Go to the first, previous, next, last section, table of contents.


Processes

In the terminology of operating systems, a process is a space in which a program can execute. Emacs runs in a process. Emacs Lisp programs can invoke other programs in processes of their own. These are called subprocesses or child processes of the Emacs process, which is their parent process.

A subprocess of Emacs may be synchronous or asynchronous, depending on how it is created. When you create a synchronous subprocess, the Lisp program waits for the subprocess to terminate before continuing execution. When you create an asynchronous subprocess, it can run in parallel with the Lisp program. This kind of subprocess is represented within Emacs by a Lisp object which is also called a "process". Lisp programs can use this object to communicate with the subprocess or to control it. For example, you can send signals, obtain status information, receive output from the process, or send input to it.

Function: processp object
This function returns t if object is a process, nil otherwise.

Functions that Create Subprocesses

There are three functions that create a new subprocess in which to run a program. One of them, start-process, creates an asynchronous process and returns a process object (see section Creating an Asynchronous Process). The other two, call-process and call-process-region, create a synchronous process and do not return a process object (see section Creating a Synchronous Process).

Synchronous and asynchronous processes are explained in following sections. Since the three functions are all called in a similar fashion, their common arguments are described here.

In all cases, the function's program argument specifies the program to be run. An error is signaled if the file is not found or cannot be executed. If the file name is relative, the variable exec-path contains a list of directories to search. Emacs initializes exec-path when it starts up, based on the value of the environment variable PATH. The standard file name constructs, `~', `.', and `..', are interpreted as usual in exec-path, but environment variable substitutions (`$HOME', etc.) are not recognized; use substitute-in-file-name to perform them (see section Functions that Expand Filenames).

Each of the subprocess-creating functions has a buffer-or-name argument which specifies where the standard output from the program will go. It should be a buffer or a buffer name; if it is a buffer name, that will create the buffer if it does not already exist. It can also be nil, which says to discard the output unless a filter function handles it. (See section Process Filter Functions, and section Reading and Printing Lisp Objects.) Normally, you should avoid having multiple processes send output to the same buffer because their output would be intermixed randomly.

All three of the subprocess-creating functions have a &rest argument, args. The args must all be strings, and they are supplied to program as separate command line arguments. Wildcard characters and other shell constructs have no special meanings in these strings, since the whole strings are passed directly to the specified program.

Please note: The argument program contains only the name of the program; it may not contain any command-line arguments. You must use args to provide those.

The subprocess gets its current directory from the value of default-directory (see section Functions that Expand Filenames).

The subprocess inherits its environment from Emacs, but you can specify overrides for it with process-environment. See section Operating System Environment.

Variable: exec-directory
The value of this variable is the name of a directory (a string) that contains programs that come with GNU Emacs, programs intended for Emacs to invoke. The program movemail is an example of such a program; Rmail uses it to fetch new mail from an inbox.

User Option: exec-path
The value of this variable is a list of directories to search for programs to run in subprocesses. Each element is either the name of a directory (i.e., a string), or nil, which stands for the default directory (which is the value of default-directory).

The value of exec-path is used by call-process and start-process when the program argument is not an absolute file name.

Shell Arguments

Lisp programs sometimes need to run a shell and give it a command which contains file names that were specified by the user. These programs ought to be able to support any valid file name. But the shell gives special treatment to certain characters, and if these characters occur in the file name, they will confuse the shell. To handle these characters, use the function shell-quote-argument:

Function: shell-quote-argument argument
This function returns a string which represents, in shell syntax, an argument whose actual contents are argument. It should work reliably to concatenate the return value into a shell command and then pass it to a shell for execution.

Precisely what this function does depends on your operating system. The function is designed to work with the usual shell syntax; if you use an unusual shell, you will need to redefine this function. On MS-DOS, the function returns argument unchanged; while this is not really correct, it is the best one can do, since the MS-DOS shell has no quoting features.

;; This example shows the behavior on GNU and Unix systems.
(shell-quote-argument "foo > bar")
     => "foo\\ \\>\\ bar"

Here's an example of using shell-quote-argument to construct a shell command:

(concat "diff -c "
        (shell-quote-argument oldfile)
        " "
        (shell-quote-argument newfile))

Creating a Synchronous Process

After a synchronous process is created, Emacs waits for the process to terminate before continuing. Starting Dired is an example of this: it runs ls in a synchronous process, then modifies the output slightly. Because the process is synchronous, the entire directory listing arrives in the buffer before Emacs tries to do anything with it.

While Emacs waits for the synchronous subprocess to terminate, the user can quit by typing C-g. The first C-g tries to kill the subprocess with a SIGINT signal; but it waits until the subprocess actually terminates before quitting. If during that time the user types another C-g, that kills the subprocess instantly with SIGKILL and quits immediately. See section Quitting.

The synchronous subprocess functions return an indication of how the process terminated.

The output from a synchronous subprocess is generally decoded using a coding system, much like text read from a file. The input sent to a subprocess by call-process-region is encoded using a coding system, much like text written into a file. See section Coding Systems.

Function: call-process program &optional infile destination display &rest args
This function calls program in a separate process and waits for it to finish.

The standard input for the process comes from file infile if infile is not nil, and from `/dev/null' otherwise. The argument destination says where to put the process output. Here are the possibilities:

a buffer
Insert the output in that buffer, before point. This includes both the standard output stream and the standard error stream of the process.
a string
Insert the output in a buffer with that name, before point.
t
Insert the output in the current buffer, before point.
nil
Discard the output.
0
Discard the output, and return immediately without waiting for the subprocess to finish. In this case, the process is not truly synchronous, since it can run in parallel with Emacs; but you can think of it as synchronous in that Emacs is essentially finished with the subprocess as soon as this function returns.
(real-destination error-destination)
Keep the standard output stream separate from the standard error stream; deal with the ordinary output as specified by real-destination, and dispose of the error output according to error-destination. If error-destination is nil, that means to discard the error output, t means mix it with the ordinary output, and a string specifies a file name to redirect error output into. You can't directly specify a buffer to put the error output in; that is too difficult to implement. But you can achieve this result by sending the error output to a temporary file and then inserting the file into a buffer.

If display is non-nil, then call-process redisplays the buffer as output is inserted. (However, if the coding system chosen for decoding output is undecided, meaning deduce the encoding from the actual data, then redisplay sometimes cannot continue once non-ASCII characters are encountered. There are fundamental reasons why it is hard to fix this.) Otherwise the function call-process does no redisplay, and the results become visible on the screen only when Emacs redisplays that buffer in the normal course of events.

The remaining arguments, args, are strings that specify command line arguments for the program.

The value returned by call-process (unless you told it not to wait) indicates the reason for process termination. A number gives the exit status of the subprocess; 0 means success, and any other value means failure. If the process terminated with a signal, call-process returns a string describing the signal.

In the examples below, the buffer `foo' is current.

(call-process "pwd" nil t)
     => nil

---------- Buffer: foo ----------
/usr/user/lewis/manual
---------- Buffer: foo ----------

(call-process "grep" nil "bar" nil "lewis" "/etc/passwd")
     => nil

---------- Buffer: bar ----------
lewis:5LTsHm66CSWKg:398:21:Bil Lewis:/user/lewis:/bin/csh

---------- Buffer: bar ----------

Here is a good example of the use of call-process, which used to be found in the definition of insert-directory:

(call-process insert-directory-program nil t nil switches
              (if full-directory-p
                  (concat (file-name-as-directory file) ".")
                file))

Function: call-process-region start end program &optional delete destination display &rest args
This function sends the text between start to end as standard input to a process running program. It deletes the text sent if delete is non-nil; this is useful when destination is t, to insert the output in the current buffer in place of the input.

The arguments destination and display control what to do with the output from the subprocess, and whether to update the display as it comes in. For details, see the description of call-process, above. If destination is the integer 0, call-process-region discards the output and returns nil immediately, without waiting for the subprocess to finish.

The remaining arguments, args, are strings that specify command line arguments for the program.

The return value of call-process-region is just like that of call-process: nil if you told it to return without waiting; otherwise, a number or string which indicates how the subprocess terminated.

In the following example, we use call-process-region to run the cat utility, with standard input being the first five characters in buffer `foo' (the word `input'). cat copies its standard input into its standard output. Since the argument destination is t, this output is inserted in the current buffer.

---------- Buffer: foo ----------
input-!-
---------- Buffer: foo ----------

(call-process-region 1 6 "cat" nil t)
     => nil

---------- Buffer: foo ----------
inputinput-!-
---------- Buffer: foo ----------

The shell-command-on-region command uses call-process-region like this:

(call-process-region 
 start end         
 shell-file-name      ; Name of program.
 nil                  ; Do not delete region.
 buffer               ; Send output to buffer.
 nil                  ; No redisplay during output.
 "-c" command)        ; Arguments for the shell.

Function: shell-command-to-string command
This function executes command (a string) as a shell command, then returns the command's output as a string.

Creating an Asynchronous Process

After an asynchronous process is created, Emacs and the subprocess both continue running immediately. The process thereafter runs in parallel with Emacs, and the two can communicate with each other using the functions described in following sections. However, communication is only partially asynchronous: Emacs sends data to the process only when certain functions are called, and Emacs accepts data from the process only when Emacs is waiting for input or for a time delay.

Here we describe how to create an asynchronous process.

Function: start-process name buffer-or-name program &rest args
This function creates a new asynchronous subprocess and starts the program program running in it. It returns a process object that stands for the new subprocess in Lisp. The argument name specifies the name for the process object; if a process with this name already exists, then name is modified (by appending `<1>', etc.) to be unique. The buffer buffer-or-name is the buffer to associate with the process.

The remaining arguments, args, are strings that specify command line arguments for the program.

In the example below, the first process is started and runs (rather, sleeps) for 100 seconds. Meanwhile, the second process is started, and given the name `my-process<1>' for the sake of uniqueness. It inserts the directory listing at the end of the buffer `foo', before the first process finishes. Then it finishes, and a message to that effect is inserted in the buffer. Much later, the first process finishes, and another message is inserted in the buffer for it.

(start-process "my-process" "foo" "sleep" "100")
     => #<process my-process>

(start-process "my-process" "foo" "ls" "-l" "/user/lewis/bin")
     => #<process my-process<1>>

---------- Buffer: foo ----------
total 2
lrwxrwxrwx  1 lewis     14 Jul 22 10:12 gnuemacs --> /emacs
-rwxrwxrwx  1 lewis     19 Jul 30 21:02 lemon

Process my-process<1> finished

Process my-process finished
---------- Buffer: foo ----------

Function: start-process-shell-command name buffer-or-name command &rest command-args
This function is like start-process except that it uses a shell to execute the specified command. The argument command is a shell command name, and command-args are the arguments for the shell command. The variable shell-file-name specifies which shell to use.

The point of running a program through the shell, rather than directly with start-process, is so that you can employ shell features such as wildcards in the arguments. It follows that if you include an arbitrary user-specified filename in the command, you should quote it with shell-quote-argument first, so that any special shell characters in the file name do not have their special shell meanings. See section Shell Arguments.

Variable: process-connection-type
This variable controls the type of device used to communicate with asynchronous subprocesses. If it is non-nil, then PTYs are used, when available. Otherwise, pipes are used.

PTYs are usually preferable for processes visible to the user, as in Shell mode, because they allow job control (C-c, C-z, etc.) to work between the process and its children, whereas pipes do not. For subprocesses used for internal purposes by programs, it is often better to use a pipe, because they are more efficient. In addition, the total number of PTYs is limited on many systems and it is good not to waste them.

The value process-connection-type is used when start-process is called. So you can specify how to communicate with one subprocess by binding the variable around the call to start-process.

(let ((process-connection-type nil))  ; Use a pipe.
  (start-process ...))

To determine whether a given subprocess actually got a pipe or a PTY, use the function process-tty-name (see section Process Information).

Deleting Processes

Deleting a process disconnects Emacs immediately from the subprocess, and removes it from the list of active processes. It sends a signal to the subprocess to make the subprocess terminate, but this is not guaranteed to happen immediately. The process object itself continues to exist as long as other Lisp objects point to it. The process mark continues to point to the same place as before (usually into a buffer where output from the process was being inserted).

You can delete a process explicitly at any time. Processes are deleted automatically after they terminate, but not necessarily right away. If you delete a terminated process explicitly before it is deleted automatically, no harm results.

User Option: delete-exited-processes
This variable controls automatic deletion of processes that have terminated (due to calling exit or to a signal). If it is nil, then they continue to exist until the user runs list-processes. Otherwise, they are deleted immediately after they exit.

Function: delete-process name
This function deletes the process associated with name, killing it with a SIGHUP signal. The argument name may be a process, the name of a process, a buffer, or the name of a buffer.

(delete-process "*shell*")
     => nil

Function: process-kill-without-query process &optional do-query
This function specifies whether Emacs should query the user if process is still running when Emacs is exited. If do-query is nil, the process will be deleted silently. Otherwise, Emacs will query about killing it.

The value is t if the process was formerly set up to require query, nil otherwise. A newly-created process always requires query.

(process-kill-without-query (get-process "shell"))
     => t

Process Information

Several functions return information about processes. list-processes is provided for interactive use.

Command: list-processes
This command displays a listing of all living processes. In addition, it finally deletes any process whose status was `Exited' or `Signaled'. It returns nil.

Function: process-list
This function returns a list of all processes that have not been deleted.

(process-list)
     => (#<process display-time> #<process shell>)

Function: get-process name
This function returns the process named name, or nil if there is none. An error is signaled if name is not a string.

(get-process "shell")
     => #<process shell>

Function: process-command process
This function returns the command that was executed to start process. This is a list of strings, the first string being the program executed and the rest of the strings being the arguments that were given to the program.

(process-command (get-process "shell"))
     => ("/bin/csh" "-i")

Function: process-id process
This function returns the PID of process. This is an integer that distinguishes the process process from all other processes running on the same computer at the current time. The PID of a process is chosen by the operating system kernel when the process is started and remains constant as long as the process exists.

Function: process-name process
This function returns the name of process.

Function: process-contact process
This function returns t for an ordinary child process, and (hostname service) for a net connection (see section Network Connections).

Function: process-status process-name
This function returns the status of process-name as a symbol. The argument process-name must be a process, a buffer, a process name (string) or a buffer name (string).

The possible values for an actual subprocess are:

run
for a process that is running.
stop
for a process that is stopped but continuable.
exit
for a process that has exited.
signal
for a process that has received a fatal signal.
open
for a network connection that is open.
closed
for a network connection that is closed. Once a connection is closed, you cannot reopen it, though you might be able to open a new connection to the same place.
nil
if process-name is not the name of an existing process.
(process-status "shell")
     => run
(process-status (get-buffer "*shell*"))
     => run
x
     => #<process xx<1>>
(process-status x)
     => exit

For a network connection, process-status returns one of the symbols open or closed. The latter means that the other side closed the connection, or Emacs did delete-process.

Function: process-exit-status process
This function returns the exit status of process or the signal number that killed it. (Use the result of process-status to determine which of those it is.) If process has not yet terminated, the value is 0.

Function: process-tty-name process
This function returns the terminal name that process is using for its communication with Emacs--or nil if it is using pipes instead of a terminal (see process-connection-type in section Creating an Asynchronous Process).

Function: process-coding-system process
This function returns a cons cell describing the coding systems in use for decoding output from process and for encoding input to process (see section Coding Systems). The value has this form:

(coding-system-for-decoding . coding-system-for-encoding)

Function: set-process-coding-system process decoding-system encoding-system
This function specifies the coding systems to use for subsequent output from and input to process. It will use decoding-system to decode subprocess output, and encoding-system to encode subprocess input.

Sending Input to Processes

Asynchronous subprocesses receive input when it is sent to them by Emacs, which is done with the functions in this section. You must specify the process to send input to, and the input data to send. The data appears on the "standard input" of the subprocess.

Some operating systems have limited space for buffered input in a PTY. On these systems, Emacs sends an EOF periodically amidst the other characters, to force them through. For most programs, these EOFs do no harm.

Subprocess input is normally encoded using a coding system before the subprocess receives it, much like text written into a file. You can use set-process-coding-system to specify which coding system to use (see section Process Information). Otherwise, the coding system comes from coding-system-for-write, if that is non-nil; or else from the defaulting mechanism (see section Default Coding Systems).

Function: process-send-string process-name string
This function sends process-name the contents of string as standard input. The argument process-name must be a process or the name of a process. If it is nil, the current buffer's process is used.

The function returns nil.

(process-send-string "shell<1>" "ls\n")
     => nil

---------- Buffer: *shell* ----------
...
introduction.texi               syntax-tables.texi~
introduction.texi~              text.texi
introduction.txt                text.texi~
...
---------- Buffer: *shell* ----------

Command: process-send-region process-name start end
This function sends the text in the region defined by start and end as standard input to process-name, which is a process or a process name. (If it is nil, the current buffer's process is used.)

An error is signaled unless both start and end are integers or markers that indicate positions in the current buffer. (It is unimportant which number is larger.)

Function: process-send-eof &optional process-name
This function makes process-name see an end-of-file in its input. The EOF comes after any text already sent to it.

If process-name is not supplied, or if it is nil, then this function sends the EOF to the current buffer's process. An error is signaled if the current buffer has no process.

The function returns process-name.

(process-send-eof "shell")
     => "shell"

Sending Signals to Processes

Sending a signal to a subprocess is a way of interrupting its activities. There are several different signals, each with its own meaning. The set of signals and their names is defined by the operating system. For example, the signal SIGINT means that the user has typed C-c, or that some analogous thing has happened.

Each signal has a standard effect on the subprocess. Most signals kill the subprocess, but some stop or resume execution instead. Most signals can optionally be handled by programs; if the program handles the signal, then we can say nothing in general about its effects.

You can send signals explicitly by calling the functions in this section. Emacs also sends signals automatically at certain times: killing a buffer sends a SIGHUP signal to all its associated processes; killing Emacs sends a SIGHUP signal to all remaining processes. (SIGHUP is a signal that usually indicates that the user hung up the phone.)

Each of the signal-sending functions takes two optional arguments: process-name and current-group.

The argument process-name must be either a process, the name of one, or nil. If it is nil, the process defaults to the process associated with the current buffer. An error is signaled if process-name does not identify a process.

The argument current-group is a flag that makes a difference when you are running a job-control shell as an Emacs subprocess. If it is non-nil, then the signal is sent to the current process-group of the terminal that Emacs uses to communicate with the subprocess. If the process is a job-control shell, this means the shell's current subjob. If it is nil, the signal is sent to the process group of the immediate subprocess of Emacs. If the subprocess is a job-control shell, this is the shell itself.

The flag current-group has no effect when a pipe is used to communicate with the subprocess, because the operating system does not support the distinction in the case of pipes. For the same reason, job-control shells won't work when a pipe is used. See process-connection-type in section Creating an Asynchronous Process.

Function: interrupt-process &optional process-name current-group
This function interrupts the process process-name by sending the signal SIGINT. Outside of Emacs, typing the "interrupt character" (normally C-c on some systems, and DEL on others) sends this signal. When the argument current-group is non-nil, you can think of this function as "typing C-c" on the terminal by which Emacs talks to the subprocess.

Function: kill-process &optional process-name current-group
This function kills the process process-name by sending the signal SIGKILL. This signal kills the subprocess immediately, and cannot be handled by the subprocess.

Function: quit-process &optional process-name current-group
This function sends the signal SIGQUIT to the process process-name. This signal is the one sent by the "quit character" (usually C-b or C-\) when you are not inside Emacs.

Function: stop-process &optional process-name current-group
This function stops the process process-name by sending the signal SIGTSTP. Use continue-process to resume its execution.

Outside of Emacs, on systems with job control, the "stop character" (usually C-z) normally sends this signal. When current-group is non-nil, you can think of this function as "typing C-z" on the terminal Emacs uses to communicate with the subprocess.

Function: continue-process &optional process-name current-group
This function resumes execution of the process process by sending it the signal SIGCONT. This presumes that process-name was stopped previously.

Function: signal-process pid signal
This function sends a signal to process pid, which need not be a child of Emacs. The argument signal specifies which signal to send; it should be an integer.

Receiving Output from Processes

There are two ways to receive the output that a subprocess writes to its standard output stream. The output can be inserted in a buffer, which is called the associated buffer of the process, or a function called the filter function can be called to act on the output. If the process has no buffer and no filter function, its output is discarded.

Output from a subprocess can arrive only while Emacs is waiting: when reading terminal input, in sit-for and sleep-for (see section Waiting for Elapsed Time or Input), and in accept-process-output (see section Accepting Output from Processes). This minimizes the problem of timing errors that usually plague parallel programming. For example, you can safely create a process and only then specify its buffer or filter function; no output can arrive before you finish, if the code in between does not call any primitive that waits.

Subprocess output is normally decoded using a coding system before the buffer or filter function receives it, much like text read from a file. You can use set-process-coding-system to specify which coding system to use (see section Process Information). Otherwise, the coding system comes from coding-system-for-read, if that is non-nil; or else from the defaulting mechanism (see section Default Coding Systems).

Warning: Coding systems such as undecided which determine the coding system from the data do not work entirely reliably with asynchronous subprocess output. This is because Emacs has to process asynchronous subprocess output in batches, as it arrives. Emacs must try to detect the proper coding system from one batch at a time, and this does not always work. Therefore, if at all possible, use a coding system which determines both the character code conversion and the end of line conversion--that is, one like latin-1-unix, rather than undecided or latin-1.

Process Buffers

A process can (and usually does) have an associated buffer, which is an ordinary Emacs buffer that is used for two purposes: storing the output from the process, and deciding when to kill the process. You can also use the buffer to identify a process to operate on, since in normal practice only one process is associated with any given buffer. Many applications of processes also use the buffer for editing input to be sent to the process, but this is not built into Emacs Lisp.

Unless the process has a filter function (see section Process Filter Functions), its output is inserted in the associated buffer. The position to insert the output is determined by the process-mark, which is then updated to point to the end of the text just inserted. Usually, but not always, the process-mark is at the end of the buffer.

Function: process-buffer process
This function returns the associated buffer of the process process.

(process-buffer (get-process "shell"))
     => #<buffer *shell*>

Function: process-mark process
This function returns the process marker for process, which is the marker that says where to insert output from the process.

If process does not have a buffer, process-mark returns a marker that points nowhere.

Insertion of process output in a buffer uses this marker to decide where to insert, and updates it to point after the inserted text. That is why successive batches of output are inserted consecutively.

Filter functions normally should use this marker in the same fashion as is done by direct insertion of output in the buffer. A good example of a filter function that uses process-mark is found at the end of the following section.

When the user is expected to enter input in the process buffer for transmission to the process, the process marker separates the new input from previous output.

Function: set-process-buffer process buffer
This function sets the buffer associated with process to buffer. If buffer is nil, the process becomes associated with no buffer.

Function: get-buffer-process buffer-or-name
This function returns the process associated with buffer-or-name. If there are several processes associated with it, then one is chosen. (Currently, the one chosen is the one most recently created.) It is usually a bad idea to have more than one process associated with the same buffer.

(get-buffer-process "*shell*")
     => #<process shell>

Killing the process's buffer deletes the process, which kills the subprocess with a SIGHUP signal (see section Sending Signals to Processes).

Process Filter Functions

A process filter function is a function that receives the standard output from the associated process. If a process has a filter, then all output from that process is passed to the filter. The process buffer is used directly for output from the process only when there is no filter.

The filter function can only be called when Emacs is waiting for something, because process output arrives only at such times. Emacs waits when reading terminal input, in sit-for and sleep-for (see section Waiting for Elapsed Time or Input), and in accept-process-output (see section Accepting Output from Processes).

A filter function must accept two arguments: the associated process and a string, which is output just received from it. The function is then free to do whatever it chooses with the output.

Quitting is normally inhibited within a filter function--otherwise, the effect of typing C-g at command level or to quit a user command would be unpredictable. If you want to permit quitting inside a filter function, bind inhibit-quit to nil. See section Quitting.

If an error happens during execution of a filter function, it is caught automatically, so that it doesn't stop the execution of whatever program was running when the filter function was started. However, if debug-on-error is non-nil, the error-catching is turned off. This makes it possible to use the Lisp debugger to debug the filter function. See section The Lisp Debugger.

Many filter functions sometimes or always insert the text in the process's buffer, mimicking the actions of Emacs when there is no filter. Such filter functions need to use set-buffer in order to be sure to insert in that buffer. To avoid setting the current buffer semipermanently, these filter functions must save and restore the current buffer. They should also update the process marker, and in some cases update the value of point. Here is how to do these things:

(defun ordinary-insertion-filter (proc string)
  (with-current-buffer (process-buffer proc)
    (let ((moving (= (point) (process-mark proc))))
      (save-excursion
        ;; Insert the text, advancing the process marker.
        (goto-char (process-mark proc))
        (insert string)
        (set-marker (process-mark proc) (point)))
      (if moving (goto-char (process-mark proc))))))

The reason to use with-current-buffer, rather than using save-excursion to save and restore the current buffer, is so as to preserve the change in point made by the second call to goto-char.

To make the filter force the process buffer to be visible whenever new text arrives, insert the following line just before the with-current-buffer construct:

(display-buffer (process-buffer proc))

To force point to the end of the new output, no matter where it was previously, eliminate the variable moving and call goto-char unconditionally.

In earlier Emacs versions, every filter function that did regular expression searching or matching had to explicitly save and restore the match data. Now Emacs does this automatically for filter functions; they never need to do it explicitly. See section The Match Data.

A filter function that writes the output into the buffer of the process should check whether the buffer is still alive. If it tries to insert into a dead buffer, it will get an error. The expression (buffer-name (process-buffer process)) returns nil if the buffer is dead.

The output to the function may come in chunks of any size. A program that produces the same output twice in a row may send it as one batch of 200 characters one time, and five batches of 40 characters the next. If the filter looks for certain text strings in the subprocess output, make sure to handle the case where one of these strings is split across two or more batches of output.

Function: set-process-filter process filter
This function gives process the filter function filter. If filter is nil, it gives the process no filter.

Function: process-filter process
This function returns the filter function of process, or nil if it has none.

Here is an example of use of a filter function:

(defun keep-output (process output)
   (setq kept (cons output kept)))
     => keep-output
(setq kept nil)
     => nil
(set-process-filter (get-process "shell") 'keep-output)
     => keep-output
(process-send-string "shell" "ls ~/other\n")
     => nil
kept
     => ("lewis@slug[8] % "
"FINAL-W87-SHORT.MSS    backup.otl              kolstad.mss~
address.txt             backup.psf              kolstad.psf
backup.bib~             david.mss               resume-Dec-86.mss~
backup.err              david.psf               resume-Dec.psf
backup.mss              dland                   syllabus.mss
"
"#backups.mss#          backup.mss~             kolstad.mss
")

Accepting Output from Processes

Output from asynchronous subprocesses normally arrives only while Emacs is waiting for some sort of external event, such as elapsed time or terminal input. Occasionally it is useful in a Lisp program to explicitly permit output to arrive at a specific point, or even to wait until output arrives from a process.

Function: accept-process-output &optional process seconds millisec
This function allows Emacs to read pending output from processes. The output is inserted in the associated buffers or given to their filter functions. If process is non-nil then this function does not return until some output has been received from process.

The arguments seconds and millisec let you specify timeout periods. The former specifies a period measured in seconds and the latter specifies one measured in milliseconds. The two time periods thus specified are added together, and accept-process-output returns after that much time whether or not there has been any subprocess output.

The argument seconds need not be an integer. If it is a floating point number, this function waits for a fractional number of seconds. Some systems support only a whole number of seconds; on these systems, seconds is rounded down.

Not all operating systems support waiting periods other than multiples of a second; on those that do not, you get an error if you specify nonzero millisec.

The function accept-process-output returns non-nil if it did get some output, or nil if the timeout expired before output arrived.

Sentinels: Detecting Process Status Changes

A process sentinel is a function that is called whenever the associated process changes status for any reason, including signals (whether sent by Emacs or caused by the process's own actions) that terminate, stop, or continue the process. The process sentinel is also called if the process exits. The sentinel receives two arguments: the process for which the event occurred, and a string describing the type of event.

The string describing the event looks like one of the following:

A sentinel runs only while Emacs is waiting (e.g., for terminal input, or for time to elapse, or for process output). This avoids the timing errors that could result from running them at random places in the middle of other Lisp programs. A program can wait, so that sentinels will run, by calling sit-for or sleep-for (see section Waiting for Elapsed Time or Input), or accept-process-output (see section Accepting Output from Processes). Emacs also allows sentinels to run when the command loop is reading input.

Quitting is normally inhibited within a sentinel--otherwise, the effect of typing C-g at command level or to quit a user command would be unpredictable. If you want to permit quitting inside a sentinel, bind inhibit-quit to nil. See section Quitting.

A sentinel that writes the output into the buffer of the process should check whether the buffer is still alive. If it tries to insert into a dead buffer, it will get an error. If the buffer is dead, (buffer-name (process-buffer process)) returns nil.

If an error happens during execution of a sentinel, it is caught automatically, so that it doesn't stop the execution of whatever programs was running when the sentinel was started. However, if debug-on-error is non-nil, the error-catching is turned off. This makes it possible to use the Lisp debugger to debug the sentinel. See section The Lisp Debugger.

In earlier Emacs versions, every sentinel that did regular expression searching or matching had to explicitly save and restore the match data. Now Emacs does this automatically for sentinels; they never need to do it explicitly. See section The Match Data.

Function: set-process-sentinel process sentinel
This function associates sentinel with process. If sentinel is nil, then the process will have no sentinel. The default behavior when there is no sentinel is to insert a message in the process's buffer when the process status changes.

(defun msg-me (process event)
   (princ
     (format "Process: %s had the event `%s'" process event)))
(set-process-sentinel (get-process "shell") 'msg-me)
     => msg-me
(kill-process (get-process "shell"))
     -| Process: #<process shell> had the event `killed'
     => #<process shell>

Function: process-sentinel process
This function returns the sentinel of process, or nil if it has none.

Function: waiting-for-user-input-p
While a sentinel or filter function is running, this function returns non-nil if Emacs was waiting for keyboard input from the user at the time the sentinel or filter function was called, nil if it was not.

Transaction Queues

You can use a transaction queue to communicate with a subprocess using transactions. First use tq-create to create a transaction queue communicating with a specified process. Then you can call tq-enqueue to send a transaction.

Function: tq-create process
This function creates and returns a transaction queue communicating with process. The argument process should be a subprocess capable of sending and receiving streams of bytes. It may be a child process, or it may be a TCP connection to a server, possibly on another machine.

Function: tq-enqueue queue question regexp closure fn
This function sends a transaction to queue queue. Specifying the queue has the effect of specifying the subprocess to talk to.

The argument question is the outgoing message that starts the transaction. The argument fn is the function to call when the corresponding answer comes back; it is called with two arguments: closure, and the answer received.

The argument regexp is a regular expression that should match the entire answer, but nothing less; that's how tq-enqueue determines where the answer ends.

The return value of tq-enqueue itself is not meaningful.

Function: tq-close queue
Shut down transaction queue queue, waiting for all pending transactions to complete, and then terminate the connection or child process.

Transaction queues are implemented by means of a filter function. See section Process Filter Functions.

Network Connections

Emacs Lisp programs can open TCP network connections to other processes on the same machine or other machines. A network connection is handled by Lisp much like a subprocess, and is represented by a process object. However, the process you are communicating with is not a child of the Emacs process, so you can't kill it or send it signals. All you can do is send and receive data. delete-process closes the connection, but does not kill the process at the other end; that process must decide what to do about closure of the connection.

You can distinguish process objects representing network connections from those representing subprocesses with the process-status function. It always returns either open or closed for a network connection, and it never returns either of those values for a real subprocess. See section Process Information.

Function: open-network-stream name buffer-or-name host service
This function opens a TCP connection for a service to a host. It returns a process object to represent the connection.

The name argument specifies the name for the process object. It is modified as necessary to make it unique.

The buffer-or-name argument is the buffer to associate with the connection. Output from the connection is inserted in the buffer, unless you specify a filter function to handle the output. If buffer-or-name is nil, it means that the connection is not associated with any buffer.

The arguments host and service specify where to connect to; host is the host name (a string), and service is the name of a defined network service (a string) or a port number (an integer).


Go to the first, previous, next, last section, table of contents.