT IN ROM

Introduction

Programs for use on OPD can be stored in Read Only Memory (ROM).
The chips containing ROM may be built into the OPD itself, or be
part of the Rompack, or be contained in capsules which can be
plugged into the Rompack, or be connected via some . other physical
arrangement, '

In all these cases, the data in the ROM has a standard
organisational layout, which enables Director to locate the
individual programs. (Certain variations in the format apply to
ROM containing intimate system software: these are outside the
scope of this document.)

ROM-unit format

The OPD address space (0 to $FFFFF) contains a number of regions
which may be used to store programs. Different regions are not
necessarily contiguous. In a hardware environment that supports
paging, there may be several regions which occupy the same
addresses, each in association with a different page. The
effects of paging are discussed in section 4.6. -

The physical ROM (in capsules etc.) is mapped into these regions
of the address space. The details of this mapping are outside
the scope of this document. Indeed the addresses of the regions
and the assignment of page numbers may vary on different
generations of hardware, and assumptions should not be built into
applications (with certain exceptions in the case of system
software).

The hardware mapping may cause some items of ROM to appear more
than once in the address space. Director therefore ignores
duplicate programs, with the consequence that it is not possible
to have distinct programs with the same name; only one of the
programs will be accessible. (In unpaged enviromments, early
releases of Director may allow distinct programs with the same
name. This is not to be exploited or relied upon.)

In certain cases, the hardware mapping is such that read and
write accesses to the addresses can be distinguished, enabling
the installation of programs that contain their own RAM or that
are externally connected to some peripheral device. This
requirement is indicated by the setting of a bit in the data
format described below.

The data which is to appear in the stored program regions of the
address space is organised into data structures called ROM-units,
whose format is defined below. A ROM-unit occupies a continuous
set of addresses within one of the regions, starting on an even
byte boundary. The following types of ROM-unit are "preferred",

Product Company PSD 76.97.3.2

specification restricted

4/0

Issue

Sheet DF-64

in that they will be compatibly supported in appropriate hardware
environments:

1.

A ROM-unit of length 32K bytes. This may be mapped into
either paged or unpaged address space, and may require write
access (as well as read/execute access) to some or all of its
addresses.

A ROM-unit of Tlength 128K bytes. This may be mapped only
into paged address space (and hence can be used only in paged
environments). It cannot require write access. The ROM-unit
must not contain the word value $A54F at displacements 32K,
64K or 96K bytes from the start of the unit.

Other ROM-unit configurations are possible in specific
environments, in particular for use by system software. Such
configurations are outwith the scope of this document.

Each ROM unit has a standard layout. The unit starts with a unit
header in its lowest addressed four bytes as follows:

bytes 0,1 : $A54F. This value confirms that a ROM unit is

present

byte 2 : address space requirement of unit: number of

bytes divided by 8K. For a 32K unit the value
js 4; for a 128K unit the value is 16.

byte 3 : bit 0 =0 : unit is not checksummed
bit 0 =1 : unit is checksummed
bit 1 =0 : only read.(execute) access to the
unit is required.
bit 1 =1 : both read and write access to the

unit are required. (INVALID CAPSULE
will be reported if read access and
write access cannot be distinguished
at this address). :

bit 2 to 7 : reserved (zero)

There then follow any number of programs. Each program is a
multiple of 2 bytes in length, and is contiguous with the preceding
program or the unit header. The length of each program is defined
in its program header (see section Al.3).

The last program in the unit is immediately followed by a 16-byte
unit trailer as follows:

bytes 0 to 11 spaces
bytes 12 to 15 zero

Product Company PSD 76.97.3.2

specification restricted 4/0
Issue

Sheet DF -65

Al.3

If the unit header indicates the presence of a checksum, the
checksum value is held in the last four bytes of the unit. The
checksum value is the long word (32-bit) sum of the zero-extended
unsigned 16-bit words Tn the ROM unit preceding the checksum,
taken in ascending address order and ignoring overflow whenever
it occurs.

Space between the end of the unit trailer and the checksum bytes
(or the end of the unit) is undefined as far as Director is
concerned. (It is theoretically possible for this region to
contain defined data, but it cannot contain programs in the
standard sense, and the address of the data cannot be deduced by
Director facilities.)

In a conventional ROM unit, the whole of the address space is
ROM: the standard layout described above fills the whole address
space, and the checksum (if any) applies to the whole unit.
However, for special purposes, the following variations are
permitted:

1. Only the lower addressed part of the unit (some multiple of
8K bytes in length) may be ROM, with the remainder used as
RAM or for some other purpose. (The distinction between ROM
and other usage is as defined for the Kernel procedure CHECK
-ADDRESS; see the Kernel specification [1].) In this case, the
standard unit layout described above is contained within the
ROM part of the unit, and the checksum (if any) applies only
to that part. The value in byte 2 of the unit header defines
the address space used by the whole unit. The circumstances
in which this option might be exercised are beyond the scope
of this document.

2. The whole of the unit may be RAM. This case is treated
exactly as if the whole unit were ROM, and is intended for
use in development systems in which ROM slots may be
represented by RAM into which programs under test may be
loaded. '

Program header format

Each program starts with 26 (or more) bytes of program header as
follows:

bytes 0 to 11 program name (see section Al.5)

bytes 12 to 15 program length in bytes including header
(multiple of 2)

bytes 16 to 19 program entry point (positive even byte
displacement from start of header) for a
machine code program; other types of program
may define these bytes differently. The
implied entry point must Tie within the unit
that contains the program, and must be
distinct from any other machine code program
entry point in that unit.

Product
specification

Company PSD 76.97.3.2

restricted 4/0

Issue

Sheet DF -66

bytes 20 to 23

bytes 24 to 25
byte 26

bytes 27 onwards

subsequent bytes

subsequent bytes

Al.4 Program properties

amount of stack space (in bytes) required by
machine code program; other types of program may
define-these bytes differently. In the case of
a program that may be entered as an activity,
this value does not include the 72-byte register
dump area :

program properties (see section Al.4)

(only required if bit 7 of byte 25 is 1) length
of name that is to be displayed in system menus
for this program. The maximum length is 22
bytes

menu name (if any) whose length is defined in
byte 26

additional program header fields. These

fields are present only if bit 6 of byte 25 is
1. They start immediately following the menu
name (or in byte 26 if there is no menu name).
Their format is defined in section Al.6.

program itself. A machine code program consists
of the required machine code instructions and
constant data; instructions must fall on an even
byte boundary. The formats of programs of other
types are outside the scope of this document

Byte 24 Bit 0 :

Bit 1 :

Bit 2

For a non-machine code program, the definition
of this bit is language-dependent. '

For a machine code program, the bit has the
values:

0 program is untrusted
1 program is trusted

(See section 4.4 for details. A machine code
program must be trusted if it represents an
application (bit 2 is zero). An untrusted
machine code application causes the error
message BAD PROGRAM or the error response
ERR.NP.)

0 program is machine code

1 program is not machine code. (Details of
the handling of non-machine code programs are
beyond the scope of this document.)

0 program represents entry point to an
application (and should therefore be offered on
application menu subject to bit 3)

1 program is only intended to be loaded/invoked
by other programs
This bit should always be zero for a
non-machine code program

Product
U W specification

Company PSD 76.97.3.2

restricted 4/0

Issue

Sheet DF-67

Bit 3

Bit 4
Bit 5

Bit 6

(;) Bit 7

Byte 25

Bits O

to 3
Bit 4

Bit 5

Bit 6

Bit 7

—_ O o

O

application represented by this program is to

be visible to the end user
to be invisible

application cannot be tele-started’
application can be tele-started (see section
4.4 for details) '

application is not 'always reviewable'

application is 'always reviewable'
(see section 6 for details)

application -is not to be entered automatically
(unless it is configured as the First
Application)

application is to be entered automatically on
power-up/reset. Bit 2 of byte 24 must be 0
(see section 4.4.1 for details)

This bit is ignored unless the program is in
ROM

forced page switch is required: when this
program is called by another program, the
activity's page will be set to that
containing this program (.r to 'no page
required' if this program is in unpaged
store)

forced page switch is not required: when this
program is called by another program, the
activity's page will be changed only on a
call from unpaged to paged store; a call
between different pages will fail.

The significance of this bit is described in
section 4.6,

there are no additional program header fields
there are additional program header fields
(see section Al.6)

the name to be displayed in system menus is the
program name specified in bytes 0 to 11

the name to be displayed in system menus is the
menu name specified in bytes 26 onwards.
(Additional rules apply to system software
names: these rules are outside the scope of
this document.)

Product ‘ Company PSD 76.97.3.2

specification restricted 4/0
issue

Sheet DF-68

Al.5

Al.6

This bit should only be set for a program
held in ROM

Name format

In all cases where a ‘name' is supplied to an interface defined
in this document, the name consists of 12 characters chosen from
ASCII $20 to $7A inclusive. Director does not necessarily

check adherence to this standard. When comparing names, Director
treats all 12 characters as significant, but treats upper and
lower case versions of the same letter as equivalent.

Names visible to the end user should avoid obscure punctuation,
leading spaces and embedded non-single spaces.

Names to be Toaded from filestore must conform to filestore
naming conventions.

(System Software may use names containing the additional
character $7E (tilde). Such usage is not normally visible to the
end user.)

Additional program header fields

If bit 6 of byte 25 of the program header is set to 1, the
program header contains additional fields, which can be accessed
using the Director procedure GIVE PROGRAM HEADER FIELD (see
section 4.9.8). Each such field consists of a number of bytes,
as defined below. The fields are contiguous, and the last field
is followed by a zero byte. The fields can occur in any order.

The format of each field is as follows:

byte 0 : field identifier

byte 1 : length of field data in bytes (1 to 255)
byte 2 onwards : field data

Field identifiers 1 to 63 are reserved for system-wide purposes.
Field identifiers 64 to 127 can be used for application-specific
purposes. Field identifiers 128 to 255 are reserved.

The following system-wide field identifiers are defined:

Identifier 1 : program version number. It is an OPD standard
that each separately released application or
program should have a version number. An
application should by default display its
version number to the user, and should where
possible provide the means of displaying the
version number of any independent program
that it uses. (Modified rules for display
may apply to applications released as part of

Product Company PSD 76.97.3.2
O specification restricted 70
Sheet DF-6 9

the system software.) Version numbers may be
accessed by other applications or system
utilities. The version number is by
convention an 8-character field as follows:

bytes 0 to 2 : territory identifier (right
justified), for example, AUS,
SAF, NAD
byte 3 . Space
byte 4 to 5 : enhancement level (two digits,
! optionally zero suppressed)
: byte 6 . full stop
byte 7 : revision number (one digit)
(~) ; For example, AUS 04.1

Product Company PSD 76.97.3.2
specification restricted 4/0 N

Issue W

DF-70

Sheet

APPENDIX 2. PROGRAM FORMAT IN FILESTORE

Each program is held in a file of the same name as the program.

The File Type is 1 for a machine code program, and 2 for a
'published' non-machine code program. Other program types are
outside the scope of this document.

The File Type Qualifier is defined in the same way as byte 24 of
the program header (see section Al.4).

The content of a machine code program file is as for such a program

in ROM: a program header (positioned at byte 0 of the file)

followed by the program itself. Space between the end of the ‘
program (as defined in the program header) and the end of the file Q‘)
should be regarded as undefined. When the program is loaded, the

whole file is loaded into RAM, irrespective of the program size
specified in the program header. The file size should therefore be

the minimum necessary to accommodate the declared program size.

There is no unit header or unit trailer in a program file.

The definition of the content of a non-machine code program file
is outside the scope of this document. The file does not
necessarily contain a program header.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70

