Go to the first, previous, next, last section, table of contents.
In a directory containing source that gets built into a program (as
opposed to a library), the `PROGRAMS' primary is used. Programs
can be installed in bindir
, sbindir
, libexecdir
,
pkglibdir
, or not at all (`noinst'). They can also be built
only for make check
, in which case the prefix is `check'.
For instance:
bin_PROGRAMS = hello
In this simple case, the resulting `Makefile.in' will contain code
to generate a program named hello
.
Associated with each program are several assisting variables which are named after the program. These variables are all optional, and have reasonable defaults. Each variable, its use, and default is spelled out below; we use the "hello" example throughout.
The variable hello_SOURCES
is used to specify which source files
get built into an executable:
hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h system.h
This causes each mentioned `.c' file to be compiled into the corresponding `.o'. Then all are linked to produce `hello'.
If `hello_SOURCES' is not specified, then it defaults to the single file `hello.c'; that is, the default is to compile a single C file whose base name is the name of the program itself. (This is a terrible default but we are stuck with it for historical reasons.)
Multiple programs can be built in a single directory. Multiple programs can share a single source file, which must be listed in each `_SOURCES' definition.
Header files listed in a `_SOURCES' definition will be included in the distribution but otherwise ignored. In case it isn't obvious, you should not include the header file generated by `configure' in a `_SOURCES' variable; this file should not be distributed. Lex (`.l') and Yacc (`.y') files can also be listed; see section Yacc and Lex support.
You can't put a configure substitution (e.g., `@FOO@') into a `_SOURCES' variable. The reason for this is a bit hard to explain, but suffice to say that it simply won't work. Automake will give an error if you try to do this.
Automake must know all the source files that could possibly go into a
program, even if not all the files are built in every circumstance.
Any files which are only conditionally built should be listed in the
appropriate `EXTRA_' variable. For instance, if
`hello-linux.c' were conditionally included in hello
, the
`Makefile.am' would contain:
EXTRA_hello_SOURCES = hello-linux.c
In this case, `hello-linux.o' would be added, via a
`configure' substitution, to hello_LDADD
in order to cause
it to be built and linked in.
An often simpler way to compile source files conditionally is to use Automake conditionals. For instance, you could use this construct to conditionally use `hello-linux.c' or `hello-generic.c' as the basis for your program `hello':
if LINUX hello_SOURCES = hello-linux.c else hello_SOURCES = hello-generic.c endif
When using conditionals like this you don't need to use the `EXTRA_' variable, because Automake will examine the contents of each variable to construct the complete list of source files.
Sometimes it is useful to determine the programs that are to be built at
configure time. For instance, GNU cpio
only builds mt
and
rmt
under special circumstances.
In this case, you must notify Automake of all the programs that can
possibly be built, but at the same time cause the generated
`Makefile.in' to use the programs specified by configure
.
This is done by having configure
substitute values into each
`_PROGRAMS' definition, while listing all optionally built programs
in EXTRA_PROGRAMS
.
Of course you can use Automake conditionals to determine the programs to be built.
If you need to link against libraries that are not found by
configure
, you can use LDADD
to do so. This variable
actually can be used to add any options to the linker command line.
Sometimes, multiple programs are built in one directory but do not share
the same link-time requirements. In this case, you can use the
`prog_LDADD' variable (where prog is the name of the
program as it appears in some `_PROGRAMS' variable, and usually
written in lowercase) to override the global LDADD
. If this
variable exists for a given program, then that program is not linked
using LDADD
.
For instance, in GNU cpio, pax
, cpio
and mt
are
linked against the library `libcpio.a'. However, rmt
is
built in the same directory, and has no such link requirement. Also,
mt
and rmt
are only built on certain architectures. Here
is what cpio's `src/Makefile.am' looks like (abridged):
bin_PROGRAMS = cpio pax @MT@ libexec_PROGRAMS = @RMT@ EXTRA_PROGRAMS = mt rmt LDADD = ../lib/libcpio.a @INTLLIBS@ rmt_LDADD = cpio_SOURCES = ... pax_SOURCES = ... mt_SOURCES = ... rmt_SOURCES = ...
`prog_LDADD' is inappropriate for passing program-specific linker flags (except for `-l', `-L', `-dlopen' and `-dlpreopen'). So, use the `prog_LDFLAGS' variable for this purpose.
It is also occasionally useful to have a program depend on some other target which is not actually part of that program. This can be done using the `prog_DEPENDENCIES' variable. Each program depends on the contents of such a variable, but no further interpretation is done.
If `prog_DEPENDENCIES' is not supplied, it is computed by Automake. The automatically-assigned value is the contents of `prog_LDADD', with most configure substitutions, `-l', `-L', `-dlopen' and `-dlpreopen' options removed. The configure substitutions that are left in are only `@LIBOBJS@' and `@ALLOCA@'; these are left because it is known that they will not cause an invalid value for `prog_DEPENDENCIES' to be generated.
Go to the first, previous, next, last section, table of contents.