


zao Users Manual





zao Users Manual

Joseph J. Carr

[gID
Reston Publishing Company, Inc.
Reston, Virginia
A Prentice-Hall Company



library of Congress Cataloging in Publication Data

Carr, Joseph J.
Z80 users manual.

Includes index.
1. Zilog Model Z-80 (Computer) I. Title

QA76.8.Z54C37 001.64 80-13174
ISBN 0-8359-9517-8
ISBN 0-8359-9516-X (pbk.)

© 1980 by
Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia

All rights reserved. No part of this book
may be reproduced in any way, or by any means,
without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA



Contents

Preface ix

1 Z8D ARCHITECTURE 1
Arithmetic Logic Unit (ALU) 5
Flag Registers (F and F') 5

2 Z8D PINOUTS 7
Pin Definitions for the Z80 7

3 Z8D FAMILY SUPPORT CHIPS 13
Z80-PIO 13
Z80-SIO 15
Z80-DMA 19
Z80-CTC 21

4 Z8D TIMING AND INTERFACE CONTROL
SIGNALS 23
Data/Address Buses 23
Input/Output (I/O) Operations 24

v



vi CONTENTS

Memory Control Signals 25
CPU Control Signals 25
Interrupt Signals 26
BUSRQ and BUSAK 26
Basic CPU Timing 26

5 Z80 ADDRESSING MODES 37

6 THE zao INSTRUCTION SET (GENERAL)
Load Instructions 45
Exchange Instructions 46
Block Transfer and Block Search 46
Arithmetic and Logical Instructions 47
Rotate and Shift Instructions 48
Bit Manipulation Instructions 48
Jump, Call and Return Instructions 48
Input/Output Instructions 50
CPU Control Instructions 51

45

7 Z80 FLAGS 53

8 INTERFACING MEMORY TO THE Z80
Control Signals for Memory Operations 55
Address Decoding 59
Dynamic Memory 63
Adding Wait States 65
Memory Mapped Devices 65

55

9 Z80 I/O 69
Z80 I/O Control Signals 69
Z80 I/O Instructions 70
I/O Port Address Decoders 70
Using the Address Decoders 74
Z80-PIO 78

10 INTERFACING PERIPHERALS
Straight I/O Methods 79
Teletypewriters 82
RS-232 Interfacing 87

79



CONTENTS vii

11 INTERRUPTS 90
What is an Interrupt? 90
Types of Z80 Interrupt 91
Interrupt Hardware 92
Interrupt Requests 93
Interrupt Acknowledge 95

12 SERVICING INTERRUPTS 100
Nonmaskable Interrupts 100
Maskable Interrupts 104
Mode-0 104
Mode-1 108
Mode-2 108

13 ARITHMETIC OPERATIONS 112
Add Instructions 113
ADC Instructions 116
SUB Instructions 116

14 LOGIC OPERATIONS 117

15 MISCELLANEOUS Z80 INFORMATION 121
ASCII (American Standard Code for Information Interchange)

Code 121
Baudot Teletypewriter Code 134
EBCDIC Code 135
8080/Z80 Instruction Equivalency (Same Op-Codes) 136

16 Z8 AND Z8000 MACHINES 142
The Z8 Device 142
Z8 Pinouts 144
Z8000-Series Devices (Z8001 and Z8002) 145

17 THE Z80 INSTRUCTION SET

Index 325

147





Preface

For the past several years we have been seeing an explosive revolution in elec­
tronic semiconductor technology. Starting in the early part of the 70s decade,
microprocessor integrated circuits have been available. These devices began
simply, and were only part of the circuitry needed to implement a complete
digital programmable computer. Today, however, the field has grown to the
point where thousands of small computers, based on microprocessor chips, are
in regular use all over the country. The chips have improved also. The early
devices, such as the Intel 8008 and 8080 devices, have been eclipsed by later
models. Zilog, Inc. introduced their Z80 device, and it improved on the old
8080 device. Zilog's Z80 is an ejght-bit device. Originally operating at 2.5 mHz,
the later Z80A operates at a faster 4-mHz rate. The newer Zilog devices, only
recently released, include the Z8 and Z8000-series.

Although there are many eight-bit machines on the market, I am an un­
abashed Zilog, Inc. fan. I personally like the Z80; it seems so reasonable. This
makes me even more eager to see the Z8 and Z8000 devices. My own personal
microcomputer, with almost 30 K of memory, is based on the Z80 device. It
is astounding to me that this desk-top machine has more computing power than
the roomful of IBM 1620 computer that I was allowed to use as a freshman
engineering student in the late 1960s.

JOSEPH J. CARR
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Z80 Architecture

The Z80 is an integrated circuit microprocessor designed and manufactured by
Zilog, Inc. (10460 Bubb Road, Cupertino, CA, 95014), and second-sourced by
Mostek, Inc. (1215 West Crosby Rd., Carrollton, TX 75006). The Z80 is similar
to, but advanced over, the Intel 8080 microprocessor. In fact, a persistent in­
dustry story is that talent at Intel who designed the 8080 were the same people
to design the Z80 device.

If you are familiar with the 8080 device, then making the switchover to
Z80 will be very easy. The Z80 instruction set contains all of the 8080 instruc­
tions, plus a few more. It is usually claimed that the Z80 device has 158 different
instructions, as opposed to only 78 for the 8080. Note that the means for
numbering these instructions is a little less obvious, since in Chapter 17 we will
introduce you to over 400 Z80 instructions. These "hidden" instructions are
merely the expanded list (e.g., BIT, b,r can test anyone of eight bits in any of
seven different registers-making 56 instructions!)

In general, any program that will run on an 8080 system, with the excep­
tion of those dependent upon timing loops, will also run on a Z80 system. There
are differences in the clock timing, so those programs that create, or are depen­
dent upon, specific 8080 timing will not usually run properly on the Z80.

Besides the different instruction set sizes, there are other differences
between the Z80 and the 8080. The programmer of the Z80 device can use
more internal registers and has more addressing modes than does the 8080
programmer.
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2 Z80 ARCHITECTURE

In addition, there are several hardware differences. For one, the Z80 does
away with the two-phase clock of the 8080. In the Z80, then, only a single-phase
clock is used. The Z80 clock operates at 2.5 mHz, while the faster Z80A device
will accept clock speeds to 4 mHz. The Z80 also differs from the 8080 in that it
will operate from a single +5-volt power supply. The 8080 device requires, in
addition to the +5-volt supply, a'" 5-volt supply and a + l2-volt supply.

The Z80 also provides an additional interrupt and the logic required to
refresh dynamic memory.

The Z80 uses n-channel MOS technology, so must be handled with care in
order to avoid damage from static electricity discharge.

Figure I-I shows the block diagram to the internal circuitry of the Z80
device. Note that the Z80 contains the following sections: arithmetic logic unit
(ALU), CPU registers, and instruction register, plus sections to decode the
instructions received and control the address placed on the address bus.

The Z80 uses an eight-bit data bus and a sixteen-bit address bus. The use
of sixteen bits on the address bus means that the Z80 can address up to 65,536
different memory locations.

The internal registers of the Z80 represent 208 bits of read/write memory
that can be accessed by the programmer. These bits are arranged in the form of
eighteen 8-bit registers, and four 16-bit registers. Figure 1-2 shows the organiza­
tion of the Z80 register set.

13
CPU AND
SYSTEM
CONTROL
SIGNALS

INSTRUCTION
DECODE
&
CPU
CONTROL

CPU
CONTROL

iii
+5V GND <I>

FIG. I-I Z80 CPU block diagram.
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MAIN REG SET

Z80 ARCHITECTURE 3

ALTERNATE REG SET

_..

ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A' F'--
B C B' C'

D E D' E'

H L H' L'
}

GENERAL
PURPOSE
REGISTERS

,...--.

I
I'

INTERRUPT MEMORY
VECTOR REFRESH
I R

INDEX REGISTER IX

--
INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC
I"

SPECIAL
PURPOSE
REGISTERS

FIG. 1-2 Register organization.

The main register set consists of an accumulator (register A) and a flag
register (register F), plus six general-purpose registers (B, C, D, E, H, and L). An
alternate set of registers is provided that duplicates these registers: accumulator
(A') and flag register (F'), plus the general-purpose registers B', C', D', E', H',
and L'. Only one set of these registers can be active at anyone time. One cannot,
for example, use the Band B' registers without first using one of the instructions
that interchanges the register sets.

The general-purpose registers can be paired to form three register pairs of
16 bits each: BC, DE, and HL. The alternate registers are also paired to allow
16-bit register pairs BC', DE', and HL'.

The Z80 special-purpose registers include interrupt vector I and memory
refresh R (both 8-bit registers), and four 16-bit registers: index register IX, index
register IY, stack pointer SP, and program counter PC.

Interrupt vector I. The I register is used to service interrupts originated
by a peripheral device. The CPU will jump to a memory location containing the
subroutine that services the interrupting device. The device will supply the
lower-order eight bits of the 16-bit address, while the I register will contain the
high-order eight bits of the address.

Memory refresh R. This register is used to refresh dynamic memory dur­
ing the time when the CPU is decoding and executing the instruction fetched
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from memory. Seven bits of the R register are incremented after each instruction
fetch, but the eighth bit remains as programmed through a LD R, A instruction.
During refresh, a refresh signal becomes active, the contents of the R register
are placed on the lower eight bits of the address bus, and the contents of the I
register are placed on the upper eight bits of the address bus.

Index registers IX and IV. These registers are used to point to external
memory locations in indirect addressing instructions. The actual memory loca­
tion addressed will be the sum of the contents of an index register and a displace­
ment integer d (or, alternatively, some instructions use the two's complement
of d). Both IX and IV index registers are independent of each other. Note that
many microprocessor chips do not have index registers at all.

Stack pointer (SP). The stack pointer is a two-byte register that is used
to hold the 16-bit address of a last-in-first-out (LIFO) stack in external memory.
The data to and from the memory stack are handled through the PUSH and POP
instructions, respectively.

Program counter (PC). The program counter in any computer holds the
address of the instruction being fetched from memory. In the Z80, the program
counter is a 16-bit register. The PC will be automatically incremented the correct
number of digits after each instruction (e.g., one-byte instructions increment
PC + 1, two-byte instructions PC +2, etc.). When a JUMP operation occurs,
the program counter will contain the address of the location to which the pro-

Memory Location of
PC Contents Present Instruction

0200 'lIIIIl( 0200

0201 0IllII( 0201

0202 'lIIIIl( 0202 C3 JP 0612

0612 0203 12 NL

0205 0204 06 NH

0206 0205

0206

0612 C9 RET

FIG. 1-3



FLAG REGISTERS (F AND F') 5

gram jumped. When it is RETurned, the PC will contain the address of the next
sequential instruction that would have been fetched if no jump had occurred.

Pigure 1-3 shows how the program counter would work on ajump opera­
tion. Let us say that we have a program that starts at location 0200 (hex), and
finishes at location 02 06. But when it encounters the instruction at 02 02, it is
an unconditional jump to location 06 12. Now, for the purposes of illustration,
our subroutine at 06 12 is a RETurn instruction (useless in the real world,
perhaps, but useful for illustration). It then jumps back to the next sequential
location 02 05. Note that the next sequential location from 02 02 in this case
is not 02 03, but 0205. This is due to the fact that the jump instruction was a
three-byte instruction. We had to give it the instruction (0202), the low-order
byte of the memory location to jump to (02 03), and the high-order byte of the
memory location (0204).

ARITHMETIC LOGIC UNIT (ALU)

The heart of any computer or microprocessor, and the factor that distin­
guishes it from all other digital electronic circuits, is the arithmetic logic unit, or
ALD. This circuit performs the data manipulation for the device. The functions
possible in the Z80 uP are add, subtract, compare, logical AND, logical OR,
logical exclusive-OR (XOR), left shift (logical), left shift (arithmetic), right shift
(logical), right shift (arithmetic), increment, decrement, set a bit (Le., make it 1),
reset a bit (make it 0), and test a bit to see whether it is 1 or 0.

FLAG REGISTERS (F AND F')

The Z80 provides two status registers; P and p'. Only one is active at
anyone time, depending upon whether the programmer has selected the main
register bank or the alternative register bank. These registers are each eight bits
long and each bit is used to denote a different status condition. As a result, these
bits of the P and p' register are also called condition bits.

The flags in the F and p' register are SET or RESET after certain arith­
metic or other operations upon data. The program can then tell something about
the result of the operation. The allocations are as follows:

BIT (F/F ')

o
DESIGNATION

C

N

MEANING

Carry flag. Indicates a carry from the high­
order bit of the accumulator (B7).

Subtraction flag used in BCD subtract opera­
tions.
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BIT (F/F')

2

3

4

6

7

DESIGNATION

P/V

X

H

Z

S

MEANING

Pa rity/overflow

Undetermined

BCD half-carry flag (bit 4 in BCD operations)

Zero flag is SET if the result of an operation is
zero.

Sign flag is SET if the sign of a result after an
operation is negative, RESET if it is zero or
positive.
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zao Pin-outs

The Z80 device is constructed in a standard 40-pin DIP integrated circuit pack­
age. Since the Z80 uses NMOS technology, one is cautioned to become familiar
with the rules for handling such devices before trying to handle the Z80 device.
Those rules are actually very simple, so failing to follow them will net you what
you deserve-a zapped IC.

Figure 2-1 shows the Z80 pinouts and package configuration. The defini­
tions of the pinputs are given below, and the electrical (ac) specifications of the
Z80 are given in Fig. 2-2.

PIN DEFINITIONS FOR THE Z80

A0-A15

00-07

M1

Address bus (16 bits). Permits addressing up to 64K (Le., 65,536
bytes) of memory, plus 256 different I/O ports. The address bus
is active when HIGH, and has tri-state outputs. The entire 16
bits are used to address memory, while only the low-order byte
(A0-A7) is used to address I/O ports.

Eight-bit data bus terminals. The data bus is, like the address bus,
active high and uses tri-state outputs.

Machine cycle 1. When this terminal is LOW, the CPU is in the
op-code fetch portion of the instruction/execution cycle.

7
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Package
Configuration

Package Outline

A11
A12
A13
A14
A15

'I>
0 4
0 3
0 5
0 6

+5V
O2
0 7
DO
0 1

INT
NMI

HALT

MREO
IORO

1 40
2 39
3 38
4 37
5 36
6 35
7 34
8 33
9 32
10 31
11 Z-80 CPU 30

12 Z-80A 29
13 28
14 CPU 27

15 26
16 25

17 24
11:1 23
19 22
20 21

AlO
A9
A8
A7
~6
A 5
A4
A3
A2
A 1
AO
GNO
RFSH

M1
RESET
BUSRO

WAIT
BUSAK
WR

RO

I' 2.100 MAX. ----------.j

" (5.334 em)

1::::::::g:::::::]jg::~:

*Dimensions for metric system are in parentheses

FIG.2-1 Z80 package and pinouts.

A
I .590 (1.49861 _I
I--- .710 (18034)



RD

RFSH

PIN DEFINITIONS FOR THE Z80 9

Memory request signal. Is active low, and is an active low output.
When this terminal goes low, the address on the address bus is
valid for a memory operation (read or write).

Input/output request. This active low, tri-state output indicates
that an I/O operation is to take place. The low-order byte of the
address bus (A0-A7) contains the address (0-255) of the selected
port. The contents of the accumulator may be placed on the high­
order byte of the address bus during this period. The 10RQ is
also generated to acknowledge an interrupt request, and tells the
interrupting device to place the interrupt vector word on the
data bus (Le., low-order byte of the address of the interrupt ser­
vice program.)

This is an active, low, tri-state output that indicates when a read
operation from memory, or an I/O device, to the CPU is taking
place.

Tri-state, active, low output that indicates when a write operation
from the CPU to a memory location, or I/O device, is taking
place. Tells the memory or I/O device that the data on the data
bus are currently valid.

Refresh signal. This is an active low output that indicates that the
lower seven bits of the address bus contain a refresh address for
the dynamic memory.

Active low output that indicates that a halt instruction is being
executed. The CPU executes NOPs while in the halt state, and is
awaiting the receipt of an interrupt signal.

Active low input that indicates that the addressed memory, or
I/O device, is not yet ready to transfer data to the data bus.

Active low input that tells the CPU that an external device has
requested an interrupt. The CPU will honor the request at the
end of the current instruction cycle, if the interrupt flip-flop
(software controlled) is SET.

Active low input for nonmaskable interrupt operation. This line
will cause the CPU to honor the interrupt at the end of the
current instruction cycle, regardless of the state of the interrupt
flip-flop. Forces automatic restart at location 00 66 (hex).

Active low input that enables the interrupt flip-flop, clears the
program counter (Le., loads PC with 00 00) and clears I and R
registers. This terminal can serve as a hardware jump-to-OO-OO
control.

Active low input that requests that the CPU address bus, data
bus, and the control signals go to the high impedance (tri-state)



- A.C. Characteristics Z80-CPU
0

TA =o°c to 70°C, Vee =+5V ± 5%, Unless Otherwise Noted.

Signal I Symbol Parameler Min Max Unil I Test Condition

I Cluck Pefltll] .4 1121 IIc IlSeC 1121 Ic = tw(<PH) + Iw(<PLI + Ir + II

'I' i Iw ('I'lll Cluck Pulse Widlh. Cluck High 180 [E] nsec
Iw ('I'll Cluck Pulse Width. Cluck Luw 180 2000 nsee

t,.1 Cluck Rise and Fall Time 30 nsec

ID(ADl Address OutpUI Delay 145 nsee

IF (ADl Delay tu FIVal 110 nsec

AD_IS I t Ll L'1ll Address Stable Pnur tu MREO (Memory Cycle I III nsec
CL = 50pF

lacl Address Stable Pnor tu 10RO. RD or WR (I/O Cycle! 121 nsec 1'1 taem = tw('P'" + t.· - 75

tca Address Slable I,um m, WR, IORQ or MREQ 131 nsee

tcai Address Slable Frum RD or WR DUling Flual 141 nsee [21 tac! = Ie -80

ID(O) Dala Outpul Delay 230 osee 131 lea = tw('PLI +
IF (Dl Delay tu Fluat Durmg Wnte Cycle 90 nsec
IS<p (0) Data Selup Time lu Rismg Edge 01 Clock Dunng MI Cycle 50 nsee 14 ] teal' = tW(<PLI +

D
O

_7 I IS;P (0) Dala Selup Time tu Falling Edge ul Clock DUTlng M2 10 M5 60 nsee CL = 50pF
Idem Dala Slable Pnur lu WR (Memory Cycle I 151 nsec [51 t dcm = t c -

IdcI Dala Stable PTlor lu WR (I/O Cycle I 161 nsee
Icdl Dala Slable From WR 17] 16 ] tdci = tW(<i>L) +t r - 210

lH Any Hold Time lor Selup Time 0 nsee [7] tcdf = tw( <i>L) + t r -80

lDL<P(MR) • MREO Delay Frum Falling Edge of Cluck. MREO Luw 100 nsee

tDH<P(MR) MREO Delay From Rismg Edge of Clock. MREQ High 100 nsec
MREO I lDH¢(MRl MREO Delay From Falling Edge of Clock. MRE'J High 100 nsee CL = 50pF

lw(MRL; Pulse Widlh. MREQ Low 181 nsee

I
18 ] Iw(MRLI=\-40

tw(MRH) Pulse Widlh. MREQ High 191 nsee

10RO Delay From Rismg Edge of Clock. 10RO Low I 19 1 tw(MRH) = tw(<PH) + If- 30
lDL<P(lR) 90 nsec

10RO I lDL;P (lR) 10RO Delay From Falling Edge of Clock, 10RO Low 110 nsec
CL = 50pF

IDH<P(lR) 10RO Delay From Rismg Edge of Clock, 10RO High 100 nsec

lDH<ii'(IRl 10RO Delay From Falling Edge of Clock, 10RO High 110 nsec

lDL<P(RD) RD Delay From Rismg Edge of Clock, RD Low 100 I nsec

R5 I IDL;P (RO) ~ Delay From Falling Edge of Clock, RD Low 130 I nsee C = 50 I'
IDH<P(RDl RD Delay From Rismg Edge of Clock, RD High IOU I nsec I L P

IDH;P(RD) RD Delay From Falling Edge of Clock, RD High 110 ! nsec



tDL<I> (WR) WR Delay From Rising Edge of Clock, WR Low 80 nsec

WR tDL<P(WR) WR Delay From Falling Edge of Clock, WR Low 90 nsec
CL = 50pF

tDH<P(WR) WR Delay From Falling Edge of Clock, WR High 100 nsec

tw(WRL) Pulse Width, WR Low [10J nsec

MT tDL(MI) Mi Delay From Rising Edge of Clock, ill Low 130 nsec
CL = 50pF

tDHCMI) Mi Delay From Rising Edge of Clock, Mi High 130 nsec

RFSH tDL(RF) RFSH Delay From Rising Edge of Clock, RFSH Low 180 nsec
CL = 50pF

tDH(RF) RFSH Delay From Rising Edge of Clock, R'FSH High 150 nsec

WAIT ts(WT) WAIT Setup Time to Falling Edge of Clock 70 nsec

HALT tD(HT) HALT Delay Time From Falling Edge of Clock 300 nsec I C
L

= 50pF

INT ts(lT) INT Setup Time to Rising Edge of Clock 80 nsec

NMI twfNML) Pulse Width, NM I Low 80 nsec

BUSRQ ts(BQ) BUSRQ Setup Time to Rising Edge of Clock 80 nsec

BUSAK tDL(BA) BUSAK Delay From Rising Edge of Clock, BUSAK Low 120 nsec
C

L
= 50pF

tDH (BM BUSAK Delay From Falling Edge of Clock, BUSAK High 110 nsec

RESET ts fRS) RESET Setup Time to RiSing Edge of Clock 90 nsec

tF Ie) Delay to Float fMREQ, IORQ, RD and WR) 100 nsec

tmr Mi Stable PrIor to IORQ (Interrupt Ack.) jllJ nsec

[101 tw(WRL) = tc - 40

[III tmr =2tc + tWI<l>H) + tf- 80

r"
FAOM OUTPUT lTlTESTiOINT~RI·21Kn
UNDER TEST

Cl CbI T",,"A
'=' ";:'

NOTES:

A. Data should be enabled onto the CPU data bus when Ri5 's act,ve. Dunng mterrupt acknowledge data
should be enabled when Mi and IORQ are both act,ve.

B. All control s,gnals are mternally synchrol1lzed. so they may be totally asynchronous with respect
to the clock.

C. The RESET SIgnal must be act,ve lor a nlll1lInUm of 3 clock cycles.
D. Output Delay vs. Loaded Capacitance

TA = 70°C Vcc = +5V ±5%

Add 10nsec delay for each 50pf increase in load up to a maximum of 200pf for the data bus & lOOpf for
address & control lines Load cirCUIt for Output

...It

...It

E Although static by des,gn. testmg guarantees tWI tPH) of 200 J.1sec maxImum

FIG.2-2 Z80 Electrical (AC) specifications.
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state so that some other device can obtain control of these
buses. The BUSRQ has a higher priority than NM I, and is always
honored at the end of the present instruction.

BUSAK Active low output that is used with the bus request signal, and
tells the requesting device that the CPU buses are now in the high
impedance state. When BUSAK drops low, then the requesting
device may take control of the buses.

1> Clock signal input. Wants to see TTL level at 2 mHz or 4 mHz
(Z80A) maximum.

GND DC and signal ground terminal.

+ 5 Power supply terminal, to which is applied +5 volts dc from a
regulated power supply.



~
zao Family Support
Chips

The Z80 is not a single-chip computer. In order to make the Z80 microprocessor
chip think that it is a real live computer we need additional, external circuitry.
In some commercial products, this external circuitry takes the form of TTL
and/or CMOS devices connected to perform the desired function. But Zilog, Inc.
makes it easier to make a computer by using certain external special-function
integrated circuits.

Two of the special-function devices are used to provide serial and parallel
input/output capability. The Z80-SIO device is a serial I/O chip, while the Z80­
PIO is a parallel I/O port. These devices are second-sourced by Mostek under
the type numbers MK3884 (Z80-SIO) and MK3881 (Z80-PIO).

There is also a direct memory access device called the Z80-DMA (Mostek
MK3883). Direct memory access in a computer allows the external memory to
be written to, or read from, by a peripheral device without first going through
the CPU. This allows the operation to be performed much more rapidly, and is
conservative of CPU time-a precious commodity in some applications.

The Z80-CTC (Mostek MK3882) is a four-channel, multimode counter/
timer circuit. It provides counter and timer capability in Z80-based microcom­
puter systems.

zao-Plo

The Zilog Z80-PIO (Mostek MK3881) is used as a parallel I/O port con­
troller. It contains two ports, and is user programmable. The Z80-PIO contains

13



14 280 FAMI LY SUPPORT CHIPS

two completely independent, eight-bit, bidirectional ports. Complete handshak­
ing capability is permitted, so the device can be used for synchronous transfers.

The Z80-PIO can be programmed to operate in four different modes: byte
output, byte input, byte bidirectional bus (port A only), and bit control.

The byte output mode, also called mode~, is used to allow the CPU to
write data to the peripheral via the CPU data bus. If mode-0 is selected,a data
write operation causes a handshake signal (ready) to be generated. This signal is
used to let the peripheral know that the data are available and valid. Note that
the data remain available, and the ready signal remains HIGH, until a strobe is
received back from the peripheral.

The byte input mode, also called mode-I, allows the selected port to
behave as an input port only. When a data read operation is performed by the
CPU, the PIO will issue a ready signal to the peripheral. This tells the peripheral
that the Z-80 CPU is now in a condition to receive the input data. The peripheral
responds by issuing a strobe that causes the data to be transferred to the data
input register of the PIO.

The byte bidirectional mode, also called mode-2, uses the port as a bidirec­
tional, eight-bit, I/O port. Mode-2 uses all four possible handshake lines. Because
of this restriction, only port-A can be used in the bidirectional mode.

The bit control mode, also called mode-3, is used for status and control
applications. Mode-3 does not make use of the handshake signals. This mode
is used to define which port data bus lines will be inputs and which will be
outputs. The next word fed to the PIO after mode-3 is selected must define
these conditions.

Figure 3-1 shows the pinouts for the Z80-PIO, while below are the defini­
tions of the different types of pins.

CPU
DATA
BUS

PIO
CONTROL
FROM
CPU

GND

DAISY

CHAIN { iNT
INTERRUPT
CONTROL INT ENABLE IN

INT ENABLE OUT

lao· PIO

PORT A
I/O

PORT B
I/O

FIG. 3-1 Z80-PIO pinouts.



00-07

B/A SEL

c/o SEL

CE

RO

lEI

Af/J-A7

ASTB

A ROY

Bf/J-B7

B STB

B ROY

Z80-SIO

Z80-S10 15

These pins connect to the Z80 CPU data bus, and are both bidi­
rectional and tri-state. All command signals and data passed
between the CPU and the Pia, in either direction, must be passed
over these lines.

This active-H IGH input will select either port A or port B. A
LOW on B/A SEL will select port A, whereas a HIGH will select
port A.

This active-HIGH input selects the type of data transfer to take
place between the CPU and Pia. A LOW on this line tells the Pia
that the data on the Z80 data bus are I/O data. But a HIGH will
tell the Pia that the data being transferred are a command for
the port selected by B/A SE L.

Active-LOW input that acts as a chip enable. A LOW on this
terminal allows the Pia to accept command/data inputs from
the Z80 CPU during any write cycle, or to send data to the Z80
CPU during and read cycle.

This terminal synchronizes the Pia to the CPU, and is generally
connected to the similarly named terminal on the CPU chip.
Indicates that an M1 machine cycle is in progress.

Input/output request line from the Z80 CPU chip that is part
of the sync system. Usually connected to the similarly named
terminal on the Z80 device.

Active-low input that detects the read cycle of the Z-80.

Interrupt Enable Input. This is an active-HIGH input.

Tri-state, bidirectional address bus for port-A.

Active-LOW input that strobes port-A from peripheral device.

Active-H IGH output signals that the A-register is ready.

Tri-state, bidirectional, address bus for port-B.

Active-LOW input that allows peripheral device to strobe port-B.

Active-H IGH output that signals that the B-register is ready.

The Z80-SIO device is a serial I/O chip that interfaces directly with the
Z80 CPU chip. It is similar to the Z80-PIO in that it is a programmable two­
channel device. The SIO, however, transmits the data in the serial stream, i.e.,
one bit at a time. Parallel transfer is, of course, faster in most cases. But often a
serial transfer is preferred because it reduces the hardware overhead between
the computer and the peripheral with which it is communicating. Even when
the "run" is only a short distance, it is often much less costly to use a serial data
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transfer because only one pair of wires, one telephone line, or one radio com·
munications channel is required. The Z80-SIO is designed to handle just about
any reasonable serial bit protocol. Like the other chips of the Z80 family, it is
operated from a single +5-volt dc supply and uses only a single-phase clock.

The two channels (also labeled A and B, as in the PIO device) are totally
independent of each other, except for power supply and CPU bus connections.
The SIO channels are full- duplex, so data can be transmitted and received
simultaneously. The Z80-SIO allows data rates from zero to 550,000 bits per
second.

Both receiver and transmitter registers are fully buffered. But in the case
of the transmitter section, the registers are doubly buffered. The receiver regis­
ters, on the other hand, are quadruply buffered.

The Z80-SIO is capable of asynchronous operation (in which it behaves
much like an ordinary UART, but with a Z80-system flavor), synchronous
binary operation, and HDLC/IBM-SDLC operation. The SIO provides eight
MODEM control inputs/outputs, allows daisy chain priority interrupt logic to
automatically provide the vector word, and permits both CRC·16 and CRC-CCIT
(-0/-1).

The SIO looks very much like the ordinary UART in its asynchronous
mode. It can be programmed for 5, 6, 7, or 8 eight-bit words. Like the UART,
it will provide 1, 1.5, or 2 stop bits at the end of each transmitted word. The
CPU, incidentally, need not provide these bits, the SIO adds them to the word
received from the CPU before the word is transmitted. Also like the UART, the
SIO will provide parity bits (even, odd, none), and detection of parity, framing
errors, and overrun. Unlike most DARTs, however, the SIO also provides for the
generation and detection of breaks. Clock rates of IX, l6X, 32X, and 64X the
data rate are permitted.

Figure 3-2 shows the organization of the Z80-PIO device. In Fig. 3-2(a) we
see the overall block diagram of the device, while Fig. 3-2(b) shows the block
diagram for the channels. The input section from the CPU receives eight data
bus lines, and six control signal lines. Once inside, the device operates from an
internal bus not accessible to the outside world. There are two sections for chan­
nels A and B, some internal control logic, the interrupt section, and a discrete
control section (used with MODEMs and other controlling devices).

The pinouts for the Z80-SIO are shown in Fig. 3-3, and are listed in detail
below:

00-07

B/A

C/O

Tri-state, bidirectional data bus to/from Z80-CPU and rest of Z80
system.

Channel A/B select. Channel A is selected when this pin is LOW,
and channel B is selected when it is HIGH.

Control/data select. If this input is HIGH, then the control mode
is selected, but if it is LOW, then the data mode is selected.

Active-LOW input that detects the M1 machine cycle in Z80.
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FIG. 3-2 ZBO-PIO organization. (a) Overall internal block diagram; (b) Channel
block diagram.
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INTERRUPT

CONTROL lEO

FIG. 3-3 Z80-SIO Pinouts.

RD

({)

RESET

lEI

lEO

WAIT/
READY A

Active-LOW input that detects the Input/Output ReQuest state
of the l80 CPU.

Active-LOW input that detects the read cycle of the l80 CPU.

Clock terminal.

Active-LOW input that resets the system. Placing a LOW on this
terminal has the following results: both receivers and transmit­
ters, are disabled, TDA/TDB are forced marking, modem controls
are forced HIGH, and all interrupts are disabled. Note: The con­
trol registers of the SIO must be rewritten from the CPU before
the SIO can be again used.

Active-H IGH interrupt enable input.

Active-H IGH output. Note that IEI/I EO are used together to
form a daisy-chain priority interrupt control function.

Active-LOW output to the interrupt request line of the l80. Note
that this terminal is an open-drain type.

These lines, one of each channel, have two principal functions.
In one case, they can be used as ready lines for the l80 DMA
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(direct memory access) controller. In another, they can be used
to synchronize the Z80 CPU to the Z80-S10 (i.e., to sync the
data rate between CPU and SIO).
These lines, one for each channel, provide a clear to send func­
tion. Both are active-LOW inputs. If programmed for auto enable,
then these pins will act as transmitter enable controls. But when
not programmed for auto enable, they can be programmed for
general control purposes. Note: These pins are buffered through
Schmitt-trigger circuits, thereby allowing slow rise-time signals.

Data Carrier Detect. These two active-LOW inputs serve as receiver
enable control signals.

Active-HIGH receiver data inputs.

Active-H IGH transmit data outputs.

Schmitt-trigger buffered, active-LOW receiver clock inputs.

Same as above, but transmitter clocks.

Active-LOW outputs providing request-to-send signals.

Active-LOW outputs providing data-terminal-ready signals.

Used for synchronization of external characters.

The Z80-DMA (Mostek MK3883) is a direct memory access controller.
This type of operation is very useful in a computer, because it speeds up direct
transfers between an external device, or peripheral, and the memory because it
allows bypassing of the CPU. Ordinarily, if you wanted to transfer a data word
from some peripheral device and a specific memory location, you would have
to execute an input instruction to move the data into the accumulator first.
Then a second instruction would be required in order to move the data from the
CPU to the desired memory location. Unless the data are to be used immediately
after input, then such would be a waste of valuable time. DMA allows the data
to be placed directly into the desired location from the peripheral.

The DMA chip allows three modes, or classes, of operation: transfer only,
search only, and search-transfer. There are also four types of operation: single
byte at a time, continuous burst (as long as ports are ready), continuous (CPU
locked out), and transparent (i.e., it steals time from refresh cycles).

Three types of interrupt are allowed. In one case, it will interrupt the
CPU only when a match to a desired word is found. It will also interrupt on end­
of-block or ready. The DMA can be enabled, disabled, or reset totally under
software control.
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Figure 3-4(a) shows the pinouts for the Z80-DMA, while Fig. 3-4(b) shows
the internal block diagram. The pinout functions are discussed below:

System address bus (from Z80 and memory). This sixteen-bit
address bus can, like the Z80 bus, address all 64K of allowed

Do Ao
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Az
SYSTEM A]
DATA
BUS A.

A5

D. A6

0, A, SYSTEM
ADDRESS

As BUS

{ BUSRO Ag
BUS -

A,oCONTROL BAI
BAO All

A,z

An

A,.

A'5

(a)

+5V GND cP

!
INT lEI lEO BUSRO BAI BA6 RDY

t
PULSE

COMPARATOR

PULSE INTERVAL

A15 AO D7 DO

INT PRIORITY
LOGIC

INT CONTROL
INT VECTOR

BUS PRIORITY
LOGIC

CONTROL
AND

STATUS
REGISTERS

1-----------

BUS CONTROL
LOGIC

(b)

FIG. 3-4 (a) Z80-DMA pinouts; (b) Z80-DMA block diagram.
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RDY
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Data bus from CPU and memory. These tri-state input/output
pins carry three types of data: commands from the Z80 CPU,
OMA status (from memory/peripherals), and data from the
memory/peripherals.

System clock.

Active-LOW input detects the M1 machine cycle in the Z80 CPU.

Used as an input/output request to/from the CPU bus.

Used as a memory request to/from Z80 system bus.

Read to/from Z80 CPU bus.

Write signal to/from Z80 CPU bus.

May be used as either chip enable or wait.

Bus request is used to request control of the data bus from the
Z80 CPU.

Input that tells the Z80-DMA that the CPU has granted it control
of the bus. It is a bus acknowledge input.

Bus acknowledge output that allows daisy chain connection of
DMA-requesting peripherals.

Active-LOW output that tells the Z80-CPU that an interrupt is
requested.

Active-H IGH interrupt enable input.

Active-H IGH interrupt enable output. Forms ability to daisy
chain, when used in conjunction with lEI.

Active-HIGH/LOW (Le., programmable) input that tells the Z80­
DMA when a peripheral device is ready for a write/read operation.

The l80-CTC (Mostek MK3882) is a universal counter-timer chip that can
provide all of the counter/timer requirements for a l80-based computer. There
are four independent channels in the l80-CTC. Consistent with the design of the
rest of the l80-family, this device requires only a single +5-volt de power supply
and a single-phase clock. Each of the four channels can operate as either a
counter or a timer.

The l80-CTC pinouts are shown in Fig. 3-5, and their respective descrip­
tions are given below:

D0-D7

CS0-CS1

CE

Bidirectional tri-state data bus to/from CPU.

Active-H IGH channel select inputs.

Active-LOW chip enable input.
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FIG. 3-5 ZBO-CTC pinouts.

RD

lEI

lEO

RESET

System clock.

Active-LOW input from CPU that detects the M1 machine cycle.

Active-LOW input that detects the input/output request state of
the CPU.

Active-LOW input that detects the Z80-CPU read cycle.

Active-H IGH interrupt enable input.

Active-HIGH interrupt enable output. Used with lEI to permit
daisy chaining.

Active-LOW, open-drain, output to the Z80·CPU interrupt
request input.

Active-LOW, reset input.
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If you are planning to use a ready-built computer containing a Z80 micropro­
cessor chip, then it is not likely that you will need to know much about the
chip-level interface and timing signals of the chip. Languages like BASIC, and
even some assemblers, will not require that you know much at all about these
signals. But if you are doing machine level programming, using most assemblers,
or are trying to interface some other instrument to the Z80 directly, or to the
bus of a Z80 computer, it is then necessary for you to know and understand
the timing structure.

In Chapter 2, we discussed the definitions of the Z80 pins. Among the
pins discussed were the interface and timing signals. For emphasis, let us reiter­
ate these signals here, but grouping them according to use.

DATA/ADDRESS BUSES

There are two buses in the Z80: a 16-bit address bus and an 8-bit data bus.
The address bus pinouts are labeled A~-AI5, while the data bus terminals are
designated B~-B7. In both cases, the ~ bit is the least significant bit, while the
highest numbered bit (7 on the data bus, 15 on the address bus) is the most
significant bit.

Both address and data buses are designed to be tri-state outputs. This
means that there are the HIGH and LOW states for logical 1 and (/J, respectively,

23
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plus a third high impedance state which can be used to effectively disconnect the
Z80 CPU chip from the external bus lines. In some cases, a bus request signal
(discussed below) will cause the data and address buses to go into the tri-state
condition, so that an external device can control the buses.

Also, both address and data buses are active when HIGH.
The data bus is used to pass data to, and from, the CPU chip. Unless one

knows the status of the control signals, and the word applied to the address bus,
however, one does not know what is taking place on the data bus.

The address bus does several things. In the memory address mode, for
example, the 16-bit address bus will be capable of designating 216

, or 65,536,
different memory locations. This size, incidentally, is usually called "64K,"
even though 65,000+ locations are addressable. This is due to the fact that a
computer "K" is 1024, not 1000 (sigh).

The address bus is also used in the control of input/output operations.
When an I/O command is being executed, the lower byte of the address bus
holds the address of the I/O port designated in the instruction. The upper byte
contains the accumulator data, repeated on the data bus.

The lower byte of the address bus is also used in the memory refresh
operation. During the period of the machine cycle in which the refresh operation
is to take place, as indicated by a LOW condition on the RFSH output terminal,
the lower seven bits (Ac;b-A6) of the address bus contain the refresh address.

INPUT/OUTPUT (I/O) OPERATIONS

The Z80 design philosophy is a little different from the philosophy of its
direct ancestor, the 8080 device. This is especially noticeable in the I/O opera­
tions. In the Z80, there is an input/output request (IORQ) signal available. This
is a tri-state, active low output that is used to tell external devices and memory
that an input or output operation is taking place.

The IORQ signal will go LOW when (a) an input or output operation is
taking place, and (b) when an interrupt is being acknowledged. In the latter case,
an M1 signal is also generated during interrupts. This combination of signals is
used to tell the interrupting device to place the address vector pointing to the
interrupt service subroutine. These two types of operation can be distinguished
from each other because interrupt acknowledgments always occur during the
MI period (see below), and I/O operations never occur during the Ml period.

It is not possible to use just one signal for I/O control, because there are
three possible states: no I/O operation, input, and output. In the first case, the
IORQ line would be HIGH, but it will be LOW for both of the other possible
conditions. In the Z80 device, the input and output states are distinguished by
the condition of the WR and RD control signal. These are also used in memory
operations, and are the write (WR) and read (RD) signals. If the I/O operation



CPU CONTROL SIGNALS 25

is an input (i.e., read), then the RD line goes LOW along with 10RQ. But if the
I/O operation is an output, then the WR control signal goes LOW along with
10RQ.

MEMORY CONTROL SIGNALS

Control of memory operations requires the same WR and RD signals as
used in the I/O operations. But instead of the 10RQ signals, a memory request
(MREQ) is used. This signal is an active low, tri-state output that is used to
indicate that the address bus contains a valid memory location address. Whether
the CPU is reading from memory or writing to memory is indicated by the coin­
cidence of the MREQ and RD (memory read), or MREQ and WR. Address
decoders in memory, then, must take note of these signals in order to determine
whether a read or write operation is taking place.

There is also a refresh (RFSH) signal used to control dynamic memories.
Unlike static memory devices, dynamic memory often requires a refresh opera­
tion, or the data stored will be lost. RFSH is an active low, tri-state output, and
is active once during each instruction fetch operation. When the RFSH and
MREQ are both low, a memory refresh can take place. The contents of the R
register are loaded onto the lower seven bits of the address bus to address the
memory to be refreshed. The R register is incremented after each operation, so
all memory will eventually be refreshed.

CPU CONTROL SIGNALS

There are four basic CPU control signals: Ml, RESET, WAIT, and HALT.
The Ml signal is used to indicate that an Ml instruction fetch period is in

effect. The Ml machine cycle occurs when an instruction is being fetched from
memory. If the instruction being fetched is a two-byte instruction, then an Ml
signal is generated as each op- code is being fetched.

The Ml signal is also generated during interrupt acknowledgments, in
conjunction with an 10RQ signal. This combination allows the interrupting
device to place the address vector of the memory location containing the inter­
rupt service subroutine.

The RESET signal is an active low input. When this terminal is brought
low, the CPU does the following: Disables the interrupt flip-flop; sets the I
register to ~~ (hex); sets the R register to ~~ (hex), and sets interrupt mode ~.

In effect, the RESET is a hardware jump to ~~ ~~ instruction.
The WAIT terminal is an active low input that can be used to tell the CPU

that an addressed I/O device is not ready to transfer data. The CPU keeps enter-
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ing wait states until this signal goes high again. This signal is needed because
many types of I/O device are not as fast as the CPU.

The HALT signal is an active low output that indicates that a halt instruc­
tion is being executed. The CPU will execute no-ops (NOP) until an interrupt is
received.

INTERRUPT SIGNALS

The principal interrupt signals are the INT and NMI. The regular interrupt
request signal is the INT. It is an active low input. The interrupt request signal is
generated by the interrupting I/O device. The interrupt request will be honored
at the end of the present instruction cycle. There are three modes of response by
the CPU: mode (/J, mode 1, and mode 2.

The nonmaskable interrupt (NMI) signal is used to allow interrupts that
must be serviced at the end of the current instruction cycle.

BUSRQ AND BUSAK

These signals are used to allow access to the memory by external devices,
without the use of the CPU. The BUSRQ is an active low input. When the
BUSRQ line goes low, the CPU outputs (address and data buses) go tri-state at
the end of the current instruction cycle.

The BUSAK is an active low output that tells the external device that the
CPU is in the high impedance tri-state condition. When this signal goes low, the
external device knows that it now has control of the data and address buses.

BASIC CPU TIMING

All instructions in any programmable digital computer are merely a series
of certain basic operations. In discussing the timing of the CPU, we must deter­
mine how these operations occur. The clock produces periods called T-periods
(see Fig. 4-1). There are also three different "M-cycles" for each instruction
cycle. M cycles are machine cycles, while the T cycles are clock cycles.

Machine cycle Ml is the instruction fetch period, and may be four to six
T cycles long. During this period, the CPU is fetching the next instruction from
the memory. The other machine cycles (M2 and M3), are used for memory read
and memory write, respectively. M2 and M3 are used for memory and I/O
operations.
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T Cycle

Machine Cycle

M1
(OP Code Fetch)

M2
(Memory Read)

Instruction Cycle

M3
(Memory Write)

FIG.4-1 Timing diagram for instruction cycle.

In the paragraphs to follow, we will discuss the op-code instruction fetch,
memory data read/write, I/O read/write, bus request/acknowledge, interrupt
request, nonmaskable interrupt request, and exit from HALT instruction cycles.

Op-code instruction fetch. Figure 4-2 shows the CPU timing during the
MI op-code instruction fetch cycle of the Z80 CPU. The program counter (PC)
contains the address of the next instruction. The contents of the PC are placed
on the address bus (A0-AI5) dUring the first half of the MI cycle.

14---------M1 Cycle--------.1

AO .~ A15

WAIT

MI

DBO ~ DB]--+-----+---~

FIG.4-2 Ml cycle timing diagram.
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Since we are trying to fetch, Le., read, an instruction from some location
in memory, the MREQ and RD signals are also placed low. This tells the memory
that a read operation is taking place from a location whose address is found on
the address bus.

The WAIT line is sampled during this period. If the memory device is slow,
it may generate a wait signal to slow down the operation. If a wait signal is
found during each sample (Le., once during each T cycle), then the CPU will
enter another wait state. When the device is ready to transfer data, the wait sig­
nal disappears, and the data bus contains the data from that memory location.

During the last half of the Ml cycle (Le., T3/T4), the refresh address is
placed on the lower seven bits of the address bus, and a RFSH is generated.
This will allow the refreshing of dynamic solid-state memories.

During the portion of the Ml cycle that the program counter contents
are on the address bus, the Ml signal is low.

The M1 machine cycle will lengthen for as long as there is a wait signal
present. Using the WAIT line permits us to synchronize the CPU and an external
device.

Memory data read/write. The M2 and M3 machine cycles are used to read
to, or write from, memory locations. Figure 4-3 shows the CPU timing during
these operations. The principal signals used in this type of operation are the
MREQ, WR, and RD.

If a memory read operation is needed, then an address is placed on the
address bus (A0-A15) during the M2 machine cycle. During this period, the
MREQ (memory request) and RD lines coincidentally go low. The MREQ signal
does not become active until the data on the address bus are stable.

Memory write operations cause data from the CPU to be written into spec­
ifIed locations in memory. This occurs during the M3 machine cycle. In this
operation, the MREQ and WR signals become active. The MREQ signal, how­
ever, does not become active until the data on the data bus are stable (Le., valid),
so that semiconductor memory can be accommodated. Again, the address of the
specified location is applied to the address bus (A0-A15).

As in the instruction fetch cycle, a wait state can be created. If the WAIT
signal is low, then the CPU continues to enter wait states until the signal be­
comes inactive. The WAIT signal can be used to synchronize the CPU to memory
sources.

I/O Read/Write. Figure 4-4 shows the CPU timing during input and out­
put cycles. During each of these types of operation, the IORQ request line be­
comes active (Le., goes low). If the operation is a read cycle, then the RD signal
will also go low. But if the operation is a write cycle (i.e., an output), then the
WR signal goes low coincidentally with IORQ.
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FIG. 4-4 I/O Timing diagram.

In both input and output cycles, the address of the designated port is
placed on the lower byte of the address bus (AC/J-A7). Since this is an eight-bit
address, we can specify up to 256 different addresses from C/JC/JC/J-255 (decimal).

During an input (i.e., I/O read) operation, the 10RQ and RD signals are
low during T2 and T3, and data from the input port are passed along the data
bus.

During an output (i.e., I/O write) operation, the 10RQ and WR signals are
low during T2 and T3. Data from the accumulator are passed over the data bus
to the output port whose address is contained on the lower byte of the address
bus. But note that the 10RQ signal does not become active immediately, allow­
ing the data on the data bus to stabilize before the operation is consummated.

Bus request/acknowledge. The bus request signal (BUSRQ) is used to
allow external devices to gain control of the CPU control lines, the address bus
and the data bus. This allows direct access to memory for the external device.

The CPU samples the BUSRQ input during the last T cycle of any given
M cycle. If the bus request is active, the CPU will complete the current instruc­
tion, and then service the request. Following the last T cycle of the last M cycle,
the CPU will go into a high impedance state. The address bus lines, the data bus
lines, and the control lines (MREQ, RD, WR, 10RQ, RFSH) are placed in the
high impedance condition, effectively disconnecting them from the external cir­
cuits. This will allow the external device to gain control of the lines, to directly
input data to memory locations without going through the CPU. When the CPU
lines are in the high impedance state, the CPU generates a BUSAK (bus acknowl-
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edge) signal that tells the requesting device that the buses are available to its
use. The timing for this type of operation is shown in Fig. 4-5.

When the external device is finished with the memory, it will deactivate
(i.e., make high) the BUSRQ signal, telling the CPU that it can have control
again.

Interrupt request. The ability to service interrupts allows the CPU to use
certain types of external device more efficiently. The CPU can do other chores
while the slower external device is working, or it may perform other chores
while awaiting rarely occurring situations to develop. The INT signal is the inter­
rupt request. This line is sampled by the CPU on the rising edge of the last T
state of each M cycle. See Fig. 4-6.

These interrupts can be masked in software because the CPU will not
accept the request unless an internal CPU flip-flop is set. This interrupt flip-flop
is controlled by software commands. Interrupts are also ignored if the bus
request (BUSRQ) line is active (Le., low).

If the CPU accepts the interrupt request, then a special M1 state is gen­
erated, so the Ml line goes low. The address bus receives the contents of the
program counter (PC), so that the CPU can return to the original program after
the interrupt is serviced. The address of the next instruction, to be executed
following termination of the interrupt, is stored on an external memory stack.

Once the PC contents are stored, the IORQ line goes low, telling the inter­
rupting device that it can place an address vector on the data bus, which tells the
CPU where the program that services the interrupt is located.

As in the previous conditions, the WAIT signal can be used to lengthen the
timing by causing the CPU to enter wait states. If the WAIT line is active when
sampled, the CPU enters the wait state. If the signal is inactive, then no wait
state is generated, and the CPU continues.

Nonmaskable interrupts. Certain types of interrupt situations cannot wait
for the software being executed by the CPU to set an internal flip-flop. Such
interrupts might be an alarm condition in the process or factory, or in a medical
computer. These situations require a nonmaskable interrupt. Figure 4-7 shows
the CPU timing for the nonmaskable interrupt in the Z80.

This type of interrupt cycle is very similar to the regular interrupt, except
that it is not dependent upon the software-controlled interrupt flip-flop. This
type of interrupt will be serviced as soon as the present instruction cycle is
completed. The contents of the program counter are stored in an external mem­
ory stack, and the CPU jumps automatically to location 00 66 (hex) to find the
interrupt service program.

Exit from a HALT. If a software HALT instruction is encountered, the
CPU will sit there executing no-ops (NaP) until one of two situations occurs:
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(a) a nonmaskable interrupt is received, or (b) a maskable interrupt is received,
and the internal interrupt flip-flop is SET.

If the Interrupt lines (INT or NMI) are active when sampled during the T4
portion of the MI cycle, then the HALT condition is terminated following T4.
The HALT line then goes inactive (high). The CPU timing for the exit from halt
operation is shown in Fig. 4~8.



§)
zao Addressing

des

The many different instructions offered by the Z80 microprocessor reflect, in
part, a number of different addressing modes for the same basic operations. In
all cases, the Z80 instructions pertain to operations on data between internal
registers, in the external RAM or ROM memory, or input and output ports. It
is, perhaps, easier to realize just where such a large, magnificient instruction set
comes from when you consider that there are several different forms of opera­
tion, on data in up to eighteen 8-bit registers, and four 16-bit registers. And since
the Z80 uses a 16-bit address bus, it can accommodate a mix of random access
memory (RAM) and read only memory (ROM) up to 216 (65,536, or so-called,
"64K") one-byte locations. There are also up to 256 input and 256 output port
selections possible.

One of the advantages of the Z80 is the large number of addressing modes,
taking it out of the simple process controller stage and making it a real live com­
puter. The modes of addressing offered by the Z80 device include:

Immediate addressing
Immediate extended addressing
Modified page-zero addressing
Relative addressing
Extended addressing
Indexed addressing
Register addressing

37
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Implied register addressing
Register indirect addressing
Bit addressing

In this chapter we will discuss the various different types of addressing,
and then deal with sample instructions (enumerated more fully in Chapter 17),
using examples.

Immediate addressing. In the immediate addressing mode, the operand
follows the op-code in sequential locations, and the operand is loaded into the
selected location immediately. A prime example of the immediate addressing
mode is the ADD A,n and Sub A,n instructions. In these instructions, the oper­
and n is added (or subtracted if SUB A,n) to the contents of the accumulator,
and the result is then stored in the accumulator.

The format for the immediate addressing type of instruction is shown
below:

byte 1

byte 2

Example

op-code

(n)

The op-code for the ADD A,n instruction is 11000110 in binary or C6 in
hexadecimal. Let us say that the accumulator contains A7 (hex) before the fol­
lowing code is encountered:

memory location code

0600

0601

C6

07

byte 1

byte 2

This means that the instruction fetched (C6) is the ADD A,n instruction, and
that operand n (the next sequential memory location) is f/J7 (hex). After the
execution of this two-byte instruction, therefore, the contents of the accumu­
lator will be

A A +n

A A7 + 07

A contains AE

The main utility of the immediate addressing mode is to load data into
specific registers or locations or to perform arithmetic operations using constants.
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Immediate extended addressing. This form of addressing is merely im­
mediate addressing extended so as to accommodate 16-bit data transfers. While
the immediate addressing type of instruction can be only two bytes (e.g., the
op-code and operand n), the extended immediate type of instruction requires
three bytes of data (op- code and two following n bytes). The format of this type
of instruction is

byte 1

byte 2

byte 3

op-code

(n1)

(n2)

An example is the load HL instruction that causes two operands to be
loaded into the 16-bit HL register pair. LD HL, nn would look like:

byte 1

byte 2

byte 3

21

n

n

op-code for LD HL, nn

low-order byte for HL

high-order byte for HL

There are also similar instructions for the other 16-bit register pairs,
namely, LD, BC,nn; LD DE,nn; and LD SP,nn.

Example

Suppose we wanted to load the HL register pair with the 16-bit binary
word 00111101 01101111 (3D 6F in hex). The program would look like

byte 1

byte 2

byte 3

21

6F

3D

op-code for LD HL, nn

data for low-order byte of HL

data for high-order byte of HL

Following the execution of this instruction, the the low-order (L) side of the
HL register pair would contain 6F (hex) and the high-order side (H) would con­
tain 3D. Taken together, these data form the 16-bit word 3D6F (hex).

Modified page-zero addressing. This type of instruction allows the pro­
grammer to call any of eight memory locations on page zero (i.e., first 256
addresses, starting at (/J(/J hex). The example of this type of addressing is the
RST p instruction which, depending upon operand p, will reset the program
counter to anyone of the following addresses on page zero of memory: (/JI(/J(/J(/J,
(/J(/J(/J8, (/J(/J1(/J, (/J(/J18, (/J(/J2(/J, (/J(/J28, (/J(/J3(/J, (/J(/J38. In this instruction, the current con­
tents of the program counter are pushed onto an external memory stack. The
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high-order byte of the program counter is loaded with f/Jf/J (hex), while the low­
order byte is loaded with a word that selects any of the eight locations called
out above. For example, loading the low-order byte of the program counter with
CF (hex) would cause the instruction to be RST,f/J8.

The main use of the modified page-zero addressing is to allow servicing of
subroutines with a single-byte call instruction. Consider Fig. 5-1 .. We areexe­
cuting a program in page If/J, and at location If/JB2 encounter a CF during an
instruction fetch cycle. This tells the Z80 that it is a modified page-zero call to
a subroutine at location f/Jf/J f/J8, so program control jumps to location f/Jf/J f/J8.
Note that the program counter (PC) contained 10 B2 when the RST,f/J8 instruc­
tion was encountered. The high-order byte of the PC is pushed into stack

Memory Locations

0008

0009

OOOA

data ~

CF --

1081

1082

1083

r-- 1082

0008

Stack Pointer

SP 1
SP-1 10'I'

SP-2 8'2

Program Counter

FIG. 5-1
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pointer location SP-l, while the low-order byte is in location SP-2. When pro­
gram control returns from the subroutine, then the program counter would re­
claim the data in the stack, and increment appropriately to pick up the next
instruction at 1f/J B3.

Relative addressing. The relative addressing mode allows jump instruc­
tions in two bytes that cause program control to shift by a displacement integer
e. The jump will occur to a memory location that is -126 to +129 locations
away from the current address. These instructions are two-byte instructions, so
the value of e would be - 128 10 to +127 10 • The displacement integer e is always
represented as a signed two's complement number, so these values in binary
would be 10000000 to 01111111 (8f/J to 7F in hex). Since this is a two-byte
instruction, and the jump cannot occur until the instruction is finished, the pro­
gram counter will increment twice before the jump occurs. This accounts for the
difference in the two ranges of decimal numbers given above. The format for this
type of instruction is

byte 1

byte 2

op-code

displacement integer (-128 10 to +127 10 )

Figure 5-2 shows a typical example, using the unconditional jump instruc­
tion JR,e. This instruction will cause an unconditional branch to a subroutine
located at a displacement e from the op- code. The value of the second byte will
be a e- 2. Note that we encounter the op-code 18 (hex) at location f/Jf/J f/J9 and
displacement integer FA (two's complement for 6) at location f/Jf/J f/JA. After
the execution of this instruction, the program counter will contain the new
address, f/Jf/J f/J4 (hex).

LOCATION

0000
00 01
0002
0003
0004
0005
0006
0007
0008
0009
000A
0008
(etc.)

DATA

PC after execution

18
FA

FIG. 5-2

op-code for JR,e
2's complement for - 6
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Extended addressing. In extended addressing, we are allowed to use two
8-bit integers nn to create a 16-bit address. In the typical extended addressing
scheme, there will be a one- or two-byte op-code, followed by two address bytes
or operands. In either case, the first n byte is the lower-order byte, while the
second is the high-order byte. The format would be

byte 1

byte 2

byte 3

byte 4

Example

op-code

(possible additional op-code)

n1

n2

LD A, (nn) is an extended addressing instruction that tells us to load the
accumulator (i.e., A register) with the byte located at a memory location given
by two-byte operand nn. Note that the use of parentheses around the operand
tells us that we mean the "contents of location nn," rather than the value nn.
The code for this is

byte 1

byte 2

byte 3

3A

n1

n2

op-code for Ld A, (nn)

low-order byte of address

high-order byte of address

Indexed Addressing. This type of addressing uses the two 16-bit index
registers (IX and IY), plus a displacement value following the op-code, to com­
pute the effective address of a jump. In a typical indexed addressing instruction,
there will be a two-byte op-code, followed by the displacement integer d. The
format of indexed addressing instruction is given below.

byte 1

byte 2

byte 3

(op-code)

(op-code)

(d)

Consider, for example, the LD (IX+d),A instruction. This instruction
causes the memory location pointed to by the contents of the IX index register
and displacement integer d to be loaded with the contents of the accumulator.
The code would be as follows.

byte 1

byte 2

byte 3

DD

77
d

(op-code for LD (IX+d),A)

(op-code for LD (IX+d),A)

displacement integer d
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Example

The accumulator contains 3F (hex), and the IX index register contains
4400 (hex). The code DD 7705 is encountered on an instruction fetch. This
indicates a LD (IX+d),A instruction, in which d is 05 (hex). The memory
location 44 00 + 05 =44 05 will contain 3F (hex) after the execution of this
instruction.

Register addressing. This addressing mode allows us to transfer data
between different registers of the Z80. An example is the LD 1',1" instruction.
Registers, A, B, C, D, E, H, and L can be used for either I' or 1". We make up the
one-byte op-code using the register codes in appropriate spots in the op-code,
using the format as shown below:

o 11~~~I={=:1

Example

The register code for the D register is 010, and the regiser code for the E
register is 011. Since the operation of the LD 1',1" instruction is I' - - 1", if we
want to load the D register with the contents of the E register, we would use the
op-code 01010011.

Implied addressing. In the implied addressing mode we use special instruc­
tions that always use the same CPU register to contain the operands. An example
of this type of instruction is the LD R,A instruction, which will load the R
(refresh memory) register with the contents of the accumulator.

Register indirect addressing. This powerful type of instruction causes the
transfer of data between the CPU and a memory location pointed to by the con­
tents of one of the 16-bit register pairs. An example of this type of instruction
is the LD (DE),A. This mnemonic is read, "Load the memory location pointed
to by the contents of the DE register pair with the contents of the accumulator."

Example

The accumulator contains 9D (hex), and the DE register pair contains
65 08 (hex). If the following is encountered,

00010010 (op-code for LD (DE),A)

then memory location 65 08 will contain the byte 9D (hex) after the execution
of this instruction.
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Bit addressing. One of the principal advantages of the Z80 in many types
of programming is the ability to set, reset, or test the condition of any single bit
in any register. The op-code will be of the form

byte 1

Example

(op-code)

The bit code (b) for bit 5 is 101, and the register code for the D register
is 010. In order to test the condition of bit 5 in the D register, we would use
the Bit 5,D instruction with the op- code

byte 1

byte 2

11001011

01101010

In this particular case, the Z flag in the F register would be SET if the tested bit
is (/J and RESET if the bit is 1.



§
The Z80 Instruction
Set (General)

There are 158 instructions that can be executed by the Z80. Actually, when
they are broken down into their various forms, counting the various modes of
instruction, we count over 400 Z80 instructions. In a previous chapter we classi­
fied these instructions according to the addressing mode used. But in this chap­
ter, we will classify the instructions in their respective groups. The groups are

Load and exchange
Block transfer and search
Arithmetic and logical instructions
Rotate and shift
Bit manipulation
Jump, Call, and Return
Input/Output
CPU control

LOAD INSTRUCTIONS

The load instructions are used to move data from one location to another.
More specifically, there are two basic types of LOAD instruction: (a) move
data from one internal register to another internal register, and (b) move data
from CPU registers to/from external memory locations.

45
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There are two basic groups of LOAD instructions: the 8-bit and the 16-bit
LOAD instructions. These instructions move single bytes of data, and use the
8-bit registers and 8-bit memory locations (sometimes pointed to by 16-bit index
registers).

The 16-bit LOAD instructions use the register pairs AF, BC, DE, HL, SP,
IX, and IY. They also use two-byte· memory addresses to specify the locations
of two bytes of data to be moved into the CPU, or from the CPU.

In all of the LOAD instructions, there must be specified both a source
of the data and a destination. These may be an internal register or a memory
location.

EXCHANGE INSTRUCTIONS

The exchange instructions are used to exchange the contents of any two
specified registers. These are the instructions that are represented by the mne­
monics EX and EXX.

BLOCK TRANSFER AND BLOCK SEARCH

One of the nicest things about the Z80 is the block search and transfer
instructions. The transfer instructions include LDI, LDIR, LDD, and LDDR.
The search instructions are CPI, CPIR, CPD, and CPDR.

The block instructions use three 16-bit register pairs in their execution:

HL Address of source location
DE Address of destination location
BC Byte counter

In any program using these instructions, it is necessary for these registers (HL,
DE, BC) to be initialized to the value required. When the block instructions are
executed, these registers are automatically incremented to point to the next
location.

The block transfer instructions are defined as follows:

LD I Load and increment. This instruction moves one byte of date
from the location pointed to by the HL register pair to the loca­
tion pointed to by the DE register pair. After the execution of
an LDI instruction, the HL and DE registers are incremented
(pointing to the next sequential location), and the Be register is
decremented.

LD IR This is the same as the load and increment instruction class, but
will load-increment-repeat. The same operation is repeated until
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the contents of BC are zero. If the BC register is initialized to a
specified value, then this one instruction will be used to move an
entire block of data from one location to another.

The LDD and LDDR instructions are analogous to LDI and LDIR
instructions, respectively. The difference is that the HL and DE
register pairs are decremented, instead of incremented, after each
execution. The BC register decrements, as in the other group.
These instructions transfer data from the highest location to the
lowest, while the opposite takes place in the LDI and LDIR
instructions.

CPI

CPIR

CPD
CPDR

The block search instructions are as follows:

Compare and increment. This type of instruction will compare
the contents of the accumulator with the contents of the memory
location pointed to by the contents of the HL register pair. The
result of the comparison is reflected by the condition of the flag
register bits. After the execution of this instruction, the HL regis­
ter pair contents are incremented, and the BC register pair con­
tents of HL point to an address in memory, while BC is a byte
counter.

In this type of instruction, a CPI operation is performed and
repeated, until either of two conditions are found: (a) the byte
counter (BC) is zero, or (b) the data in the addressed memory
location matches the data in the accumulator.

These are the compare and decrement and compare, decrement,
and repeat instructions. They are analogous to the CPI and CPI R
instructions, respectively, but the HL register pair is decremented
after execution, instead of incrementing.

ARITHMETIC AND LOGICAL INSTRUCTIONS

There are two groups of arithmetic and logical instructions: 8-bit and
16-bit. In the 8-bit arithmetic group are the addition (ADD), add with carry
(ADC), subtract (SUB), and subtract with carry (SBC). The 8-bit logical group
consists of AND, OR, or XOR instructions.

Also included in this 8-bit classification are compare (CP), increment
(INC), and decrement (DEC) instructions.

The same basic set of ADD, ADC, SBC, INC, and DEC instructions are
used in the 16-bit arithmetic/logical group, but instead of the 8-bit registers (A,
B, C, D, E, H, and L), and single memory locations, they use the register pairs
(HL, IX, IY, BC, DE, and SP).
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There is also a series of instructions that decimal adjust the accumulator
data (DAA). These can be used to allow multiprecision BCD numbers, signed
or unsigned binary numbers, or two's complement signed numbers.

There are four additional instructions in the arithmetic/logic group: com­
plement accumulator (CPL), negate accumulator (NEG), complement carry flag
(CCF), and set carry flag (SCF). The CPL instruction causes the number in the
accumulator to be complemented. This means that the 1's become o's and the o's
become 1'so The NEG instruction causes the contents of the accumulator to be
expressed in two's complement form. The CCF instruction causes the carry flag
to be complemented. If the carry flag is 1, then it will become 0, and if it is°
it will become 1. The SCF instruction will cause the carry flag to be set (i.e.,
made 1).

ROTATE AND SHIFT INSTRUCTIONS

The rotate and shift group instructions include RLC, RRC, RL, RR, SLA,
SRA, SRL, RLD, RRD, RLCA, RRCA, RLA, and RRA. These instructions
move specified bits left or right, according to rules given in Chapter 17.

BIT MANIPULATION INSTRUCTIONS

One of the things that make the Z80 one of the better uP chips is the ex­
istence of the bit manipulation instructions. We can test a bit for 1 or 0, we can
reset a bit (RES), and we can set (SET) a bit. The particular bit tested, set, or
reset can be in any specified register (A, B, C, D, E, H, and L), or any memory
location. In the latter case, we may use either indexed or register indirect address­
ing of the selected memory location. There are quite a large number of individ­
ual instructions in this group, because we can select any of eight bits (0-7),
seven different registers, or memory locations specified by HL, IX, or IY register
pairs.

JUMP, CALL, AND RETURN INSTRUCTIONS

A digital computer executes instructions in a sequential manner. In the
ordinary course of events, the program counter is incremented one to several
counts every time an instruction is executed. The number of counts incremented
is determined by the number of bytes required for the particular type of instruc­
tion. Although this sequential execution is one of the powerful aspects of digital
computers, it would also limit the range of possible problems that could be
solved to those amenable to direct sequential processing. It would be impossible



JUMP, CALL, AND RETURN INSTRUCTIONS 49

to perform most operations requiring even the simplest decision. Even the simple
matter of inputting data would become impossible. In those operations, an input
port is connected to a keyboard. We create a loop, using a JUMP instruction that
tests the strobe bit (usually B7), and if none is found, jumps back to the
beginning of the loop. If a strobe is found, on the other hand, the program
is allowed to fall through to the next instruction (usually an input instruc­
tion). But this is merely a trivial example. Most problems requiring decision
logic on the part of the computer could not be performed without the use of the
JUMP, CALL, and RETURN instructions. The instructions in this group include
JP, JR, CALL, DJNZ, RET, and RETN.

A JUMP (JP mnemonic) instruction is a branch to a subroutine at some
address other than the next address in sequence. The address at which the next
instruction (Le., the first instruction of the subroutine) is to be found is loaded
into the program counter (PC). We may use either of three addressing modes:
immediate extended, register indirect, and relative.

Each of the different types of JUMP instruction are keyed to certain con­
ditions that are reflected by the status bits of the flag (F) register. The condi­
tions that may be specified by the selection of the op-code include carry,
noncarry, zero, nonzero, parity even, parity odd, sign negative, sign positive, and
unconditional.

The conditional jump instructions look for the status of the appropriate
bit of the flag register. If the condition is met, then the jump operation occurs.

In immediate extended addressing, the jump occurs to a 16-bit memory
address specified by the two bytes following the jump instruction. If the con­
dition called for is met, then the program control will be shifted to the location
specified by the following two bytes.

Register indirect addressing allows us to store the 16-bit address of the
first instruction in the subroutine we wish to execute in one of the three double
registers. Either the HL, IX, or IY register pairs can be specified by appropriate
selection of the op-code. The register indirect jump instructions are all un­
conditional.

A relative addressing JUMP (JR mnemonic) instruction exists for each of
the following conditions: carry, noncarry, zero, nonzero, and unconditional. In
this type of jump instruction the next instruction for the program to execute
(Le., the first instruction op- code in the subroutine) is specified by the current
contents of the PC added to a displacement integer e. The value of e can be any­
thing in the range - 126 to +129, as measured from the address of the instruc­
tion op-code (rather than the location of the displacement integer.)

In the case of one of the unconditional jump instrll-ctions (all forms of
jump used in the Z80 will recognize an unconditional "condition"), the program
counter is loaded immediately with the two bytes immediately following the
op-code for the jump. The second byte of these three-byte instructions becomes
the low-order byte of the PC address, while the third byte of the instruction
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becomes the high-order byte of the PC address. Since the contents of the PC are
now changed, program control is transferred to the instruction located at a mem­
ory location specified by the PC.

There is also one special form of jump instruction that is very useful:
DJNZ. This stands for decrement register B and jump if it is nonzero. This in­
struction allows us to use the B register as a byte counter. We load register B
with an integer equal to the number of times that we wish to execute a sub­
routine. The program control will transfer to the subroutine specified by a
displacement integer e (this is relative addressing) as soon as the DJNZ is en­
countered. When the program control returns, the B register is decremented.
If this operation does not bring the contents of B to zero, then the jump occurs
again. This will continue until B counts down to zero. If B was preloaded with
zero, then the program will jump and loop through all 256 bytes before termi­
nating when zero is again encountered.

An example of a possible application of this type of instruction is in signal
averaging. If we want to average 100 data points, then we can nest an input in­
struction inside a DJNZ loop. The B register is loaded with 100, and is decre­
mented with each execution. When all 100 data points are input, then the B
register decrements one more time to zero, terminating the operation. The pro­
gram then falls through to the next instruction in sequence. Note that the
relative displacement integer e is expressed in the form of a two's complement
number.

The CALL instruction is a special case of the JUMP instruction. If the
CALL is used, then the address of the memory location immediately following
the CALL instruction is loaded into an external memory stack (pointed to by
the SP register contents). This allows us to branch to a subroutine, and then
return to the main program sequence.

The return (RET) instruction is a reverse call instruction, and is used to
return to the main program once the subroutine jumped to by the CALL instruc­
tion is finished. The RET instruction is usually the last instruction in the sub­
routine. When this instruction is encountered, the program counter is loaded
with the contents of the external memory stack (again, pointed to by SP). This
will be the address of the first instruction following the CALL instruction that
instigated the subroutine branch.

There are two specialized return instructions, RETI and RETN. These are
for returning to main program control after the servicing of an interrupt and a
nonmaskabIe interrupt, respectively.

INPUT/OUTPUT INSTRUCTIONS

Input/output instructions cause data to be input to, or output from the
CPU. The Z80 uses several different registers, and has I/O instructions allowing
direct use of these registers without first requiring the programmer to transfer
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the contents of the accumulator. In addition, there are several block I/O
instructions.

Immediate addressing is available to the accumulator (Le., register A),
while the B, C, D, E, H, and L registers use register indirect addressing. The
block I/O instructions are also register indirect.

Perhaps the most common I/O instructions are the immediate input and
immediate output instructions (IN A, n and OUT A,n). In these instructions,
the operand n is the eight-bit address of one of 256 (000-255) possible ports.
This address will appear on the lower eight bits (AC/J-A7) of the address bus,
while the contents of the accumulator appear on the upper eight bits of the
address bus (A8-AI5). The input or output data are passed over the eight-bit
data bus to, or from, the accumulator, respectively.

In the case of register indirect addressing, the contents of the C register
specify the eight-bit address of the selected port. This address (Le., contents of
C) are passed over the lower byte of the address bus to signal the device being
selected. Also at this time, the contents of the B register are passed over the
high-order byte of the address bus. This is analogous to the immediate I/O
instructions, except that the sources of the data passed to the address bus are
different.

The block input instructions include INI, INIR, IND, and INDR. The
block output instructions include OUTI, OTIR, OUTD, and OTDR. They are
analogous to the memory block transfer instructions, except that they use the
contents of register pair HL to point to an eight-bit I/O address at an external
memory location. In these instructions, register B is used as a byte counter. As
in the register indirect case above, the contents of the C register hold the address
of the I/O port. Note that this means that the contents of register pair HL point
to a location in external memory. The contents of this location are then loaded
into register C. When the actual transfer takes place, the contents of C are then
placed on the low-order byte of the two-byte address bus. Also, as in other
register indirect I/O instructions, the contents of the B register (Le., byte coun­
ter) are placed on the high-order byte of the address bus.

CPU CONTROL INSTRUCTIONS

There are seven instructions in the Z80 set that are used exclusively for
the control of the CPU: NOP, HALT, DI, EI, IMO, IMI, 1M2.

The NOP instruction is a "no operation" instruction. During the execu­
tion of the NOP, the CPU will do absolutely nothing.

The HALT instruction causes the CPU to cease operations until an inter­
rupt is received. The DI instruction disables the interrupts, while EI enables
interrupts.

The IMO, 1M1, and 1M2 instructions allow the programmer to set any of
three interrupt modes. The zero-mode (IMO) causes the Z80 to think that it is
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an 8080A. The 1M! causes program control to transfer automatically to location
00 38 (hex) when an interrupt is received. Interrupt mode 2 (1M2) allows indi­
rect call to an interrupt service subroutine at a location specified by two bytes:
the contents of the I register and the 8-bit word received from the interrupting
device. This feature allows vectored interrupts serving several peripheral devices
whose subroutines may be different.



Z7
zao Flags

The P and p' registers in the Z80 CPU chip are used as condition flags. Six of the
eight bits in each register are SET (i.e., made equal to 1) or RESET (i.e., made
equal to 0), depending upon the conditions resulting from various CPU opera­
tions. The flag register contents are available to the programmer. The bits of the
flag registers are assigned as follows:

BIT NO.

o
1
2
3
4
5
6
7

DEFINITION

C
N
P/V
(undefined)
H
(undefined)
Z
S

The C (carry) flag tells us if there was a carry bit from the highest-order
bit in the accumulator. The flag will be set if there is a carry from an addition
operation, or borrow during a subtraction operation, or in certain cases, during
the execution of the shift and rotate instructions.

The Z (zero) flag will be set if the operation performed results in a zero's
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(i.e., 000000002 ) being loaded into the accumulator. If any number other than
zero results from the operation, then the Z flag is reset (i.e., made 0).

The S (sign) flag stores the state of bit 7 in the accumulator (i.e., 1 or 0).
This results from the fact that bit 7 represents the sign of the number. If the
number is negative, then bit 7 is aI, but if it is zero or positive, then bit 7 is O.

The P/V (parity/overflow) flag has two purposes. Wheril()gical operations
(AND, OR, XOR) are performed, the P/V flag indicates the parity of the con­
tents of the accumulator (odd or even). When two's complement operations are
being performed, the P/V flag indicates whether or not an overflow occurs. An
overflow condition indicates that the answer in the accumulator is in error,
because it has exceeded the maximum permissible range of numbers (- 128 to
+127). The P/V will be set if the overflow occurs, but there is no carry (C flag).

In the case of logical operations, the P/V flag will be set for even parity of
the result in the accumulator, and reset for odd parity.

The H (half-carry) flag is a BCD borrow or carry from the least significant
half-byte (~-byte =nybble?) of the accumulator contents. Similarly, the sub­
tract flag (N) is used for correcting (decimal adjusting) BCD subtract operations.
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The Z80 microprocessor chip uses a 16-bit address bus, so it is able to directly
address up to 216 , or 65,536 memory locations. Note that this upper limit is
usually written "64K" rather than "65K" because a "computer-K" is 1024
instead of 1000. The Z80 data bus uses one byte (eight bits), so each memory
location can store a single eight-bit word.

The mixture of possible memory devices used with the Z80 includes
static random access memory (RAM), dynamic RAM, read only memory (ROM),
programmable read only memory (PROM), erasable PROM (EPROM), plus a
number of devices such as analog-to-digital converters (ADC), and digital-to­
analog converters (DAC), which are sometimes treated as memory. This tech­
nique, called memory mapping, makes some data acquisition chores easier (or
at least faster).

CONTROL SIGNALS FOR MEMORY OPERATIONS

We must be cognizant of the basic Z80 control signals that apply to mem­
ory operations: MREQ, WR, and RD. These signals are the memory request,
write, and read, respectively. The memory request signal will drop LOW when­
ever the CPU is executing either a memory read or memory write operation. It
tells the system that the data on the bus are memory data. If a memory write
operation is taking place, then the write (WR) signal will also go LOW. If, on the
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other hand, it is a memory read, then the read (RD) signal will go LOW. All
memory operations, therefore, will generate a LOW on two control pins of the
Z80: MREQ/WR for memory write operations and MREQ/RD for memory read
operations.

Most integrated circuit memory devices have at least one chip enable (CE)
pin, and some have two chip enable pins (labelled eEl arid CE2). There also may
be a read/write (W/R) pin to instruct the device whether the desired operation is
a memory read or a memory write.

One of the simplest cases is shown in Fig. 8-1. Here we see 1024 bytes of
read only memory (ROM) interfaced directly to the Z80. In this case, we have
assigned the ROM to the lower IK of the memory address range. The locations
available, then, are 0000 (H) to 03 FF (H). Since we are dealing with the lower
IK, we need only the lower-order byte of the address bus, AC/J-A7, plus the two
least significant bits of the upper-order byte (A8 and A9).

Two chip enable (CE) terminals are available. We use one of them (CE2) to
make sure that the ROM will respond only to addresses in the lower IK of
memory. Address bus bit AIO will always remain LOW when the CPU is address­
ing a location in the lower IK, but will go HIGH when an address greater than
03 FF (H) is selected. The ROM, therefore, is enabled only when the address on
the address bus is less than 03 FF (H).

The second chip enable pin (CEI) is used to turn on the ROM only when
the memory read operation is taking place. This CE pin wants to see a HIGH for
turn-on of the ROM. Recall that a NOR gate will output a HIGH only when
both inputs are LOW. We can, therefore, create a device select command for CEI
by applying the MREQ and RD control signals from the CPU to the inputs of a
NOR gate. CEI will go HIGH, then, only when a memory read operation takes
place.

At least two of the more popular ROM chips require only a single chip
enable command. In the example shown in Fig. 8-2(a), the chip enable is an

AO A9

MREQ 0-----\

RD 0-----
)()-------t CE1

A10o---C1 CE2

1024 BYTE
ROM

FIG. 8-1 Operating CE of memory from MREQ and RD.



CE 0---<::><'

AO

256 BYTE
EPROM

(b)

A7

FIG.8-2 (a) Enabling EPROM from MREQ/RD/A8; (b) Same function accom­
plished with two-input gates.
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active-LOW input (so is designated CE). This terminal is brought LOW whenever
we want to read the contents of one of the locations in the chip.

The example shown in Fig. 8-2(a) is a 256-byte ROM, with a single CE
terminal. We must, therefore, construct external circuitry that will bring the
chip enable terminal LOW when we want to perform the read operation. The
sitriplest way is to use a three-input NOR gate and an inverter. The output of
the NOR gate will go HIGH only when all three of the inputs are LOW. We con­
nect the MREQ, RD, and bit A8 of the address bus to the respective inputs of
the NOR gate. When the conditions are met, then the output of the gate snaps
HIGH, and is then inverted to become the CE signal required by the EPROM
chip.

An alternative method is shown in Fig. 8-2(b). Here we are using two
inverters and a pair of NOR gates to form the CE signal. The idea is to cause
CE to go LOW when the three conditions are met. To do this, we must see
both inputs of NOR gate G2 LOW simultaneously. One of the inputs is con­
nected to bit A8 of the address bus, while the other is connected to the
inverted output of NOR gate G1. The inputs of Glare, in turn, connected to
the MREQ and RD signals.

A situation that is a little more complicated is shown in Fig. 8-3. Here

16-BIT Address Bus

CE I------e---I CE

256x4 256x4
R/W I----t....--~~-IR/W

8-BIT Data Bus

I T-a-: :~OEQ
RD

FIG. 8-3 Interfacing RAM.
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we are interfacing static RAM devices that have a chip enable and a RjW termi­
nal. This latter terminal will cause the device to read out data when LOW, and
allow writing in data when HIGH. We connect the RjW terminal, then, to the
RD signal of the Z80 CPU.

The chip enable in this example wants to see a HIGH in order to turn on
the device. We can, then correct CE to the output of a NOR gate. The MREQ
and A8 signals are connected to the two inputs of the NOR gate. If both of
these signals go LOW simultaneously, and the RD is also LOW, a memory read
operation takes place from the location addressed by Af/J-A7. Alternatively, if
the MREQ and A7 signals are LOW, and the RD signal is HIGH, then a memory
write operation will take place.

Note in Fig. 8-3 that two chips are used to form a 256-byte static RAM
memory. Most memories require more than a single chip in order to form a
complete byte-array. In this case, each memory chip contains a 256 X 4-bit
array, so two connected together will form a 256 X 8-bit array (i.e., 256 bytes
of memory). The popular 2102 device is listed as a 1024 X I-bit device. Con­
necting eight of these devices into an array will result in a I024-byte memory.

ADDRESS DECODING

In most microcomputers more than IK of memory is used. But many of
the memory chips available are only 1024-byte (with some being 256-byte).
Although there are more modern devices capable of very large byte arrays, many
users still prefer the older, smaller devices. The question arises, "How does the
memory device allocated to a location greater than the maximum address in
each individual chip know when it is being addressed?" The solution seems to
be ordering of the memory in IK blocks, and then the use of some form of
address decoding to tell which lK block is being designated.

Figure 8-4 shows a selection scheme used by several manufacturers of 8K
memory banks. Each block of this memory is an array of 1024 bytes, so every
location can be addressed by bits Af/J-A9 of the address bus. The address pins
for all devices are connected together to form the address bus (Af/J-A9). We
must, however, select which of the eight blocks is addressed at any given time.
One way to do this is to use a data selector IC. The 7442 device shown in Fig.
8-4 is a BCD-to-one-of-ten decoder. It will examine a four-bit binary (i.e., BCD)
input word, and issue an output condition that indicates the value of that word.
In this simplified example, we are going to limit the memory size to 8K, so only
the 1, 2, and 4 inputs of the 7442 are needed. The input weighted 8 is grounded
(i.e., set =f/J). The 7442 indicates the active output by going LOW, exactly the
right condition for the RAM devices in the memory blocks. The table below
shows the code that will exist on the Alf/J-AI2 bits of the address bus for the
various memory addresses in the range 0-8K.
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FIG.8-4 (a) Using 7442 in bank selection of memory; (b) Code for above.
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MEMORY BLOCK 7442 7442
LOCS. A13 A12 A11 A10 NO. OUTPUT PIN

OK-1K 0 0 0 0 0 0 1
1K-2K 0 0 0 1 1 1 2
2K-3K 0 0 1 0 2 2 3
3K-4K 0 0 1 1 3 3 4
4K-5K 0 1 0 0 4 4 5
5K-6K 0 1 0 1 5 5 6
6K-7K 0 1 1 0 6 6 7
7K-8K 0 1 1 1 7 7 9

For an 8K memory, then, the lower 10 bits of the address bus (Af/J-A9)
select which location in the individual chips is wanted, and AIO-AI2 select
which block of 1024 bytes contains the address.

In the example of Fig. 8-4 we limited the memory size to a mere 8K. This
was done intentionally to keep the circuit simple. But how do we select memory
in ranges higher than 8K? The answer is to use the 7442 input weighted "8" as a
bank select control. Recall from Fig. 8-4 that this input was kept grounded. If it
is HIGH, then none of the eight outputs of the 7442 will go LOW. But if it is
LOW, then the circuit will work. Figure 8-5 shows a simplified selection scheme
for all 65K addressable by the Z80, using the "8" weighted inputs of the 7442
block selectors as a bank select terminal. Each bank of 8K contains its own
block select 7442, and one additonal 7442 is used to select the bank of 8K that
will become active. The table below shows the codes existing on address lines
AI3-AI5 for each 8K bank of locations:

MEMORY
LOCS.

OK-8K
8K-16K

16K-24K
24K-32K
32K-40K
40K-48K
48K-56K
56K-64K

BANK
NO.

o
1
2
3
4
5
6
7

A15 A14 A13

o 0 0
o 0 1
010
o 1 1
100
1 0 1
110
1 1 1

7442
OUTPUT

o
1
2
3
4
5
6
7

7442
PIN
LOW

1
2
3
4
5
6
7
9

Figure 8-6 shows an alternate bank selection circuit that is based on a
three-input NAND gate (i.e., one section of a 7410 TTL I.e. device). The prop­
erties of a NAND gate are

1. If any input is LOW, the output is HIGH.
2. Ifall inputs are HIGH, then the output is LOW.



A10
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8_-+--+-----1 7442

A13()----I
A140---
A15 0 7442

lli------l_.~ 7442

FIG.8-5 Multiple bank selection.

A13 ()-----6--I

BANKO
0-8K

BANK1
8-16K

BANK7
56-64K

A14O-----.--i

A150----_&--1

83

7410

FIG. 8-6 Switches determine whether logical-lor logical-O is required.

62



DYNAMIC MEMORY 63

In this case, then, all three of the inputs must be HIGH for the output to drop
LOW. If the output of the NAND gate is used to drive the "8" input of the
7442, then the particular bank served by that 7442 will be selected only when
all three inputs are HIGH.

How do we contrive the circuit to force all inputs HIGH only when the
correct bit pattern is seen on lines A13-A15? The solution is the inverters and
switches shown in Fig. 8-6. Each switch selects either the inverted (i.e., "(/J"
position) or noninverted (i.e., "1" position) versions of each address bus signal.
We set the three switches according to our bank selection format, using the
codes from the table given previously. Each switch is to be set to the position
corresponding to the digit expected at that input when the address bus code is
correct. For bank f/J, for example, the code is f/Jf/Jf/J. If Sl-S3 are set to "f/J" posi­
tion, then the NAND gate sees the inverted address line signals. When f/Jf/Jf/J
appears on A13-A15, the NAND gate sees 111. Since this is the condition
required, the output drops LOW and turns on the selected bank.

Note that Intel manufactures a 1-of-8 decoder intended specifically for
bank selection in the 8080A device. It should also work nicely with the l80.

DYNAMIC MEMORY

Dynamic memory (RAM) will not hold its data for an indefinite length
of time, unless a refresh operation is performed. The refresh operation is a func­
tion of the CPU in most cases, although some non-CPU examples exist. Although
the use of static RAM will eliminate this problem, it is only at the cost of a
higher power consumption. The l80A device provides for refresh of the dyna­
mic memory by adding a refresh segment to the M1 (instruction fetch) machine
cycle.

During clock periods T3 and T4 of the M1 cycle, used by the l-80 for the
decoding of the instructions fetched in the earlier T-periods a refresh signal is
generated. The RFSH terminal (pin 28) of the Z80 will go LOW during this
period. Note that this signal must be used in conjunction with the MREQ (mem­
ory request) signal, because the RFSH is guaranteed to be stable only when the
MREQ is also active.

During the refresh period the lower portion of the address of a refresh
location is placed on the lower seven bits (Af/J-A6) of the address bus (A7 is f/J).
The data on A(/J-A6 are from the R register in the l80, which is incremented
after each instruction fetch. The upper eight bits of the address bus carry the
contents of the I register. Figure 8-7 shows an example of an 8K dynamic RAM
interfaced to a l80. In this particular case, 4K X 8-bit dynamic RAMs ale used.
If no other RAM is used, we may use bit A12 of the address bus as a chip-select
line.
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ADDING WAIT STATES

All solid-state memory chips require a certain minimum period of time to
write data into, or read data from, any given location. Many such devices are
graded (and priced!) according to memory speed. The popular 2102 device,
a lK X I-bit IC, is available in 250-nanosecond, 400-nanosecond, and 500­
nanosecond versions. Of course, the cost per chip rises with the speed.

Since the Z80A can operate at speeds up to 4 mHz, we sometimes find the
cycle (MI or memory) over before the data have settled to, or from, memory.

This problem can be overcome by adding the circuitry shown in Fig. 8-8.
Both of these circuits generate a WAIT input (pin 24 of the Z80) equal to the
period of one clock pulse.

The circuit in Fig. 8-8(a) uses both sections of a TTL 7474 dual Type-D
flip-flop. The 7474 is a positive-edge triggered device, meaning that data on the
D-input are transferred to the Q output only during the positive-going transitions
of the clock pulse.

Immediately after the onset of clock pulse TI, the Mlline goes LOW,
forcing the D input of FFI LOW. When clock pulse T2 snaps HIGH, then, this
LOW is transferred to the Q output of FFI. This signal becomes the WAIT signal
for the CPU, and inserts one additional clock period (Tw) into the MI cycle.

At the onset of clock period Tw ' then, FF2 sees a LOW (i.e., the WAIT
signal) on its D input. This LOW is transferred to the Q output of FF2. The Q2
terminal (FF2) is connected to the set input of FFI, so this condition forces the
Ql (FFl) HIGH again, thereby terminating the action.

A similar circuit, shown in Fig. 8-8(b), is used to add a wait state to any
memory cycle. When the first clock pulse (TI) arrives, the MREQ line goes
LOW, forcing the D-input of FFI LOW. At the onset of clock pulse T2, then,
this LOW is transferred to the Q output of FF 1. At this time Ql is HIGH and
Q2 is HIGH, so the output of the NAND gate drops LOW. (Both NAND inputs
must be HIGH for the output to be LOW.) This causes the WAIT input of the
CPU to become active. But at the onset of Tw , the added clock period, the LOW
on Ql is transferred to Q2. This forces one input of the NAND gate HIGH,
thereby cancelling the WAIT signal.

MEMORY MAPPED DEVICES

Some peripheral devices used with microcomputers can be more efficiently
employed if they are treated as a memory location, instead of an I/O device. An
example might be a digital-to-analog converter (DAC), which is a device that
creates an analog output voltage (or current) that is proportional to a binary
digital word applied to its input.



CD
CD

( T
M1 S S

0 Q 0 Q-

FF1 FF2
7474 7474

<I>
C Q r---C 5

R R

1 Jv

WAIT

I
7400

+5V +5V

MREQ 1
0

S S
Q 0 Q

FF1 FF2

<I> - I
C 5 C 5

R R

+5V +5V

M1

Tw I T, I T z I Tw

M1 \ IMREQ\I
i

WAIT \ I
IWAIT

'\ /
FIG. 8-8 Adding a wait state to the MI cycle.
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Figure 8-9 shows how an 8-bit DAC can be interfaced with a Z80 as if the
DAC were a memory location. The DAC requires stable input data, but the data
on the bus are transitory. Therefore, we need a data latch between the 8-bit data
bus and the DAC inputs. There are a number of interface chips that will perform
this job, but most of those special-purpose devices are costly. A low-cost solu­
tion, which works just as well, is to use a 74100 TTL dual quad-latch. The two
four-bit sections of the 74100 become an eight-bit latch when the strobe termi­
nals are tied together.

The 74100 latch transfers the information on the data bus to the DAC
when the strobe line is HIGH. The 74100 outputs, connected to the DAC inputs,
will retain these data when the strobe line again goes LOW. The idea, then, is
to make the 74100 strobe line HIGH during the period when the desired DAC
input data are present on the data bus.

Three criteria must be met before the data on the bus can be input to the
DAC: (1) The write signal (WR)must be active; (2) the memory request (MREQ)
must be active; (3) the correct address (the address of the location assigned to
the DAC) must be present on the address bus. The first two criteria are exam­
ined by a single NOR gate. When both WR and MREQ are LOW (i.e., active), we
are producing a memory write operation. This will cause point "A" to go HIGH,
and point "B" to go LOW. We do not want the DAC to respond, however, unless
point "C" is LOW at the same time. When point "C" is LOW, we know that the
address for the DAC is being sent over the address bus.

Address
Decoder

BO

]O--e--t STR

74100

STR

00------......+-+--1-+-+-+--+---
--------.-+--+--1-+-+--11---

8-BIT
---iD-+-+--+--+--- DATA

BUS

07-----------....--

FIG. 8-9 Using a device such as a DAC as a piece of memory.
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When all three criteria are met, the strobe input of the 74100 (point "D")
will go HIGH. This will allow transfer of data from the data bus into the DAC.

Most microcomputers have less than the full 64K complement of memory.
This is the reason why most memory-mapped devices tend to be allocated ad­
dresses in the upper 32K of memory. This, incidentally, allows us to use bit AIS
of the address bus to discriminate betweenthe various addresses.
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Input/output (I/O) devices may include such apparatus as keyboards, teletype­
writers, printers, digital displays analog-to-digital converters (ADC), digital-to­
analog converters (DAC), or mass memory storage devices such as disc drives
or cassette drives (e.g., Phi-Decks). The Z80 uses the lower-order byte of the
address bus to address I/O ports. We may, therefore, address 28

, or 256 different
ports, which are given numerical assignments in the range ~C/JC/J to 255. If port
C/JC/J6 is addressed, for example, the address will be C/J6 (hex), or C/JC/JC/JC/JC/JllC/J in
binary.

zao I/O CONTROL SIGNALS

In Chapter 4 we defined the various control signals generated and/or
recognized by the Z80 microprocessor chip. Here we will review those that are
relevant to the I/O functions. The IORQ (Le., input/output request) signal is
an active LOW, tri-state output. When this terminal (Z80 pin 20) goes LOW,
the outside world knows that the lower byte of the address bus contains a valid
input or output port address. There is also one additional use of the IORQ
signal. It will go LOW during the Ml machine cycle when an interrupt is being
acknowledged, so that external I/O devices will know to place an interrupt
response vector (Le., the lower-order byte of the address at which the interrupt
service subroutine may be located) on the data bus.
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The 10RQ signal occurs for both input and output operations. This could
cause some confusion, so the Z80 designers, in their infinite wisdom, elected to
also provide a read (RD) and a write (WR) signal. These signals occur for both
memory and I/O operations, and allow the external circuitry or devices to deter­
mine whether we are reading to or from the CPU. When the RD and 10RQ con­
trol lines are simultaneously LOW, the external world knows that the command
being executed is an I/O read (i.e., an input) operation. Similarly, if the 10RQ
and the WR are simultaneously LOW, then the external world knows that an
I/O write (i.e., an output) operation is to take place.

Interrupts are also sometimes classified as an I/O function, but they are
sufficiently different as to warrant separate treatment in Chapter 11.

Z80 I/O INSTRUCTIONS

The Z80 I/O instructions are a powerful group that allows both block and
direct commands. The accumulator (i.e., A register) can be used in either input
or output immediate commands. Both types are two-byte instructions in which
the accumulator either inputs from, or outputs to, the port whose address is
given by the byte following the op- code. The other registers, however, use regis­
ter indirect instructions, in which the address of the input or output port is given
by the contents of the C register. IN B,C, for example, loads register B with the
binary word at an input port whose address is given by the contents of the C
register.

The block transfer instructions allow us to transfer whole blocks of
sequentially stored data using but one instruction. These instructions are INI,
INIR, IND, INDR, OUTI, OTIR, OUTD, and OTDR. Many programmers feel
that these are among the most powerful of the Z80 instructions.

I/O PORT ADDRESS DECODERS

Address decoders for I/O ports are very similar to those used for memory
ports, with the exception that only eight-bit addresses are anticipated (as op­
posed to 65,536 memory addresses!) This will simplify the design process, but
keep in mind that the same circuits as were used for the memory address can be
pressed into service for decoding I/O addresses.

The problem is this: The 10RQ, in conjunction with RD and WR, tells the
I/O devices that an I/O operation is to take place. But just which I/O port is
being designated? The address passed over the lower eight bits (A(/J-A7) of the
address bus must be decoded. Each I/O device, or I/O port, will contain its own
address decoder circuit. This circuit will tell the device to respond (as appropri­
ate) to the 10RQ/WR or IORQ/RD conditions.
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The first address decoder is shown in Fig. 9-1, and is one of the most
popular circuits used. The 7430 IC is a TTL eight-input NAND gate. Its output
will remain HIGH as long as anyone of the eight inputs is LOW. The output
terminal of the 7430 will go LOW only if all eight inputs are HIGH. The trick
is to make the entire set of inputs HIGH when the correct address is present on
the lower eight bits of the address bus. Of course, if the address is FF (hex)
(11111111 in binary), then we have no problem. Connecting one each of the
7430 inputs to one of the lower-order bits of the address bus will automatically

7430

A7U--~P----I

(a)
AOo-----------------,

A10----------------I
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7430
A4Q----------·--------t1----
A50----------I

A6o-----------------l

0-----------------'

SELECT

(b)

FIG.9-1 (a) Switches select whether "1" or "0" is required to generate a
SELECT pulse. Only the LSB and MSB positions are shown in detail;
(b) Decoder for address selected.
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give us our decoder. But all other addresses will require one or more inverters
between the address bus lines and the inputs of the 7430. If you want maximum
flexibility, then one inverter may be dedicated to each 7430 input. But this is a
terrible waste of inverters, because there is only one address in which all of the
inverters are required: f/Jf/Jf/Jf/Jf/Jf/Jf/JC/J (binary)! All other addresses will use fewer
than eight· inverters. As· a practical matter, most commercially available 1/0
printed circuit boards have but three or four inverters. The user is then asked
to carefully select I/O port addresses such that no more than three or four
zeroes occur. It is rare, indeed, that all 256 possible I/O ports would be required,
so this is not the sacrifice that it might appear. In the example of Fig. 9-1 we
have shown inverters only on the Af/J and A7 lines, with those for the other lines
implied. In actual practice, most designers have the inverters wired in with small
jumpers, rather than formal switches, so that they may be dedicated to any 7430
input as might be required.

By way of illustration, let us assign the address 11010011 (D3 in hex) to
an I/O port. We see by inspection that all but three of the bits in this address are
ones, so no inverters will be needed for them. Only the zero bits (i.e., A2, A3, and
AS) will require inverters. The decoder for this address is shown in Fig. 9-1(b).
Notice that the Af/J, AI, A4, A6, and A7 lines are connected directly to 7430
inputs, while the AI, A2, and AS address lines are passed through inverters be­
fore being applied to the 7430 inputs. When the address 11010011 appears on
the bus, then, all of the 7430 inputs will see ones, and the 7430 can drop LOW.
This creates a SELECT signal for use by the I/O circuitry. An optional inverter
will turn this signal upside down, creating a SELECT signal, for those cases
where a positive-going transition is needed.

Another form of address decoder is shown in Fig. 9-2. This circuit is based
on the TTL-type 7485 comparator IC. This device will compare two four-bit
words ("A" and "B") and issue an output that indicates whether A is equal to,

87 80

SELECT 0

B-INPUTS
7 2

B-INPUTS

+5 IC2 6 3 IC1 6
7485 7485

A-INPUTS 5 4 A-INPUTS

A7 AO

FIG.9-2 Using 7485 TTL comparators as an address decoder.
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greater than, or less than, B. Of these, we are interested in the A = B output
(pin 6). The 7485 has cascading inputs that sense the status of a lower-order
four bits. We need two 7485 devices connected in this cascade manner in order
to use it to decode an eight-bit address bus.

We connect the bits of the address bus to the A-inputs of the 7485's. The
B-inputs are used to program the device with the address of the port to be
selected. In the previous case, we selected port D3 (hex), i.e., 11~1~~11 in
binary and 211 in decimal, using a 7430. If we wanted to use the 7485's as
shown in Fig. 9-2, we would program IC1 with the binary word ~~11 (Le.,
3 hex), and IC2 with 1l~1 (i.e., D hex). When this address appears on the ad­
dress bus, then the A =B output of IC 1 will go HIGH, forming a SELECT signal.
An inverter is needed if a SELECT is desired instead.

We can also use any of the various "l-of-N" decoder ICs as address selec­
tors. the 7442 is a 1-of-10 decoder, while the 74154 device is a 1-of-16 device.
Each of these has a four-bit binary input to determine which output line (~

through 9, or ~ through 15) will go LOW. Figure 9-3 shows the use of the 7442
1-of-10 decoder. Two 7442 devices are needed. A NOR gate is connected so
that one input of the NOR gate is driven by one of the outputs of each 7442.

As an example, let us say that we want to use the circuit of Fig. 9-3 to
decode address 115 (decimal), which is 73 in hex. The binary code for "7" is
0111, and the code for "3" is 0011. We want, then, to see binary code 01110011
on the A~-A7 lines. We connect the four-bit inputs of IC1 to the lower-order
four bytes of the address line (A~-A3), and the high-order four-bits (A4-A7)
to the four-bit inputs of IC2. One input of the NOR gate is then connected to
the "3" output of IC1, and the other input is connected to the "7" output of
IC2. When the correct address appears, both of these outputs will drop LOW,
causing the output of the NOR gate to snap HIGH. This signal then becomes
our SELECT signal. Again, an inverter is used to form a SELECT signal where
required.

SELECT 0

7J- S.§LECT 0

~}

7442~}

A7

A4

A3Q-

AOo--

FIG.9-3 Using 7442 l-of-lO decoder as an address decoder.
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USING THE ADDRESS DECODERS

The address decoder performs just one of the functions necessary for I/O
operations: it decodes the correct address for the specified port. But there are
two other functions that need to be recognized in each case, j'(jRQ and either
WR or RD. Figure 9-4 shows how these functions, along with the SELECT func­
tion, can be combined to form an I/O control circuit. In this case, we are
assuming that the I/O devices want to see positive-going pulses in order to oper­
ate. Gates G1 through G3 are used in the output operations, while gates G4
through G6 are used for input operations.

Output operations. Here we use Gl-G3 in Fig. 9-4. Gate Gl is a NOR
gate and is controlled by the SELECT output of the address decoder and by the
WR control signal generated by the Z80 CPU. G3, which creates the actual OUT
signal, is controlled by the 10RQ Z80 control signal and the inverted output of
G1 (note that gate G2 is an inverter, i.e., a NOT gate). We require three simulta­
neous conditions for the output to occur: The WR and IORQ must be active
(Le., LOW), and the correct address must be present on the address bus. The
latter condition is indicated by the SELECT output of the address decoder cir­
cuit going LOW. If WR and SELECT are active, indicating a possible output
operation, then the output of gate G1 will go HIGH. This signal is inverted, and
applied to one input of gate G3. If the command is a genuine output operation
for this port, then the 10RQ, applied to the alternate input of NOR gate G3,
will also be active (i.e., LOW). The three conditions, being met, allow an OUT
signal to be generated. This signal is used to tell the output device whose address
was called to accept the data currently on the data bus.

A similar action occurs on the input operation, except that RD must be
sensed instead of WR. Note that the IN circuit is substantially the same as the
OUT circuit, except for the use of RD on NOR gate G4.

Another, and simpler, circuit that performs essentially the same job is
shown in Fig. 9-5. Here we are using the familiar 7442 (TTL l-of-l0 decoder).
This circuit has proven popular, and is used by such manufacturers as The Digital
Group, Inc. The 7442 A, B, and C inputs are connected to the 10RQ, RD, and
WR outputs of the 7442, respectively. The D-input of the 7442 is permanently
connected to ground, so always sees a zero input. If an input operation is com­
manded, then the four-bit word applied to the 7442 inputs is f/JH/Jf/J (decimal 4).
But if an output operation occurs, then the word applied to the 7442 inputs is
0010 (decimal 2). In the case of an input operation, then, the "4" output of the
7442 will drop LOW. If an output operation is taking place, then the "2" output
of the 7442 drops LOW. These 7442 terminals are applied to the inputs of a pair
of NOR gates. The other input of each NOR gate is connected to the SELECT
output of the address decoder. This line will be LOW for both input and output
operations, depending only upon the address bus lower byte.
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Z80-PIO

The Z80-PIO Zilog IC (also called the Mostek MK388 1) is a special parallel
I/O controller. It is a programmable, two-port I/O device. It contains two inde­
pendent, bidirectional, eight-bit ports for data transfer between the Z80 CPU
chip and external devices. Complete "handshake" capability is permitted. There
are four distinct modes of operation in the Z80-PIO: byte output, byte input,
byte bidirectional bus (port A only), and bit control. Only a single +S-volt dc
power supply and a single-phase clock are required.

One of the more powerful aspects of the Z80-PIO is that it permits use of
the interrupt modes of the Z80 CPU chip. The Z80-PIO is semi-intelligent, in
that it can be programmed to recognize specific interrupts (i.e., alarms) from
external devices. Zilog bills this feature as allowing the CPU to spend time on
chores other than polling the external device for an interrupt condition.

Figure 9-6 shows a simple I/O port using the Z80-PIO IC. The D0-D7
inputs of the PIO are connected to their respective lines on the data bus. Sim­
ilarly, the IORQ and Ml inputs on the PIO are connected to their respective out­
puts on the Z80 IC. The IORQ and CE (i.e., chip enable) inputs of the PIO are
connected to the IORQ output on the Z80. In this example, we have designated
PIO port-A as the output port, and PIO port-B as the input port. In more sophis­
ticated systems, however, we can use both A and B as bidirectional I/O ports by
appropriate programming of the B/A pin.

The Z80-SIO is a serial communications controller that can be directly
interfaced with the Z80 CPU chip. This device is very similar to the UART
Ie, except that it permits both synchronous and asynchronous communications,
and has two channels (A and B).



~@J
Interfacing
P ripheral

Most microcomputers require additional peripheral devices to make them useful:
tel~typewriters, printers, video terminals, keyboards, etc. These devices allow the
input or output of data, or provide a "hard copy" readout for the end user.

Any number of schemes have been used to connect such devices to the
microcomputer, but only a few are described here. Before one goes to a lot of
trouble on anyone device, it is wise to see if a special-purpose integrated circuit,
or a small printed circuit board kit, has been developed to make the interfacing
chore a bit easier. New interface chips are being developed all of the time, so
check the catalogs of the IC manufacturers. A large number of "basement
laboratories" businesses advertise in the hobby computer magazines, and many
of these offer kits of parts or printed circuit boards for projects that aid inter­
facing chores. Most of these are well designed, or are so simple that anybody
could do a good job. The prices asked are often small enough to attract even
the wisened professiona1.

STRAIGHT I/O METHODS

Some peripherals can be interfaced to the Z80 directly through an ordi­
nary I/O port. Most such ports (see Chapter 9) offer eight parallel, TTL-compat­
ible bits. These can be interfaced directly to any other eight-bit, TTL-compatible
device.

79
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An example might be certain types of printer. Among several options avail­
able at the time that you order the printer is the input format. Some will allow
you to select TTL-compatible parallel ASCII input format. The ASCII code is a
seven-bit code, so the eighth bit can be used as a strobe. Such a machine can be
connected directly to a Z80 I/O port, any of which from Chapter 9 will suffice.
It is necessary only that a length of multiconductor cable be provided. The cable
must be fitted with the appropriate connectors (usually DB-25 family) so that
it can be connected directly.

To make the beast work, you must load the accumulator of the Z80 with
the binary code whose bit pattern represents the ASCII character that you wish
to print. The contents of the accumulator are then output to the port assigned
to the printer. Ordinarily, printers are a lot slower than CPUs, so one has to
place a timing loop, or series of no-ops (NOP instruction in Z80 language) be­
tween character prints. This scheme will give the printer time to catch up with
the speedy CPU.

The standard ASCII code is shown in Table 10-1. From this table, we see
that the ASCII code for the character "?" is the binary bit pattern 0111111.
If we use the most significant bit (not needed in ASCII) to strobe the printer,
then the code will be 10111111, or BF in hexadecimal. To print the question
mark ("?") symbol we load the accumulator of the Z80 with BF hex and then
output it to the proper port. Suppose, for example, that we wanted to use port
175 10 for the printer. Such a program might look like:

3E LD A,N

BF N (i.e., ASCII It?")

D3 OUT 17510 , A

AF 17510 in hex

Of course, with a "dumb printer," you would have to send it a character,
and then waste a lot of time in a loop until you were sure that it has time to
print the character and advance a space before sending it another character. But
if the machine were a little smarter, it could do some "handshaking." This means
that the printer could send a bit back to the CPU to tell it when the next charac­
ter could be sent. We would loop, or do other chores (interrupts are handy
here !), until the strobe is received back from the printer. A typical program
might be

00 01
00 02

DB

AF

IN 17510

17510 in hex
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00 03 CB Test Bit-7 of accumulator

00 04 7F

00 05 20 JR NZ

00 06 86 (Jump-4)

00 07 3E LOA,N

00 08 BF N (ASCII for "?")

00 09 03 OUT 17510

000A AF 17510 in hex

00 0B C3 JP 00 01

000C 01 N (L byte)

00 00 00 N (H byte)

Again, we are using port 175 10 , The handshaking strobe pulse from the
printer is applied to bit-7 (Le., MSB) of the input port 175 10 . The output data
to the printer are applied to the output side of port 175 10 , We are assuming that
the strobe will go HIGH (Le., logical-I) when active. Instructions 1-6 are a test
and loop program that seeks the condition of the strobe bit. We first input the
contents of 175 10 (instructions 1-2), and then test bit-7 of the input data (in­
structions 3-4). If this bit is f/J, indicating that the printer is not yet ready, the
program counter (PC) is told to pick up the instruction four locations back from
JR NZ (Le., location f/Jf/J (1). These instructions cause the Z80 to continuously
input data from the printer, and test to see if the strobe is active. If the strobe
is not active, the program loops back to the input, and starts over again.

When the condition is met (Le., bit-7 is 1), then the program will fall
through and output the ASCII character.

Following the output operation, the program control is transferred back
to f/Jf/J 01 by a JP NN instruction.

We could also write a similar program to input data from a keyboard.
Again, let us assume that the strobe is active HIGH (in real life, do not assume;
examine that strobe. Many are active LOW, especially on keyboard units), and
that it is applied to the MSB of port 175 10 • We will continue to loop until a
HIGH is received at bit-7 of port 175 10 :

00 01

00 02

00 03

00 04

00 05

00 06

00 07

DB

AF

CB

7F

20

86

IN 17510

17510 in hex

Test bit-7

JR NZ

(Jump -4)

(program to do something with
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00 xx
00 xx
00 xx

00 xx
00 xx

C3

01
00

input data)

JP 00 01
N (L byte)

N (H byte)

As in the previous example, the CPU inputs from port 175 10 and tests
bit-7. If bit-7 is LOW, program control jumps back to f/Jf/J f/Jl, and the loop is
repeated. But if bit-7 is HIGH, the program continues on to location f/Jf/J f/J7. The
instruction in this location must do something with the data input from port
175 10 in instruction step f/Jf/J f/JI. Since it is a keyboard routine, we usually PUSH
A onto an external memory stack.

Following the portion of the program that "does something" with the
ASCII character input in f/Jf/J f/J 1, we jump immediately back to f/Jf/J f/J 1 to repeat
the routine.

TELETYPEWRITERS

Teletypewriters have been around for several decades, and form one of
the lowest-cost hard-copy devices used in computer work. Most machines are
manufactured by the Teletype Corporation, of Skokie, Illinois. The word
Teletype is a registered trademark of that company, while the word teletype­
writer is a generic term.

Most of the older model TeletypesR (i.e., models 15, 19, 28, etc.) are
encoded in the Baudot code system, a five-bit code. The newest models (33 and
43) are encoded in the ASCII code system (see Table 10-1).

The popularity of teletypewriters is due to their low initial cost and rela­
tively good reliability. For hobbiests, they are popular because they are available
at relatively low cost on the government and commercial surplus market. For
most hobby applications, and for many commercial, scientific, or engineering
applications, the Model 33 TeletypeR is a best bet (around $500 used and in
good condition). This machine is encoded in ASCII, so it is compatible with
most microcomputers, and is easy to maintain.

Like most electric typewriters, teletypewriters use electrical solenoids to
pull in the selector arms that actually determine which character is printed. For
ASCII (a 7-bit code), seven selector magnets and seven solenoids are used.

The basis for selection is to pull in those selectors (each selector represents
one bit) common to the desired character. This is done by series-connecting the
solenoids together in a circuit called a current loop. Older machines used a 60­
milliampere current loop, while the 33 and 43 use 20-milliampere current loops.

Figure 10-1 shows the circuit for interfacing a 60-mA machine to a micro-



Table 10-1 ASCII Code

:0:.Q9.Q):!::::
0000 NULL

.-
0001 SaM

0010 EOA B R

0011 EOM # C S

0100 EaT $ D T

0101 WRU ERR % E U

0110 RU SYNC & F V

0111 BELL LEM G W

1000 FEo So H X

1001 HT SK S1 I Y

1010 LF S2 J Z

1011 VTAB S3 K [

1100 FF S4 < L \

1101 CR S5 M J

1110 so S6 > N t
1111 SI S7 a +-

Example: liooHI 0001 I = A

b7 -------b 1

Unassigned

ACK

(?)
ESC

DEL

The abbreviations used in the figure mean:
NULL Null Idle CR Carriage retu rn
SaM Start of message SO Shift out
EOA End of add ress SI Shift in
EOM End of message DCo Device control G)

Reserved for data
Link escape

EaT End of transmission DC, DC3 Device control
WRU "Who are you?" ERR Error
RU "Are you .... 7" SYNC Synchronous idle
BELL Audible signal LEM Logical end of media
FE Format effector sao S07 Separator (information)
HT Horizontal tabulation Word separator (blank,

normally non-printing)
SK Skip (punched card) ACK Acknowledge
LF Line feed @ Unassigned control
VrrAB Vertical tabu lation ESC Escape
FF Form feed DEL Delete Idle
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I
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(b)

FIG. 10-1 (a) Simple circuit to interface old-style Baudot teletypewriters.
Adjust R2 for 60 rnA in the loop; (b) Circuit above modified to
isolate the teletypewriter from the computer output circuitry.

computer, while Fig. 10-2 shows the circuit for a 20-mA machine. In both cases,
we use one bit of a TTL-compatible output port (see Chapter 9) for drive to the
teletypewriter.

Figure lO-l(a) shows the most basic circuit for a 60-mA machine. An
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external 130-volt dc power supply is needed. The current loop circuit consists
of the dc supply, resistor R2, the teletypewriter machine, and c-e path of tran­
sistor Q1.

Diode D1 is used as a spike suppressor. The solenoid coils will produce a
spike-like pulse (i.e., high amplitude, short duration) every time the current flow
in one of the coils is interrupted. Diode D1 is connected to suppress these spikes,
and is used mainly to protect transistor Q1.

Transistor Q1 can be any high-voltage power transistor that is capable of
handling a 60-mA collector current. Q1 acts as a switch to turn the loop on and
off.

If a HIGH appears on the LSB of the selected output port, then Q1 is
forward-biased. Its c-e path conducts current, closing the loop. When the LSB of
the output port is LOW, then Q1 is reverse-biased. Under this condition, its c-e
path is turned off, so the loop is open.

It is best to adjust resistor R2 to obtain a loop current of 60 rnA. Place a
HIGH on the LSB of the selected port, and press one of ~he teletypewriter keys.
A millammeter placed at the point indicated in Fig. 10-1(a) will show the cur­
rent. Adjust the resistor (R2) for a flow of 60 rnA.

lt is probably best if all high-voltage circuits are isolated from your com­
puter's output. A fault in transistor Q1 could otherwise cause damage to the
output port circuits. An appropriate circuit for this is shown in Fig. 10-1(b). The
secret is to use an optoisolator device. On the computer side of the device is an
LED, while on the teletypewriter side is an optotransistor. The transistor will be
turned off unless the LED is turned on. The collector of the optoisolator tran­
sistor is connected to the point in the previous circuit that connected to the
computer. This collector is also connected to a S.6-volt dc power supply that is
derived from the +130-volt dc power supply used in the current loop. On the
computer side, the LED is connected, through a current-limiting resistor (RS),
to the LSB of the selected port.

When the LSB of the output port is HIGH, then the LED is turned on.
This turns on the transistor in the optoisolator, shorting out the bias to the cur­
rent loop transistor. This action turns off the loop. Similarly, the LOW on the
LSB of the port turns off the transistor, so Q1 is turned on, closing the loop.
The action in this circuit is inverted, so it is necessary to complement the Z80
accumulator before outputting data. Alternatively, you could use one other
transistor inverter, between the isolator and Q1, to invert the output of the
isolator.

Figure 10-2 shows a circuit that is used to interface the model 33 to a
Z80 output port. Looking from the front panel, there is a terminal strip on the
right-rear side of the Model 33. This terminal strip, shown schematically in Fig.
10-2(a), contains the send/receive connections for the teletypewriter.

The receive side of the machine (terminals 6 and 7) contains the loop, so
that the solenoids can be pulled in. The send side is merely a set of contact
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FIG. 10-2 (a) Circuit to connect computer output port to the Model 33 tele­
typewriter. Terminal block shown is found under the top cover of
the Md 1. 33, on the right rear when viewed from the front of the
keyboard. Use separate +5 volt dc power supplies for best results;
(b) Modification of the standard circuit to allow isolation of the
computer from the teletypewriter.
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Fig. 10-2 (Continued) (c) Different circuit to accomplish the same job.

closures. In my own experience, this circuit has produced some problems. If
the loop is turned on after the microcomputer is loaded and ready to work, a
random pulse seems to change a few (important) bits in a few memory locations.
The problem is partially relieved by using +5-volt and - 12-volt power supplies
that are completely divorced from the computer power supply. But I like the
approach shown in Figs. IO-2(b) and IO-2(c). We would use RI, R2, and CI
[from Fig. IO-2(a)], but replace QI with the transistor from the optoisolator
(connect the collector to point "A"). The LED is connected, again through a
current-limiting resistor, to the LSB of the selected output port.

We can use the - 12-volt supply to drive the LED, or the +5-volt supply
(in which case, the polarity is reversed). The isolator transistor (QI) drives an
inverter stage (Q2). When the LED is turned on, Q2 is turned off, so the LSB
of the selected input port is HIGH. But if the LED is off, then Q2 is turned on,
dropping the LSB of the input port to zero.

Quite a number of small companies that advertise in the hobby computer
magazines offer optoisolator, 20-mA current loop kits as add-oris for many
computers. Take advantage of them; they are low in cost.

RS-232 INTERFACING

The Electronic Industries Association (EIA) standard RS-232 pertains to
a standardized serial data transmission scheme. The idea is to use the same

connector (Le., the DB-25 family), wired in the same manner all of the time,
and to use the same voltage levels. Supposedly, one could connect together any
two devices that provide RS-232 I/O without any problem (it usually works).
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Modems, CRT terminals, printers (i.e., Model 43 Teletypewriter), and other
devices will be fitted with RS-232 connectors. Some computers provide RS-232
I/O, and this feature can be added by using a set of Motorola ICs called RS-232
drivers/receivers. An RS-232 driver IC accepts TTL outputs from a computer or
other device, and produces RS-232 voltage levels at its output. The RS-232 re­
ceiver does just the opposite. It takes RS-232 levels from the communications/
interface and produces TTL outputs.

Unfortunately, the RS-232 is a very old standard, and it predates even
the TTL standard. That is why it uses such odd voltage levels for logical-l and
logical-f/J.

Besides voltage levels, the standard also fixes the load impedances and the
output impedances of the drivers.

There are actually two RS-232 standards-the older RS-232B and the cur­
rent RS-232C (see Fig. 10-3). In the older version, RS-232B, logical-l is any
potential in the ~ 5- to _. 25-volt range, and logical-f/J is anything between +5 and
+25 volts. The voltages in the range - 3 to +3 are a transition state, while +3 to
+5 and 3 to - 5 are undefined.

The speedier RS-232C standard narrows the limits to ± 15 volts. In addi­
tion, the standard fixes the load resistance to the range 3000 to 7000 ohms, and
the driver output impedance that is low. The driver must provide a slew rate of
30 volts/microsecond. The Motorola MC1488 driver and MC1489 receiver ICs
meet these specifications.

+25----------------

LOGIC 0 +15----------------

(RS232Cl

~~ ~',' \ {;), i,,~:t' .:').,':UNDEFINED,:..<}:\.,;~··:t,;,;';:;··\;~:/

VOLTS 0---------------­

- ~<\:,:<. ,:,;\:',; C. :,':",,:,\JUN DEFIN ED\""':>,·";,:,,,.'~,; ;-;:','';'; i;,

(RS232Cl

RS232B

LOGIC 1 15---------------- RS232B

-25----------------
FIG.I0-3 Diagram showing meaning of the RS-232 EIA standards.



RS-232 INTERFACING 89

The standard wiring for the 25-pin DB-25 connector used in RS-232 ports
is shown in Table 10-2.

Table 10-2 EIA RS-232 Pin-outs for Standard 08-25 conneeta

PIN NO. RS232 NAME FUNCTION

1 AA Chassis ground

2 BA Data from terminal

3 BB Data received from modem

4 CA Request to send

5 CB Clear to send

6 CC Data set ready

7 AB Signal ground

8 CF Carrier detection

9 undef

10 undef

11 undef

12 undef

13 undef

14 undef

15 DB Transmitted bit clock, internal

16 undef

17 DO Received bit clock

18 undef

19 undef

20 CD Data terminal ready

21 undef

22 CE Ring indicator

23 undef

24 DA Transmitted bit clock, external

25 undef
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Interrupts

WHAT IS AN INTERRUPT?

An interrupt is a process in which your computer stops executing the main pro­
gram, and begins executing another program located somewhere else in memory.
This is not a mere "jump" or "call" operation, but a response to an external
stimulus.

There are several reasons why an interrupt capability may be required. One
of these is the case of an alarm condition. We could, for example, use a com­
puter in an environmental control system, and use the interrupt capability to
allow response to alarm situations (e.g., smoke detector, liquid level, burglar
alarm, over-temperature, etc.). The computer would ordinarily go about some
other chore, perhaps the business of controlling the system. But once during the
execution of each instruction of the program, the CPU will interrogate the inter­
rupt system. It is, then, monitoring the alarm status while executing some un­
related program. When an interrupt is received, indicating an alarm status, the
computer would jump immediately to the program that services the interrupt
(see Chapter 12)-rings a bell, calls the fire department, turns on a light, sighs
heavily, etc.

Another application is to input data that occurs only occasionally, or
whose periodicity is so long as to force the computer to do nothing for an
inordinate amount of time. A real-time clock, or timer, for example, might want
to update its input to the computer only once per second or once per minute.

90
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An analog-to-digital converter (ADC) might have a 20-millisecond conversion
time. Even the slower version of the Z80 CPU chip (using a 2.5-mHz clock) can
perform hundreds of thousands of operations while waiting for that ADC to
complete its conversion job. Since the ADC will not provide valid data until
after the conversion time expires, waiting for those data would be a tremendous
waste of CPU time.

Another use is to input, or output, data to/from a peripheral device such
as a line printer, teletypewriter, keyboard, terminal, etc. Those electromechan­
ical devices are notoriously slow to operate. Even so-called "high-speed" line
printers are considerably slower than the Z80 CPU. A classic example is the
"standard" 100-word-per-minute teletypewriter. A "word," in this case, is five
ASCII characters, so we have to output 500 characters per minute to operate at
top speed. This is a rate of 8 characters per second, so each character requires
1/8 of a second, or 125 milliseconds, to print. The CPU, on the other hand, is a
trifle faster. It can output the character to the input buffer of the teletypewriter
in something like 3 microseconds. The Z80 can execute almost 42,000 outputs
in the time it takes the teletypewriter to print just one character.

There are at least two ways to handle this situation, and both involve
having the peripheral device signal the CPU when it is ready to accept another
character. This is done by using a strobe pulse from the peripheral, issued when
it is ready to receive (or deliver) another data byte. One way to handle this
problem is to have the programmer write in a periodic poll of the peripheraL The
strobe pulse is applied to one bit of an input port. A program is written that
periodically examines that bit to see if it is HIGH. If it is found to be HIGH, then
the program control will jump to a subroutine that services the peripheraL But
this approach is still wasteful of CPU time, and places undue constraints on the
programmer's freedom.

A superior method is to use the computer's interrupt capability. The
peripheral strobe pulse becomes an interrupt request. When the CPU recognizes
the interrupt request, it transfers program control to an interrupt service sub­
routine (Le., a program that performs some function required for the operation
of the peripheral that generates the interrupt). When the service program is com­
pleted, then control is transferred back to the main program at the point where
it left off. Note that the CPU does not recognize an interrupt request until after
it has finished executing the current instruction. Program control then returns
to the next instruction in the main program that would have been executed had
no interrupt occurred.

TYPES OF zao INTERRUPT

There are two basic types of interrupt recognized by the Z80 CPU: non­
maskable and maskable. The nonmaskable interrupt is executed next in sequence
regardless of any other considerations. The maskable interrupts, however, de-



92 INTERRUPTS

pend upon the condition of an interrupt flip-flop inside of the Z80. If the pro­
grammer wishes to mask, i.e., ignore, an interrupt, then the appropriate flip-flop
is turned off.

There are three distinct forms of maskable interrupt in the Z80, and these
take the designations mode-~, mode-], and mode-2.

There are two interrupt input terminals on the Z80 chip. The NMI (pin
17) is for the nonmaskable interrupt, while the INT is for the maskable
interrupts.

The nonmaskable interrupt (NMI) is much like a restart instruction, except
that it automatically causes program control to jump to memory location f/Jf/J 66
(hex), instead of to one of the eight standard restart addresses. Location f/Jf/J 66
(hex) must be reserved by the programmer for some instruction in the interrupt
service program, very often an unconditional jump to some other location higher
in memory (see Chapter 12).

The mode-f/J maskable interrupt causes the Z80 to pretend that it is an
8080A, preserving some of the software compatibility between the two CPUs.
During a mode-f/J interrupt, the interrupting device places any valid instruction
on the CPU data bus, and the CPU executes this instruction. The time of execu­
tion will be the normal time period for that type of instruction, plus two clock
pulses. In most cases, the interrupting device will place a restart instruction on
the data bus, because all of these are one-byte instructions. The restart instruc­
tions transfer program control to one of eight page-f/J locations.

Any time that a RESET pulse is applied (i.e., pin 26 of the Z80 is brought
LOW), the CPU automatically goes to the mode-f/J condition. This interrupt
mode, like the other two maskable interrupt modes, can be set from software
by executing the appropriate instruction (in this case, an 1M f/J instruction).

The mode-l interrupt is selected by execution of an IMl instruction.
Mode-l is totally under software control, and cannot be accessed by using a
hardware action. Once set, the mode-l interrupt is actuated by bringing the
INT line LOW momentarily. In mode-I, the Z80 will execute a restart to loca­
tion f/Jf/J 38 (hex).

The mode-2 interrupt is, perhaps, the most powerful of the Z80 interrupts.
It allows an indirect call to any location in memory. The 80S0A device (and the
Z80 operating in mode-f/J) permits only eight interrupt lines. But in mode-2, the
Z80 can respond to as many as 128 different interrupt lines.

Mode-2 interrupts are said to be vectored, because they can be made to
jump to any location in the 65,536 bytes of memory. In Chapter 12 we will dis­
cuss this mode more fully.

INTERRUPT HARDWARE

In this section we will discuss some of the circuitry needed to support the
Z80 interrupt capability. Note that the primary emphasis in this chapter will be
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low-cost circuits not necessarily intended originally for use with the Z80. Keep
in mind, however, that Zilog, Mostek, and others manufacture some sophisti­
cated interrupt controller devices, or build into PIa and SIO chips the ability to
control interrupts.

INTERRUPT REQUESTS

In the simplest cases, interrupt request lines can be built simply by extend­
ing the INT and/or NMI lines to the peripheral device. This assumes a very sim­
ple arrangement, in which only one peripheral is to be serviced. Figure 11-1
shows how this might be accomplished. The NMI line (pin 17) is brought out as
a nonmaskable interrupt line. The optional pull-up resistor (R1) is used to insure
that pin 17 remains at the HIGH condition, and thereby helps reduce noise
response.

The INT line can be treated in exactly the same manner if there is to be
but one interrupting peripheral. But in this case, we have demonstrated how the
same pin might be used to recognize up to eight interrupts. This arrangement can
be used if only mode-0 is anticipated. The peripheral that generates the inter­
rupt then places the correct restart instruction on the data bus. The specific re­
start instruction received tells the CPU which peripheral initiated the interrupt.

R,
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o v-----t

10---­

20-­

30-­

40-----1
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7

O~ ---fIII.- 1_7-1

Non­
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FIG. 11-1. Interrupt interfacing.
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The key to this INT circuit is the eight-input TTL NAND gate (i.e., a 7430 Ie).
If anyone of its inputs, which form INTERRUPT REQUEST lines, goes LOW,
then the 7430 output goes HIGH. This forces the output of the inverter LOW,
creating the needed INT signal at pin 16 of the Z80.

Program
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FIG. 11-2 (a) Interrupt acknowledge circuit.
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FIG. 11-2 (Continued) (b) Interrupt acknowledge for more than one device.

INTERRUPT ACKNOWLEDGE

The CPU will always finish executing the current instruction before recog­
nizing an interrupt request. There is, therefore, a slight delay between the initial
request and the time when the CPU is ready to process that request. We need
some type of signal to tell the peripheral that generated the interrupt request
when the CPU is ready to do business. The Z80 samples the INT line on the
rising edge of the last clock pulse of the current instruction. If the INT line is
LOW, then the CPU responds by generating an IORQ (input/output request)
signal during the next Ml machine cycle. We can, then, accept simultaneous
existence of LOW conditions on IORQ and M1 to form the interrupt acknowl­
edge signal.

Figure 11-2(a) shows an interrupt acknowledge scheme that works for a
single interrupt line. We assume that one of the interrupt request schemes of
Fig. 11-1 is also used. The 74125 (ICl/IC2) is a quad, tri-state, TTL buffer.
Each 74125 contains four noninverting buffer amplifiers that accept TTL inputs,
and provide TTL outputs. When a control line is HIGH, the associated buffer
output will "float" in the high-impedance "tri-state" mode. But if the control
line is brought LOW, the buffer turns on and operates like any other TTL buffer.
The control lines for all eight tri-state buffers (four from each 74125) are tied
together to form a single enable line. The 74125 devices are located inside the
peripheral device.
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The particular restart instruction designated to service that particular
peripheral must be programmed onto the inputs of the 74125s. For example,
if we want the peripheral to cause a jump to the RST 10 location (Le., memory
location (/)(/) 1(/)), then we must place D7 (hex), or 11010111 (binary), on the
data bus following the acknowledgment of the interrupt request. We program
this value by setting the D(/), Dl, D2, D4, D6, and D7 inputs of ICl/IC2 to HIGH
(binary 1), and the D3 and D5 inputs to LOW (binary (/)). This enable line is
connected to the inverted output of the NOR gate that detects the interrupt
acknowledge condition (Le., the simultaneous LOW on IORQ and Ml). The
enable line ordinarily remains HIGH, causing the 74125 outputs to float at high
impedance. When the brief interrupt acknowledge pulse comes along, this line
momentarily drops LOW, thereby transferring the word (D7 hex) at the 74125
inputs to the data bus. The CPU will decode this instruction, and perform a
restart jump to (/)(/) I(/) (hex).

Although there is a practical limit to how many tri-state outputs one can
easily float across the data bus, we find it quite easy to connect all eight allowed
in mode-(/), and a few more. But how do we differentiate between the periph­
erals? All will generate the same interrupt request, and these can be handled by
using a multi-input NAND gate (see Fig. 11-1 again). But how do we decode
the restart instruction given and then send the interrupt acknowledgment to
only the correct peripheral? Chaos would result if we sent the signal to all eight
(or more!) peripherals at the same time. It is very often useful to examine the
range of possible binary words that are to be used in any given situation. For the
mode-(/) interrupt, we are going to use one of eight restart locations, each having
its own unique RST op-code. These are listed in Table 11-1. Note that, for all
possible states, only three bits change: D3, D4, and D5. The other bits (D(/), D1,
D2, D6, and D7) remain constant in all cases (in this particular example, they
are all HIGH, but the important thing is that they remain at one level in all
cases). We can, then, press the 7442 one-of-l0 decoder into service once again
[see Fig. 11-2(b)]. Recall that the 7442 is a four-bit (BCD) to one-of-l0 de­
coder. The BCD inputs are weighted 1-2-4-8. The 1-2-4 inputs are connected to

Table 11-1 RST n Codes for Interrupts 0-7

INTERRUPT RST n HEXADECIMAL BINARY

0 00 C7 11000111
1 08 CF 11001111
2 10 07 11010111
3 18 OF 11011111
4 20 E7 11100111
5 28 EF 11101111
6 30 F7 11110111
7 38 FF 11111111
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the D3-D4-D5 lines of the data bus. The 8 line of the 7442 is used as the control
line, and is connected to the interrupt acknowledge signal.

In normal, noninterrupt operation, the 8-input of the 7442 is kept HIGH,
so the lower eight outputs can never be LOW (when 8 is HIGH, only the 8 and 9
outputs can be active). But when the interrupt acknowledge signal is generated,
the 7442 detects the condition of the D3-D5 lines of the data bus, and issues the
appropriate signal. The only problem that must be considered is the possibility
that more than one peripheral will attempt to interrupt at one time. This could
cause confusion, to say the least. In a moment we will consider methods for
prioritizing the interrupts.

Figure 11-3 shows a decoding scheme that can be used inside the com­
puter, and will allow single line selection for up to eight interrupt lines in
mode-Cit We are using 74125 quad, tri-state buffers in the same manner as in Fig.
11-2. But notice in Table 11-1 that the least significant four bits of each restart
instruction op-code is always either a 7 or F (both hex). Furthermore, the most
significant four bits will be one of four possible states C, D, E, or F. We can,
then, create all eight possible op-codes by using only six 74125s and some gates,
instead of 16 (as would be required if Fig. 11-2 were implemented for all eight!).
The inputs of the 74125s are programmed as follows:

IC1 7

IC2 F

IC3 C

IC4 0

IC5 E

IC6 F

The key to our decoding scheme is to gate on the enable lines of only the
appropriate 74125 s. IC 1 and IC2 form the code for the least significant half-byte
of the op-code. There are four interrupt lines that should turn on ICl, and the
other four should turn on IC2. We may use a 7420 four-input NAND gate to
select which is turned on. If any input of a NAND gate goes LOW, then its out­
put is HIGH. We connect the respective inputs of gate G1 to those interrupt lines
that want a "7" in the least significant spot; i.e., (/), 2, 4, and 6 (see Table 11-1).
If any of these four interrupt lines goes LOW, then ICI is turned on, and a hex 7
is output to the lower-order half-byte of the data bus. Similarly, gate G2 con­
trols IC2. Its inputs are connected to the 1, 3, 5, and 7 interrupt lines. If any of
these lines goes LOW, then a hex F is output to the lower-order half-byte of the
data bus.

A similar scheme is used to control the higher-order half-byte of the op­
code. But in this case, we have four possibilities, each affecting two interrupt
lines. IC3-IC6 form the high-order half-byte of the op-code. Since each of these
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FIG. 11-3 Generating RST codes for multiple-device interrupts.
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ICs affects only two interrupt lines, gates G3-G6 need only two inputs. These
are connected as follows:

GATE

G3
G4
G5
G6

INTERRUPT LINES

0,1
2,3
4,5
6,7

If either interrupt ~ or interrupt 1 becomes active, that line will go LOW, causing
the output of G3 to go HIGH. This signal is inverted and applied to IC3, which
outputs a hex C onto the data bus. Similarly, G4-G6 will cause the appropriate
74125 to output the correct op-code when their interrupts become active.

The schemes above are all relatively simple, and involve the use of ordinary
TTL support integrated circuits. But they all also suffer from a common malady.
If more than one peripheral device decides to issue an interrupt request, then
chaos reigns! The logic to prioritize the interrupt response sequence is much
more complex than the circuits shown thus far. Fortunately, there are special­
purpose integrated circuits, designed for direct interfacing with microprocessor
chips, that will allow programming to prioritize and control the interrupts.

In their famous Bugbook series, Larsen, Titus, and Rony used a 74148
priority encoder and an Intel 8212 (see The 8080A Bugbook, by Rony, et aI.,
Howard W. Sams & Co., Inc., 21447) to prioritize interrupts for the 8080A.
With little modification the same scheme should work on the Z80 in mode-0.

You are also permitted to use the Intel 8214 interrupt controller IC (with
a little extra logic), even though it was designed for use with the 8080A. Both
8255 and 8257 devices are also useful in Z80 circuits.

Zilog and Mostek, the sources for the Z80, make a Z80-PIO device. This
IC is an I/O controller that can handle interrupts. The Z80-PIO was covered in
Chapter 8 and Chapter 3.
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Servicing Interrupts

Interrupts are a powerful tool on any programmable digital computer. The
designers of the Z80 microprocessor chip, probably well aware of this fact,
built into the device four ways to interrupt the CPU: nonmaskable, maskable
mode-~, maskable mode-I, and maskable mode-2. In Chapter 11 we briefly
discussed these interrupts, and then concerned ourselves with the hardware
aspects of the Z80 interrupt system. In this chapter, we will expand the topic
of interrupts by considering the programming aspects of servicing the interrupt
request.

NONMASKABLE INTERRUPTS

The nonmaskable interrupt is always recognized by the CPU, regardless
of the programming being executed. The nonmaskable interrupt goes into effect
following the completion of the instruction currently being executed, and is
initiated by bringing the NMI terminal of the Z80 (i.e., pin 17) LOW. This ter­
minal is sampled by the CPU during the last clock pulse (i.e., T-period) of each
machine cycle. If NMI is found to be LOW when this sample is taken, then the
CPU will automatically begin the interrupt sequence on the next clock pulse.

One principal difference between the nonmaskable interrupt and the mask­
able interrupts is that the maskables must be enabled by turning on the interrupt

100
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flip-flop (IFF1). The nonmaskable does not need to see IFFI in a SET condi­
tion, and, in fact, will cause IFFI to RESET in order to lock out the maskable
interrupts (INT).

One principal difference between the nonmaskable interrupt and the
maskable interrupts is that the maskables must be enabled by turning on the
interrupt flip-flop (IFF 1). The nonmaskable does not need to see IFFI in a SET
condition, and, in fact, will cause IFFI to RESET in order to lock out the mask­
able interrupts (INT).

The nonmaskable interrupt is very much like a "hardware restart" instruc­
tion. In fact, it is an RST 66 instruction (meaning that it will cause a restart
instruction to be executed to location (/)(/) 66 hex). The nonmaskable interrupt
cannot be disabled by software, and is always recognized by bringing NMI LOW.
Recall that the restart instructions caused program control to be transferred to
one of eight locations in page zero. The principal difference between the eight
software restart instructions and the nonmaskable interrupt are (1) NMI to a
fixed location (address (/)(/) 66 hex), and (2) NMI is hardware implemented.

NMI is used in those situations where it is not prudent to ignore the
interrupt. It may be that critical, but transitory, data may be ready to input. Or
it may be an alarm condition. A program used to control the environment in a
building, for example, probably would want to see no priority higher than the
automatic fire alarm. One common application of NMI when the Z80 is used in
a microcomputer is to guard against the problems consequent to a loss of ac
mains power. A circuit is built that monitors the ac mains at the primary of the
computer's dc power supply. If the ac power drops out for even a few cycles,
the circuit generates an NMI signal to the CPU. The CPU will immediately honor
the request, and transfer program control to a power loss subroutine. This pro­
gram is used to transfer all of the data in the volatile (i.e., solid-state) memory,
and the CPU registers/flags, into some form of nonvolatile memory (i.e., disc,
magnetic tape, etc.). Computers that require this ability must have sufficient
back-up power stored in batteries, of even the massive filter capacitors of the
dc power supply, to execute the power loss subroutine before the energy
gives out.

Figure 12-1 shows an example of a typical program sequence for the non­
maskable interrupt. We are executing a program in page-6 (Le., locations from
6(/) (/)(/) hex). The interrupt service subroutine is stored in locations beginning at
8(/) (/)(/) hex. An interrupt occurs while the instruction at location 6(/) (/)3 is being
executed. The sequence of events is given below:

1. NMI occurs while the CPU is executing the instruction located at
6(/) (/)3.

2. Program counter (PC) is incremented from 6(/) (/)3 to 6(/) (/)4, and then
its contents are pushed onto the external memory stack.
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3. PC is then loaded with f/Jf/J 66 hex, transferring program control to
(/)(/) 66 hex.
Before we can service the interrupt, however, we must tend to some
housekeeping chores that will allow us to reenter the main program at
the point left off, and with no problems. We will want the main pro­
gram to begin executing at the location that would have been called if
the interrupt had not occurred (i.e., 6(/) (/)4). The address of this next
location was saved automatically in an external memory stack, but
nothing has been done for the flags and other CPU registers. In order
to save this environment for use when program control is returned to
the main program, we must execute the two exchange instructions (EX
and EXX). These are the instructions located at the restart location
((/)(/)66 and (/)(/) 67 hex). The EX instructions exchanges the contents of
the AF and A'F' registers, while the EXX instruction causes the other
CPU registers to exchange with their alternates. (A', F', B', C', D', E',
H', and L' are the alternate bank of CPU registers in the Z80). The
environment, Le., the contents of the main registers, is now saved in
the alternate registers. This will free the main registers for use in the
interrupt subroutine, and will permit the main program to come back
unscratched from the interrupt. Trying to figure out where the CPU
was otherwise, without EX and EXX, is a lot like trying to nail jello to
the wall.
In some cases, the interrupt service program is short enough that it
can be located in the page-(/) locations following (/)f/J 66 hex. We could,
for example, make the first instruction of the service routine at (/)(/) 68
hex. But we usually want to save that part of memory for other house­
keeping chores (Le., other restart instructions). In the example shown
in Fig. 12-1, we execute EX and EXX to save the environment, and
then jump immediately to location 8(/) (/)(/).

4. The interrupt service program is located higher in memory. In this ex­
ample we have located it at 8f/J (/)(/). This program is not shown in
detail, because its nature would depend on the type of interrupt being
serviced.
The last instruction in any nonmaskable interrupt service program
must be RETN (return from nonmaskable interrupt). This instruction
tells the CPU to return control to the main program.

S. RETN returns the contents of the external memory stack to the pro­
gram counter. Since the PC now contains 6(/) (/)4 hex, the program
resumes at that location. This is the location immediately following
the location that was executing when the NMI signal occurred.
Note that, prior to the RETN instruction, we had to re-exchange the
registers by executing once again the EX and EXX instructions. This
will regain the environment lost when the restart-66 occurred.
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The nonmaskable interrupt is a hardware function of the Z80 CPU chip. It
cannot be overridden by the programmer. The maskable interrupt, on the other
hand, is designed so that it can be overridden by the programmer.

The Z80 contains two interrupt flip-flops, labelled IFFI and IFF2. The
first of these, IFFl, is the main interrupt flip-flop, whereas IFF2 is a secondary
interrupt flip-flop used to store the condition of IFFl when a nonmaskable in­
terrupt occurs. We want the CPU restored to its previous state when the non­
maskable interrupt has been serviced. The contents of IFFI are copied into IFF2
automatically when NMI is recognized. When RETN is executed, the contents of
IFF2 are copied back to IFF 1, restoring the condition of IFF 1 to that existing
when the interrupt occurred. This action completes the restoration of the CPU.

The NMI will automatically cause the state of IFFl to be stored in IFF2,
and then cause IFFl to be RESET. This is done to prohibit any additional mask­
able interrupts during the period that NMI is being serviced.

MASKABlE INTERRUPTS

Maskable interrupts can be software-controlled through the use of EI, DI,
IM0, IM1, and 1M2 instructions. The maskable interrupt is initiated by bringing
the INT terminal on the Z80 (pin 16) LOW momentarily. This action is neces­
sary, but not sufficient, to turn on the interrupt. Recall that IFF! must be SET
before a maskable interrupt is recognized by the CPU. If IFFl is RESET, then
the INT command is masked; i.e., it is not seen by the CPU-it is ignored. IFF!
is SET by executing IM0, 1M!, 1M2, or EI instructions. It can RESET by apply­
ing a RESET pulse to pin 16 of the Z80, or by executing a DI (disable interrupt)
instruction. There are, then, two ways to turn off the maskable interrupt ca­
pability of the CPU.

There are three types of maskable interrupts, designated mode-0, mode-I,
and mode-2.

Mode-0 is the "default" mode. Unless the programmer demands another
mode, by causing the 1M 1 or 1M2 instructions to be executed, mode-0 will be
assumed. The CPU is placed in mode-0 as soon as a RESET signal is received at
pin 26 of the Z80. It is usually the practice of designers to automatically apply a
power-on RESET as soon as dc power is applied to the Z80.

Of course, setting any given interrupt mode does not allow the CPU to
respond to interrupts. An EI (enable interrupt) instruction must be executed
first. Once EI is executed, the interrupt flip-flop (IFF 1) is SET, so the CPU will
respond to INT requests (regardless of mode selected).

MODE·0

Mode-0 is used to make the Z80 think that it is an 8080A microprocessor.
This was probably done because one of the objectives of Z80 design was to
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maintain as much software compatibility between Z80 and the older 8080A
as possible. Although there are some differences where timing becomes im­
portant, it is a general rule of thumb that 8080A programs will execute on Z80
systems, but the reverse is not true; many Z80 instructions have no 8080A
counterparts.

Mode-0 is automatically selected as soon as a RESET pulse is received.
Mode-0 can also be selected through software. The IM0 instruction will cause the
CPU to enter mode-0, and is used when the programmer has previously selected
one of the other interrupt modes, and then wants to return to mode-0 without
resetting the CPU.

Like all of the maskable interrupts, mode-0 cannot be recognized by the
CPU unless the interrupt flip-flop is SET. This flip-flop will be set only if the
enable interrupt (EI) instruction is executed. When this is done, then the CPU
will be ready to respond to maskable interrupt requests.

The mode-0 interrupt requires that the interrupting device place a valid
Z80 instruction onto the eight-bit data bus as soon as the interrupt acknowledge
signal is generated (see Chapter 11). In most cases, the instruction used is the
one-byte restart instruction. There are eight unique restart instructions in the
Z80 instruction repertoire, and these cause immediate jumps in program control
to eight different locations in page zero.

The interrupt service routine should be located at the location in memory
where the restart transfers control. For example, if a keyboard causes an inter­
rupt and then jams a restart-l0 instruction onto the data bus, the CPU will
transfer control to the instruction located at 00 10. If the interrupt service
routine is short enough, then it might be located in the memory spots immedi­
ately following 00 10 (as well might be the case in a simple keyboard input
subroutine), or the instruction may be a jump immediate to some location
higher in memory. It is very common for programmers to locate these service
programs in the top end of the memory available in that particular computer.

Figure 12-2 shows a typical mode-0 response. For the sake of continuity,
we are using the same locations as in the nonmaskable interrupt discussion ear­
lier. The program is executing the instruction at location 60 03 when the INT
signal is received by the CPU. The interrupt request is recognized follOWing
the completion of the instruction at 60 03, provided that IFFI is SET. The
sequence is as follows:

1. INT occurs during the execution of the instruction at location 60 03.
This is recognized by the CPU during the last clock cycle of that
instruction.

2. On the next clock pulse, the CPU acknowledges the interrupt request
by causing fORQ and Ml to go LOW immediately.

3. When the interrupt acknowledge signal is received, the interrupting
device places an RST 10 code on the CPU data bus.

4. The CPU executes the RST 10 by incrementing the PC to 60 04, stor-
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ing the incremented contents in the external memory stack, and then
jumping immediately to location ~f/J 1~.

5. At location ~~ 1~ the instruction is an immediate jump to location
8~ ~~, where the interrupt service program is found.

6. Again, the environment must be saved. There are two ways in which
this can be done. One is to use the EX and EXX instructions of the
previous example. Another is to use the PUSH instructions:

80 00

80 01

80 02

80 03

80 04

80 05

PUSH AF

PUSH BC

PUSH DE

PUSH HL

PUSH IY

PUSH IX

The next instructions would then be instructions of the interrupt service
subroutine. When this program is completed, we must execute all of the POP
instructions, to bring the contents of the registers back from the memory stack,
and an RETI (return from maskable interrupt) instruction:

80 xx
80 xx
80 xx
80 xx
80 xx

80 xx
80 xx

POPAF

POP BC

POP DE

POP HL

POP IY

POP IX

RETI

7. After the RETN instruction, the CPU will replace the contents of PC
with the data stored in the external stack (6~ ~4). This is the address
of the instruction in the main program that would have been executed
next if the interrupt had not occurred.

8. Program execution resumes at location 6~ ~4.

The mode-~ interrupt preserves some of the compatibility of the Z80 with
the Intel 8080A microprocessor. But there is a limitation in this mode. The
device will allow only eight interrupt devices, one for each of the eight restart
locations.

Interrupt priority encoding is possible by using a priority controller, such
as the Intel 8214 (or one of the related devices), or one of the Zilog Z80 periph­
eral chips.
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MODE-1

Mode-l is not similar to any function of the 8080A device, so it is unique
to the Z80, in this respect. It is almost identical to the nonmaskable interrupt,
except: (1) it is maskable, and (2) it causes a restart jump to location f/Jf/J 38
instead of f/Jf/J 66.

The mode-I interrupt is dependent upon the programmer's setting mode-1
by enabling interrupt flip-flop IFFI (the EI instruction), and setting mode-1 by
executing an IMI instruction.

The use of mode-1 is similar to the nonmaskable interrupt, except that
the priority would be lower than that of a nonmaskable interrupt. It has the
advantage that no external logic is needed to cause the restart instruction. It is,
then, somewhat faster than the mode-f/J operation.

Refer back to the discussion of the nonmaskable interrupt for a discussion
of how this interrupt is serviced. Just be sure to replace in your mind the loca­
tion f/Jf/J 66 with f/Jf/J 38.

MODE-2

The mode-2 interrupt is one of the most powerful microcomputer inter­
rupts. It allows vectored interrupts of up to 128 levels, as opposed to only eight
levels in mode-f/J and one level in mode-l and the nonmaskable interrupt.

Zilog has conveniently caused the Z80 peripheral control chips (Z80-PIO,
Z80-SIO, and Z80-CTC) to allow prioritizing of the interrupts through a daisy­
chaining scheme.

The key to the versatility of the mode-2 interrupt is that it is vectored.
That is, it can use a single eight-bit word to point to any location in memory!
The 16-bit address of the interrupt service program is stored in a table of inter­
rupt addresses located somewhere in memory. The location of this table is
pointed to by a two-byte digital word formed from the contents of the Interrupt
(I) register, and the one-byte word supplied by the interrupting device. The
upper eight bits of this 16-bit pointer is supplied by the I register, and must be
preloaded by the program. The lower-order eight bits of the pointer is supplied
by the interrupting device.

There is one restriction on the addresses of the table, and that is that they
must begin on an even-numbered memory location. All of the entries in this
table will be two bytes in adjacent locations. The first byte of each entry in the
table is the low-order byte of the desired address, while the second entry is the
high-order byte. One consequence of this constraint is that the least significant
bit of the eight-bit word supplied by the interrupting device must be f/J.

Figure 12-3 shows an example of such a table. In this case, the program­
mer elected to locate the table in page-8, and it commences at 8f/J f/Jf/J hex. The
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FIG. 12-3

first entry is found at 8(/) (/)(/) and 8(/) (/) 1. These locations contain the low, and
high, order bytes of the address where the first interrupt service program is
located. The first part of this address (8(/) hex) is stored in the I register. The
second part is supplied by the interrupting device. Notice that the binary equiv­
alent of (/)(/) ends in a (/).

Similarly, the other entries are found beginning at 8(/) (/)2, 8(/) (/)4, 8(/) ~6,

etc. all the way up to 8(/) FE (if 128 levels are required). Each of these table
addresses contains the address of a location in memory where the CPU will find
the program that serves that particular interrupting device.

Figure 12-4 shows a typical mode-2 interrupt sequence. In this program,
the main program is located in page-4 (i.e., beginning at 4(/) ~(/)), the vector table
is located in page-8, and the interrupt subroutine for the device shown is in
page-6 (begins at 6~ 5(/) hex). The I register contains 8(/) hex, and the interrupt­
ing device is programmed to enter (/)4 hex on the data bus when the interrupt
acknowledge signal is received. The interrupt flip-flop IFFI must be SET, and
the bus request BUSRQ must be HIGH. The sequence of events is as follows:

1. The interrupting peripheral issues an INT signal to the CPU.
2. When the interrupt acknowledge signal is received, the peripheral jams

04 hex onto the data bus. This is merged with the 8(/) from the I reg­
ister to form the address 8(/) (/)4 hex. This address in memory will con­
tain the address of the actual interrupt service program required by
this peripheral.
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3. The PC is incremented, and then its contents are pushed onto an ex­
ternal memory stack.

4. The PC is loaded with the address found at location 8f/J f/J4. This
address is 6f/J 5f/J hex, so program control jumps to this location.

5. After the last instruction (RETI) of the service program, the PC data
saved in the external stack are loaded back into the PC.

6. The main program resumes at location 4f/J f/J4.

It is necessary to save the environment when the jump occurs, or the CPU
will not necessarily be in the same state as before the interrupt occurred. These
techniques were discussed earlier in this chapter.
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Arithmetic
Operations

The arithmetic instructions permit direct addition and subtraction operations by
the Z80 CPU. By using one of the standard algorithms we are also able to pro­
vide multiplication and division operations. Note, however, that many computer
users prefer to use hardware multiplication/division in order to gain much in the
speed department. This is true of all microcomputers and most minicomputers,
not just the Z80 device. The Z80 instruction set also includes a decimal adjust
(DAA) that permits BCD arithmetic operations.

The Z80 arithmetic instructions are divided into eight- and sixteen-bit
groups. Additionally, some of the control group instructions also pertain to
arithmetic operations.

The eight-bit group contains the following type of instructions:

ADD (addition)

ADC (addition-with-carry)

SUB (subtraction)

SBC (subtraction with carry)

Also parts of this eight-bit group are the logical instructions AND, OR,
XOR, CP (compare), INC (increment), and DEC (decrement). Although these
are covered elsewhere in this book, they do form a very necessary part of some
arithmetic operations.

112
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In all of the eight-bit arithmetic instructions it is assumed that the ac­
cumulator and one other operand are used. The second operand may be imme­
diate (Le., ADD A,N), the contents of one of the Z80 registers (directly or
indirectly addressed), or the contents of an external memory location.

The sixteen-bit arithmetic group uses register pairs (i.e., HL, IX, BC, DE,
SP) in order to perform operations with longer data words. The sixteen-bit group
contains ADD, ADC, and SBC instructions. It also contains INC (increment) and
DEC (decrement) instructions. There are, however, no logical instructions in this
group.

ADD INSTRUCTIONS

The ADD instructions permit addition between the accumulator and data
obtained from another location. The result of the addition is stored in the accu­
mulator, and certain condition flags are set to denote the nature of the result.

ADD A,A. This is a single-byte instruction that adds the contents of the
accumulator to the contents of the accumulator (Le., the contents of the accu­
mulator are added to themselves). The result is stored in the accumulator. The
op- code is 87 (hex).

Example

The contents of the accumulator are 3F (hex). If an ADD A,A instruction
is encountered:

3F + 3F = 7E

The result (7E) is stored in accumulator after the execution of this instruction.

ADD A,r. This series of instructions is also single-byte. There is a separate
op-code for each register of the Set B, C, D, E, H, and L. The format for these
instructions op-codes is

1 0 0 0 0 r

The most significant four-bits form the hex digit "8." The second hex digit
required for the op-code is determined by the particular "r" selected from the
table on the next page.
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REGISTER

B
C
o
E
H
L

000
001
010
011
100
101

The op-codes for ADD A, r are, therefore,

B
C
o
E
H
L

80
81
82
83
84
85

When one of these instructions is encountered, then the contents of the
specified register are added to the contents of the accumulator, and the result
is stored in the accumulator.

ADD A, (HL). This is a register-indirect method of locating a given byte
in the external memory. In this instruction, the contents of the external memory
location whose address is given by the contents of the HL register pair are added
to the contents of the accumulator. The result is stored in the accumulator.

Example

Consider Fig. 13-1. The contents of the accumulator are 3D (hex) when
the ADD A, (HL) instruction is encountered. At that same time the contents of
the HL register pair are 80 03 (pointing to location 80 03 in external memory).
The contents of the accumulator (3D) are added to the contents of 80 03 (2B),
and the result 3D + 2B, or 68 (hex), is stored in the accumulator. At the end of
the execution of the ADD A, (HL) instruction the contents of the accumulator
are 68.

ADD A,n. This is a two-byte instruction where the first byte is the op­
code (C6) and the second byte of the value "n" to be added to the contents of
the accumulator. This is an example of an immediate instruction.

Example

The contents of the accumulator are 1F when the following code is
encountered:
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8000

H L 8001

Accumulator I 3D ~ ------------.. 8002

~ 8003

3D ~ 8004
28

~~ 8005

I ADD A, (HL) I
/
~

I;

~
)(

I~
Accumulator I 68 I

FIG. 13-1 Operations for ADD A, (HL).

C6 (op-code for ADD A, n)

30 (lin")

28

This tells the Z80 to add the contents of the accumulator (1 F) to "n" (3~). The
operation carried out will be IF + 3~ =4F. The value stored in the accumulator
at the end of this instruction is 4F.

ADD A, (IX +d) and ADD A, (IY+d). These addition instruction add
together the contents of the accumulator and the contents of an external mem­
ory location that is specified by the contents of either the IY or IX index regis­
ters and a displacement integer d. Both of these are three-byte instructions:

IX+d

DD
86
d

IY+d

FD
86
d
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ADC INSTRUCTIONS

These instructions are similar to the ADD instructions, with the exception
that they take into account any carry bits generated from previous operations.
The C-flag of the F register determines whether there has been a carryon any
given operation.

SUB INSTRUCTIONS

The SUB instructions are analogous to the ADD instructions, and the SBC
instructions are analogous to the ADC instructions. The difference, of course, is
that the operation performed is subtraction instead of addition. The same range
of instruction types is available as in the ADD/ADC group. Only SBC is avail­
able, however, in the sixteen-bit arithmetic group. The operations are as follows:

SBe

A~' A-s-cy

SUB

A +-A-s
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Logic Operations

The Z80 instruction set contains certain logical and compare instructions. A
logical instruction is one that performs the binary logic operations of AND,
OR, or Exclusive-OR (XOR). With some exceptions, the compare instructions
are functionally much like the subtraction operations.

Binary logic operations are used in digital electronics, and are similar to
logic taught as philosophy in college (if P then Q). The AND function compares
two inputs (Le., bits), and issues a HIGH output (Le., a logical-I) only if both
inputs are also at a logical-I (HIGH) level. The rules for AND are

o AND 0 = 0
o AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

The OR function compares two inputs, or bits in the case of a microcom­
puter instruction, and issues a HIGH (logical-I) output if either input bit is
HIGH. The rules are as follows:

o OR 0 = 0
o OR 1 1
1 OR 0 1
1 OR 1 1

117
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The Exclusive-OR, or XOR, logical function is a little different. This
instruction will produce a HIGH output if either input is HIGH, but not if both
inputs are HIGH. The rules for XOR are

o XOR 0 = 0
o XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

Note that both cases where the output is HIGH (perhaps we should say the
result) are when the two bits (inputs) are the same. In the case of f/J XOR f/J and
1 XOR l, the output is LOW (logical-f/J).

The Z80 microprocessor provides all three types of logical operation
(AND, OR, XOR). All of these are actually multi-instruction functions AND s,
OR s, and XOR s.

The AND s instructions include AND R, AND N, AND (HL), AND
(IX+d), and AND (IY+d). Like the other forms of Z80 logical instruction, AND
s performs a bit-by-bit comparison between the specified data and the contents
of the accumulator. The result is stored in the accumulator.

The AND R instruction performs an AND operation between the accumu­
lator and the register specified by a three-bit field in the op-code. The op-code
is of the form 10100---, where the last three bits specify the register from
the set f/Jf/Jf/J (B), f/Jf/Jl (C), f/Jlf/J (D), f/Jil (E), If/Jf/J (H), If/Jl (L), and 111 (A, or
accumulator).

The AND N instruction is an immediate type in which the AND operation
is performed between the accumulator and the byte following the op-code. The
op-code is 11100110 (E6 hex), while the word to be compared with the accu­
mulator is the following byte. For example, suppose the accumulator contains
the byte SF hex, and the following code is encountered:

E6 op-code for AND N

07 data (hex for 215 10 )

This means that we want to perform an AND operation between SF hex and D7
hex. On a bit-for-bit basis this is

AND
01011111
11010111

----o 1 0 1 0 1 1 1

(5F hex)
(07 hex)

(57 hex)

(see the rules given earlier, and apply them on a bit-by-bit basis without any
carries or borrows).
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This means that SF hex AND D7 hex, when compared in an AND instruc­
tion, produce a result of 57 hex, and this result is left in the accumulator at the
end of the instruction's execution.

The AND instruction is used to mask out any unwanted bits in the eight­
bit data word stored in the accumulator. We might, for example, make use of
bit-packing to make more efficient use of the field. We might, for example, want
to see only bits 3, 4, and 5 (i.e., bits 3-5 out of the field (/)-7). This means that
we will need to mask out bits (/), 1,2,6, and 7. By placing a 1 at all bits that we
want to keep, and a (/) at all other bit positions, the desired bits will be passed.
Recall the rules for AND. We will compare the desired bits with a 1. If the input
bit is 1, then we have a 1 AND 1 = 1 situation. But if we input a (/), then we have
a (/) AND 1 =(/) situation. This means that the sense of the input bit is retained,
while all others are masked out.

For example, in the situation given above, we wanted to mask out all bits
except bits 3-5, so we would want to compare the contents input to the accu­
mulator with (/)(/)111(/)(/)(/). All bits except 3, 4, and 5 are zero, so will be masked
out regardless of the input word. Suppose that the contents of the accumulator
are 1(/)1(/)1(/)1(/), and we want to retain only bits 3-5. We would use the AND N in­
struction as follows:

11 00110
0011000

(E6 hex)

(N)

The AND comparison performed by this, when the contents of the accumulator
are 10101010, will be:

001 1 1 000
AND 1 0 1 0 1 0 1 0

00101 000

Note that in the Z80 some of the bit-test instructions can also be used to strip
the field of the desired bits.

The other AND instructions use memory locations pointed to by the con­
tents of certain registers. AND (HL), for example, compares the contents of the
accumulator with the contents of an external memory location pointed to by
the contents of the HL register pair. The AND (IY+d) and AND (IX+d) instruc­
tions perform the comparison between the accumulator and external memory
locations pointed to by a displacement integer d, which is part of the instruc­
tion, and either the IY or IX index registers.

The OR instruction is also of the OR s format, similar to the AND s in­
structions discussed above. The same different types of OR instruction are
allowed: OR R, OR N, OR (HL), OR (IY+d), and OR (IX+d). We use the OR s
instructions to merge data, or to set certain bits.
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Recall that the OR rules require a 1 result if either "input" is 1. For ex­
ample, let us compare B3 hex with C9 hex in an OR instruction:

OR
011001
100 1 0 0
111101

(B3 hex)
(C9 hex)

(FB hex)

Let us consider an example of the case where we want to set bit-7 to 1
unconditionally. We would OR the contents of the accumulator with H/Jf/Jf/Jf/Jf/Jf/Jf/J.
This would make bit 7 a 1 regardless of the data:

1
OR 1

1

Bit7iS1~

o 0 0 0 000
o 1 1 000 1--_.._-,.--
o 1 100 0 1

0000000
OR 0 1 1 0 1 0 0 1

1 1 101 001

Bit7iS1~

The XOR s instruction performs a bit-by-bit Exclusive-OR operation
between the contents of the accumulator and the contents of the source, s. We
have XOR R, XOR N, XOR (HL), XOR (IY+d), and XOR (IX +d) instructions
in the Z80 set.

Recall the rules for the XOR operation. We will create a 1 result only if
both inputs are different from each other (i.e., f/J XOR 1, or 1 XOR f/J). An ex­
ample of an XOR operation using the XOR N instruction follows.

Suppose the accumulator contains B2 hex, and we encounter the following
XOR N instruction:

1 1 0 1 0
o 0 0 0 0

(EE hex-op-code for XOR N)

(2A hex-N)

The operation that the Z80 will perform is

0010101 0
XOR 1 0 1 1 0 0 1 0

100 1 1 000

(2A hex)
(B2 hex)

(98 hex)

When we compare 2A hex with B2 hex in an XOR instruction, the result is 98
hex, and this is stored in the accumulator at the end of the execution of the
XOR N instruction.
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Miscellaneous zao
Information

The instruction set (and certain other information) is rarely given in easily avail­
able form. Programmers often have to look up certain information in several
different books. In this chapter, we are going to help you by offering certain
information that has proved useful in programming any computer. Included is
the Z80 instruction set sorted (a) by op-code, and (b) by mnemonic. The former
will help you especially when you are trying to decode a program, whereas the
latter is of use most often when one is trying to originate a new program.

ASCII (AMERICAN STANDARD CODE FOR
INFORMATION INTERCHANGE) CODE

This code is used on most modern printers and is commonly employed in
many peripheral devices. It is a seven-bit code, so in eight-bit systems one addi­
tional bit is available. On keyboards, and certain other peripherals, the eighth bit
is used to strobe the computer. The computer will continuously loop, polling
the input, to determine the state of the eighth bit (usually designated B7). It
will branch to an input instruction only if the strobe bit indicates that the data
are valid. Typically, B7 is made HIGH-active. When B7 goes HIGH, therefore,
the computer knows that the data are valid, so an input operation is executed.
But when B7 is LOW, it is assumed that the data are invalid (i.e., garbage).
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FIG. 15-1 Z-80 CPU Instructions Sorted by Op-code

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

00 NOP 282E JR Z, DIS 50 LD D, B
018405 LD BC, NN 29 ADD HL, HL 51 LD D,C
02 LD (BC), A 2A8405 LD (HL), (NN) 52 LD D, D
03 INC BC 2B DEC HL 53 LD D, E
04 INC B 2C INC L 54 LD D, H
05 DEC B 2D DEC L 55 LD D, L
0620 LD B, N 2E20 LD L, N 56 LD D, (HL)
07 RLCA 2F CPL 57 LD D,A
08 EX AF, AF' 302E JR NC, DIS 58 LD E, B
09 ADD HL, BC 318405 LD SP, NN 59 LD E, C
OA LD A,(BC) 328405 LD (NN), A 5A LD E,D
OB DEC BC 33 INCSP 5B LD E, E
OC INCC 34 INC (HL) 5C LD E,H
OD DEC C 35 DEC (HL) 5D LD E, L
OE20 LD C, N 3620 LD (HL), N 5E LD E, (HL)
OF RRCA 37 SCF 5F LD E,A
102E DJNZ DIS 382E JR C, DIS 60 LD H,B

118405 LD DE, NN 39 ADD HL,SP 61 LD H,C

12 LD (DE), A 3A840~ LD A,(NN) 62 LD H,D

13 INC DE 3B DECSP 63 LD H, E
14 INC D 3C INCA 64 LD H, H
15 DEC D 3D DECA 65 LD H, L
1620 LD D,N 3E20 LDA, N 66 LD H, (HL)

17 RLA 3F CCF 67 LD H,A

182E JR DIS 40 LD B,B 68 LD L, B

19 ADD HL, DE 41 LD B,C 69 LD L, C

1A LD A,(DE) 42 LD B, D 6A LD L, D

1B DEC DE 43 LD B, E 6B LD L, E

1C INC E 44 LD B, H, NN 6C LD L, H
1D DEC E 45 LD B, L 6D LD L, L
1E20 LD E,N 46 LD B, (HL) 6E LD L, (HL)
1F RRA 47 LD B,A 6F LD L,A
202E JR NZ, DIS 48 LD C, B 70 LD (HL), B
218405 LD HL, NN 49 LD C, C 71 LD (HL), C
228405 LD (NN), HL 4A LDC, D 72 LD (HL), D
23 INC HL 4B LD C, E 73 LD (HL), E
24 INC H 4C LD C, H 74 LD(HL),H
25 DEC H 4D LD C, L 75 LD (HL), L
2620 LD H, N 4E LD C, (HL) 76 HALT
27 DAA 4F LDC,A 77 LD(HL) A
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FIG. 15-1 (cont'd.)

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

78 LDA,B AO AND B C8 RETZ
79 LDA,C A1 ANDC C9 RET
7A LDA, D A2 AND D CA8405 JP Z, NN
7B LDA, E A3 AND E CC8405 CALL Z, NN
7C LDA, H A4 AND H CD8405 CALL NN
7D LD A, L A5 AND L CE20 ADC A, N

7E LD A, (HL) A6 AND (HL) CF RSTa

7F LDA,A A7 ANDA DO RET NC

80 ADD A, B A8 XOR B D1 POP DE

81 ADD A, C A9 XORC D28405 JP NC, NN

82 ADD A, D AA XOR D D320 OUT (N), A

83 ADD A, E AB XOR E D48405 CALL NC, NN

84 ADD A, H AC XOR H D5 PUSH DE

85 ADD A, L AD XOR L D620 SUB N

86 ADD A, (HL) AE XOR (HL) D7 RST 10H

87 ADD A,A AF XORA D8 RET C

88 ADCA, B BO OR B D9 EXX

89 ADC A, C B1 OR C DA8405 JP C, NN
8A ADC A, D B2 OR D DB20 INA, (N)

8B ADCA, E B3 OR E DC8405 CALL C, N

8C ADC A, H B4 OR H DE20 SBC A, N

8D ADC A, L B5 OR L DF RST 18H

8E ADC A, (HL) B6 OR (HL) EO RET PO

8F ADC A, A B7 ORA E1 POP HL

90 SUB B B8 CP B E28405 JP PO, NN

91 SUB C B9 CPC E3 EX (SP), HL

92 SUB D BA CP D E48405 CALL PO, NN

93 SUB E BB CP E E5" PUSH HL

94 SUB H BC CP H E620 AND N

95 SUB L BD CP L E7 RST 20 H

96 SUB (HL) BE CP (HL) E8 RET PE

97 SUB A BF CPA E9 JP (HL)

98 SBC A, B CO RET NZ EA8405 JE PE NN

99 SBC A, C C1 POP BC EB EX DE, HL

9A SBC A, D C28405 JP NZ, NN EC8405 CALL PE, NN

9B SBC A, E C38405 JP NN EE20 XOR N

9C SBC A, H C48405 CALL NZ, NN EF RST 28H

9D SBC A, L C5 PUSH BC FO RET P

9E SBC A, (HL) C620 ADD A, N F1 POPAF
9F SBCA,A C7 RSTO F28405 JP P, NN
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FIG. 15-1 (cont'd.)

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

F3 D1 CB1C RR H CB4C BIT 1, H
F48405 CALL P, NN CB1D RRL CB4D BIT 1, L
F5 PUSH AF CB1E RR (HL) CB4E BIT 1, (HL)
F620 OR N CB1F RR A CB4F BIT 1,A
F7 RST 30H CB20 SLA B CB50 BIT2, B
F8 RETM CB21 SLAC CB51 BIT2, C
F9 LD SP, HL CB22 SLA D CB52 BIT 2, D
FA8405 JP M, NN CB23 SLA E CB53 BIT 2, E
FB E1 CB24 SLA H CB54 BIT 2, H
FC8405 CALL M, NN CB25 SLA L CB55 BIT2, L
FE20 CP N CB26 SLA (HL) CB56 BIT 2, (HL)
FF RST 38H CB27 SLAA CB57 BIT2,A
CBOO RLC B CB28 SRA B CB58 BIT 3, B
CB01 RLCC CB29 SRAC CB59 BIT 3,C
CB02 RLC D CB2A SRA D CB5A BIT 3, D
CB03 RLC E CB2B SRA E CB5B BIT 3, E
CB04 RLC H CB2C SRA H CB5C BIT 3, H
CB05 RLC L CB2D SRA L CB5D BIT 3, L
CB06 RLC (HL) CB2E SRA (HL) CB5E BIT 3, (HL)
CB07 RLCA CB2F SRAA CB5F BIT 3,A
CB08 RRC B CB38 SRL B CB60 BIT4, B

CB09 RRC C CB39 SRL C CB61 BIT4, C

CBOA RRC D CB3A SRL D CB62 BIT4, D

CBOB RRC E CB3B SRL E CB63 BIT 4, E

CBOC RRC H CB3C SRL H CB64 BIT4, H

CBOD RRC L CB3D SRL L CB65 BIT4, L

CBOE RRC (HL) CB3E SRL (HL) CB66 BIT 4, (HL)

CBOF RRCA CB3F SRLA CB67 BIT4,A
CB10 RL B CB40 BITO, B CB68 BIT5, B

CB11 RLC CB41 BITO, C CB69 BIT 5, C
CB12 RL D CB42 BITO, D CB6A BIT 5, D
CB13 RL E CB43 BITO, E CB6B BIT 5, E
CB14 RL H CB44 BITO, H CB6C BIT 5, H
CB15 RL L CB45 BITO, L CB6D BIT 5, L
CB16 RL (HL) CB46 BIT 0, (HL) CB6E BIT 5, (HL)
CB17 RLA CB47 BITO,A CB6F BIT5,A
CB18 RR B CB48 BIT 1, B CB70 BIT 6, B
CB19 RR C CB49 BIT 1, C CB71 BIT 6, C
CB1A RR D CB4A BIT 1, D CB72 BIT 6, D
CB1B RR E CB4B BIT 1, E CB73 BIT 6, E
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FIG.15-1 (cont'd.)

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

CB74 BIT6, H CB9C RES 3, H CBC4 SET 0, H
CB75 BIT 6, L CB9D RES 3, L CBC5 SET 0, L
CB76 BIT 6, (HL) CBOE RES 3, (HL) CBC6 SET 0, (HL)
CB77 BIT6,A CB9F RES 3, A CBC7 SET 0, A
CB78 BIT 7, B CBAO RES 4, B CBC8 SET 1, B
CB79 BIT 7, C CBA1 RES 4, C CBC9 SET 1, C
CB7A BIT7,O CBA2 RES 4,0 CBCA SET 1,0
CB7B BIT 7, E CBA3 RES 4, E CBCB SET 1, E
CB7C BIT 7, H CBA4 RES 4, H CBCC SET 1, H
CB7D BIT 7, L CBA5 RES 4, L CBCD SET 1, L
CB7E BIT 7, (HL) CBA6 RES 4, (HL) CBCE SET 1, (HL)
CB7F BIT7,A CBA7 RES 4, A CBCF SET 1, A

CB80 RES 0, B CBA8 RES 5, B CBDO SET 2, B
CB81 RES 0, C CBA9 RES 5, C CBD1 SET 2, C
CB82 RES 0,0 CBAA RES 5, 0 CBD2 SET 2, 0

CB83 RES 0, E CBAB RES 5, E CBD3 SET 2, E
CB84 RES 0, H CBAC RES 5, H CB04 SET 2, H

CB85 RES 0, L CBAD RES 5, L CBD5 SET 2, L

CB86 RES 0, (HL) CBAE RES 5, (HL) CBD6 SET 2, (HL)

CB87 RES 0, A CBAF RES 5, A CBD7 SET 2, A

CB88 RES 1, B CBBO RES 6, B CBD8 SET 3, B

CB89 RES 1, C CBB1 RES 6, C CBD9 SET 3, C

CB8A RES 1,0 CBB2 RES 6,0 CBDA SET 3,0

CB8B RES 1, E CBB3 RES 6, E CBDB SET 3, E

CB8C RES 1, H CBB4 RES 6, H CBDC SET 3, H

CB80 RES 1, L CBB5 RES 6, L CBDD SET 3, L

CB8E RES 1, (HL) CBB6 RES 6, (HL) CBDE SET 3, (HL)

CB8F RES 1, A CBB7 RES 6, A CBDF SET 3, A

CB90 RES 2, B CBB8 RES 7, B CBEO SET 4, B

CB91 RES 2, C CBB9 RES 7, C CBE1 SET 4, C

CB92 RES 2,0 CBBA RES 7, D CBE2 SET 4, 0

CB93 RES 2, E CBBB RES 7, E CBE3 SET 4, E

CB94 RES 2, M CBBC RES 7, H CBE4 SET 4, H

CB95 RES 2, L CBBD RES 7, L CBE5 SET 4, L

CB96 RES 2, (HL) CBBE RES 7, (HL) CBE6 SET 4, (HL)

CB97 RES 2, A CBBF RES 7, A CBE7 SET 4, A

CB98 RES 3, B CBCO SET 0, B CBE8 SET 5, B

CB99 RES 3, C CBC1 SET 0, C CBE9 SET 5, C

CB9A RES 3, D CBC2 SET 0,0 CBEA SET 5,0

CB9B RES 3, E CBC3 SET 0, E CBEB SET 5, E
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FIG. 15-1 (cont'd.)

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

CBEC SET 5, H CBF1 SET 6, C CBF6 SET 6, (HL)
CBED SET 5, L CBF2 SET 6, D CBF7 SET 6,A
CBEE SET 5, (HL) CBF3 SET 6, E CBF8 SET 7, B
CBEF SET 5, A CBF4 SET 6, H CBF9 SET 7, C

CBFO SET 6, B CBF5 SET 6, L CBFA SET 7, D

FIG. 15-2 Z-80 CPU Instructions Sorted by Mnemonic

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

8E ADCA, (HL) DD29 ADD IX, IX CB49 BIT 1, C
DD8E05 ADC A, (IX + d) DD39 ADD IX, SP CB4A BIT 1, D
FD8E05 ADC A, (IY + d) FD09 ADD IY, BC CB4B BIT 1, E
8F ADCA,A FD19 ADD IY, DE CB4C BIT 1, H
88 ADCA, U FD29 ADD IY, IY CB4D BIT 1, L
89 ADCA, C FD39 ADD IY, SP CB56 BIT 2, (HL)
8A ADCA, D A6 AND (HL) DDCB0556 BIT 2, (IX + d)
8B ADCA, E DDA605 AND (IX + d) FDCB0556 BIT 2, (lY + d)
8C ADCA, H FDA605 AND (IY+d) CB57 BIT2,A
8D ADC A, L A7 ANDA CB50 BIT 2, B
CE20 ADCA, N AO AND B CB51 BIT2,C
ED4A ADC HL, BC A1 AND C CB52 BIT 2, D
ED5A ADC HL, DE A2 AND D CB53 BIT 2, E

ED6A ADC HL, HL A3 AND E CB54 BIT2, H

ED7A ADC HL, SP A4 AND H CB55 BIT 2, L

86 ADD A, (HL) A5 AND L CB5E BIT 3, (HL)

DD8605 ADD A, (IX + d) E620 AND N DDCB055E BIT 3, (IX + d)

FD8605 ADD A, (lY + d) CB46 BIT O,(HL) FDCB055E BIT 3, (lY + d)

87 ADD A, A DDCB0546 BIT 0, (IX + d) CB5F BIT 3,A

80 ADD A, B FDCB0546 BIT 0, (lY + d) CB58 BIT 3, B

81 ADD A, C CB47 BITO,A CB59 BIT 3, C

82 ADD A, D CB40 BIT 0, B CB5A BIT 3, D

83 ADD A, E CB41 BITO, C CB5B BIT 3, E

84 ADD A, H CB42 BITO, D CB5C BIT 3, H

85 ADD A, L CB43 BITO, E CB5D BIT 3, L
C620 ADD A, N CB44 BITO, H CB66 BIT 4, (HL)

09 ADD HL, BC CB45 BIT 0, L DDCB0566 BIT 4, (IX + d)

19 ADD HL, DE CB4E BIT 1, (HL) FDCB0566 BIT 4, (IY+ d)

29 ADD HL, HL DDCB054E BIT 1, (IX + d) CB67 BIT4,A
39 ADD HL, SP FDCB054E BIT 1, (lY + d) CB60 BIT 4, B
DD09 ADD IX, BC CB4F BIT 1,A CB61 BIT4, C
DD19 ADD IX, DE BC48 BIT 1, B CB62 BIT4, D
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FIG. 15-2 (cont'd.)

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

CB63 BIT 4, E BF CPA ED48 IN C, (C)
CB64 BIT4, H B8 CP B ED50 IN D, (C)
CB65 BIT 4, L B9 CP C ED58 IN E, (C)
CB6E BIT 5, (HL) BA CP D ED60 IN H, (C)
DDCB056E BIT 5, (IX + d) BB CP E ED68 IN L, (C)
FDCB056E BIT 5, (IY + d) BC CP H 34 INC (HL)
CB6F BIT 5, A BD CP L DD3405 INC (IX + d)
CB68 BIT 5, B FE20 CP N FD3405 INC (lY + d)
CB69 BIT 5, C EDA9 CPD 3C INCA
CB6A BIT 5, D ED89 CPDR 04 INC B
CB6B BIT 5, E EDA1 CPI 03 INC BC
CB6C BIT5, H EDB1 CPIR OC INCC
CB6D BIT 5, L 2F CPL 14 INC D
CB76 BIT 6, (HL) 27 DAA 13 INC DE
DDCB0576 BIT 6, (IX + d) 35 DEC (HL) 1C INC E
FDCB0578 BIT 5, (lY + d) DD3505 DEC (IX+ d) 24 INC H
CB77 BIT6,A FD3505 DEC (lY+ d) 23 INC HL
CB70 BIT 6, B 3D DECA DD23 INC IX
CB71 BIT6, C 05 DEC B FD23 INC IY
CB72 BIT 6, D 08 DEC BC 2C INC L
CB73 BIT 6, E OD DECC 33 INC SP
CB74 BIT6, H 15 DEC D EDAA IND
CB75 BIT 6, L 1B DEC DE EDBA INDR
CB7E BIT 7, (HL) 1D DEC E EDA2 INI
DDCB057E BIT 7, (IX + d) 25 DEC H EDB2 INIR
FDCB057E BIT 7, (lY + d) 2B DEC HL E9 JP (HL)
CB7F BIT7,A DD28 DEC IX DDE9 JP (IX)
CB78 BIT 7, B FD2B DECIY FDE9 JP (lY)
CB79 BIT7, C 2D DEC L DA8405 JP C, NN
CB7A BIT7, D 3B DEC SP FA8405 JP M, NN
CB7B BIT 7, E F3 DI D28405 JP NC, NN
CB7C BIT 7, H 102E DJNZ DIS C38405 JP NN
CB7D BIT 7, L FB EI C28405 JP NZ, NN
DC8405 CALL C, NN E3 EX (SP), HL F28405 JP P, NN
FC8405 CALL M, NN DDE3 EX (SP), IX EA8405 JP PE, NN
D48405 CALL NC, NN FDE3 EX (SP), IY E28405 JP PO, NN
CD8405 CALL NN 08 EX AF, AF' CA8405 JP Z, NN
C48405 CALL NZ, NN EB EX DE, HL 382E JR C, DIS
F48405 CALL P, NN D9 EXX 182E JR DIS
EC8405 CALL PE, NN 76 HALT 302E JR NC, DIS
E48405 CALLPO,NN ED46 1M 0 202E JR NZ, DIS
CC8405 CALL Z, NN ED56 1M 1 282E JR Z, DIS
3F CCF ED5E 1M 2 02 LD (BC), A
BE CP (HL) ED78 INA,(C) 12 LD (DE), A
DDBE05 CP (IX + d) DB20 INA,(N) 77 LD (HL), A
FDBE06 CP (lY +d) ED40 IN B, (C) 70 LD (HL), B
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FIG. 15-2 (cant'd.)

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT-

71 LD (HL), C FD4605 LD B, (lY+ d) 66 LD H, (HL)
72 LD (HL), D 47 LD B,A DD6605 LDH,(lX+d)
73 LD (HL), E 40 LD B, B FD6606 LD H, (lY + d)
74 LD (HL), H 41 LD B,C 67 LD H,A
75 LD (HL), L 42 LD B, D 60 LD H, B
3620 LD (HL), N 43 LD B, E 61 LD H, C
DD7705 LD (IX + d), A 44 LD B, H, NN 62 LD H, D
DD7005 LD (IX + d), B 45 LD B, L 63 LD H, E
DD7105 LD(lX+d),C 0620 LD B, N 64 LD H, H
DD7205 LD(IX+d),D ED4B8405 LD BC, (NN) 65 LD H, L
DD7305 LD(IX+d),E 018405 LD BC, NN 2620 LDH,N
DD7405 LD (IX+d), H 4E LD C, (HL) 2A8405 LD HL, (NN)
DD7505 LD(IX+d),L DD4E05 LD C, (IX + d) 218405 LD HL, NN
DD360520 LD(lX+d),N FD4E05 LDC,(IY+d) ED47 LD I,A
FD7705 LD (lY+ d), A 4F LD C,A DD2AB405 LD IX, (NN)
FD7005 LD (lY+ d), B 48 LD C, B DD218405 LDIX,NN
FD7105 LD (IY+ d), C 49 LD C,C FD2A8405 LD IY, (NN)
FD7205 LD(lY+d),D 4A LD C, D FD218405 LDIY,NN
FD7305 LD (IY+ d), E 4B LD C, E 6E LD L, (HL)
FD7405 LD (lY+d), H 4C LD C, H DD6E05 LD L, (lX+d)
FD7505 LD (IY+ d), L 4D LD C, L FD6E05 LD L, (lY + d)
FD360520 LD (lY+d), N OE20 LD C, N 6F LD L,A
328405 LD (NN), A 56 LD D, (HL) 68 LD L, B
ED438405 LD (NN), BC DD5605 LD D, (lX+d) 69 LD L, C
ED538405 LD (NN), DE FD5605 LD D, (IY+d) 6A LD L, D
228405 LD (NN), HL 57 LD D,A 6B LD L, E
DD228405 LD (NN), IX 50 LD D, B 6C LD L, H
FD228405 LD (NN), IY 51 LD D,C 6D LD L, L
ED738405 LD (NN), SP 52 LD D, D 2E20 LD L, N
OA LD A, (BC) 53 LD D, E ED788405 LD SP, (NN)
1A LD A, (DE) 54 LD D, H F9 LD SP, HL
7E LD A, (HL) 55 LD D, L DDF9 LD SP, IX
DD7E05 LD A, (IX+d) 1620 LD D, N FDF9 LD SP, IY
FD7E05 LD A, (IY+ d) ED5B8405 LD DE, (NN) 318405 LD SP, NN
3A8405 LD A, (NN) 118405 LD DE, NN EDA8 LDD
7F LDA,A 5E LD E, (HL) ED88 LDDR
78 LD A,B DD5E05 LD E, (IX+ d) EDAO LDI
79 LDA,C FD5E05 LD E, (lY + d) EDBO LDIR
7A LDA, D 5F LD E,A ED44 NEG
7B LD A, E 58 LD E, B 00 NOP
7C LDA, H 59 LD E, C B6 OR (HL)
ED57 LDA, I 5A LD E, D DDB605 OR (lX+d)
7D LDA, L 5B LD E, E FDB605 OR (IY+d)
3E20 LDA, N 5C LD E, H B7 ORA
46 LD B, (HL) 5D LD E,L BO OR B
DD4605 LD B, (IX +. d) 1E20 LD E, N B1 OR C
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FIG. 15-2 (cont'd.)

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

B2 OR D CB8B RES 1, E CBB7 RES 6, A
B3 OR E CB8C RES 1, H CBBO RES 6, B
B4 OR H CB8D RES 1, L CBBl RES 6, C
B5 OR L CB96 RES 2, (HL) CBB2 RES 6, D
F620 OR N ODCB0596 RES 2, (IX + d) CBB3 RES 6, E
EDBB OTDR FDCB0596 RES 2, (lY + d) CBB4 RES 6, H
EDB3 OTIR CB97 RES 2, A CBB5 RES 6, L
ED79 OUT (C), A CB90 RES 2, B CBBE RES 7, (HL)
ED41 OUT (C), B CB91 RES 2, C DDCB05BE RES 7, (IX + d)
ED49 OUT (C), C CB92 RES 2, D FDCB05BE RES 7, (IX + d)
ED5l OUT (C), D CB93 RES 2, E CBBF RES 7, A
ED59 OUT (C), E CB94 RES 2, H CBB8 RES 7, B
ED61 OUT (C), H CB95 RES 2, L CBB9 RES 7, C
ED69 OUT (C), L CB9E RES 3, (HL) CBBA RES 7, D
D320 OUT (N), A DDCB059E RES 3, (IX + d) CBBB RES 7, E
EDAB OUTD FDCB059E RES3, (lY+d) CBBC RES 7, H
EDA3 OUTI CB9F RES 3, A CBBD RES 7, L
Fl POPAF CB98 RES 3, B C9 RET
Cl POP BC CB99 RES 3, C D8 RETC
01 POP DE CB9A RES 3, D F8 RETM
El POP HL CB9B RES 3, E DO RET NC
ODEl POP IX CB9C RES 3, H CO RET NZ
FDEl POP IY CB9D RES 3, L FO RET P
F5 PUSH AF CBA6 RES 4, (HL) E8 RET PE
C5 PUSH BC DDCB05AB RES 4, (IX + d) EO RET PO
05 PUSH DE FDCB05AB RES 4, (lY + d) C8 RET Z
E5 PUSH HL CBA7 RES 4, A ED4D RETI
DDE5 PUSH IX CBAO RES 4, B ED45 RETN
FDE5 PUSH IY CBAl RES 4, C CB16 RL (HL)
CB86 RES 0, (HL) CBA2 RES 4, D DDCB0516 RL(lX+d)
ODCB0586 RES 0, (IX + d) CBA3 RES 4, E FDCB0516 RL(lY+d}
FDCB0586 RES 0, (lY + d) CBA4 RES 4, H CB17 RLA
CB87 RES 0, A CBA5 RES 4, L CB10 RL B
CB80 RES 0, B CBAE RES5, (HL) CBll RL C
CB81 RES 0, C DDCB05AE RES 5, (IX + d) CB12 RL D
CB82 RES 0, D FDCB05AE RES 5, (IY + d) CB13 RL E
CB83 RES 0, E CBAF RES 5, A CB14 RL H
CB84 RES 0, H CBA8 RES 5, B CB15 RL L
CB85 RES 0, L CBA9 RES 5, C 17 RLA
CB8E RES 1, (HL) CBAA RES 5, D CB06 RLC (HL)
ODCB058E RES 1, (IX + d) CBAB RES 5, E DDCB0506 RLC (IX+d)
FDCB058E RES1,(IY+d} CBAC RES 5, H FDCB0506 RLC (lY + d)
CB8F RES 1, A CBAD RES 5, L CB07 RLCA
CB88 RES 1, B CBB6 RES 6, (HL) CBOO RLC B
CB89 RES 1, C DDCB05B6 RES 6, (I X + d) CBOl RLCC
CB8A RES 1, D FDCB05B6 RES 6, (lY + d) CB02 RLC D
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FIG. 15-2 (cont'd.)

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

CB03 RLC E DE20 SBC A, N CBE6 SET 4, (HL)
CB04 RLC H ED42 SBC HL, BC DDCB05E6 SET 4, (IX + d)
CB05 RLC L ED52 SBC HL, DE FDCB05E6 SET 4, (IY+d)
07 RLCA ED62 SBC HL, HL CBE7 SET 4, A

ED6F RLD ED72 SBC HL, SP CBEO SET 4, B

CB1E RR (HL) 37 SCF CBE1 SET 4, C

DDCB051 E RR (lX+d) CBC6 SET 0, (HL) CBE2 SET 4, D

FDCB051E RR (IY+d) DDCB05CS SET 0, (IX + d) CBE3 SET 4, E

CB1F RR A FDCB05C6 SET 0, (lY + d) CBE4 SET 4, H

CB18 RR B CBC7 SET 0, A CBE5 SET 4, L

CB19 RR C CBCO SET 0, B CBEE SET 5, (HL)

CB1A RR D CBC1 SET 0, C DDCB05EE SET 5, (IX + d)

CB1B RR E CBC2 SET 0, D FDCB05EE SET 5, (lY + d)

CB1C RR H CBC3 SET 0, E CBEF SET 5, A

CB1D RR L CBC4 SET 0, H CBE8 SET 5, B

1F RRA CBC5 SET 0, L CBE9 SET 5, C
CBOE RRC (HL) CBCE SET 1, (HL) CBEA SET 5, D
DDCB050E RRC (IX + d) DDCB05CE SET 1, (IX + d) CBEB SET 5, E
FDCB050E RRC (lY + d) FDCB05CE SET 1, (lY + d) CBEC SET 5, H
CBOF RRCA CBCF SET 1, A CBED SET 5, L
CB08 RRC B CBC8 SET 1, B CBF6 SET 6, (HL)
CB09 RRC C CBC9 SET 1, C DDCB05F6 SET 6, (IX + d)
CBOA RRC D CBCA SET 1, D FDCB05F6 SET 6, (lY + d)
CBOB RRC E CBCB SET 1, E CBF7 SET 6, A
CBOC RRC H CBCC SET 1, H CBFO SET 6, B
CBOD RRC L CBCD SET 1, L CBF1 SET 6, C
OF RRCA CBD6 SET 2, (HL) CBF2 SET 6, D
ED67 RRD DDCB05D6 SET 2, (IX + d) CBF3 SET 6, E
C7 RSTO FDCB05D6 SET 2, (lY + d) CBF4 SET 6, H
D7 RST 10H CBD7 SET 2, A CBF5 SET 6, L
DF RST 18H CBDO SET 2, B CBFE SET 7, (HL)

E7 RST 20H CBD1 SET 2, C DDCB05FE SET 7, (IX + d)

EF RST 28H CBD2 SET 2, D FDCB05FE SET 7, (IY + d)

F7 RST 30H CBD3 SET 2, E CBFF SET 7, A

FF RST 38H CBD4 SET 2, H CBF8 SET 7, B

CF RST8 CBD5 SET 2, L CBF9 SET 7, C

9E SBC A, (HL) CBD8 SET 3, B CBFA SET 7, D

DD9E05 SBC A,(IX + d) CBDE SET 3, (HL) CBFB SET 7, E

FD9E05 SBC A, (lY + d) DDCB05DE SET 3, (IX + d) CBFC SET 7, H

9F SBC A, A FDCB05DE SET 3, (lY + d) CBFD SET 7, L

98 SBC A, B CBDF SET 3, A CB26 SLA (HL)

99 SBC A, C CBD9 SET 3, C DDCB0526 SLA (IX + d)

9A SBC A, D CBDA SET 3, D FDCB0526 SLA (lY + d)

9B SBC A, E CBDB SET 3, E CB27 SLAA

9C SBC A, H CBDC SET 3, H CB20 SLA B

9D SBC A, L CBDD SET 3. L CB21 SLAC
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FIG. 15-2 (cont'd.)

OBJ SOURCE OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT CODE STATEMENT

CB22 SLA D FOCB053E SRL (IV+ d) 93 SUB E
CB23 SLA E CB3F SRL A 94 SUB H
CB24 SLA H CB38 SRL B 95 SUB L
CB25 SLA L CB39 SRL C 0620 SUB N
CB2E SRA (HL) CB3A SRL D AE XOR (HL)
00CB052E SRA (IX + d) CB3B SRL E 00AE05 XOR (IX+d)
FOCB052E SRA (IV + d) CB3C SRL H FOAE05 XOR (IV + d)
CB2F SRAA CB30 SRL L AF XORA
CB28 SRA B 96 SUB (HL) A8 XOR B
CB29 SRAC 009605 SUB (IX + d) A9 XOR C
CB2A SRA D F09605 SUB (IV + d) AA XOR 0
CB2B SRA E 97 SUB A AB XOR E
CB2C SRA H 90 SUB B AC XOR H
CB2D SRA L 91 SUB C AD XOR L
CB3E SRL (HL) 92 SUB 0 EE20 XOR N
00CB053E SRL (IX + d)

FIG. 15-3 ASCII code.

HEX CODE

00
01
02
03
04
05
06
07
08
09
OA
08
OC
OD
OE
OF
10
11
12
13
14

MEANING

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

HT
LF
VT
FF
CR

SO
SI
DLE
DC1
DC2
DC3
DC4

COMMENTS

null
start of heading
start text
end text
end of transmission
enquiry
acknowledgment
bell
back space
horizontal tab
line feed
vertical tab
form feed
carriage return
shift out
shift in
data link escape
direct control 1
direct control 2
direct control 3
direct control 4
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FIG. 15-3 (cont'd.)

HEX CODE

15
16
17
18
19
1A
1B
1C
10
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
20
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
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MEANING

NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
(special)
!

#
$
%
&

*
+

/
o
1
2
3
4
5
6
7
8
9

>

COMMENTS

negative acknowledgment
synchronous idle
end of transmission block
cancel
end of medium
substitute
escape
form separator
group separator
record separator
unit separator



FIG. 15-3 (cont'd.)

HEX CODE MEANING COMMENTS
3D
3E <
3F ?
40 @

41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F 0
50 P
51 Q

52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 y

5A Z
5B [
5C /
5D ]
5E
5F' I
60 /\
61 a
62 b
63 c
64 d
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134 MISCELLANEOUS Z80 INFORMATION

FIG. 15-3 (cont'd.)

HEX CODE MEANING COMMENTS

65 e
66 f
67 9
68 h
69
6A j
68 k
6C I
6D m
6E n
6F 0

70 P
71 q

72
73
74 t

75 u
76 v
77 w
78 x
79 y
7A z
78 {
7C I
7D }
7E
7F DEL

BAUDOT TELETYPEWRITER CODE

This five-bit code is obsolete and is not in general use in newly designed
equipment. But there is a considerable amount of older equipment on the
market and still in use. Many surplus commercial and military teletypewriters
are used by amateur computer enthusiasts, and they also remain in service in
older systems. The Teletype Corporation still offers Baudot coding on their new
machines as an option for owners of older systems.
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FIG. 15-4 Baudot code.

B5 B4 B3 B2 B1 REGULAR SHIFTED
0 0 0 0 0 BLANK BLANK

0 0 0 0 1 E 3
0 0 0 1 0 linefeed linefeed
0 0 0 1 1 A
0 0 1 0 0 space space
0 0 1 0 1 S Bell
0 0 1 1 0 I 8
0 0 1 1 1 U 7
0 1 0 0 0 Car. Ret. Car. Ret.
0 1 0 0 1 D $
0 1 0 1 0 R 4
0 1 0 1 1 J
0 1 1 0 0 N

0 1 1 0 1 F
0 1 1 1 0 C
0 1 1 1 1 K (

1 0 0 0 0 T 5
1 0 0 0 1 Z

1 0 0 1 0 L )

1 0 0 1 1 W 2
1 0 1 0 0 H #
1 0 1 0 1 Y 6
1 0 1 1 0 P 0
1 0 1 1 1 Q 1

1 1 0 0 0 0 9
1 1 0 0 1 B ?
1 1 0 1 0 G &
1 1 0 1 1 (figures) (figures)
1 1 1 0 0 M
1 1 1 0 1 X /
1 1 1 1 0 V
1 1 1 1 1 (letters) (letters)

EBCDIC CODE

This code is used by IBM on some of their equipment. It must be con-
sidered when one is interfacing IBM systems, IBM-compatible equipment, or
trying to use surplus IBM Selectric typewriters (not all of which used EBCDIC;
some also used BCD, while others used correspondence code).
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FIG. 15-S EBCDIC code.

CHARACTER

A
B
C
D
E
F
G
H
I
J
U
V
W
X
Y
Z
o
1
2

3

HEX CODE

C1
C2

C3
C4
C5
C6
C7
C8
C9
D1
E4
E5
E6
E7
E8
E9

o
1
2
3

CHARACTER

K
L
M

N
o
P
Q

R
S
T
4
5
6
7
8
9

HEX CODE

D2

D3

D4
D5

D6
D7
D8
D9
E2
E3
4
5
6
7
8
9

8080/Z80 INSTRUCTION EQUIVALENCY
(SAME OP-CODES)

Eight-bit load group

8080

MOV

MVI

LDA

STA

LDAX

LDAI

LDAR

STAI

STAR

Z80

LD
(all combinations)

LD

LD A, (nn)

LD (nn),A

LD LD A, (zz)

LDA,I

LD A,r

LD I,A

LD r,A
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Sixteen-bit load group

8080 Z80

LXI LD rr,nn

LBCD LD BC, (nn)

LDED LD DE, (nn)

LH LD LD HL, (nn)

L1XD LD IX, (nn)

L1YD LD IY, (nn)

LSPD LD SP, (nn)

SBCD LD (nn), BC

SDED LD (nn),DE

SHLD LD (nn),HL

SIXD LD (nn),IX

SIYD LD (nn) ,IY

SSPD LD (nn),SP

SPHL LD (nn), HL

SPIX LD (nn) ,IX

SPIY LD (nn), IY

PUSH PUSH (all mnemonics)

POP POP (all mnemonics)

Exchange, Transfer, Search Group

8080

XCHG

EXAF

EXX

XTHL

XTIX

XTIY

LDI

LDIR

LDD

LDDR

CCI

CCIR

Z80

EX DE,HL

EX AF,AF'

EXX

EX (SP),HL

EX (SP),IX

EX (SP),IY

LDI

LDIR

LDD

LDDR

CPI

CPIR
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CCD CPD

CCDR CPDR

Eight-bit Arithmetic/Logical Group

8080

ADD

ADI

ADC

ACI

SUB

SUI

SBC

SBI

ANA

ANI

ORA

ORI

XRA

XRI

CMP

CPI

INR

INR M

INR d(ii)

DCR r

DCR M

DCR d(ii)

Z80

ADD (all combinations)

ADD A,n

ADC

ADC A,n

SUB

SUB A,n

SBC

SBC A,n

AND

AND A,n

OR

OR A,n

XOR

XOR A,n

CP

CPA,n

INC r

INC (HL)

INC (lii+d)

DEC r

DEC (HL)

DEC (Iii+d)

General-purpose Arithmetic/Control Group

8080 Z80

DAA DAA

CMA CPL

NEG NEG

CMC CCF

STC SCF

NOP NOP

DI DI
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HALT HALT

EI EI

IM0 IM0

IM1 IM1

1M2 1M2

Rotate and Shift Group

8080

DAD

DADC

DSBC

DADX

DADY

INX rr

INX ii

DCX rr

DCX ii

RLC

RAL

RRC

RAR

RLCR r

RLCR M

RLCR d(iO

RALR

RRCR

RARR

SLAR

SRAR

SRLR

RLD

RRD

Z80

ADD

ADC

SSC HL,rr

ADD IX,tt

ADD IY,tt

INC rr

INC ii

DEC rr

DEC ii

RLCA

RLA

RRCA

RRA

RLC r

RLC (HL)

RLC (Iii+d)

RL

RRC s

RRs

SLA

SRA

SRL

RLD

RRD

Bit Test, Bit Set, Bit Reset Group

8080

BIT b,r

SITb,M

Z80

BIT b,r

BIT b, (HL)
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BIT b,d(ii)

SET b,r

SET b,M

SET b,d(ii)

RES b,s

Jump Group

BIT b,d(ij)

SET b,r

SET b, (HL)

SET b,d(ii)

RES b,s

8080 Z80

JMP JP

JZ JP Z

JNZ JP NZ,nn

JC JP C,nn

JNC JP NC,nn

JPO JP PO,nn

JPE JP PE,nn

JP JP P,nn

JM JP M,nn

JO JP PE,nn

JNO JP PO,nn

JMPR JR,e

JRZ JR Z,e

JRNZ JR NZ,e

JRC JR C,e

JRNC JR NC,e

DJNZ DJNZ e

PCHL JP (HL)

PCIX JP (IX)

PCIY JP (IY)

Call/Return Group

8080

Call nn

CZ nn

CNZ

CC nn

CNC

CPO

Z80

Call nn

CALL Z,nn

CALL NZ,nn

CALL C,nn

CALL NC

CALL PO



CPE

CP

CM

CO

CNO

RET

RZ

RNZ

RC

RNC

RPO

RPE

RP

RM

RO

RNO

RETI

RETN

RST n
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CALL PR

CALLP

CALL M,nn

CALL PE,nn

CALL PO,nn

RET

RET Z

RET NZ

RET C

RET NC

RET PO

RET PE

RET P

RET M

RET PE

RET PO

RETI

RETN

RST n

Input/Output Group

8080 Z80

IN n IN A, (n)

INP r IN r, (C)

INI INI

INIR INIR

INOR INOR

OUT n OUT (n), A

OUTP OUT (e), r

OUTI OUTI

OUTIR OTIR

OUTO OUTO

OUTDR OTOR

Not all of the Z80 instructions have equivalents in the 8080 system. Those
listed above use the same op-codes, so they can be plugged into either type of
microcomputer. The principal difference between the software of the two dif­
ferent types of uP chip lies in the timing. 8080 software will execute on Z80
machines unless timing is important.
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ZB and BODO
M chines

As microprocessor chips go, the Z80 is "old." Its actual age is not very great, but
in the fast-moving digital Ie market, a few years puts whiskers on any design.
The Z80 is, however, still one of the best eight-bit microprocessor chips, and it
is used in quite a few microcomputers. Its instruction set makes it one of the
best selections for users of eight-bit machines.

Zilog, Inc. has introduced two new (actual three) microprocessor devices:
the Z8 and the Z8000. We say "actually three" because the Z8000 is available
in two different versions, Z8001 and Z8002. This chapter will introduce these
devices, although it will not be an exhaustive treatment. As this is written, only
the preliminary information is published by Zilog, and only recently have Z8000
devices been offered for sale.

THE Z8 DEVICE

The Z8 device is, unlike the Z80, a single-chip microprocessor. One feature
of the Z8 is that it can be reconfigured under program control to be three dif­
ferent devices. It can, for example be used as a regular microprocesser that is
capable of addressing up to 124K of external memory (as opposed to 64K in
the Z80). It can also be configured as a stand-alone, ready-to-run microcomputer
with 2K of internal ROM. Finally, it can be a parallel processing element in a
system that contains other microprocessors, computers, or peripheral controller
Ie devices.

142
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The internal clock rate of the Z8 microprocessor operates at 4 mHz, but
requires an external clock rate of 8 mHz. Since most Z8 instructions can be
executed in six to ten machine cycles, the average execution time will be 1.5 to
2.5 microseconds.

The Z8 offers six vectored interrupts that can be prioritized and masked,
if needed.

Figure 16-1 shows a block diagram of the internal architecture of the Z8
device. Notice that the Z8 contains its own internal universal asynchronous
receiver/transmitter (VART), needed for serial input/output. The port-3 lines
P30/P37 are programmable as a full-duplex serial I/O. One of the timers used in
the Z8 (T0) is the baud-rate generator for the DART and operates at a frequency
that is 16 times the desired baud rate. The maximum baud rate is 62,500 bits
per second. One of the many Z8 registers (R240) is used in conjunction with the
DART. The data to be transmitted are first assembled in register R240, and are
then shifted to the outside world via P37. Serial input data are received through
the pin P30.

The Z8 automatically adds a start bit and two stop bits (a relatively com­
mon format) to the data stream.

The two timers are designated T0 and T1. Each of these timers is oper­
ated from its own 6-bit prescalers that can divide the input frequency by any
programmable ratio from 1 to 64. Registers R243 and R245 are assigned to

OUTPUT INPUT Vee GND

J J

XTAL AS OS Riw RESET

110 ADDRESS OR 110 ADDRESS/DATA OR I/O
(BIT PROGRAMMABLE) (NIBBLE PROGRAMMABLE) (BYTE PROGRAMMABLE)

FIG. 16-1 Z8 Block diagram.
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program the prescalers. The counters are designed to decrement from the preset
value, and when the counter (R244 and R242) reaches zero, an interrupt request
is generated. These are designated IRQ4 and IRQ5 for T(j) and T1, respectively.

The DART and two timers are used primarily to free the Z8 from the
housekeeping chores these circuits handle, allowing more for the real-time
operations.

One of the strongest aspects of the Z8 microprocessor chip is the register­
file organization. The register-file consists of a l44-byte array. The system con­
tains 124 general-purpose registers (designated R4-R127) and 16 control or
status registers (R240-R255). Note that any of the general-purpose registers are
able to function as index registers (as opposed to two in the older Z80), accumu­
lators, and address pointers. The normal Z8 instructions can access the registers
with an eight-bit address field.

Note that the flexibility of the Z8 allows us to write to a register when the
register is defined as a destination in the instruction, and read from a register
when it is defined as a source.

The memory addressed by the internal address pointers includes 65,536
bytes of external memory. The first 2047 bytes, however, are on-chip read only
memory (ROM).

Z8 PINOUTS

Figure 16-2 shows the pin-outs of the standard 40-pin production version
of the Z8 microprocessor chip. The following gives the definitions of these pins.

P00-P07
P10-P17
P20-P27
P30-P37

I/O Port Lines. Thirty-two TTL-compatible input/output lines
are supplied. These are arrayed in the form of four eight-bit ports,
and can be program-controlled. Ports 1/2 can be used as external
memory interface, and port 2 can be used as an open-drain
output.

This line is an active-low output that is used as the address strobe.
This output line is pulsed (Le., strobed) once for any internal
(ROM) or external (RAM or ROM) program fetches or external
data transfers. AS can be placed in a high-impedance, tri-state
condition under program control.

This pin is similar to the previous instruction. It is an active-low
output that goes LOW once for each external memory transfer.
The data on port-1 are valid during write cycles when DS is LOW.
Like AS, DS can be made tri-state under program control.
Under some conditions, this output is used as an instruction
synchronization signal, and goes LOW during the last clock pulse
before an op-code fetch.
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Vee 1

XTAL2 2

XTAL1 3

P37 4

P30 5

RESET 6

R/W 7

OS 8

AS 9

P3s 10

GND 11

P32 12

POo 13

POl 14

P02 15

P03 16

P04 17

POs 18

P06 19

P07 20

40 P36

39 P3 l

38 P27

37 P26

36 P2s
35 P24

34 P23

33 P22

32 P2l

31 P20

30 P33

29 P34

28 P1 7

27 P1 6

26 P1 s
25 P1 4

24 P1 3

23 P1 2

22 P1 l

21 P1 0

RIW

XTAL-1
XTAL-2

RESET

FIG. 16-2 Z8 pinouts.

This active-low output is similar to the R/W pin on the Z80
device. It is LOW for write operations and HIGH at all other
times. This output can be made tri-state under program control.

Pins for an external clock crystal (8 mHz maximum), external
clock (8 mHz maximum), RC network, LC network.

This active-low input provides its main function in much the same
way as the Z80 reset. It is a hardware jump to location 00 00
hex. This pin on the Z8 has certain other functions as well. If
RESET is brought to a potential greater than Vcc+ the Z8 is
forced into a test mode. The reset also acts to protect the register
file during power up and power down sequences.

Z8000-SE RIES DEV ICES (Z8001 AND Z8002)

There are actually two versions of the 16-bit Z8000 microprocessor. The
Z8001 is a 48-pin DIP device that allows up to 8 mega-bytes of external memory
(provided that an external memory manager is used). The Z8002 is a 40-pin DIP
device that can address only 64K of memory. Both of these NMOS devices have
17,500 transistors in 0.06 in.2 of silicone chip.

The Z8000 devices contain 24 two-byte (16-bit) on-chip registers. Of
these, 16 of the registers are general-purpose registers.
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t t t t
+5 V OND el.K FfE'S"E'f

BUS{TIMING

r
STATusl

COHT~6~{
BUS (

CONTROC.\
\

INTERRUPTS{

MULTI·MICRO {
CONTROL

READ~

NORMAUSVSffM

BYTElWORD

ZS001
::8002

AD'5

AD,.

AO'3

AD'2

AD"

AO,o

A09

ADs

ACT
ADs

AD!

AD.

A01

A02

AD,

ADo

r--
I SNs

I SNs

I SN.

I SN3

I SN2

! SN,

I SNo

I

L~E~

ADDRESS I
DATA BUS

- '-1- %SOO11ONLY I

I

\.SEOMEMT i
(NUMBER I

J i

FIG. 16-3 Z8000 pinouts.

The instruction set supports seven different data types that range from
single-bit operations to the handling of four-byte (32-bit) word lengths. There
are eight addressing modes.

The Z8001 and Z8002 are essentially the same machine, except that the
Z8001 is used for larger systems (up to 8,000,000 bytes). The Z8002 is used for
smaller applications in which 64K bytes of memory are sufficient. Figure 16-3
shows a pin-out diagram for the Z8000 series devices. More about this device
will be available in the near future from Zilog, Inc. as production quantities are
just now available.
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Set

The Z80 instruction set is presented in this chapter, so that you can study the
instructions on a one-by-one basis. We will give you the mnemonic for each in­
struction, a description of what it does, and the code for each. The codes will
be listed in octal, hexadecimal, binary, and decimal form to facilitate your work
when you are referring to them from another person's program. It invariably
seems that when I study a program to see how it works, the code is given in one
number system (say octal), while my list of the instructions is written in another
(i.e., hexadecimal).

1. ADC A,n

A +--A + n + CF

This is a two-byte instruction in which the contents of the accumulator are
added to the operand n, defined by the second byte, and the result is stored in
the accumulator.

Code:

Hexadecimal: CE n

Octal:

Decimal:

Binary:

316

206

11001110

147
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Form:

CE

n

Example:

If the accumulator contains 03H, and the instruction is CE 56H, then the result
will be stored in the accumulator as 03 +56 = 59.

Condition bits:

S SET if result stored in accumulator is negative

Z SET if result is zero

H SET if carry from bit-3, RESET otherwise

P/V RESET if no overflow, SET if overflow

N RESET

C SET if carry from bit-7

2. ADCA,A

A+-A+A+CF

This instruction adds the contents of the accumulator to the contents of the
accumulator, and stores the result in the accumulator.

Code:

Hex.: 8F

Oct.: 217

Dec.: 143

Bin.: 10001111

See ADC A,n for condition bits.

3. ADCA,B

A+-A+B +CF

This instruction adds the contents of the accumulator to the contents of the B
register, and stores the result in the accumulator.

Code:

Hex.: 88
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Oct.: 210

Dec.: 136

Bin.: 10001000

See ADC A,n for condition bits.

4. ADCA,C

A+-A+C+CF

This instruction adds the contents of the accumulator to the contents of the C
register, and stores the result in the accumulator.

Code:

Hex.: 89

Oct.: 211

Dec.: 137

Bin.: 10001001

See ADC A,n for condition bits.

5. ADCA,D

A +-A + D + CF

This instruction adds the contents of the accumulator to the contents of the D
register, and stores the result in the accumulator.

Code:

Hex.: 8A

Oct.: 212

Dec.: 138

Bin.: 10001010

See ADC A,n for condition bits.

6. ADC A,E

A ~-A + E + CF

This instruction adds the contents of the E register to the contents of the
accumulator, and stores the result in the accumulator.



150 THE Z80 INSTRUCTION SET

Code:

Hex.: 8B

Oct.: 213

Dec.: 139

Bin.: 10001011

See ADC A,n for the condition bits.

7. ADC A,H

A~-A+ H +CF

This instruction adds the contents of the H register to the contents of the
accumulator, and stores the result in the accumulator.

Code:

Hex.: 8C

Oct.: 214

Dec.: 140

Bin.: 10001100

See ADC A,n for condition bits.

8. ADe A,l

A+-A+ l+CF

This instruction adds the contents of the L register to the contents of the
accumulator, and stores the result in the accumulator.

Code:

Hex.: 8D

Oct.: 215

Dec.: 141

Bin.: 10001101

See ADC A,n for condition bits.

9. ADC A, (H l)

A +- A + (Hl) + CF
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This instruction adds the contents of the memory location addressed by the
contents of the HL register pair to the contents of the accumulator, and stores
the result in the accumulator.

Code:

Hex.: 8E

Oct.: 216
Dec.: 142

Bin.: 10001110

See ADC A, n for the condition bits.

Example:

The contents of the accumulator are A2h, the contents of the H register are 6Fh,
and the contents of the L register are 03h. The contents of memory location
6F 03 are 03h. After the execution of this instruction, the contents of location
6F 03, as addressed by the HL register pair, are added to the contents of the
accumulator (i.e., A2h +03h = ASh), and the result, ASh, is stored in the accu­
mulator. See Fig. 17-I.

"'--_A_2__I........-------.......A5

Accumulator

",--_6_F__1 1__0_3 __

H L

6F 03 03

"'-------A2----..-.----03----

FIG. 17-1
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10. ADC A, (IX +d)

A +- A + (IX + d) + CF

This is a three-byte instruction that causes the contents of a memory location
addressed by the sum of the contents of the IX register plus a displacement d,
to be added to the contents of the accumulator, and the result to be stored in
the accumulator.

Code:

Hex.: DD BE d

Oct.: 335 216 d

Dec.: 221 142 d

Bin.: 11011101 10001110 d

See ADC A,n for condition bits.

Form:

DD

BE

d

Example:

The instruction is DD 8E 5F (i.e., the value of d is 5Fh). The contents of the
IX register are 43 56, the contents of the accumulator are A2, and the contents
of the memory location (IX +d) are 03. This location is 4365h.

11. ADC A, (IV + d)

A +- A + (IV + d) + CF

This is a three-byte instruction that causes the contents of a memory location
addressed by the sum of the contents of the IY register and a displacement d
to be added to the contents of the accumulator; the result is stored in the
accumulator.

Code:

Hex.: FD BE d

Oct.: 375 216 d

Dec.: 253 142 d

Bin. : 111111 01 1000 1110 d

See ADC A,n for the condition bits.
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Form:

FD

8E

d

12. ADC Hl,BC

HL +- HL + BC + CF

This is a two-byte instruction that causes the contents of the BC register to be
added to the contents of the HL register and the carry flag (Le., the C flag in
the F register); the result is stored in register HL.

Code:

Hex.: ED 4A

Oct.: 355 112

Dec. : 237 074

Bin.: 11101101 01001010

Condition bits:

S SET if result is negative, RESET if result is positive or zero.

Z SET if result is zero, RESET if result is positive or negative.

H SET for carry bit from bit 11, RESET otherwise.

P/V SET for overflow condition, RESET for nonoverflow.

N RESET.

C SET if carry from bit 15, RESET if no carry.

13. ADC Hl,DE

HL+-HL+DE+CF

This is a two-byte instruction that causes the contents of the BC register to be
added to the carry flag CF and the contents of the HL register. The result is
stored in the HL register.

Code:

Hex.: ED 5A

Oct.: 355 132

Dec.: 237 090

Bin.: 11101101 01011010

See ADC HL,BC for condition bits.
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14. ADC HL,HL

HL +- HL + HL + CF

This is a two-byte instruction that adds together the contents of the HL register,
flL register, and the carry flag, and stores the result in the HL register.

Code:

Hex.: ED 6A

Oct. : 355 152

Dec.: 237 206

Bin.: 11101101 01101010

Form:

ED

6A

Example:

The contents of register pair HL are 2037h, and the carry flag CF is SET (i.e., 1).
After this instruction is executed, the HL register will contain

Contents of HL
Contents of HL
Carry flag
New contents
of reg ister HL

See ADC HL,BC for condition bits.

15. ADC HL,SP

HL +- HL + SP + CF

2037h
2037h

+ 1

406Fh

This is a two-byte instruction that adds together the contents of the HL register,
the SP register, and the carry flag CF, and stores the result in the HL register.

Code:

Hex.: ED 7A

Oct.: 355 172

Dec.: 237 122

Bin.: 11101101 01111010
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Form:

ED

7A

See ADC HL,BC for condition bits.

16. ADD A, (HL)

A+-A+ (HL)

This instruction adds the contents of memory location addressed by the con­
tents of the HL register pair to the contents of the accumulator, and stores the
result in the accumulator.

Code:

Hex.: 86

Oct.: 206

Dec.: 134

Bin.: 10000110

Example:

The contents of the accumulator are A2, and the contents of the HL register are
6F23. Memory location 6F23 contains 03. After the execution of the instruc­
tion, the accumulator will contain

Condition bits:

Contents of accumulator:
Contents of 6F23h:
Contents of accumulator

A2
+ 03

A5

S SET if result is negative.

Z SET if result is zero, RESET if result is nonzero.

H SET on carry from bit 3, RESET otherwise.

P/V SET for overflow, RESET for nonoverflow.

N RESET

C SET for carry from bit 7, RESET for no carry.

17. ADD A, (IX +d)

A+-A+(IX+d)
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This is a three-byte instruction in which the contents of a memory location
addressed by the contents of the IX register and a displacement d are added to
the contents of the accumulator, and the result is stored in the accumulator.

Code:

Hex.: DO 86 d

Oct.: 335 206 d

Dec.: 221 134 d

Bin.: 11 0111 01 1000011 0 d

Form:

DO

86

d

Condition bits:

S SET if result is negative.

Z SET if result is zero.

H SET for carry from bit 3.

P/V SET for overflow, RESET for nonoverflow.

N RESET.

C SET for carry from bit 7, RESET for no carry.

18. ADD A, (IV +d)

A +- A + (IV + d)

This is a three-byte instruction in which the contents of a memory location
addressed by the contents of the IY register plus a displacement d are added to
the contents of the accumulator, and the result is stored in the accumulator.

Code:

Hex.: FD 86 d

Oct.: 375 206 d

Dec.: 253 134 d

Bin.: 111111 01 1000011 0 d
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Form:

FD

86
d

Condition bits:

See ADD A, (IX +d).

19. ADD A,n

A~A+n

This is a two-byte instruction in which integer n is added to the contents of the
accumulator, and the result is stored in the accumulator.

Code:

Hex.: C6 n

Oct.: 306 n

Dec.: 198 n

Bin. : 11 00011 0 n

Form:

,C6

n

Example:

The contents of the accumulator are 3Fh, and the instruction is C6 32. After
the execution of this instruction the accumulator will contain

Previous contents of accumulator:
n:
New contents of accumulator:

20. ADDA,A

A~A+A

3Fh
+32h

71h

This instruction adds the contents of the accumulator to the contents of the
accumulator, and stores the result in the accumulator.
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Code:

Hex.: 87

Oct.: 207

Dec.: 135

Bin. : 10000111

Condition bits:

S SET if result is negative.

Z SET if result is zero, RESET if result is nonzero.

H SET for carry from bit 3, RESET for no carry.

P/V SET for overflow, RESET for nonoverflow.

N RESET.

C SET for carry from bit 7, RESET for no carry.

21. ADDA,B

A +-A + B

This instruction adds the contents of register B to the contents of the accumu­
ulator, and stores the result in the accumulator.

Code:

Hex.: 80

Oct.: 200

Dec.: 128

Bin.: 10000000

Condition bits:

See ADD A,A.

Example:

The accumulator contains 06h and register B contains AFh. After the execution
of this instruction the accumulator will contain:

Previous contents of accumulator:
Contents of register B:

New contents of accumulator:

06h
+AFh

B5h
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22. ADDA,C

A+-A+C

This instruction adds the contents of register C to the contents of the accumu­
lator, and stores the result in the accumulator.

Code:

Hex.: 81

Oct.: 201

Dec.: 129

Bin.: 10000001

Condition bits:

SeeADDA,A.

23. ADDA,D

A+-A+D

This instruction adds the contents of register D to the contents of the accumula­
tor, and stores the result in the accumulator.

Code:

Hex.: 82

Oct.: 202

Dec.: 130

Bin.: 10000010

Condition bits:

SeeADDA,A.

24. ADD A, E

A+-A+E

This instruction adds the contents of register E to the contents of the accumula­
tor, and stores the result in the accumulator.

Code:

Hex.: 83
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Oct.: 203

Dec.: 131

Bin.: 10000011

Condition bits:

SeeADDA,A.

25. ADD A,H

A+-A+H

This instruction adds the contents of register H to the contents of the accumula­
tor and stores the result in the accumulator.

Code:

Hex.: 84

Oct.: 204

Dec.: 132

Bin.: 10000100

Condition bits:

See ADDA,A.

26. ADD A, l

A+-A+l

This instruction adds the contents of register L to the contents of the accumula­
tor, and stores the result in the accumulator.

Code:

Hex.: 85

Oct.: 205

Dec.: 133

Bin.: 10000101

Condition bits:

SeeADDA,A.



THE Z80 INSTRUCTION SET 161

27. ADD HL, Be

HL +- HL + BC

This instruction adds the contents of register Be to the contents of register HL,
and stores the result in register HL.

Code:

Hex.: 09

Oct.: 11

Dec.: 9

Bin.: 00001001

Condition bits:

S not affected.

Z not affected.

H SET for carry from bit 11, RESET for no carry.

PIV not affected.

N RESET.

C SET for carry from bit 15, RESET for no carry.

28. ADD HL, DE

HL+-HL+DE

This instruction adds the contents of register pair DE to the contents of register
pair HL, and stores the result in register pair HL.

Code:

Hex.: 19

Oct.: 31

Dec.: 25

Bin.: 00011001

Condition bits:

See ADD HL,BC.

29. ADD HL, HL

HL+-HL+HL
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This instruction adds the contents of register pair HL to the contents of register
pair IlL, and stores the result in register pair HL.

Code:

Hex.: 29

Oct.: 51

Dec.: 41

Bin.: 00101001

Condition bits:

See ADD HL, BC.

30. ADD Hl, SP

Hl +- Hl + SP

This instruction adds the contents of register pair SP to the contents of register
pair HL, and stores the result in register pair HL.

Code:

Hex.: 39

Oct.: 71

Dec.: 57

Bin.: 00111001

Condition bits:

See ADD HL, BC.

31. ADD IX, Be

IX+-IX+BC

This instruction adds the contents of register pair BC to the contents of index
register IX, and stores the result in index register IX.

Code:

Hex.: DO 09

Oct.: 335 011

Dec. : 221 009

Bin. : 11 0111 01 00001 001
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Condition bits:

S not affected.

Z not affected.

H SET for carry from bit 11, RESET for no carry.

P/V not affected.

N RESET.

C SET for carry from bit 15, RESET for no carry.

32. ADD IX, DE

IX~IX+DE

This two-byte instruction adds the contents of register pair DE to the contents
of the index register IX, and stores the result in index register IX.

Code:

Hex.: DD 19

Oct.: 335 031

Dec.: 221 025

Bin.: 11011101 00011001

Condition bits:

See ADD IX,BC.

33. ADD IX, IX

IX~IX+IX

This two-byte instruction adds the contents of index register IX to the contents
of index register IX, and stores the result in index register IX.

Code:

Hex.: DD 29

Oct.: 335 051

Dec.: 221 041

Bin. : 11 0111 01 001 01 001

Condition bits:

See ADD IX,BC.



164 THE 280 INSTRUCTION SET

34. ADD IX, SP

IX+-IX+SP

This two-byte instruction adds the contents of register pair SP to the contents of
the index register IX, and stores the result in index register IX.

Code:

Hex.: DD 39

Oct.: 335 071

Dec.: 221 057

Bin.: 11011101 00111001

Condition bits:

See ADD IX, Be.

35. ADD IV, Be
IV+-IV+BC

This two-byte instruction adds the contents of register pair BC to the contents
of index register IY, and stores the results in index register IY.

Code:

Hex.: FD 09

Oct.: 375 011

Dec.: 253 009

Bin.: 1111110100001001

Condition bits:

See ADD IX, BC.

36. ADD IV, DE

IY+-IY +DE

This two-byte instruction adds the contents of register pair DE to the contents
of index register IY, and stores the result in index register IY.

Code:

Hex.: FD 19
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Oct.: 375 031

Dec. : 253 025

Bin.: 11111101 00011001

Condition bits:

See ADD IX,BC.

37. ADD IV, IV

IY+-IY + IV

This two-byte instruction adds the contents of index register IY to the contents
of the index register IY, and stores the result in index register IY.

Code:

Hex.: FD 29

Oct.: 375 051

Dec.: 253 041

Bin. : 111111 01 001 01 001

Condition bits:

See ADD IX, BC.

38. ADD IV, SP

IY+-IY +SP

This two-byte instruction adds the contents of register pair SP to the contents
of index register IY, and stores the result in index register IY.

Code:

Hex.: FD 39

Oct.: 375 071

Dec.: 253 057

Bin.: 11111101 00111001

Condition bits:

See ADD IX, BC.
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39. ANDA

A+-A/\A

The accumulator A is logical ANDed with accumulator A.

Code:

Hex.: A7

Oct.: 247

Dec.: 167

Bin.: 10100111

Condition bits:

S SET if the result is negative.

Z SET if result is zero.

H SET.

P/V SET if parity even, RESET for parity odd.

H RESET.

C RESET.

40. AND B

A+-A/\B

This instruction performs a bit-by-bit logical AND operation on the contents of
the accumulator, using the contents of the B register. The result is stored in the
accumulator.

Code:

Hex.: A0

Oct.: 240

Dec.: 160

Bin.: 10100000

Condition bits:

See AND A.

41. AND C

A+-A/\C
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This instruction performs a bit-by-bit logical AND operation on the contents
of the accumulator, using the contenst of register C. The result is stored in the
accumulator.

Code:

Hex.: A1

Oct.: 241

Dec.: 161

Bin.: 10100001

Condition bits:

See AND A.

42. AND D

A+-A/\D

This instruction performs a bit-by-bit logical AND operation on the contents of
the accumulator, using the contents of register D. The result is stored in the
accumulator.

Code:

Hex.: A2

Oct.: 242

Dec.: 162

Bin.: 10100010

Condition bits:

See AND A.

43. AND E

A+-A/\E

This instruction performs a bit-by-bit logical AND operation on thee contents of
the accumulator, using the contents of register E. The result is stored in the
accumulator.

Code:

Hex.: A3
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Oct.: 243

Dec.: 163

Bin.: 10100011

Condition bits:

SeeANDA.

44. AND H

A+-AI\H

This instruction performs a bit-by-bit logical AND operation on the contents of
the accumulator, using the contents of register H. The result is stored in the
accumulator.

Code:

Hex.: A4

Oct.: 244

Dec.: 164

Bin.: 10100100

Condition bits:

See AND A.

45. AND l

A+-Al\l

This instruction performs a bit-by-bit logical AND operation on the contents of
the accumulator, using the contents of register L. The result is stored in the
accumulator.

Code:

Hex.: A5

Oct.: 245

Dec.: 165

Bin.: 10100101

Condition bits:

SeeANDA.
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46. AND n

A+-A/\n

This is a two-byte instruction, in which n is the second byte. This instruction
will perform a bit-by-bit logical AND operation on the contents of the accumula­
tor, using byte n.

Code:

Hex.: E6 n

Oct.: 346 n

Dec.: 230 n

Bin.: 11100110 n

Format:

op-code

n

Example:

Assume code as follows (both hex and binary are given):

E6 11100110
32 00110010

E6 is the op-code for AND n, while 32H is n. If the contents of the accumula­
tor were A7H before this instruction were encountered, then the CPU would
perform a bit-by-bit logical AND operation between A7H (the contents of the
accumulator) and 32H, the value of n. The result would be 22H:

A7 32 22

10100111

Condition bits:

See AND A.

47. AND (HL)

A+-A/\(HL)

00110010 = 00100010

This instruction performs a bit-by-bit logical AND operation on the contents of
the accumulator, using the contents of a memory location whose address is held
in register pair HL. The result is stored in the accumulator.
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Code:

Hex.: A6

Oct.: 246

Dec.: 166

Bin.: 10100110

Condition bits:

See ANDA.

48. AND (IX +d)

A+-A/\(lX+d)

This is a three-byte instruction that performs a bit-by-bit logical AND operation
on the contents of the accumulator, using the contents of a memory location
whose address is given by the sum of an integer d and the contents of the IX
register.

Code:

Hex.: DD A6 d

Oct.: 335 246 d

Dec.: 221 166 d

Bin.: 11 0111 01 101 0011 0 d

Condition bits:

SeeANDA.

49. AND (IV +d)

A +- A /\ (lY + d)

This is a three-byte instruction that performs a bit-by-bit logical AND operation
on the contents of the accumulator, using the contents of a memory location
whose address is given by the sum of the contents of register IY and the displace­
ment integer d.

Code:

Hex.: FD A6 d

Oct.: 375 246 d
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Dec.: 253 166 d

Bin. : 111111 01 101 0011 0 d

Condition bits:

See AND A.

50. BIT b, r

This set of instructions is used to test specific bits in specified registers. The bit
number, 0-7, is specified by b, while the register is specified by r. The first byte
of the op-code is CB, while the second byte is formed from the codes for the
bits to be tested and the codes for the register.

Table b

BIT CODE

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Format:

Byte 1 1 001 o 1 1

0 (b) (r)

Example:

Table r

REGISTER

B
C
D
E
H
L
A

CB

CODE

000
001
010
011
100
101
111

The instruction used to test bit 6 of the E register would be (for bit 6, b = 110,
for register E, r =OIl):

1 1 0 0 1 0 1 1 CB

o 1 1 1 0 0 1 1 73

When this instruction has been executed, the Z flag in the F register is set to the
complement of the indicated bit.

Condition bits:

S (Unknown).

Z SET if bit b of register r is 0, RESET otherwise.
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H SET.

P/V (Unknown).

N RESET.

C Unaffected.

51. BIT Gt (HL)

This two-byte instruction tests bit f/J of the byte at a memory location whose
address is pointed to by the contents of the HL register pair. The Z flag in the
F register will contain the complement of this bit.

Code:

Hex.: CB 46

Oct.: 313 106

Dec. : 203 070

Bin.: 11001011 01000110

Condition bits:

S (Unknown)

Z SET if bit is 0, RESET if bit is 1.

H SET.

P/V (Unknown).

N RESET.

C Unaffected.

52. BIT 1, (HL)

This two-byte instruction tests bit I of the byte at a memory location whose
address is pointed to by the contents of the HL register pair. The Z flag in the
F register will contain the complement of this bit.

Code:

Hex.: CB 4E

Oct.: 313 116

Dec.: 203 078

Bin. : 11 001 011 01 00111 0

Condition bits:

See BIT f,J, (HL).
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53. BIT 2, (HL)

This two-byte instruction tests bit 2 of the byte at a memory location whose
address is pointed to by the contents of the HL register pair. The Z flag in the
F register will contain the complement of this bit.

Code:

Hex.: CB 56

Oct.: 313 126

Dec.: 203 086

Bin.: 11 001 011 01 01 011 0

Condition bits:

See Bit 0, (HL).

54. BIT 3, (H L)

This two-byte instruction tests bit 3 of the byte at a memory location whose
address is pointed to by the contents of the HL register pair. The Z flag in the
F register will contain the complement of this bit.

Code:

Hex.: CB 5E

Oct.: 313 136

Dec.: 203 094

Bin.: 11 001 011 01 01111 0

Condition bits.:

See BIT 0, (HL).

55. BIT 4, (H L)

This two-byte instruction tests bit 4 of the byte at a memory location whose
address is pointed to by the contents of register pair HL. The Z flag in the F
register will contain the complement of this bit.

Code:

Hex.: CB 66

Oct.: 313 146
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Dec. : 203 102

Bin. : 11 001 011 011 0011 0

Condition bits:

See BIT 0, (HL).

56. BIT 5, (HL)

This two-byte instruction tests bit 5 of the byte at a memory location whose
address is pointed to by the contents of register pair HL. The Z flag in the F
register will contain the complement of this bit.

Code:

Hex.: CB 6E

Oct.: 313 156

Dec. : 203 110

Bin.: 11 001 011 011 0111 0

Condition bits:

See BIT 0, (HL).

57. BIT 6, (HL)

This two-byte instruction tests bit 6 of the byte at a memory location whose
address is pointed to by the contents of register pair HL. The Z flag in the F
register will contain the complement of this bit.

Code:

Hex.: CB 76

Oct.: 313 166

Dec.: 203 118

Bin.: 11 001 011 0111 011 0

Condition bits:

See BIT 0, (HL).
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58. BIT 7, (Hl)

This two-byte instruction tests bit 7 of the byte at a memory location whose
address is pointed to by the contents of register pair HL. The Z flag in the F
register will contain the complement of this bit.

Code:

Hex.: CB 7E

Oct.: 313 176

Dec.: 203 126

Bin.: 11 001 011 0111111 0

Condition bits:

See BIT 0, (HL).

59. BIT 0, (IX + d)

This four-byte instruction tests bit ~ of the byte at a memory location pointed
to by the contents of the IX register and the two's complement of integer d. The
Z flag in the F register will contain the complement of this bit.

Code:

Hex.: DD CB d 46

Oct.: 335 313 d 106

Dec.: 221 203 d 070

Condition bits:

S (Unknown).

Z SET if bit is 0, RESET if bit is 1.

H SET.

P/V (Unknown).

N RESET.

C (Unaffected).

60. BIT 1, (IX + d)

This four-byte instruction tests bit 1 of the byte at a memory location pointed
to by the contents of the IX register and the two's complement of integer d. The
Z flag in the F register will contain the complement of this bit.
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Code:

Hex.: DD CB d 4E

Oct.: 335 313 d 116

Dec.: 221 203 d 078

Bin.: 11011101 11001011 d 01001110

Condition bits:

See BIT 0, (IX +d).

61. BIT 2, (IX +d)

This four-byte instruction tests bit 1 of the byte at a memory location pointed
to by the contents of the IX register and the two's complement of integer d. The
Z flag in the F register will contain the complement of this bit.

Code:

Hex.: DD CB d 56

Oct.: 335 313 d 126

Dec.: 221 203 d 086

Bin.: 11011101 11001011 d 01010110

Condition bits:

See Bit 0, (IX + d).

62. BIT 3, (IX + d)

This four-byte instruction tests bit 3 of the byte at a memory location pointed
to by the contents of the IX register and the two's complement of integer d. The
Z flag in the F register will contain the complement of this bit.

Code:

Hex.: DD CB d 5E

Oct.: 335 313 d 136

Dec.: 221 203 d 094

Bin.: 11 0111 01 11 001 011 d 01 01111 0

Condition bits:

See BIT 0, (IX +d).
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63. BIT 4, (IX + d)

This four-byte instruction tests bit 4 of the byte at a memory location pointed
to by the contents of the IX register and the two's complement of integer d.
The Z flag in the F register will contain the complement of this bit.

Code:

Hex.: DO CB d 66

Oct.: 335 313 d 146

Dec.: 221 203 d 102

Bin.: 11011101 11001011 d 01100110

Condition bits:

See BIT 0, (IX +d).

64. BIT 5, (IX +d)

This four-byte instruction' tests bit 5 of the byte at a memory location pointed
to by the contents of the IX register and the two's complement of the integer d.
The Z flag in the F register will contain the complement of this bit.

Code:

Hex.: DO CB d 6E

Oct.: 335 313 d 156

Dec.: 221 203 d 110

Bin.: 110111 01 11 001 011 dOll 0111 0

Condition bits:

See BIT 0, (IX +d)

65. BIT 6, (IX + d)

This four-byte instruction tests bit 6 of the byte at a memory location pointed
to by the contents of the IX register and the two's complement of integer d. The
Z flag in the F register will contain the complement of this bit.

Code:

Hex.: DO CB d 76

Oct.: 335 313 d 166
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Dec.: 221 203 d 118

Bin.: 11 0111 01 11 001011 d 0111011 0

Condition bits:

See BIT 0, (IX +d).

66. BIT 7, (IX + d)

This four-byte instruction tests bit 7 of the byte at a memory location pointed
to by the contents of the IX register and the two's complement of integer d.
The Z flag in the F register will contain the complement of this bit.

Code:

Hex.: DO CB d 7E

Oct.: 335 313 d 176

Dec.: 221 203 d 126

Bin.: 1101110111001011 d 01111110

Condition bits:

See BIT ~, (IX + d).

67. BIT 0, (IV + d)

This four-byte instruction tests bit f/J of the byte at a memory location pointed
to by the contents of the IY register and the two's complement of integer d.
The Z flag in the F register will contain the complement of this bit.

Code:

Hex.: FD CB d 46

Oct.: 375 313 d 106

Dec.: 253 203 d 070

Bin. : 111111 01 11 001 011 d 01 00011 0

Condition bits:

S (Unknown).

Z SET if bit is 0, RESET if bit is 1.

H SET.
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P/V (Unknown).

N RESET.

C (Unaffected).

68. BIT 1, (IV + d)

This four-byte instruction tests bit 1 of the byte at a memory location pointed
to by the contents of the IY register and the two's complement of the integer d.
The Z flag in the F register will contain the complement of this bit.

Code:

Hex.: FD CB d 4E

Oct.: 375 313 d 116

Dec.: 253 203 d 078

Bin.: 111111 01 11001011 d 01001110

Condition bits:

See BIT 0, (IY + d).

69. BIT 2, (IV + d)

This four-byte instruction tests bit 2 of the byte at a memory location pointed
to by the contents of register IY and the two's complement of integer d. The Z
flag in the F register will contain the complement of this bit.

Code:

Hex.: FD CB d 56

Oct.: 375 313 d 126

Dec.: 253 203 d 086

Bin.: 1111110111001011 d 01010110

Condition bits:

See BIT 0, (IY + d).

70. BIT 3, (IV +d)

This four-byte instruction tests bit 3 of the byte at a memory location pointed
to by the contents of the IY register and the two's complement of integer d. The
Z flag in the F register will contain the complement of this bit.
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Code:

Hex.: FD CB d 5E

Oct.: 375 313 d 136

Dec.: 253 203 d 094

Bin.: 111111 01 11 001 011 d 01 01111 0

Condition bits:

See BIT 0, (IY +d).

71. BIT 4, (IV + d)

This four-byte instruction tests bit 4 of the byte at a memory location pointed
to by the contents of the IY register and the two's complement of the integer d.
The Z flag in the F register will contain the complement of this bit.

Code:

Hex.: FD CB d 66

Oct.: 375 313 d 146

Dec. : 253 203 d 102

Bin.: 111111 01 11 001011 d 011 0011 0

Condition bits:

See BIT 0, (IY + d).

72. BIT 5, (IV +d)

This four-byte instruction tests bit 5 of the byte at a memory location pointed
to by the contents of the IY register and the two's complement of integer d. The
Z flag in the F register will contain the complement of this bit.

Code:

Hex.: FD CB d 6E

Oct.: 375 313 d 156

Dec.: 253 203 d 110

Bin.: 111111 01 11 001011 d 011 0111 0

Condition bits:

See BIT 0, (IY +d).
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73. BIT 6, (IV + d)

This four-byte instruction tests bit 6 of the byte at a memory location pointed
to by the contents of the IY register and the two's complement of integer d.
The Z flag of the F register will contain the complement of this bit.

Code:

Hex.: FD CB d 76

Oct.: 375 313 d 166

Dec.: 253 203 d 118

Bin.: 1111110111001011 d 01110110

Condition bits:

See Bit 0, (IY + d).

74. BIT 7, (IV +d)

This four-byte instruction tests bit 7 of the byte at a memory location pointed
to by the contents of the IY register and the two's complement of integer d. The
Z flag in the F register will contain the complement of this bit.

Code:

Hex.: FD CB d 7E

Oct.: 375 313 d 176

Dec.: 253 203 d 126

Bin.: 111111 01 11 001011 d 0111111 0

Condition bits:

See BIT 0, (IY +d).

75. CALL ee, nn

Table of Conditions

CONDITION ee FLAG

NZ nonzero 000 Z
Z zero 001 Z
NC noncarry 010 C
C carry 011 C
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CONDITION

PO parity odd
PE parity even
P sign positive
M sign negative

cc

100
101
110
111

FLAG

P/V
P/V
s
s

If condition cc (part of byte 1) is true, then this instruction pushes the contents
of the program counter (PC register) out to the external memory stack. The
address of an external memory location nn, where the first operation code of a
subroutine is located, is then loaded into the PC. Byte 2 of the instruction is the
low-order byte of this address, while byte 3 of the instruction is the high-order
byte of the address.

To return the program at the end of the subroutine, a RET instruction
must be placed at the end of the subroutine code. This will pop the contents of
the stack back to the PC.

If condition cc is false, then the program counter (PC) is incremented as
usual, and the program continues.

Condition bits:

None affected.

76. CAll nn

This is a three-byte instruction which, when executed, will push the contents
of the program counter (PC) onto the top of an external memory stack. The
address of a subroutine (nn) is then loaded into the PC. Byte 2 of the instruction
is the lower-order byte of the subroutine address, while byte 3 is the higher­
order byte of the subroutine address.

To return from the subroutine, a RET instruction must be placed at the
end of the subroutine code.

Condition bits:

None affected.

77. CCF

CY+-Cy

This one-byte instruction caused the carry (C) flag in the F register to be
complemented.
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Code:

Hex.: 3F

Oct.: 77

Dec.: 63

Bin.: 00111111

Condition bits:

S (Unaffected).

Z (Unaffected).

H Previous carry copied.

P/V (Unaffected).

N RESET.

C SET if carry was 0 before operation, RESET if carry was 1.

78. CP n

A-n

This two-byte instruction compares the contents of the accumulator with byte
2 (n). If there is a true, then a flag is SET.

Code:

(byte 1) FE

(byte 2) n

Condition bits:

S SET if result is negative, RESET otherwise.

Z SET if result is 0, RESET if result is 1.

H SET if no borrow from B4, RESET otherwise.

P/V SET for overflow, RESET otherwise.

N SET.

C SET for no borrow, RESET otherwise.

79. CP B

A-- B

This one-byte instruction compares the contents of the accumulator with the
contents of register B. If there is a true, then a flag is set.
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Code:

Hex.: B8

Oct.: 271

Dec.: 185

Bin.: 10111000

Condition bits:

See CPn.

80. CP C

A-C

This one-byte instruction compares the contents of the accumulator with the
contents of register C. If there is a true, then a flag is set.

Code:

Hex.: B9

Oct.: 271

Dec.: 185

Bin.: 10111001

Condition bits:

See CP n.

81. CP 0

A D

This one-byte instruction compares the contents of the accumulator with the
contents of register D. If a true exists, then a flag is set.

Code.:

Hex.: BA

Oct.: 272

Dec.: 186

Bin.: 10111010

Condition bits:

See CP n.
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82. CP E

A·- E

This one-byte instruction compares the contents of the accumulator with the
contents of register D. If a true exists, then a flag is set.

Code:

Hex.: BB

Oct.: 273

Dec.: 187

Bin.: 10111011

Condition bits:

See CP n.

83. CP H

A-H

This one-byte instruction compares the contents of the accumulator with the
contents of register H. If a true exists, then a flag is set.

Code:

Hex.: Be
Oct.: 274

Dec.: 188

Bin. 101111 00

Condition bits:

See CP n.

84. CP L

A-L

This one-byte instruction compares the contents of the accumulator and the
contents of register L. If -a true exists, then a flag is set.

Code:

Hex.: BD

Oct.: 275
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Dec.: 189

Bin.: 10111101

Condition bits:

See CPn.

85. CP A

A A

This one-byte instruction compares the contents of the accumulator with the
contents of the accumulator. If a true exists, then a flag is set.

Code:

Hex.: BF

Oct.: 277

Dec.: 191

Bin.: 10111111

Condition bits:

See CP n.

86. CP (Hl)

A- (Hl)

This one-byte instruction compares the contents of the accumulator with the
contents of a memory location pointed to by the contents of register pair HL.

Code:

Hex.: BE

Oct.: 276

Dec.: 190

Bin.: 10111110

Condition bits:

See CP n.
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87. CP (IX + d)

A-(IX+d)

This three-byte instruction compares the contents of the accumulator with the
contents of a memory location pointed to by the contents of the IX register and
integer d.

Code:

Hex.: DO BE d

Oct.: 335 276 d

Dec.: 221 190 d

Bin: 11011101 10111110 d

Condition bits:

See CP n.

88. CP (IV + d)

A- (IV +d)

This three-byte instruction compares the contents of the accumulator with the
contents of a memory location pointed to by the contents of the IY register and
integer d.

Code:

Hex.: FD BE d

Oct.: 375 276 d

Dec.: 253 190 d

Bin.: 11111101 10111110 d

Condition bits:

See CPn.

89. CPO

A+- (HL), HL +- HL- 1, BC +- BC- 1

The contents of the accumulator are compared with the contents of a memory
location pointed to by the contents of the HL register pair. If a true exists, then
a condition flag is set.
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The contents of register pair HL is then decremented. The contents of the
byte counter (register pair BC) are decremented.

Code:

Hex.: ED A9

Oct.: 355 251

Dec.: 237 169

Bin.: 11101101 10101001

Condition bits:

S SET if result is negative.

Z SETifA+-(HL) =0.
H SET if no borrow from bit 4, RESET otherwise.

P/V SET for BC- 1*0, RESET otherwise.
N SET.
C (Unaffected).

90. CPDR

A+- (HL), HL +- HL- 1, BC +- BC-1

This two-byte instruction is similar to the CPD instruction given earlier; it is a
compare and decrement operation. The contents of a memory location pointed
to by the HL register pair are compared with the contents of the accumulator.
If the compare is a true condition, a condition bit is set. Both register pair HL
and register pair BC (byte counter) are decremented by this instruction.

If the new value in register BC is zero, or if the contents of the accumula­
tor and the contents of HL are equal, then the instruction is terminated.

If neither condition is met, i.e., if BC is not zero, and if the contents of
the accumulator are not equal to the contents of HL, then the program counter
is decremented by 2, and the instruction is repeated. Note that execution of
this instruction causes the PC to increment, by 2, and the failed test causes it
to decrement by 2; this puts the PC back at the original point where the CPDR
instruction was encountered.

We can make this instruction test all 64K of memory by initializing the
BC register pair to zero prior to this instruction. This will cause it to fail the
BC =O? test, so it will loop until all 64K are tested, or a match is found.

Data interrupts will be recognized after each iteration.

Code:

Hex.: ED B9
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Oct.: 355 237

Dec.: 237 185

Bin.: 111 011 01 10111 001

Condition bits:

S SET if the result is negative, RESET otherwise.

Z SET for A = (HL).

H SET if there is no borrow from bit 4, RESET otherwise.

P/V SET if BC- 1 is nonzero, RESET otherwise.

N SET.

C (Unaffected).

91. CPI

A~(HL), HL-E-'HL+1, BC~BC-1

This instruction is similar to CPD, except that the HL register is incremented
instead of decremented. The contents of a memory location addressed by the
contents of the HL register pair are compared with the contents of the accumu­
lator. A true compare causes a condition bit to be SET. After the comparison,
the HL register is incremented, while the BC register is decremented.

Code:

Hex.: ED A1

Oct.: 355 241

Dec.: 237 161

Bin: 11101101 10100001

Condition bits:

S SET if result is negative.

Z SET for A = (HL).

H SET for no borrow from bit 4.

P/V SET if BC- 1 is nonzero.

N SET.

C (Unaffected).

92. CPIR

A ~ (HL), HL~..- HL+1, BC~ BC- 1
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This two-byte instruction is similar to the CPDR instruction (90). The descrip­
tion for CPIR is the same as for CPDR, exect that the HL register is incremented
instead of decremented. The condition bits are also the same.

Code:

Hex.: ED B1

Oct.: 355 261

Dec. : 237 177

Bin.: 111 011 01 1011 0001

93. CPL

A+-A

This one-byte instruction causes the contents of the accumulator to be
complemented.

Code:

Hex.: 2F

Oct.: 057

Dec.: 047

Bin. : 001 01111

Condition bits:

H SET.

N SET.

S, Z, P/V, and C unaffected.

94. DAA

This one-byte instruction decimal adjusts the accumulator, so that the correct
representation for BCD is obtained.

Code:

Hex.: 27

Oct.: 047

Dec.: 039

Bin.: 00100111
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Condition bits:

S SET if the MSB of the accumulator is 1 after execution, RESET
otherwise.

Z SET if the accumulator is zero after execution of the instruction.

H (See table below.)

P/V SET if the accumulator has even parity after execution.

H (Unaffected).

C (See table below.)

Operation Table for DAA Instruction

USED
WITH

INSTRUC­
TION

ADD
ADC
INC

NEG
SUB
SBC

HEX IN HEXIN
H LOWER UPPER NUMBER

C BEFORE DIGIT DIGIT ADDED
BEFORE AFTER DAA (B3-B0) (B7-B4) TO BYTE

0 0 0 0-9 0-9 00
0 0 0 A-F 0-8 06
0 0 1 0-3 0-9 06
0 1 0 0-9 A-F 60
0 1 0 A-F 9-F 66
0 1 1 0-3 A-F 66
1 1 0 0-9 0-2 00
1 1 0 A-F 0-2 FA
1 1 0-3 0-3 AO

0 0 0 0-9 0-9 00
0 0 1 6-F 0-8 FA
1 1 0 0-9 7-F AO
1 1 1 6-F 6-F 9A

95. DEC IX

IX +-IX-1

This two-byte instruction decrements the IX index register.

Code:

Hex.: DD 2B

Oct.: 335 221

Dec. : 053 043
Bin.: 11111101 00101011

Condition bits:

All unaffected.
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96. DEC IV

IV+-IV-1

This two-byte instruction causes the contents of the IY index register to be
decremented.

Code:

Hex.: FD 2B

Oct. : 375 053

Dec.: 253 043

Bin. : 11111101 00101011

Condition bits:

None affected.

97. DEC B

B +- B-1

This one-byte instruction decrements the contents of register B.

Code:

Hex.: 05

Oct.: 005

Dec.: 5

Bin. 00000101

Condition bits:

S Set if result is negative, RESET otherwise.

Z Set if the result is zero, RESET if nonzero.

H SET if there is no borrow from bit 4, RESET otherwise.

P/V SET if contents of register was 80 (hex) before operation, RESET
otherwise.

N SET.

C (Unaffected).

98. DEC C

C +- C-1

This one-byte instruction decrements the contents of register C.
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Code:

Hex.: 0D

Oct.: 015

Dec.: 13

Bin.: 00001101

Condition bits:

See DEC B.

99. DEC D

D +- D-l

This one-byte instruction decrements the contents of register D.

Code:

Hex.: 15

Oct.: 025

Dec.: 21

Bin.: 00010101

Condition bits:

See DEC B.

100. DEC E

E +- E-l

This one-byte instruction decrements the contents of register E.

Code:

Hex.: lD

Oct.: 035

Dec.: 29

Bin.: 00011101

Condition bits:

See DEC B.
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101. DEC H

H ~- H-1

This one-byte instruction decrements the contents of register H.

Code:

Hex.: 25

Oct.: 045

Dec.: 37

Bin.: 00100101

Condition bits:

See Dec. B.

102. DEC L

L~L-1

This one-byte instruction decrements the contents of register 1.

Code:

Hex.: 2D

Oct.: 055
Dec.: 45
Bin.: 00101101

Condition bits:

See DEC B.

103. DEC A

A~A-1

This one-byte instruction decrements the contents of the accumulator.

Code:

Hex.: 3D

Oct.: 075

Dec.: 61

Bin.: 00111101
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Condition bits:

See DEC B.

104. DEC (Hl)

(Hl) +- (Hl)-l

This one-byte instruction decrements the contents of a memory location pointed
to by register pair HL.

Code:

Hex.: 35

Oct.: 065

Dec.: 53

Bin.: 00110101

Condition bits:

See DEC B.

105. DEC (IX + d)

This three-byte instruction decrements the contents of a memory location
pointed to by the IX register and integer d.

Code:

Hex.: DD 35 d

Oct.: 335 065 d

Dec.: 221 53 d

Bin.: 11011101 0011 0101 d

Condition bits:

See DEC B.

106. DEC (IV +d)

This three-byte instruction decrements the contents of a memory location
pointed to by the IY register and integer d.
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Code:

Hex.: FD 35 d

Oct.: 375 065 d

Dec. : 253 53 d

Bin.: 111111 01 0011 01 01 d

Condition bits:

See DEC B.

107. DEC BC

BC~ BC-1

The contents of register pair Be are decremented.

Code:

Hex.: 0B

Oct.: 013

Dec.: 11

Bin.: 00001011

Condition bits:

All unaffected.

108. DEC DE

DE~ DE-1

The contents of register pair DE are decremented.

Code:

Hex.: 1B

Oct.: 033

Dec.: 27

Bin.: 00011011

Condition bits:

All unaffected.
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109. DEC HL

HL~HL-1

The contents of register pair HL are decremented.

Code:

Hex.: 2B

Oct.: 053

Dec.: 43

Bin.: 00101011

Condition bits:

All unaffected.

110. DEC SP

SP ~SP-1

The contents of register pair SP are decremented.

Code:

Hex.: 3B

Oct.: 073

Dec.: 59

Bin.: 00111011

Condition bits:

All unaffected.

111. DJNZ, e

This is a two-byte instruction that decrements register B, and performs a jump
operation if the result is nonzero. If the contents of the B register are zero
following the decrement operation, then the program falls through to the next
instruction in sequence. But if the contents of the B register are nonzero follow­
ing the decrement operation, then the contents of the program counter (PC) are
added to displacement e. (The second byte of the instruction is e-2.) The result
of this addition becomes the new contents of the PC, and gives the location of
the next instruction to be executed.
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Code:

Hex.: 10 e-2

Oct.: 20 e-2

Dec.: 16 e-2

Bin.: 00010000 e-2

Condition bits:

All unaffected.

112. EI

IFF ~- 1

This one-byte instruction enables the maskable interrupt function by setting the
interrupt flip-flops.

The maskable interrupt function is not enabled during the execution of
this instruction.

Code:

Hex.: FB

Oct.: 373

Dec.: 251

Bin.: 11111011

Condition bits:

All unaffected.

113. EX AF,AF'

AF~AF'

This one-byte instruction causes the register pair AF to exchange its contents
with register pair AF'.

Code:

Hex.: 08

Oct.: 010

Dec.: 08

Bin.: 00001000
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Condition bits:

All unaffected.

114. EXDE,HL

DE~HL

This is a one-byte instruction that exchanges the contents of the DE and HL
register pairs.

Code:

Hex.: EB

Oct.: 353

Dec.: 235

Bin.: 11101011

Condition bits:

All unaffected.

115. EX (SP), HL

L~ (SP), H~ (SP + 1)

The low-order byte of the sixteen-bit register-pair (i.e., contents of L) is ex­
changed with the contents of the memory location pointed to by the stack
pointer (SP). The high-order byte (i.e., contents of the H register) is exchanged
with the contents of the next sequential memory location.

Code:

Hex.: E3

Oct.: 343

Dec.: 227

Bin.: 11100011

Condition bits:

All unaffected.

116. EX (SP), IX

L1X~ (SP), HIX~ (SP + 1)
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The low-order byte of the sixteen-bit IX index register is exchanged with the
contents of the memory location pointed to by the stack pointer (SP). The high­
order byte of the IX index register is exchanged with the contents of the next
memory location.

Code:

Hex.: DD E3

Oct.: 335 221

Dec.: 343 227

Bin.: 11 0111 01 111 000 11

Condition bits:

All unaffected.

117. EX (SP), IV

LlV +--+ (SP), HIV +--+ (SP + 1)

The low-order byte of the sixteen-bit IY index register is exchanged with the
contents of the memory location pointed to by the stack pointer (SP). The high­
order byte of the IY index register is exchanged with the contents of the next
sequential memory location.

Code:

Hex.: FD E3

Oct.: 375 343

Dec.: 253 227

Bin.: 11111101 11100011

Condition bits:

All unaffected.

118. EXX

BC +--+ BC', DE +--+ DE', HL +--+ HL'

The sixteen-bit values stored in the BC, DE, and HL register pairs are exchanged
with the sixteen-bit values stored in register pairs BC', DE', and HL', respectively.
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Code:

Hex.: 09

Oct.: 331

Dec.: 217

Bin.: 11011001

Condition bits:

All unaffected.

119. 1M 0

This two-byte instruction sets the interrupt mode f/J that allows the interrupting
device to insert any instruction code onto the data bus for immediate execution.

Code:

Hex.: ED 46

Oct.: 355 106

Dec.: 237 070

Bin.: 11101101 01000110

Condition bits:

All unaffected.

120. 1M 1

The 1M 1 instruction sets interrupt mode 1, in which the CPU will execute a
restart to location 00 38 (hex.), 000 070 (oct.) when interrupt occurs.

Code:

Hex.: ED 56

Oct.: 335 126

Dec.: 237 086

Bin.: 11101101 01010110

Condition bits:

All unaffected.
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121. 1M 2

Interrupt mode 2. In this two-byte instruction, the CPU places the address of a
memory location onto the address bus. The lower-order byte of this address is
supplied by the interrupting device, while the high-order byte is the contents of
register I. The CPU executes a call to this address.

Code:

Hex.: ED 5E

Oct.: 355 136

Dec. : 237 094

Bin.: 11101101 01011110

Condition bits:

All unaffected.

122. IN A, (n)

A~-(n)

This two-byte instruction loads the accumulator with the data appearing on
input port n (0-256). Operand n, the address of the input port, is placed on the
lower-order byte (Af/J-A7) of the sixteen-bit address bus. The contents of the
accumulator are also placed on the high-order byte (A8-A15) of the sixteen-bit
address bus during the execution of this instruction. The input port byte is then
passed over the data bus to be stored in the accumulator.

Code:

Hex.: DB n

Oct.: 333 n

Dec.: 219

Bin.: 11011011 n

Condition bits:

None affected.

123. IN S, (C)

B~(C)



THE Z80 INSTRUCTION SET 203

Register C contains the address of an input port (0-256). During the execution
of this instruction, the contents of the C register are placed on the lower-order
byte (A(/J-A7) of the address bus to select an input port. The data present at that
port are then passed over the data bus to register B. During the period when the
address is on the lower byte of the address bus, the previous contents of register
B are passed over the high-order byte of the address bus.

Code:

Hex. : 40

Oct.: 100

Dec.: 64

Bin.: 11101101 01000000

Condition bits:

S SET if input data is negative.

Z SET if input data is zero.

H RESET.

P/V SET for even parity.

N RESET.

C (Unaffected).

124. IN C, (C)

C~(C)

The C register contains the address of an input port (0-256). During the execu­
tion of this instruction, the contents of the C register are placed on the lower­
order byte (A(/J-A7) of the address bus to select an input port. The data present
at that port are passed over the data bus to register C. During the period when
the address is on the lower byte of the address bus, the previous contents of the
C register are passed over the high-order byte of the address bus.

Code:

Hex.: 48

Oct.: 110

Dec.: 72

Bin. : 111 011 01 01 001 000

Condition bits:

See IN B, (C).
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125. IN 0, (C)

D+-(C)

This instruction is identical to IN B, (C), except that the input data are stored in
the D register.

Code:

Hex.: 50

Oct.: 120

Dec.: 80

Bin.: 111 011 01 01 01 0000

Condition bits:

See IN B, (C).

126. IN E, (C)

E+-(C)

This instruction is identical to IN B, (C), except that the input data are stored in
the E register.

Code:

Hex.: 58

Oct.: 130

Dec.: 88

Bin.: 11101101 01011000

Condition bits:

See IN B, (C).

127. . IN H, (C)

H+-(C)

This instruction is identical to IN B, (C), except that the input data are stored in
the H register.

Code:

Hex.: 60
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Oct.: 140

Dec.: 96

Bin.: 111 011 01 011 00000

Condition bits:

See IN B, (C).

128. IN L, (C)

L~(C)

This instruction is identical to IN B, (C), except that the input data are stored in
the L register.

Code:

Hex.: 68

Oct.: 150

Dec.: 104

Bin.: 11101101 01101000

Condition bits:

See IN B, (C).

129. IN A, (C)

A~(C)

This instruction is identical to IN B, (C), except that the input data are stored in
the accumulator.

Code:

Hex.: 70

Oct.: 160

Dec.: 112

Bin.: 111 a11 01 01111 000

Condition bits:

See IN B, (C).
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130. INC (Hl)

(Hl)';- (Hl) + 1

This one-byte instruction will increment the contents of a memory location
pointed to by the contents of the HL register pair.

Code:

Hex.: 34

Oct.: 64

Dec.: 52

Bin.: 00110100

Condition bits:

S SET if result negative.

Z SET for zero result, RESET otherwise.

H SET if carry from bit 3.

P/V SET if contents of Hl was 7F (hex) before execution.

N RESET.

C (Unaffected).

131. INC (IX +d)

(IX + d) +- (IX + d) + 1

This three-byte instruction increments the contents of a memory location
pointed to by the contents of the IX index register and integer d.

Code:

Hex.: DD 34 d

Oct.: 335 064 d

Dec.: 221 052 d

Bin.: 11011101 00110100 d

Condition bits:

See INC (HL).

132. INC (IV + d)

(IV + d) +- (IV + d) + 1
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This three-byte instruction increments the contents of a memory location
pointed to by the contents of the IY index register and integer d.

Code:

Hex.: FD 34 d

Oct. : 375 064 d

Dec. : 253 052 d

Bin.: 11111101 00110100 d

Condition bits:

See INC (HL).

133. INC IX

IX~ IX + 1

This two-byte instruction increments the contents of the IX index register.

Code:

Hex.: DO 23

Oct.: 335 043

Dec.: 221 035

Bin.: 11011101 00100011

Condition bits:

None affected.

134. INC IV

IY~ IY+ 1

This two-byte instruction increments the contents of the IY index register.

Code:

Hex.: FD 23

Oct.: 375 043

Dec.: 253 035

Bin.: 11111101 00100011
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Condition bits:

None affected.

135. INC A

A~A+1

This one-byte instruction increments the contents of the accumulator.

Code:

Hex.: 3C

Oct.: 074

Dec.: 60

Bin.: 00111100

Condition bits:

S SET if result is negative.

Z SET for zero result.

H SET for carry from bit 3.

P/V SET if register contents were 7F (hex) before execution.

N RESET.

C (unaffected).

136. INC B

B~-B+1

This one-byte instruction increments the contents of the B register.

Code:

Hex.: 04

Oct.: 04

Dec.: 04

Bin.: 00000100

Condition bits:

See INC A.
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137. INC C

C+-C+1

This one-byte instruction increments the contents of the C register.

Code:

Hex.: OC

Oct.: 014

Dec.: 12

Bin.: 00001100

Condition bits:

See INC A.

138. INC D

0+-0+1

This one-byte instruction increments the contents of the D register.

Code:

Hex.: 14

Oct.: 024

Dec.: 20

Bin.: 00010100

Condition bits:

See INC A.

139. INC E

E+-E+1

This one-byte instruction increments the contents of the E register.

Code:

Hex.: 1C

Oct.: 034
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Dec.: 28

Bin.: 00011100

Condition bits:

See INC A.

140. INC H

H~H + 1

This one-byte instruction increments the contents of the H register.

Code:

Hex.: 24

Oct.: 044

Dec.: 36

Bin.: 00100100

Condition bits:

See INC A.

141. INC L.

L+-L+1

This one-byte instruction increments the contents of the L register.

Code:

Hex.: 2C

Oct.: 054

Dec.: 44

Bin.: 00101100

Condition bits:

See INC A.

142. INC BC

BC~BC + 1

This one-byte instruction increments the contents of register pair Be.
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Code:

Hex.: 03

Oct.: 03

Dec.: 03

Bin.: 00000011

Condition bits:

None affected.

143. INC DE

DE +- DE + 1

This one-byte instruction increments the contents of register pair DE.

Code:

Hex.: 13

Oct.: 23

Dec.: 19

Bin.: 00010011

Condition bits:

None affected.

144. INC Hl

Hl+-HL+1

This one-byte instruction increments the contents of register pair HL.

Code:

Hex.: 23

Oct.: 43

Dec.: 35

Bin.: 00100011

Condition bits:

None affected.



212 THE Z80 INSTRUCTION SET

145. INC SP

SP~SP + 1

This one-byte instruction increments the contents of register pair SP (stack
pointer).

Code:

Hex.: 33

Oct.: 063

Dec.: 51

Bin. : 0011 00 11

Condition bits:

None affected.

146. IND

(HL) ~ (C), B +- B-1, HL~ HL-1

The address (0-256) of an input port is stored in the C register. During the ex­
ecution of this instruction, the contents of the C register are passed over the
lower byte (Af/J-A7) of the address bus. At the same time, the contents of
register B (used as a byte counter) are passed over the high-order byte of the
address bus (A8-A15). The data present at the designated input port are writ­
ten into the CPU. Then the data are written to a memory location pointed to
by the contents of the HL register pair. Following this, both the Band HL
registers are decremented.

Code:

Hex.: ED AA

Oct. : 355 252

Dec.: 237 170

Bin.: 11101101 10101010

Condition bits:

S (condition unknown)

Z SET if B-1 is zero.

H (condition unknown)

P/V (condition unknown)

N SET

C (unaffected)
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147. INOR

(HL) +- (C), B +- B-1, HL +- HL-1

This two-byte instruction is identical to IND except as follows:

1. If B-1 =0, then the instruction is terminated, and the next instruc­
tion in sequence is executed.

2. If B-1 =1= 0, then the program counter (PC) is decremented by 2, and
the INDR instruction is repeated.

3. If B is set to zero prior to this instruction, then the INDR instruction
will input 256 bytes of data.

4. Interrupts will be recognized after each loop of this instruction.

Code:

Hex.: ED BA

Oct. : 355 272

Dec. : 237 186

Bin.: 11101101 10111010

Condition bits:

S (condition unknown)

Z SET

H (condition unknown)

P/V (condition unknown)

N SET

C (unaffected)

148. INI

(HL) +- (C), B +- B-·1, HL +- HL + 1

This instruction is the same as the IND instruction, except that the contents of
the HL register are incremented rather than decremented.

Code:

Hex.: ED A2

Oct. : 355 237

Dec.: 237 162

Bin. : 111 011 01 101 0001 0

Condition bits:

See IND.
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149. INIR

(HL) +- (C), B +- B-1, HL +- HL + 1

This instruction is the same as the INDR instruction, except that the contents of
the HL register are incremented instead of decremented.

Code:

Hex.: ED B2

Oct.: 355 262

Dec.: 237 178

Bin.: 111011 01 1011 001 0

Condition bits:

See IND.

150. JP ee, nn

If cc =TRUE, then PC +- nn

If condition cc (see table) is true, then operand nn is loaded into the program
counter (PC). Operand nn is a sixteen-bit address at which the next instruction
is located. This is a three-byte instruction in which the first byte is the op-code
given in the table for the relevant instruction, and nand n are used to specify
the address given to the PC. The second byte (one n) is the lower-order byte of
the sixteen-bit address, and the third byte is the high- order byte of the address.

If the condition being tested is false, then the program will increment to
the next instruction in sequence.

CODE

CONDITION FLAG HEX. OCT. DEC. BINARY

Nonzero Z C2 302 194 11000010
Zero Z CA 312 202 11001010
No carry C 02 322 210 11010010
Carry C DA 332 218 11011010
Parity Odd P/V E2 342 226 11100010
Parity Even P/V EA 352 234 11101010
Sign + S F2 362 242 11110010
Sign S FA 372 250 11111010

Format example:

We want to use the JP NZ,nn instruction to jump to memory location 1F 25
(hex) if the Z flag indicates that a result from a previous calculation is nonzero.
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The proper format is

BYTE

1
2
3

CODE

C2
25
1F

COMMENTS

op- code for JP NZ, nn
hex for n1
hex for n2

If this code series is encountered, the Z flag in the F register will be tested.
If the result is zero, then the program will continue on its way (i.e., fall through
to byte 4), but if the result is nonzero, then it will jump to location IF 25 (hex),
and continue with the instruction found at that location.

Condition bits:

None affected.

151. JP (HL)

PC +- HL

This is an unconditional jump to a memory location specified by the contents of
the HL register pair. When this instruction is encountered, the program counter
is loaded with the contents of the HL register pair. The next instruction is
fetched from the location stored in PC after execution.

Code:

Hex.: E9

Oct.: 351

Dec.: 233

Bin.: 11101001

Condition bits:

None affected.

152. JP (IX)

PC+-IX

This two-byte instruction loads the program counter (PC) with the contents of
the IX index register pair. The next instruction is fetched from the new location
loaded into the PC.
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Code:

Hex.: DD E9

Oct.: 335 351

Dec.: 221 233

Bin.: 11 0111 01 11101001

Condition bits:

None affected.

153. JP (IV)

PC~IV

This two-byte instruction loads the program counter (PC) with the contents of
the IY index register pair. The next instruction is fetched from the new location
loaded into the PC.

Code:

Hex.: FD E9

Oct.: 375 351

Dec.: 253 233

Bin. : 11111101 11101001

Condition bits:

None affected.

154. JP nn

PC~'nn

This three-byte instruction is an unconditional jump to a memory location nn.
The next instruction is fetched from this location.

Code:

Hex.: C3 n n

Oct.: 303 n n

Dec.: 195 n n

Bin.: 11000011 n n



THE Z80 INSTRUCTION SET 217

Condition bits:

None affected.

Format example:

To call for an unconditional jump to location IF 25, the following code
would be required:

BYTE

1
2
3

155. JR e

PC +- PC + e

CODE

C3
25
1F

COMMENTS

Op-code for JP nn

This two-byte instruction loads the program counter with a displacement value
e. The next instruction is fetched from the location calculated as the contents of
the PC + e.

Format:

Byte 1

Byte 2

Code:

00011000

(e-2)

(op-code for JR e)

Value of e decremented twice, to account for
the fact that the PC loaded from JR e, a two­
byte instruction.

Hex.: 18

Oct.: 030

Dec.: 24

Bin.: 00011000

Condition bits:

None affected.

156. JR C, e

If C =0, then continue

If C = 1, then PC +- PC + e
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This two-byte instruction is identical to JR, e, except that it is conditional on
the carry flag (C) being SET (i.e., C =1). The same code format is used as in JR e.

Code:

Hex.: 38 e-2

Oct.: 070 e-2

Dec.: 56 e-2

Bin.: 00111000e-2

Condition bits:

None affected.

157. JR Ne, e

This two-byte instruction is the same as JR e, except that it is conditional on the
carry flag (C) being reset (C =0).

Code:

Hex.: 30

Oct.: 60

Dec.: 48

Bin.: 00110000

Condition bits:

None affected.

158. JR NZ, e

If Z = 1, then continue

If Z =0, then PC~ PC + e

This two-byte instruction is the same as the JR, e instruction except that it is
conditional on the zero flag (Z) being reset.

Code:

Hex.: 20

Oct.: 40

Dec.: 32

Bin.: 00100000
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Condition bits:

None affected.

159. JR Z, e

If Z =0, then continue

If Z = 1, then PC +- PC + e

This two-byte instruction is the same as JR, e except that it is conditional on the
zero flag (Z), instead of the carry flag, being SET (i.e., Z =1).

Code:

Hex.: 28

Oct.: 50

Dec.: 40

Bin.: 00101000

Condition bits:

None affected.

160. lD A, (Be)

A+-(BC)

The accumulator is loaded with the contents of the memory location pointed to
by the contents of the Be register pair.

Code:

Hex.: OA

Oct.: 012

Dec.: 10

Bin.: 00001010

Condition bits:

None affected.

161. lD A, (DE)

The accumulator is loaded with the contents of a memory location pointed to
by the contents of the DE register pair.
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Code:

Hex.: 1A

Oct.: 032

Dec.: 26

Bin.: 00011010

Condition bits:

None affected.

162. LD A, (nn)

This is a three-byte instruction that loads the accumulator with the contents of
a memory location specified by the following two bytes (nn).

Code:

Hex.: 3A

Oct.: 072

Dec.: 58

Bin.: 00111010

Condition bits:

None affected.

Format example:

Load the accumulator with the contents of memory location 1F 25 (hex).

BYTE

1
2
3

163. LD A, I

A~I

CODE

3A
25
1F

COMMENTS

Op-code for LD A, (nn)
Low-order byte in address
High-order byte in address

The contents of interrupt register I are loaded into the accumulator (register A).
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Code:

Hex.: ED 57

Oct.: 355 127

Dec. : 237 087

Bin.: 11101101 01010111

Condition bits:

S SET if I is negative.

Z SET if I is zero, RESET otherwise.

H RESET

P/V Contains the contents of the second interrupt flip-flop IFF2 (will
be 1 or 0).

N RESET

C (unaffected)

164. LD A, R

A~-R

The accumulator is loaded with the contents of the memory refresh register R.

Code:

Hex.: ED 5F

Oct.: 355 137

Dec.: 237 095

Bin.: 11101101 01011111

Condition bits:

S SET if R is negative.

Z SET if R is zero.

H RESET

P/V Contains contents of the second interrupt flip-flop (1 or 0).

N RESET

C (unaffected)

165. LD (Be), A

(BC) +-A



222 THE 280 INSTRUCTION SET

The contents of a memory location pointed to by the contents of register pair
BC are loaded with the contents of the accumulator.

Code:

Hex.: 02

Oct.: 02

Dec.: 02

Bin.: 00000010

Condition bits:

None affected.

166. LD BC, nn

BC~nn

Register pair BC is loaded with the two-byte integer nn. The low-order byte is
the first n integer.

Code:

Hex.: 01

Oct.: 01

Dec.: 01

Bin.: 00000001

Condition bits:

None affected.

167. LD DE, nn

DE~nn

Register pair DE is loaded with the two-byte integer nn. The low-order byte is
the first n integer.

Code:

Hex.: 11

Oct.: 21

Dec.: 17

Bin.: 00010001



THE Z80 INSTRUCTION SET 223

Condition bits:

None affected.

168. lO Hl, nn

HL +- nn

This instruction loads register pair HL with the two-byte integer nn. The low­
order byte is the first n integer.

Code:

Hex.: 21

Oct.: 41

Dec.: 33

Bin.: 00100001

Condition bits:

None affected.

169. lO SP, nn

SP +- nn

This instruction loads the stack pointer (register pair SP) with the two-byte
integer nn. The low-order byte is the first n integer.

Code:

Hex.: 31

Oct.: 61

Dec.: 49

Bin.: 00110001

Condition bits:

None affected.

170. lO BC, (nn)

HBC +- (nn + 1), LDD +- (nn)

This instruction loads the contents of a memory address given by the two-byte
integer nn into the low-order byte of register pair BC, and the contents of
memory location nn + 1 into the high-order byte of the BC register pair.
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Code:

Hex.: 4B

Oct.: 113

Dec.: 75

Bin.: 01001011

Condition bits:

None affected.

171. lD DE, (nn)

HOE~ (nn + 1), lDE~ (nn)

This instruction loads the contents of a memory address given by the two-byte
integer nn into the low-order byte of register pair DE, and the contents of the
memory location nn + 1 into the high-order byte of register pair DE.

Code:

Hex.: 5B

Oct.: 133

Dec.: 91

Bin.: 01011011

Condition bits:

None affected.

172. lD Hl, (nn)

This instruction loads the contents of a memory address given by the two-byte
integer nn into the low-order byte of the HL register pair. The contents of
memory location nn +1 are loaded into the high-order byte of register pair HL.

Code:

Hex.: 6B

Oct.: 153

Dec.: 107

Bin.: 01101011
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Condition bits:

None affected.

173. lD SP, (nn)

HSP~ (nn+ 1), lSP~· (nn)

This instruction loads the contents of a memory location given by the two-byte
integer nn into the low-order byte of the stack pointer (SP register pair), and the
contents of memory location nn + 1 into the high-order byte of the SP.

Code:

Hex.: 7B

Oct.: 173

Dec.: 123

Bin.: 01111011

Condition bits:

None affected.

174. lD (DE), A

This instruction loads a memory location pointed to by the contents of register
pair DE with the contents of the accumulator.

Code:

Hex.: 12

Oct.: 22

Dec.: 18

Bin.: 00010010

Condition bits:

None affected.

175. lD (Hl), n

(Hl) +- n

The memory location pointed to by the contents of the HL register pair are
loaded with integer n.
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Code:

Hex.: 36

Oct.: 66

Dec.: 54

Bin.: 0011 011 0

Condition bits:

None affected.

176. lD Hl, nn

The contents of a memory location specified by two-byte integer nn are loaded
into the low-order byte of the register pair HL. The contents of memory loca­
tion nn + I are loaded into the high-order byte of HL.

Code:

Hex.: 2A n n

Oct.: 52 n n

Dec.: 42 n n

Bin.: 00101010 n n

Condition bits:

None affected.

177. lD (HU, A

(Hl) +-A

The contents of the accumulator are loaded into a memory location pointed to
by the contents of the HL register pair.

Code:

Hex.: 77

Oct.: 167

Dec.: 119

Bin.: 01110111

Condition bits:

None affected.
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178. lD (Hl), B

(Hl)~B

The contents of the B register are loaded into a memory location pointed to by
the contents of the HL register pair.

Code:

Hex.: 70

Oct.: 160

Dec.: 112

Bin.: 01110000

Condition bits:

None affected.

179. lD (Hl), C

(Hl)~C

The contents of the C register are loaded into a memory location pointed to by
the contents of the HL register pair.

Code:

Hex.: 71

Oct.: 161

Dec.: 113

Bin.: 01110001

Condition bits:

None affected.

180. lD (HU, D

(Hl)~D

The contents of the D register are loaded into the memory location pointed to
by the contents of the HL register pair.

Code:

Hex.: 72

Oct.: 162
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Dec.: 114

Bin.: 01110010

Condition bits:

None affected.

181. LD (HL), E

(HL)~-E

The contents of the E register are loaded into the memory location pointed to
by the HL register pair.

Code:

Hex.: 73

Oct.: 163

Dec.: 115

Bin.: 01110011

Condition bits:

None affected.

182. LD (HU, H

(HL) +- L

The contents of the H register are loaded into the memory location pointed to
by the contents of the HL register pair.

Code:

Hex.: 74

Oct.: 164

Dec.: 116

Bin.: 01110100

Condition bits:

None affected.

183. LD (HL), L

(HL)+-L
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The contents of the L register are loaded into the memory location pointed to
by the HL register pair.

Code:

Hex.: 75

Oct.: 165

Dec.: 117

Bin.: 01110101

Condition bits:

None affected.

184. lD I, A

I~A

The contents of the accumulator are loaded into interrupt vector I.

Code:

Hex.: ED 47

Oct.: 355 107

Dec.: 237 071

Bin.: 11101101 01000111

Condition bits:

None affected.

185. lD IX, (nn)

HIX~ (nn + 1), lIX ~ (nn)

The contents of an address given by two-byte integer nn are loaded into the low­
order byte of index register IX. The contents of memory location nn + 1 are
loaded into the high-order byte of index register IX.

Code:

Hex.: DD 2A n n

Oct. : 335 052 n n

Dec.: 221 042 n n

Bin. : 11 0111 01 001 01 01 0 n n
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Condition bits:

None affected.

186. LD IX, nn

IX -+- nn

Two-byte integer nn is loaded into index register IX. The first n integer is loaded
into the low-order byte of IX, and the second n integer is loaded into the high­
order byte of IX.

Code:

Hex.: DD 21 n n

Oct.: 335 041 n n

Dec.: 221 033 n n

Bin.: 11011101 00100001 n n

Condition bits:

None affected.

187. LD (IX + d), n

(IX + d) -+- n

The memory location pointed to by the contents of the IX index register, and
the displacement integer d is loaded with integer n.

Code:

Hex.: DD 36 d n

Oct.: 335 066 d n

Dec.: 221 054 d n

Bin.: 11 0111 01 0011 011 0 d n

Condition bits:

None affected.

188. LD (IX +d), A

(IX+d)-+-A
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The contents of the accumulator are loaded into memory location pointed to
by the contents of the IX index register and displacement integer d.

Code:

Hex.: DO 77 d

Oct.: 335 167 d

Dec.: 221 119 d

Bin.: 11011101 01110111 d

Condition bits:

None affected.

189. lD (IX + d), B

(IX +d) of- B

The contents of register B are loaded into a memory location pointed to by the
contents of the IX index register and displacement integer d.

Code:

Hex.: DO 70 d

Oct.: 335 160 d

Dec.: 221 112 d

Bin.: 11 0111 01 0111 0000 d

Condition bits:

None affected.

190. lD (IX + d), C

(IX +d) of-C

The contents of register C are loaded into a memory location pointed to by the
contents of the IX register and displacement integer d.

Code:

Hex.: DO 71 d

Oct.: 335 161 d
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Dec.: 221 113 d

Bin.: 1101110101110001 d

Condition bits:

None affected.

191. LD (IX +d), D

(IX+d)+-D

The contents of the D register are loaded into a memory location pointed to by
the contents of the IX index register and a displacement integer e.

Code:

Hex.: DD 72 d

Oct.: 335 162 d

Dec.: 221 114 d

Bin.: 110111 01 0111 001 0 d

Condition bits:

None affected.

192. LD (IX +d), E

(IX +d) +- E

The contents of the E register are loaded into a memory location pointed to by
the contents of the IX index register and displacement integer e.

Code:

Hex. : DD 73 d

Oct.: 335 163 d

Dec.: 221 115 d

Bin.: 11011101 01110011 d

Condition bits:

None affected.
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193. lD (IX + d), H

(lX+d)~H

The contents of the H register are loaded into a memory location pointed to by
the contents of the IX index register and a displacement integer d.

Code:

Hex.: DO 74 d

Oct.: 335 164 d

Dec.: 221 116 d

Bin.: 11011101 01110100 d

Condition bits:

None affected.

194. lD (IX + d), l

(IX +d) ~-l

The contents of the L register are loaded into a memory location pointed to by
the contents of the IX index register and a displacement integer d.

Code:

Hex.: DO 75 d

Oct.: 335 165 d

Dec.: 221 117 d

Bin.: 11011101 01110101 d

Condition bits:

None affected.

195. lD IV, nn

IV~nn

Two-byte integer nn is loaded into index register IY. The first n integer is the
low-order byte of IY, while the second n integer is the high-order byte of IY.
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Code:

Hex.: FD 21 n n

Oct.: 375 041 n n

Dec.: 253 033 n n

Bin.: 11111101 00100001 n n

Condition bits:

None affected.

196. LO IV, (nn)

HIV +- (nn + 1), L1V +- (nn)

The low-order byte of the IY index register is loaded with the contents of a
memory location specified by two-byte integer nn. The low-order byte of the
IY index register is loaded with the contents of memory location nn + 1.

Code:

Hex.: FD 2A n n

Oct.: 375 052 n n

Dec.: 253 042 n n

Bin. : 111111 01 001 01 01 0 n n

Condition bits:

None affected.

197. LO (IV +d), n

(IV +d) +- n

One-byte integer n is loaded into the memory location pointed to by the con­
tents of the IY index register and displacement integer d.

Code:

Hex.: FD 36 d n

Oct.: 375 066 d n

Dec.: 253 054 d n

Bin.: 111111 01 0011 011 0 d n

Condition bits:

None affected.
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198. LD (IV + d), A

(lV+d)~A

The contents of the accumulator are loaded into a memory location pointed to
by the contents of the IY index register and two's complements of displacement
integer d.

Code:

Hex.: FD 77 d

Oct.: 375 167 d

Dec.: 253 119 d

Bin.: 11111101 01110111 d

Condition bits:

None affected.

199. LD (IV + d), B

(IV + d) ~ B

The contents of the B register are loaded into a memory location pointed to by
the contents of the IY index register and the two's complement of the displace­
ment integer d.

Code:

Hex.: FD 70 d

Oct.: 375 160 d

Dec.: 253 112 d

Bin.: 111111 01 0111 0000 d

Condition bits:

None affected.

200. LD (IV + d), C

(IV+d) ~C

The contents of the C register are loaded into the memory location pointed to
by the contents of the IY index register and the two's complement of the d
displacement integer.
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Code:

Hex.: FD 71 d

Oct.: 375 161 d

Dec. : 253 113 d

Bin. : 111111 01 0111 0001 d

Condition bits:

None affected.

201. LD (IV +d), 0

(lY +d) ~D

The contents of the D register are loaded into the memory location pointed
to by the IY index register and the two's complement of the displacement
integerd.

Code:

Hex.: FD 72 d

Oct.: 375 162 d

Dec.: 253 114 d

Bin. : 111111 01 0111 001 0 d

Condition bits:

None affected.

202. LD (IV +d), E

(lY +d) ~ E

The contents of the E register are loaded into the memory location pointed
to by the IY index register and the two's complement of the displacement
integer d.

Code:

Hex.: FD 73 d

Oct.: 375 163 d

Dec.: 253 115 d

Bin.: 111111 01 0111 0011 d
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Condition bits:

None affected.

203. lD (IV + d), H

(IV +d) ~ H

The contents of the H register are loaded into the memory location pointed
to by the IY index register and the two's complement of the displacement
integer d.

Code:

Hex.: FD 74 d

Oct.: 375 164 d

Dec.: 253 116 d

Bin.: 11111101 01110100 d

Condition bits:

None affected.

204. lD (IV + d), l

(IV +d) ~ l

The contents of the L register are loaded into the memory location pointed
to by the contents of the IY index register and the two's complement of the
displacement integer d.

Code:

Hex.: FD 75 d

Oct.: 375 165 d

Dec. : 253 11 7 d

Bin.: 11111101 01110101 d

Condition bits:

None affected.

205. lD (nn), A

(nn) ~A
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The contents of the accumulator are loaded into a memory location pointed
to by the two-byte integer nn.

Code:

Hex.: 32 n n

Oct.: 062 n n

Dec.: 50 n n

Bin.: 00110010 n n

Condition bits:

None affected.

206. LD (nn), Be

(nn) +- Be

The low-order byte of register pair BC is loaded into the memory location
specified by two-byte integer nn. The high-order byte of the BC register pair
is loaded into the next sequential memory location (nn + 1).

Code:

Hex.: ED 43 n n

Oct.: 355 103 n n

Dec.: 237 067 n n

Bin.: 11101101 01000011 n n

Condition bits:

None affected.

207. LD (nn), DE

(nn) +- DE

The low-order byte of register pair DE is loaded into the memory location
specified by the two-byte integer nn. The high-order byte of the DE register
pair is loaded into the next sequential memory location (nn + 1).

Code:

Hex.: ED 53 n n

Oct.: 355 123 n n
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Dec.: 237 083 n n

Bin.: 111 011 01 01 01 0011 n n

Condition bits:

None affected.

208. lD (nn), Hl

(nn) ~- HL

The low-order byte of register pair HL is loaded into the memory location
specified by two-byte integer nn. The high-order byte of register pair HL is
loaded into the next sequential memory location (nn + 1).

Code:

Hex.: ED 63 n n

Oct.: 355 143 n n

Dec.: 237 099 n n

Bin.: 11101101 01100011 n n

Condition bits:

None affected.

209. lD (nn), SP

(nn) -f- SP

The low-order byte of the stack pointer (SP register) is loaded into the memory
location specified by two-byte integer nn. The high-order byte of the SP is
loaded into the next sequential memory location (nn + 1).

Code:

Hex.: ED 73 n n

Oct.: 355 163 n n

Dec.: 237 115 n n

Bin.: 111 011 01 0111 0011 n n

Condition bits:

None affected.
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210. LD (nn), HL

(nn) +- L, (nn + 1) +- H

The low-order byte of the HL register pair is loaded into memory location
pointed to by two-byte integer nn. The high-order byte of the HL register
pair is loaded into memory location nn + 1.

Code:

Hex.: 22 n n

Oct.: 042 n n

Dec.: 34 n n

Bin.: 00100010 n n

Condition bits:

None affected.

211. LD (nn), IX

(nn) +- L1X, (nn + 1) +- HIX

The low-order byte of register pair IX is located into the memory location
pointed to by the two-byte integer nn. The high-order byte of the IX register
pair is loaded into the next sequential memory location nn + 1.

Code:

Hex.: DD 22 n n

Oct.: 335 042 n n

Dec.: 221 034 n n

Bin. : 11 0111 01 001 0001 0 n n

Condition bits:

None affected.

212. LD (nn), IV

(nn) +- L1Y, (nn + 1) +- HIY

The low-order byte of index register pair IY is loaded into the memory location
pointed to by the two-byte integer nn. The high-order byte of index register IY
is loaded into the next sequential memory location (nn + 1).
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Code:

Hex.: FD 22 n n

Oct. : 375 042 n n

Dec.: 253 034 n n

Bin. : 111111 01 001 0001 0 n n

Condition bits:

None affected.

213. LD R, A

R +--A

The contents of the accumulator are loaded into the memory refresh register R.

Code:

Hex.: ED 4F

Oct.: 355 117

Dec.: '237 079

Bin.: 111 011 01 01 001111

Condition bits:

None affected.

214. LD A, (HL)

A+-- (HL)

The byte located at a memory location pointed to by the contents of the HL
register pair is loaded into the accumulator.

Code:

Hex.: 7E

Oct.: 176

Dec.: 126

Bin.: 01101110

Condition bits:

None affected.
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215. LO B, (H L)

B~(HL)

The byte located at a memory location pointed to by the contents of the HL
register pair is loaded into register B.

Code:

Hex.: 46

Oct.: 106

Dec.: 070

Bin.: 01000110

Condition bits:

None affected.

216. LO C, (HL)

C~(HL)

The byte located at a memory location pointed to by the contents of the HL
register are loaded into the C register.

Code:

Hex.: 4E

Oct.: 116

Dec.: 078

Bin. : 01 00111 0

Condition bits:

None affected.

217. LO 0, (HL)

D~(HL)

The byte located at a memory location pointed to by the contents of the IlL
register pair are loaded into the D register.

Code:

Hex.: 56
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Oct.: 126

Dec.: 086

Bin.: 01010110

Condition bits:

None affected.

218. LD E, (HL)

E~(HL)

The contents of a memory location pointed to by the contents of the HL
register are loaded into register E.

Code:

Hex.: 5E

Oct.: 136

Dec.: 094

Bin.: 01011110

Condition bits:

None affected.

219. LD H, (HL)

H +- (HL)

The contents of the memory location pointed to by the contents of the HL
register pair are loaded into register H.

Code:

Hex.: 66

Oct.: 146

Dec.: 102

Bin.: 011 0011 0

Condition bits:

None affected.



244 THE 280 INSTRUCTION SET

220. lD l, (H l)

L~ (HL)

The contents of the memory location pointed to by the contents of the HL
register pair are loaded into the L register.

Code:

Hex.: 6E

Oct.: 146

Dec.: 102

Bin.: 01101110

Condition bits:

None affected.

221. lD A, (IX + d)

A~(IX+d)

The contents of a memory location pointed to by the IX index register and a
displacement integer d are loaded into the accumulator.

Code:

Hex.: DO 7E d

Oct.: 335 176 d

Dec.: 221 126 d

Bin.: 11011101 01111110 d

Condition bits:

None affected.

222. lD B, (IX + d)

B~ (IX + d)

The contents of a memory location pointed to by the IX index register and a
displacement integer d are loaded into register B.

Code:

Hex.: DO 46 d
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Oct.: 335 106 d

Dec.: 221 070 d

Bin.: 11011101 01000110 d

Condition bits:

None affected.

223. lO C, (IX +d)

C~(IX+d)

The contents of the memory location pointed to by the IX index register and
a displacement integer d are located into register C.

Code:

Hex.: DD 4E d

Oct.: 335 116 d

Dec.: 221 078 d

Bin.: 11 0111 01 01 00111 0 d

Condition bits:

None affected.

224. lO 0, (IX +d)

D~(IX+d)

The contents of the memory location pointed to by the IX index register and
displacement integer d are loaded into register D.

Code:

Hex.: DD 56 d

Oct.: 335 126 d

Dec.: 221 086 d

Bin.: 1101110101010110 d

Condition bits:

None affected.
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225. lD E, (IX +d)

E~(IX+d)

The contents of a memory location pointed to by the IX index register and dis­
placement integer d are loaded into register E.

Code:

Hex.: DD 5E d

Oct.: 335 126 d

Dec.: 221 094 d

Bin.: 11011101 01011110 d

Condition bits:

None affected.

226. lD H, (IX +d)

H~ (IX + d)

The contents of a memory location pointed to by the IX index register and dis­
placement integer d are loaded into register H.

Code:

Hex.: DD 66 d

Oct.: 335 146 d

Dec. : 221 102 d

Bin.: 11 0111 01 011 0011 0 d

Condition bits:

None affected.

227. lD l, (IX +d)

l~(lX+d)

The contents of a memory location pointed to by the IX index register and dis­
placement integer d are loaded into register L.

Code:

Hex.: DD 6E d



THE Z8D INSTRUCTION SET 247

Oct.: 335 156 d

Dec.: 221 110 d

Bin.: 11011101 01101110 d

Condition bits:

None affected.

228. LD A, (IV + d)

A+-(lV+d)

The accumulator is loaded with the contents of the memory location pointed to
by the contents of the IY index register and the displacement integer d.

Code:

Hex.: FD 7E d

Oct.: 375 176 d

Dec.: 253 126 d

Bin.: 11111101 01111110 d

Condition bits:

None affected.

229. LD B, (IV +d)

B +- (IV + d)

The B register is loaded with the contents of the memory location pointed to by
the contents of the IY index register and displacement integer d.

Code:

Hex.: FD 46 d

Oct.: 375 106 d

Dec.: 253 070 d

Bin.: 111111 01 01 00011 0 d

Condition bits:

None affected.
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230. LO C, (IV +d)

c~ (IV +d)

The C register is loaded with the contents of the memory location pointed to
by the contents of the IY index register and displacement integer d.

Code:

Hex.: FD 4E d

Oct.: 375 116 d

Dec.: 253 078

Bin.: 111111 01 01 00111 0 d

Condition bits:

None affected.

231. LO 0, (IV +d)

D~(IV+d)

The D register is loaded with the contents of the memory location pointed to
by the contents of the IY index register and displacement integer d.

Code:

Hex.: FD 56 d

Oct.: 375 126 d

Dec. : 253 086 d

Bin.: 11111101 01010110 d

Condition bits:

None affected.

232. LO E, (IV +d)

E -E- (IV +d)

The E register is loaded with the contents of the memory location pointed to by
the contents of the IY index register and the displacement integer d.

Code:

Hex.: FD 5E d
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Oct.: 375 136 d

Dec.: 253 094 d

Bin.: 11111101 01011110 d

Condition bits:

None affected.

233. lO H, (IV +d)

H +-.- (IV +d)

The H register is loaded with the contents of the memory location pointed to by
the contents of the IY index register and the displacement integer d.

Code:

Hex.: FD 66 d

Oct.: 375 146 d

Dec.: 253 146 d

Bin.: 111111 01 011 0011 0 d

Condition bits:

None affected.

234. lO l, (IV +d)

L~(IV+d)

The L register is loaded with the contents of a memory location pointed to by
the contents of the IY index register and displacement integer d.

Code:

Hex.: FD 6E d

Oct.: 375 156 d

Dec.: 253 110 d

Bin.: 11111101 01101110 d

Condition bits:

None affected.
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235. LD A, n

A~n

One-byte integer n is loaded into the accumulator.

Code:

Hex.: 3E n

Oct.: 076 n

Dec.: 062 n

Bin. : 00111110 n

Condition bits:

None affected.

236. LD B, n

B~n

One-byte integer n is loaded into the B register.

Code:

Hex.: 06 n

Oct.: 006 n

Dec.: 6 n

Bin.: 00000110 n

Condition bits:

None affected.

237. LD C, n

One-byte integer n is loaded into the C register.

Code:

Hex.: OE n

Oct.: 16 n

Dec.: 14 n

Bin.: 00001110 n



Condition bits:

None affected.

238. LO 0, n

D+-n

One-byte integer n is loaded into register D.

Code:

Hex.: 16 n

Oct.: 26 n

Dec.: 22 n

Bin.: 00010110 n

Condition bits:

None affected.

239. LO E, n

E+-n

One-byte integer n is loaded into register E.

Code:

Hex.: 1E n

Oct.: 36 n

Dec.: 30 n

Bin.: 00011110 n

Condition bits:

None affected.

240. LO H, n

H+-n

One-byte integer n is loaded into register H.

THE 280 INSTRUCTION SET 251



252 THE Z80 INSTRUCTION SET

Code:

Hex.: 26 n

Oct.: 46 n

Dec.: 38 n

Bin. : 001 0011 0 n

Condition bits:

None affected.

241. LD L, n

L~n

One-byte integer n is loaded into register L.

Code:

Hex.: 2E n

Oct.: 56 n

Dec.: 46 n

Bin.: 00101110 n

Condition bits:

None affected.

242. LD r, r'

r~r'

The contents of a register r' are loaded into any other register. Both rand r' are
selected from the table below.

A 111
B 000
C 001
D 010
E 011
H 100
L 101

Format:
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Example:

Transfer the contents of the C register (code 001) into the D register (code 010).
The op-code for this operation (LD C, D) is 01001010.

Condition bits:

None affected.

243. lD SP, Hl

SP +-- HL

The stack pointer SP is loaded with the contents of the HL register pair.

Code:

Hex.: F9

Oct.: 371

Dec.: 249

Bin. : 11111001

Condition bits:

None affected.

244. lD SP, IX

SP+-IX

The stack pointer SP is loaded with the contents of the IX index register.

Code:

Hex.: DO F9

Oct.: 335 371

Dec.: 221 249

Bin.: 11 0111 01 11111001

Condition bits:

None affected.

245. lD SP, IV

SP+-IV

The stack pointer SP is loaded with the contents of the IY index register.
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Code:

Hex.: FD F9

Oct.: 375 371

Dec.: 253 249

Bin.: 11111101 11111001

Condition bits:

None affected.

246. LDD

(DE) +- (HL), DE +- DE- 1, HL +- HL- 1, BC +- BC- 1

One byte of data is transferred from the memory location pointed to by the HL
register pair to the memory location pointed to by the DE register pair. The BC
register is used as a byte counter. The HL, DE, and BC register contents are then
decremented.

Code:

Hex.: ED A8

Oct.: 355 250

Dec.: 237 168

Bin.: 11101101 10101000

Condition bits:

H RESET

P/V SET if BC-1 *O.
N RESET

S, Z and C are unaffected.

247. LDDR

(DE) +- (HL), DE +- DE _. 1, HL +- HL - 1, BC +- BC- 1

This instruction is the same as LDD, except as follows:

1. If decrementing causes BC to go to zero, then the instruction is
terminated.

2. If BC is not zero after decrementing, the program counter is decre­
mented by 2, and the instruction is repeated.
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3. If BC is set to zero before the instruction, the LDDR instruction will
loop through all 64K of memory unless a match is found.

4. Interrupts will be honored after each data transfer.

Code:

Hex.: ED B8

Oct.: 355 270

Dec. : 237 184

Bin.: 11101101 10111000

Condition bits:

H, P/V and N are RESET

S, Z and C are not affected

248. LOI

(DE) ~ (HL), DE~ DE +1, HL~ HL+1, BC~ BC- 1

This instruction is identical to the LDD instruction except that the DE and HL
registers are incremented instead of decremented.

Code:

Hex.: ED AO

Oct.: 355 240

Dec.: 237 160

Bin.: 111 011 01 101 00000

Condition bits:

S, Z, and C are not affected. Hand N are RESET, and P/V is SET if BC - 1 is
not zero.

249. LOIR

(DE)~ (HL), DE~ DE + 1, HL~ HL+ 1, BC~ BC-1

This instruction is the same as the LDI instruction except as follows: (1) If
decrementing causes register BC to go to zero, then the instruction is terminated,
and the next sequential instruction is executed. (2) If BC is not zero after decre­
menting, then the program counter (PC) is decremented by 2, and the instruc­
tion is repeated. (3) If BC is set initially to zero, then the instruction will loop
through 64K. (4) Interrupts will be honored after each data transfer.
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Code:

Hex.: ED BO

Oct.: 355 260

Dec.: 237 176

Bin.: 111 011 01 1011 0000

Condition bits:

S (unaffected)

Z (unaffected)

H RESET

P/V RESET

N RESET

C (unaffected)

250. NEG

A *-0- A

This instruction causes negation of the accumulator contents. This is the same
subtracting the contents of the accumulator from zero. 80 (hex) remains un­
changed after execution of this instruction.

Code:

Hex.: ED 44

Oct.: 355 104

Dec.: 237 068

Bin. : 111 011 01 01 0001 00

Condition bits:

S SET if result is negative.

Z SET if result is zero.

H SET if no borrow from bit 4.

P/V SET if accumulator was 80 (hex) before operation.

N SET

C SET if accumulator was not 00 before operation.

251. NOP

(no operation)
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Code:

Hex.: 00

Oct.: 00

Dec.: 00

Bin. : 00000000

Condition bits:

None affected.

252. OR B

A +-A VB

A bit-by-bit logical OR operation is performed between the byte in the B regis­
ter and the accumulator. The result is stored in the accumulator.

Code:

Hex.: BO

Oct.: 260

Dec.: 176

Bin.: 10110000

Condition bits:

S SET if result is negative.

Z SET if result is zero.

H SET

P/V SET for parity even.

N RESET

C RESET

253. OR C

A+-A VC

This instruction performs a bit-by-bit logical OR operation between the contents
of the accumulator and the contents of the C register. The result is stored in the
accumulator.

Code:

Hex.: B1
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Oct.: 261

Dec.: 177

Bin.: 10110001

Condition bits:

See OR B.

254. OR 0

A~-A VD

This instruction performs a bit-by-bit logical OR operation between the contents
of the accumulator and the contents of the D register. The result is stored in the
accumulator.

Code:

Hex.: B2

Oct.: 262

Dec.: 178

Bin.: 10110010

Condition bits:

See ORB.

255. OR E

A+-AVE

This instruction performs a bit-by-bit logical OR operation between the contents
of the accumulator and the contents of the E register. The result is stored in the
accumulator.

Code:

Hex.: B3

Oct.: 263

Dec.: 179

Bin.: 1011 0011

Condition bits:

See OR E.
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256. OR H

A +-A V H

This instruction performs a bit·by·bit logical OR operation between the contents
of the accumulator and the contents of the H register. The result is stored in the
accumulator.

Code:

Hex.: 84

Oct.: 264

Dec.: 180

8 in. : 1011 01 00

Condition bits:

See OR B.

257. OR L

A+-AVL

This instruction performs a bit·by·bit logical OR operation between the contents
of the accumulator and the contents of the L register. The result is stored in the
accumulator.

Code:

Hex.: B5

Oct.: 265

Dec.: 181

Bin.: 10110101

Condition bits:

See OR B.

258. OR A

A+-AVA

This instruction performs a bit·by·bit logical OR operation between the contents
of the accumulator and the contents of the accumulator. The result is stored in
the accumulator.
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Code:

Hex.: B7

Oct.: 267

Dec.: 183

Bin.: 10110111

Condition bits:

See OR B.

259. OTDR

(C) +- (HL), B +- 8--1, HL +- HL- 1

1. The contents of the accumulator are placed on the address bus to se­
lect a memory location. The data stored in that memory location are
temporarily stored in the CPU.

2. The byte counter register (B) is decremented, and the contents of
the C register are placed on the low-order byte of the address bus
(AC/J-A7). This selects one of 256 (Le., 0-255) ports. The decremented
value of the B register is placed on the high-order byte (A8-A15) of
the address bus.

3. The byte to be output, Le., that temporarily stored in the CPU, is
placed on the data bus so that it can be output to the selected device.

4. Register pair HL is now decremented.
5. If the decremented byte in the B register is nonzero, then the program

counter (PC) is decremented by 2, and the instruction is repeated.
6. If the decremented value of B is zero, then the instruction is

terminated.
7. If B is set to zero prior to the execution of this instruction, then the

program will loop through all 256 bytes of data.
8. Interrupts will be honored after each data transfer.

Condition bits:

S (unknown)

Z SET

H (unknown)

P/V (unknown)

N SET

C (unaffected)
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Code:

Hex.: ED B3

Oct.: 355 263

Dec. : 237 179

Bin.: 11101101 10110011

260. OTIR

This instruction is the same as OTDR, except that the HL register is incremented
instead of decremented. The other operations are the same.

Code:

Hex.: ED B3

Oct. : 355 263

Dec. : 237 179

Bin.: 111011 01 1011 0011

Condition bits:

See OTDR.

261. OUT (e), B

(C) +-B

The contents of the B register are output through one of 256 (i.e., 0-255) out­
put ports whose address is contained in the C register. The contents of the C reg­
ister are placed on the low- order byte of the address bus during the operation.

Code:

Hex.: ED 41

Oct.: 355 101

Dec.: 237 065

Bin. : 111011 01 01 000001

Condition bits:

None affected.
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262. OUT (C), C

(C)+-C

The contents of the C register are output through one of 2~ 6 (i.e., 0-255) ports
whose address is contained in the C register.

Code:

Hex.: 49

Oct.: 111

Dec.: 73

Bin. : 111 011 01 01 001 001

Condition bits:

None affected.

263. OUT (C), D

(C) +-D

The contents of the D register are output through one of2S~ (i.e., 0-255) ports,
whose address is contained in the C register.

Code:

Hex.: 51

Oct.: 121

Dec.: 81

Bin.: 11101101 01010001

Condition bits:

None affected.

264. OUT (C), E

(C) +-E

The contents of the E register are output through one of 25&- (i.e., 0-255) ports,
whose address is contained in the C register.

Code:

Hex.: 59

Oct.: 131
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Dec.: 89

Bin.: 1110110101011001

Condition bits:

None affected.

265. OUT (C), H

(C) +-H

The contents of the H register are output through one of 256 (Le., 0-255) ports,
whose address is contained in the C register.

Code:

Hex.: 61

Oct.: 141

Dec.: 97

Bin.: 11101101 01100001

Condition bits:

None affected.

266. OUT (C), l

(C) +-l

The contents of the L register are output through one of 256 (Le., 0-255) ports,
whose address is contained in the C register.

Code:

Hex.: 69

Oct.: 151

Dec.: 105

Bin.: 111 011 01 011 01001

Condition bits:

None affected.

267. OUT (C), A

(C) +- A
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The contents of the accumulator are output through one of 256 (i.e., 0-255)
ports, whose address is contained in the C register.

Code:

Hex.: 71

Oct.: 161

Dec.: 113

Bin.: 11101101 01111001

Condition bits:

None affected.

268. aUT (n), A

(n) 4:-- A

The contents of the accumulator are output to one of 256 (i.e., 0-255) ports
designated by one-byte interger n. The port address (n) is placed on the low­
order byte of the address bus (A0-A7), while the contents of the accumulator
are placed on the high-order byte of the address bus (A8-A15). The contents
of the accumulator are then passed over the data bus to the selected port.

Code:

Hex.: D3 n

Oct.: 323 n

Dec.: 211 n

Bin. : 11 01 0011 n

Condition bits:

None affected.

269. aUTO

(C) 4:-- (H L), B 4:-- B-1, HL 4:-- HL - 1

The contents of a memory location pointed to by the contents of the HI, reg­
ister pair are written to a memory location pointed to by the contents of the C
register. The B register is used as a byte counter, and is decremented after each
data transfer.
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Code:

Hex.: ED AB

Oct.: 355 253

Dec.: 237 171

Bin.: 11101101 10101011

Condition bits:

S (unknown)

Z SET if B-1 =O.

H (unknown)

PIV (unknown)

N SET

C (unaffected)

270. OUTI

(C) +- (HL), B +- B 1, HL +- HL+ 1

This instruction is the same as OUTD except that the HL register pair is incre­
mented instead of decremented.

Code:

Hex.: ED A3

Oct.: 355 243

Dec.: 237 163

Bin.: 11101101 10100011

Condition bits:

See OUTDo

271. POP IX

LlX +- (SP), HIX +- (SP+ 1)

The stack pointer (SP) contains the address of an external memory "stack." The
cont~nts of the memory location pointed to by the SP are loaded into the low­
order byte of the IX index register. The high-order byte of the IX index register
is loaded with the contents of the next sequential memory location (SP+1).
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Code:

Hex.: DO E1

Oct.: 335 341

Dec.: 221 225

Bin.: 11a111 01 111 00001

Condition bits:

None affected.

272. POP IV

L1V~ (SP), HIV~ (SP+ 1)

This instruction is the same as POP IX, except that the IY index register, instead
of the IX register, is used to store the data popped from the external stack.

Code:

Hex.: FD E1

Oct. : 375 341

Dec.: 253 225

Bin.: 111111 01 111 00001

Condition bits:

None affected.

273. POP Be

This instruction is functionally the same as POP IX, except that the Be register
pair is used instead of IX.

Code:

Hex.: C1

Oct.: 301

Dec.: 193

Bin.: 11000001

Condition bits:

None affected.
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274. POP DE

This instruction is functionally the same as POP IX, except that the DE register
pair is used instead of the IX.

Code:

Hex.: 01

Oct.: 321

Dec.: 209

Bin.: 11010001

Condition bits:

None affected.

275. POP Hl

This instruction is functionally the same as POP IX, except that the HL register
pair is used instead of the IX.

Code:

Hex.: E1

Oct.: 341

Dec.: 225

Bin. : 111 00001

Condition bits:

None affected.

276. POP AF

This instruction is functionally the same as POP IX, except that the AF register
pair is used instead of the IX.

Code:

Hex.: F1

Oct.: 361

Dec.: 241

Bin. : 1111 000 1
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Condition bits:

None affected.

277. PUSH IX

(SP- 1) +- HIX, (SP- 2) +- L1X

This instruction pushes the two-byte data held in the IX index register onto the
external memory stack. The stack pointer (SP) holds the address of the top of
the stack. The high-order byte in the IX register is pushed out to memory loca­
tion SP·- 1, and the low-order byte from the IX register is pushed onto location
SP- 2.

Code:

Hex.: DO E5

Oct. : 335 345

Dec.: 221 229

Bin.: 11 0111 01 111 001 01

Condition bits:

None affected.

278. PUSH IV

This instruction is the same as PUSH IX, except that the IY index register is
used in place of the IX index register.

Code:

Hex.: FD E5

Oct.: 375 345

Dec. : 253 229

Bin.: 11111101 11100101

Condition bits:

None affected.

279. PUSH Be

This instruction is functionally the same as PUSH IX, except that the Be register
pair is used.
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Code:

Hex.: C5

Oct.: 305

Dec.: 197

Bin.: 11000101

Condition bits:

None affected.

280. PUSH DE

This instruction is functionally the same as PUSH IX, except that the DE register
pair is used in place of the IX register.

Code:

Hex.: 05

Oct.: 325

Dec.: 213

Bin.: 11010101

Condition bits:

None affected.

281. PUSH HL

This instruction is functionally the same as PUSH IX, except that the HL register
pair is used in place of the IX register.

Code:

Hex.: E5

Oct.: 345

Dec.: 229

Bin.: 11100101

Condition bits:

None affected.
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282. PUSH AF

This instruction is functionally the same as PUSH IX, except that the AF register
pair is used instead of the IX register.

283. RES b, r

Sb~O

The indicated bit (b) in the register selected (r) is RESET (Le., made ~). This is a
two-byte instruction in which the second byte is constructed from the table
below, as shown.

Format:
BYTE CODE

1 1 00101 1
2 0 I~ ~ -:::I~..!:.=:I

Table:

BIT b REGISTER

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

Example:

If the instruction is RES 7, B, we would be resetting to zero, bit 7 in register B.
The code would be

byte 1

byte 2

Condition bits:

None affected.

11001011
10111000

284. RES b, (HL)

sb~0
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The indicated bit (0-7) in a memory location pointed to by the contents of the
HL register pair is reset to zero. The code is as given below, with b selected from
the bit table in RES b, r.

10010

o b 1

Condition bits:

None affected.

1 (CB hex)

o

285. RES b, (IX + d)

Sb +-0

The indicated bit (0-7) in a memory location pointed to by the contents of the
IX index register, and displacement integer d is reset to zero. The code is given
below, with b selected from the bit table in RES b, r.

byte 1

byte 2

byte 3

byte 4

Condition bits:

None affected.

o 1 1 1 0

00101

d----_.
o b 1 1 0

(00 16/ 3358 )

(CB I6/ 3138 )

286. RES b, (IV + d)

This instruction is the same as RES b, (IX +d), except that the IY register is
used instead of the IX register. The code is the same except for byte 1:

11111101 (FO I6/ 3758 )

287. RET

LPC +- (SP) 1 HPC +- (SP + 1)

This "return" instruction returns program control to the main program after a
subroutine. The contents of the program counter prior to jumping to the sub­
routine are stored in an external memory stack. The low-order byte of the PC
is loaded with the contents of the location pointed to by the SP, while the high­
order byte of the PC is loaded with the contents of the next sequential memory
location SP + 1.
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Code:

Hex.:· C9

Oct.: 311

Dec.: 201

Bin.: 11001001

Condition bits:

None affected.

288. Ret cc

If cc is true, then LPC~ (SP), HPC~ (SP + 1)

This is a conditional return instruction. If the condition specified is true (see
table), then the program control is returned to the main program. The! code is
constructed from the table below.

Code Table for RET cc Instruction (288)

FLAG
CONDITION INVOLVED HEX OCTAL DECIMAL BINARY

Nonzero Z CO 300 192 11000000
Zero Z C8 310 200 11001000
Noncarry C DO 320 208 11010000
Carry C D8 330 216 11011000
Parity odd P/V EO 340 224 11100000
Parity even P/V E8 350 232 11101000
Sign + S FO 360 240 11110000
Sign - S F8 370 248 11111000

289. RETI

Return from interrupt

This return instruction returns program control to the main program following
an interrupt. It will cause the PC to be restored to the previous value. This in­
struction also serves to notify the interrupting device that the interrupt request
has been serviced. It will reset the IFF! and IFF2 flip-flops.

Code:

Hex.: ED 4D
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Oct.: 355 115

Dec.: 237 077

Bin.: 111 011 01 01 0011 01

Condition bits:

None affected.

290. RETN

Return from nonmaskable interrupt

This instruction is the same as an RET instruction, except that it is used at the
end of a subroutine that services a nonmaskable interrupt. The IFF2 flip-flop
contents are copied back into IFFl, which is now restored to its previous
condition.

Code:

Hex.: ED 45

Oct.: 355 105

Dec.: 237 069

Bin.: 111 011 01 01 0001 01

Condition bits:

None affected.

291. RL B

CCF +- 7-"+- 0;J

The contents of the B register are rotated left. The content of bit C/J is shifted
into the bit 1 position, the content of bit 1 into the bit 2 position, etc. The
content of bit 7 is shifted into the carry flag (C flag is the F register), and the
previous content of the carry flag is shifted into the bit C/J position.

Code:

Hex.: CB 10

Oct.: 313 020

Dec.: 203 016

Bin.: 11001011 00010000



274 THE 280 INSTRUCTION SET

Condition bits:

S SET if result is negative.

Z SET if result is zero.

H RESET

P/V SET for parity even.

N RESET

C Contains the previous data from bit 7 of register.

292. RL C

L CF +-7 +- 0:J

This instruction is the same as RL B, except that the C register is used instead of
the B register.

Code:

Hex.: CB 11

Oct.: 313 021

Dec.: 203 016

Bin. : 11 001 011 0001 0001

Condition bits:

See RLB.

293. RL 0

L CF ~-7 +- 0:J

This instruction is the same as RL B, except that the D register is used instead
of the B register.

Code:

Hex.: CB 12

Oct.: 313 022

Dec.: 203 018

Bin.: 11001011 00010010

Condition bits:

See RL B.
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294. Rl E

CCF ~-7 +-0~

This instruction is the same as RL B, except that the E register is used instead of
the B register.

Code:

Hex.: CB 13

Oct.: 313 023

Dec.: 203 019

Bin. : 11 001 011 0001 0011

Condition bits:

See RL B.

295. Rl H

L CF +-7 +- 0:J

This instruction is the same as the RL B instruction, except that the H register is
used instead of the B register.

Code:

Hex.: CB 14

Oct.: 313 024

Dec. : 203 020

Bin.: 11001011 00010100

Condition bits:

See RL B.

296. Rll

~+-7+-0:J

This instruction is the same as RL B, except that the L register is used instead
of the B register.

Code:

Hex.: CB 15
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Oct.: 313 025

Dec.: 203 021

Bin.: 1100101100010101

Condition bits:

See RLB.

297. RL A

L CF +-7 +- 0-:=1

This instruction is the same as RL B, except that the accumulator is used instead
of the B register.

Code:

Hex.: CB 17

Oct.: 313 027

Dec.: 203 023

Bin. : 11 001 011 0001 0111

Condition bits:

See RL B.

298. RL (HL)

L'CF+-7~

The contents of the memory location pointed to by the contents of the HL reg­
ister pair are rotated left. This instruction is otherwise the same as RL B.

Code:

Hex.: CB 16

Oct.: 313 026

Dec.: 203 022

Bin. : 11 001 011 0001 011 0

Condition bits:

See RLB.
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299. RL (IX +d)

L CF ~7 ~0:;J

This instruction causes the contents of a memory location pointed to by the
contents of the IX index register and displacement integer d to be rotated left.
This instruction is otherwise the same as the RL B instruction.

Code:

Hex.: DO CB d 16

Oct.: 335 313 d 026

Dec.: 221 203 d 022

Bin. : 11011101 11001011 d 00010110

Condition bits:

See RL B.

300. RL (IV +d)

L CF ~ 7 ~.- 0;]

This instruction is the same as RL (IX +d), except that the IY index register is
used, instead of the IX index register.

Code:

Hex.: FD CB d 16

Oct.: 375 313 d 026

Dec.: 253 203 022

Bin.: 1111110111001011 d 00010110

Condition bits:

See RL B.

301. RLCA

CFJ7;-0+-1

The contents of the accumulator are rotated left. Bit 0 is shifted to bit 1 posi­
tion, bit 1 is shifted to the bit 2 position, etc. Bit 7 is shifted to both the carry
flag (C flag in the F register), and the bit 0position.
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Code:

Hex.: 07

Oct.: 07

Dec.: 07

Bin.: 00000111

Condition bits:

Hand N are RESET; C contains the data from bit 7, while S, Z, and P/V are not
affected.

302. RlC (HL)

CF .J= 7~ 0+-1

This instruction is the same as RLCA, except that a memory location pointed to
by the contents of the HL register are used, instead of the accumulator.

Code:

Hex.: CB 06

Oct.: 313 006

Dec.: 203 006

Bin.: 00000110

Condition bits:

S SET if result is negative.

Z SET if result is zero.

H RESET

P/V SET for even parity.

N RESET

C Contains the data from bit 7.

303. RlC (IX + d)

CF.J= 7 ~0:J

This instruction is the same as RLCA, except that the contents of a memory
location pointed to by the contents of the IX index register and displacement
integer d are used instead of the accumulator.
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Code:

Hex.: DD CB d 06

Oct.: 335 313 d 006

Dec. : 221 203 d 006

Bin.: 11011101 11001011 d 00000110

Condition bits:

See RLC (HL).

304. RLC (IV +d)

CF +r7-~ 0+-1

This instruction is the same as RLCA, except that the contents of a memory
location pointed to by the contents of the IY index register and displacement
integer d are used instead of the accumulator.

Code:

Hex.: FD CB d 06

Oct.: 375 313 d 006

Dec.: 253 203 d 006

Bin. : 111111 01 11 001 011 d 0000011 0

Condition bits:

See RLC (HL).

305. RLC B

CF~+-0:J

This instruction is the same as RLCA, except that the B register is used instead
of the accumulator.

Code:

Hex.: CB 00

Oct.: 313 000

Dec.: 203 000

Bin.: 11001011 00000000



280 THE 280 INSTRUCTION SET

Condition bits:

See RLC A.

306. RLC C

CF 57:=- 0:=1
This instruction is the same as RLC A, except that the C register is used instead
of the accumulator.

Code:

Hex.: CB 01

Oct.: 313 001

Dec.: 203 001

Bin.: 11001011 00000001

Condition bits:

See RLC A.

307. RLC D

CF 57 ~0=l

This instruction is the same as RLC A, except that the D register is used instead
of the D register.

Code:

Hex.: CB 02

Oct.: 313 002

Dec. : 203 002

Bin.: 11001011 00000010

Condition bits:

See RLC A.

308. RLC E

CFJ7'~0+J
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This instruction is the same as RLC A, except that the E register is used instead
of the accumulator.

Code:

Hex.: CB 03

Oct.: 313 003

Dec. : 203 003

Bin.: 11001011 00000011

Condition bits:

See RLC A.

309. RlC H

CF J:: 7 -(- 0~

This instruction is the same as RLC A, except that the H register is used instead
of the accumulator.

Code:

Hex.: CB 04

Oct.: 313 004

Dec. : 203 004

Bin.: 11001011 00000100

Condition bits:

See RLC A.

310. RlC l

CF~7~

This instruction is the same as RLC A, except that the L register is used instead
of the accumulator.

Code:

Hex.: CB 05

Oct.: 313 005
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Dec.: 203 005

Bin.: 11001011 00000101

Condition bits:

See RLC A.

311. RLD

accumulator memory location (H L)

1. The contents of the lower-order four bits (B~-B7) of memory location
(HL) are copied into the high-order four bits of that location.

2. The previous contents of the high-order four bits of memory location
(HL) are copied into the lower-order four bits of the accumulator.

3. The previous contents of the low-order four bits of the accumulator
are copied into the low-order four bits of memory location (HL).

4. The high-order four bits of the accumulator are unaffected.

Code:

Hex.: ED 6F

Oct.: 355 157

Dec. : 237 111

Bin.: 11101101 01101111

Condition bits:

S SET if accumulator is negative after execution.

Z SET if accumulator is zero after execution.

H RESET

P/V SET if parity of accumulator after execution is even.

N RESET

C (unaffected)
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312. RR B

47-+0-+CF-1

This instruction causes the contents of the B register to rotate right. The con­
tents of bit 7 are shifted to bit 6, the contents of bit 6 are shifted to position bit
5, etc. The contents of bit (/J are shifted to carry flag (C flag in the P register).
The previous contents of the carry flag are shifted to the bit 7 position.

Code:

Hex.: CB 18

Oct.: 313 030

Dec.: 203 024

Bin. : 11 001 011 00011 000

Condition bits:

S SET if the result is negative.

Z SET if the result is zero.

H RESET

P/V SET for parity even.

N RESET

C Contains the previous data from bit 0.

313. RR C

L+7"-+ 0 -+ Cp:=J

This instruction is the same as RR B, except that the C register is used instead of
the B register.

Code:

Hex.: CB 19

Oct.: 313 031

Dec.: 203 025

Bin.: 1100101100011001

Condition bits:

See RR B.
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314. RR 0

c:-7~ 0~ CF-:::J

This instruction is the same as RR B, except that the D register is used instead of
the B register.

Code:

Hex.: CB 1A

Oct.: 313 032

Dec.: 203 026

Bin.: 1100101100011010

Condition bits:

See RR B.

315. RR E

47~0~CF-1

This instruction is the same as RR B, except that the E register is used instead
of the B register.

Code:

Hex.: CB 1B

Oct.: 313 033

Dec.: 203 027

Bin.: 11001011 00011011

Condition bits:

See RR B.

316. RR H

47~0~CF:w::J

This instruction is the same as the RR B instruction, except that the H register is
used instead of the B register.
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Code:

Hex.: CB 1C

Oct.: 313 034

Dec.: 203 028

Bin.: 11001011 00011100

Condition bits:

See RR B.

317. RR l

47-~0~CFo:J

This instruction is the same as the RR B instruction, except that the L register
is used instead of the B register.

Code:

Hex.: CB 10

Oct.: 313 035

Dec. : 203 029

Bin.: 11 001 011 00011111

Condition bits:

See RR B.

318. RR A

L+7~0~CF:J

This instruction is the same as the RR B instruction, except that the accumula­
tor is used instead of register B.

Code:

Hex.: CB 1F

Oct.: 313 037

Dec.: 203 031

Bin.: 11 001 011 00011111
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Condition bits:

See RR B.

319. RR (Hl)

[; 7 ---* 0 -* CF-:=J

This instruction is the same as RR B, except that the contents of a memory
location pointed to by the contents of the HL register pair are used instead of
register B.

Code:

Hex.: CB 1E

Oct.: 313 036

Dec. : 203 030

Bin. : 11 001 011 0001111 0

Condition bits:

See RR B.

320. RR (IX +d)

[; 7 -~ 0 ---* CF-=:J

This instruction is the same as RR B, except that the contents of a memory
location pointed to by the contents of the IX index register and displacement
integer d are used instead of the B register.

Code:

Hex.: DD CB d 1E

Oct.: 335 313 d 036

Dec. : 221 203 d 030

Bin. : 11 0111 01 11 001 011 d 0001111 0

Condition bits:

See RR B.
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321. RR (IV +d)

c: 7 -~ 0 -+ cF=J
This instruction is the same as RR B, except that the contents of the memory
location pointed to by the contents of the IY index register and displacement
integer d are used instead of the B register.

Code:

Hex.: 1E CB d 1E

Oct.: 036 313 d 036

Dec.: 030 203 d 030

Bin. : 0001111a 11 001011 d 0001111 a

Condition bits:

See RR B.

322. RRCA

47 -+0-4 CF

This instruction rotates the contents of the register right. The data in bit 7 are
shifted to bit 6 position, the data in bit 6 are shifted to the bit 5 position, etc.
The data in the bit f/J position are shifted to both the carry flag (C flag in the F
register) and the bit 7 position.

Code:

Hex.: OF

Oct.: 017

Dec.: 015

Bin. : 00001111

Condition bits:

Hand N are RESET; S, Z, and P/V are unaffected, and C contains the data from
bit f/J.

323. RRCB

C:7-+0L CF
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This instruction is the same as RRCA, except that the B register is used instead
of the accumulator.

Code:

Hex.: CB 08

Oct.: 313 010

Dec. : 203 008

Bin.: 11001011 00001000

Condition bits:

S SET if result is negative.

Z SET if result is zero.

H RESET

P/V SET for parity even.

N RESET

C Contains data from bit 0 of the register.

324. RRCC

47-+0J-~CF

This instruction is the same as RRCA, except that the C register is used instead
of the accumulator.

Code:

Hex.: CB 09

Oct.: 313 011

Dec.: 203 009

Bin.: 11001011 00001001

Condition bits:

See RRCB.

325. RRCD

C:7-+0=4CF

This instruction is the same as RRCA, except that the D register is used instead
of the accumulator.
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C'ode:

Hex.: CB OA

Oct.: 313 012

Dec.: 203 010

Bin.: 11001011 00001010

Condition bits:

See RRCB.

326. RRCE

L+7~0=4CF

This instruction is the same as RRCA, except that the E register is used instead
of the accumulator.

Code:

Hex.: CB OB

Oct.: 313 013

Dec.: 203 011

Bin.: 11001011 00001011

Condition bits:

See RRCB.

327. RRCH

47 --? 0=4 CF

This instruction is the same as RRCA, except that the H register is used instead
of the accumulator.

Code:

Hex.: CB OC

Oct.: 313 014

Dec.: 203 012

Bin.: 11001011 00001100

Condition bits:

See RRCB.
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328. RRCL

47~0=4CF

This instruction is the same as RRCA, except that the L register is used instead
of the accumulator.

Code:

Hex.: CB 00

Oct.: 313 015

Dec.: 203 013

Bin.: 11001011 00001101

Condition bits:

See RRCB.

329. RRC (HL)

47~0=4CF

This instruction is the same as RRCA, except that the contents of a memory
location pointed to by the contents of the HL register pair are used instead of
the accumulator.

Code:

Hex.: CB OE

Oct.: 313 016

Dec.: 203 014

Bin.: 1100101100001110

Condition bits:

See RRCB.

330. RRC (IX +d)

47~CF

This instruction is the same as RRCA, except that the contents of memory loca­
tion pointed to by the contents of the IX index register and displacement integer
d are used instead of the accumulator.
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Code:

Hex.: DD CB d OE

Oct.: 335 313 d 016

Dec.: 221 203 d 014

Bin. : 11 0111 01 11 001 011 d 0000111 0

Condition bits:

See RRCB.

331. RRC (IV +d)

4 7 -* 0--::1; CF

This instruction is the same as RRCA, except that the contents of a memory
location pointed to by the contents of the IY index register, and a displacement
integer d, are used instead of the accumulator.

Code:

Hex.: FD CB d OE

Oct.: 375 313 d 016

Dec.: 253 203 d 014

Bin.: 11111101 11001011 d 00001110

Condition bits:

See RRCB.

332. RRD

Z~~i~1§~
accumulator memory location (H L)

1. The low-order four bits of the memory location pointed to by the HL
register pair are copied into the low-order four bits of the accumulator.

2. The previous contents of the low-order four bits of the accumulator
are copied into memory location (HL).
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3. The previous contents of the high-order four bits of location (HL) are
copied into the low-order four bits of (HL).

4. The high-order four bits of the accumulator are not affected by this
instruction.

Code:

Hex.: ED 67

Oct.: 355 147

Dec. : 237 103

Bin.: 11101101 01100111

Condition bits:

S SET if result in accumulator after execution is negative.

Z SET if result in accumulator is zero after execution.

H RESET

P/V SET if parity of result in accumulator after execution is even.

N RESET

C (unaffected)

333. RST p

(SP-1) +-HPC, (SP 2) +-(LPC), HPC+---O, LPC+-P

1. The current contents of the program counter PC are pushed onto the
top of an external memory stack.

2. A page ~ location given by operand p is loaded into PC.
3. Execution of the program begins with the instruction at the location

now pointed to by the PC.
4. Since all addresses used in this instruction are in page ~, the high-order

byte of the PC is loaded with ~~ (hex), while operand T from the table
below is loaded into the low-order byte of the PC.
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p (HEX) T HEX. OCT. DEC. BIN

10 010 07 327 215 11010111
18 011 OF 337 223 11011111
20 100 E7 347 231 11100111
28 101 EF 357 239 11101111

30 110 F7 367 247 11110111

38 111 FF 377 255 11111111

334. SBC A, B

A-(-A-B-CF

The contents of the B register and the carry flag (C flag in the F register) are
subtracted from the contents of the accumulator. The result is stored in the
accumulator.

Code:

Hex.: 98

Oct.: 230

Dec.: 152

Bin. : 10011 000

Condition bits:

S SET if the result is negative.

Z SET if the result is zero.

H SET if there is no borrow from bit 4.

P/V SET if overflow occurs.

N SET

C SET if no borrow.

335. SBe A, e

A +-_. A- C- CF

This instruction is the same as SBC A, B, except that the C register is used in­
stead of the B register.

Code:

Hex.: 99

Oct.: 231
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Dec.: 153

Bin.: 10011001

Condition bits:

See SBe A, B.

336. SBe A,D

A~A-D-'CF

This instruction is the same as SBe A, D, except that the D register is used in­
stead of the B register.

Code:

Hex.: 9A

Oct.: 232

Dec.: 154

Bin.: 10011010

Condition bits:

See SHe A, H.

337. SBe A, E

A~A- E-CF

This instruction is the same as SBe A, D, except that the D register is used in­
stead of the B register.

Code:

Hex.: 9B

Oct.: 233

Dec.: 155

Bin. : 10011 011

Condition bits:

See SHe A, B.
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338. SBe A, H

A +-A- H- CF

This instruction is the same as SBe A, B, except that the H register is used
instead of the B register.

C'ode:

Hex.: 9C

Oct.: 234

Dec.: 156

Bin.: 10011100

Condition bits:

See SBC A, B.

339. SBe A, l

A+-A-l-CF

This instruction is the same as SBe A, B, except that the L register is used in­
stead of the B register.

Code:

Hex.: 9D

Oct.: 235

Dec.: 157

Bin. : 100111 01

Condition bits:

See SBC A, B.

340. SBe A, A

A+-A-A-CF

This instruction is the same as SBe A, B, except that the accumulator is used
instead of the B register.

Code:

Hex.: 9F
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Oct.: 237

Dec.: 159

Bin.: 10011111

Condition bits:

See SBC A, B.

341. SBe A, n

A +-A- n-CF

The one-byte integer n and the carry flag are subtracted from the contents of the
accumulator. The result is stored in the accumulator.

Code:

Hex.: DE n

Oct.: 336 n

Dec.: 222 n

Bin.: 11011110 n

Condition bits:

See SBC A, B.

342. SBe A, (H L)

A+- A- (HL)- CF

The contents of memory location (HL) and the carry flag are subtracted from
the accumulator. The result is stored in the accumulator.

Code:

Hex.: 9E

Oct.: 236

Dec.: 158

Bin.: 10011110

Condition bits:

See SBC A, B.
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343. SBe A, (IX +d)

A+- A- (IX +d)- d

The contents of a memory location pointed to by the contents of the IX index
register and displacement integer d are subtracted from the contents of the ac­
cumulator. The result is stored in the accumulator.

Code:

Hex.: DD 9E d

Oct.: 335 236 d

Dec.: 158 221 d

Bin.: 110111 01 1001111 0 d

Condition bits:

See SBC A, B.

344. SBe A, (IV +d)

A+- A- (IV +d)- CF

This is the same as SBC A, (IX +d), except that the IY index register is used in­
stead of the IX index register.

Code:

Hex.: FD 9E d

Oct.: 375 236 d

Dec.: 253 158 d

Bin. : 111111 01 1001111 0

Condition bits:

See SBC A, B.

345. SBe HL, Be

HL +- HL- BC- CF

The contents of the Be register pair and the carry flag are subtracted from the
contents of the HL register pair. The result is stored in the HL register pair.
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Code:

Hex.: ED 42

Oct. : 355 102

Dec. : 237 066

Bin. : 111 011 01 01 00001 0

Condition bits:

S SET if result is negative.

Z SET if result is zero.

H SET if no borrow from bit 12.

P/V SET if overflow occurs.

N SET

C SET if no borrow.

346. SBC HL, DE

HL~ HL- DE- CF

The contents of the DE register pair and the carry flag are subtracted from the
contents of the HL register pair. The result is stored in the HL register pair.

Code:

Hex.: ED 52

Oct. : 355 122

Dec.: 237 082

Bin.: 11101101 01010010

Condition bits:

See SBC HL, BC.

347. SBC HL, HL

HL~ HL- HL-CF

The contents of the HL register pair and the carry flag are subtracted from the
contents of the HL register pair. The result is stored in the HL register pair.

Code:

Hex.: ED 62
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Oct.: 355 142

Dec. : 237 098

Bin.: 1110110101100010

Condition bits:

See SBC HL, BC.

348. SSC Hl, SP

Hl +- Hl- SP-CF

The contents of the stack pointer (SP) and the carry flag are subtracted from the
contents of the HL register pair. The result is stored in the HL register pair.

Code:

Hex.: ED 72

Oct. : 355 162

Dec.: 237 114

Bin.: 11101101 01110010

Condition bits:

See SBC A, B.

349. SCF

CF +-1

The carry flag (C flag in the F register) is SET to 1.

Code:

Hex.: 37

Oct.: 067

Dec.: 055

Bin. : 0011 0111

Condition bits:

S, Z and P/V are unaffected; Hand N are RESET; C is SET.
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350. SET b, (H L)

(HL)b +-1

Bit b (0-7) in memory location pointed to by the contents of the HL register
pair is set to 1. This is a two-byte instruction in which byte 2 is selected from
the table according to which bit is to be set.

Code:

Hex.: CB (see table)

Oct.: 313 (see table)

Dec.: 203 (see table)

Bin.: 11001011 (see table)

Table for byte 2 of the instruction:

BIT

o
1
2
3
4
5
6
7

HEX.

C6
CE
D6
DE
E6
EE
F6
FE

OCTAL

306
316
326
336
346
356
366
376

DECIMAL

198
206
214
222
230
238
246
254

BINARY

11000110
11001110
11010110
11011110
11100110
11101110
11110110
11111110

Condition bits:

None affected.

351. SET b, (IX +d)

(IX +d)b +- 1

This is the same as the SET b, (HL) instruction, except that the memory loca­
tion pointed to by the IX index register and displacement integer d is used in­
stead of register pair HL.

Code:

Hex.: DD CB d [see table in SET b, (HL)]

Oct.: 335 313 d [see table in SET b, (H L)]

Dec.: 221 203 d [see table in SET b, (HL)]

Bin.: 1101110111001011 d [seetableinSETb,(HL)]
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Condition bits:

None affected.

352. SET b, (IV +d)

(IV +d)b +-1

This instruction is the same as SET b, (HL), except that the memory location
pointed to by the IY index register, and displacement integer d, are used instead
of the HL register pair. This is a four-byte instruction, and byte 4 is selected
from the table in SET b, (HL).

Code:

Hex.: FD CB d (table)

Oct.: 375 313 d (table)

Dec.: 253 203 d (table)

Bin.: 11111101 11001011 d (table)

Condition bits:

None affected.

353. SET b, r

rb +- 1

The indicated bit b in the selected register r is set to 1. This is a two-byte in­
struction, in which the second byte is made up by using the values for band r
obtained from the tables below.

Code:

Hex.: CB (table)

Oct.: 313 (table)

Dec.: 203 (table)

Bin.: 11001011 (table)

Table for SET b, r

(format: 1 1 I~ 2~I::-.!~)
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BIT I b

o 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Condition bits:

None affected.

354. SLA B

CF +- 7 +- 0 +- 0

REGISTER I
B 000
C 001
D 010
E 011
H 100
L 101
A 111

1. The content of bit f/J is RESET to zero.
2. The previous contents of bit f/J are copied into the bit 1 position. The

previous contents of bit 1 are copied into the bit 2 position, etc.
3. The content of the bit 7 position are copied into the carry flag (i.e., C

flag in the F register).

Code:

Hex.: 20

Oct.: 040

Dec.: 032

Bin.: 00100000

Condition bits:

S SET if result is negative.

Z SET if result is zero.

Hand N RESET

PIV SET for even parity.

C Contains data from bit 7.

355. SlA C

CF+-7~-0+-0
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This instruction is the same as SLA B, except that the C register is used instead
of the B register.

Code:

Hex.: 21

Oct.: 041

Dec.: 033

Bin.: 00100001

Condition bits:

See SLA B.

356. SLA D

CF +-7~0+-0

This instruction is the same as SLA B, except that the D register is used instead
of the B register.

Code:

Hex.: 22

Oct.: 042

Dec.: 034

Bin.: 00100010

Condition bits:

See SLA B.

357. SlA E

CF +- 7 +- 0 +- 0

This instruction is the same as SLA B, except that the E register is used instead
of the B register.

Code:

Hex.: 23

Oct.: 043

Dec.: 035

Bin.: 00100011
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Condition bits:

See SLA B.

358. SLA H

CF~7~0~0

This instruction is the same as SLA B, except that the H register is used instead
of the B register.

Code:

Hex.: 24

Oct.: 044

Dec.: 036

Bin.: 00100100

Condition bits:

See SLA B.

359. SLA L

CF ~7 ~-O~O

This instruction is the same as SLA B, except that the L register is used instead
of the B register.

Code:

Hex.: 25

Oct.: 045

Dec.: 037

Bin. : 001 001 01

Condition bits:

See SLA B.

360. SLA A

CF~7~0~0

This instruction is the same as SLA A, except that the accumulator is used in­
stead of the B register.
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Code:

Hex.: 27

Oct.: 047

Dec.: 039

Bin.: 00100111

Condition bits:

See SLA B.

361. SLA (HL)

CF +- 7 +- 0 +- 0

This instruction is the same as SLA B, except that the contents of a memory
location pointed to by the HL register pair is used instead of the B register.

Code:

Hex.: CB 26

Oct.: 313 046

Dec. : 203 038

Bin. : 11 001 011 001 0011 0

Condition bits:

See SLA B.

362. SLA (IX +d)

CF +- 7 +---- 0 +- 0

This instruction is the same as SLA B, except that the contents of a memory
location pointed to by the contents of the IX index register and displacement
integer d are used instead of the B register.

Code:

Hex.: DO CB d 26

Oct.: 335 313 d 046

Dec.: 221 203 d 038

Bin. : 11 0111 01 11 001011 d 001 0011 0
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Condition bits:

See SLA B.

363. SlA (IV +d)

CF ~- 7 ~- 0 +- 0

This instruction is the same as SLA B, except that the contents of the memory
location pointed to by the contents of the IY index register, and displacement
integer d are used instead of the B register.

Code:

Hex.: FD CB d 26

Oct.: 375 313 d 046

Dec.: 253 203 d 038

Bin. : 111111 01 11 001 011 d 001 0011 0

Condition bits:

See SLA B.

364. SRA B

[]~O~CF

This is an arithmetic shift right instruction. The contents of bit 7 are copied into
the bit 6 position, and the bit 6 data are shifted into the bit 5 position, etc. The
contents of bit C/J are copied into the carry flag. The original content of bit 7
remains unchanged.

Code:

Hex.: CB 28

Oct.: 313 050

Dec. : 203 040

Bin.: 11011011 00101000

Condition bits:

S SET if result is negative.

Z SET if result is zero.
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H RESET

P/V SET for even parity.

N RESET

C Data from bit 0.

365. SRA C

[]~0~CF

This instruction is the same as the SRA B instruction, except that the C register
is used instead of the B register.

Code:

Hex.: CB 29

Oct. : 313 051

Dec.: 203 041

Bin.: 11011011 00101001

Condition bits:

See SRA B.

366. SRA D

[]~0~CF

This instruction is the same as SRA B, except that the D register is used instead
of the B register.

Code:

Hex.: CB 2A

Oct.: 313 052

Dec. : 203 042

Bin.: 11 011 011 001 01 01 0

Condition bits:

See SRA B.
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367. SRA E

[]~O~CF

This instruction is the same as SRA B, except that the E register is used instead
of the B register.

Code:

Hex.: CB 2B

Oct.: 313 053

Dec.: 203 043

Bin.: 11 011 011 001 01 011

Condition bits:

See SRA B.

368. SRA H

[]~0·~CF

This instruction is the same as SRA B, except that the H register is used instead
of the B register.

Code:

Hex.: CB 2C

Oct.: 313 054

Dec.: 203 044

Bin. : 11 011 011 001 011 00

Condition bits:

See SRA B.

369. SRA L

[]~0~CF

This instruction is the same as SRA B, except that the L register is used instead
of the B register.
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Code:

Hex.: CB 2D

Oct.: 313 055

Dec. : 203 045

Bin.: 11 011 011 001 011 01

Condition bits:

See SRA B.

370. SRA A

[]~0~CF

This instruction is the same as SRA B, except that the accumulator is used in­
stead of register B.

Code:

Hex.: CB 2F

Oct.: 313 057

Dec. : 203 047

Bin.: 11 011 011 001 01111

Condition bits:

See SRA B.

371. SRA (Hl)

[]~0~CF

This instruction is the same as SRA B, except that the content of a memory
location pointed to by the contents of the HL register pair are used instead of
register B.

Code:

Hex.: CB 2E

Oct.: 313 056

Dec.: 203 046

Bin. : 11 001 011 001 0111 0
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Condition bits:

See SRA B.

372. SRA (IX +d)

[] -+0-+CF

This instruction is the same as SRA B, except that the contents of memory
location (IX +d) are used instead of register B.

Code:

Hex.: DD CB d 2E

Oct.: 335 313 d 056

Dec.: 221 203 d 046

Condition bits:

See SRA B.

373. SRA (IV +d)

[] -+0-+CF

This instruction is the same as SRA B, except that the contents of memory loca­
tion (IY +d) are used instead of register B.

Code:

Hex.: FD CB d 2E

Oct.: 375 313 d 056

Dec.: 253 203 d 046

Bin.: 11111101 11001011 d 00101110

Condition bits:

See SRA B.

374. SRL B

o-+ 7 -+ 0 -+ CF
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The contents of the B register are shifted right. Bit 7 is shifted into the bit 6
position, bit 6 is shifted into the bit 5 position, etc. Bit (/J is shifted into the
carry flag, and bit 7 is RESET to (/J.

Code:

Hex.: CB 38

Oct.: 313 070

Dec.: 203 056

Bin. : 11 001 011 00111 000

Condition bits:

S SET if result is negative.

Z SET if result is zero.

H RESET

P/V SET for even parity.

N RESET

C Data from bit Q.I of register.

375. SRl C

O~ 7 ~O--7CF

This instruction is the same as SRL B, except that the C register is used in place
of the B register.

Code:

Hex.: CB 39

Oct.: 313 071

Dec.: 203 057

B in. : 11 001 011 00111 001

Condition bits:

See SRL B.

376. SRl D

0~7~0~CF
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This instruction is the same as SRL B, except that the D register is used instead
of the B register.

Code:

Hex.: CB 3A

Oct.: 313 072

Dec.: 203 058

Bin.: 11001011 00111010

Condition bits:

See SRL B.

377. SRl E

0--';>0 7 -~ 0 --';>0 CF

This instruction is the same as SRL B, except that the E register is used instead
of the B register.

Code:

Hex.: CB 3B

Oct.: 313 073

Dec.: 203 059

Bin. : 11 001 011 00111011

Condition bits:

See SRL B.

378. SRl H

0--';>07 --';>0 0 --';>0 CF

This instruction is the same as SRL B, except that the H register is used instead
of the B register.

Code:

Hex.: CB 3C

Oct.: 313 074

Dec.: 203 060

Bin. : 11 001 011 001111 00



THE Z80 INSTRUCTION SET 313

Condition bits:

See SRL B.

379. SRL L

o~ 7·-+ 0~ CF

This instruction is the same as SRL B, except that the L register is used instead
of the B register.

Code:

Hex.: CB 3D

Oct.: 313 075

Dec. : 203 061

Bin. : 11 00 10 11 001111 01

Condition bits:

See SRL B.

380. SRL A

0~7~0~CF

This instruction is the same as SRL B, except that the accumulator is used in­
stead of the B register.

Code:

Hex.: CB 3F

Oct.: 313 077

Dec. : 203 063

Bin.: 11 001 011 00111111

Condition bits:

See SRL B.

381. SRL (HL)

0~7~0-+CF

This instruction is the same as SRL B, except that the contents of memory
location (HL) are used instead of register B.
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Code:

Hex.: CB 3E

Oct.: 313 076

Dec.: 203 062

Bin.: 11001011 00111110

Condition bits:

See SRL B.

382. SRl (IX +d)

0~7~0~CF

This instruction is the same as SRL B, except that a memory location pointed
to by the IX index register and displacement integer d are used instead of
register B.

Code:

Hex.: DO CB d 3E

Oct.: 335 313 d 076

Dec.: 221 203 d 062

Bin.: 11011101 11001011 d 00111110

Condition bits:

See SRL B.

383. SRl (IV +d)

0~7~0~CF

This instruction is the same as SRL B, except that a memory location pointed
to by the IY index register and displacement integer d are used instead of
register B.

Code:

Hex.: FD CB d 3E

Oct.: 375 313 d 076

Dec.: 253 203 d 062

Bin.: 1111110111001011 d 00111110
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Condition bits:

See SRL B.

384. SUB B

A+-A-B

The contents of register B are subtracted from the content of the accumulator.

Code:

Hex.: 90

Oct.: 220

Dec.: 144

Bin.: 10010000

Condition bits:

S SET if result is negative.

Z SET if result is zero.

H SET if no borrow from bit 4.

P/V SET for overflow.

N SET

C SET if no borrow.

385. SUB C

A+-A-C

The contents of the C register are subtracted from the contents of the accumu­
lator. The result is stored in the accumulator.

Code:

Hex.: 91

Oct.: 221

Dec.: 145

Bin.: 10010001

Condition bits:

See SUB B.



316 THE 280 INSTRUCTION SET

386. SUB 0

A+-A-D

The contents of the D register are subtracted from the contents of the accumu­
lator. The result is stored in the accumulator.

Code:

Hex.: 92

Oct.: 222

Dec.: 146

Bin. : 1001 001 0

Condition bits:

See SUB B.

387. SUB E

A+-A- E

The contents of the E register are subtracted from the contents of the accumu­
lator. The result is stored in the accumulator.

Code:

Hex.: 93

Oct.: 223

Dec.: 147

Bin.: 10010011

Condition bits:

See SUB B.

388. SUB H

A+-A-H

The contents of the H register are subtracted from the contents of the accumu­
lator. The result is stored in the accumulator.

Code:

Hex.: 94
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Oct.: 224

Dec.: 148

Bin. : 1001 01 00

Condition bits:

See SUB B.

389. SUB l

A+-A-l

The contents of the L register are subtracted from the contents of the accumu­
lator. The result is stored in the accumulator.

Code:

Hex.: 95

Oct.: 225

Dec.: 149

Bin.: 10010101

Condition bits:

See SUB B.

390. SUB A

A+-A-A

The contents of the accumulator are subtracted from the contents of the accu­
mulator. The result is stored in the accumulator.

Code:

Hex.: 97

Oct.: 227

Dec.: 151

Bin. : 1001 0111

Condition bits:

See SUB B.
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391. SUB n

A+-A-n

The one-byte integer n is subtracted from the contents of the accumulator. The
result is stored in the accumulator.

Code:

Hex.: D6 n

Oct.: 326 n

Dec.: 214 n

Bin.: 11010110 n

Condition bits:

See SUB B.

392. SUB (HL)

A+-A-(HL)

The contents of memory location (HL) are subtracted from the accumulator.
The result is stored in the accumulator.

Code:

Hex.: 96

Oct.: 226

Dec.: 150

Bin.: 10010110

Condition bits:

See SUB B.

393. SUB (IX +d)

A+- A- (IX +d)

The contents of a memory location pointed to by the contents of the IX index
register and displacement integer d are subtracted from the contents of the ac­
cumulator. The result is stored in the accumulator.
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Code:

Hex.: DD 96 d

Oct.: 335 226 d

Dec.: 221 150 d

Bin. : 11 0111 01 1001 011 0 d

Condition bits:

See SUB B.

394. SUB (IV +d)

A of- A- (IV +d)

The contents of a memory location pointed to by the contents of the IY index
register and the displacement integer d are subtracted from the contents of the
accumulator. The result is stored in the accumulator.

Code:

Hex.: FD 96 d

Oct. : 375 226 d

Dec.: 253 150 d

Bin. : 111111 01 1001 011 0 d

Condition bits:

See SUB B.

395. XOR B

Aof-AEeB

This instruction performs a bit-by-bit logical exclusive-OR operation between
the contents of the accumulator and the contents of register B. The result is
stored in the accumulator.

Code:

Hex.: A8

Oct.: 250

Dec.: 168

Bin.: 10101000
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Condition bits:

S SET if result is negative.

Z SET if result is zero.

H SET

P/V SET for even parity.

N RESET

C RESET

396. XOR C

A+--AtfJC

This instruction performs a bit-by-bit logical exclusive OR operation between
the contents of the accumulator and the contents of the C register.

Code:

Hex.: A9

Oct.: 251

Dec.: 169

Bin.: 10101001

Condition bits:

See XORB.

397. XOR D

A+-AtfJD

This instruction performs a bit-by-bit logical exclusive-OR operation between
the contents of the accumulator and the contents of the D register.

Code:

Hex.: AA

Oct.: 252

Dec.: 170

Bin.: 10101010

Condition bits:

See XORB.
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398. XOR E

A+-AE9E

This instruction performs a bit-by-bit logical exclusive-OR operation between
the contents of the accumulator and the contents of the E register.

Code:

Hex.: AB

Oct.: 253

Dec.: 171

Bin.: 10101011

Condition bits:

See XOR B.

399. XOR H

A+-AE9H

This instruction performs a bit-by-bit logical exclusive-OR operation between
the contents of the accumulator and the contents of the H register.

Code:

Hex.: AC

Oct.: 254

Dec.: 172

Bin.: 10101100

Condition bits:

See XOR B.

400. XOR L

A+-AE9L

This instruction performs a bit-by-bit logical exclusive-OR operation between
the contents of the accumulator and the contents of the L register.

Code:

Hex.: AD
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Oct.: 255

Dec.: 173

Bin.: 10101101

Condition bits:

See XOR B.

401. XOR A

A+-AtBA

This operation performs a bit-by-bit logical exclusive-OR operation between the
contents of the accumulator and the contents of the accumulator.

Code:

Hex.: AF

Oct.: 257

Dec.: 175

Bin.: 10101111

Condition bits:

See XOR B.

402. XOR n

A~-AtBn

This instruction performs a bit-by-bit logical exclusive-OR operation between
the contents of the accumulator and one-byte integer n.

Code:

Hex.: EE n

Oct.: 356 n

Dec.: 238 n

Bin.: 11101110 n

Condition bits:

See XOR B.
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403. XOR (HL)

A~AEe(HL)

This instruction performs a bit-by-bit logical exclusive-OR operation between
the contents of the accumulator and the contents of a memory location pointed
to by the contents of the HL register pair.

Code:

Hex.: AE

Oct.: 256

Dec.: 174

Bin.: 10101110

Condition bits:

See XORB.

404. XOR (IX +d)

A~ A Ee (IX +d)

This instruction performs a bit-by-bit logical exclusive-OR operation between
the contents of the accumulator and the contents of a memory location pointed
to by the IX index register, and a displacement integer d.

Code:

Hex.: DD AE d

Oct.: 335 256 d

Bin.: 11011101 10101110 d

Dec.: 221 174 d

Condition bits:

See XOR B.

405. XOR (IV +d)

A +-- A Ee (IY +d)

This instruction performs a bit-by-bit logical exclusive-OR operation between
the contents of the accumulator and the contents of a memory location pointed
to by the contents of the IY index register and a displacement integer d.
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Code:

Hex.: FD AE d

Oct. : 375 256 d

Dec.: 253 174 d

Bin.: 11111101 10101110 d

Condition bits:

SeeXORB.
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