Microsoft Corporation Tel 206 882 8080
One Microsoft Way Telex 160520
Redmond, WA 98052-6399 Fax 206 883 8101

March 11, 1991

Dear OS/2 Developer,

The enclosed package contains Version 1.0 of the OS/2 LAyered Device DRiver
(LADDR) Development Kit (LDK). LADDR provides an alternative approach to
developing OS/2 device support. This architecture isolates hardware-specific modules
and provides an easier method for developing device drivers for OS/2 than previously

available.

The development kit contains the current LADDR Specification and numerous examples
of sample driver code. Sample source for Type Specific Drivers (TSD) is provided
supporting Disk, Tape and CDROM. Sample source for Vendor specific drivers (VSD)
is provided for standard disk and CDROM data transfer, Denon CDROM Audio support,
TEAC and Wangtek Tape drives, as well as additional sample VSDs that support Fault
Tolerance and caching of FAT based storage devices. Bus Adapter Drivers (BID)
support includes binaries for Adaptec, Future Domain, NCR and Western Digital SCSI
adaptors and generic ESDI disk adaptors. Source code for the ESDI, Future Domain and
Western Digital BIDs is also included. Refer to the README file on LADDR
Development Kit Disk 1 for installation instructions and tips on using the LDK.

With the broad range of samples provided and the information in the specification, it is
now possible to easily develop device drivers supporting a broad spectrum of hardware
for OS/2. Microsoft Systems Software Support is ready to assist you with any problem
you have relating to installation or program development with this kit. Feel free to
contact them through Microsoft On-Line. If you would like more informaton about
Microsoft On-Line or to arrange for the purchase of an On-Line support package, please
contact Microsoft Product Support Services.

You may request Microsoft to consider your driver for inclusion in future products by
filling out and signing two copies of the enclosed Microsoft LADDR Device Driver
Distribution Agreement and sending it and your driver to Microsoft (Attn: OS/2 Program
Management) at the address above. Microsoft will consider your submission for
inclusion into future products but can not guarantee that all drivers submitted will be

incorporated.

We are confident that you will find the LADDR architecture and this kit a simpler way to
successfully develop device support for Microsoft OS/2.

Gary Ferguson
0S/2 LADDR Product Manager

Part Number 20784

Microsoft Corporation is an equal opportunity employer.

Addendum to Microsoft License Agreement
Insert the following after section 5:

6. Layered Device Driver (LADDR). Microsoft grants to you the royalty-free right to (a)
create derivative works based upon the Sample Code and to reproduce and license such
derivative works whether in source code, object or binary form, (b) to reproduce,
distribute and license the Binaries, and (c) sublicense those rights granted in (a) and (b) to
third parties PROVIDED that you: (i) distribute the derivative works and Binaries only in
conjunction with and as a part of your software product; (ii) do not use Microsoft's name,
logo, or trademarks to market your software product; (iii) include Microsoft's copyright
notice for LADDR on your product label and do not remove any copyright notices that
are embedded in the Sample Code or Binaries; and (iv) agree to indemnify, hold
harmless, and defend Microsoft from and against any claims or lawsuits, including
attorneys' fees, that arise or result from the use or distribution of your software product.
The "Sample Code" is limited to those files that have the following names or extensions:
makefile, *.c, *.h, *.asm, *.inc, *.Ink *.Irf and *.def. The "Binaries" are limited to those
files that have the following extensions: *.sys, *.sym, *.tsd, *.vsd and *.bid.

Pant Number 20784 - Page 2

R T T o T I —
This README file contains information to help you install and use the LADDR
Development Kit (LDK).

This file contains the following sections:

' 1. LDK contents

2. Installation procedure

3. Directory tree structure

4. NMAKE/MAKEFILE considerations
5. BASEDD special considerations
6. LADDR documentation

7. Device driver naming

8. Making a boot floppy

9. Testing your device driver

CAUTION: before you can use LADDR drivers on your PC, that PC must be running
release 1.21, or later, of 0S/2 and must contain a LADDR compatible

version of BASEDD. See section 5 for more information.

. 1. LDK Contents

This kit contains the following materials:

1. Four 5.25" 1.2MB source diskettes containing various source

files, device driver binaries, and tools.

Note that, except as stated in section 5 below, the source files
are intended only for use by the owner of the LDK in developing

LADDR compliant device drivers for 0S/2.

Also note that the tools are intended only for use by the owner
of the LDK for device driver development under release 1.21,; or
1.3 of 0S/2.

2. One 5.25" 1.2MB sample boot diskette for AT class PC’s for
release 1.21 of 0S/2, and one 3.5" 1.44MB sample boot disk for
ABIOS machines.

3. One 5.25" 1.2MB sample boot diskette for AT class PC’s for
release 1.3 of 0S/2, and one 3.5" 1.44MB sample boot disk for
ABIOS machines.

Note that these sample boot diskettes are intended for early

. device driver testing only and are not a complete 0S/2 system.
In particular, they do not include 0S/2 Presentation Manager and
have very few of the 0S/2 utility programs. However, they do
include the kernel debugger.

Also note that if you wish to boot the 3.5" diskettes on an IBM
PS/2, you must copy the ABIOS patch files ("*.BIO") from IBM 0s/2
diskettes. or a hard disk containina IBM 0S/2. onto the boot disk.

O ————————

4. A printed copy of the current LADDR specification.

2. Installation Procedure

The sample keyins shown below assume that the "B" drive is to be used to
read the LDK diskettes and that the LDK is to be installed on the "D"
fixed disk.

Installing the source

This procedure requires approximatley 5 megabytes of fixed disk

space.

1. Create an appropriately named subdirectory on a fixed disk and

make that subdirectory current.
Sample keyins:
ds
md \laddr
cd \laddr
2. Insert the first LDK source diskette into a drive and copy it to

the hard disk using XCOPY or some equivalent program that is

capable of copying entire tree structures.
Sample keyin:
xcopy b: /s /e
3. Repeat step two for all the remaining LDK source diskettes.

4. Change the PATH environment variable such that it includes the
LDK tools.

Sample keyin:
path=d:\laddr\laddrutl; $path%

CAUTION: Note that it is your reponsibility to determine if
there are any naming conflicts between files on the LDK
diskettes and other programs on your PC, and to resolve

any such conflicts.

Also note that the LDK tools are only intended to be
used in connection with the development of LADDR

compliant device drivers for 0S/2.

Making the include files

This kit contains global header files in C format and also the

corresponding include files in assembler format.
The include files are made from the header files.

The include files are made automatically if you assemble all of the
source code. However, if you do not assemble all the source code,
you can manually make them by switching to the appropriate sub-

directorv and invokina NMAKE or some similar proaram. Sample kevin:

cd \laddr\laddrh

nmake

Assembling/Compiling the source

You do not need to assemble any of the source code in this as the
binaries which are made from it are included in the ...\binaries\

debug and ...\binaries\retail subdirectories.

If you decide to assemble all the source code, go to the directory
created in step 1 of "Installing the source" and invoke NMAKE or

some similar program. Sample keyin:

cd \laddr

nmake

If you decide to assemble some, but not all, of the source, go to
the sub-directory that you want to assemble and invoke NMAKE or
some similar program. Note that NMAKE will invoke itself in lower

level sub-directories if necessary.

CAUTION: All of the sample source files in this kit were compiled using

the Microsoft C 6.0a compiler, assembled using the Microsoft
Macro Assembler v. 5.10 and linked using LINK 5.10 provided
with Microsoft C 6.0a and the small model, protect mode,
Microsoft C 6.0a runtime libraries and the DOSCALLS library
provided in the LDK. Using other versions of these tools could

result in compile, assembly or runtime errors.

3. Directory Tree Structure

The following chart illustrates the standard LDK directory structure.

LADDR
|
+-——~BID
| I
| +———— ADAPTEC
| I
[tm—mmm ESDI
I I
[e FD16-700
| |
| F=———- FD8xx
| I
| o FDINC
I |
| to———= NCR
| [
| e WD7000AX
| I
| F———= WD7000EX
I
+----BIN-1-21
I |
| t=——— DEBUG

+-——-BIN-1-3
| |
| e DEBUG
|
| e RETATL
|
. +----BINARIES.ORG
| |
| FRE DEBUG
| |
| — RETAIL
|
+-——-BINARIES
| |
| e DEBUG
| |
| e RETAIL
|
+-———CDROM
| |
| R FSD
| |
| e TSD
| |
| e VSD
|
+----DISK
| |
| o FT
| |
| e FATCACHE
| |
‘II' | $emm——— TSD
| |
| T VSD
|
+----LADDRDOC
|
+-——-LADDRH
|
+-=--LADDRINC
+--——LADDRLIB
|
+--——LADDRUTL
|
+-———PERFVIEW
|
+-———SAMPLES
| |
| et SCSIBIDA
| |
| e VSDA
|
+-———TAPE
|
r—— TSD
® |
sz TEAC
|
ety WANGTEK

The followina explains the content of the various subdirectories.

R R R RO

LADDR
- This is the highest level directory in the LDK tree. It normally
only contains the "master"™ MAKEFILE

LADDR\BID
. - This directory contains only a makefile which creates the standard
ESDI, WD7000AX, FD16-700 and FD8XX BIDs.

LADDR\BID\ADAPTEC
- This directory contains the Adaptec BIDs and a MAKEFILE to copy
the files to the appropriate BINARIES directory.

LADDR\BID\ESDI
- This directory contains the source code for the standard ESDI BlD;,
and a MAKEFILE to create its object, listing, and binary files. It

may also contain those object, listing, and binary files.

LADDR\BID\FD16-700
- This directory contains the source code for the Future Domain
FD16-700 BID, and a MAKEFILE to create its object, listing, and
binary files. It may also contain those object, listing, and

binary files.

LADDR\BID\FD8XX
- This directory contains the source code for the Future Domain
FD8XX BID, and a MAKEFILE to create its object, listing, and
binary files. It may also contain those object, listing, and

binary files.
LADDR\BID\FDINC

- This directory contains common header files for the Future Domain
‘ FD16-700 and FD8XX BIDS.
LADDR\BID\NCR
- This directory contains the NCR BIDs and a MAKEFILE to copy the
files to the appropriate BINARIES directory.

LADDR\BID\WD7000AX
- This directory contains the source code for the Western Digital
WD7000AX BID, and a MAKEFILE to create its object, listing, and
binary files. It may also contain those object, listing, and

binary files.

LADDR\BID\WD7000EX
- This directory contains the source code for the Western Digital
WD7000EX BID, and a MAKEFILE to create its object, listing, and
binary files. It may also contain those object, listing, and

binary files.

LADDR\BIN-1-21
- This directory contains a makefile which may be used to delete
files in preparation or re-making them, and two subdirectories:

DEBUG and RETAIL.

LADDR\BIN-1-21\DEBUG
- This directory contains binaries and the associated symbol files
‘ for the debug versions of 0S/2 v. 1.21 drivers, and a makefile

to delete all the files in preparation for re-making them.
These drivers may contain DPRINTF’s and INT 3’s.

LADDR\BIN-1-21\RETAIL
- This directory contains binaries and the associated symbol files

for the retail versions of 0S/2 v. 1.21 drivers. and a makefile

to delete all the files in preparation for re-making them.

LADDR\BIN-1-3
- This directory contains a makefile which may be used to delete
files in preparation or re-making them, and two subdirectories:
DEBUG and RETAIL.

LADDR\BIN-1-3\DEBUG
- This directory contains binaries and the associated symbol files
for the debug versions of 0S/2 v. 1.3 drivers, and a makefile

to delete all the files in preparation for re-making them.

These drivers may contain DPRINTF’s and INT 3’s.

LADDR\BIN-1-3\RETAIL
- This directory contains binaries and the associated symbol files
for the retail versions of 0S/2 v. 1.3 drivers, and a makefile

to delete all the files in preparation for re-making them.

LADDR\BINARIES.ORG
- This directory contains the subdirectories containing the original

binaries provided which were built from the LDK sample code.

LADDR\BINARIES\DEBUG
- This directory contains binaries and the associated symbol files

for the debug versions of selected LADDR drivers.

These drivers may contain DPRINTF’s and INT 3’s.

LADDR\BINARIES\RETAIL
- This directory contains binaries and the associated symbol files

for the retail versions of selected LADDR drivers.

LADDR\BINARIES
- This directory contains a makefile which may be used to delete
files in preparation or re-making them, and two subdirectories:

DEBUG and RETAIL.

LADDR\BINARIES\DEBUG
- This directory is the repositiory for the binaries and the

associated symbol files for the debug versions of selected LADDR

drivers when they are built using the makefiles provided in the kit.

LADDR\BINARIES\RETAIL
- This directory is the repositiory for the binaries and the
associated symbol files for the retail versions of selected LADDR

drivers when they are built using the makefiles provided in the kit.

LADDR\CDROM
- This directory contains only a MAKEFILE which creates the standard
CD-ROM TSD and the default CD-ROM scsi’izer VSD.

LADDR\CDROM\FSD
- This directory contains the binary for the CD-ROM file system, the
DLL for the CD-ROM utility programs (CHKDSK and FORMAT), and a
README file that contains instructions for installing the CD-ROM

file system.

LADDR\CDROM\TSD
- This directory contains the source code for the standard CD-ROM
TSD, and a MAKEFILE to create its object, listing, and binary files

It may also contain those object, listing, and binary files.

LADDR\CDROM\VSD

- This directorv contains the source code for the default CD-ROM

S T B R T P R o = e e T T T ———————————
scsi’izer VSD, and a MAKEFILE to create its object, listing, and
binary files. It may also contain those object, listing, and binary

files.

LADDR\DISK
- This directory contains only a MAKEFILE which creates the standard
disk TSD and the default disk scsi’izer VSD.

LADDR\DISK\FATCACHE
- This directory contains the source code for the default fat
cacheing VSD, and a MAKEFILE to create its object, listing, and
binary files. It may also contain those object, listing, and binary
files.

LADDR\DISK\FT
- This directory contains the source code for the default fault
tolerant VSD, and a MAKEFILE to create its object, listing, and
binary files. It may also contain those object, listing, and binary

files.

LADDR\DISK\TSD
- This directory contains the source code for the standard disk TSD,
and a MAKEFILE to create its object, listing, and binary files. It

may also contain those object, listing, and binary files.

LADDR\DISK\VSD
- This directory contains the source code for the default disk scsi’
izer VSD, and a MAKEFILE to create its object, listing, and binary

files. It may also contain those object, listing, and binary files.

LADDR\LADDRDOC
- This directory contains a test and HP LaserJet version of the

LADDR Programming Documentation

LADDR\LADDRH
- This directory contains all the LADDR standard header files in "C%
format, and a MAKEFILE to create assembler compatible include
files.

LADDR\LADDRINC
- This directory contains the assembler compatible include files
which are created from the header files in the LADDRH subdirectory,
and also a MAKEFILE to create them.

LADDR\LADDRLIB
- This directory contains standard 0S/2 libraries which may be

needed to create certain device drivers

LADDR\LADDRUTL
- This directory contains a several utility routines which simplify

routine tasks such as changing subdirectories.

LADDR\PERFVIEW
- This directory contains the debug/trace tool VIEW.EXE

LADDR\SAMPLES
- This directory contains only a MAKEFILE which creates the sample
assembler language scsi BID and the sample assembler language scsi’
izer VSD.

LADDR\SAMPLES\SCSIBIDA
- This directory contains the source code for the sample assembler
language scsi BID, and a MAKEFILE to create its object, listing,
and binary files. It may also contain those object, listing, and

binarv files.

LADDR\SAMPLES\VSDA
- This directory contains the source code for the sample assembler
language scsi’izer VSD, and a MAKEFILE to create its object,
listing, and binary files. It may also contain those object,

listing, and binary files.

LADDR\TAPE
- This directory contains only a makefile which creates the sample
TAPE TSD and VSDs

LADDR\TAPE\TEAC
- This directory contains the source code for the TEAC Tape VSD, and
a MAKEFILE to create its object, listing, and binary files. It may

also contain those object, listing, and binary files.

LADDR\TAPE\TSD
- This directory contains the source code for the Tape TSD, and a
MAKEFILE to create its object, listing, and binary files. It may

also contain those object, listing, and binary files.

LADDR\TAPE\WANGTEK
- This directory contains the source code for the TEAC Tape VSD, and
a MAKEFILE to create its object, listing, and binary files. It may

also contain those object, listing, and binary files.

4. NMAKE/MAKEFILE Considerations

Every directory which contains source code, or has source code in any of
its subdirectories, contains a MAKEFILE that will assemble, compile, and/

or link the in the directory and all its subdirectories.

Thus, one can pick a level in the directory structure and make

everything at that level and below it.

Normally NMAKE is invoked without parameters, which results in only
changed files being assembled/compiled/linked. But NMAKE can also be
invoked with the parameter CLEAN, which causes all source files to be
made, or DEPEND, which causes the dependency information in the MAKEFILE
to be refreshed.

CAUTION: use of the DEPEND option will cause the programs SED and
INCLUDES to be invoked. Because of licensing restrictions,
these programs are not shipped with the LDK and you must
purchase them seperately.

Note that use of the DEPEND option is not normally required.

5. BASEDD special considerations

BASEDDxx.SYS is the component of 0S/2 which contains the 1list of drivers
to be loaded at boot time. In most OEM adaptations of 0S/2, this
component also combines the base disk, clock, screen, keyboard, and
printer interface drivers (this is done to save space in the DOS box).
Because BASEDD contains these hardware dependent drivers, it is a part
of 05/2 that OEM’s normally change for their hardware. It is not
generally possible to create a BASEDD that will run on all PE'sy: Eor

these reasons. Microsoft releases the source code for BASEDD onlv to

OEM's.

The BASEDDxx that Microsoft shipped to OEM's for release 1.71 (hd not

contain the appropriate load list entries for LADDR devices. The sample
boot floppy included with this LDK does contain a correct load list. If
your PC is 100% IBM compatible, that basedd may be used for testing
purposes in place of the one shipped with release 1.21 of 0S/2. In order
to run your device driver on top of an OEM adaptation of 0S/2, however,
you will need to wait until the OEM incorporates the new LADDR load list

into their adaptation.

The BASEDDxx shipped with 0S/2 release 1.3 contains the appropriate
module names to fully support LADDR.

6. LADDR documentation

This kit contains the following documentation files:

LADDR.LAS
- this file contains formatting commands for HP laser jet

printers using the ‘2’ cartridge.

LADDR.TXT
- this file does not contain any printer control codes and is
intended to be viewed with an editor rather than being
printed.

CAUTION: These documents are a specification for the LADDR architecture,
not a how to build a LADDR driver document. Please refer to the
samples provided as examples for the various types of LADDR
modules. Where the specification differs from the sample code

and header files the code should be considered correct.

7. Device driver naming

The following device driver names are present in the base load list of
the LADDR version of the BASEDD for ISA class PC’s:

clock0l.sys
screen0l.sys
kbd01l.sys
iosl2.sys
ioconfig.sys
bootbid.bid
esdi-506.bid
ahal52x.bid
ahal54x.bid
ahal74x.bid
wd7000ax.bid
wd7000ex.bid
wd7000sx.bid
spareQ0l.sys
spare002.sys
stddisk.vsd
stdecdrom.vsd
stdtape.vsd
stdprint.vsd
sg.vsd
ft.vsd

T T T T —

fatcache.vsd
spare003.sys
print0l.sys
floppy0l.sys
disk.tsd
printer.tsd
. cdrom. tsd
tape.tsd
iorun.sys

To test your LADDR modules you should rename the file to one of the
"spare???.sys" names above and place the file in the root directory
of the boot drive. Loading modules through CONFIG.SYS "device=" is

not a recommend approach for LADDR driver installation.

8. Making a boot floppy

Perform the following steps to make a boot floppy for testing your

device driver.

1. Use DISKCOPY or some equivalent program to make a copy of the
sample boot floppy included in this kit.

2. Select an appropriate name for your device driver binary from

the list of names in the base load list.
3. Copy your device driver binary into the root directory of the

duplicate sample boot floppy, renaming your device driver binary

to the name selected in step 2.

9. Testing your device driver

This LDK includes support for the 0S/2 kernel dubugger.

The kernel debugger interacts with you via a SYMDEB like interface and a

dumb terminal or terminal emulator program.
To use the kernel debugger, set up your test PC as follows:
1. Ensure that the PC does not contain a COM2 serial port.
2. Ensure that it does contain a COM1 serial port and connect that
port, via an appropriate cable, to a dumb terminal or a terminal

emulator.

3. Configure the terminal to operate at 9600 baud, with 8 data
bits, 1 stop bit, and no parity bit, and enable XON/XOFF support.

When you boot 0S/2 from the sample boot floppy, the first message

displayed on the terminal is:
System Debugger 09/01/88 [80386]

The precise content of the next few messages depends on exactly how your

system is configured.

Note that the drivers included on the sample boot disks in this kit
are "retail™ drivers and do not generate messages to the debug terminal.

These drivers may, of course, be replaced with "debug" drivers.

If you are using the debug version of I0S, you will see something

similar to the following:

Symbols linked (IOS)

... three lines of register content

RMMH s XXRR CC INT 3

At this point the system is stopped and the debugger is waiting for a

keyin.

If you enter "g<return>" the system will continue executing and will

display a message similar to the following:

Symbols linked (IOCONFIG)

If your system includes support for ESDI/ST506/IDE fixed disk drives,

messages similar to the following will be displayed:

Symbols linked (ESDIBID)

IOSBID: start bid registration

IOSBID: start "findidce"

ESDIINIT: starting registration

IOSBID: start esdi bid registration

(ESDI)BIDAER: start device inquiry

(ESDI)BIDAER: end device inquiry

IOSBID: esdi device found - unit within ctlr = 0000 inquiry
data follows

three lines of inquiry data in hex and ascii
(ESDI)BIDAER: start configure device

(ESDI)BIDAER: start device inquiry
(ESDI)BIDAER: end device inquiry

(ESDI)BIDAER:
(ESDI) BIDAER:
(ESDI)BIDAER:
(ESDI)BIDAER:
(ESDI)BIDAER:
(ESDI)BIDAER:
(ESDI)BIDAER:
(ESDI)BIDAER:
(ESDI)BIDAER:
(ESDI)BIDAER:
(ESDI)BIDAER:
(ESDI)BIDAER:
IOSBID: star
IOSBID: end

If your system includes other BID’s or VSD’s, messages may be displayed

as they register.

start device inquiry
end device inquiry
start device inquiry
end device inquiry
start device inquiry
end device inquiry
start device inquiry
end device inquiry
start device inquiry
end device inquiry
start device inquiry
end device inquiry

t "find_ice"

bid registration

Eventually, the floppy driver and the disk TSD will load. This will

cause messsages similar to the following to be dispalyed:

Symbols linked
Symbols linked
IOSTSD: star

(FLPPYO1)
(TSD)

t tsd registration

TSDAER: about to set rom config in dcb xxxx disk drive 0000
before: cyls = 0000 heads = 0000 spt = 0000 phys dcb
= XXXX
after: cyls = xxxx heads = xxxX spt = xxxx phys dcb
= XXXX
TSDAER: aood mbr found - dcb xxxx disk drive 0080

several lines of hex and ascii data

IOSTSD: end tsd registration
TSDPART: good pbr - logical dcb xxxx - physical dcb xxx
- disk drive 0000

. ... several lines of hex and ascii data

No further messages are normally dislpayed.

0S/2 LADDR Device Driver Development Kit

Microsoft OS/2 LADDR Compliant
Device Driver Specification

Version 1.0

for the MS OS/2 Operating System

Microsoft Corporation

Part Number 20782

Information in this document is subject to change without notice and does not represent a commitment on the part of
Microsoft Corporation. The software described in this document is furnished under a license agreement or non- ‘
disclosure agreement. The software may be used or copied only in accordance with the terms of the agreement. It is

against the law to copy this software on any medium except as specifically allowed in the license or nondisclosure

agreement.

(c) Copyright 1990-1991 Microsoft Corporation
All rights reserved

Microsoft, MS and the Microsoft logo are registered trademarks of Microsoft Corporation.

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Contents
PREFACE canmcsas i s as B e deoesas s neeaiss saemes s sesashss s s o e 19,
1.0 Brechitectural OVEEVIEW e s s s sse o s aese e sssssess s 66 eas ey ess 1
I1/0 ComplexX Elements .sesssssrvssnunsnssssonsasossessoannsionss 10
pElver TritlaligaPioll scsssssnsnanns srmara e snuanes 2 aaidas s s ne 11
Requett PROCEEBLIR sansssevssssamisnsrsass s anaueds S0 Na e uen s 59 12
Irtarrupt PEOCOEEING s nsi Rn iaadis S apescas idSEcd REBARAEE & 04 13
Completion Processing/Callback ProcessSingceeceeceoeeces 13
Internal THEEFFAGE ssrs et aks s asdniEts ac' e st 9 a@ e aE & swEEee o oo 14
Data StIUCLUIES i uewsonmivmanisosessnnsnssscsssonssonisseesasissas 14
2.0 The STRAT2 Interface - aka "scatter/gather" 15
Overview of Request SubmisSSiON ciceetccessssncscscnssaacsanss 15
Overview of STRAT2 Interface Calling Conventions 1.5
overview of the STRATZ2 PACKEE .:cecccssnasnssssnoooinsonnioonssss 16
Overview of Request Completion Notification 16
Cuarvies of I/0 Reguest Synehrefigabion s.xssscossnssnmssss s 16
oOvierview of €Calleut Calling ConVentlons scwssassswsssanmssss s 16
3.0 The I/0 Supefviser (I08) ssssresscnspmmen s s aamen s oesaws 5 17
Boot Time ProceSsing DVEEVIEHW sccsisssnsnsaienasmesass bgs pns s L7
TOS TFRILiglizablon @acs 445 and s 8 95 90aE 5 578 96 6 @ asiesame & § 8 dams @ o 20
108 Configuration Processing fOr DriverS cessscssssnsssawsnws 20
10S SOEVICES sssssswsnssaienisgoleassaisessiotensons s sevan s s 21
4.0 The Bus Interface DEIVEE (BLD) a6 8 sk @ss e s snesasesssimssss 23
BID Striicture and Sample Code :scssacnssensssasnaesssiossissssls 2.3
BID InitialiZaCion seows s ssssenssesgese aesise sssniasnissasnssiss 26
5.0 VSD INitidlizatilion s ssssss s aaeass s §0EE6E s s 9o s 0ms & 8 s aaEss s 34
6.0 TSD Thitdalizatiol srs sens 958 9AGERGE IBTWIEE @ AFEREEE S 3wE @S § 39
7.0 108 Interface SpeciTiCabinl csvsnsvaspannsn s ea e Sie umes s b 44
TOS to Driver INCOrLaCes ..sisessacssaisnsanes sobessnssssosnns 44
Blogk Device STRAT]1 Retuest ProCefSING . ssesssccasssnsonsnss 44
Block Deviece STRATZ Reguest ProCessilg cisssssssnsssnnssnsnss 45
Character Device STRATL Reguest ProcesSsiig essasasasassnanses 45
Character Device STRAT2 Request Proces8ing scssssssvsss saanss 46
DEVHILD s 5 s 516 65vis o o s @ aie 6 8 6o os o 6 am@onsasaisnsesic@snessaeeess 46
TOS SOEVICES siiisdanetcs s asBamnt s dsREsEssciaas sy swasns e s inems e 47
Registration ¥i8 IDC sqsasusdesianosiissnonubd d B nd 8@ es 8k os e us 48
Regigtration vis TOCOTL cocasovnssbavnnnvowebmisomssoinhsos bnss 49
TEACE ROULINE s s aveoes s o@mp ashss e s sE s 5ae s s e omeiesios s e ms e 49
Allocate MEMOXY .:cceecccvoserocsocssansoannasssesasaasssenssnsss 49
Create Physical Device Control Block (DCB)ceceecaccacss 50
Create Logical Device Control Block (DCB) «.cccecaccocccaanss 50
Créaate Driver Data Blopk (DDH) ssrsssesanvssespwoansannesonn ks 81
Create Request Control Block (RCB)cciiiiieeeiiiinnnnnn 51
Croatie SRB’S ssccnsanmubss dnesane®aonelasssshassseselhanessasens 52

Contents 1.1

Microsoft 0OS/2 LADDR Compliant Device Driver Specification

Contents
SEE IRQO wfi s asmssn s iomens § 56 @i @ SE@Saee s 9omese s e 6@ 5 oee & e e e 52
DEiver Co 108 INEBTIOCEE iixsspuns s e s u s en e N VOB e s @n ¥ 8 5 5 50§ 53
Asyhichronous EVEnt ROUEING seicssssssssosaniieomasasen@ssesnsd 53
Callback EntlEy POINE ssssscaubks asaas @ 9assausn @ asEsEHe @58 8§ 0 @ 54
LRO TREeErupt ROTEBINE &5 5 oot & 9060566 deasEe s deeutesssense & 54
Process Request Entry PoinE s ossssunsusndsrcssnmssseh @osnssis 54
FURANE BObty POLEE susis s s isg audmnd R 0 baBed BEEARENAE § 6 b owbn s 54
STRAT2 EREYY POINE ciccssavvansanesan s aoes smss s sommsessssans 54
5.0 108 Daka Struchire DEFINiEIBOE scsavsvasrnsopnssens s asasans 55
Asynchronous Event Packet = BBEP ccsccpmecasicsscsssonesocsssnsb 55
Device Control BlLEEK = DCB sichsossasssass st asnes s idessnts 56
DEavier Data Bleglk = DDB saimas s daEteos s sas sog e S 0050 & 8 50 0hE 5 66
Driver Registrakion Packek = DRE . .ussssicssnssaesssesssmeness 67
DFivéer VEcEOE Table = DVT suws s sseaws § seeans § e c@mess s 5 6@ o668 s 67
Inter-driver Communication Packet = IDC ...iviivenceenneaannn 68
10S Dinkadge: BLOEK = TLB svemes s avesms @ aes as o asadasses s aases 3 68
TI0S Service Packel ~ TSP ccsvsnvisvesoonssnisssnsesssnssssasss 81
TOS Vector Table = IVT s awawns s s bnse s ded sed s o @ie e s s a@sbbs s 81
Memory Eléement DeScriptor = MED scsussscssssssicsonasssonsssss 81
Request Contreol Block = REB sssussstasssssinsadpnsss @@ asassss 82
STRATIL Packelt = RP csui s vs ssis o ssmsct s andsads s seesssssssnegnmees e 82
STRATZ2 Packet = RIH sgs s awsivies @ ase-ans 6 § seE aas 8 Sesmast s asdas: 88 82
SESI Reguest Block = SRB susehinspase s as e sies s san@ons s aes 560 100
LNAER s onin e s sne sms 2 ssEgeE ¥ SO sE § OB asE s 96 S0ERE 8 5E8E S 8§ 5§ 6 102

Contents i

Microsoft 0S/2 LADDR Compliant Device Driver Specification

List of Illustrations

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1s
25
3%
4.
5
6.
s
8.
9.
10,
Il
12,
13is
14.
15,
16.
17
1.8:;
19:.
210t
2115
22 ..
235
24.

Relationship of LADDR Disk Device Driver to the System
Minimal LADDR SCSI Device SUPPOrt «coscasncosoviossnssns
BEGINY & DisSk Cabhé VED sciesvumias s bonsens s sdsss
Relationship of LADDR Tape Device Driver to the System
Minimal LADDR Tape Device SUpPpPOrteeeeeeeeenen.
Adding Additional Tape Device and SCSI Support
Relationship of LADDR CD-ROM Driver to the System
Minimal LADDR SCSI-2 CD-ROM SUPPOTrt . .eveueeninnnennn..
Adding Support for CD-ROM AUAIO .. v vveeeneeeeeeennnnn.
Relationship of LADDR Printer Driver to the System
Minimal LADDR Printer Device BUPDOTE «xscssssneioenne
Enhancitiy LADDR Printer BUpPOrt icsssscsscnnisssavss
Recommended Structure of a BID ...t uiiiiinnnnnnn.
Example of BID IN1tialiZation . ceessweesesscsessesss
Exdamnple ©Ff VED 1natialiZation :asecuviesaseonss s mneses
Exanple ©f TSD 1NIL1aliZation sice s cms «eseesessssses
General Structure ©Of Lhe DCB «c.cwmoce gesmovedunioss
Device Control Block (DCB) Common Section Format
Device Control Block Calldown Table Format
108 Linkage Block (I1B) FOrmat ..ecvcossvcossnnsnsesnsns
Hierarchical Structure of the RLHioieneen...
Request List Header (RLH) Formatoeeeeneneeeen.
Reguest Headel (RH) POFMET swsuss ssen s a9 somsme 5 o8 wmss
Scatter/Gather Descriptor (SG) Format

List of Illustrations

iv

Microsoft 0S/2 LADDR Compliant Device Driver Specification

PREFACE:

This document contains the specification for LADDR compliant
device drivers for the following Microsoft operating system
platforms:

] 0S/2 release 1.21

| 0S/2 release 1.3X.

This specification defines a device driver architecture in which
device drivers are split into physically separate but logically
related pieces.

This architecture provides the following:

| A software organization that more closely matches current
hardware organization

| The uncoupling of device type specific, device vendor
specific and bus interface specific code development,
integration, maintenance, and support activities

@ Simplification of end user product selection and
installation process for add on peripherals

E The ability of a vendor to easily provide vendor specific
software without having to support an entire device driver

[| A mechanism to allow software vendors to create products
that enhance the operation and performance of device drivers

Preface v

Microsoft 0S/2 LADDR Compliant Device Driver Specification

1.0 ARCHITECTURAL OVERVIEW:

LADDR is the horizontally LAyered Device Driver aRchitecure used
by Microsoft in selected versions of 0S/2.

It provides device/adapter "plug and play" by dividing device
drivers into functionally discrete binary files.

The following diagrams illustrate the relationship of LADDR
device drivers to other major pieces of software, the layering
within typical minimal LADDR device drivers, and an example of
one way to enhance the driver through expanded layering.

The relationship between a LADDR disk device driver and the
system as a whole:

e + Fmm - + Fmm e +
Application Application Application
Program Program Program
e + Fom e + Fmm +
! :)

e e ————————— o 4
0S/2 Kernel
Fo e —————— +
’ ;
e + et e T +
| FAT file system | | HPFS file system |
Fem e + Fmm -

; ;

R it +
| Disk Device Driver Set |
Fmm .

!

e - +o————— +
| Adapter |---| Drive
e + ++ +omm——— +
+-——+

Figure 1. Relationship of LADDR Disk Device Driver to the System

1.0 Architectural Overview 1

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Illustration of layering of a minimal SCSI LADDR disk driver: .
+————- + o +
<m————— >| Disk type specific driver (TSD) |
e e Lt +
v
o -
T8 |dm——im—— >| Disk SCSI’izer (VSD) |
o +
v
o = -
<mmmmm - >| Bus interface driver (BID) |
+=——— - o +

Figure 2. Minimal LADDR SCSI Device Support

1.0 Architectural Overview

Microsoft 0S/2 LADDR Compliant Device Driver Specification

To increase functionality, to add caching for example, the SCSI’izer
. VSD and the BID can be moved down:
+-———- + i et +
<—————— >| Disk type specific driver (TSD) |
- +
v
I0S
e +
B S b el >| Disk SCSI’izer (VSD) |
T +
Y
- +
<mmmmmm - >| Bus interface driver (BID) |
+———— + e -

tom——- + e +
<——————- >| Disk type specific driver (TSD) |
' T S S R R e e e i e i e i i +
|
\4
o +
B e >| Disk cache (VSD) |
o +
10S.
v
e e D -
Cmm e ———— >| Disk SCSI’izer (VSD) |
e e T i+
|
Y
it L +
<——mm—————— >| Bus interface driver (BID) |
o= + e ittt L -

Figure 3. Adding a Disk Cache VSD

1.0 Architectural Overview 3

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The relationship between a LADDR tape device driver and the system as.

a whole:
o ——— + e ——————— + fom e +
SYTOS Application Application
Plus ‘ Program ’ Program
o + o + o +
.
+-————— +
| DLL |
+—————— +
; ; ;

T 4
0S/2 Kernel
e +
d
e - -
| Tape Device Driver Set |
e +
.

fmmm e + fomm - 4
| Adapter |---| Drive
fo———— + ++ e +
+———+

Figure 4. Relationship of LADDR Tape Device Driver to the System

Illustration of layering of a minimal SCSI LADDR tape driver
for one specific vendor’s drive:

+———— + e - -
<m—m——— >| Tape type specific driver (TSD) |
T +
:
o +
I0S |<-->| Tape drive model specific SCSI-izer (VSD) |
T +
:
e +
e >| Bus interface driver (BID) |
e - - 4

Figure 5. Minimal LADDR Tape Device Support

1.0 Architectural Overview 4

Microsoft 0S/2 LADDR Compliant Device Driver Specification

‘ To support a second kind of drive, the SCSI’izer VSD can be moved
aside:

t———— + R T T +
<=———=—— >| Tape type specific driver (TSD) |
e e +

/

/

o +

IOS |-| Tape drive specific
SCSI-izer (VSD)

+————- + o +
<—mm——— >| Tape type specific driver (TSD) |
R T T -
g \
/ !
R it - Rt e
‘ IOS |-| Tape drive specific ---->| Tape drive specific
SCSI-izer (VSD) SCSI-izer (VSD)
e + Rt T
\ J/
\ '
e +
Cmmmm >| Bus interface driver (BID) |
to———— + e 4

Figure 6. Adding Additional Tape Device and SCSI Support

1.0 Architectural Overview 5

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The relationship between a LADDR CD-ROM device driver and the system
a whole: i

Application Application
Program

Application
Program Program

pommm e + H-—————- + +-+/
| adapter |---| Drive |---| |
+o—m— + o+t A== + 44\

Figure 7. Relationship of LADDR CD-ROM Driver to the System

1.0 Architectural Overview 6

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Illustration of layering of a minimal SCSI LADDR CD-ROM driver
for SCSI-2 command set drives:

IO0S

o +
<=—-——- >| CD-ROM type specific driver (TSD) |
Tt T T +
|
\Y
e Tt +
<mmm————— >| CD-ROM data and audio SCSI-2
command set SCSI‘’izer (VSD)
o -
I
v
R et -
<=mm—— - >| Bus interface driver (BID) |
R e -

Figure 8. Minimal LADDR SCSI-2 CD-ROM Support

1.0 Architectural Overview

Microsoft 0S/2 LADDR Compliant Device Driver Specification

To support a drive with non-SCSI-2 audio, the BID can be moved down: .

tm——— + o +
<m———— >| CD-ROM type specific driver (TSD) |
o - 4
|
v
e +
<—m—————— >| CD-ROM data and audio SCSI-2
command set SCSI’izer (VSD)
e +
10S |
v
o - +
Cmmm——————— >| Bus interface driver (BID) |
fm——— + o +

+———— + et -
<—m——— >| CD-ROM type specific driver (TSD) |
- +
.
o +
<—mm————— >| CD-ROM data and audio SCSI-2
command set SCSI’izer (VSD)
o - -
10S |
v
o e -
<->| CD-ROM vendor specific audio SCSI’izer (VSD) |
T e -
!
e -
<—————— - >| Bus interface driver (BID) |
+=————- + e e -

Figure 9. Adding Support for CD-ROM Audio

1.0 Architectural Overview 8

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The relationship between a LADDR SCSI printer device driver and the
‘ system as a whole:

e + R + Fom +
Application Network Application
Program Interface Program
e + e - Fmm e +
\ | /

\ \4 /

e T +
| Spooler |
e et +
v v v
e T TN +
0S/2 Kernel
t————————— e ——————————— +
v
e —— -
| Printer Device Driver Set |
e e — +
v

o ——— + tomm +

Figure 10. Relationship of LADDR Printer Driver to the System

Illustration of layering of a minimal SCSI LADDR printer driver:

fm——— + e +
<=—————- >| printer type specific driver (TSD) |
Fo +
;
it T T S — +
I0OS |<———===—————= >| printer SCSI’izer (VSD) |
Rt T — +
!
R T T —— +
<mmmmmm >| Bus interface driver (BID) |
= + R e T —— +

Figure 11. Minimal LADDR Printer Device Support

1.0 Architectural Overview 9

Microsoft 0S/2 LADDR Compliant Device Driver Specification

To support a printer with a vendor unique data de-compression
capability, the SCsSI’izer VSD and BID can be moved down: .
+———— + o e e S e e e e e e +
<—=—=——- >| printer type specific driver (TSD) |
fmmmmm e ——— = -
v
TI0S
S ettt -
<mm—mmmm————— >| printer SCSI’izer (VSD) |
o +
v
e +
Cmmmm—————— >| Bus interface driver (BID) |
fm———- + o - +

N + e +
<mm———- >| printer type specific driver (TSD) |
e e +
:
o e — +
<-| printer vendor specific data compressor (VSD) |
R ittt bty +
10S |
'
o +
<mmmmmm >| printer SCSI’izer (VSD) |
o +
4
e e +
Lmmm——————— >| Bus interface driver (BID) |
t=———- + o +

Figure 12. Enhancing LADDR Printer Support

I/0 Complex Elements

Within the LADDR specification, the term "I/O complex" is used
to refer to the collection of software that includes device
drivers and related operating system services, initialization
routines, configuration processing, interrupt routing, and timer
services.

1.0 Architectural Overview 10

Microsoft OS/2 LADDR Compliant Device Driver Specification
The major pieces of a LADDR I/O complex are:

‘ I/0 Supervisor (IOS) provides system services and
initialization, configuration, interrupt routing,
and timer services.

Type Specific Layer contains drivers (called "type specific
drivers" or "TSD’s") that perform device type
specific processing such as validation of
incoming I/0 requests and conversion of logical
requests to physical requests.

For any given device, this layer must contain
exactly one TSD.

Vendor Enhancement Layer contains drivers (called '"vendor
specific drivers" or "VSD’s") that provide
vendors with a means to add value to their
products and to compensate for aberrant operation
of their peripherals, and provides a common point
to build standard interface specific data
structures such as SCSI’s CDB.

For any given device, this layer may contain
zero, one, more VSD’s.

Request Routing Layer contains drivers (called "path selection
drivers'" or "PSD’s") that pick the optimal I/O
. path for the request.

For any given device, this layer may contain zero
or one PSD.

Bus Interface Layer contains drivers (called "bus interface
drivers'" or "BID’s") that perform final
conversion of request data structures and execute
appropriate instructions to pass request to the
bus interface hardware and to control that
hardware’s operation.

For any given device, this layer must contain
exactly one BID.

For a given device, the LADDR I/O complex contains at least IOS,

a TSD, and a BID, and may contain one or more VSD’s and/or a
PSD.

Driver Initialization

Initialization of a LADDR compliant driver occurs at one of two
points in time:

‘ | At boot time. It is at boot time that I0S; the TSD, the VSD
(if there is one), and the bid for the boot device must load

1.0 Architectural Overview 191

Microsoft 0S/2 LADDR Compliant Device Driver Specification

and initialize.

Many other drivers are loaded at boot time as a matter of
convenience for the user.

The file BASEDDOx.asm, which is part of BASEDDOx.SYS,
contains a list - called "the load list" - of all drivers
which are to be loaded and initialized at boot time.

During boot time initialization, drivers execute entirely at
ring zero.

[During steady state either as a result of CONFIG.SYS
processing or as the result of dynamic configuration
processing by a ring 3 application program such as an
INSTALL program.

During steady state initialization, drivers initially gain
control at ring three but soon execute a '"registration"
IOCTL which results in the bulk of initialization being
performed at ring zero. The tail end of the initialization
processing is also performed at ring three.

Request Processing

During initialization processing, for each device, the drivers
construct a table of driver linkage and control information
which is referred to as the '"driver calldown table", or
sometimes just the "calldown table'".

As a request is processed, a table of completion time callout
addresses, which is known as the "callback table'", is built by
the drivers.

Conceptually, as a request is processed, control flows '"down"

the driver calldown table from a TSD to a BID (leaving return

addresses on the system stack), possibly via one or more VSD’s
and a PSD.

When the request reaches the lowest point, it is either
executed, initiated, or queued and control is then returned "up"
through the system stack.

When a driver gets its "turn" at processing the request, it has
the following options:

E it may completely execute the request and initiate callout
processing

| it may perform appropriate processing and then pass the
request on to the next driver.

| it may queue the request locally and generate a new request

1.0 Architectural Overview 12

Microsoft 0S/2 LADDR Compliant Device Driver Specification

of its own, which then may be processed either by passing it
down to the next driver, or by passing it to IOS for normal
STRAT2 request processing.

Interrupt Processing

During its initialization, an interrupt driven driver registers
its interrupt service routine (or routines) with IOS.

Later, when an interrupt occurs, IOS uses the interrupting IRQ
number as an index to locate the drivers which are servicing
interrupts from that IRQ level. These drivers are then serially
given control and an opportunity to process the interrupt.

Completion Processing/Callback Processing

When a completion event - such as a timeout or I/0 completion
interrupt - occurs, the BID that recognizes that event initiates
"callback" processing.

For BID’s that operate on SRB’s, the BID performs a '"request
element complete" callout through field SRB callback.
Additionally, the BID decrements field RCB_countdown and, upon
that field becoming zero or all non-completed requests being
aborted, the BID unstacks the lowest entry in the RCB callback
stack and performs a "request complete'" callout through that
unstacked entry.

For other BID’s, the BID updates fields RH_status and
RLH_1st_status, and, subject to the conditions specified by
field RH_request control, performs a "request element complete"
callout through field RH notify addr. Additionally, when the
BID determines that the sum of the requests completed or aborted
becomes equal to the value in the field RH count lo, the BID
unstacks the lowest entry in the RCB callback stack and performs
a '"request complete" callout through that unstacked entry.

When a request or request element completion callout passes
control to a VSD, the VSD must determine what if any
consequential callouts are required, and perform them.
Typically, these callouts are RCB and/or RH related.

When a TSD is the target of a request completion callout, the
TSD must perform any required RLH related callouts. It must
also perform any required RH related callouts, if, and only if,
the RH was NOT passed to a VSD or BID - if the RH was passed to
a VSD or BID, RH related callouts would already have been
performed at that lower level.

1.0 Architectural Overview 13

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Internal Interface

While the interfaces between the various layers are defined by a ‘
single common standard, though the use of "demand bits" a driver

in one layer can indicate to a higher layer that the higher

layer select one of several optional processing modes. These

optional processing modes are typically used to deal with

hardware constraints in either the driver or its associated

device.

If a given driver does not support a particular demand bit, it
passes that demand bit to the layer above.

Thus, a TSD does not need to know if it passes control to a VSD,
PSD or a BID, and a VSD does not need to know if it passes
control to another VSD or to a PSD or BID. Similarly, VSD’s,
PSD’s and BID’s do not need to know if they are receiving
control from a TSD or a VSD.

Data Structures

The following is a brief explanation of the purpose of the
various data structures used by the I/O complex.

Request Control Block (RCB) represents a request being
processed by the I/0 complex. It contains
pointers to the other data structures involved in
this recuest. Tt also contains a few fields that
hold status or control information.

STRAT2 Request Packet (RLH) contains the specifics of a request
being processed by the I/O0 complex. The RLH is
the preferred I/0 request packet for file
systems. When file systems use the alternate
request packet - the STRAT1 request packet, IOS
converts it to a RLH.

STRAT1 Request Packet (RP) is the traditional I/O request
packet. It is being phased out in favor of the
RLH. IOS converts RP’s to RLH’s before passing
to the drivers.

Device Control Block (DCB) contains device specific information
such as the device address and pointers to the
relevant device drivers.

SCSI Request Block (SRB) contains the SCSI CDB and other
related information. Either a TSD or VSD builds
a SRB from a RLH when a BID indicates that an SRB
is required.

1.0 Architectural Overview 14

Microsoft 0S/2 LADDR Compliant Device Driver Specification

2.0 THE STRAT2 INTERFACE - AKA "SCATTER/GATHER'":

The STRAT2 interface only supports asynchronous I/0 activity.
Since polling for I/O completion results in severely degraded
system performance in 0S/2, the STRAT2 interface includes a
request completion notification facility.

This overview consists of six parts:

| Request submission

[| STRAT2 Interface Calling Conventions

| The STRAT2 Packet

| Request completion notification

| I/0 Request Synchronization

= Callout Calling Conventions

Overview of Request Submission

To submit a request to the STRAT2 interface, the requestor
builds an object, called a "STRAT2 packet", which contains a

Request List Header (more usually known as an "RLH"), one or
more Request Headers (or "RH"), and one or more Scatter/Gather
Descriptors (or "SGD’s"). Having built this packet, the

requestor then calls the STRAT2 interface with a pointer to the
RLH.

Overview of STRAT2 Interface Calling Conventions

Having previously acquired the address of the STRAT2 entry point
via a "Get DCSVCS" call to STRAT1, the requestor points ES:BX to
a STRAT2 packet (more specifically, to the RLH) and then calls
the STRAT2 entry point. Note that all of the data buffers
pointed to by the STRAT2 packet must be locked down prior to the
call to STRAT2.

STRAT2 performs some processing on the request and then returns
control to the requestor. At this time, the request may or may
not have been completely processed.

2.0 The STRAT2 Interface - aka "scatter/gather" 15

Microsoft 0S/2 LADDR Compliant Device Driver Specification

overview of the STRAT2 Packet

The RLH contains global information that pertains to all the
RH’s contained in the RLH, such as the unit number. It also
contains one or more RH’s.

Each RH describes a piece of the request that involves one
continuous area on disk. It also contains one or more SGD’s.

The SGD provides the address and length of a physically

continuous area of real memory which constitutes all or part of
the data buffer.

overview of Request Completion Notification

In order to be notified of the completion of a STRAT2 request,
the requestor provides one or two pointers to its notification
routines. The disk driver calls the requestor provided routines
when appropriate. The requestor has several options as to when
the notification occurs.

overview of I/0 Request Synchronization

Since the STRAT2 interface does not provide synchronous I/0
request processing, higher level software must achieve request
completion synchronization when necessary.

Such higher level software typically sets a semaphore prior to
submitting the request and then clears the semaphore in an RLH
or RH notification routine. Note that the notification may
occur before control is returned from the request submission
code.

Ooverview of Callout Calling Conventions

As the processing of the request progresses, the disk driver
makes the appropriate callouts to the notify routines as
specified in the RLH and RH.

RLH-level notify routines gain control with ES:BX pointing to
the relevant RLH. RH-level notify routines gain control with
ES:BX pointing to the relevant RH.

2.0 The STRAT2 Interface - aka "scatter/gather" 16

Microsoft 0OS/2 LADDR Compliant Device Driver Specification

3.0 THE I/O SUPERVISOR (IOS):

The I/O Supervisor controls initialization and configuration of
cooperating LADDR compliant drivers; and provides various
services to those drivers.

The following IOS documentation is included to provide a better
understanding of the operation of LADDR compliant drivers. It
is neither intended as complete IOS documentation, nor as an IOS
programming specification.

The following topics are considered:

| Boot Time Processing Overview
| IOS Initialization
| IOS Configuration Processing for Drivers

| JOS Services

Boot Time Processing Overview

It is during 0S/2 boot time processing that I0OS and the drivers
in the base load list are loaded and initialized.

The following zigzag diagram illustrates the boot time
processing as it relates to the loading and initialization of
the LADDR I/0O complex.

IOS SYSTEM/ROM SOFTWARE ADAPTOR/DRIVER CODE

s/w or h/w
reset occurs

o +
v
o + et +
system board ROM adaptor ROM hooks
does POST and POS|<-->|INTs 13 and/or 19
processing if necessary
o + et ittt L L +
v
Fom e +

system board ROM
does an INT 19

3.0 The I/0 Supervisor (IOS) 17

Microsoft 0S/2 LADDR Compliant Device Driver Specification

INT 19 routine
reads the boot
sector via INT 13
and jumps to it

boot sector code

loads multiboot

via INT 13 and
jumps to it

multiboot loads
OS2LDR via INT 13
and jumps to it

using INT 13,
OS2LDR loads the
0S/2 Kernel and
initializes it

OS2LDR loads IOS
via INT 13 and
calls it with an
e e INTT Reguest Pkt

I0S initializes
& marks the INIT
RP as complete

e +
e -
e 2 OS2LDR loads
IOCONFIG via
INT 13 and calls
it with an INIT
P s Request Pkt
e -
v

3.0 The I/O Supervisor (IOS) 18

Microsoft 0S/2 LADDR Compliant Device Driver Specification

JTOCONFIG passes
the configuration
table to IOS via

a REGISTER call
& marks the INIT

RP as complete

e~ +
e +
e e > using INT 13,
OS2LDR loads the
BID’s, VSD’s and
TSD’s in the
base load list [—-——————=——=—- +
tomm e — -
v
o +
driver calls
e e DL L I0S to REGISTER
| e +
v
e —— + e +
I0S calls driver driver uses I0S
AER to build services to build
data structures §&|<—————cmmmmmmmrcs e >|data structures &
initialize initialize
e — - e +
+ —————————————————
o > driver marks
INIT RP complete
+ _________________
- +
using INT 13, L e +
OS2LDR loads
JORUN and calls
it with an INIT
Fom—m e Request Pkt
[e —— +
v
fmm - -
IORUN calls IOS
to REGISTER
e +
:
e +
IO0S makes BOOT
COMPLETE AEP’s
to every driver
Fommm e -
v
19

3.0 The I/0 Supervisor (IOS)

Microsoft 0S/2 LADDR Compliant Device Driver Specification

IORUN marks the
INIT RP complete

0S/2 switches to
steady state

I0S Initialization

Loading and initialization of IOS occurs only at boot time -
steady state initialization and re-initialization is not
supported.

Once loaded, IOS initially receives control from the Kernel at
its STRAT1 entry point with ES:BX pointing to an INIT request
packet (RP).

IOS’s initialization code then performs the following
processing:

1. Allocates a block of memory for use as a memory pool, and
initializes it

2. Initializes the IVT

3. Makes a DEVHLP call to establish an interval timer such that
IOS’s timeout detection logic gains control periodically.
The duration of this period is normally set to two seconds
but may be set to a much shorter value to facilitate the
debugging of driver code.

Having completed its initialization processing, IOS returns to
its caller, the Kernel, showing that initialization succeeded
and indicating the amount of initialization code that is to be
discarded.

Note that attempting to replace the boot time version of IOS by

specifying an IOS in the CONFIG.SYS file is not supported and
will have unpredictable results.

I0S Confiquration Processing for Drivers

IOS provides very similar configuration processing for both
drivers which initialize at boot time and drivers which
initialize at steady state time.

The following describes that configuration processing.

Configuration processing for a driver is initiated by IOS’s

3.0 The I/O Supervisor (IOS) 20

I0S

Microsoft 0S/2 LADDR Compliant Device Driver Specification
receipt of a registration IDC from that driver.

In response to that registration IDC, IOS initializes various
internal data structures and the drivers ILB.

I0S then generates a series of asynchronous event calls to the
driver.

The first of these calls is a driver initialization call - in
response to this call, the driver should initialize itself and,
if it is a BID, it should initialize the bus interface hardware.
I0S includes parametric data from IOCONFIG, if any, 1in the
packet associated with the call.

For drivers which are BID’s, IOS may generate one or more DEVICE
INQUIRY asynchronous event calls to the BID. On the basis of
information returned by these calls in conjunction with
information provided by IOCONFIG, IOS may make one or more
CONFIGURE DEVICE asynchronous event calls to the BID.

For drivers other than BID’s, IOS will (after the INITIALIZE
asynchronous event call has completed) make one CONFIGURE DEVICE
asynchronous event call for each currently existent physical
DCB. During this call, the driver should examine the DCB and,
if necessary, the device, and determine if it wants to service
the device. If it does, the driver should update the DCB
appropriately and make calls to IOS to create logical DCB’s if
appropriate.

Services

The

3.0

I0S provides two type of services to drivers:
Registration service

Support services

IOS Registration Service

The registration service provided by IOS allow a driver to
notify IOS of its existence and its characteristics, and to
acquire I0S’s characteristics.

When a driver calls I0S’s "registration" entry point, which is
made available to a driver via the DevHelp AttachDD service, the
driver passes pointers to the INIT request packet that it
received from the kernel and to its own DRP, which points to its
ILP. Prior to making the registration call, the driver must
have properly initialized its DRP.

During its processing of the registration call, IOS fills in the

The I/0 Supervisor (IOS) 201

Microsoft 0S/2 LADDR Compliant Device Driver Specification

ILP and makes various calls to the drivers asynchronous events
routine.

While the DRP and ILP may reside in any segments that are part
of the primary code group or primary data group, it is
recommended that the DRP reside in the drivers initialization
data segment, and that the ILP reside in the drivers permanent
code segment.

I0S Support Services

IOS provides many support services through the following
interfaces:

Stack based service routine
Register based service routine
Kernel DEVHLP interface routine

Note that use of the DEVHLP interface (aside from AttachDD)
should be avoided to maximize the number of Microsoft operating
system platforms supported by the driver. Where the DEVHLP
interface must be used because the needed function is not
provided by any other interface, conditional
assembly/compile/execute techniques will be required to provide
cross platform capability.

3.0 The I/0 Supervisor (IOS) 22

Microsoft 0S/2 LADDR Compliant Device Driver Specification

4.0 THE BUS INTERFACE DRIVER (BID):

BID Structure and Sample Code

A BID can be made to meet LADDR re-entrancy, functional, and
interface requirements by complying with the specifications in
this document. The ESDI/ST-506 BID, ESDI-506.SYS, is an example
of a LADDR compliant bid.

Physical structure The BID must be packaged as a single binary,
linked as a device driver and have a name of the
form "xxxxxxxx.BID". That name must either be
present in the base load list, or may be
specified in a "DEVICE=xxxxxxxX.BID" statement in
CONFIG.SYS if the BID does not support the boot
device.

Note that when a BID is loaded via CONFIG.SYS, it
may be necessary to also load the associate TSD
and VSD’s, if any, via CONFIG.SYS.

Group structure A bid may contain either two or three groups.
0S/2 release 1.21 only supports BID’s with two
groups. Releases 1.3 and 2.x allows a third
group, which is assumed to contain swapable code.

When the BID is being loaded, the Kernel assumes
that the first group encountered in the binary is
a data group and expects to find the BID’s device
driver header at offset zero within the group.
The kernel builds a writeable GDT selector for
this group and nails the group down.

The Kernel assumes that the second group
encountered contains code and builds a
non-writeable (read/exectute) GDT selector for
this group. It nails this group down.

Whenever the Kernel makes a STRAT1 call to the
BID, it places the selector number for the first
(data) group in the DS selector register and
places the selector number for the second (code)
group in the CS selector register.

If, under releases 1.3 or 2.x of 0S/2, a third
group is encountered, the Kernel assumes it to be
swapable code and builds a non-writeable
(read/execute) GDT selector for it. This group
is NOT nailed down. The BID obtains the selector
for this third, swapable, group through the use
of selector fixup. The following assembler code
fragment illustrates this:

EXTRN A_Public_Label_In_The Third Group:FAR

4.0 The Bus Interface Driver (BID) 23

Microsoft 0S/2 LADDR Compliant Device Driver Specification

MOV AX,SEL A_Public_Label_In_The_Third Group

MOV ES,AX ‘

The BID is responsible for properly controlling
the subsequent swapping of this third group. The
sample BID contains only two groups, "DGroup" for
data and "CGroup" for code.

Segment structure A group is composed of one or more segments.

It is recommended that the first two groups each
contain two segments. The first segment in each
group is considered permanent while the second
segment is discarded after the BID has
initialized. The permanent data segment should
only contain the BID’s device driver header.

4.0 The Bus Interface Driver (BID) 24

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The following diagram, which corresponds to code in file
BIDSEGS.INC of the sample BID, illustrates the recommended structure

of a BID.

BIDSKEILA.SYS ->
(filename)

LGEGD e
(first group)

Data ----——--
(permanent data
segment)

Init_Data -----
(temporary data
segment)

CGroup -------
(second group)

COfle =semm e
(permanent code
segment)

initialization
scratch space

(temporary code
segment)

initialization
code

4.0 The Bus Interface Driver (BID)

25

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Figure 13. Recommended Structure of a BID

BID Initialization

A BID, like any other driver, is loaded by the 0S/2 Kernel. 1If
the BID is being loaded at boot time, the Kernel uses INT 13 to
read the BID from disk into memory. If a DEVICE= statement in
CONFIG.SYS causes a BID to be loaded, the Kernel performs normal
protect mode I/O to read the BID from disk into memory.

Once a BID is loaded, it initially gains control from the Kernel
via a STRAT1 INIT call.

In response to that INIT call, either via an inter-driver call
(for BID’s loading at boot time) or via an IOCTL (for BID’s
loading via CONFIG.SYS), the BID makes a REGISTER call to IOS.

performs a series of callouts to the BID’s asynchronous event
routine (AER). It is these AER callouts that cause the various
BID initialization routines to execute. 1In addition to
initializing the BID itself and one or more adaptors, this
process typically causes one or more device control blocks
(DCB’s) to be built.

In response to the REGISTER call, IOS’s BID REGISTER routine
|

After IOS’s BID REGISTER routine completes its processing, it
returns control to the BID which then marks the STRAT1 INIT call
complete.

4.0 The Bus Interface Driver (BID) 26

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The following zigzag diagram illustrates the flow of control during
the initialization of a BID.

I0S
(registration) BID AER BID STRAT1
(services) (boot) (CONFIG.SYS)
kernel kernel
L :
Fomm + -
acquire I0S'’s acquire a
IDC entry handle to ios
point via via a DosOpen
DevHlp AttachDD API call
o + o +
: :
o + - -
do a "register" do "register"
call to IOS’s IOCTL via
IDC entry handle from
point open
o i +
(ptr’s to DRP and INIT RP) | |
e fmm e -+
:
o - +

obtain write
access to ILB

T +
v
e +
update the
ILB
o +
v
e +
find first
TCH
e +
Y

4.0 The Bus Interface Driver (BID) 27

Microsoft 0S/2 LADDR Compliant Device Driver Specification

v
/ \
/one\
/found\ no
N 7 o m e e e e e i e e e i e e e i i +
XN/
\ /yes
e +
v
o +
‘do "initialize"‘
AER callout
o +
| (ptr to AEP)
e e et R <o - +
|
\Y
tomm e +
determine type,
addr and DDB size
for first/next
adaptor
o +
|
\Y
'
/one\
/found\ no
\ ? Jemmmmm—m—————— -
N/
\l/yeS
v
o - -
do create DDB
call to ios
Fmm -
(size of DDB) |
o +
|
v
Fmm e +
’allocate space ’
for the DDB
Fmm - +
i vV VvV VvV Vv

4.0 The Bus Interface Driver (BID) 28

Microsoft 0S/2 LADDR Compliant Device Driver Specification

initialize IOS
fields in DDB

S o
v
L —— £
{ return '
PSR —— L
| (ptr to DDB)
S S ———— =
v
o —— e e e om ¥

switch to steady
state selectors

build/initialize
BID fields in DDB

4.0 The Bus Interface Driver (BID)

29

Microsoft 0S/2 LADDR Compliant Device Driver Specification

v
/X
£ N

/error\ yes

do first/next
"inquire'" AER
callout

| (ptr to AEP)

determine if
exists

7 %
/1ing\
yes / data\
+--\found/
\?/
X/

| no
Y
L %
L %
/force\ no
i clolhio) A e e e S e Sz
\?/
\ /

yes

+=——=>

4.0 The Bus Interface Driver (BID) 30

Microsoft 0S/2 LADDR Compliant Device Driver Specification

:
e +
allocate space
for the DCB and
initialize it
e +
l
tmm———— - +
do "physical
config" AER
callout
e +
| (ptr to AEP)
o - +
)
/ \
/ \
/accpt\ no
\ ? Jem—————- s
N/
% ¢
|yes
v
e +
determine device
type and address
e +
i
T +
call ios to do
calldown insert
o +
(calldown packet in ISP) |
T +
|
v
e —————————— +
insert calldown
packet in DCB
e +
!
Fmm e —————— +
‘ return l
e ———— +
| .
v vV VvV V VvV V

4.0 The Bus Interface Driver (BID)

Microsoft 0S/2 LADDR Compliant Device Driver Specification

possibly update
BID fields in DDB

£ X
Jadlx

/ing’s\ no

ICE

/ \
/one\
/found\ yes

4.0 The Bus Interface Driver (BID) 32

Microsoft 0OS/2 LADDR Compliant Device Driver Specification

release IO0S'’s
handle via

mark init
packet as done

FEESEesEETsEEIes + |DosClose API
l e o
v l
P e s SSeses = v
return tmm————
mark init pkt
eSS RS Se e =t as done
| tom
L I
kernel v
+ _____________
return
+ _____________
I
\Y
kernel

Figure 14. Example of BID Initialization

4.0 The Bus Interface Driver (BID) 33

Microsoft 0S/2 LADDR Compliant Device Driver Specification

5.0 VSD INITIALTIZATION:

A VSD, like any other driver, is loaded by the 0S/2 Kernel. 1If
the VSD is being loaded at boot time, the Kernel uses INT 13 to
read the VSD from disk into memory. If a DEVICE= statement in
CONFIG.SYS causes a VSD to be loaded, the Kernel performs normal
protect mode I/O to read the VSD from disk into memory.

Once a VSD is loaded, it initially gains control from the Kernel
via a STRAT1 INIT call.

In response to that INIT call, either via an inter-driver call
(for VSD’s loading at boot time) or via an IOCTL (for VSD’s
loading via CONFIG.SYS), the VSD makes a REGISTER call to IOS.

In response to the REGISTER call, IOS’s VSD REGISTER routine
performs a series of callouts to the VSD’s asynchronous event
routine (AER). It is these AER callouts that cause the various
VSD initialization routines to execute.

After I0S’s VSD REGISTER routine completes its processing, it
returns control to the VSD which then marks the STRAT1 INIT call
complete.

5.0 VSD Initialization 34

Microsoft 0OS/2 LADDR Compliant Device Driver Specification

The following zigzag diagram illustrates the flow of control through
the initialization of a VSD.

I0S
(registration) VSD AER VSD STRAT1
(services) (boot) (CONFIG.SYS)
kernel kernel
l |
v v
Fom e + e +
acquire IOS’s acquire a
IDC entry handle to ios
point via via a DosOpen
DevHlp AttachDD APT call
it S kT +
\ |
Y Y%
Fmm + o +
do a "register" do "register"
call to IOS’s IOCTL via
IDC entry handle from
point open
R + e +
(ptr’s to DRP and INIT RP)] |
et et Fmm +
.
o +

obtain write
access to ILB

R +
v
e +
update the
ILB
e +
v
Fmm +

do "initialize"
AER callout

5.0 VSD Initialization 35

Microsoft 0S/2 LADDR Compliant Device Driver Specification

v
fmm————— e +
| initialize VSD |
S S S +

l

v
e +

switch to steady
state selectors

fom e -
v
o +
build/initialize
BID fields in DDB
o +
v
i +
‘ return ,
o +
(return code) |
e +
v
T —— $

do "physical
config" AER
callout

| (ptr to AEP)

\ ? Je—————— +

call ios to do
calldown insert

5.0 VSD Initialization 36

Microsoft 0S/2 LADDR Compliant Device Driver Specification

insert calldown
packet in DCB

e +
v
o +
' return ‘
T T —— +
B T T T —— +
v
o +
‘ return l
e —— +
(return code) |
o +
v
T T — +
‘ return
LT T —— +
| (return code)
R e .

5.0 VSD Initialization 37

Microsoft 0S/2 LADDR Compliant Device Driver Specification

release IOS’s

handle via

mark init
packet as done

S S e + |DosClose API
| fom - +
v |
el -+ v
| return Fomm e +
| mark init pkt
P e T+ as done
| fmm - +
d |
kernel A%
Fmm - +
return
fomm e~ +
:
kernel

Figure 15. Example of VSD initialization

5.0 VSD Initialization 38

Microsoft 0S/2 LADDR Compliant Device Driver Specification

6.0 TSD INITIALIZATION:

. A TSD, like any other driver, is loaded by the 0S/2 Kernel. 1If
the TSD is being loaded at boot time, the Kernel uses INT 13 to
read the TSD from disk into memory. If a DEVICE= statement in
CONFIG.SYS causes a TSD to be loaded, the Kernel performs normal
protect mode I/O to read the TSD from disk into memory.

Once a TSD is loaded, it initially gains control from the Kernel
via a STRAT1 INIT call.

In response to that INIT call, either via an inter-driver call
(for TSD’s loading at boot time) or via an IOCTL (for TSD’s
loading via CONFIG.SYS), the TSD makes a REGISTER call to IOS.

In response to the REGISTER call, IOS’s TSD REGISTER routine
performs a series of callouts to the TSD’s asynchronous event
routine (AER). It is these AER callouts that cause the various
TSD initialization routines to execute.

After IOS’s TSD REGISTER routine completes its processing, it

returns control to the TSD which then marks the STRAT1 INIT call
complete.

6.0 TSD Initialization 39

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The following zigzag diagram illustrates the flow of control through
the initialization of a TSD. .

I0S
(registration) TSD AER TSD STRAT1
(services) (boot) (CONFIG.SYS)
kernel kernel
! !
R + e -
acquire IOS’s acquire a
IDC entry handle to ios
point via via a DosOpen
DevHlp_ AttachDD APL call
o I -
| |
v v
R + e -
do a '"register" do "register"
call to IOS’s IOCTL wvia
IDC entry handle from
point open
o s e +

obtain write
access to ILB

Fmm +
v

Fmm +

update the

ILB

Fmm e ———— +
v

e — +

do "initialize"
AER callout

6.0 TSD Initialization 40

Microsoft 0S/2 LADDR Compliant Device Driver Specification

do "physical
config" AER

callout
R +
|
+ _________
(calldown
+ _____
Y

6.0 TSD Initialization

v
e +
| initialize TSD |
e +

v
o -

switch to steady
state selectors

build/initialize
BID fields in DDB

(ptr to AEP)

£ooN

call ios to do
calldown insert

41

Microsoft 0S/2 LADDR Compliant Device Driver Specification

insert calldown
packet in DCB

fmm +
v
e +
‘ return
Fmmm +
o - D +
Y%
o — +
‘ return
e +
(return code) |
o +
v
e -
return
e +
| (return code)
- Fommmmm e +

6.0 TSD Initialization 42

Microsoft 0S/2 LADDR Compliant Device Driver Specification

release IOS’s

mark init
handle via

packet as done

S + |DosClose API
| B T ——
v |
PSR ass s sTEsS + v
return temm—————————
‘ mark init pkt
R e + as done
| Fommm e ——— -
v |
kernel v
.+_ _____________
I return
+ _____________
g
kKernel

Figure 16. Example of TSD initialization

6.0 TSD Initialization 43

Microsoft 0S/2 LADDR Compliant Device Driver Specification

7.0 IOS INTERFACE SPECIFICATION:

IOS to Driver Interfaces

The following sections define these interfaces from IOS to
drivers:

[| Block Device STRAT1 Request Processing
[| Block Device STRAT2 Request Processing
% Character Device STRAT1 Request Processing
| Character Device STRAT2 Request Processing

| DevHlp

Block Device STRAT1 Request Processing

This callable entry point provides TSD’s with a way to transfer

an RP, which has just been delivered to that TSD by the Kernel,

to IOS for synchronous processing. Control is not returned to

the calling TSD until the request has completed. .

Having received an RP via this entry point, IOS then locates the
appropriate DCB, re-packages the request in an RLH, and
initiates processing of the request by passing it to the
appropriate TSD.

IOS provides this entry point to every registered block device
TSD in field ILB_stratl_block of the TSD’s ILB. The TSD should
call it whenever its own STRAT1 entry point gains control with
an RP other than INIT or SHUTDOWN.

The TSD should put the 16:16 address of the RP on the stack
before calling the IOS entry point.

The following code fragment illustrates use of this entry point
by a block device TSD.

push es ; put the 16:16 pointer to
push bx ; rlh on the stack.
call cs:[ILB_stratl_block] ; call ios’s STRAT1 entry point.

7.0 IOS Interface Specification 44

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Block Device STRAT2 Request Processing

This callable entry point provides TSD’s with a way to transfer
an RLH, which has just been delivered to that TSD by the Kernel
or an FSD, to IOS for processing. Control is returned to the
calling TSD as soon as the request has been queued or initiated.
Completion of the request is reported via appropriate callout
processing. Note that the completion callout processing may
occur before control is returned to the calling TSD.

Having received an RLH via this entry point, IOS then locates
the appropriate DCB and initiates processing of the request by
passing it to the appropriate TSD.

I0S provides this entry point to every registered block device
TSD in field ILB_strat2_block of the TSD’s ILB. The TSD should
call it whenever its own STRAT2 entry point gains control.

The TSD should put the 16:32 address of the RLH on the stack
before calling the IOS entry point.

The following code fragment illustrates use of this entry point
by a block device TSD on a 386 systen.

push es ; put the 16:32 pointer to
push ebx ; rlh on the stack.
call cs:[ILB_strat2 block] i call ios’s STRAT2 entry point.

Character Device STRAT1 Request Processing

This callable entry point provides TSD’s with a way to transfer
an RP, which has just been delivered to that TSD by the Kernel,
to IOS for synchronous processing. Control is not returned to

the calling TSD until the request has completed.

Having received an RP via this entry point, IOS then locates the
appropriate DCB, re-packages the request in an RLH, and
initiates processing of the request by passing it to the
appropriate TSD.

IOS provides this entry point to every registered character
device TSD in field ILB_stratl char of the TSD’s ILB. The TSD
should call it whenever its own STRAT1 entry point gains control
with an RP other than INIT or SHUTDOWN.

The TSD should put the 16:16 address of the RP on the stack
before calling the IOS entry point.

The following code fragment illustrates use of this entry point
by a character device TSD.

push es ; put the 16:16 pointer to
push bx ; rlh on the stack.

7.0 IOS Interface Specification 45

Microsoft 0S/2 LADDR Compliant Device Driver Specification

call Ccs: [ILB_stratl_ char] ; call ios’s STRAT1 entry point.

Character Device STRAT2 Request Processing

This callable entry point provides TSD’s with a way to transfer
an RLH, which has just been delivered to that TSD by the Kernel
or an FSD, to IOS for processing. Control is returned to the
calling TSD as soon as the request has been queued or initiated.
Completion of the request is reported via appropriate callout
processing. Note that the completion callout processing may
occur before control is returned to the callin TSD.

Having received an RIH via this entry point, IOS then locates
the appropriate DCB and initiates processing of the request by
passing it to the appropriate TSD.

IOS provides this entry point to every registered character
device TSD in field ILB_strat2 char of the TSD’s ILB. The TSD
should call it whenever its own STRAT2 entry point gains
control.

The TSD should put the 16:32 address of the RLH on the stack
before calling IOS.

The following code fragment illustrates use of this entry point
by a character device TSD on a 386 systemn.

push es ; put the 16:32 pointer to

push ebx ; rlh on the stack.

call cs:[ILB_strat2 char] ; call ios’s STRAT2 entry point.
DevH1lp

IOS provides this entry point to every registered device driver
in field ILB devhlp of the drivers ILB. Device drivers should
call this entry point (rather than the DevHlp entry point
provided in an INIT RP) whenever a DevHlp service is needed.

The following code fragment illustrates use of this entry point:

include dmacs.inc ; define the DEVHLP macro.

Xor ax,ax ; set up a base

Xor bx,bx ; address of zero.

mov cx,-1 ; specify biggest segment possible.

specify gdt selector to map against.
call ios’s devhlp entry point to
requesting physical address to

; gdt mapping.
3E error ; any error? yes, go report it.

mov si,selector_ to_use
DEVHLP DevHlp PhysToGDTSelector

~e Seo ~e

7.0 IOS Interface Specification 46

Microsoft OS/2 LADDR Compliant Device Driver Specification

IOS serv

ices

IOS provides this entry point to every registered device driver
in field ILB service rtn of the drivers ILB. Device drivers
should call this entry point whenever an IOS service is needed.
Associated with a call to IOS services is an IOS services packet
(ISP), the format of which varies according to the requested
service, and which is defined within the IOS services packet

data

The
ISP

sub
mov
mov
mov
mov
mov
push
push
push
call

mov

add

The
]

7.0 IOS

structure definition.

following code fragment illustrates creation and use of the

by a driver on a 286 system.

sp,size ISP _ddb create I

di,sp ;

ss:[di].ISP_func,ISP create ddb ;

ss:[di]. ISP owner segmt, cs

ss:[di].ISP owner.offst,offset $'

55t [di] - ISP_ddb_51ze ax :

SS ’

0 7

di ;
cs: [ILB_service rtn] ;
ax,ss:[di.ISP _ddb ptr.loword] ;

sp,size ISP _ddb create+6 H

following IOS services are provided:
Registration via IDC

Registration via IOCTL

Trace Routine

Allocate Memory

Create Physical DCB

Create Logical DCB

Create DDB

Create SRB’s

Create RCB

Interface Specification

allocate isp from the stack.
point to the gotten isp.
construct

isp for

the build

ddb service.

put the 32-bit address

of the isp on

the stack.

create ddb.

pick up the ddb’s address.

cleanup the stack and
discard the isp.

47

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Set IRQ

Registration via IDC

The return code, which is returned in the ax register,

This entry point to IOS is used by a driver which has received a
ring zero init request packet (RP) to link itself to IOS, which,

in turn,

triggers driver initialization.

The code fragment below illustrates a registration call via

1DE.

devhlpfunc dd ?

ios_name db

ios_fillerl dd
ios_filler2 dw
ios_ep_prot dd
ios_ds prot dw

drv_reg pkt

mov
mov
mov
mov

mov
mov
mov
call

¢all

push
push
push
push
call
add

*T0OSS r,0

))) o)

DRP <>

ax,es:[bx].INI pDevHlp.offst
devhlpFunc.offst, ax
ax,es:[bx].INI pDevHlp.segmt
devhlpFunc.segmt, ax

bx,offset IOS name
di,offset IOS fillerl
dl,DevHlp AttachDD
[devhlpfunc]

setup srp

es
bx

seg drv_req pkt
offset drv_reg pkt
[ios_ep prot]

sp, 08

following meaning:

0000

0001

8XXX

~e

devhelp function pointer.
8 byte asciiz name of ios.

not used.
not used.
los registration entry point.
ds corresponding to above ep.

move the kernel’s devhlp
entry point address from
the init request packet .
to our init data segment.
point to name to attach to.
point to the result area.

call the kernel’s attach
device driver devhlp routine.

setup the driver registration
packet.

set up a pointer to the

init request packet.

set up a pointer to the
drivers drp.

call ios’s registration routi
clean up the stack.

has the

Registration accepted - driver is to remain resident after

initialization is complete

Registration accepted - driver is to discard itself after

initialization is complete

Registration rejected - "xxx" is a standard IOS error code

as defined by IEC.INC

7.0 I0S Interface Specification

48

Microsoft OS/2 LADDR Compliant Device Driver Specification

Registration via IOCTL

This entry point to IOS is used by a driver which has received a
rlng three init request packet (RP) to link itself to IOS. This
in turn triggers driver initialization.

Trace Routine

I0S provides this entry point to every reglstered device driver

in field ILB trace rtn of the drivers ILB.

It is used by a

driver to cause event related information to be stored in the
appropriate trace table.

Allocate Memory

This entry point to IOS services is used by a driver to obtain a
piece of memory from IOS’s memory pool for non-architected use.

The space for all architected data structures should be obtained
via the appropriate I0S services call.

In addition to allocating the requested
physical address of the allocated piece

of the piece in standard dword format.

The following code fragment illustrates
allocation request by a driver on a 286

sub
mov
mov
mov
mov
mov
mov

push
push

call
mov

add

sp,size ISP mem alloc
di,sp

ss:[di].ISP_func,ISP _alloc mem
ss:[di].ISP_owner.segmt,cs

space, IOS places the
in the first two words

a generic memory
system.

.
’

.
I’

ss:[di].ISP_owner.offst,offset $;
ss:[di]. ISP mem type MED FREE_TYPE; mem service.

S5t [(di].I8P _mem_size,100

ss
di

cs:[ILB_service_rtn]
ax,ss:[di.ISP_mem ptr.loword]

sp,size ISP_srb alloc+4

7.0 IOS Interface Specification

.
’

.
’

.
4

~e

allocate isp from the stack.
point to the gotten isp.
construct

isp for

the alloc

alloc 100 bytes

set up the pointer
to the isp.

allocate the memory piece.
get address of gotten piece.

cleanup the stack and
discard the isp.

49

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Create Physical Device Control Block (DCB)

This entry point to IOS Services is used by a driver to obtain '
space for a physical DCB and to initialize the following fields
in it

list of fields to be added

The following code fragment illustrates a create physical dbc
request by a driver on a 286 system.

sub sp,size ISP_dcb_create ; allocate isp from the stack.
mov di,sp ; point to the gotten isp.
mov ss:[di].ISP_func,ISP_create_dcb ; construct
mov ss:[di).ISP owner.segmt,cs ; isp for
mov ss:[di].ISP_owner.offst,offset $; the build
mov ss:[di].ISP_dcb size,size _dcb ; dcb service.
push ss ; set up the pointer
push di ; to the isp.
call cs: [ILB _service_rtn] ; create the physical dcb.
mov ax,ss:[di.ISP_dcb_ptr.loword] ; get the new dcb’s address.
add sp,size ISP _dcb_createt4 ; cleanup the stack and

; discard the isp. ‘

Create Logical Device Control Block (DCB)

This entry point to IOS Service is used by a driver to cause I0S
to create a partially initialized logical DCB and call all
drivers associated with the corresponding physical DCB to
complete initialization of the logical DCB.

The following code fragment illustrates a create logical dbc
request by a driver on a 286 system.

sub sp,size ISP_dcb_create ; allocate isp from the stack.
mov di,sp ; point to the gotten isp.
mov ss:[di].ISP_func,ISP_create_dcb ; construct

mov ss:[di]. ISP owner. segmt és ; isp for

mov ss:[di]. ISP owner.offst,offset $; the build

mov ss:[di].ISP dcb size,size _dcb ; dcb service.

push ss ; set up the pointer

push di ¢ te the 1isp.

call cs:[ILB service_rtn] ; create the logical dcb.

7.0 IOS Interface Specification 50

Microsoft OS/2 LADDR Compliant Device Driver Specification

mov

add

ax,ss:[di.ISP_dcb ptr.loword] ;

sp,size ISP_dcb create+4 ;

.
’

Create Driver Data Block (DDB)

get the new dcb’s address.

cleanup the stack and
discard the isp.

This entry point to IOS Services is used by a driver to cause

I0S to create a DDB of the size specified by the driver,

and to

clear the driver owned portion of it to zeros.

The following code fragment illustrates a create DDB request by
a driver on a 286 system.

sub
mov
mov
mov
mov
mov

push
push

call
mov

add

sp,size ISP_ddb_create :
di,sp ;
ss:[di].ISP_func,ISP_create_ddb ;
ss:[di].ISP_owner.segmt,cs ;
ss:[di]. ISP owner.offst,offset $;
sg: [(d1].I8P . ddb size,ax ;

ss ;
di H

cs:[ILB_service rtn] ;
ax,ss:[di.ISP_ddb_ptr.loword] ;

sp,size ISP_ddb_create+4 :

Create Request Control Block (RCB)

allocate isp from the stack.
point to the gotten isp.
construct

isp for

the build

ddb service.

set up the pointer
to the isp.

create the ddb.
get the new ddb’s address.

cleanup the stack and
discard the isp.

This entry point to IOS Services is used by a driver to cause
I0S to create an RCB and initialize the following fields in it:

list of fields to be added

The following code fragment illustrates a
a driver on a 286 systenm.

sub

mov

mov
mov
mov
mov

sp,size ISP_rcb_alloc y
di,sp -

gs:[di].ISP func,ISP create rch
ss:[di].ISP_owner.segmt,cs

ss:[di].ISP_owner.offst,offset §$;
ss:[di].ISP rcb_size,size RCB ;

~e ~o

7.0 I0OS Interface Specification

create RCB request by

allocate isp from the stack.
point to the gotten isp.
construct

isp for

the build
rcb service.

51

Microsoft 0OS/2 LADDR Compliant Device Driver Specification

push ss ; set up the pointer

push di ; to the isp. ‘
call cs:[ILB_service rtn] ; create the rcb. ‘
mov bx,ss:[di.ISP rcb_ ptr.loword] ; get the new rcb’s address.

add sp,size ISP_rcb_alloc+4 ; cleanup the stack and

; discard the isp.

Create SRB’s

This entry point to IOS Services is used by a driver to cause
IOS to create a chain of SRB’s. The SRB size and number of
SRB’s is specified by the driver. IO0S returns the address of an
SRB from which the others are chained through 1link field

SRB Next S SRB Logical. A link field of zero indicates the end
of the chain.

The following code fragment illustrates a create RSB chain
request by a driver on a 286 system.

sub sp,size ISP srb alloc ; allocate isp from the stack.
mov di,sp ; point to the gotten isp.

mov s5:[di] . ISP _ func,ISP create srbs, construct .
mov ss:[di].ISP_owner.segmt,cs the isp

mov ss:[di]. ISP ownher.offst,offset $ for the

mov ss:[di].ISP_srb number, 3 ; build srb's

mov ss:[di].ISP_srb size,size SRB ; services.

push ss ; set up the pointer

push di ; to the isp.

eall cs:[ILB service rtn] ; ereate the srb’'s

mov ax,ss:[di.ISP_srb_ptr.loword] ; get the address of the first

; srb in the chain.

add sp,size ISP _create_srbs+4 ; cleanup the stack and
; discard the isp.
Set IRQ

This entry point to IOS Services is used by a driver to register
an interrupt service routine for a particular IRQ.

7.0 IOS Interface Specification 52

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Driver to IOS Interfaces

The following sections define these interfaces from drivers to
IOS:

| Asynchronous Event Routine
= Callback Entry point

] IRQ Interrupt Routine

| Process Request Entry Point
| STRAT1 Entry Point

u STRAT2 Entry Point

Asynchronous Event Routine

Drivers provide this entry point in their DRP. IOS captures the
address during registration processing and subsequently uses it
to notify the driver that an asynchronous event has occurred
which that driver may need to process.

Associated with a call to this entry point is a AEP, the format
of which varies according to the initiating event. The various
formats are defined in the asynchronous event packet data
structure definition.

The following code fragment illustrates creation and use of the
AEP by IOS on a 286 system.

sub sp,size aep ; allocate aep from the stack.
mov si,sp ; point to the gotten aep.
mov ss:[si.AEP func],AEP config_boot device ; set up add

boot device function.

mov ss:[si.AEP dcb.lo],di ; put the dcb pointer
mov ss:[si.AEP dcb.hi],0 ; in the aep.

push ss ; put the aep address
push 0 ; on the stack in

push si ; 16:32 format and

call es: [bx].DRP_aer ; call the driver’s AER.
add Sp,size aep+6 clean up the stack and

~e o

discard the aep.

7.0 IOS Interface Specification 53

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Callback Entry Point

Drivers provide callback entry points by storing an appropriate
address in a field associated with a completion event. The
entry point later receives control when that completion event
occurs.

Note that this entry point differs from the asynchronous event

routine entry point in that this entry point is specific to a
particular event and is highly performance sensitive.

IRQ Interrupt Routine

A driver provides this entry point during a REGISTER IRQ call to
IOS services. IO0S calls this entry point whenever an interrupt
associated with the specified IRQ occurs.

Process Request Entry Point

A driver provides this entry point by storing it in the DCB’s
calldown table during DCB configuration processing. The process
request entry point subsequently gains control whenever a
request is available for it to process.

STRAT1 Entry Point

The driver provides this entry point, which is used by the
kernel to initiate I/O with a STRAT1 packet, by assembling it
into it’s device driver header.

This entry point is called with ES:BX pointing to an RP.

STRAT2 Entry Point

The driver provides this entry point, which is used by the
kernel and FSD’s to initiate I/0 with a STRAT2 packet, by
inserting it in a DCS.

On 386 system, this entry point is called with ES:EBX pointing
to an RLH.

This entry point is not supported on 286 systems.

7.0 I0S Interface Specification 54

Microsoft 0S/2 LADDR Compliant Device Driver Specification

8.0 TOS DATA STRUCTURE DEFINITIONS:

The following sections define these data structures which are
used by IOS or shared between IOS and drivers.

Asynchronous Request Packet - AEP
Device Control Block - DCB

Driver Data Block - DDB

Driver Registration Packet - DRP
Driver Vector Table - DVT

IDC - Inter Driver Communications
IOS Linkage Block - ILB

IOS Service Packet - ISP

I0S Vector Table - IVT

Memory Element Descriptor - MED
Request Control Block - RCB
STRAT1 Packet - RP

STRAT2 Packet - RLH

SCSI Request Block - SRB

Asynchronous Event Packet - AEP

Asynchronous event packets (AEP) are generated by IOS and passed

to drivers to initiate the driver’s processing of an

asynchronous event.

An AEP may reside anywhere in memory and is not necessarily

contiguous. It is referenced via a 16:32 address.

The AEP has a variable format which is dependant on the

asynchronous event being handled.

It is declared in AEP.H and its various function codes are also
defined.

8.0 IOS Data Structure Definitions

55

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Device Control Block - DCB

A device control block (DCB) represents a physical or logical
device. It contains information and pointers which exist on a
per device basis. 1In general, one driver creates and partially
initializes a DCB, and then one or more other drivers complete
initialization. IOS and any of the drivers associated with the
device may subsequently inspect or update a DCB.

DCB’s always reside in I0S’s memory pool, are contiguous, and
are referenced via an I0S:32 address.

The DCB has a fixed format common section and a device type
specific extension.

It is declared in DCB.H.

Packed within the common section of the DCB is the call down
table which has ten identically formatted entries

8.0 IOS Data Structure Definitions 56

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The following illustrates the relationship of the various elements
‘ of the DCB, with selected fields within each element shown.
Hommm e DCB ——————————————— +
e A e i et 78 +|Common section
e +
|32-bit physical addr of dcb|
e +
tmmm 4+ Hmmmmmmm +
|device type| |bus i/f type|
Fmmm - + Ao +
o +
fom e +
o 4
ascii name of device
fmm e +
o +
Tt +
e e e e e e S e e e e +||Calldown table -
first entry
e +
‘ |drivers request entry point]
e it -
e et -
|drivers aer entry point|
o e +
o 4
|pointer to drivers ddb |
o 4
e +
|drivers demand bits|
o 4
o +
P s e e +||Calldown table -
tenth entry
o +
|drivers request entry point|
o +
o -
. |drivers aer entry point|
o +

8.0 IOS Data Structure Definitions 57

Microsoft 0S/2 LADDR Compliant Device Driver Specification

- +
|pointer to drivers ddb |
o - +
o +
|drivers demand bits|
o +
e +
o +
e +|Device type specific
section
fmm e +
fmm - +
fmmm e +
fom - +
fomm e +
- +
o - +
o +
fmm - +
et +
o +
o +
o +
et +

Figure 17. General Structure of the DCB

The following notes provide some basic guidelines for accessing
the various parts of the DCB.

1. Drivers should not make any direct reference to a DCB’s call
down table. 1Instead they reference it via an index provided
to them for that purpose.

8.0 IOS Data Structure Definitions 58

Microsoft

The format

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

of the DCB’s common section is as follows:

bit ok the
7 0

e it st e S
00h

+ +
0lh

+ DCB_phys addr (note 1) +
02h

+ -
03h

e At s e
04h

+ DCB_ascii _name (note 2) +
05h

~ (eight bytes in total) ~
Obh

==ttt ——————+
Och

- +
0dh

+ DCB_next dcb logical (note 3) +
Oeh

+ +
0fh

Bt e e e e e e
10h DCB_controller (note 4)

e e et

8.0 IOS Data Structure Definitions

59

Microsoft 0S/2 LADDR Compliant Device Driver Specification

byte 11h DCB_controller_unit (note 5)

t———t———t—— ==t ———F———t-——+
byte 12h DCB_device_unit (note 6)

s s e e e e
byte 13h DCB_physical_device (note 7)

i e T e e e e e
byte 14h DCB_scsi_lun (note 8)

s e T e e e e o
byte 15h DCB device_type (note 9)

e T e e
byte 16h DCB bus_type (note 10)

i e e e e
byte 17h DCB sense _data_len (note 11)

e e T e S e
byte 18h

+ DCB _bid_area_len (note 12) +
byte 19h

t———t ettt ———t———t = ———+
byte 1lah

+ DCB_tsd_flags (note 13) +
byte 1bh

t———t ettt ———t = ———+
byte 1ch

+ -
byte 1dh

+ DCB_sense_buff log (note 14) +
byte leh

8.0 IOS Data Structure Definitions 60

Microsoft OS/2 LADDR Compliant Device Driver Specification

byte 1fh
‘ tom e ———+
byte 20h
+ +
byte 21h
+ DCB_vendor_specific (note 15) +
byte 22h
~ (eight bytes in total) ~
byte 27h
e s H e e e s
byte 28h
+ DCB_calldown_ table (note 16) +
byte 29h
‘ ~ (xxxx bytes in total) ~
byte xxh

e e e e i ST TN S S
Figure 18. Device Control Block (DCB) Common Section Format
Notes:

1. DCB_phys_addr This field contains the 32-bit physical
address of this DCB.

2. DCB_ascii_name This field contains the eight bytes ascii
name of the device.

3. DCB_next_dcb_logical This field contains the I0S:32 pointer
to the next DCB in IOS’s DCB chain.

This field is owned by IOS and should be neither
inspected nor changed by drivers.

4. DCB_controller This field contains the 8-bit controller

number.
‘ 5. DCB_controller unit This field contains the 8-bit unit
number within the controller.

8.0 IOS Data Structure Definitions 61

Microsoft 0S/2 LADDR Compliant Device Driver Specification

6. DCB _device_unit This field contains the 8-bit logical unit
number of the volume. ‘

7. DCB_physical_device This field contains the 8-bit physical
drive address in the case of an ESDI attached
device, and the 8-bit target id in the case of a
SCSI attached device.

8. DCB_scsi_lun This field contains the 8-bit logical unit
number of a SCSI attached device.

9. DCB_device_type This field contains an 8-bit device type
code, defined as follows:

DCB_TYPE_CHS_FIXED_DISK (01 hex) The device is a
fixed disk within which data is
located via a cylinder, head, and
sector address

DCB_TYPE_RBA_FIXED_ DISK (02 hex) The device 1is a
fixed disk within which data is
located via a relative block
address

DCB_TYPE_SEQ TAPE (02 hex) The device is a
sequentially access tape drive

DCB_TYPE PRINTER (03 hex) The device is a
printer

DCB_TYPE_525_FLOPPY (04 hex) The device is a
floppy disk drive which supports
5.25" removable media

DCB_TYPE_350_FLOPPY (05 hex) The device is a
floppy disk drive which supports
.5" removable media

DCB_TYPE_525_CDROM (06 hex) The device is a
cd-rom disk drive which supports
3.5" removable media

DCB_TYPE_ASYNC (07 hex) The device is a
asynchronous communications port

DCB_TYPE_SDLC (08 hex) The device 1is an SDLC
communications port

DCB_TYPE_BISYNC (09 hex) The device 1s a BISYNC
communications port

10. DCB_bus_type This field contains an 8-bit bus interface
type code, defined as follows:

DCB_BUS_ESDI (01 hex) The device 1s connected ‘
via an ESDI controller

8.0 IOS Data Structure Definitions 62

Microsoft 0S/2 LADDR Compliant Device Driver Specification

DCB_BUS_SCSI (02 hex) The device is connected
via a SCSI controller

DCB_BUS_SS (03 hex) The device is connected via
a super-smart controller

11. DCB_sense_data_len This 8-bit field contains the number of
sense bytes provided by this device

12. DCB_bid_area_len This 16-bit field contains the size, in
bytes, of the BID specific area in SRB’s built
for this device

13. DCB_tsd_flags This 16-bit field contains flags which are
private to the TSD controlling this device

14. DCB_sense_buff log This field contains the I0S:32 pointer
to the sense data for this device.

15. DCB_bid specific This eight byte field contains sub-fields
which are private to the BID currently handling
any active I/0 request for this device

16. DCB_calldown_table This field contains the device’s

calldown table, which is fully defined in the
next section

8.0 IOS Data Structure Definitions 63

Microsoft

The format

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

of an entry in the DCB’s calldown table is as follows:

bit bit
7 0

t-———t =ttt ———t———t———t———+
00h

- +
O0lh

+ DCB _cd request_ep (note 1) +
02h

+ +
03h

e e e L
04h

+ +
05h

+ DCB _cd_aer_ep (note 2) +
06h

+ +
07h

e e et e e e e
08h

+ +
09h

+ DCB cd ddb (note 3) +
Oah

+ +
Obh

s R e e St
Ooch

8.0 IOS Data Structure Definitions 64

Microsoft

byte

byte

byte

Figure 19.
Notes:

1. DCB_cd_

2. DCB_cd_

3. DCB_cd_

4. DCB _cd_

0S/2 LADDR Compliant Device Driver Specification

| |

+ DCB _cd flags (note 4) +
0dh

e e A i e e e
Oeh

+ filler (note 5) +
0fh

ottt = ———
Device Control Block Calldown Table Format

request ep This field contains the 16:16 address of
the driver’s request entry point

aer ep This field contains the 16:16 address of the
driver’s asynchronous event routine entry point

ddb This field contains the I0S:32 address of the
driver’s DDB

flags This 16-bit field contains the driver’s demand
bits. These bits represent demands being made of
the next higher driver by this driver.

As each driver initializes, before it inserts its
own entry in the calldown table, it should
examine the demand bits of the next lower driver.
Except for TSD’s those demand bits which are not
supported by the initializing driver should be
copied into its own demand bits. TSD’s should
generate an appropriate error report if any
unsupported demand bits are on.

All drivers should check all other demand bits
for consistancy and an appropriate error report
should be generated if they are inconsistent.

The following demand bits are defined:
DCB_demand SRB_CDB (0001 hex) The driver
requires that it be provided with
an SRB and CDB for each RH.
BID’s which support SCSI bus

interfaces normally turn this bit
on.

DCB_demand logical (0002 hex) The driver

8.0 IOS Data Structure Definitions 65

Microsoft 0S/2 LADDR Compliant Device Driver Specification

requires that it be provided with
logical media addresses and that a
logical DCB be associated with the
RCB

This bit is typically turned on by
certain special kinds of VSD (such
as FT enhancers, and some cachers)
and is then propagated to the TSD
by intermediate drivers which do
not support it.

DCB_demand_physical (0003 hex) The driver
requires that it be provided with
physical media addresses and that
a physical DCB be associated with
the RCB

This bit is normally turned on by
a BID and then propagated to the
TSD by intermidiate drivers which
do not support it.

Certain special kinds of VSD (such
as FT enhancers, and some cachers)
do support this bit. They
typically set DCB_demand_logical
in their own demand bits.

DCB_demand reserved (7ff8 hex) These bits are
reserved for future use.

DCB_demand contig_sns (8000 hex) The driver
requires that the sense data area
immediately follow the BID’s
private area in SRB’s.

Failure to support this bit will
render SCSI’izer VSD’s
incompatible with certain SCSI
controller cards.

5. filler This 16-bit field exists to achieve dword
alignment of calldown table entries

Driver Data Block - DDB

Driver data blocks (DDB) exist to satisfy driver re-entrancy
constraints: they provide private work space.

A particular DDB exists only because its associated driver needs
private memory.

8.0 IOS Data Structure Definitions 66

Microsoft 0S/2 LADDR Compliant Device Driver Specification

In general, BID’s create one DDB for each bus interface and
other drivers do not need DDB’s. A DDB is private to the driver
which created it, although IOS may inspect or update the DDB’s
header.

DDB’s always reside in IOS’s memory pool, are contiguous, and
are referenced via an I0S:32 address.

The DDB has a small fixed format header and a driver defined
main section.

It is declared in DDB.H and typically is redefined by drivers.

The following code fragment is an example of driver redefinition
of the DDB.

driver_ ddb strue

db size ddb dup (?)
d_ddb_ field 1 dw) ; appropriate comment.
d ddb field 2 dd & ; appropriate comment.
d _ddb_ field_3 db 7 ; appropriate comment.
d _ddb_field 4 dw 7 ; appropriate comment.
driver_ddb ends

Driver Registration Packet - DRP

A driver registration packet (DRP) is generated by a driver and
passed to IOS during driver registration. It contains
information which identifies the version and capabilities of the
driver and provides the address of the drivers asynchronous
event routine. DRP’s are typically assembled into a driver’s
initialization data segment.

A DRP may reside anywhere in memory and is not necessarily
contiguous. It is referenced via a 16:32 address.

It is declared in DRP.H.

Driver Vector Table - DVT

A driver vector table (DVT) is created by IOS during driver
registration. It contains various addresses within the driver
and information about the driver which IOS may need at a later
time. DVT’s are private to IOS.

DVT’s always reside in IO0S’s memory pool, are contiguous, and
are referenced via an I0S:32 address.

It is declared in DVT.H.

8.0 IOS Data Structure Definitions 67

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Inter-driver Communication Packet - IDC

An inter-driver communication packet (IDC) is created during the ‘
processing of an AttachDD DevHlp.

An IDC may reside anywhere in memory and is not necessarily
contiguous. It is referenced via a 16:16 address.

It is declared in IDC.H.

TO0S Linkage Block - ILB

An empty IOS linkage block (ILB) is generated by a driver and
passed to IOS during driver registration. IOS fills the ILB in
with IOS version and configuration information and various IOS
entry points for later use by the driver. DRP’s are typically
assembled into a driver’s code segment.

An ILB may reside anywhere in memory and is not necessarily
contiguous. It is referenced via a 16:32 address.

It is declared in ILB.H.

8.0 IOS Data Structure Definitions 68

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The following figure illustrates the format and content of a ILB.

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

00h

Olh

02h

03h

04h

05h

06h

07h

08h

09h

Oah

Obh

Och

bl bt
7 0
tom ettt ———t———+
+ +
+ ILB stratl block (note 1) +
+ +
-ttt ———F———t———t———+
+ +
+ ILB strat2 block (note 2) +
+ -
to——t ettt ———F———+
+ +
+ ILB stratl_char (note 3) +
+ +
s b T

8.0 IOS Data Structure Definitions

69

Microsoft

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

+ -
0dh

+ ILB strat2 char (note 4) 25
Oeh

+ +
0fh

e e e e e e
10h

+ +
11h

+ ILB_queue_ srb (note 5) +
12h

+ +
13h

to——tmm et —— = ———+
14h

+ +
15h

+ ILB service rtn (note 6) +
16h

+ +
17h

it e e e e
18h

+ +
19h

+ ILB dprintf rtn (note 7) +
lah

8.0 IOS Data Structure Definitions 70

Microsoft

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

1bh

leh

1dh

leh

1fh

20h

21h

22h

23h

24h

25h

26h

27h

28h

+ +
e e e
+ +
+ ILB eoi_rtn (note 8) -
+ +
et e e e e e
+ +
+ ILB PhysToGDTSel rtn (note 9) +
+ -
-ttt ———F———+
+ -
+ ILB AllocGdtSel_rtn (note 10) +
% +
ik it bt e e e bl bt o

8.0 IOS Data Structure Definitions

71

Microsoft OS/2 LADDR Compliant Device Driver Specification

+ +
byte 29h

+ ILB reserved 4 (note 11) +
byte 2ah

+ +
byte 2bh

R e e e B e e Rt -
byte 2ch

+ +
byte 2dh

+ ILB _reserved 5 (note 11) +
byte 2eh

+ +
byte 2fh

e e e e e
byte 30h

+ +
byte 31h

+ ILB reserved 6 (note 11) +
byte 32h

+ +
byte 33h

e e e s A Bt s e
byte 34h

+ +
byte 35h

+ ILB_reserved_7 (note 11) =
byte 36h

8.0 IOS Data Structure Definitions 72

Microsoft

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

37h

38h

39h

3ah

3bh

3ch

3dh

3eh

3fh

40h

41h

42h

43h

44h

+ +
e e s s e D e
+ +
+ ILB reserved 8 (note 11) +
+ +
bt e e e s e e e
+ +
+ ILB reserved 9 (note 11) +
+ +
It e e et s sl o et
+ 4
+ ILB reserved 10 (note 11) +
+ +
fom—pmm e ===

8.0 IOS Data Structure Definitions

43

Microsoft

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

45h

46h

47h

48h

49h

4ah

4bh

4ch

4dh

4eh

4fh

50h

51h

52h

+ +
+ ILB reserved 11 (note 11) +
+ +
to——t ettt ———+
+ +
+ ILB _reserved 12 (note 11) +
+ +
Rt e e e Lt Sttt 4
+ +
+ ILB reserved 13 [(note 11) +
+ +
ottt ———+
+ +
+ ILB reserved_14 (note 11) +

8.0 IOS Data Structure Definitions

74

Microsoft 0S/2 LADDR Compliant Device Driver Specification
| l
"' + +
byte 53h
s st B e
byte 54h
+ +
byte 55h
+ TLB reserved 15 (note 11) +
byte 56h
+ -
byte 57h
Rt et Rt e
byte 58h
+ -
‘ byte 59h
+ ILB reserved 16 (note 11) +
byte 5ah
+ +
byte 5bh
-ttt ———F———+———+
byte 5ch
+ +
byte 5dh
+ ILB_reserved_17 (note 11) -
byte 5eh
+ +
byte 5fh
‘ J’r———+———+-—-—+———+———+———+———+———+
byte 60h |
8.0 IOS Data Structure Definitions 15

Microsoft

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

+ +
61h

+ ILB reserved_18 (note 11) +
62h

+ +
63h

t———t ettt — ===+
64h

+ +
65h

+ ILB reserved 19 (note 11) +
66h

+ +
67h

=== ———F———+
68h

+ -
69h

+ ILB reserved 20 (note 11) +
6ah

+ +
6bh

ottt =+ ———+
6ch

+ +
6dh

+ ILB devhlp (note 12) +
6eh

8.0 IOS Data Structure Definitions 76

Microsoft

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

+ +
6fh

t-——t - == ———+
70h

+ +
71k

+ ILB trace rtn (note 13) +
72h

+ +
73h

et e At e e e e e
74h

+ +
75h

+ ILB dvt (note 14) +
76h

+ +
77h

R it e T S e e bl =
78h

+ +
79h

+ ILB reserved_30 (note 11) +
7ah

+ +
7bh

e e e e e e o e i
7ch

8.0 IOS Data Structure Definitions

7

Microsoft 0S/2 LADDR Compliant Device Driver Specification

+ +
byte 7dh

+ ILB reserved_ 31 (note 11) +
byte 7eh

+ +
byte 7fh

s a e e
byte 80h

+ ILB runtime_cs (note 15) +
byte 81h

et ————— e ———F === ———+
byte 82h

+ ILB drv_data_sel (note 16) +
byte 83h

s a5
byte 84h

+ ILB ios _mem_sel (note 17) +
byte 85h

to——t et ——— A — ==t ———+
byte 86h

+ ILB_flags (note 18) +
byte 87h

t———t———t———t———t———f———F———t+———+
byte 88h

+ ILB reserved_41 (note 11) +
byte 89h

t=——t———t———t =t ———F———+
byte 8ah

8.0 IOS Data Structure Definitions 78

Micro

Figure

Notes:

1. ILB_stratl block During registration, IOS stores
field a 16:16 pointer to IOS’s STRAT1
submission routine for block devices.

2. ILB_strat2 block During registration, IOS stores
field a 16:16 pointer to I0OS’s STRAT2 request
submission routine for block devices.

3. ILB_stratl char
field a 16:16 pointer to I0OS’s STRAT1 request
submission routine for character devices.

4. ILB_strat2_char
field a 16:16 pointer to IOS’s STRAT2 request
submission routine for character devices.

soft

byte

byte

byte

byte

byte

byte

byte

20,

0S/2 LADDR Compliant Device Driver Specification

8bh

8ch

8dh

8eh

8fh

90h

91h

+ ILB reserved_42 (note 11) +

-ttt ———t———+
ILB reserved 43 (note 11)
e R T e e e ek e
ILB reserved 44 (note 11)
+-———t———t———t———t———t———t ==t =1
ILB reserved 45 (note 11)
R e e At e S it 2
ILB first drive (note 19)

e e S e

+ ILB_info_seg_sel (note 20) +

e e e i Rttt Rttt

I0S Linkage Block (ILB) Format

into this
request

into this

During registration, IOS stores into this

During registration, IOS stores into this

5. ILB_queue_srb During registration, IOS stores into this

8.0 IOS Data Structure Definitions

field a 16:16 pointer to IOS’s SRB queuing
routine.

When subsequently called by the driver, the SRB

79

Microsoft 0S/2 LADDR Compliant Device Driver Specification

gueuing routine expects the SI register to
contain an I0S:16 pointer to the SRB and the DI
register to contain an 1I0S:16 pointer to the DCB.

6. ILB service rtn During registration, IOS stores into this
field a 16:16 pointer to IOS’s general purpose
service routine.

7. ILB dprintf rtn During registration, IOS stores into this
field a 16:16 pointer to IOS’s DPRINTF routine.

8. ILB eoi_rtn During registration, IOS stores into this field
a 16:16 pointer to IOS’s end of interrupt
routine.

9. ILB PhysToGDTSel _rtn During registration, IOS stores into
this field a 16:16 pointer to an IOS routine
which is functionally identical to the 0S/2
Kernel PhysToGDTSel DEVHLP.

10. ILB AllocGdtSel_rtn During registration, IOS stores into
this field a 16:16 pointer to an IOS routine
which is functionally identical to the 0S/2
Kernel AllocGdtSel DEVHLP.

11. Reserved Fields These fields are reserved for future use.
12. ILB devhlp During registration, IOS stores into this field

a 16:16 pointer to the 0S/2 Kernel’s DEVHLP
routine.

13. ILB trace _rtn During registration, IOS stores into this
field a 16:16 pointer to IOS’s debug trace
routine.

14. ILB dvt During registration, IOS stores into this field
an I0S:32 pointer to the DVT for this instance of
the driver.

15. ILB runtime cs During registration, IOS stores into this
field the 16 bit code selector which the driver
will use when it is running at ring zero after
its initialization is complete.

16. ILB drv_data_sel During registration, IOS stores into this
field the 16 bit selector for the drivers data
group.

17. ILB_ios _mem_sel During registration, IOS stores into this
field the 16 kit selector for its memory pool.

18. ILB flags During registration, IOS stores into this field
flags which are defined as follows:

ILB_286_mode (0001 hex) current cpu is a 286

8.0 IOS Data Structure Definitions 80

I0S

Microsoft OS/2 LADDR Compliant Device Driver Specification

(fffe hex) reserved for future use

19. ILB_first drive During registration, IOS stores into this
field an eight bit value which corresponds to the
lowest drive letter serviced by this instance of
the driver.

20. ILB_info_seg sel During registration, IOS stores into this

field the 16 bit selector for the 0S/2 Kernel’s
Global Info segment.

Service Packet - ISP

I0S

I0S service packets (ISP) are generated by a driver and passed
to IOS to request some IOS service to be performed.

An ISP may reside anywhere in memory and is not necessarily
contiguous. It is referenced via a 16:32 address.

The ISP has a variable format which is dependant on the IOS
service being requested.

It is declared in ISP.H.

Vector Table - IVT

The IOS vector table (IVT) is assembled into IOS’s code segment.
During IOS initialization it is initialized with configuration
information and addresses which I0S will need at a later time.
It is created by IOS during driver registration. The IVT is
private to IO0S.

It is declared in IVT.H.

Memory Element Descriptor = MED

Memory element descriptors (MED) exist in IOS’s memory pool.
They are created, changed, and deleted by IOS’s memory
management routines as needed to control use of the memory pool.
MED’s are private to IOS and contain a checksum to detect
tampering and damage.

MED’s always reside in IOS’s memory pool, are contiguous, and
are referenced via an I0S:32 address.

They are declared in MED.H.

8.0 IOS Data Structure Definitions 81

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Request Control Block - RCB

Request control blocks (RCB) are created by an IOS service
routine at the behest of a driver. They contain pointers and
control information needed to manage the processing of an I/O
request. An RCB may be shared between IOS and several drivers.

RCB’s always reside in IOS’s memory pool, are contiguous, and
are referenced via an I0S:32 address.

RCB’s are declared in RCB.H.

STRAT1 Packet - RP

A STRAT1 packet (RP) is generated either by the kernel or a file
system (FSD) and passed to a driver via the kernel and volume
manager to request that an I/O operation be performed. In
conjunction with pointers contained within it, it contains all
the information required to precisely specify an I/O operation
which is to be performed. RP’s are typically contained in FSD
or kernel owned space.

An RP may reside anywhere in memory and is not necessarily
contiguous. It is referenced via a 16:16 address.

RP’s have a variable format which is dependant on the I/O
operation being performed. The disk, tape, cd-rom, and printer
TSD specifications define the various RP formats.

For LADDR compliant drivers, the RP is declared in RP.H. It is
also defined in other places (for use by non-compliant drivers,
FSD’s and the kernel) but these other definitions should not be
used by compliant drivers.

STRAT2 Packet - RLH

A STRAT2 packet (RLH) is generated either by the kernel, a file
system (FSD), IOS, or a driver to request that an I/O operation
be performed. An RLH may or may not be passed through the
kernel and the volume manager. In conjunction with pointers
contained within it, it contains all the information required to
precisely specify an I/0 operation which is to be performed.
RLH’s are typically contained in FSD or Kernel owned space, or
in IOS’s memory pool.

In 286 systems, RLH’s are not used outside of IOS.

An RLH may reside anywhere in memory and is not necessarily
contiguous.

In release 1.21, RIH’s are referenced via a 16:32 address. In
subsequent releases it is normally referenced by a 16:16

8.0 IOS Data Structure Definitions 82

Microsoft 0S/2 LADDR Compliant Device Driver Specification

address, but may, be referenced by a 16:32 address - typically a
‘ 16:16 address which has been zero extended to 16:32 format.

RLH’s have a segmented structure which results in their
appearance varying in responce to changes in the degree of
dicontiguity of data area on the media and the buffer area in
memory.

For LADDR compliant drivers, the RLH is declared in RLH.H. It
is also defined in other places (for use by non-compliant
drivers, FSD’s and the kernel) but these other definitions
should not be used by compliant drivers.

The RIH is hierarchically structured with elements of the packet
nested within other elements in a fixed order.

8.0 IOS Data Structure Definitions 83

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The following illustrates the relationship of the various elements
of the RLH packet, with selected fields within each element shown.

8.0 IOS Data Structure Definitions

(RLH)

Request List Header

First Request Header (RH)

Scatter/gather descriptor
(SG)

84

Microsoft 0S/2 LADDR Compliant Device Driver Specification

it s L T T +
s S e e +| |Additional SG’s
zero or more additional SGs
B T ittt +
e +
e e o e Sl e i 3 +|Additional RH’s
e +| |sG
e +
o +||sc
- +
T T +
e —————————— +

Figure 21. Hierarchical Structure of the RLH

The following notes provide some basic guidelines for accessing
the various parts of the RLH.

1. The RLH is best viewed as a packed structure that consists
of a fixed-size header, also called the RLH, followed by one
or more variable length sub-structures, called RH’s.

RH’s are, in turn, packed structures that comprise a
fixed-size section, called the RH and one or more fixed size
sections, called SG’s.

2. The first RH starts at a fixed displacement from the RLH.
Use "size Req List header" to obtain the displacement.

3. Given the address of an RH, the address of the RLH can be
computed by subtracting RH _Head Offset from the address of
the RH.

4. The address of the first SG can be computed by adding "size
Req Header" to the address of the RH. Adding "size
SG_Descriptor" to the address of one SG will give the
address of the next SG.

8.0 IOS Data Structure Definitions 85

Microsoft 0S/2 LADDR Compliant Device Driver Specification

The format of the RLH is as follows:

bit bit
7 0

e e e e e
byte 00h

+ +
byte 01h

+ RLH Count (note 1) -+
byte 02h

+ +
byte 03h

e et S s s
byte 04h

+ 4
byte 05h

+ RLH Notify address (note 2) +
byte 06h

+ -
byte 07h

e e e e et &
byte 08h

+ RLH Request Control (note 3) +
byte 09h

e e e e it S e
byte Oah RLH Block_ Dev_Unit (note 4)

e e e s H e S e
byte Obh RLH Lst Status (note 5)

et e e T e e e e
byte 0ch

8.0 IOS Data Structure Definitions 86

Microsoft

byte

byte

byte

byte

byte

byte

byte

Figure 22.

Notes:

0S/2 LADDR Compliant Device Driver Specification

0dh

Oeh

0fh

10h

11h

12h

13h

+ +
+ +
+ +
+ (note 6) +
+ +
+ +
+ +
e e e it e i e e

Request List Header (RLH) Format

1. RLH Count

This field contains the count of RH’s contained
in this RILH.

The requestor must set it to a value in the range
1 through 32767.

2. RLH Notify address This field must either contain zero, or

it must contain a 16:16 address of executable
code which is present and locked down.

If bits RLH_NOTIFY_ ERR and RLH_NOTIFY_DONE are
both zero, this field is not used and may contain
either a null or a valid address.

If bit RLH NOTIFY_ERR is nonzero, this field must
contain a non-null valid address that will gain
control if any RH completes with an unrecoverable
gryYar.

If bit RLH NOTIFY DONE is nonzero, this field
must contain a non-null valid address that will

8.0 IOS Data Structure Definitions 87

Microsoft 0OS/2 LADDR Compliant Device Driver Specification
gain control when this RLH completes

Note that if both bits RLH_NOTIFY_ ERR and
RLH_NOTIFY_DONE are nonzero and one or more RH’s
completes with an unrecoverable error, the
subroutine pointed to by RLH Notify Address will
gain control once for each RH that completes in
error, and once for the completion of the RLH.

If both bits RLH NOTIFY ERR and RLH_NOTIFY_ DONE
are nonzero, the subroutine pointed to by

RLH Notify Address should differentiate between
the two possible cases where it gains control by
examining RLH Lst Status. When RLH_Lst_Status
contains RLH ALL REQ DONE, the sub-routine gained
control as the result of the request completing;
otherwise control was gained as the result of an
unrecoverable error.

This subroutine will gain control for all failing
RH’s before it gains control for the RLH
completion.

Note: In the event that RLH Notify Address does
not contain a valid address and a need exists to
call that address, the call -- at the option of
the device driver’s author -- may or may not

actually be attempted. In either case, system
failure or a system hang will probably result.

3. RLH Request_Control This field contains flags that control
the processing of the request contained in the
packet.

The requestor must set all the reserved flags to
zero, and must set the other flags appropriately.

These flags are defined as follows:

RLH Req From PB (0001 hex) request came directly
from HPFS

RLH Single_Req (0002 hex) single request in list

RLH_Exe Req Seq (0004 hex) RHs to be executed in
sequence

RLH_Abort Err (0008 hex) abort on error

RLH Notify Err (0010 hex) notify immediately on
error

RLH Notify Done (0020 hex) notify when all RHs
have completed

(ffc0 hex) reserved

8.0 IOS Data Structure Definitions 88

Microsoft 0S/2 LADDR Compliant Device Driver Specification

4. RLH_Block_Dev _Unit The field contains the logical unit
. number upon which the I/O is to be performed.
Uhit I is "A:v, unit 2 ig YB:", eta.

The requestor must set this field to a valid
logical unit number for a disk partition which
supports scatter/gather operations.

5. RLH_Lst_sStatus This field contains the overall status for
the packet. The right (low) nibble indicates the
degree of completion of the packet, defined as
follows:

RLH_No Req Queued (X0 hex) no request queued

RLH_Req Not Queued (X1 hex) some, but not all,
requests queued

RLH All Req Queued (X2 hex) all requests queued

RLH _All Req Done (x4 hex) all request done or
aborted

RLH_Seq In_Progress (x8 hex) requests being
processed in sequence

RLH Abort_ Pending (X8 hex) abort list processing

. in progress

The left (high) nibble indicates the error
recovery status of the packet, defined as
follows:

RLH No Error (0x hex) no error detected

RLH _Rec_ Error (1x hex) recoverable error has
occured

RLH _Unrec_Error (2x hex) unrecoverable error has
occured

RLH_Unrec_Error_Retry (3x hex) unrecoverable
error after retry

This field is maintained by the device driver,
which initially sets it to zero and then adjusts
it as appropriate as packet processing proceeds.

Note: The values specified above are 4-bit

values; not single bit values. Consequently, new

values cannot simply be or’d into the field; the

value previously stored in the relevant nibble

must first be anded out, and then the new value
. can be or’d in.

6. This field is reserved for use by the device driver. The

8.0 IOS Data Structure Definitions 89

Microsoft 0S/2 LADDR Compliant Device Driver Specification

requestor should neither depend on the content of
this field being preserved, nor try to interpret
the content of this field.

8.0 IOS Data Structure Definitions 90

Microsoft

The format

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

of the Request Header - the RH - is as follows:

bit bit
7 0

e D e e et e e LS
00h

+ RH_Length (note 1) +
01h

et D D Bty H e S e
02h RH 0ld Command (note 2)

Rt T e e ittt bt &
03h RH Command_Code (note 3)

e e ettt e e
04h

4 +
05h

+ RH Head Offset (note 4) +
06h

+ +
07h

e D e i B e e et 2
08h RH _Req Controel (note 5)

e T e e e e L Ll
09h RH Priority (note 6)

R e e e e et L L LR
Oah RH_Status (note 7)

e B e B R e A)
Obh RH_Error_ Code (note 8)

==ttt =t ———+
Och

8.0 IOS Data Structure Definitions

91

Microsoft 0S/2 LADDR Compliant Device Driver Specification

+ +
byte 0dh

+ RH Notify Address (note 9) +
byte 0Oeh

+ +
byte 0fh

e s et e e e e
byte 10h

+ +
byte 11h

+ RH_Hint Pointer (note 10) -
byte 12h

+ +
byte 13h

e e S e e e o
byte 14h

+ +
byte 15h

+ +
byte 16h

+ -
byte 17h

+ -
byte 18h

+ +
byte 19h

+ (note 16) +
byte lah

8.0 IOS Data Structure Definitions 92

Microsoft

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

OS/2 LADDR Compliant Device Driver Specification

1bh

1ch

1dh

leh

1fh

20h

21h

22h

23h

24h

25h

26h

27h

28h

+ +
+ +
+ +
+ +
+ +
=ttt -t —— = ———+
+ +
+ RH_Start Block (note 11) +
+ +
ettt ——— ———+
+ +
+ RH_Block Count (note 12) +
+ +
e s S e e i Rt

8.0 IOS Data Structure Definitions

93

Microsoft

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

byte

0S/2 LADDR Compliant Device Driver Specification

29h

2ah

2bh

2¢eh

2dh

2eh

2fh

30h

31h

32h

33h

|

+ -
+ RH_Blocks_Xfered (note 13) +
+ +
tom—tmm—tm——p———t—— = ———t———F———F
+ RH_RW_Flags (note 14) +
tomm—tpmm—t———F———t———F———t———F———+
+ RH_SG_Count (note 15) I

+ (note 16)

e i e e e 5

et bt sttt Sttt St s

Figure 23. Request Header (RH) Format

The RH is defined in STRAT2.H and in STRAT2.INC.

Notes:

1. RH_Length

8.0 IOS Data Structure Definitions

This field contains a value that either indicates
that this is the last RH,
next RH.

or 1is the delta to the

Microsoft 0S/2 LADDR Compliant Device Driver Specification

When this field contains ffff (hex), this is the
last RH.

When this field contains a value other than ffff
(hex), the value, when added to the address of
this RH, provides the address of the next RH.

Note that this field is unsigned.

2. RH_01d_Command This field must contain 1lc (hex).

3. RH_Command Code This field contains a value indicating the

operation to be performed. The following values
are defined:

RH_READ X (le hex) read

RH WRITE X (1f hex) write

RH_WRITEV_X (20 hex) write/verify
RH_PREFETCH X (21 hex) pre-fetch read.

Note: This operation is not
currently supported.

4. RH_RH Head Offset This field contains an unsigned value,

that when subtracted from the address of this RH,
generates the address of the RLH.

Note: This field is unsigned.

5. RH_Req Control This field contains control flags, defined as

6. RH Priority

follows:

RH_PB_Request (01 hex) request came directly
from HPFS

RH_NOTIFY ERROR (10 hex) call RH Notify Address
if this RH completes with an
unrecoverable error

RH_NOTIFY DONE (20 hex) call RH Notify Address
if this request completes

Note: All other bits must be zero.

This field contains the priority of this RH,
defined as one of the following:

PRIO PEFETCH (00 hex) prefetch requests

PRIO_LAZY WRITE (01 hex) lazy writer generated
writes

PRIO _PAGER_READ AHEAD (02 hex) pager low

8.0 IOS Data Structure Definitions 95

Microsoft 0S/2 LADDR Compliant Device Driver Specification

priority read ahead

PRIO_ BACKGROUND_USER (04 hex) synchronous I/0
from a background user

PRIO FOREGROUND_USER (08 hex) synchronous I/O
from a foreground user

PRIO PAGER _HIGH (10 hex) pager high priority I/O
PRIO URGENT (80 hex) extremely high priority,
such as cache writebacks triggered

by a power 1loss

7. RH_Status This field contains the current status of this
RH, defined as follows:

RH_NOT_QUEUED (X0 hex) not yet queued
RH QUEUED (x1 hex) queued and waiting
RH_PROCESSING (x2 hex) in process

RH _DONE (x4 hex) done

RH_NO_ERROR (0x hex) no error

RH_RECOV_ERROR (1x hex) recoverable error
occured

RH_UNREC_ERROR (2x hex) an unrecoverable error
occured

RH_UNREC_ERROR_RETRY (3x hex) "an unrecoverable
error with retry"

RH_ABORTED (4x hex) aborted

Note: The values specified above are 4-bit
values; not single bit values. Consequently, new
values cannot simply be or’d into the field; the
value previously stored in the relevant nibble
must first be anded out, and then the new value
can be or’d in.

8. RH Error _Code If the RH completes with an unrecoverable
error, this field contains an error code, as
defined in error.inc

9. RH Notify Address This field must either contain zero, or it
must contain a 16:16 address of a requestor
provided subroutine which is present and locked
down.

If bits RH NOTIFY_ ERROR and RH_NOTIFY_ DONE are
both zero, this field is not used and may contain

8.0 IOS Data Structure Definitions 96

Microsoft 0S/2 LADDR Compliant Device Driver Specification
either a null or a valid address.

If bit RH_NOTIFY ERROR is nonzero, this field
must contain a non-null valid address that will
gain control if this RH completes with an
unrecoverable error.

If bit RH_NOTIFY_DONE is nonzero, this field must
contain a non-null valid address that will gain
control if this RH completes

Note that if both bits RH _NOTIFY ERROR and
RH_NOTIFY_DONE are nonzero and this RH completes
with an unrecoverable error, the subroutine
pointed to by RH Notify Address will gain control
twice for this RH.

If both bits RH_NOTIFY ERROR and RH_NOTIFY DONE
are nonzero, the subroutine pointed to by
RH_Notify Address should differentiate between
the two possible cases where it gains control by
examining RH_Status. When RH_Status contains
RH_DONE, the sub-routine gained control as the
result of the request completing; otherwise
control was gained as the result of an
unrecoverable error.

Once this subroutine has gained control because
an RH has completed, it will not be given control
again for that same RH. That is to say, if the
subroutine is to be given control twice for a
particular RH (once because of an unrecoverable
error and once because of completion), the first
time it gains control will be because of the
unrecoverable error and RH Status will not
contain RH_DONE; and the second time will be
because of the completion and RH_Status will
contain RH_DONE.

If an RH is aborted, it is considered to have
neither encountered an error nor to have
completed. Consequently, for an RH which has
been aborted, the subroutine pointed to by
RH_Notify Address does not gain control,
regardless of the setting of RH_NOTIFY ERROR and
RH_NOTIFY DONE.

Note: In the event that RH_Notify Address does
not contain a valid address and a need exists to
call that address, the call -- at the option of
the device driver’s author -- may or may not
actually be attempted. In either case, system
failure or a system hang will probably result.

10. RH _Hint Pointer This field is not currently supported and
should be set to zero.

8.0 IOS Data Structure Definitions 97

Microsoft 0S/2 LADDR Compliant Device Driver Specification

11. RH_Start Block This field contains the logical volume (aka
partition) relative address of the first sector
to be transferred.

12. RH Block_Count This field contains the number of sectors to
be transferred.

13. RH Blocks_Xfered This field is provided for use by
requestor error recovery logic to determine how
much, if any, data was transferred without error.

If the transfer completed without encountering an
unrecoverable error, the disk driver may set this
field to zero, set this field equal to
RH_Block_Count, or leave this field unchanged.

It is recommended that the disk driver set this
field to zero.

If the transfer did encounter an unrecoverable
error, the disk driver may either set this field
to zero, or it may set it to a count of how many
sectors -- starting from RH_Start_Block -- were
transferred without error. It is recommended
that the disk driver set this field to zero.

Requestors may use this field to reduce the
amount of data that they must recover by their
own means. However, because of the difficulty of
maintaining this field accurately, it is
recommended that requestors re-process transfers
that encounter unrecoverable errors one sector at
a time to accurately determine which sectors --
if any -- must be recovered by their own means.

14. RH_RW Flags This field contains flags that control the
processing of this RH, defined as follows:

RH Cache WriteThru (01 hex) for writes, this
disk driver must complete writing
data to the media before it
reports this request as complete.
For reads, the disk driver should
ignore this bit.

RH Cache_Req (10 hex) for writes, disk drivers
that support caching, should cache
this request and should report the
request as complete as soon as the
data has been transferred to the
cache. For writes non-caching
disk drivers should ignore this
bit:; for reads all disk drivers
should ignore this bit.

Note: All other bits must be zero.

8.0 IOS Data Structure Definitions 98

Microsoft 0S/2 LADDR Compliant Device Driver Specification

15. RH_SG_Count This field contains the number of SG’s that

The format

byte

byte

byte

byte

byte

byte

byte

byte

follow.

of the Scatter/Gather descriptor - the SG - is as follows:

00h

Olh

02h

03h

04h

05h

06h

07h

bit bit
7 0
B ittt S L SR E e Y

+ +
+ SG_BufferPtr (note 1) +
+ +

et e e e LT ——

- -
+ SG_BufferSize (note 2) +
- +
B s B e i ST E S

Figure 24. Scatter/Gather Descriptor (SG) Format

The SG is defined in STRAT2.H and in STRAT2.INC, which is built
frem STRATZ2.H.

Notes:

1. SG_BufferPtr

2. SG_Buffersize
continuous buffer for the data transfer.

This field contains the 32-bit physical memory
address of the buffer for the data transfer.

The field contains the size in bytes of the

The sum of all SG_BufferSize’s for a given RH

8.0 IOS Data Structure Definitions 99

Microsoft 0S/2 LADDR Compliant Device Driver Specification

should be a precise multiple of the disk’s block
size.

scsSI Request Block - SRB

SCSI request blocks (SRB) are created by an IOS service routine
in response to a request from a driver. They contain pointers,
parameters, and control information needed to perform an I/0
operation on a SCSI device. An SRB may be shared between IOS
and several drivers.

SRB’s always reside in IOS’s memory pool, are contiguous, and
are referenced via an IO0S:32 address.

SRB’s are declared in SRB.H.

8.0 IOS Data Structure Definitions 100

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Page 101

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Index

AEP
Configure Device 21
Device Inquiry 21
Initialize 21

BID 23

BID Initialization 26
BID Structure 23

Boot Time Processing 17
Bus Interface Layer 11

Callback Processing 13
Callback Table 12

Calldown Table 12

Callout Calling Conventions 16
Configure Device 21

DCB _ascii_name 61
DCB_bid_area_len 63
DCB_bid_specific 63

DCB_BUS_ESDI (01 hex) 62
DCB_BUS_SCSI (02 hex) 62
DCB_BUS_SS (03 hex) 63
DCB_bus_type 62
DCB_calldown_table 63
DCB_cd_aer_ep 65

DCB_cd_ddb 65

DCB cd_flags 65

DCB_cd_request _ep 65

DCB _controller 61
DCB_controller unit 61

DCB _demand_contig_sns (8000 hex) 66
DCB_demand_logical (0002 hex) 65
DCB_demand_physical (0003 hex) 66
DCB_demand_reserved (7ff8 hex) 66
DCB _demand_SRB_CDB (0001 hex) 65

Index 102

Microsoft 0S/2 LADDR Compliant Device Driver Specification

‘ Index

DCB_device type 62

DCB_device_unit 61
DCB_next_dcb_logical 61
DCB_physical device 62

DCB_phys addr 61

DCB scsi lun 62

DCB_sense_buff log 63
DCB_sense_data_len 63
DCB_tsd_flags 63
DCB_TYPE_350_FLOPPY (05 hex) 62
DCB TYPE 525_CDROM (06 hex) 62

DCB TYPE 525_FLOPPY (04 hex) 62
DCB_TYPE_ASYNC (07 hex) 62
DCB_TYPE_BISYNC (09 hex) 62

DCB_ TYPE _CHS_FIXED DISK (01 hex) 62
DCB_TYPE_PRINTER (03 hex) 62
DCB_TYPE_RBA_FIXED_DISK (02 hex) 62
DCB_TYPE_SDLC (08 hex) 62
DCB_TYPE_SEQ TAPE (02 hex) 62
Device Control Block (DCB) 14
Device Inquiry 21

Driver Configuration Processing 20

filler 66

Group structure 23

ILB_286_mode 80

ILB_AllocGdtSel rtn 80

ILB devhlp 80

ILB dprintf rtn 80

ILB_drv_data_ sel 80

ILB dvt 80

ILB eoi_rtn 80

ILB_first _drive 81

ILB flags 80

ILB _info_seg sel 81

ILB ios _mem sel 80
. ILB_PhysToGDTSel rtn 80

ILB_queue_srb 79

ILB_runtime cs 80

Index 103

Microsoft 0S/2 LADDR Compliant Device Driver Specification

Index
[

ILB_service_rtn 80
ILB stratl_block 79
ILB stratl_char 79
ILB strat2_block 79
ILB strat2_char 79
ILB trace_rtn 80
Initialization 11

BID 26

Boot Time 11

I0S 20

Steady State 12

TSD 39

VSD 34
Internal Interface 14
Interrupt Processing 13
I0 complex 10
10 Request Synchronization 16
IO Supervisor (IOS) 11, 17
I0S Registration Service 21
I0S Services 21
I0S Support Services 22

Physical structure 23

R

Request Completion Notification 16
Request Control Block (RCB) 14
Request Element Complete 13
Request Header (RH) 15, 16
Request List Header (RLH) 15, 16
Request Processing 12

Request Routing Layer 11

Request Submission 15

RH _count_lo 13

RH _request_control 13

RH status 13

RLH 1lst_status 13

Scatter Gather 15

Scatter Gather Descriptor (SGD) 15, 16
ScSI Request Block (SRB) 14

Segment structure 24

Index 104

Microsoft 0S/2 LADDR Compliant Device Driver Specification

‘ Index
STRAT1 Request Packet (RP) 14
STRAT?2

Interface 15

IO Request Synchronization 16

Request Completion 16

Request Packet 16

Request Packet (RLH) 14, 15

TSD Initialization 39
Type Specific Layer 11

\Y

Vendor Enhancement Layer 11
VSD Initialization 34

Index 105

