Common Subroutines : L

0PD/SPEC/1

The information in this document is proprietary to ICL, and is
supplied to you in confidence on the understanding that you will
not disclose it to third parties or reproduce it, and that you
will use it solely for the purpose of developing applications
. software for use with the ICL product or products described in
(_j this document. :

DOCUMENT CONTROL

Contents

0 Document Control

1 General

2 Subroutine Specification
2.1 Text Expander
2.2 Field Editor
2.3 Waiter Subsystem

Changes Since Previous Issue

Minor extension to Field Editor.

Changes Forecast

None.

0PD/SPEC/1
3/3
€S-2

O

OPD/SPEC/1
3/3
€S-3

GENERAL

This document provides a specification of the functions performed
by and the programming interfaces to the Common Subroutines
component of the Base Functional Software.

The subroutines are not connected with each other. Each is
allocated a separate section to itself in this document. A
section generally contains an informal description and
explanation of ‘the subroutine and a more formal programming
interface specification.

The subroutines which form the subsystem are:
a) Textrfxpander
b) Field Editor
c) Waiter Subsystem

TRAP entry

The Director trap is used for more than entries to Application
Handler itself. The range of possible action values is
partitioned and a sub-range is allocated to each subsystem which
wishes to participate. Thus, the Common Subroutines subsystem
has its own sub-range of action values, so that when the Director
trap is entered with an action value within this sub-range,
control is actually passed to the subsystem (to CS_ROOT, in
fact). To further the illusion, a number of synonyms are
available for the Director trap value - in this case T.CMNSUBS.
The trap value is the same, the entry is still into Director,
only the name has been changed.

The mode of entry provides certain facilities (storage of
registers) but requires that 128 bytes are available on the
caller's stack.

CS ROOT - The Header Module

This is a component of the Common Subroutines subsystem which
must be present. It has no direct function as far as application
code is concerned. It provides the subsystem program header
which is required by Application Handler. It also receives
control from Application Handler when an activity uses the trap
T.CMNSUBS. It then examines the action value in DO and branches
to the required common subroutine.

It is recommended that CS ROOT and the rest of the common
subroutines should be placed in a contiguous block or in
proximity to each other when a system is linked, since the
branches from CS ROOT use 16 bit displacement operand forms.

L

0PD/SPEC/1
3/3 .

CS-4 '\J

2 SUBROUTINE SPECIFICATIONS

2.1 Text Expander
2.1.1 PURPOSE

The purpose of Text Expander is to permit a reduction to be made

in the overall ROM size requirement for OPD software by providing

an organised means for the expansion of common substrings within

text messages output by the software. Thus, if a word or phrase

occurs several times in the totality of text messages stored by

the OPD software then it may be extracted and stored once, in a

special Tibarary, and each instance of it in a text message

replaced by an economically encoded reference to the stored form.

Text Expander provides the means by which messages containing \
such 'shorthand' references to externally held words or phrases g_)
are reconstructed before they are displayed.

Note that Text Expander does not provide a facility for the
recognition of common substrings in a population of text
messages, nor for the assembly of the special library.

2.1.2 DESCRIPTION

A population of text messages is assumed by Text Expander to be
collected into a single structure, called a Main text library. A
population of extracted letters, words or longer strings of
characters is also collected into a single structure, called a
Common text library.

It is conceivable that several Main text Tibraries may exist,

associated with different parts of the software, and that these

may reference one or more than one Common text library. The

identities of the two libraries are therefore given as)
parameters on a call to Text Expander. k“)

The basic action of Text Expander is to process a text message
selected by the caller from the Main text library a character at
a time into a store buffer provided by the caller, replacing any
shorthand references as it goes by the appropriate character
strings retrieved from the Common text library.

Two further features are included, to increase its usefulness.

a) It is possible to 'envelope' a number of characters in
either library, so that they are sent through to the output
buffer transparently, i.e. the characters are not examined
to see if they are ‘shorthand' references.

b) It is possible to mark sections of text in either library as
candidates for selective omission during the copying and
expansion process. The omission or the inclusion of such a
marked section may be achieved at will by the program which /
calls Text Expander. This facility is called 'variants' in g“)

O

OPD/SPEC/1
3/3
€S-5

the interface specification.

A Common text library may itself contain 'shorthand' references.
The depth of such nesting (while expected to be small in

practice) is limited only by the amount of free space on the
caller's stack.

The segment or segments containing the buffer area, the Main text
library and the Common text library may be either of normal or
cell allocator type, but must be frozen or immobile on entry to
the subroutine. They are not thawed by the subroutine.

S

OPD/SPEC/1
3/3 ;
CS-6 k‘)
2.1.3 INTERFACE
2.1.3.1 Call and Register

Trap Name: T.CMNSUBS
Action Value (DO.B): CS.TEXT

2.1.3.2 Additional Call Parameters

D1.W Text number - the number in the Main text library of the
text which is to be expanded.

D2.L Length of supplied buffer, in bytes.

D3.B Variant number - can be undefined if the stored text does ’
not have variants; otherwise bits are set (usually only &_)

one) to specify the variants to be included (least
significant bit specifies variant 1).

Al Address of buffer to receive the expanded text.

A2 Main text library address.

A3 Common text library address - can be undefined if the
specified main text does not use common texts.

2.1.3.3 Return Information

DO.L Return code:-

Non-negative - successful call
ERR.BO - buffer too small for expanded text
ERR.DI - data invalid (illegal escape
sequence) &‘)

D2.L Length of buffer actually used, in bytes

D1, D3 to D7, A0 to A7 are unchanged.

The specified text has been expanded into the supplied buffer.
2.1.4 Function

The function is to construct the complete text specified by the
text number and variant number,

The specified text is copied to the buffer, acting on references
to common texts and on variants and enveloped sequences. (See
'Supported codes' below.)

Any of the text may be wholly or partly composed of references to
common texts which are automatically inserted at the current
position in the buffer.

0PD/SPEC/1
3/3
Cs-7

Any of the text may contain variant masks. If the result of
ANDing the variant mask with the variant parameter to this
procedure is zero, the following text (including any references
to common texts) is skipped up to the next variant mask or the
end of the text.

Any of the text may be 'enveloped' so that, within the envelope,
reference to common texts is suspended, allowing codes above 127
to represent themselves. Code 127 can be represented by an
adjacent pair of 127 codes.

In principle the routine does not validate the library structure
or contents. Certain errors are detected and give rise to the
returned status values.

(;) The Tibrary structure assumed and the supported codes are
specified below.

2.1.4.1 Supported codes

Main text and common texts may consist of the following codes:

0 to 31 As supported by Kernel
32 to 126 Displayable characters, supported by Kernel
127 Used as the escape code for the following

screen construction features:

Following code(s) Effect

, m m is a variant mask, An
all-ones mask restores
- unqualified output.

2 vee ... 127 .2 Envelopes a sequence that
includes codes, supported
by Kernel, in the range 0
to 255. The code 127 may
be represented in the
sequence by a pair of
contiguous 127 codes.
Common text insertion is
suspended during an
enveloped sequence. The
envelope sequence may
also be terminated by the
end of the text.

128 to 255 Refers to common text N in the Common text
Tibrary, where N (0 to 127) is obtained by
subtracting 128.

OPD/SPEC/1
3/3
€S-8

2.1.4.2 Structure of Libraries

Main text libraries and Common text Tlibraries have the same
structure, as follows:

Base address (4 bytes)
I K
\ INDEX (2 bytes wide) used as offsets from start

\ of index to start of each
(| | text.

Common text
or
main text definition

|

|

| _end offset | |
1

]

Last common text
or
main text definition

|

Each library consists of main or common texts placed end to end
in a contiguous region of store. There are no counts or
terminators.

Main text and common text definitions are not mixed in the same
library.

2.2

e

OPD/SPEC/1
3/3
€s-9

Field Editor

2.2.1 PURPOSE

The Field Editor is a subroutine which is intended to be called
by user-visible applications for the purpose of handling keyboard
input from the user when this is expected to be "data" rather
than simply menu selection keystrokes. It is not itself
user-visible in that it has no function or personality separate
from that of the calling application.

The Field Editor exists to meet two objectives: to reduce the
overall code space occupied by the software, and to promote
uniformity of approach among applications to the process of
displaying a modest quantity of data on the screen and allowing
this to be altered or new data to be entered. A corollary to
this second objective is that it should be possible to extend the
interface seen by the user, in terms of permissible key
depressions and the subsequent actions, in a compatible manner -
j.e. no key actions carried out by the Field Editor need to be
changed in an unnatural manner by an application offering an
extended interface.

2.2.2 DESCRIPTION

The Field Editor handles text, i.e. a string of visibie
characters. WNo meaning is deduced or assigned to any groups of
characters, e.g. it has no concept of words or sentences or
numbers. A calling application, which is using Field Editor to
perform the low level clerical chores may attach such a meaning
and may steer Field Editor in an appropriate manner.

Text is always displayed on the screen within a rectangular box,
i.e. m lines of n characters. This box may represent the entire
field of data or it may represent a window into a larger
collection of data. In the latter case the windowing functions,
e.g. scrolling, would have to be managed by the calling ‘
application. Field Editor deals with a single box, or field, as
a single data array containing, at most, as many characters as
will fit into the box.

An application may display a screen containing several fields
simultaneously, but needs to direct Field Editor to each field in
turn if several are to be amended, since it can deal with only
one at once.

A cursor is always displayed in the field in which Field Editor
is currently engaged, to denote the position where keyed data
characters will be placed. It takes the form of a reverse video
block covering the character position concerned.

The user interface to Field Editor is given in the OPD Handbook,
which describes which keys can validly be pressed and what their
effect is.

OPD/SPEC/1
3/3
Cs-10

The editor may be asked to validate keyed data characters against
one of a selection of criteria and to generate an error tone and
refuse to accept the character if it is invalid. The purpose of
this is to allow keying errors to be rejected as early as
possible, at the time of commission if feasible, to improve the
user interface.

The editor has a concept of a number of existing characters in a
field, which is the number of data characters entered into the
field by the user from the keyboard, either directly or
indirectly. It is specified by the parameter CS.FARRLEN. It may
be nominated by the calling application and will often encompass
the entire field. A data entry field starts, implicitly, with no
existing data characters. The number of existing characters is
updated by the editor as the user works within the field, taking
account of text keys and control keys. On exit to the calling
application it represents the right-most postition in the field
ever reached by text characters or cursor movement, as modified
by subsequent character deletions or insertions. It is provided
for those applications that need to know exactly how much the
user has typed and may be ignored on return by other
applications. Character positions in the array which do not yet
exist, according to the editor, are always returned as spaces.

2.2.3 USER INTERFACE

Field Editor does not (and could not) support all of the
interface described below. It provides some of that support plus
the facilities needed for a calling application to control its
actions so that the application may provide the remainder of the
required support in any particular case.

One of the components of the base functional software provides a
uniform user interface for all instances of user data entry or
amendment. This process is always presented to the user in a
form-filling format (though the data entry area on the form is
sometimes as small as one character). This component is called
the Field Editor. The user is not aware of its existence as a
separate entity, merely of the uniformity of approach which it
confers.

Any data entry/amendment screen consists of a fixed display, of
text and perhaps block shading, and a number of rectangular
windows or entry fields. For a data entry screen the fields are
initially blank or empty and for a data amendment screen the
fields are filled in with the existing data values which the user
is being invited to amend. A mixture of entry and amendment
fields on one screen is also possible.

A field or window, is not necessarily as wide as the screen, e.g.
it may be a rectangular block 10 characters wide and 3 characters
deep, a total field size of 30 characters. It may be as small as
one or two characters.

O

o

OPD/SPEC/1
3/3
Cs-11

A visible cursor is displayed in one of the fields, which denotes
the currently active field and the current character position
within it. When the screen is first displayed, the cursor is
normally at the top left of the 'first' field.

Data characters are entered simply by typing the character
required on the keyboard. The character entered is placed in the
current character position in the current field, as denoted by
the cursor. The cursor is then moved one position to the right
in the field. If it is already at the right hand end of the
field, it is moved to the left-most character position in the
next line down in the field. If the cursor is already in the
right-most character position of the lowest Tine in the field
(i.e. the last character position in the field) then the field is
deemed complete. At this point, the calling application should
intervene to move the cursor into the next field on the screen.

Data already entered can be overtyped by moving the cursor back
if necessary and entering the new characters.

Validation of entered data characters by the Field Editor is
possible. If the data character keyed by the user is invalid, an
audible error tone is generated by the Field Editor, the
character is not inserted into the field and the cursor does not
move.

2.2.3.1 Control and Editing Keys

Several keys are also usable as control or editing keys. These
are described below.

2.2.3.1.1 Cursor Control Keys - | | - -

The cursor control keys are used, unshifted, to move the cursor
within a single field (or window). The cursor moves one position
in the direction indicated by the arrow for each key depression.
The cursor may be moved fast by holding down the cursor control
key if auto-repeat is in operation on the keyboard. If the
cursor reaches the upper or lower edge of the window then it
moves no further, though no error tone is generated. If the
cursor reaches the left hand or right hand edge of the window
then it moves to the end of the preceding line or to the start of
the next line, respectively, unless it is already in the first or
last character position of the field, in which case a field skip
js indicated which should be performed by the calling
application.

2.2.3.1.2 RETURN

The RETURN key moves the cursor to the left hand end of the next
Tine down in the field, or window (i.e. it performs CR/LF). Any
character positions in the line which contains the cursor at the
time RETURN is pressed and which are to the right of or under the

OPD/SPEC/1
3/3

€s-12 ku)

cursor but which do not yet exist are changed to existing
characters (with values of 'space'). Existing characters are not
changed in any way. RETURN operates only within the current
field. If the cursor is in the last, or only, line of a field
when RETURN is pressed, a field skip is indicated.

2.2.3.1.3 DELETE

Use of the DELETE key changes the character position before the
cursor to a space, and moves the cursor one position to the left,
If the cursor is already in the Teft most character position of
a line then it is moved to the right-most character position of
the next line above, unless it is already in the top line of the
field, in which case the DELETE key has no effect. The key
operates only within the current field.

2.2.3.1.4 INSERT - SHIFT/DELETE)

Use of the INSERT key combination enters a space at the cursor
position, after having first moved all data characters in the
field under and to the right of the cursor by one position to the
right. Characters moved off the right hand ends of lines appear
at the left hand ends of the succeeding lines. The character
moved off the end of the last line of the field is lost. The .
cursor is not moved.

2.2.3.1.5 REMOVE - CTRL/DELETE

REMOVE is the inverse of INSERT. Use of the REMOVE key

combination removes the character under the cursor and then moves

all data characters in the field to the right of the cursor by

one character position left. Characters moved off the left of

1ines reappear at the right of the preceding Tines. A space is

moved into the last character of the field (right hand end of

Towest line). The cursor is not moved. Qu)

2.2.3.1.6 Field Skip Forwards - TAB

This key is used to move the cursor from field to field., It
moves the cursor, wherever it is in the current field, to the
first character position (top left) of the next field on the
screen. Use of the key combination while the cursor is in the
Tast field on the screen moves the cursor to the first character
position of the first field on the screen.

Note: This is not a Field Editor action, since it is aware of
only one field. It must be implemented by the calling
application.

2.2.3.1.7 Field Skip Backwards - SHIFT/TAB

The effect of this key combination depends on the current
position of the cursor. If the cursor is not on the first ,
character position of the field, then the key combination moves iu)

e

0PD/SPEC/1

3/3
€s-13

the cursor to the first character position of the same field. If
the cursor is already at the first character position of the
field then the key combination moves the cursor to the first
character position of the previous field, or of the last field on
the screen if the current field is the first field on the screen.

Note: This is not a Field Editor action., It must be imb]emented
by the calling application.

2.2.3.1.8 ENTER

The ENTER key combination is used to signal to the application
that data entry or amendment is complete. The Field Editor
returns control to the calling application.

2.2.3.1.9 ALT/RETURN

This key combination acts like the RETURN key except that
character positions under and to the right of the cursor in the
current line are always changed to spaces and denoted as existing
whether or not they currently exist, i.e. the action is
destructive in an existing field of data.

When a data character is entered into the last character position
of a field, a field skip is indicated.

2.2.4 INTERFACE
Field Editor manipulates or services 7 entities, which are:
a) The visible form of the screen field orvbox.

b) The data array - an array of data characters supplied by the
calling application or built up by Field Editor which
constitutes the text currently occupying the field.

c) A field description - size of field and foreground/
. background colours (but not position of field on the screen;
this is a matter for the calling application).

d) Validation specification - how keyed characters are to be
validated. '

e) Termination specification - a number of conditions,
' occurrence of one of which is to cause a return to be made
to the calling application.

f) Sound output - the audible tone generator, used to signify
character validation failure.

g) Keyboard.

The calling application must have opened channels to the normal
keyboard and to a screen window and it must have positioned the

OPD/SPEC/1
3/3

CS-14 \‘)

window suitably on the screen.
The calling application may elect to:

a) Ask Field Editor to fill the screen field with data from the
data array (the normal case for data amendment).

b) Supply an empty data array and ask the Field Editor to fill
the screen field with spaces (in the field background colour
- this is the normal case for data entry).

¢) Write the field contents to the screen itself and instruct
the Field Editor to leave the screen field alone until the
user starts to use the keyboard. A data array is still
supplied. If the number of valid characters in the array is
less than the total number of characters in the array then K.)
the remaining characters in the array, beyond the end of the
existing data, are spacefilled and their corresponding
screen positions are blanked. (This mode is used for
special purposes or when Field Editor is being re-entered
frequently and continual rewriting of the screen field would
not be economic.)

On entry to Field Editor a distinction is made between blank
£i11 mode (CS.FENMODE = 2 or 3, see section 2.2.4.3.4 for
parameter listing) and the other modes.

In blank fill mode the data array is entirely cleared to

spaces and the screen field is likewise completely cleared

to spaces (in the specified background colour) with the

cursor displayed in the first character position of the

'non-protected' area of the field. In 'write current

contents' mode (CS.FENMODE = 4 or 5) any characters at the

end of the array beyond the limit of existing characters (as)
given in CS.FARRLEN) are spacefilled. The number of &u)
existing characters is not altered. The whole array is then

written to the screen field thus blanking the part of the

field beyond the end of the existing characters.

In 'do not write array' mode (CS.FENMODE = 0) any characters
at the end of the array beyond the limit of existing
characters are spacefilled. The number of existing
characters is not altered. None of the array is written to
the screen field.

The decision is then taken as to whether or not an immediate
return to the calling application was reguested.

If control remains with the Field Editor, the cursor is displayed

at the character position nominated by the calling application.

Control then remains in the Field Editor until the user keys a

character which the calling application has designated as a

terminator character, or until an unexpected event occurs (these o
are passed back to the calling application). \‘)

0PD/SPEC/1
3/3
£s-15

As the user keys in characters, both the displayed field on the
screen and the data array are updated, following the rules in
section 2.2.3. When the Field Editor returns control to the
calling application, therefore, it returns the data array updated
in situ to reflect the screen field contents at the time of the
return. In general, when a terminator character is keyed by the
user, neither the screen field nor the data array have been
updated by it when the return is made (though there are
exceptions, noted below).

If the calling application wishes the Field Editor to 'time-out'
and return control to it in the event of user inactivity, then it ,
should set the timer before entry to Field Editor and accept the]
return with an 'unexpected event'. ' i}

Field Editor is sharable. It can be used when the screen is in
40 column or 80 column mode and with a field which is in a
window with the 'double width' property set in 80 column mode.
It cannot cope with fields containing characters which are not
displayable data characters (the latter are those in the range
$20 to $7F inclusive, and $CA and $CB). In particular, it cannot
cope with text containing TAB, CR or LF characters. Neither can
it cope with text containing display attribute control
characters. All the text characters are displayed with the
uniform field foreground and background colours (though see the
start offset parameter and note that the calling application may
write displays of mixed 'colours', provided that the text in the
data array does not actually contain the attribute control
characters or sequences).

The calling application must also supply a local event number, in
the usual form, which may be used by the Field Editor and which
. must not be in active use for any other purpose at the time that
@ Field Editor is called.

The corresponding bit in the Event Request Register must be set
by the calling application before Field Editor is entered and is
left set in that register when control is returned by Field
Editor. The event will never occur as a result of Field Editor's
activities after it has returned control, even if the return of
control was on account of an unexpected event.

Field Editor operates synchronously in the sense that a keyed
character is read and then fully processed before the next keyed
character is read. Other machine events cannot, therefore, leave
Field Editor 'holding' several characters it has read from the
keyboard but not yet actioned. Any such keystrokes remain queued
in the keyboard channel.

When Field Editor exits, either because of detection of a
user-specified condition, or because of an 'unexpected event',
. its 1/0 calls are always cancelled and are not left 'hanging
(_) about' in the calling activity.

P
OPD/SPEC/1
3/3

Cs-16 &-)

When Field Editor exits, reporting an 'unexpected event', the
event is still pending in the Event Notification Register for the
activity, so that the calling application can process it
normally.

The boundary handling attributes of the screen window are changed
by Field Editor to progressive wrap at both edges but no
auto-scrolling.

In order to accommodate what may be varying requirements between
its calling applications, Field Editor's action on freezing and
thawing the caller's data areas may be controlled by two

parameter bits, see section 2.2.4.3.4.
Two data areas are involved, the data array and the parameter :
block, which are both supplied by the caller. They may be in the ku)

same segment as each other or in different segments.

They are both frozen while Field Editor is actually processing.

A choice is allowed over whether they should be thawed when a
return is made back to the caller. Another independent choice is
allowed over whether they should be thawed while Field Editor is
waiting for the user to press a key. It is clearly desirable
that this second choice be exercised whenever possible to promote
store management fluidity. It is assumed that the caller's code
and stack segments are frozen or immobile (!).

OPD/SPEC/1
3/3
€s-17

2.2.4.3 FIELD EDITOR - formal interface
2.2.4.3.1 Call and registers

Trap Name: T.CMNSUBS
Action Value (DO.B): CS.FIELD

2.2.4.3.2 Additional Call Parameters

D2 : Bits 31 to 16 Offset of parameter block from start of
its cell

Bits 15 to 0 Cell tag of cell containing parameter
block

2.2.4.3.3 Return Information

Dl1.L : Contains the character keyed if, and only if, the
return was made because one of the calling
application's termination conditions was met (i.e. a
normal return).

The parameter block remains valid. In particular, the cursor
position pointers in it may be regarded as response fields,
defining the position of the cursor in the data array and within
the screen box at the time of return, :

The data array has been updated in the light of the user's
editing activities.

Normal and Error Returns:

On exit from Field Editor, DO.L contains a response code. If
this is positive or zero the return is designated as a normal
return. If it is negative, the return is designated as an error
return. Condition codes are set to reflect the value in DO.

Normal Returns:

DO.L contains a binary-coded response code denoting the reason
for the exit from the field editor. The values which may be
returned are,

0 Immediate exit requested (i.e. CS.FENMODE = 1)

2 Field skip forwards (see note 1 in section 2.2.4.3.4)
4 Field skip backwards A (see note 6)

6 Field skip backwards B (see note 11)

8 Exit made on any keystroke, before it is actioned

10 Exit made on any valid keystroke, after it is actioned
12 Caller-defined terminator

14 Function key 0

16 Function key 1

18 Function key 2

20 Function key 3

OPD/SPEC/1
3/3 QL}
CsS-18
22 Function key 4
24 Function key 5
26 Function key 6
28 Function key 7
30 Function key 8
32 Function key 9
34 DELETE
36 INSERT
38 REMOVE
40 | and cursor is at window edge
42 | and cursor is at window edge
44 - and cursor is at window edge (see note 15)
46 - and cursor is at window edge (see note 15)
48 Return as a result of condition specified by bit 9 of
CS.FCFLAGS)
50 ENTER g‘)
52 RETURN (see note 14)
54 DELETE and cursor is at start of field (see note 17)

in CS.FCFLAGS is set, e.g. if bit 5 of CS.FCFLAGS = O then
response values between 14 and 32 will not be given. This means
that applications do not have to cope with return codes in which
they have no interest, since they will not occur. See note on
use in section 2.2.4.3.5.

A response code value is returned only if the corresponding bit i
|
|

Error Returns:

BP : bad parameter
UV : unexpected event

See also section 2.2.4.3.6.

0PD/SPEC/1
3/3
€s-19

2.2.4.3.4 Field Editor Parameter Block

The parameter block is a contiguous area of RAM used to convey
instructions to the Field Editor and responses back from it.

The parameter block must be in a cell allocator segment and need
not be at the start of the cell, but must be word-aligned within

it.

The following items are defined. The order is that given in this
list. Block moves of parameters are therefore permissible.

Where an item is described as a parameter item, this means that
it is treated as an input parameter to the Field Editor and may
be used to control the action of the Field Editor.

Where an item is described as a return item this means that it is
information returned by the Field Editor on exit, which may be
used by the calling application.

An 'INCLUDE' file containing all the items defined below is
provided as part of the subsystem. It is called CSFDEFS.DG.

CS.FARRDSP 2

CS.FARRCTG 2

CS.FARRLEN 2

CS.FKEYCHAN 4

CS.FWINCHAN 4

CS.FLOCEVENT 2

CS.FENMODE 2

bytes

bytes

bytes

bytes
bytes
bytes

bytes

Displacement of data array from start
of its cell, in bytes. (The data
array must be in a cell allocator
segment, need not be at the start of
the cell, but must be word-aligned
within it.)

Cell tag of cell containing data
array.

Number of existing data characters in
the data array. A return item as well
as a parameter item.

Channel identifier for the normal
keyboard.

Channel identifier for the window
which Field Editor is to use.

Number of a local event free for Field
Editor's use, coded in binary.

Entry mode. Controls the initial
action of Field Editor. The value
must be one of the following.

Enter normal processing immediately
(i.e. do not blank fill or data fill
the screen field - the calling
application is assumed already to have

CS.FAROFF

CS.FINK

CS.FPAPER

CS.FWIDTH

CS.FHEIGHT

CS.FCURARR

OPD/SPEC/1

3/3
CS-20
written the screen field).

1- Undefined; do not use.

2 - Fi11 the screen field and data array
with spaces and then enter normal
processing.

3 - Fill the screen field and data array

with spaces and then exit to the
calling application.

4 - Write the contents of the data array
to the screen field and then enter
normal processing.

5 - Write the contents of the data array
to the screen field and then exit to
the calling application.

The effect of other values is undefined.

2 bytes Number of character positions along
the field at which the start of the,
. data array is aligned. See note 2.

1 byte Ink/Foreground colour for field.
Value is coded as described in Kernel
PSD. Bits 4 to 7 must be zero. See
note 12.

1 byte Paper/Background colour for field.
Value is coded as described in Kernel
pSD. Bits 4 to 7 must be zero. See
note 12.

2 bytes Number of character positions across
the field horizontally. Minimum 1,
maximum 80.

2 bytes Number of character positions across
the field vertically, i.e. number of
lines in field. Minimum 1, maximum
24,

2 bytes Cursor position within data array as
an index pointer from the start of the
array, i.e. a value of O means the
first byte of the data array.

This is a parameter item if CS.FENMODE

has a value of 0 or 4 and is a return
jtem if CS.FENMODE has a value of 0, 2
or 4. See note 3.

CS.FCURH

CS.FCURY

CS.FVAL

CS.FCFLAGS

2 bytes

2 bytes

2 bytes

4 bytes

0PD/SPEC/1
3/3
€s-21

Character cursor position horizontally
within the window or field. This is a
return item only if CS.FENMODE has a
value of 0, 2 or 4. It is never used
as a parameter item. See note 13.

Character cursor position vertically
within the window or field. This is a
return item only if CS.FENMODE has a
value of 0, 2 or 4. It is never used
as a parameter item.

Validation flags. Specify what
validation criteria are to be applied
to each data character received from
the keyboard. See note 4.

The bits listed below are individually
significant. If two or more of bits O
to 4 are set then a data character
meeting at least one of the criteria
(but not necessarily all of them) is
valid. A bit is 'on' if set to 1.

Bit 0 - Alphabetic (upper or lower
case).

Bit 1 - Numeric.

Bit 2 - Numeric or space.

Bit 3 - Printable ASCII character,
$20 to $7F, inclusive, or
$CA or $CB.

Bit 4 - Telephone digit ($20 to
$39 inclusive, or $CA).

Bit 5 - User-defined set (see
below).
Bit 6 - Leading space in field not

permitted. See note 5.
Bit 7 - Must be 0.

Control flags, mainly concerned with
specifying the conditions under which
return should be made to the calling
application. The bits listed below
are individually significant; if at
least one of the criteria is met, then
return is made.

OPD/SPEC/1

3/3 i
£S-22 o/

The internal codings for the
characters referred to appear in the
Kernel specification.

The bits listed below are 'on' or
active if set to 1. Bits for unwanted
or undefined conditions should be set
to 0.

Bit 0 - Must be O

Bit 1 Must be 0

Bit 2 Must be 0

Bit 3 Exit if RETURN (this
provides the calling
application with the ability
to intercept RETURN
keystrokes, to take special
action on them. It is
provided for applications
which need to do this, e.qg.
Messaging, and should not be
used by other applications).
If bit 3 and bit 9 are both
set, then bit 3 takes
precedence (i.e. return code
is 52).

Bit 4 - Exit with return code of 54
if DELETE when cursor is
already in first character ;
position of field (see note 17). g_)

Bit 5 - Exit if function key
pressed (but see CS.FFNKMSK).

Bit 6 -~ Exit if DELETE, INSERT or
REMOVE. (DO or D1 show
which; exit is made before
the character has been
actioned.)

Bit 7 - Exit if|or | and cursor is
already at window edge. (DO
or D1 show which.)

Bit 8 - Exit if - or - and cursor

is already at window edge.
(DO or D1 shows which.)

Bit 9 - Exit if INSERT, REMOVE, \)

C

Bit

Bit

Bit

Bit
Bit

Bit

Bit 16 -

10

11

12

13
14
15

0PD/SPEC/1
3/3
CS-23

DELETE, RETURN, SHIFT/TAB
within the field,
ALT/RETURN, -, - , | or |
(after it has been
actioned). See notes 10
and 16.

Exit on any data keystroke
i.e. a valid keystroke which
is not a caller-defined
terminator. Exit after the
data array, its length and
the cursor pointers have
been updated.

Exit on any keystroke (exit
before the keystroke is
actioned in any way; the
keystroke is in D1; the data
array, its length and the
cursor pointers are not
updated; no character
validation is performed).
The return code is 8.

Exit if caller-defined
terminator, see below (exit
before the data array, its
length and the cursor
pointers have been updated;
the character, whose value
is in D1, has not been
validated).

Must be 0.
Must be O.

Freeze control bit A. If
set to 1, signifies that the
segment or segments
containing both the data
array and the parameter
block should be thawed
before a return is made to
the caller. If set to 0,
the segment or segments
remain frozen after the
return.

Set to 1 if the channel
display mode is either 80
column mode or 64 column
mode and the character

CS.FFNKMSK

CS.FCALVAL

CS.FCALTERM

3/3
£S-24

attribute 'Double Width' is
currently if force.
Otherwise, set to 0.

Bits 17 Must be 0.
to 22

Bit 23 - Freeze control bit B. If
set to 0, the segment or
segments containing both the
data array and the parameter
block should be thawed while
awaiting user input from the
keyboard. (This should be
regarded as the normal
case.) If set to 1, such
thawing while waiting for
user input does not take
place.

Bits 24 Must be O.
to 31

Further qualifies bit 5 of CS.FCFLAGS
by indicating a subset of function
keys which is to cause an exit.
Function keys outside this set are
beeped and ignored.

Function key N (0 through 9) is part
of the subset which causes an exit if
bit N of this word is 1 and is not
part of the subset if bit N is 0.
Bits 10 to 15 must be O.

If an exit is made, the return code is
as specified in 2.2.4.3.3.

(Up to) 6 character codes which are to
be considered as valid input
characters. These caller supplied
codes are used for validation if, and
only if, bit 5 of CS.FVAL = 1. Unused
positions should be set to $FF (though
the values of all 6 bytes are
irrelevant if bit 5 of CS.FVAL = 0).

A table of internal codes, the keying
of any one of which causes an exit to
be made to the calling application if,
and only if, bit 12 of CS.FCFLAGS = 1.
If bit 12 of CS.FCFLAGS = 0 then this
table (if it exists) is not examined.

OPD/SPEC/1

OPD/SPEC/1
3/3

(—> €S-25

Byte 0 and 1 of CS.FCALTERM contains a
non-zero integer, N, which is the
number of potential terminators held
in the remainder of the table.)
Bytes 2 to N each contain the internal
code of such a potential terminator.

Any editing control characters which
the Field Editor does not action but
which the calling application wishes
to action must appear here.

Notes

Notes 7, 8 and 9 are general notes.
(:) Note 1 : This return occurs for one of the following reasons,

a) The field is full - specifically, a data character
has been typed into the last character position of . *
the field. - (INSERT does not cause a 'field full'
condition.)

b) TAB has been keyed.

c} RETURN or ALT/RETURN has been keyed while the i
cursor is in the Tast Tine of the field, and bit 3 gl
of CS.FCFLAGS = 0.

d) ALT/RETURN has been keyed while the cursor is in
the last line of the field. '

e) - has been keyed while the cursor is in the last
character position of the field.

(;) Note 2 : This provides a means of 'protecting' a number of
characters at the start of the field. The cursor is
not allowed to enter the 'protected' area, which has-
become not part of the field at all - i.e. is not
represented in the data array.

In normal use this parameter is 0.

There must always be at least 1 character position in
the field which is not 'protected'. :

Note 3 : If normal processing is entered, i.e. the immediate a
exit escape is not specified, then CS.FCURARR,
CS.FCURH and CS.FCURV are always returned in a g
consistent state, pointing up the current position of
the cursor within the data array and the screen field. :

Note 4 : If no bits are set in CS.FVAL then character
- validation always fails. It is impossible, |
(;) therefore, to enter data characters.

Note

Note

Note

Note

Note

Note

Note

Note

10:

11 :

12 :

OPD/SPEC/1
3/3
CS-26

This bit provides a negative check. If set, an
attempt to enter a space character into the first
character position of the field is rejected (though a
space could be created implicitly by INSERT). It must
be used in conjunction with one of the other bits
specifying an allowable range. It is intended for use
on fields which are name fields for telephone
directories or are shortcodes.

Field skip backwards A - this return occurs if
SHIFT/TAB is keyed while the cursor is already in the
first character postion of the field (if the cursor is
elsewhere, only cursor homing within the current field
is implied and this is actioned internally within the
editor, there is no return to the application).

The data array must be at Teast large enough to
accommodate the number of 'non-protected' characters
in the field, since the user is able to cause Field
Editor to write data into any part of the array.
Items CS.FCALVAL and CS.FCALTERM need not be present
in the parameter block if they are not called for by
the other parameters. ‘

If blank fill mode is selected (see CS.FENMODE) then
the data array is entirely spacefilled at the start
but the cursor remains at the first character position
in the field and CS.FARRLEN returns the right-most
point in the field subsequently reached by the user
with explicit or implicit cursor movements.

If the calling application has already written the
screen field when the Field Editor is called then the
data array must contain as many characters as are
present in the 'non-protected’ part of the field.
This is because explicit cursor movement will cause
CS.FARRLEN to record the furthest position reached in
the data array, but will not actually deposit data
characters into the data array.

If it is required to use the bit 9 facility, then bits
7 and 8 should not be set, since these will take
precedence at window edges.

Field skip backwards B - this return occurs if - is
keyed when the cursor is already in the first
character position in the field.

The specified values for ink and paper colours take
effect only for characters displayed or redisplayed as
a result of keyboard input. i.e. if CS.FENMODE = 0
then the already-displayed field contents are not
immediately altered.

0PD/SPEC/1
3/3
Cs-27

Note 13 : If bit 16 of CS.FCFLAGS = 1, i.e. the window has the
'double width' property, then CS.FCURH does not
contain the character position but a value of twice
this. It may therefore be used with a cursor
positioning command to Kernel to address the current
character, just as for 'single width' cases.

Note 14 : This return only occurs if bit 3 of CS.FCFLAGS = 1.

Note 15 : This return occurs if bit 8 of CS.FCFLAGS = 1 and the
cursor is not already in the first (for -) or last
(for -) character postion of the field, i.e. it does
not take precedence over the normal field skip

return codes.

Note 16 : If exit is made as a result of this bit, it is the
responsibility of the calling application to detect
cases where a field skip is implied and to act
accordingly.

Note 17: If bit 4 is to be used, then bit 6 must not be set,
since bit 6 takes precedence.

2.2.4.3.5 Using Response Codes

The positive response code values returned by Field Editor are
designed for use with 2 byte jump tables. If desired, they may
be doubled and used with 4 byte jump tables.

For use with 2 byte jump tables, code of the nature outlined
below may be used.

a) To effect the switch:

LABEL MOVE.W TABLE(PC,D0),D0
IMP LABEL (PC,DO)

b) The jump table takes the form:

TABLE DC.W Destination 1 - LABEL
DC.W Destination 2 - LABEL
DC.W Destination 3 - LABEL

The destinations must be within 32 Kb, forwards or backwards, of
LABEL. TABLE must lie within 127 bytes, forwards or backwards,
of LABEL, though the details can be rearranged to suit individual
circumstances.

0PD/SPEC/1
3/3

€S-28 &‘)

2.2.4.3.3 Error Handling

1/0 errors on the screen and keyboard channel are passed back to
the calling application.

If a negative return code from Field Editor is neither ERR.BP nor
ERR.UV, then it is a normal Kernel error response returned from
one of Field Editor's Kernel I/0 calls. ERR.BP might also be
passed back from a Kernel call rather than the call of Field
Editor itself.

The audible error tone generated is produced by calling the
Director procedure MAKE SOUND, with an action value of
TG.BADKEY.

2.2.4.3.7 Order of processing _)

When Field Editor has received a key depression, the order of
processing is,

1. If exit on any keystroke specified, exit with return code of
8.

2. Check whether it is a caller-terminator; if so, exit.

3. Validate the key value as a data character in accordance
with CS.FVAL. If success, process as a data character.

4. Validate the key value as a caller-defined valid character.
If success, process as a data character.

5. Attempt to identify the key value as a control character
(one of - DELETE, INSERT, REMOVE, ENTER, RETURN,
ALT/RETURN, TAB SHIFT/TAB, |,|, - or -). If identified, o
process accordingly. Q_)

6. Attempt to identify the key value as a permitted function
key. If identified, process accordingly.

7. The keyed character is illegal. An error tone is generated
and the character is otherwise ignored.

0PD/SPEC/1
3/3

(-) €s-29

2.3 The Waiter Subsystem

2.3.1 PURPOSE

The Waiter subsystem is a collection of subroutines which
are designed to perform for applications some of the chores
necessary when displaying information on the screen and
awaiting a user response.

Typically, it is used to display a menu and to await the
user's keystroke in reply. It is not, however, intended to
be restricted to this purpose and so the interface contains
a number of parameters which may be used to control the
action of the subsystem in the desired manner.

(.) 2.3.2 DESCRIPTION

The main functions of the subsystem are the display of text, the
reading of keyed input and being constantly ready for the
occurrence of certain events.

2.3.2.1 Text Display

The word 'text' is used loosely; it may comprise any data
acceptable to the screen driver.

A complete screen display consists of a number of lines, each
which is a main text definition in the terms of Text Expander.
Such a line may actually be less than, equal to or greater than
one visible line of display on the screen. They should not
however be made too Tong otherwise responsiveness may suffer
since keystrokes are only detected at the end of each line.

The collection of lines comprising the complete-screen display is
(_) called, in this document, the Main text library. There is

usually an associated Common text library containing expansions
of common strings, and also a variant number (see section
2.1.3.2).

A common requirement is to want to delay the start of the display
process for a fraction of a second (currently guessed to be half
a second) while Tooking for user input. This is for use when
processing a hierarchy of menus by an experienced user without
several screen displays each starting to appear and each
persisting only briefly before being overwritten by the next
display. The requirement is met by the provision of alternative
entry points to the main routine.

2.3.2.2 Key Reading

The source of potential keystrokes may be varied by the calling
application to suit its requirements. The variations provided
are:

QPD/SPEC/1
3/3
CS-30

a) Use READ MENU KEY until this stream is exhausted, then
use the normal keyboard channel (for processing menus
dangling from the top level Menu).

b) Use normal keyboard channel only (for processing non-menu
display).

¢) Use READ REVIEW KEY (for use in Review Mode code).

A minimal validation feature is incorporated which permits the
keyed character to be checked as one of a specified set of
numeric digits. It is intended to be used in simple menu
processing where all the valid responses are digits.

2.3.2.3 Events

It is imperative that an application is alert at all times for
the events Suspend Foreground, Terminate and Abandon. This
includes the time spent by the application in the Waiter
subsystem. The Waiter subsystem therefore checks frequently for
the occurrence of events. If one occurs (other than the events
used for its own 1/0 operations), an immediate exit is normally
made to the calling application, with a distinctive return code.
The event or events detected are specified in the Parameter Block
in the parameter CS.WEVENTS (see section 2.3.4.1). In general
this parameter may be used by the calling application and by the
Waiter subsystem. Events which are notified shouid have the
corresponding bits set in CS.WEVENTS; when an event is processed
its bit should be cleared (except the foreground allocated event
bit which must remain set, unless cleared by the routine CS
WSUSP). Further details are given in sections 2.3.4.1 and
2.3.6.1.

2.3.2.4 Other features of the subsystem

1 The subroutine that displays one line of text on the screen,
CS_WDISP, is made visible separately. While it is possible
to call this from outside the subsystem, if required, the
main purpose is to allow the calling application to provide
another display routine to be used by the Waiter subsystem
which meets the specific requirements of the application.
There is no limitation on the functionality of such a
substituted display routine, provided that it meets the
interface specification of CS WDISP in respect of method of
call, registers on entry, and return information (except
CS.WOLNO which may have any value) - see sections 2.3.5.4.1
and 2.3.5.4.3.

2 The subroutine that initiates or completes a keyboard read
is made visible separately, so that an application can call
it directly if required.

3 A facility is provided for the subsystem to exit back to the
calling application as soon as the display has been

O

OPD/SPEC/1
3/3
€S-31
completed. In this case, a keyboard read (if required at
all) is still pending.
A re-entry feature is provided to allow the calling

application to re-enter the subsystem after is has returned
to the caller (for any reason).

0PD/SPEC/1
3/3
€S-32

2.3.3 FORM OF SUBSYSTEM

The subsystem consists of 8 subroutines which share a common
database, the Waiter Parameter Block. The names of these and an
outline of their functions appear below.

A11 of these are entered using a single action value, CS.WAITER,
on the Trap entry to COMSUB. They are then distinguished on the
basis of an action value variant, held in DI,

2.3.3.1 CS_WMAIN
This routine contains the control logic for the subsystem.
It has 2 entry points:-

a) Optionally wait for user-specified initial delay, display to
the screen and/or read a single keyboard depression.

b) Re-entry for any reason, where the desired action is to carry
on where the main routine left off before a prior exit, e.g.
when an unexpected event occurred, or when the calling
application has detected an invalid key.

These 2 "routines" are called CS WMNO and CS_WMN1 respectively.
2.3.3.2 CS_WINIT
Initialising routine which:

- Requests future notification of screen and keyboard 1/0
events,

- Reguests foreground (unless suppressed due to REVIEW or
SHIFT/SPECIAL key depression).

- Opens screen channel.

The routine must (if used) be called prior to calling any other
routine in the subsystem. If the routine is not called then
before calling other routines, certain actions should be carried
out as described in section 2.3.5.3.7.

2.3.3.3 CS_WDISP

Routine to format and display a text Tibrary "Tine" (a modest
amount) to the screen. Provision is made for the substitution of
this routine by a caller-supplied alternative.

2.3.3.4 CS_WPUTSTR

Routine to display an already formatted line to the screen and
wait for the screen 1/0 event.

O

OPD/SPEC/1
-3/3

£S-33

2.3.3.5 CS_WREAD

Routine to ask for keyboard input. If any is available, it is
returned. Otherwise, an autonomous read is issued and the
routine exits. Availability of a key later is signalled by an
event. A further call will then retrieve that key value (unless
it fails an optional numeric validation test).

2.3.3.6 CS_Wsusp

Routine to handle the 'Suspend Foreground' event. Should be
called by an application which has been using the subsystem,
whether the subsystem or the caller has detected this event.

The routine causes the foreground to be suspended and the normal
keyboard channel (if open) to be closed.

2.3.3.7 CS_WKOPEN

Routine to open and select a normal keyboard channel. The Waiter
subsystem will open and select a channel when it is about to read
a key from a normal keyboard, if the channel is not yet open.
However, a user application may wish to explicitly open such a
channel when it is not opened by Waiter e.g. for Field Editor.

0PD/SPEC/1
3/3
CS-34

2.3.4 DATA STRUCTURES USED
2.3.4.1 The Waiter Parameter Block

The Waiter Parameter Block is an area of RAM provided by the
calling application, which is used to convey information to and
from the Waiter routines and also as workspace by the Waiter
routines. It may be in either a normal segment or a cell
allocator segment. It must however be either frozen or immobile
on entry to the Waiter routines. It is not thawed by the Waiter
routines.

A convenient place for the block will often be on the calling
application's stack, though this not mandatory.

The block must be word aligned.

The contents of the individual fields in the Parameter Block are
described below. The names and field lengths are available in an
INCLUDE file (see Release Notice for its name).

CS.WKBCHIDE 4 bytes Identifier for currently selected
normal keyboard channel. Zero
indicates that Waiter is to open
and select a normal keyboard
channel, if required by

CS.WRFLAG.

CS.WSCCHIDE 4 bytes Identifier for screen channel.
Normally set by a call of
CS_WINIT.

CS.WEVENTS 4 bytes a) An events bit map signifying

events which have occurred during
entry to Waiter. These include:

- suspend foreground, abandon,
terminate events (as described
in Kernel PSD, 76.97.3.1)

- any user event for which
notification requested

- foreground allocated event may
be set if an exit is made from
Waiter for one of the above
events (event defined in Kernel
PSD, 76.97.3.1; once set by
Waiter it remains set unless the
foreground is suspended by a
call of CS_WSUSP)

b) On entry to Waiter the bit map
should indicate which Waiter

Cs.

Cs.

CS.

csS.

N

CsS.

Cs.

CsS.

WMTLAD

WCTLAD

WTVAR

WDLINES

-WDLNO

WDBAD

WDBLEN

WCDR

4 bytes

4 bytes

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

4 bytes

OPD/SPEC/1
3/3
CS-35

events are outstanding from the
previous entry, plus those Waiter
events which have been notified to
the calling application: these are
the foreground allocated and
suspend foreground events.

Address of (first byte of index

of) the Main text library for the
screen display to be made.

Address of (first byte of index
of) the Common text library, if
the Main text library references
one.

Text variant number for the Text
Expander.

Number of lines (i.e. entries) in
the Main text library, which
constitute the screen display to
be made by the current entry to
Waiter.

0 = no line to display, presumably
because Waiter is only being
entered for keyboard read - see
CS.WRFLAG.

Line number of the next line in
the Main text library to be
displayed. Normally starts at 0
but caller may set >0. This field
is updated by Waiter as the
display progresses.

Address of first byte of buffer
supplied for the receipt of
expanded text. See section
2.3.4.2.

Length of buffer supplied for the
receipt of expanded text. Not
required if CS.WDLINES = 0.

0 - subsystem is to use
subroutine CS WDISP to
display each Tine.

#0 - the address of a caller
-supplied line display
routine which is to be used
by the subsystem,

CS.WDELAY

CS.WSMODE

CS.WRFLAG

CS.WVFLAG

CS.WEFLAG

2 bytes

1 byte

1 byte

2 bytes

1 byte

OPD/SPEC/1
3/3
CS-36

Not required if CS.WDLINES =
0.

Optional time delay before display
of first line from Main text text
library, in units of 20ms
(approx).

0=

no delay, -1 = default delay

(currently 0.5 sec).

Channel display mode for screen
channel. Encoded as for SET
CHANNEL DISPLAY MODES - see Kernel
PSD, 76.97.3.1.

0

™ —
] 1

(%)
1

0 -

#0 -

the routine is not required to
Took for keyboard input

read normal keyboard channel

READ MENU KEY, then normal
keyboard channel

READ REVIEW KEY

no key validation is
performed; any key value
triggers an exit to the
calling application.

only bits 0 to 9 are
significant; bits 10 to 15
must be 0. Key validation
is performed. The only
valid keys are the unshifted
numeric digits. Digit N is
valid if bit N in this
flag's word is a 1, and is
invalid otherwise.

control remains in CS_WMAIN
until an exit to the caller
is caused by either a valid
key depression or by ‘
terminating event.

an exit is made to the
caller as soon as the
display is complete (unless
a valid key depression or a
terminating event occurs
before the display has been
completed).

O

CS.WDFLAG

CS.WTLEFT

CS.WCDLNO

CS.WFFLAG

CS.WRMFLAG

CS.WENTRY

CS.WDEFSZ

1 byte

2 bytes

2 bytes

1 byte

1 byte

1 byte

EQu

OPD/SPEC/1
3/3
CS-37

Used as workspace, not an input
parameter to the Waiter
subsystem.,

0 - display disabled (not yet
started)

1 - display enabled

Used as workspace, not an input
parameter to the Waiter subsystem,
No. of text entries still to be
displayed.

Used as workspace, not an input
parameter to the Waiter subsystem.
Copy of CS.WDLNO on entry at
action variant CS WMNQO; used to
reset CS.WDLNO on return after
foreground suspended.

Used as workspace, not an input
parameter to the Waiter
subsystem.

0 - foreground allocated event not
yet processed (initially
cleared by CS WINIT).

1 - the event has been processed.

Used as workspace, not an input
parameter to the Waiter subsystem.

0 - Waiter has not switched from
READ MENU KEY to read normal
keyboard.

1 - the switch has been made.

Used as workspace, not an input

parameter to the Waiter
subsystem.

0 - entered via TRAP mechanism

Note: only applies to routines
that return values in registers
(other than DO).

Size of parameter block in bytes.

0PD/SPEC/1
3/3
£S-38

2.3.4.2 Text Expansion Buffer

This is a separate area from the Waiter Parameter Block itself,
since size requirements may vary widely. Nevertheless it may
often be convenient to site it next to the parameter block, or on
the calling application's stack. .

The size of the buffer needs to be adequate to contain the
Tongest line from the Main text library in expanded form (taking
account not only of straight text characters but also of the
expansion caused by text substitution and of any screen control
characters embedded in the Tine).

The buffer may be in a normal segment or a cell allocator
segment, but the segment must be frozen or immobile on entry to
the subsystem. It is not thawed by the subsystem.

OPD/SPEC/1

3/3
€S-39

2.3.5 [INTERFACES

2.3.5.1 Interface - Routine CS_WMNO

2.3.5.1.1 Call and Registers

Trap Name: T.CMNSUBS

Action Value (DO.B): CS.WAITER

Action Value Variant (D1.8): CS.WMNO

A3: Address of standard Waiter Parameter Block.

2.3.5.1.2 Additional Call Parameters

CS.WKBCHIDE See section see 2.3.4.1.2. Not required if
CS.WRFLAG = 0.

CS.WSCCHIDE See section 2.3.4.1.2. Not required if
CS.WDLINES = 0.

CS.WEVENTS Not normally a CS_WMNO parameter, but see
sections 2.3.2.3., 2.3.6.1. and CS.WEVENTS in
section 2.3.4.1.2.

CS.WMTLAD Address of Main text library. Not required {f
CS.WDLINES = 0 or CS.WCDR # O.

CS.WCTLAD Address of Common text library. Not required if
CS.WDLINES = 0 or CS.WCDR # 0.

CS.WTVAR Text variant number for Text Expander. Not
required if CS.WDLINES = 0 or CS.WCDR # O.

CS.WDLINES Total number of lines to be displayed.

0 = keyboard read without screen display.

CS.WDLNO Normally set to O, but may indicate any Main text
Tibrary entry from which 1 or more lines are to
be displayed. Not required if CS.WDLINES = 0 or
CS.WCDR # 0.

CS.WDBAD Address of first byte of buffer supplied for text
expansion, in bytes. Not required if CS.WDLINES
= 0.

CS.WDBLEN Length of buffer supplied for text expansion, in
bytes. Not required if CS.WDLINES = O.

CS.WCDR Address of caller subroutine to be used by Waiter
subsystem in place of CS WDISP. Not required if
CS.WDLINES = 0.

CS.WDELAY Time delay, in units of 20ms, before the display

js initiated. Not required if CS.WDLINES = 0; -1

CS.WRFLAG

[an] w = O

CS.WVFLAG

OPD/SPEC/1
3/3
CS-40

default delay.

keyboard input is not required

read normal keyboard channel

READ MENU KEY, then normal keyboard
channel

READ REVIEW KEY

- no key validation is required; any key value
triggers an exit to the calling
application.

#0 - bits 0 to 9 are significant, bits 10 to 15

must be 0. Key validation is performed, the
only valid keys being unshifted numeric
digits, such that digit N is valid if bit N
of this word is 1.

CS.WEFLAG 0 - control remains in CS WMAIN until the exit to

the caller is caused by either a valid key
depression or by a terminating event.

1 - an exit is made to the caller as soon as the

2.3.5.1.3 Return
DO.L 0

ERR.UV

Other -ve

D1.B

cC
CS.WKBCHIDE

I

display is complete, with DO = O, unless a
valid key depression or a terminating event
occurs before the display has been completed.
When an exit is made for this reason, a
keyboard read is still active and the
associated event (14) may subsequently occur
in the calling application.

nformation

Return due to display complete - no valid key
has been read (or key read was not required).

Return due to a valid key depression (the
display may be incomplete if CS.WEFLAG=0) -
see D1.B.

A terminating event has occurred (see
CS.WEVENTS).

Kernel/Application Handler/Text Expander
error response.

When DO.L = 1, hexadecimal value of the key

read if no validation, or binary value of
validated integer.

Reflects the state of DO.

When a normal keyboard channel has been
opened by Waiter, its channel identifier

0PD/SPEC/1
3/3
£S-41

is present in this parameter i.e. the channel
is still open and may be used by the caller.

CS.WEVENTS - A (bit significant) register of events which
have been detected during execution of
CS_WMAIN. This is significant only of DO =
ERR.UV. The event used by Waiter for screen,
keyboard I/0 are not reported in this field.
See also under CS.WEVENTS in section
2.3.4.1.2.

2.3.5.1.4 Function

The function of entry to the main Waiter subsystem at entry point
CS WMNO is to:

- optionally display one or more lines to the screen
{CS.WDLINES)

- optionally read a keyboard depression (CS.WRFLAG)

The Tines displayed are built up by the Text Expander from a Main
text library, possibly referencing text strings in a Common text
library and possibly using a text variant. Alternatively, a user
routine (specified by CS.WCDR) may be called from within Waiter
to build and display each line.

Display may be subject to an initial delay (see CS.WDELAY).

When a key is to be read, it can be validated if only a numeric
digit is expected (CS.WVFLAG) - failure causes an invalid key
beep to be passed to the internal speaker followed by another
attempt to read a key.

When all Tines have been displayed before a key has been read, an
immediate exit may be made (CS.WEFLAG).

Waiter Tooks for all events for which the activity has requested
notification including user events.

2.3.5.1.5 Registers Destroyed
A1l registers except DO are preserved on exit.

2.3.5.1.6 MWaiter Parameter Block

_This must be in a segment that is frozen or immobile on

entry to the subroutine. It is not thawed by the
subroutine,

OPD/SPEC/1
3/3
CS-42

2.3.5.2 Interface - Routine CS_WMNI
2.3.5.2.1 Call and Registers

Trap name: T.CMNSUBS
Action Value (DO0.B): CS.WAITER
Action Value Variant (D1.B): CS.WMN]

2.3.5.2.2 Additional Call Parameters

The parameter block values set on the previous exit should remain
unchanged, with the following possible exception:-

CS.WEVENTS See sections 2.3.2.3, 2.3.6.1 and CS.WEVENTS
in section 2.3.4.1.2.

If it is desired to change the mode of operation of CS_WMAIN on
re-entry, then the parameter block should be set accordingly, and
a fresh entry made with action value variant CS.WMNO.

2.3.5.2.3 Return Information

As for action value variant CS.WMNO (see section
2.3.5.1.3).

2.3.5.2.4 Function

The function of the Main routine at this re-entry point is the
same as that at the action value variant CS.WMNO entry point,

except that the routine continues where it left off after the

previous exit.

2.3.5.2.5 Registers Destroyed

A1l registers except DO are preserved on exit.

2.3.5.2.6 MWaiter Parameter Block

This must be in a segment that is frozen or immobile on entry to
the subroutine. It is not thawed by the subroutine.

OPD/SPEC/1

3/3
€s-43

2.3.5.3 Interface - Routine CS WINIT
2.3.5.3.1 Call and Registers

Trap Name: T.CMNSUBS

Action Value (DO.B): CS.WAITER
Action Variant Value (D1.B): CS.WINIT

A3: Address of standard Waiter Parameter Block

D2.W: The value required in D1.W by the REQUEST FOREGROUND
procedure for the desired effects.

D3.B: 0 - foreground required

1 - foreground already allocated e.g. due to REVIEW or
SHIFT/SPECIAL key.

2.3.5.3.2 Additional Call Parameters

CS.WSMODE Screen channel display mode, encoded as for SET
CHANNEL DISPLAY MODES - see Kernel PSD,
76.97.3.1.

2.3.5.3.3 Return Information

DO.L 0 - Successful call.
-1 - Application Handler/Kernel error response.
cC - Reflects the state of DO.L.
CS.WSCCHIDE - Identifier for screen channel.
CS.WEVENTS - The saved events parameter is zeroised.

2.3.5.3.4 Function

The subroutine provides the initial processing for the Waiter
subsystem,

The Waiter parameter CS.WEVENTS is zeroised.
The routine adds to the event request register the events for

Waiter Keyboard I/0 - 14
Waiter Screen I/0 - 15

It calls the Application Handler procedure REQUEST FOREGROUND if
foreground is not already allocated, but does not wait for the

foreground allocated event - the Waiter subsystem waits when
entered with action variants CS.WMNO or CS.WMNI.

Finally, a screen channel is opened if the routine has just

OPD/SPEC/1 K_)
3/3
CS-44

requested the foreground. See:also section 2.3.5.3.8 below.
2.3.5.3.5 Registers Destroyed

A1l registers except DO are preserved on exit.

2.3.5.3.6 MWaiter Parameter Block

This must be in a segment that is frozen or immobile on entry to
the subroutine. It is not thawed by the subroutine.

2.3.5.3.7 Using Another Screen Channel

If a caller of the Waiter subsystem wishes to use an already \d)
-available screen channel (for example the one already provided
by Application Handler for Review mode applications) then there
is still a need for CS WINIT to be called. If the routine is not
called, the Waiter keyboard event (currently 14) must be added to
the act1v1ty event request register if any keyboard input will be
requested, and the channel identifier must be written to
CS.WSCCHIDE; the Waiter screen event (currently 15) must be added
to the act1v1ty event request register if Waiter display
facilities will be used; the saved events register CS. wEVENTS

and the internal flag CS WFFLAG should be set to zero.

0PD/SPEC/1

3/3
CS-45

2.3.5.4 [Interface - Routine CS_WDISP

2.3.5.4.1 Call and Registers

Trap name: T.CMNSUBS

Action Value (DO0.B): CS.WAITER

Action Variant Value (D1.B): CS.WDISP

A3: Address of standard Waiter Parameter Block

2.3.5.4.2 Additional Call Parameters

CS.WSCCHIDE Screen channel identifier - normally set by a
call of CS.WINIT.

CS.WDBAD Address of display buffer for Text Expander -
see section 2.3.4.2,

CS.WDBLEN Length of display buffer in bytes - see section
2.3.4.2.

CS.WMTLAD Address of Main text library

CS.WCTLAD Address of Common text library

CS.WDLNO Number of next display line in the text library
(numbered from zero).

CS.WTVAR Text variant number.

CS.WTLEFT When CS WDISP is called by the Waiter subsystem,

this internal field = no. of text entries left
to display (Waiter sets CS.WTLEFT = CS.WDLINES
on entry at CS_WMNO, or CS WMN1 after a suspend
foreground event). When CS_WDISP is called by
an application, the caller may use this field
similarly if making repeated calls of CS_WDISP,
or ignore it if only one call is being made.

2.3.5.4.3 Return Information
DO.L 0 - Successful return.
1 - Transfer cancelled.
-ve - Kernel or Text Expander error response.
cC - Reflects the state of DO.L.

CS.WDLNO - Incremented by 1 if 1line has been displayed
successfully.

CS.WEVENTS - Event bits are set for any non-screen 1/0
events which were notified by Kernel during

OPD/SPEC/1
3/3
CS-46

the display of the current Tine - other event
bits will be unchanged.

Note: DO is not set = ERR.UV when events are
reported since 'transfer cancelled' may be
relevant.

CS.WTLEFT - This parameter will have been decremented by
1, to indicate the no. of text entries left
to display.

~2.3.5.4.4 Function

The subroutine displays a text entry (normally one Tine) from the
Main text 1ibrary to the screen.

The Tine displayed is the 'next' line, which may be controlled by
the parameter CS.WDLNO. When it has been displayed successfully
the number in CS.WDLNO is incremented by 1 to provide a new
'next' Tine, and CS.WTLEFT is decremented by 1. The line is
presented to the Text Expander to expand with any necessary
substitutions. It is then displayed to the screen, starting at
the current cursor position (unless amended by embedded screen
control characters),

The routine always waits for its screen transfer to finish, even
if other events occur before this completion. The screen
transfer completion event will never, therefore, occur after exit
from the subroutine,

Cancellation of the screen transfer by Kernel is not treated as
an error. The return is a normal 'successful' one, though
CS.WDLNO is not incremented. The next entry to the subroutine
therefore attempts to display the same line again.

In the event of another device error being reported by Kernel on
the screen channel, then it is this device error code (as
obtained from GIVE CHANNEL STATUS) which is returned to the
caller.

This subroutine may, if required, be substituted (by setting
CS.WCDR) within the overall Waiter subsystem by a caller-
specified replacement. Such a replacement may do whatever is
required (e.g. it might not use the Text Expander to output a
pre-defined "menu") provided that it returns information as
described in section 2.3.5.4.3. The subroutine should check
frequently for events (all events not just its own) and when it
returns it must have cleared and recorded events that occurred,
in CS.WEVENTS.

2.3.5.4.5 Registers Destroyed

ATl registers except DO are preserved on exit.

J

OPD/SPEC/1

(;J 3/3
CS-47

2.3.5.4.6 Waiter Parameter Block

This must be in a segment that is frozen or immobile on entry to
the subroutine. It is not thawed by the subroutine.

0PD/SPEC/1

3/3
CS-48
2.3.5.5 Interface - Routine CS_WPUTSTR
2.3.5.5.1 Call and Registers
Trap Name T.CMNSUBS
Action Value (D0.B): CS.WAITER
Action Value Variant Value (D1.B) CS.WPUTSTR
A3: Address of standard Waiter Parameter Block
2.3.5.5.2 Additional Call Parameters
Al: Address of string to display, with text and screen

control characters.
D2.L: Length of string to display in bytes.
CS.WSCCHIDE: Screen channel identifier - must be non-zero.
2.3.5.5.3 Return Information
DO.L 0 - Successful call.
1 - Transfer cancelled.
-ve - Kernel error response.
cC - Reflects the state of DO.
CS.WEVENTS - Event bits are set for any non-screen I/0
events which were notified by Kernel during
the display of the current line - other event

bits will be unchanged.

Note: DO is not set = ERR.UV when events are reported, since
'transfer cancelled' may be relevant.

2.3.5.5.4 Function

The subroutine displays an already formatted text string, and
then waits for the screen I/0 event. Any other events that are
notified in the meantime are saved in CS.WEVENTS. When the
screen 1/0 event occurs, the channel status is obtained and
passed to the caller in DO, except ERR.TX which is treated as a
1successful' reply. The routine may be called again when a
transfer was cancelled. :

2.3.5.5.5 Registers Destroyed
A1l registers except DO are preserved on exit.
2.3.5.5.6 Waiter Parameter Block

This must be in a segment that is frozen or immobile on entry to

the subroutine.

It is not thawed by the subroutine.

OPD/SPEC/1
3/3
€S-49

OPD/SPEC/1

3/3 K“)

€S-50

2.3.5.6 Interface - Routine CS_WREAD

2.3.5.6.1 Call and Registers

Trap Name: T.CMNSUBS

Action Value (DO.B): CS.WAITER

Action Variant Value (D1.B): CS.WREAD

A3: Address of standard Waiter Parameter Block

2.3.5.6.2 Additional Call Parameters

CS.WKBCHIDE Currently selected normal keyboard channel
jdentifier, if required by CS.WRFLAG. This
keyboard channel will be opened by CS WREAD if \.)
CS.WKBCHIDE = 0.

CS.WRFLAG 1 - A1l reading is from the normal keyboard
channel
2 - Reading is from the stored "menu keys" until
exhaustion, then from the normal keyboard
channel
3 - A1l reading is from the "Review key channel"

CS.WVFLAG 0 - Any key value is acceptable and is passed
back to the caller
#0 - Key validation is required. See section
2.3.4.1.2
CS.WRMFLAG Not normally an input parameter. When repeated

calls are made, this parameter will have been set

by a previous entry if CS.WRFLAG = 2 and the ,
routine has switched from reading the menu key &_)
channel to the normal keyboard channel.

The flag is cleared by routine CS WSUSP; if the

latter is not used, then the calling application
should clear CS.WRMFLAG when processing the
'suspend foreground' event.

0

read a key as indicated by CS.WRFLAG

1 = key reading has switched from read menu key

to read normal keyboard
2.3.5.6.3 Return Information

DO.L 0 - Return with keyboard read initiated but stili
outstanding.

1 - Return due to a valid key depression - see

D1.B. v

o

(;; 3/3

€s-51

Other -ve - Kernel/Application Handler error response.

D1.B - When DO.L = 1: hexadecimal value of key read
if no validation, or binary value of
validated integer.

cC - Relects the state of DO.

CS.WKBCHIDE - When a normal keyboard channel has been

opened by CS.WREAD, its identifier is
returned in this parameter.

CS.WRMFLAG - See 2.3.5.6.2.
(;; 2.3.5.6.4 Function

The subroutine reads a key depression value, or else initiates
such a read and then exits.

If an exit is made with a return code of 0, 'no key available',
then an event may subsequently occur when the user makes a key
depression. The number of this event is given by CS.WENKB (and
is currently 14). When this event occurs, the subroutine may be
re-entered to read the key value; if re-entered before the event
has occurred the resulting error IU (channel in use) will be
passed back as NB (no byte available yet).

The Keyboard "channel" used by the subroutine is controllable by
the caller. If CS.WRFLAG = 3, then all reading is attempted
using the READ REVIEW KEY procedure and the normal keyboard
channel is not examined at all. If CS.WRFLAG = 1, then all
reading is from the normal keyboard channel. If CS.WRFLAG = 2,
. then the routine first reads to exhaustion any key depressions
(_) that were stored by Application Handler before the normal
keyboard channel was opened (i.e. using the READ MENU KEY
procedure) and then reads from the normal keyboard channel.
[This Tast should be the normal case for reading while the user
is initially selecting down a menu hierarchy, starting from the
Top Level Menu.]

Limited key validation is provided, if required. It is possible
to validate a key value as a digit in a specified set of digits.
If a key value is received which is outside this set then the
normal error tone is generated (TG.BADKEY) and the keyboard
channel is flushed (including the normal keyboard channel when an
invalid key is returned by READ MENU KEY). Internal flags are
set so that when the routine is called from within the Waiter
subsystem, the screen display is enabled and the user can
continue with a new key or key sequence (from the invalid point
in the sequence). A new read is then attempted. (This means
that the subroutine may sometimes exit with a return code of O,
- 'no key available', even if it was entered in response to the
(_) event notifying the availability of a key.)

0PD/SPEC/1

0PD/SPEC/1
3/3
CS-53

2.3.5.7 Interface - Routine CS_WSUSP
2.5.5.7.1 Call and Registers

Trap Name: T.CMNSUBS
Action Value (DO0.B) CS.WAITER
Action Variant Value (D1.B): CS.WSUSP

A3: Address of Standard Waiter Parameter Block
2.3.5.7.2 Additional Call Parameters

CS.WKBCHIDE Normal keyboard channel identifier. Zero
indicates the channel is not open

2.3.5.7.3 Return Information

DO.L 0 - OK reply.
-ve - Kernel/Application Handler error response.
cC - Reflects the state of DO.

CS.WKBCHIDE 0

Normal keyboard channel not open.

CS.WEVENTS

The foreground allocated event bit is
cleared.

2.3.5.7.4 Function

The subroutine is provided to handle the 'Suspend Foreground'
event

It calls the Application Handler procedure SUSPEND FOREGROUND.
It then closes the normal Keyboard channel if open (this ensures
that the 'key data available' event will not occur while the
application is suspended and flushes unprocessed key depressions
from the internal read buffer).

Internal flags CS.WFFLAG and CS.WRMFLAG are set back to zero.
2.3.5.7.5 Registers Destroyed

A1l registers except DO are preserved on exit.

2.3.5.7.6 Waiter Parameter Block

This must be in a segment that is frozen or immobile on entry to
the subroutine. It is not thawed by the subroutine.

OPD/SPEC/1
3/3
€S-54

2.3.5.8 Interface - Routine CS_WKOPEN

2.3.5.8.1 Call and Registers

Trap Name: T.CMNSUBS

Action Value (D0.B): CS.WAITER

Action Variant Value (D1.B): CS.WKOPEN

A3: Address of Standard Waiter Parameter Block

2.3.5.8.2 Additional Call Parameters

CS.WKBCHIDE 0 - Open and select a normal keyboard channel

#0 - Channel identifier for currently open and
selected normal keyboard

2.3.5.8.3 Return Information

DO.L non -ve - 0K reply.
-ve - Kernel error response.’
cC - Reflects state of DO.
CS.WKBCHIDE - Currently selected normal keyboard channel

identifier.
2.3.5.8.4 Function

The subroutine is provided for applications to make explicit
opens of a normal keyboard channel, when such a channel has not
been opened by Waiter, but is required for use outside Waiter
e.g. for passing to Field Editor.

Note, that Waiter only opens a normal keyboard channel if it
requires to read from such a channel, When the main Waiter
routine has been entered with CS.WRFLAG = 2, and has successfully
read a key using READ MENU KEY, a normal keyboard channel will
not have been opened.

The keyboard channel will be the currently selected channel,
whether it was open on entry or not.

The routine exits immediately with an OK reply if a normal
keyboard channel is already open (CS.WKBCHIDE non-zero).

2.3.5.8.5 Registers Destroyed

A1l registers except DO are preserved on exit.

C

(j?

OPD/SPEC/1
3/3
CS-55

2.3.5.8.6 MWaiter Parameter Block

This must be in a segment that is frozen or immobile on entry to
the subroutine. It is not thawed by the subroutine.

OPD/SPEC/1
3/3
€S-56

2.3.6 FURTHER INFORMATION
2.3.6.1 Foreground Events
a) The 'Foreground Allocated' Event

When the subsystem is called to write a display to the screen it
cannot start to do so until the 'Foreground Allocated' event has
been received, since the application does not actually own the
title to the screen until this time. This wait is regardless of
any initial delay, or lack of it.

The initial action of the subsystem is therefore simply to await
this event i.e. when entered with action value variant CS.WMNO.

Similarly if, say, re-entry is made with action value variant
CS.WMN1, no display will be started until the event has occurred.
If the event has been intercepted by the calling application,
then before entry the event bit should be set in CS.WEVENTS, to
prevent the subsystem from waiting for ever.

b) The 'Suspend Foreground' Event

When Waiter detects the 'suspend foreground' event the calling
application should carry out any essential closing down action,
followed by a call of CS WSUSP. The application may re-enter
Waiter at entry point CS.WMN1, to wait for the ‘foreground
allocated' event and continue where it left off. Note that this
re-entry will require the 'suspend foreground' event bit in
CS.WEVENTS to be set still, and will clear the bit after using
it.

When re-entry is not required, the calling application should
clear the 'suspend foreground' event bit in CS.WEVENTS before
making any new entry to Waiter at entry point CS.WMNO.

Similarly, if the calling application receives notification of
the 'suspend foreground' event itself, it should set/clear the
event bit in CS.WEVENTS depending on whether the next entry to
Waiter is at CS.WMN1/CS.WMNO respectively.

2.3.6.2 Kernel, Application Handler and Text Expander Errors

In general, these are passed straight back to the calling
application, since there is nothing that the subsystem can do
with them. (Since most of them "can never happen", the calling
application will presumably often abandon itself.) They are
passed back to the calling application as negative return codes
in DO, unaltered, so that the calling application can test them
using the normal Kernel, Text Expander and Application Handler
error values. One such value, ERR.UV, is not in fact an error,
but signifies that an event has occurred that is not one of the
two used by the local subsystem for I/0 control.

0PD/SPEC/1
3/3
CS-57

Three Application Handler/Kernel error and device warnings are
not passed back since they can happen legitimately - ERR.BO,
ERR.NB and data lost. . . .

When an invalid key is pressed or when buffer overflow occurs due
to a user pressing too many keys, a 'bad key' sound is generated;
a further key may then be pressed.

2.3.6.3 Screen Modes

The Waiter subsystem is transparent to the channel display modes
in use. When the screen channel is opened, the screen mode
specified in the Parameter Block is established. The subsystem
does not thereafter set, change, adjust or enquire after the
channel display modes. (Kernel preserves the channel display
modes in the channel control area, which persists across
temporary losses of the foreground. Application Handler provides
a way to set the initial hardware mode when the application first
requests foreground and then preserves the hardware mode when
foreground is lost, reinstating it when foreground is regained.)

2.3.6.4 Windows

The Waiter subsystem takes no account of windows. The initial
window size/placement is determined by Kernel when the channel is
opened. The calling application may change the window ;
definition, as desired. Neither does the subsystem set or
interfere with the boundary condition settings for the window.
A1l window manipulation is a matter between the calling
application and Kernel.

2.3.6.5 Use of Local Events by Subsystem

Two local events are used by the subsystem for the control of
I/0. These are currently defined in INCLUDE file CSWDEFS.DG as
14 (keyboard) and 15 (screen) and may be referenced by CS.WENKB,
CS.WENSC (for event numbers) and CS.WEVKB, CS.WEVSC (for the
event bits).

It is guaranteed that the screen event will never occur in the
calling application after a return from the Waiter subsystem as a
result of any operation undertaken by the subsystem. It may be
used for a different purpose in the calling application (but
should never be allowed to occur in the subsystem as a result of
an unconnected operation in the calling application).
Specifically, this is guaranteed after an "unexpected event" exit
to the calling application.

A similar guarantee is given on the keyboard event when an exit
is made from the main Waiter routine except when READ REVIEW KEY
has an outstanding read (CS.WRFLAG=3) or CS.WEFLAG=1 on entry and
the display is complete without a key having been read. A
keyboard event may occur after exit from the routine CS WREAD,
when called directly by an application.

OPD/SPEC/1
3/3
CS-58

2.3.6.6 Relationship with Field Editor

Waiter is intended for the display of essentially fixed
information, often from ROM, with the ability for the user to
input control information to the application, e.g. a menu
selection key. Field Editor is intended for the display of a
variable data field with the ability for the user to alter the
data which has been displayed. An application may well wish to
display a screen using the Waiter with its embedded Text Expander
calls, and then process windows within the screen by use of Field
Editor.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57

