GNU Emacs provides two ways to search through a buffer for specified text: exact string searches and regular expression searches. After a regular expression search, you can examine the match data to determine which text matched the whole regular expression or various portions of it.
The `skip-chars...' functions also perform a kind of searching. See section Skipping Characters.
These are the primitive functions for searching through the text in a
buffer. They are meant for use in programs, but you may call them
interactively. If you do so, they prompt for the search string;
limit and noerror are set to nil
, and repeat
is set to 1.
These search functions convert the search string to multibyte if the buffer is multibyte; they convert the search string to unibyte if the buffer is unibyte. See section Text Representations.
In the following example, point is initially at the beginning of the
line. Then (search-forward "fox")
moves point after the last
letter of `fox':
---------- Buffer: foo ---------- -!-The quick brown fox jumped over the lazy dog. ---------- Buffer: foo ---------- (search-forward "fox") => 20 ---------- Buffer: foo ---------- The quick brown fox-!- jumped over the lazy dog. ---------- Buffer: foo ----------
The argument limit specifies the upper bound to the search. (It
must be a position in the current buffer.) No match extending after
that position is accepted. If limit is omitted or nil
, it
defaults to the end of the accessible portion of the buffer.
What happens when the search fails depends on the value of
noerror. If noerror is nil
, a search-failed
error is signaled. If noerror is t
, search-forward
returns nil
and does nothing. If noerror is neither
nil
nor t
, then search-forward
moves point to the
upper bound and returns nil
. (It would be more consistent now to
return the new position of point in that case, but some existing
programs may depend on a value of nil
.)
If repeat is supplied (it must be a positive number), then the search is repeated that many times (each time starting at the end of the previous time's match). If these successive searches succeed, the function succeeds, moving point and returning its new value. Otherwise the search fails.
search-forward
except that it searches backwards and
leaves point at the beginning of the match.
Word matching regards string as a sequence of words, disregarding punctuation that separates them. It searches the buffer for the same sequence of words. Each word must be distinct in the buffer (searching for the word `ball' does not match the word `balls'), but the details of punctuation and spacing are ignored (searching for `ball boy' does match `ball. Boy!').
In this example, point is initially at the beginning of the buffer; the search leaves it between the `y' and the `!'.
---------- Buffer: foo ---------- -!-He said "Please! Find the ball boy!" ---------- Buffer: foo ---------- (word-search-forward "Please find the ball, boy.") => 35 ---------- Buffer: foo ---------- He said "Please! Find the ball boy-!-!" ---------- Buffer: foo ----------
If limit is non-nil
(it must be a position in the current
buffer), then it is the upper bound to the search. The match found must
not extend after that position.
If noerror is nil
, then word-search-forward
signals
an error if the search fails. If noerror is t
, then it
returns nil
instead of signaling an error. If noerror is
neither nil
nor t
, it moves point to limit (or the
end of the buffer) and returns nil
.
If repeat is non-nil
, then the search is repeated that many
times. Point is positioned at the end of the last match.
word-search-forward
except that it searches backward and normally leaves point at the
beginning of the match.
A regular expression (regexp, for short) is a pattern that denotes a (possibly infinite) set of strings. Searching for matches for a regexp is a very powerful operation. This section explains how to write regexps; the following section says how to search for them.
Regular expressions have a syntax in which a few characters are special constructs and the rest are ordinary. An ordinary character is a simple regular expression that matches that character and nothing else. The special characters are `.', `*', `+', `?', `[', `]', `^', `$', and `\'; no new special characters will be defined in the future. Any other character appearing in a regular expression is ordinary, unless a `\' precedes it.
For example, `f' is not a special character, so it is ordinary, and therefore `f' is a regular expression that matches the string `f' and no other string. (It does not match the string `ff'.) Likewise, `o' is a regular expression that matches only `o'.
Any two regular expressions a and b can be concatenated. The result is a regular expression that matches a string if a matches some amount of the beginning of that string and b matches the rest of the string.
As a simple example, we can concatenate the regular expressions `f' and `o' to get the regular expression `fo', which matches only the string `fo'. Still trivial. To do something more powerful, you need to use one of the special characters. Here is a list of them:
grep
.
"\\\\"
.Please note: For historical compatibility, special characters are treated as ordinary ones if they are in contexts where their special meanings make no sense. For example, `*foo' treats `*' as ordinary since there is no preceding expression on which the `*' can act. It is poor practice to depend on this behavior; quote the special character anyway, regardless of where it appears.
For the most part, `\' followed by any character matches only that character. However, there are several exceptions: two-character sequences starting with `\' which have special meanings. (The second character in such a sequence is always ordinary when used on its own.) Here is a table of `\' constructs.
The following regular expression constructs match the empty string--that is, they don't use up any characters--but whether they match depends on the context.
Not every string is a valid regular expression. For example, a string
with unbalanced square brackets is invalid (with a few exceptions, such
as `[]]'), and so is a string that ends with a single `\'. If
an invalid regular expression is passed to any of the search functions,
an invalid-regexp
error is signaled.
(regexp-quote "^The cat$") => "\\^The cat\\$"
One use of regexp-quote
is to combine an exact string match with
context described as a regular expression. For example, this searches
for the string that is the value of string, surrounded by
whitespace:
(re-search-forward (concat "\\s-" (regexp-quote string) "\\s-"))
If the optional argument paren is non-nil
, then the
returned regular expression is always enclosed by at least one
parentheses-grouping construct.
This simplified definition of regexp-opt
produces a
regular expression which is equivalent to the actual value
(but not as efficient):
(defun regexp-opt (strings paren) (let ((open-paren (if paren "\\(" "")) (close-paren (if paren "\\)" ""))) (concat open-paren (mapconcat 'regexp-quote strings "\\|") close-paren)))
Here is a complicated regexp, used by Emacs to recognize the end of a
sentence together with any whitespace that follows. It is the value of
the variable sentence-end
.
First, we show the regexp as a string in Lisp syntax to distinguish spaces from tab characters. The string constant begins and ends with a double-quote. `\"' stands for a double-quote as part of the string, `\\' for a backslash as part of the string, `\t' for a tab and `\n' for a newline.
"[.?!][]\"')}]*\\($\\| $\\|\t\\| \\)[ \t\n]*"
In contrast, if you evaluate the variable sentence-end
, you
will see the following:
sentence-end => "[.?!][]\"')}]*\\($\\| $\\| \\| \\)[ ]*"
In this output, tab and newline appear as themselves.
This regular expression contains four parts in succession and can be deciphered as follows:
[.?!]
[]\"')}]*
\"
is Lisp syntax for a double-quote in
a string. The `*' at the end indicates that the immediately
preceding regular expression (a character alternative, in this case) may be
repeated zero or more times.
\\($\\| $\\|\t\\| \\)
[ \t\n]*
In GNU Emacs, you can search for the next match for a regular
expression either incrementally or not. For incremental search
commands, see section `Regular Expression Search' in The GNU Emacs Manual. Here we describe only the search functions
useful in programs. The principal one is re-search-forward
.
These search functions convert the regular expression to multibyte if the buffer is multibyte; they convert the regular expression to unibyte if the buffer is unibyte. See section Text Representations.
If limit is non-nil
(it must be a position in the current
buffer), then it is the upper bound to the search. No match extending
after that position is accepted.
If repeat is supplied (it must be a positive number), then the search is repeated that many times (each time starting at the end of the previous time's match). If all these successive searches succeed, the function succeeds, moving point and returning its new value. Otherwise the function fails.
What happens when the function fails depends on the value of
noerror. If noerror is nil
, a search-failed
error is signaled. If noerror is t
,
re-search-forward
does nothing and returns nil
. If
noerror is neither nil
nor t
, then
re-search-forward
moves point to limit (or the end of the
buffer) and returns nil
.
In the following example, point is initially before the `T'. Evaluating the search call moves point to the end of that line (between the `t' of `hat' and the newline).
---------- Buffer: foo ---------- I read "-!-The cat in the hat comes back" twice. ---------- Buffer: foo ---------- (re-search-forward "[a-z]+" nil t 5) => 27 ---------- Buffer: foo ---------- I read "The cat in the hat-!- comes back" twice. ---------- Buffer: foo ----------
This function is analogous to re-search-forward
, but they are not
simple mirror images. re-search-forward
finds the match whose
beginning is as close as possible to the starting point. If
re-search-backward
were a perfect mirror image, it would find the
match whose end is as close as possible. However, in fact it finds the
match whose beginning is as close as possible. The reason is that
matching a regular expression at a given spot always works from
beginning to end, and starts at a specified beginning position.
A true mirror-image of re-search-forward
would require a special
feature for matching regular expressions from end to beginning. It's
not worth the trouble of implementing that.
nil
if
there is no match. If start is non-nil
, the search starts
at that index in string.
For example,
(string-match "quick" "The quick brown fox jumped quickly.") => 4 (string-match "quick" "The quick brown fox jumped quickly." 8) => 27
The index of the first character of the string is 0, the index of the second character is 1, and so on.
After this function returns, the index of the first character beyond
the match is available as (match-end 0)
. See section The Match Data.
(string-match "quick" "The quick brown fox jumped quickly." 8) => 27 (match-end 0) => 32
t
if so, nil
otherwise.
This function does not move point, but it updates the match data, which
you can access using match-beginning
and match-end
.
See section The Match Data.
In this example, point is located directly before the `T'. If it
were anywhere else, the result would be nil
.
---------- Buffer: foo ---------- I read "-!-The cat in the hat comes back" twice. ---------- Buffer: foo ---------- (looking-at "The cat in the hat$") => t
The usual regular expression functions do backtracking when necessary to handle the `\|' and repetition constructs, but they continue this only until they find some match. Then they succeed and report the first match found.
This section describes alternative search functions which perform the full backtracking specified by the POSIX standard for regular expression matching. They continue backtracking until they have tried all possibilities and found all matches, so they can report the longest match, as required by POSIX. This is much slower, so use these functions only when you really need the longest match.
re-search-forward
except that it performs the full
backtracking specified by the POSIX standard for regular expression
matching.
re-search-backward
except that it performs the full
backtracking specified by the POSIX standard for regular expression
matching.
looking-at
except that it performs the full
backtracking specified by the POSIX standard for regular expression
matching.
string-match
except that it performs the full
backtracking specified by the POSIX standard for regular expression
matching.
query-replace
and related commands.
It searches for occurrences of from-string and replaces some or
all of them. If query-flag is nil
, it replaces all
occurrences; otherwise, it asks the user what to do about each one.
If regexp-flag is non-nil
, then from-string is
considered a regular expression; otherwise, it must match literally. If
delimited-flag is non-nil
, then only replacements
surrounded by word boundaries are considered.
The argument replacements specifies what to replace occurrences with. If it is a string, that string is used. It can also be a list of strings, to be used in cyclic order.
If repeat-count is non-nil
, it should be an integer. Then
it specifies how many times to use each of the strings in the
replacements list before advancing cyclicly to the next one.
Normally, the keymap query-replace-map
defines the possible user
responses for queries. The argument map, if non-nil
, is a
keymap to use instead of query-replace-map
.
query-replace
and related functions, as well as
y-or-n-p
and map-y-or-n-p
. It is unusual in two ways:
read-key-sequence
to get the input; instead, they read a single
event and look it up "by hand."
Here are the meaningful "bindings" for query-replace-map
.
Several of them are meaningful only for query-replace
and
friends.
act
skip
exit
act-and-exit
act-and-show
automatic
backup
edit
delete-and-edit
recenter
quit
y-or-n-p
and related functions
use this answer.
help
Emacs keeps track of the positions of the start and end of segments of text found during a regular expression search. This means, for example, that you can search for a complex pattern, such as a date in an Rmail message, and then extract parts of the match under control of the pattern.
Because the match data normally describe the most recent search only, you must be careful not to do another search inadvertently between the search you wish to refer back to and the use of the match data. If you can't avoid another intervening search, you must save and restore the match data around it, to prevent it from being overwritten.
This function replaces the text matched by the last search with replacement.
If you did the last search in a buffer, you should specify nil
for string. Then replace-match
does the replacement by
editing the buffer; it leaves point at the end of the replacement text,
and returns t
.
If you did the search in a string, pass the same string as string.
Then replace-match
does the replacement by constructing and
returning a new string.
If fixedcase is non-nil
, then the case of the replacement
text is not changed; otherwise, the replacement text is converted to a
different case depending upon the capitalization of the text to be
replaced. If the original text is all upper case, the replacement text
is converted to upper case. If the first word of the original text is
capitalized, then the first word of the replacement text is capitalized.
If the original text contains just one word, and that word is a capital
letter, replace-match
considers this a capitalized first word
rather than all upper case.
If case-replace
is nil
, then case conversion is not done,
regardless of the value of fixed-case. See section Searching and Case.
If literal is non-nil
, then replacement is inserted
exactly as it is, the only alterations being case changes as needed.
If it is nil
(the default), then the character `\' is treated
specially. If a `\' appears in replacement, then it must be
part of one of the following sequences:
If subexp is non-nil
, that says to replace just
subexpression number subexp of the regexp that was matched, not
the entire match. For example, after matching `foo \(ba*r\)',
calling replace-match
with 1 as subexp means to replace
just the text that matched `\(ba*r\)'.
This section explains how to use the match data to find out what was matched by the last search or match operation.
You can ask about the entire matching text, or about a particular parenthetical subexpression of a regular expression. The count argument in the functions below specifies which. If count is zero, you are asking about the entire match. If count is positive, it specifies which subexpression you want.
Recall that the subexpressions of a regular expression are those expressions grouped with escaped parentheses, `\(...\)'. The countth subexpression is found by counting occurrences of `\(' from the beginning of the whole regular expression. The first subexpression is numbered 1, the second 2, and so on. Only regular expressions can have subexpressions--after a simple string search, the only information available is about the entire match.
A search which fails may or may not alter the match data. In the past, a failing search did not do this, but we may change it in the future.
nil
.
If the last such operation was done against a string with
string-match
, then you should pass the same string as the
argument in-string. After a buffer search or match,
you should omit in-string or pass nil
for it; but you
should make sure that the current buffer when you call
match-string
is the one in which you did the searching or
matching.
match-string
except that the result
has no text properties.
If count is zero, then the value is the position of the start of the entire match. Otherwise, count specifies a subexpression in the regular expression, and the value of the function is the starting position of the match for that subexpression.
The value is nil
for a subexpression inside a `\|'
alternative that wasn't used in the match.
match-beginning
except that it returns the
position of the end of the match, rather than the position of the
beginning.
Here is an example of using the match data, with a comment showing the positions within the text:
(string-match "\\(qu\\)\\(ick\\)" "The quick fox jumped quickly.") ;0123456789 => 4 (match-string 0 "The quick fox jumped quickly.") => "quick" (match-string 1 "The quick fox jumped quickly.") => "qu" (match-string 2 "The quick fox jumped quickly.") => "ick" (match-beginning 1) ; The beginning of the match => 4 ; with `qu' is at index 4. (match-beginning 2) ; The beginning of the match => 6 ; with `ick' is at index 6. (match-end 1) ; The end of the match => 6 ; with `qu' is at index 6. (match-end 2) ; The end of the match => 9 ; with `ick' is at index 9.
Here is another example. Point is initially located at the beginning of the line. Searching moves point to between the space and the word `in'. The beginning of the entire match is at the 9th character of the buffer (`T'), and the beginning of the match for the first subexpression is at the 13th character (`c').
(list (re-search-forward "The \\(cat \\)") (match-beginning 0) (match-beginning 1)) => (9 9 13) ---------- Buffer: foo ---------- I read "The cat -!-in the hat comes back" twice. ^ ^ 9 13 ---------- Buffer: foo ----------
(In this case, the index returned is a buffer position; the first character of the buffer counts as 1.)
The functions match-data
and set-match-data
read or
write the entire match data, all at once.
(match-beginning n)
; and
element
corresponds to (match-end n)
.
All the elements are markers or nil
if matching was done on a
buffer, and all are integers or nil
if matching was done on a
string with string-match
.
As always, there must be no possibility of intervening searches between
the call to a search function and the call to match-data
that is
intended to access the match data for that search.
(match-data) => (#<marker at 9 in foo> #<marker at 17 in foo> #<marker at 13 in foo> #<marker at 17 in foo>)
match-data
.
If match-list refers to a buffer that doesn't exist, you don't get an error; that sets the match data in a meaningless but harmless way.
store-match-data
is a semi-obsolete alias for set-match-data
.
When you call a function that may do a search, you may need to save and restore the match data around that call, if you want to preserve the match data from an earlier search for later use. Here is an example that shows the problem that arises if you fail to save the match data:
(re-search-forward "The \\(cat \\)")
=> 48
(foo) ; Perhaps foo
does
; more searching.
(match-end 0)
=> 61 ; Unexpected result---not 48!
You can save and restore the match data with save-match-data
:
You could use set-match-data
together with match-data
to
imitate the effect of the special form save-match-data
. Here is
how:
(let ((data (match-data))) (unwind-protect ... ; Ok to change the original match data. (set-match-data data)))
Emacs automatically saves and restores the match data when it runs process filter functions (see section Process Filter Functions) and process sentinels (see section Sentinels: Detecting Process Status Changes).
By default, searches in Emacs ignore the case of the text they are searching through; if you specify searching for `FOO', then `Foo' or `foo' is also considered a match. This applies to regular expressions, too; thus, `[aB]' would match `a' or `A' or `b' or `B'.
If you do not want this feature, set the variable
case-fold-search
to nil
. Then all letters must match
exactly, including case. This is a buffer-local variable; altering the
variable affects only the current buffer. (See section Introduction to Buffer-Local Variables.) Alternatively, you may change the value of
default-case-fold-search
, which is the default value of
case-fold-search
for buffers that do not override it.
Note that the user-level incremental search feature handles case distinctions differently. When given a lower case letter, it looks for a match of either case, but when given an upper case letter, it looks for an upper case letter only. But this has nothing to do with the searching functions used in Lisp code.
nil
, that means to use the
replacement text verbatim. A non-nil
value means to convert the
case of the replacement text according to the text being replaced.
The function replace-match
is where this variable actually has
its effect. See section Replacing the Text That Matched.
nil
they do not ignore case; otherwise
they do ignore case.
case-fold-search
in buffers that do not override it. This is the
same as (default-value 'case-fold-search)
.
This section describes some variables that hold regular expressions used for certain purposes in editing:
"^\014"
(i.e., "^^L"
or
"^\C-l"
); this matches a line that starts with a formfeed
character.
The following two regular expressions should not assume the match always starts at the beginning of a line; they should not use `^' to anchor the match. Most often, the paragraph commands do check for a match only at the beginning of a line, which means that `^' would be superfluous. When there is a nonzero left margin, they accept matches that start after the left margin. In that case, a `^' would be incorrect. However, a `^' is harmless in modes where a left margin is never used.
paragraph-start
also.) The default value is
"[ \t\f]*$"
, which matches a line that consists entirely of
spaces, tabs, and form feeds (after its left margin).
"[ \t\n\f]"
, which matches a line starting with a space, tab,
newline, or form feed (after its left margin).
"[.?!][]\"')}]*\\($\\| $\\|\t\\| \\)[ \t\n]*"
This means a period, question mark or exclamation mark, followed optionally by a closing parenthetical character, followed by tabs, spaces or new lines.
For a detailed explanation of this regular expression, see section Complex Regexp Example.
Go to the first, previous, next, last section, table of contents.