All of BFD lives in one directory.
Description
BFD supports a number of different flavours of a.out format,
though the major differences are only the sizes of the
structures on disk, and the shape of the relocation
information.
The support is split into a basic support file `aoutx.h' and other files which derive functions from the base. One derivation file is `aoutf1.h' (for a.out flavour 1), and adds to the basic a.out functions support for sun3, sun4, 386 and 29k a.out files, to create a target jump vector for a specific target.
This information is further split out into more specific files for each machine, including `sunos.c' for sun3 and sun4, `newsos3.c' for the Sony NEWS, and `demo64.c' for a demonstration of a 64 bit a.out format.
The base file `aoutx.h' defines general mechanisms for
reading and writing records to and from disk and various
other methods which BFD requires. It is included by
`aout32.c' and `aout64.c' to form the names
aout_32_swap_exec_header_in
, aout_64_swap_exec_header_in
, etc.
As an example, this is what goes on to make the back end for a sun4, from `aout32.c':
#define ARCH_SIZE 32 #include "aoutx.h"
Which exports names:
... aout_32_canonicalize_reloc aout_32_find_nearest_line aout_32_get_lineno aout_32_get_reloc_upper_bound ...
from `sunos.c':
#define TARGET_NAME "a.out-sunos-big" #define VECNAME sunos_big_vec #include "aoutf1.h"
requires all the names from `aout32.c', and produces the jump vector
sunos_big_vec
The file `host-aout.c' is a special case. It is for a large set of hosts that use "more or less standard" a.out files, and for which cross-debugging is not interesting. It uses the standard 32-bit a.out support routines, but determines the file offsets and addresses of the text, data, and BSS sections, the machine architecture and machine type, and the entry point address, in a host-dependent manner. Once these values have been determined, generic code is used to handle the object file.
When porting it to run on a new system, you must supply:
HOST_PAGE_SIZE HOST_SEGMENT_SIZE HOST_MACHINE_ARCH (optional) HOST_MACHINE_MACHINE (optional) HOST_TEXT_START_ADDR HOST_STACK_END_ADDR
in the file `../include/sys/h-XXX.h' (for your host). These values, plus the structures and macros defined in `a.out.h' on your host system, will produce a BFD target that will access ordinary a.out files on your host. To configure a new machine to use `host-aout.c', specify:
TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec TDEPFILES= host-aout.o trad-core.o
in the `config/XXX.mt' file, and modify `configure.in'
to use the
`XXX.mt' file (by setting "bfd_target=XXX
") when your
configuration is selected.
Description
The file `aoutx.h' provides for both the standard
and extended forms of a.out relocation records.
The standard records contain only an address, a symbol index, and a type field. The extended records (used on 29ks and sparcs) also have a full integer for an addend.
Description
`aoutx.h' exports several routines for accessing the
contents of an a.out file, which are gathered and exported in
turn by various format specific files (eg sunos.c).
aout_size_swap_exec_header_in
Synopsis
void aout_size_swap_exec_header_in, (bfd *abfd, struct external_exec *raw_bytes, struct internal_exec *execp);
Description
Swap the information in an executable header raw_bytes taken
from a raw byte stream memory image into the internal exec header
structure execp.
aout_size_swap_exec_header_out
Synopsis
void aout_size_swap_exec_header_out (bfd *abfd, struct internal_exec *execp, struct external_exec *raw_bytes);
Description
Swap the information in an internal exec header structure
execp into the buffer raw_bytes ready for writing to disk.
aout_size_some_aout_object_p
Synopsis
const bfd_target *aout_size_some_aout_object_p (bfd *abfd, const bfd_target *(*callback_to_real_object_p)());
Description
Some a.out variant thinks that the file open in abfd
checking is an a.out file. Do some more checking, and set up
for access if it really is. Call back to the calling
environment's "finish up" function just before returning, to
handle any last-minute setup.
aout_size_mkobject
Synopsis
boolean aout_size_mkobject, (bfd *abfd);
Description
Initialize BFD abfd for use with a.out files.
aout_size_machine_type
Synopsis
enum machine_type aout_size_machine_type (enum bfd_architecture arch, unsigned long machine));
Description
Keep track of machine architecture and machine type for
a.out's. Return the machine_type
for a particular
architecture and machine, or M_UNKNOWN
if that exact architecture
and machine can't be represented in a.out format.
If the architecture is understood, machine type 0 (default) is always understood.
aout_size_set_arch_mach
Synopsis
boolean aout_size_set_arch_mach, (bfd *, enum bfd_architecture arch, unsigned long machine));
Description
Set the architecture and the machine of the BFD abfd to the
values arch and machine. Verify that abfd's format
can support the architecture required.
aout_size_new_section_hook
Synopsis
boolean aout_size_new_section_hook, (bfd *abfd, asection *newsect));
Description
Called by the BFD in response to a bfd_make_section
request.
BFD supports a number of different flavours of coff format. The major differences between formats are the sizes and alignments of fields in structures on disk, and the occasional extra field.
Coff in all its varieties is implemented with a few common
files and a number of implementation specific files. For
example, The 88k bcs coff format is implemented in the file
`coff-m88k.c'. This file #include
s
`coff/m88k.h' which defines the external structure of the
coff format for the 88k, and `coff/internal.h' which
defines the internal structure. `coff-m88k.c' also
defines the relocations used by the 88k format
See section Relocations.
The Intel i960 processor version of coff is implemented in `coff-i960.c'. This file has the same structure as `coff-m88k.c', except that it includes `coff/i960.h' rather than `coff-m88k.h'.
The recommended method is to select from the existing
implementations the version of coff which is most like the one
you want to use. For example, we'll say that i386 coff is
the one you select, and that your coff flavour is called foo.
Copy `i386coff.c' to `foocoff.c', copy
`../include/coff/i386.h' to `../include/coff/foo.h',
and add the lines to `targets.c' and `Makefile.in'
so that your new back end is used. Alter the shapes of the
structures in `../include/coff/foo.h' so that they match
what you need. You will probably also have to add
#ifdef
s to the code in `coff/internal.h' and
`coffcode.h' if your version of coff is too wild.
You can verify that your new BFD backend works quite simply by
building `objdump' from the `binutils' directory,
and making sure that its version of what's going on and your
host system's idea (assuming it has the pretty standard coff
dump utility, usually called att-dump
or just
dump
) are the same. Then clean up your code, and send
what you've done to Cygnus. Then your stuff will be in the
next release, and you won't have to keep integrating it.
The Coff backend is split into generic routines that are applicable to any Coff target and routines that are specific to a particular target. The target-specific routines are further split into ones which are basically the same for all Coff targets except that they use the external symbol format or use different values for certain constants.
The generic routines are in `coffgen.c'. These routines
work for any Coff target. They use some hooks into the target
specific code; the hooks are in a bfd_coff_backend_data
structure, one of which exists for each target.
The essentially similar target-specific routines are in `coffcode.h'. This header file includes executable C code. The various Coff targets first include the appropriate Coff header file, make any special defines that are needed, and then include `coffcode.h'.
Some of the Coff targets then also have additional routines in the target source file itself.
For example, `coff-i960.c' includes
`coff/internal.h' and `coff/i960.h'. It then
defines a few constants, such as I960
, and includes
`coffcode.h'. Since the i960 has complex relocation
types, `coff-i960.c' also includes some code to
manipulate the i960 relocs. This code is not in
`coffcode.h' because it would not be used by any other
target.
Each flavour of coff supported in BFD has its own header file
describing the external layout of the structures. There is also
an internal description of the coff layout, in
`coff/internal.h'. A major function of the
coff backend is swapping the bytes and twiddling the bits to
translate the external form of the structures into the normal
internal form. This is all performed in the
bfd_swap
_thing_direction routines. Some
elements are different sizes between different versions of
coff; it is the duty of the coff version specific include file
to override the definitions of various packing routines in
`coffcode.h'. E.g., the size of line number entry in coff is
sometimes 16 bits, and sometimes 32 bits. #define
ing
PUT_LNSZ_LNNO
and GET_LNSZ_LNNO
will select the
correct one. No doubt, some day someone will find a version of
coff which has a varying field size not catered to at the
moment. To port BFD, that person will have to add more #defines
.
Three of the bit twiddling routines are exported to
gdb
; coff_swap_aux_in
, coff_swap_sym_in
and coff_swap_linno_in
. GDB
reads the symbol
table on its own, but uses BFD to fix things up. More of the
bit twiddlers are exported for gas
;
coff_swap_aux_out
, coff_swap_sym_out
,
coff_swap_lineno_out
, coff_swap_reloc_out
,
coff_swap_filehdr_out
, coff_swap_aouthdr_out
,
coff_swap_scnhdr_out
. Gas
currently keeps track
of all the symbol table and reloc drudgery itself, thereby
saving the internal BFD overhead, but uses BFD to swap things
on the way out, making cross ports much safer. Doing so also
allows BFD (and thus the linker) to use the same header files
as gas
, which makes one avenue to disaster disappear.
The simple canonical form for symbols used by BFD is not rich enough to keep all the information available in a coff symbol table. The back end gets around this problem by keeping the original symbol table around, "behind the scenes".
When a symbol table is requested (through a call to
bfd_canonicalize_symtab
), a request gets through to
coff_get_normalized_symtab
. This reads the symbol table from
the coff file and swaps all the structures inside into the
internal form. It also fixes up all the pointers in the table
(represented in the file by offsets from the first symbol in
the table) into physical pointers to elements in the new
internal table. This involves some work since the meanings of
fields change depending upon context: a field that is a
pointer to another structure in the symbol table at one moment
may be the size in bytes of a structure at the next. Another
pass is made over the table. All symbols which mark file names
(C_FILE
symbols) are modified so that the internal
string points to the value in the auxent (the real filename)
rather than the normal text associated with the symbol
(".file"
).
At this time the symbol names are moved around. Coff stores all symbols less than nine characters long physically within the symbol table; longer strings are kept at the end of the file in the string table. This pass moves all strings into memory and replaces them with pointers to the strings.
The symbol table is massaged once again, this time to create
the canonical table used by the BFD application. Each symbol
is inspected in turn, and a decision made (using the
sclass
field) about the various flags to set in the
asymbol
. See section Symbols. The generated canonical table
shares strings with the hidden internal symbol table.
Any linenumbers are read from the coff file too, and attached to the symbols which own the functions the linenumbers belong to.
Writing a symbol to a coff file which didn't come from a coff
file will lose any debugging information. The asymbol
structure remembers the BFD from which the symbol was taken, and on
output the back end makes sure that the same destination target as
source target is present.
When the symbols have come from a coff file then all the debugging information is preserved.
Symbol tables are provided for writing to the back end in a vector of pointers to pointers. This allows applications like the linker to accumulate and output large symbol tables without having to do too much byte copying.
This function runs through the provided symbol table and
patches each symbol marked as a file place holder
(C_FILE
) to point to the next file place holder in the
list. It also marks each offset
field in the list with
the offset from the first symbol of the current symbol.
Another function of this procedure is to turn the canonical
value form of BFD into the form used by coff. Internally, BFD
expects symbol values to be offsets from a section base; so a
symbol physically at 0x120, but in a section starting at
0x100, would have the value 0x20. Coff expects symbols to
contain their final value, so symbols have their values
changed at this point to reflect their sum with their owning
section. This transformation uses the
output_section
field of the asymbol
's
asection
See section Sections.
coff_mangle_symbols
This routine runs though the provided symbol table and uses the offsets generated by the previous pass and the pointers generated when the symbol table was read in to create the structured hierachy required by coff. It changes each pointer to a symbol into the index into the symbol table of the asymbol.
coff_write_symbols
This routine runs through the symbol table and patches up the symbols from their internal form into the coff way, calls the bit twiddlers, and writes out the table to the file.
coff_symbol_type
Description
The hidden information for an asymbol
is described in a
combined_entry_type
:
typedef struct coff_ptr_struct { /* Remembers the offset from the first symbol in the file for this symbol. Generated by coff_renumber_symbols. */ unsigned int offset; /* Should the value of this symbol be renumbered. Used for XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */ unsigned int fix_value : 1; /* Should the tag field of this symbol be renumbered. Created by coff_pointerize_aux. */ unsigned int fix_tag : 1; /* Should the endidx field of this symbol be renumbered. Created by coff_pointerize_aux. */ unsigned int fix_end : 1; /* Should the x_csect.x_scnlen field be renumbered. Created by coff_pointerize_aux. */ unsigned int fix_scnlen : 1; /* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the index into the line number entries. Set by coff_slurp_symbol_table. */ unsigned int fix_line : 1; /* The container for the symbol structure as read and translated from the file. */ union { union internal_auxent auxent; struct internal_syment syment; } u; } combined_entry_type; /* Each canonical asymbol really looks like this: */ typedef struct coff_symbol_struct { /* The actual symbol which the rest of BFD works with */ asymbol symbol; /* A pointer to the hidden information for this symbol */ combined_entry_type *native; /* A pointer to the linenumber information for this symbol */ struct lineno_cache_entry *lineno; /* Have the line numbers been relocated yet ? */ boolean done_lineno; } coff_symbol_type;
bfd_coff_backend_data
Special entry points for gdb to swap in coff symbol table parts:
typedef struct { void (*_bfd_coff_swap_aux_in) PARAMS (( bfd *abfd, PTR ext, int type, int class, int indaux, int numaux, PTR in)); void (*_bfd_coff_swap_sym_in) PARAMS (( bfd *abfd , PTR ext, PTR in)); void (*_bfd_coff_swap_lineno_in) PARAMS (( bfd *abfd, PTR ext, PTR in));
Special entry points for gas to swap out coff parts:
unsigned int (*_bfd_coff_swap_aux_out) PARAMS (( bfd *abfd, PTR in, int type, int class, int indaux, int numaux, PTR ext)); unsigned int (*_bfd_coff_swap_sym_out) PARAMS (( bfd *abfd, PTR in, PTR ext)); unsigned int (*_bfd_coff_swap_lineno_out) PARAMS (( bfd *abfd, PTR in, PTR ext)); unsigned int (*_bfd_coff_swap_reloc_out) PARAMS (( bfd *abfd, PTR src, PTR dst)); unsigned int (*_bfd_coff_swap_filehdr_out) PARAMS (( bfd *abfd, PTR in, PTR out)); unsigned int (*_bfd_coff_swap_aouthdr_out) PARAMS (( bfd *abfd, PTR in, PTR out)); unsigned int (*_bfd_coff_swap_scnhdr_out) PARAMS (( bfd *abfd, PTR in, PTR out));
Special entry points for generic COFF routines to call target dependent COFF routines:
unsigned int _bfd_filhsz; unsigned int _bfd_aoutsz; unsigned int _bfd_scnhsz; unsigned int _bfd_symesz; unsigned int _bfd_auxesz; unsigned int _bfd_relsz; unsigned int _bfd_linesz; boolean _bfd_coff_long_filenames; boolean _bfd_coff_long_section_names; unsigned int _bfd_coff_default_section_alignment_power; void (*_bfd_coff_swap_filehdr_in) PARAMS (( bfd *abfd, PTR ext, PTR in)); void (*_bfd_coff_swap_aouthdr_in) PARAMS (( bfd *abfd, PTR ext, PTR in)); void (*_bfd_coff_swap_scnhdr_in) PARAMS (( bfd *abfd, PTR ext, PTR in)); void (*_bfd_coff_swap_reloc_in) PARAMS (( bfd *abfd, PTR ext, PTR in)); boolean (*_bfd_coff_bad_format_hook) PARAMS (( bfd *abfd, PTR internal_filehdr)); boolean (*_bfd_coff_set_arch_mach_hook) PARAMS (( bfd *abfd, PTR internal_filehdr)); PTR (*_bfd_coff_mkobject_hook) PARAMS (( bfd *abfd, PTR internal_filehdr, PTR internal_aouthdr)); flagword (*_bfd_styp_to_sec_flags_hook) PARAMS (( bfd *abfd, PTR internal_scnhdr, const char *name)); void (*_bfd_set_alignment_hook) PARAMS (( bfd *abfd, asection *sec, PTR internal_scnhdr)); boolean (*_bfd_coff_slurp_symbol_table) PARAMS (( bfd *abfd)); boolean (*_bfd_coff_symname_in_debug) PARAMS (( bfd *abfd, struct internal_syment *sym)); boolean (*_bfd_coff_pointerize_aux_hook) PARAMS (( bfd *abfd, combined_entry_type *table_base, combined_entry_type *symbol, unsigned int indaux, combined_entry_type *aux)); boolean (*_bfd_coff_print_aux) PARAMS (( bfd *abfd, FILE *file, combined_entry_type *table_base, combined_entry_type *symbol, combined_entry_type *aux, unsigned int indaux)); void (*_bfd_coff_reloc16_extra_cases) PARAMS (( bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, arelent *reloc, bfd_byte *data, unsigned int *src_ptr, unsigned int *dst_ptr)); int (*_bfd_coff_reloc16_estimate) PARAMS (( bfd *abfd, asection *input_section, arelent *r, unsigned int shrink, struct bfd_link_info *link_info)); boolean (*_bfd_coff_sym_is_global) PARAMS (( bfd *abfd, struct internal_syment *)); boolean (*_bfd_coff_compute_section_file_positions) PARAMS (( bfd *abfd)); boolean (*_bfd_coff_start_final_link) PARAMS (( bfd *output_bfd, struct bfd_link_info *info)); boolean (*_bfd_coff_relocate_section) PARAMS (( bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, struct internal_reloc *relocs, struct internal_syment *syms, asection **sections)); reloc_howto_type *(*_bfd_coff_rtype_to_howto) PARAMS (( bfd *abfd, asection *sec, struct internal_reloc *rel, struct coff_link_hash_entry *h, struct internal_syment *sym, bfd_vma *addendp)); boolean (*_bfd_coff_adjust_symndx) PARAMS (( bfd *obfd, struct bfd_link_info *info, bfd *ibfd, asection *sec, struct internal_reloc *reloc, boolean *adjustedp)); boolean (*_bfd_coff_link_add_one_symbol) PARAMS (( struct bfd_link_info *info, bfd *abfd, const char *name, flagword flags, asection *section, bfd_vma value, const char *string, boolean copy, boolean collect, struct bfd_link_hash_entry **hashp)); boolean (*_bfd_coff_link_output_has_begun) PARAMS (( bfd * abfd )); boolean (*_bfd_coff_final_link_postscript) PARAMS (( bfd * abfd, struct coff_final_link_info * pfinfo)); } bfd_coff_backend_data; #define coff_backend_info(abfd) ((bfd_coff_backend_data *) (abfd)->xvec->backend_data) #define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \ ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i)) #define bfd_coff_swap_sym_in(a,e,i) \ ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i)) #define bfd_coff_swap_lineno_in(a,e,i) \ ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i)) #define bfd_coff_swap_reloc_out(abfd, i, o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o)) #define bfd_coff_swap_lineno_out(abfd, i, o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o)) #define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \ ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o)) #define bfd_coff_swap_sym_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o)) #define bfd_coff_swap_scnhdr_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o)) #define bfd_coff_swap_filehdr_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o)) #define bfd_coff_swap_aouthdr_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o)) #define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz) #define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz) #define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz) #define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz) #define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz) #define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz) #define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz) #define bfd_coff_long_filenames(abfd) (coff_backend_info (abfd)->_bfd_coff_long_filenames) #define bfd_coff_long_section_names(abfd) \ (coff_backend_info (abfd)->_bfd_coff_long_section_names) #define bfd_coff_default_section_alignment_power(abfd) \ (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power) #define bfd_coff_swap_filehdr_in(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o)) #define bfd_coff_swap_aouthdr_in(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o)) #define bfd_coff_swap_scnhdr_in(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o)) #define bfd_coff_swap_reloc_in(abfd, i, o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o)) #define bfd_coff_bad_format_hook(abfd, filehdr) \ ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr)) #define bfd_coff_set_arch_mach_hook(abfd, filehdr)\ ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr)) #define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\ ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook) (abfd, filehdr, aouthdr)) #define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name)\ ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook) (abfd, scnhdr, name)) #define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\ ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr)) #define bfd_coff_slurp_symbol_table(abfd)\ ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd)) #define bfd_coff_symname_in_debug(abfd, sym)\ ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym)) #define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\ ((coff_backend_info (abfd)->_bfd_coff_print_aux)\ (abfd, file, base, symbol, aux, indaux)) #define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr)\ ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\ (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr)) #define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\ ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\ (abfd, section, reloc, shrink, link_info)) #define bfd_coff_sym_is_global(abfd, sym)\ ((coff_backend_info (abfd)->_bfd_coff_sym_is_global)\ (abfd, sym)) #define bfd_coff_compute_section_file_positions(abfd)\ ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\ (abfd)) #define bfd_coff_start_final_link(obfd, info)\ ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\ (obfd, info)) #define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\ ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\ (obfd, info, ibfd, o, con, rel, isyms, secs)) #define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\ ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\ (abfd, sec, rel, h, sym, addendp)) #define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\ ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\ (obfd, info, ibfd, sec, rel, adjustedp)) #define bfd_coff_link_add_one_symbol(info,abfd,name,flags,section,value,string,cp,coll,hashp)\ ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\ (info, abfd, name, flags, section, value, string, cp, coll, hashp)) #define bfd_coff_link_output_has_begun(a) \ ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a)) #define bfd_coff_final_link_postscript(a,p) \ ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a,p))
To write relocations, the back end steps though the
canonical relocation table and create an
internal_reloc
. The symbol index to use is removed from
the offset
field in the symbol table supplied. The
address comes directly from the sum of the section base
address and the relocation offset; the type is dug directly
from the howto field. Then the internal_reloc
is
swapped into the shape of an external_reloc
and written
out to disk.
Creating the linenumber table is done by reading in the entire coff linenumber table, and creating another table for internal use.
A coff linenumber table is structured so that each function is marked as having a line number of 0. Each line within the function is an offset from the first line in the function. The base of the line number information for the table is stored in the symbol associated with the function.
The information is copied from the external to the internal table, and each symbol which marks a function is marked by pointing its...
How does this work ?
Coff relocations are easily transformed into the internal BFD form
(arelent
).
Reading a coff relocation table is done in the following stages:
bfd_canonicalize_symtab
. The back end will call that
routine and save the result if a canonicalization hasn't been done.
r_type
to directly produce an index
into a howto table vector; the 88k subtracts a number from the
r_type
field and creates an addend field.
BFD support for ELF formats is being worked on. Currently, the best supported back ends are for sparc and i386 (running svr4 or Solaris 2).
Documentation of the internals of the support code still needs to be written. The code is changing quickly enough that we haven't bothered yet.
bfd_elf_find_section
Synopsis
struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
Description
Helper functions for GDB to locate the string tables.
Since BFD hides string tables from callers, GDB needs to use an
internal hook to find them. Sun's .stabstr, in particular,
isn't even pointed to by the .stab section, so ordinary
mechanisms wouldn't work to find it, even if we had some.
Go to the first, previous, next, last section, table of contents.