| Application View of Save and Load
(Dump and Restore)

R OPD/SPEC/D1

The information in this document is proprietary to ICL, and is
supplied to you in confidence on the understanding that you will
not disclose it to third parties or reproduce it, and that you
(;) will use it solely for the purpose of developing applications

software for use with the ICL product or products described in
this document.

0.1

OPD/SPEC/D1
2/7
SL-2

Contents

Introduction

Terminology

Description

Scope of Dump

Scope of Restore

Inter-cell References

Release of Segments during Dumping/Restoration
Action Sequences

Procedural Interfaces to Data Archive Facility
New Application Handler Procedural Interfaces
Event Usage

Application Handler Interlocks

WONOGTHWN =

—
N = O

Changes in this issue

The section on CMOS RAM Protection has been removed.

OPD/SPEC/D1

o 2/7

SL-3

1 Introduction

This paper presents a view of the Data Record Facility (Dump
& Restore) from the point of view of the application
programmer and the implementor of the Facility.

The user viewpoint is described in PSD 76.97.2.1, 'OPD Base
Functional Software User Interface'.

2 Terminology

This section defines the terminology to be used in
user-visible interfaces and documentation.

(;) The name of the subsystem of the Base Functional Software
which supports the facilities described is the Data Record
Facility.

The action of writing a security copy of the store contents
to a microdrive cartridge is called Saving.

The action of reading from a security copy on a microdrive
cartridge into store, establishing new store contents is
called Loading.

The use of the words save and (particulariy) load is not
unique within the OPD system and documentation to their
specific meanings within the context of the data record
facility.

The words dump and restore are used freely in this paper in
place of save and load. This is for reasons of preference,
(;) history and that they are widely used in the industry.

3 Description

Dump & Restore is a security feature which is provided for
the benefit of the user. It provides the means to make a
copy on a microdrive cartridge of all permanent databases
held in the store of the OPD at the time and the means to
reinstate such saved databases from a microdrive cartridge to
the OPD store.)

What may be referred to in this paper as a 'permanent
database' or just a ‘database' is called a permanent segment
in the Application Handler specification.

Alternatively, it provides the means to make a copy-on a
microdrive cartridge of the entire contents of the CMOS RAM
and the means to reinstate those contents in the CMOS RAM
from a microdrive cartridge.

(_) Three types of dump are allowed. The full save dumps all
permanent segments in the store. The selective save (which

OPD/SPEC/D1
277

SL-4

is available only as a procedural interface) allows the
calling application to nominate which segments are to be
dumped. It also performs a dual dump, the dump file is
written twice to the same cartridge, to provide extra
security. The CMOS RAM save dumps only the CMOS RAM
entries.

A dump may be caused, or triggered, in one of three ways.
The user may directly ask for one, using the Housekeeping
application, or any application may ask for one at any time.
It is also possible for the user to request that a dump takes
place at a specified time every day. In at least two of
these cases, the dump initiation comes as a surprise to
applications which are running at the time. This has a
considerable bearing on system design requirements. It is
clearly not possible to take a secure dump of a database
which is being changed at the same time by an application.
It is equally dangerous for an application to continue
processing on a database which is in the process of being
destroyed and replaced by a different copy of the database,
during a restore operation.

The guiding principles are therefore that during a dump
operation all applications must cease updating permanent
databases and that during a restore operation all
applications must cease using permanent databases in the
sense that when they are again allowed to proceed, a given
database may have changed its address and size. The number
of cells it contains and all cell tags of these cells may
have changed. Only the segment name will be unchanged.

4 Scope of Dump

The dump feature makes a copy on a microdrive cartridge of
what are called permanent databases in this paper. In user
terms they are just that - collections of connected data
which remain in the store permanently, even though the
application(s) which process(es) the data may come and go.
They are a variant of the familiar disc database which have
the advantages of being always available (you can't Tose the
disc, or find both drives in use) and of offering instant
access (which cannot be said for microdrive files on OPD).
In implementation terms they are permanent segments, as
described in PSD 76.97.3.2 (Application Handler PSD).

The contents of all permanent segments in store at the time
of a full dump are dumped. The scope of a selective dump is
determined by the calling application program.

The entire contents of the CMOS RAM are dumped if a permanent
store save is requested.

The segment limits in force at the time of a dump are
remembered and are reinstated as part of the restore process.

OPD/SPEC/D1
2/7

@

St-5

The dumped data on a microdrive cartridge is held in what is
called a dump file (which is an ordinary microdrive file,
though it is not intended to be reprocessed by anything other
than the restore feature).

5 Scope of Restore

The full restore feature is almost non-selective. It
attempts to restore all permanent databases found in the dump
file into store. If a database in the dump file does not
exist in store already then it is simply recreated. If it
does already exist (i.e. 1if there is an existing database
) with the same name) then the existing database in store is
(_) destroyed and the database from the dump file recreated in
its place. (It is expected, however, that full restoration
will usually take place into an empty machine.)

The selective restore feature attempts to restore only those
databases nominated by the calling application. Again, in
the event of a clash, the one from the save file is the one
which persists, See also section 9.1.7.

The CMOS RAM restore feature works on a similar merging
principle.

6 Inter-cell References

611 The cell allocator memory management scheme on OPD raises
problems if one wishes to export a database in some sense and
re-import it later.

. The unit of store allocation is the cell. These float freely
(_J round their containing segment. The segment itself may also
float freely round the store. The only means of referring in
one cell to another cell (in the same or a different

segment) is to use a cell tag. This is a special form of
address which may be converted at any time into the
equivalent real address, but this real address remains valid
for only a limited time. To build any kind of data structure
therefore - even a simple list - cell tags must be stored in
the cells, pointing to other cells.

6.2 Unfortunately, cell tags themselves have a finite life. They
are valid only until the segment containing the cell is
destroyed (perhaps by switching the machine off). After
this, the cell tags become invalid or may be reused to point
to quite different cells. It is not adequate to dump cell
tags as the only structure information, since restoration is
impossible.

. 6.3 A scheme is therefore introduced to permit such structure
(;j information to be remembered in a form which can be processed
by the dump and restore features in such a way as to recreate

6.4

6.6

OPD/SPEC/D1
2/7
SL-6

the structures validly after restoration.

The scheme allows dump-proof inter-cell references to be made
from within a cell in a cell allocator segment to a cell in a
cell allocator segment. Normal segments, if they are
permanent, may be dumped and restored but no assistance is

of fered with structuring information. Neither is assistance
offered for pointers from a cell in a cell allocator segment
to normal segments.

Note that real store addresses, segment numbers, segment
identifiers, cell offsets down their segments and cell tags
stored without this assistance all provide means of storing
structure information in a database which will fail if the
database is dumped and restored. They must not be used. Only
registered cell tags (see below) may be used. A registered
cell tag may point to a cell in the same database or a
different database.

It is also invalid to leave in a permanent segment cell tags
which point to cells in transient segments.

The requirement on applications (apart from only using cell
tags for pointers) is to call the procedure REGISTER CROSS
REFERENCE (see below) whenever a cell tag is stored and to
call the procedure DEREGISTER CROSS REFERENCE (see below)
whenever a stored cell tag is destroyed, probably because the
enclosing cell is being destroyed.

Two further, alternative, procedures are also provided -
REGISTER SPECIAL CROSS REFERENCE and DEREGISTER SPECIAL CROSS
REFERENCE. There is also a procedure DEREGISTER ALL CROSS
REFERENCES IN SEGMENT, :

The cell tag may be used normally, no loss of speed is
involved. The normal Kernel procedure, GET CELL ADDRESS, is
used.

The information passed on REGISTER CROSS REFERENCE is in a
data structure of its own, called the Cross Reference Table.
Each registered cross reference occupies 10 bytes in the CRT.
The information in the CRT is used only during dump and
restore operations.

Release of Databases during Dumping/Restoration

There is clearly a need for applications to desist from
processing databases while a dump or a restore is in
progress. There are two distinct situations.

If a dump is in progress, no application may alter a
permanent database, either in direct content or in the number
or size of cells in a cell allocator segment. Applications
may, however, continue to read from permanent databases and

O

OPD/SPEC/D1

277
SL-7

to use inter-cell references (cell tags), since these remain
valid. A complete cessation of application activity is not
therefore necessary, applications must only refrain from
altering permanent databases until the dump is over.

If a restore is in progress, no application may even read
from a permanent database. A1l databases must be released
and reacquired by name when the restore is over. (This is
because the restore might substitute, for a database, an
entirely different database with the same name - e.g. a
different telephone directory.)

In order to police this situation, each database (permanent
segment) now has two counts of the use being made of it. One
js the (already existing) usage count. Each application
reading from the database must first increment this count and
when it has finished accessing the database must decrement
the count. The count has become a count of the number of
readers of the database. But, incrementing the usage count
no-longer confers the right to alter the database (or the
number or size of cells in it). This is the function of the
second count, the writers count. An application writing to a
database must first increment the writers count, and be
prepared for a refusal. When it has finished writing to the
database it must decrement the writers count for the
database.

The readers count and writers count are manipulated using
Application Hander facilities.

An application should expect sometimes to receive the error
response, ERR.SL, from REQUEST WRITE ACCESS TO SEGMENT even
though it has not received a preceding 'Cause Save' event.
This will happen if the application is started after the
event has been issued but before the dump has been completed.

An application should also expect sometimes to receive the
error response, ERR.SL, from CHANGE SEGMENT PROPERTIES, GET
SEGMENT IDENTIFIER or USE SEGMENT, even though it has not
received a preceding ‘Cause Load' event. This will happen if
the application is started after the event has been issued
but before the restore has been completed.

The onset of a dump or a restore is a 2 stage process. The
first stage starts when the event (see section 11) is issued
and lasts until all writers counts are zero (or the package
elects to proceed anyway). This stage is signified in the
status byte as Save (or Load) Pending. During this stage
attempts to gain write access to segments are failed but
attempts to gain read access to segments are permitted. it
is also permitted to destroy a segment or change its
properties (e.g. from permanent to temporary or vice-versa).

The second stage is when the save or load is actually in

OPD/SPEC/D1
2/7
SL-8

progress. The controls applied are more stringent in this
case, all access requests, property change requests and
segment destruction request are refused in the case of a load
operation. In the case of a save operation, read access
requests, segment information requests and changes in the
reviewable property of an existing permanent segment are
permitted.

A full-scale disengagement is requested by dumper even for a
selective dump or restore, or for a CMOS RAM dump or restore.

It is not intended to be dogmatic about application response
to an incipient dump or restore. An application designer
could choose to react in the same way to both dump and
restore, or to treat a ‘'Cause Load' event in the same way as
an 'Abandon' event.

Permanent cell-allocator segments are always Squashed (see
Kernel spec.) before being dumped [though this cannot be
achieved if the segment remains locked at the time of the
dump, see section 8.11.

Action Sequences

Dumping Sequence

When a dump initiation request is accepted by INITIATE DATA
SAVE, it issues a global event, 'Cause save'. This asks all
applications to relinquish write access to the permanent
segments (The position is similar if the event is issued by
Housekeeping, for a manually-initiated dump, or by dumper
itself, for a timed dump.)

Dumper then waits until all permanent segments and the

CMOS RAM have writers counts of zero. There is a time 1imit
on this waiting process of about 7 minutes, after which (if
one or more segments are still not available) the dump
attempt proceeds anyway. This should only occur if there is
a rogue application in the OPD which does not release its
write access to segments on request.

The status of a segment which was dumped even though its
writers count was not zero is difficult to ascertain. Much
depends on the reason for the failure of the application to
release write access. The dump is taken anyway, even though
this particular segment may be dumped corruptly, as it seems
overall to be the best of an unappealing set of
possibilities.

When the waiting process has finished dumper obtains a

suitable cartridge for writing the new dump file on (see PSD
76.97.2.1). It then, if necessary, erases the old dump.

OPD/SPEC/D1

o 2/7

SL-9

When the segments are available, the dump is made. When the
dump file has been written and closed a Save/Load Finished
event is caused, the last operation status is set to 'OK' and
a message is sent to the user.

The dump is now over and applications are free to
(re-)request write access to the permanent segments.

8.2 Restoring Sequence

When a restore initiation request is accepted by INITIATE
DATA LOAD it issues a global event, 'Cause load'. This asks
all applications to relinquish all access to permanent

. segments. (Again, the position is similar if the event is
(;) issued by Housekeeping or by dumper itself).

Dumper then waits until all permanent segments and the
CMOS RAM have usage counts of zero (and, by implication,
writers counts of zero). The waiting process is
time-limited, as with dumping.

The remainder of the process is similar to that for dumping,
except that when it is over applications should (re-)request
read access, and perhaps write access, as required.

8.3 Corrupt Inter-cell References

There is no rigid control over the contents of the Cross
Reference Table. It is possible for a wrong cross reference
to be put into the table or for an initially-valid cross
reference to become invalid as a result of subsequent
application actions. It is also possible for the cell tag
- which should be present at the point of a registered cross
(;) reference to be invalid.

Broadly speaking, cbrrupt references of this kind are ignored
by the dump/restore process. A registered cross reference
which is found to be invalid is simply not restored.

A stored cell tag which is invalid at the time of the dump is
restored as a zero cell tag.

It is permissible and may be useful, for stored cell tags to
be invalid at the time of registration of the cross
references or subsequently, providing that either they are
valid by the time a dump is taken or that the relevant
applications are prepared to cater for such tags being
returned as zeros after a restore.

In particular, applicaitons may use zero cell tags in
registered cross references to indicate (to themselves) that
no pointer is in fact present at this position, subject to
(;> the previous paragraph.

0PD/SPEC/D1

2/7 U

SL-10

8.4 Cross References in Transient Segments

This is nothing to prevent cross references being registered
in transient segments. There is, however, no point in doing
this unless the transient segments are going to be turned
into permanent segments before the next dump.

Cross references registered in transient segments do not
survive the dump/restore process.

9 Procedural Interfaces to Data Record Facility

9.1 Eight procedures are available for use by applications.

There is an additional "procedure" which is used to set up

the dump & restore package at the start of the day. This is Q,)
described elsewhere.

9.1.1 REGISTER CROSS REFERENCE

Trap Name: T.DATARCH
Action Value (DO.B): DA.RXREF

Additional Call Parameters:

D1.W : cell tag
D2.W : displacement

Error Returns:

BP : bad parameter

OM out of memory (Cross Reference Table is full and
cannot be extended) |
SL : save or load in progress §—>
This call notifies the Data Record Facility that there is an -

inter-cell reference which is located at (displacement) bytes
down the cell referred to by the cell tag passed as a
parameter. The inter-cell reference itself is not passed as
a parameter to this procedure.

The location of the inter-cell reference is stored in the
Cross Reference Table.

If error response ERR.OM is received, neither the segment nor
the inter-cell reference are corrupt, though the segment can
no longer be dumped and restored correctly unless the

stored cell tag is removed.

9.1,2 DEREGISTER CROSS REFERENCE !

Trap Name: T.DATARCH
Action Value (DO.B): DA.XXREF k,)

L]

OPD/SPEC/D1

(;) 2/7

SL-11

Additional Call Parameters:

DI.W : «cell tag
D2.W : displacement

Error Returns:

BP : bad parameter
SL : save or load in progress

This call notifies the Data Record Facility that the
inter-cell reference which is located at (displacement) bytes
down the cell referred to by the cell tag passed as a
parameter is no longer required.

(./ The location of the inter-cell reference is deleted from the
Cross Reference Table. The inter-cell reference itself (a
cell tag) is not altered by this procedure, though it could
no longer be used validly following a dump and a restore of
the segment holding it.

9.1,3 DEREGISTER ALL CROSS REFERENCES IN SEGMENT

Trap Name: T.DATARCH
Action Value (DO.B) : DA.XAXREF

Additional Call Parameters :
D1.L : segment identifier

Return Parameters :

(;) None

Error Returns :
SL : save or load in progress

This call notifies the Data Record Facility that all the
inter-cell references which have been registered as being in
the segment whose identifier is passed as a parameter are to
be deregistered i.e. are no longer required.

‘The Tocations of all inter-cell references within the segment
are deleted from the Cross Reference Table. The inter-cell
references themselves are not altered by this procedure,
though they could no longer be used validly following a dump
and restore of the segment.

This call is intended to be used prior to total deletion of

. segment. It may be used without harm if the segment is not

(“) a cell allocator segment or if it contains no registered
inter-cell references, though this achieves nothing useful.

OPD/SPEC/D1
2/7
SL-12

9.1.4 REGISTER SPECIAL CROSS REFERENCE

9.1

Trap Name: T.DATARCH
Action Value (D0.B): DA.RSXREF

Action Call Parameters:
D1.W : cell tag
Return Parameters:
None
Error Returns :

BP : bad parameter

OM : out of memory (Cross Reference Table is full
and cannot be extended)

SL : save or load in progress

This call notifies the Data Record Facility that there is a
Special Cross Reference Pair at the start of the cell whose
tag is passed as a parameter. The inter-cell references
themselves are not passed as parameters to this procedure.

The location of the Special Cross Reference Pair is stored in
the Cross Reference Table.

A Special Cross Reference Pair comprises two inter-cell
references which obey the following implicit rules,

a) the cell tags comprising the references are stored in
bytes 0 & 1 and bytes 2 & 3, respectively, of the cell
whose tag is passed as a parameter.

b) Both inter-cell references are to cells in the same
segment as the segment containing inter-cell
references.

This special case is provided primarily to reduce the
overhead incurred in the Cross Reference Table by the
Telephone Directory.

DEREGISTER SPECIAL CROSS REFERENCE

Trap Name: T.DATARCH
Action Value (D0.B): DA.XSXREF

Additional Call Parameters:

D1.W : cell tag

OPD/SPEC/D1

o 2/7

SL-13

Return Parameters:

None

Error Returns:
BP : bad parameter
SL : save or load in progress

This call notifies the Data Record Facility that the Special
Cross Reference Pair at the start of the cell whose tag is
passed as a parameter is to be deregistered, i.e. 1is no
longer required.

The location of the Special Cross Reference Pair is deleted
from the Cross Reference Table. The inter-cell references
themselves (two cell tags) are not altered by this procedure,
though they could no longer be used validly following a dump
and a restore of the segment holding them.

9.1.6 INITIATE DATA SAVE

Trap Name: T.DATARCH
Action Value (DO.B): DA.SAVE

Additional Call Parameters:

D1.W : #DA.FULL for a full store save
or #DA.DSELECT for a dual selective store save
or #DA.SSELECT for a single selective store save
(;) or #DA.NVM for a CMOS RAM save

Dz2.L : If, and only if, D1.W = #DA.DSELECT or
#DA.SSELECT each byte in D2 should contain a
segment number of a segment to be saved.

Unused byte positions in D2 should be zero.
The segment number may be extracted as bits 0-7
of the segment identifier.

D3.L : Needed if, and only if D1.W = #DA.DSELECT or
DA.SSELECT,

Bits 0-15 : NVM identifier. If non zero, is
taken as a CMOS RAM identifer. A
CMOS RAM entry will be created or
updated and the name of volume
holding the dump file written
during the dump will be stored in
the entry.

(;) Bits 16-23 : File letter. This parameter must
be an upper case letter. It is

0PD/SPEC/D1

2/7 k.)

SL-14

used as the second Tetter of the
dump file name. It must be
supplied if D1.W = #DA.DSELECT or
#DA.SSELECT

Return Parameters:

D1.W : Data Record Facility Status Register

bit 0 = 1 - a save operation is pending
= 0 - otherwise

bit 1 =1 - a load operation is pending
= 0 - otherwise

bit 2 = 1 - a save operation is in progress
= 0 - otherwise

bit 3 =1 - a load operation is in progress &_)
= (0 - otherwise

bit 4 =1 - the last operation was a save
= 0 - otherwise

bit 5 =1 - the last operation was a load
= 0 - otherwise

bit 6 =1 - the last operation failed
= 0 - the last operation ended 0K

Error Returns:
SL initiation request rejected as an operation is

already in progress.

If a save or a load operation is already in progress then the
request is rejected. The current status is available in

D1.W. (This should be regarded as an abnormal condition {
since all applications present at the time when the current 1
operation was started should presumably be moribund in this) , .
respect until it has ended). &‘)

If the request is accepted a Cause Save event is issued to
all applications and a return is made to the caller
immediately with the requested operation shown as pending in
the Status Register.

The requested operation starts when all the segments and a
cartridge are available and then proceeds autonomously.
Termination, successful or not, is signalled by a Save/Load
Finished event. It is not specifically reported to the
activity which initiated the operation. Any application may
then enquire the result by calling GIVE DATA STATUS.

9.1.7 INITIATE DATA LOAD

Trap Name: T.DATARCH
Action Value (DO.B): DA.LOAD

OPD/SPEC/D1

o 2/7

SL-15

Additional Call Parameters:

DL.W : #DA.FULL for a full store load
or #DA.DSELECT for a dual selective store load
or #DA.SSELECT for a single selective store load
or #DA.NVM for a CMOS RAM Toad

D2.L : Should be set to -1 if D1.W = #DA.DSELECT or
#DA.SSELECT.

Not needed if D1.W = #DA.FULL or #DA.NVM and is
jgnored in these cases.

D3.L : Needed if, and only if, D1.W = #DA.DSELECT

Bits 8-15 : Substitute segment name letter.
If and only if D1.W=#DA.DSELECT or
#DA.SSELECT this byte is
.substituted for the third letter
of every segment name contained in
the dump file. The effect is that
all the segments are restored into
permanent segments whose names
differ in the respect from their
original names and that copies of
the databases with original names -
are not deleted from the store by
‘the restore process.

For example, if bits-8-15 = $48, a
segment in the dump file with a
name of ABCDE is restored as a

- permanent segment with a name of
(./ ABHDE, and any existing segment in
the store with a name of ABCDE
remains there.

If no substitution is reqUired,
set bits 8-15 =0.

Bits 16-23 : File letter. This is used as the
second letter of the dump file
name. It must be supplied if

D1.W = #DA.DSELECT or
. #DA.SSELECT.

Bits 0-7 and 24-31 : must be O
Return Parameters :

D1.W : Data Archive Facility Status Register

= bit 0 = 1 - a save operation is pending
(.) = 0 - otherwise
= 1 - a load operation is pending

bit 1

I————'——‘—Y
OPD/SPEC/D1
2/7 &.)
SL-16
= 0 - otherwise
bit 2 = 1 - a save operation is in progress
= 0 - otherwise
bit 3 =1 - a Toad operation is in progress
= 0 - otherwise
bit 4 = 1 - the last operation was a save
= 0 - otherwise
bit 5 =1 - the last operation was a load
= 0 - otherwise
bit 6 = 1 - the last operation failed
= 0 - the last operation ended OK
Error Returns:
St jnitiation request rejected as an operation is &“)

already in progress.

If a save or a load operation is already in progress then the
request is rejected. The current status is available in
D1.W. (This should be regarded as an abnormal condition
since all applications present at the time when the current
operation was started should presumably be moribund in this
respect until it has ended).

If the request is accepted a Cause Load event is issued to
all applications and a return is made to the caller
immediately with the requested operation shown as current in
the Status Register.

The requested operation starts when all the segments and a

cartridge are available and then proceeds autonomously.

Termination, successful or not, is signalled by a Save/Load

Finished event. It is not specifically reported to the ,
activity which initiated the operation. Any application may &‘)
then enquire the result by calling GIVE DATA STATUS.

A single selective Toad allows the application to specify the
file name of the save file to be sought (within the usual
convention). If the load does not succeed then a failure
message is output and the operation is abandoned.

A dual selective Toad allows the application to specify the
file name of the save file to be sought. If the load of the
newest save file does not succeed then no failure message is
output. Instead an attempt is made to load from the second
newest save file on the cartridge containing the newest save
file (which is assumed to exist - the pair are assumed to
have been produced as a dual dump). If this load succeeds
then no comment is made to the user. If this load also fails
then the normal failure message appears to the user,

9.1.8 GIVE DATA STATUS
Trap Name: T. DATARCH

0PD/SPEC/D1
2/7

SL-17

Action Value (DO.B): DA.STATUS

Additional Call Parameters:
None

Return Parameters:

D1.W : Data Archive Facility Status Register

bit 0 = 1 - a save operation is pending
= 0 - otherwise

bit 1 = 1 - a load operation is pending
= 0 - otherwise

bit 2 = 1 - a save operation is in progress
= 0 - otherwise

bit 3 =1 - a load operation is in progress
= 0 - otherwise

bit 4 = 1 - the last operation was a save
= 0 - otherwise

bit 5 =1 - the last operation was a load
= 0 - otherwise

bit 6 = 1 - the last operation failed
= 0 - the last operation ended OK

Error Returns:
None

Use of Procedural Interfaces

Few applications should expect to need to use INITIATE DATA
SAVE. The only currently recognised examples are Messaging
(for its security feature) and Housekeeping (for a dump
initiated directly by the user).

Similarly, few app]ications should expect to need to use
INITIATE DATA LOAD. The only currently recognised example is
Housekeeping (for a restore initiated directly by the user).

Any application may use GIVE DATA STATUS, though it seems
probable that only Messaging and Housekeeping will do so in
the near future,

A11 applications which maintain or use permanent segments
should expect to use REGISTER CROSS REFERENCE and DEREGISTER
CROSS REFERENCE (and also to have to take notice of the 3
global events used for signalling).

The user facility to request an automatic load on power-up is
handled entirely by the Data Record Facility.

The user facility to request a dump at a particular time of
day is handled entirely by the Data Record Facility.

10

11

11.1

11.7

11.3

OPD/SPEC/D1
2/7
SL-18

New Application Handler Procedural Interfaces

These are [now] documented in PSD 76.97.3.2 (Application
Handler PSD).

Event Usage

Three global events are dedicated to communication between
dump/restore and other activities. All are classified as
Global/Internal.

Event 24 - name: Cause Save
This has two effects

a) asks the dump/restore package to initiate a save
attempt when the permanent segments become free.

and b) notifies all applications that they are to make free
all permanent segments they are using so that they
may be saved. The segments must remain free until
the dump/restore package has caused an event 26.

Event 25 - name: Cause Load
This has two effects

a) asks the dump/restore package to initiate a load
attempt when all permanent segments are no longer in
use.

and b) notifies all applications that they are to
discontinue use of all.permanent segments they are
using (since the load may introduce an entirely
different segment with the same name - i.e. a
different copy of the same segment). The segments
must not be used again until the dump/restore package
has caused an event 26.

Event 26 - name: Save/Load Finished

This notifies all activities that the save or load attempt
has now been completed and that the permanent segments are
again available for use by activities.

Any activity may enquire the status of the terminated
attempt by using the procedure supplied.

Applications should not cause any of these events
themselves, but should use the procedures supplied (which
will also attempt to ensure that only one is outstanding at
a time).

0PD/SPEC /D1
. 2/7

St-19

Applications using permanent segments must have set in their

Event Request Registers the bits corresponding to these three
events. .

12 Application Handler Interlocks

Application Handler applies certain checks to calls on its
procedures concerned with permanent segments. The purpose of
these checks is the prevention of mutual interference between
Data Record Facility and applications using permanaent
segments. The checks are outlined below.

12.1 A call on REQUEST READ ACCESS TO SEGMENT is rejected, ERR.SL,
(;) if a restore (load) is either in progress or is pending.

12.2 A call on REQUEST WRITE ACCESS TO SEGMENT is rejected,
ERR.SL, if a restore is either in progress or is pending or
if a dump (save) is in progress is pending.

12.3 Calls on RELEASE WRITE ACCESS TO SEGMENT and RELEASE ACCESS
TO SEGMENT are always permitted.

12.4 A call on GET SEGMENT IDENTIFIER (OF PERMANENT SEGMENT) is
rejected, ERR.SL, if a restore is in progress but is
permitted at other times, and in particular when a restore is
pending.

12.5 A call on DESTROY SEGMENT is rejected, ERR.SL, if a dump or a
restore is in progress but is permitted at other times, and
in particular when a dump or a restore is pending.

12.6 A call on CHANGE SEGMENT PROPERTIES is rejected, ERR.SL, if a
(;) dump or a restore is either pending or in progress.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

