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Chapter 1

Introduction

1.1 Welcome toEntropy

Entropy is a high-quality rendering system that incorporates the speed and low memory
use of “scanline” renderers and the realism afforded by “global illumination” renderers.
Entropy:

• employs an efficient “scanline” algorithm that can render very large scenes using
much less time and memory than other rendering algorithms, and uses an “analytic”
algorithm for hidden surface removal, providing superior quality antialiasing, espe-
cially for small or thin geometry such as hair;

• supports ray traced reflections and shadows, true area light sources, indirect “global
illumination,” and caustics;

• supports a wide variety of geometric primitives, including polygons and polygo-
nal meshes, bilinear and bicubic patches and patch meshes, NURBS, subdivision
surfaces, quadrics (such as spheres, cylinders, etc.), “blobby” implicit surfaces, 1D
spline primitives (ideal for hair), and point primitives (ideal for particle systems);

• allows fully-programmable shading — users can supply “shaders” that specify in
minute detail the appearance of surfaces, emission of light sources, attenuation of
light through volumes, and modification of the shape of surfaces (displacement);

• produces high-quality images of RGB, alpha, depth, and arbitrary data computed
by shaders, with no hard-coded resolution limits, and supporting 8-bit, 16-bit, and
floating point output.

• allows user-programmable plugins for new image output types, procedural geometry,
and calling C/C++ routines from inside shaders.

1.2 Compatibility, Ancestry, Versioning

Entropy uses some APIs that are very similar to those described in the RenderMan In-
terface 3.2 Specification published by Pixar Animation Studios. However,Entropy is not

1



2 CHAPTER 1. INTRODUCTION

associated with Pixar, and no claims are made thatEntropy is in any way a compatible
replacement for their PhotoRealistic RenderMan product. Despite this, you may find that
most applications, scene files, and shaders written to conform to the RenderMan Interface
may be used withEntropy without modification.

Entropy is “descended” from the Blue Moon Rendering Tools (BMRT), a shareware
ray tracer that has been used on films such asA Bug’s Life, Stuart Little, andHollow Man.
Entropy’s graphics algorithms are new, its performance is vastly superior to BMRT, and it is
fully supported as a production-ready product. Nonetheless, its heritage and compatibility
with its ancestor are obvious, and also are reflected by its version numbering.

Entropy’s version numbers are organized asmajor.minor patch(for example, 3.1 R1).
The major release indicates a significant leap forward, possibly in incompatible ways. A
minor release may include new functionality or enhanced performance, but will preserve
backward-compatibility. A patch generally fixes bugs but does not add new features (ex-
cept for features that, because of bugs, were nonfunctional). The major and minor version
numbers ofEntropy reflect the relationship and compatibility with BMRT releases (that’s
why the initial release ofEntropy was 3.0, to show its relation to BMRT 2.x).

1.3 About This Manual

Organization

A thorough description ofEntropy’s use would cover scores of topics, all of which are
interrelated. There is no way to arrange each chapter to require only knowledge of the pre-
ceeding sections, so we will not pretend to present the material in a linear fashion. Instead,
this manual is organized into three main sections. You should not feel the need to read the
chapters in order.

Part I presents the formal specifications of the two major API’s: scene description files
and shaders. This section is organized as a reference work, not as a tutorial. Beginning
users may not need it right away, but as they become intermediate users they will have
more frequent need to understand, and occasionally modify, scene files and shaders. Ad-
vanced users who routinely write their own shaders or debug scene files will find this section
indispensable as the primary reference on those languages.

Part II contains the nitty-gritty details of how to actually useEntropy: invoking the ren-
derer, compiling shaders, dealing with texture maps, writing moderately complex shaders,
using ray tracing and global illumination, and so on. The material is presented in an expos-
itory, “how-to” format, organized by topic.

Part III is aimed squarely on the most advanced users and developers of modelers and
third-party add-ons toEntropy. As a casual user, some knowledge of the scene description
and shader API’s of Part I will suffice. But Part III dscribes ways to extend the functionality
of Entropy in even more advanced (and esoteric) ways. It describes procedural geometry,
DSO/DLL’s callable from your shaders, and image display servers. If you’re not a software
developer, you almost certainly don’t need the material in Part III — don’t feel bad about
skipping it.
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Margin Notes

NEW!
This manual has easy-to-spot margin notes (as seen here) indicating new features, com-
mands, or language syntax that is present inEntropy but was not available in BMRT (or
other compatible renderers), or whose meaning or performance has changed dramatically.

DeprecatedThere are also some commands or language features thatEntropy supports primarily
for backward compatibility with scene files designed for use with BMRT orPRMan, but
that we feel should be phased out and replaced with newer features or idioms. It’s possible
that someday support for these features may be eliminated altogether.1 We have marked
those commands asdeprecatedand have made it easy to spot such commands with margin
notes, as done here.

1We promise that features will only disappear entirely with rarity, and only after the feature has been dep-
recated in previous releases.
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Chapter 2

Scene Files

This chapter describes the formatting and commands forEntropy’s input scene files. The
scene files are plain ASCII, although if they are compressed bygzip Entropy will correctly
uncompress them while reading the files.

Typically, scene files will be generated by a modeling system or an appropriate plugin
or converter. Beginning users will generally not need to see the scene files themselves,
and may remain blissfully unaware of their details. More intermediate and advanced users
will find it useful to understand the format of these files for debugging purposes, clever
modifications, and more fine control of renderer operations.

2.1 Lexical Elements

Entropy scene files are comprised of ASCII characters.
Whitespace includes blank spaces, tab characters, newlines, and carriage returns. Whites-

pace can delimit tokens, but the amount and type of whitespace has no syntactic or semantic
significance.

The character ‘#’ (when it is not inside a quoted string) indicates a comment. The# and
all characters following it, until a newline character, are ignored by the renderer.

Numbers are integers or floating-point values. Integers consist of an optional sign (‘+’ or
‘-’) followed by one or more decimal digits. Floating-point numbers consist of an optional
sign, zero or more decimal digits, a decimal point (‘.’), zero or more decimal digits, and an
optional exponent (the letter ‘e’ followed by one or more decimal digits).

Integers may be used for data that are expected to be floating-point (with the obvious
conversion performed), but it is an error to use a floating-point number where an integer is
expected.

Strings are delimited by double quotes (‘" ’) at their beginning and ending. As in
C programs, strings may contain special escape sequences that begin with the backslash
(‘\’) character: ‘\n’ (newline), ‘\r’ (carriage return), ‘\t’ (tab), ‘\b’ (backspace), ‘\\’
(backslash character), ‘\"’ (double quote character).

Names start with a letter (‘a’-‘ z’ or ‘ A’-‘ Z’) followed by one or more letters, digits, or
the underscore (‘’). Names are case-sensitive; that is, upper-case and lower-case letters are
different and refer to different variables or commands.

7



8 CHAPTER 2. SCENE FILES

Arrays of data (strings or numbers) are delimited by square bracket characters (‘[’ and
‘]’). Strings and numbers may not be mixed in a single array. If an array of numbers has
any floating-point elements, all elements will be assumed to be floating-point. An array of
numbers with all integer values may be used as either an integer or a floating-point array.

2.2 Overall structure of scene files

Entropy scene files have a particular structure, embodied in the tree of the hierarchical
graphics state. There are actually several calls that manipulate the hierarchical graphics
state stack, some of which change the mode of the graphics state and others that push a
subset of the attributes onto the stack. We describe the subtree of the hierarchy inside of a
balanced pair of these commands as being ablock. Being “in” a particular block means that
one of the ancestors of that level of the hierarchy was created by that particular API call.

The scene description is divided into two phases: describing theviewer, and describing
theworld. The viewer description includes various parameters of the camera as well as pa-
rameters of the image file that is being generated. These parameters are calledoptionsand
are global to the entire rendered image. The world description includes all of the geometry
in the scene, with their material descriptions and other parameters that can be specific to in-
dividual objects in the scene. These parameters are calledattributes. The division between
describing “the viewer” and describing “the scene” occurs atWorldBegin, which starts a
world block.

Rendering an animation can include the rendering of large numbers of frames, and each
frame might require prerendering a certain number of images for use as texture maps or for
other purposes. The scene description API allows for these logical divisions of the work to
be specified, as well.

A scene description therefore proceeds as a series of nested blocks, in the following
order:

FrameBegin
Image and camera options
WorldBegin

Attributes, lights, primitives
WorldEnd

FrameEnd
...
(optionally more frames)

These blocks are divided by the following commands:

FrameBegin framenumber

FrameEnd

In a scene file that contains the definitions of multiple frames, the individual frames
are delimited byFrameBegin andFrameEnd. FrameBegin, which takes a single
integerframenumberthat isn’t actually used for anything, saves the entire set of frame
options.FrameEnd restores the options.
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It is perfectly legal for a scene file to not haveFrameBegin or FrameEnd statements,
as long as it contains the definition of only one frame.

In a scene file that describes multiple frames, we strongly recommend thatno com-
mands be placed outside ofFrameBegin/ FrameEnd pairs.

EXAMPLE:

FrameBegin 1
FrameEnd

WorldBegin
WorldEnd

At WorldBegin, the current transformation is marked as"world" space, the cur-
rent transformation is reset to the identity (and further transformations are relative to
"world" space, rather than"camera" space), and all the options (see Section 3.1) are
fixed for the frame, and the entire attribute state is saved (just like withAttributeBegin).

BetweenWorldBegin andWorldEnd, the scene geometry (and the attributes that
apply to the primitives) are set. No options may be set betweenWorldBegin and
WorldEnd.

At WorldEnd, the scene is assumed to be complete, the entire frame is rendered, and
the attribute state is restored to its values atWorldBegin.

EXAMPLE:

WorldBegin
WorldEnd

2.2.1 Types of scene commands

Broadly speaking, there are three types of commands in scene files. The first group of
commands setoptions, that is, the properties that apply to the camera or the image as a
whole. Examples include image resolution and camera placement. These commands all
happen prior toWorldBegin. These are all covered in detail in Chapter 3.

The second group of commands setattributes, which are the properties that apply to
individual geometric objects, and which may vary from object to object. Examples include
object color and shader assignments. Included in the attributes is the current transformation
(sometimes called the CTM), which defines the placement of objects. The renderer main-
tains agraphics state— the set of all attribute values and the current transformation. As
attribute or transformation commands are executed in order, the graphics state is modified.
Commands exist to save and restore the transformation or the entire attribute state.

The third group of commands add geometry to the scene. When a geometric primitive
is added to the scene, that primitive gets a copy of the full graphics state – the current
transformation and set of attribute values. We say that the primitive isboundto the attributes
at that time. As it continues to be processed to make the image, the primitive will continue
to remember the attribute values that were in effect when the primitive was created. Later
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changes to the current transformation or attributes will only have an effect on subsequently-
created primitives; once a primitive is declared, it cannot be changed by future alterations
of the attribute state.

2.3 Parameter Lists and Declarations

Many routines — including all geometric primitives and shader declarations, and a number
of other routines such asDisplay, Option, andAttribute— take a variable number of ar-
guments as a way of extending their functionality to incorporate user-specified data. These
routines typically take several fixed arguments, followed by a variable-length parameter
list. The declarations of these routines in Chapters 3–4 indicate these optional arguments
as:...parameterlist... .

These parameter lists are comprised oftoken-value pairs— alternating parameters of
strings (tokens) supplying the name of a parameter, and arrays supplying the parameter’s
data value(s). The array may have only one element, if a single data value is needed.

Because the purpose of these parameter lists is to communicate user-designated data
(for example, to pass it for use in shaders), the renderer will not know the nature of the
data in advance. Therefore, the parameter name itself can have the type information built
in, known as “in-line parameter declaration.” The full format of a parameter name on a
parameter list is:

"class type name" for ordinary variables, and
"class type name[length]" for arrays

Thenameis the name of the parameter. Thetypeis one of:float, color, point, vector,
normal, matrix, orstring (the shading language types described in Section 5.2), and two
additional types:hpoint, orinteger. An hpoint is a 4-D homogeneous point(x, y, z, w)
that is interpolated in 4-D and converted to 3-D by a homogeneous divide prior to providing
their value to shaders. The meaning ofinteger should be obvious, but it is worth nothing
that many parameters toOption, Attribute, andDisplay are integers, but shader pa-
rameters may not beinteger (because there is no integer type in the shading language).
Parameters may also be arrays of any of the basic types, as indicated by including the op-
tional lengthin brackets.

The optionalclass is not used when passing data to shaders or to routines such as
Option, Attribute, or Display. But when data is being passed on geometric primitives,
the classmay be one of:constant, uniform, varying, or vertex. The storage class
indicates how much data is passed and how it should be interpolated across the primitive
(this is explained in further detail in Chapter 4).

Following are some examples of token-value lists:

Displacement "dentmap" "string texturename" ["mydents.tx"]
Surface "planks" "float Kd" [0.75] "color darkwood" [.75 .5 .1]
Atmosphere "foggy" "float weights[5]" [.2 .95 .1 .1 1.25]
Patch "bilinear" "P" [0 0 0 .5 -.25 0 1 0 0 .5 2 0]

"constant color paint" [.25 .25 .33]
"vertex float specularity" [.5 .8 .6 .73]
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Alternately, you can pass parameters without the full in-line declarations, relying on a
global dictionary of name-type definitions. TheDeclare routine adds a name-type defini-
tion to the dictionary:

Declare name declaration

Adds a new parameter name to the global name-type dictionary. The parametername
will be used as the identifier in subsequent parameter lists. The parametertypedefines
the storage class and data type of the data. The syntax is similar to, but not identical
to, variable declarations in the shading language —"class type".

classcan be any of the four storage classesconstant, uniform, varying, orvertex.
class is optional, because it is only relevant to primitive variables, and defaults to
constant if left out. typecan be any of:float, color, point, vector, normal,
string, matrix, hpoint, orinteger, or can be a fixed-length array of any of those
types by providing a trailing integer array length inside square brackets.

EXAMPLE:

Declare "woodcolor" "color"
Declare "weights" "vertex float[4]"

We recommend using “in-line declarations” rather than usingDeclare, due mainly to
the inconvenience and potential confusion arising from the single global dictionary. The
Declare syntax is mainly supported for backward-compatibility with older scene files or
modeling programs.

2.4 Motion Blur

MotionBegin [time0 ... timen−1]
MotionEnd

Describes how objects move in the scene by specifying how a particular transforma-
tion changes, or primitive deforms, over time. TheMotionBegin statement takes an
array ofn floating-point time values. Between theMotionBegin andMotionEnd
statements aren scene commands of identical routine name, but different in pa-
rameter values. Each command corresponds to a time value in the list supplied to
MotionBegin. Valid scene commands that can be motion blurred include any trans-
formations (Section 3.2.3), or any geometric primitive (Chapter 4).

The motion block describes transformations or primitives change over time, but which
time segment is captured by the camera is determined separately byShutter (Sec-
tion 3.1.1). If there is noShutter statement, no motion blur will be apparent in the
scene.

EXAMPLE:

MotionBegin [1.0 1.02]
Translate 3 0 0
Translate 3.5 0 0

MotionEnd
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MotionBegin [1.0 1.02]
Polygon "P" [0 0 0 1 0 0 .5 2 0]
Polygon "P" [0 0 0 1.2 0 0 .4 2.1 0]
MotionEnd

Note: Entropy 3.1 currently supports only two motion times for each motion block.
This will be extended in a future release.

2.5 External Resources

2.5.1 Archive Files

ReadArchive filename

Parse and interpret scene file commands in the file given by the stringfilename. This
is similar to the behavior of the C (or shader)#include — it is as if the entire
contents offilenamewas at this location in the file.

EXAMPLE:

ReadArchive "chair.rib"

Note: whenReadArchive is used to include a specific model that is stored in a sepa-
rate file, it is much more efficient to useProcedural "DelayedReadArchive" (see Sec-
tion 4.8) if it is possible to bound the geometry in the file.

2.5.2 Making Texture Maps

Although ordinary image files may be turned into textures, environment maps, and shadows
using an external program (mkmip, see Section 10.1), it is occasionally useful to have scene
files themselves contain commands to that will convert the files.

Following are the descriptions of the routines that can perform these tasks as scene file
commands. For further explanation on the meanings of all of the parameters, please refer
to Chapter 10.

MakeTexture sourceimage texturename swrap twrap filter swidth twidth

...parameterlist...

Turns the image file named by the stringsourceimageinto a valid texture file to
be stored with the name given by the stringtexturename. The stringsswrap and
twrap are the wrap modes, and may be any of:"black", "clamp", "periodic",
or "mirror" (these are explained in Section??). The stringfilter and floating-point
parametersswidthandtwidth determine the filter used for downsizing the texture to
form a MIP-map. Theparameterlistis an optional token-value list giving additional
parameters.

EXAMPLE:

MakeTexture "scratch.tif" "scratch.tx" "black" "black" "box" 1 1
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MakeCubeFaceEnvironment px nx py ny pz nz texturename fov

filter swidth twidth ...parameterlist...

Turns the six image files named by the stringspx, nx, py, ny, pz, nzinto a valid
cube-face environment map file to be stored with the name given by the stringtex-
turename. The floating-point parameterfov indicates the field of view (measured in
degrees) of the six directional images, and should be at least 90. The stringfilter
and floating-point parametersswidthandtwidth determine the filter used for down-
sizing the texture to form a MIP-map. Theparameterlistis an optional token-value
list giving additional parameters.

EXAMPLE:

MakeCubeFaceEnvironment "px.tif" "nx.tif" "py.tif"

"ny.tif" "pz.tif" "nz.tif" "refl.env" 90 "box" 1 1

MakeLatLongEnvironment sourceimage texturename filter swidth twidth

...parameterlist...

Turns the image file named by the stringsourceimageinto a valid latitude-longitude
environment map file to be stored with the name given by the stringtexturename.
The stringfilter and floating-point parametersswidthandtwidth determine the filter
used for downsizing the texture to form a MIP-map. Theparameterlistis an optional
token-value list giving additional parameters.

EXAMPLE:

MakeLatLongEnvironment "paintedenv.tif" "paintedenv.env" "box" 1 1

MakeShadow depthmapname shadowmapname ...parameterlist...

Turns the depth map file named by the stringdepthmapnameinto a valid shadow
map texture file to be stored with the name given by the stringshadowmapname. The
parameterlistis an optional token-value list giving additional parameters.

EXAMPLE:

MakeShadow "light0.zfile" "light0.sm"
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Chapter 3

Options and Attributes

This chapter describes the scene file routines that alter thegraphics state. These routines
fall into a two broad categories:

Options are properties that apply to the entire scene, such as image resolution.

Attributes are properties of individual object, and may vary from object to objects (an
example is object color). Attributes include shader assignments and transformations
(placement of objects in the scene).

The remainder of this chapter describes all of the options and attributes recognized by
Entropy. Many of the common ones have dedicated commands to set them. More rarely-
used options and attributes, or those that are very specific toEntropy’s algorithms, are
handled by a more general mechanism.

3.1 Options

Optionsare those properties that apply to the entire scene. Examples of scene options
include image resolution and camera properties. The full list of “standard” options, each of
which is set by a dedicated command, is given in Table 3.1. A number of more rarely-used
options, generally related toEntropy’s specific algorithms, are set through a more general
mechanism and are listed in Table 3.2.

Because options apply to the entire scene and cannot vary from object to object, all
option-setting commands must occur prior toWorldBegin. It is an error to set options
betweenWorldBegin andWorldEnd.

3.1.1 Camera and Image Area Options

Clipping hither yon

Set the near and far clipping planes. Geometry whosez coordinate in camera space
is less thanhitheror greater thanyonwill not be visible. There are also some compu-
tations in which"camera" spacez values are normalized using the clip plane values

15
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Option Entropy defaults
Camera options:
Image resolution 640 x 480 (roughly video resolution)
Pixel aspect ratio 1.0 (square pixels)
Crop Window (0,1,0,1) (render entire image)
Frame Aspect Ratio 1.333 (determined by image resolution,

if not set separately)
Screen Window (-1.3333,1.3333,-1,1) (determined by frame aspect ra-

tio, if not set separately)
Camera projection "orthographic"
Near and far clipping planes near=1e-6, far=1e30
Other clipping planes none
Depth of field fstop =∞ (everything in focus)
Shutter time open = close = 0 (no motion blur)

Image output options:
Pixel samples 2 x 2 (4 regions per pixel)
Pixel filter "gaussian" 2x2 pixels
Exposure gain=1, gamma=1
Color ("rgba") quantization 255 0 255 0.5 (output 8 bit color with dither)
Depth ("z") quantization 0 0 0 0 (output floating point depths)
Display "ri.tif" "tiff" "rgb" (create an RGB TIFF file named

ri.tif)
Imager shader none

Rendering options:
Hider "hidden" (default rendering algorithm)

Table 3.1: Standard scene options and their default values.

(for example,"screen" spacez or the return value of the shading languagedepth()
function).

EXAMPLE:

Clipping .01 10000

NEW! ClippingPlane x y z nx ny nz

Adds a user-defined clipping plane at position(x, y, z) and with normal(nx ,ny ,nz ).
The position and normal are in the coordinate system in effect at the time of the
ClippingPlane statement. Geometry in the scene on thepositiveside (i.e., in the
direction of the normal) will not be visible to the camera.

Note that this only applies to camera visibility. Objects that are culled from the cam-
era view due to clipping planes will still be visible to ray tracing (reflection, shad-
ows, indirect illumination, etc.). This may seem counter-intuitive, but is analogous
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to Clipping— even objects outside the hither-yon range (from the P.O.V. of the
camera) are visible in reflections.

EXAMPLE:

ClippingPlane 8 10 0 0 1 0

CropWindow xmin xmax ymin ymax

Designates a subregion (“crop window”) of the image pixels to be rendered. The
region is bounded byxmin, xmaxhorizontally andymin, ymaxvertically. Thexmin,
xmax, ymin, andymaxvalues are floats (ranging from 0 to 1) representing the portion
of the image to be rendered,not raster (pixel) coordinates. The default is for the
entire image to be rendered (0 0 1 1).

The pixel coordinates are rounded, and the border regions are computed in such a
way that it is guaranteed that abutting crop windows will join together seamlessly.

EXAMPLE:

CropWindow 0 0.5 0 0.5

The example above causes just the upper left quadrant of the image to be rendered.

DepthOfField fstop focallength focaldistance

Simulates a camera lens with a particular focal length and f/stop, focused on objects
at a given distance. Thefocallengthand focaldistanceparameters are measured in
units of "camera" space. Iffstop is 1e30 (effectively infinity), a pinhole camera
will be used, resulting in a perfectly sharp image at all distances (this is the default
behavior).

EXAMPLE:

DepthOfField 8 0.04 2.75
If the scene was modeled such that"camera" space had units of meters, the line
above sets up an f/8, 40mm lens focused on objects 2.75m from the camera.

Format xresolution yresolution pixelaspectratio

Sets the full resolution (in pixels) of the image to be rendered. Thexresolutionand
yresolutionare integers giving the horizontal and vertical resolution, respectively.
Thepixelaspectratiois a float giving the aspect ratio (width/height) of the pixels (1.0
for square pixels).

EXAMPLE:

Format 640 480 1

FrameAspectRatio aspectratio

Sets the aspect ratio (width/height) of the image to be rendered. IfFrameAspectRatio
is not called, it will be determined from theFormat parameters.

EXAMPLE:

FrameAspectRatio 1.333
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Projection projectionname ...parameterlist...

Sets the projection used by the camera. Theprojectionnameis a string that specifies
the projection type.Entropy recognizes the projections"orthographic" (the de-
fault) and"perspective". The optionalparameterlistconsists of token-value pairs
supplying parameters specific to the projection. The"perspective" projection rec-
ognizes the float parameter"fov", which specifies the field of view in degrees.

EXAMPLE:

Projection "perspective" "fov" [45]

ScreenWindow left right bottom top

Sets up the mapping from"screen" space (points projected onto thez = 1 plane
in camera coordinates) to"raster" space (actual pixels in the final image). The
x = left line in "screen" space corresponds to the left edge of the raster image,
x = right to the right edge,y = bottom to the lower edge, andy = top to the upper
edge.

The default values forScreenWindow are:

(−frameaspectratio, frameaspectratio,−1, 1)

if frameaspectratio ≥ 1. If frameaspectratio < 1, the defaultScreenWindow
coordinates are:

(−1, 1,−1/frameaspectratio, 1/frameaspectratio)

EXAMPLE:

ScreenWindow -1 1 -0.75 0.75

Shutter opentime closetime

Specifies the time range in which the camera’s shutter is open, allowing moving ob-
jects to form a blurred image. Unlike a real camera, longer shutter times will not
increase the amount of light exposure or change the brightness of the image. If
opentime = closetime, the scene will be rendered with no motion blur.

EXAMPLE:

Shutter 0.0 0.016667

3.1.2 Image Formation and Display Options

Display name format data ...parameterlist...

Specifies an output stream for rendered image pixels. Thenameis a string that gives
the name of an image file to write.

Theformatparameter is a string that specifies the type of file to write. Individual file
formats or framebuffer types are implemented bydisplay drivers. Entropy comes
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with several display drivers (such as"tiff"), and also allows users or third parties
to write additional display drivers to extend the set of formats thatEntropy can write.
A formatof "file" indicates that the default file format (tiff) should be used, and
"framebuffer" indicates that the default frame buffer display should be used.

NEW! The data parameter is a string that is a comma-separated list of what data to out-
put. Standard data fields include"rgb" (3-channel color),"rgba" (color and alpha),
and"z" (depth information). Other values supplied indicate global variables (see
Table 5.8) andoutput variablescalculated by surface or atmosphere shaders. If non-
standard data fields are specified, they should either have been pre-declared with
Declare, or have “inline” type declarations.

The optionalparamlistis a list of token-value pairs giving parameters specific to the
particular display driver being used, and/or any of the following:

"string filter" The name of the pixel filter to use.
"float filterwidth[2]" The width (inx andy) of the pixel filter to use.
"float quantize[4]" The zero, one, min andmaxquantization levels.

SeeQuantize (p. 21) for their meanings.
"float dither" The dither amplitude (0 for no dither).

Note that the"filter" and"filterwidth" override thePixelFilter options for
this display output stream, and"quantize" and"dither" override theQuantize
option for this display output stream. Anyparamlisttokens other than the ones above
will be passed along to the display driver. Check the documentation for the specific
display driver to see what optional parameters it can take.

NEW!If the first character of thenameis + (the plus character), anadditionaldisplay output
stream will be created. There may be any number of display output streams, and each
may have entirely different bit depths, quantization parameters, and pixel filters.

EXAMPLES:

Display "frame0001.tif" "tiff" "rgba"
Display "+frame0001.z" "zfile" "z"
Display "+spec0001.tif" "file" "color specularpass" "quantize"

[0 65535 0 65535]

The above commands create three display output streams: (1) an TIFF fileframe0001.tif
containing the color and alpha of the image, using the pixel filter and quantization
previously specified byPixelFilter andQuantize; (2) a"camera" space depth
map frame0001.z (which because it’s outputtingz depth will use a"box" 1 1
filter and the"z" Quantize values; (3) a color TIFF file"spec0001.tif" contain-
ing the"specularpass" surface shader output variable, as a 16-bit-per-channel file
(overriding theQuantize values).

Exposure gain gamma

Indicates that the renderer should transform all colors by passing them through the
following formulaprior to quantization:

color = (color · gain)1/gamma
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The default isgain = 1, gamma = 1.

EXAMPLE:

Exposure 1 2.2

Hider name ...parameterlist...

Sets the hidden surface algorithm to the one specified by the stringname. A renderer
may allow you to choose one of several different hidden surface algorithms avail-
able. The one named"hidden" indicates that the renderer should use the default
algorithm. An optionalparameterlistof token-value pairs may specify parameters
specific to the algorithm being used.

EXAMPLE:

Hider "hidden"

Imager shadername ...parameterlist...

Sets the imager shader toshadername. The optionalparamlistis a list of token-value
pairs giving parameters specific to the particular shader being used. All parameters
should either have their types declared “inline” or have been previously declared with
Declare.

EXAMPLES:

Imager "clamptoalpha"

PixelSamplesxsamples ysamples

Set the number of subdivisions per pixel in order to control antialiasing. Larger num-
bers product higher quality images, but take longer to render.

TIP: PixelSamples 1 1 is good for fast previews. WithEntropy, 4 4 is good
enough for most final still images. If you are using lots of motion blur or depth of
field, you may need6 6 or higher. The “right” value depends greatly on the contents
of the image. This is a basic time-versus-quality knob.

EXAMPLE:

PixelSamples 2 2

PixelFilter filtername xwidth ywidth

Final image pixels are produced by taking the results of many pixel subregions (de-
termined byPixelSamples) and reconstructing a single pixel value that is a weight
average of the contribution from the subregions, including those from nearby pixels.
PixelFilter allows you to specify the weighting filter by name ("box", "triangle",
"catmull-rom", "sinc", or "gaussian") and the full width of the filter extent.
The default is to use a"gaussian" filter with width 2 in each direction. This should
be adequate for most images, butPixelFilter gives you the freedom to customize
the filter and width.

EXAMPLE:

PixelFilter "gaussian" 2 2
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Quantize data one min max ditheramplitude

Determines the quantization (scaling and method of converting to integer values) of
the image data. Theone, min, andmaxare integer values andditheramplitudeis a
floating point value. Image data are scaled so that an original floating point pixel
value of 1.0 gets a pixel value ofone, a pseudo-random dither of amplitudeditheram-
plitudeis added to eliminate banding artifacts, then the integer value is clamped to lie
betweenmin andmax, respectively. More formally, the float-to-integer quantization
is performed according to the following formula:

pixelval = round(one ∗ floatval + ditheramplitude ∗ random())
pixelval = clamp(pixelval ,min,max )

The range ofmin andmaxdetermine thebit depthof the resulting output image: if
both are≤ 255, 8-bit integer (per channel); if both are≤ 65535, 16-bit integer; other-
wise 32-bit integerr. If all four numeric parameters are 0, then no integer quantization
is performed and a floating-point image is output. Ifditheramplitudeis 0 (as it should
be for floating-point images), no dithering is performed.

Thedataparameter is a string that indicates which image output data fields should be
quantized in this manner, and may be"rgba", "z".

EXAMPLES:

The proper settings for an 8-bit image (and the default settings for quantizing color
data) are:

Quantize "rgba" 255 0 255 0.5

For full floating point output (the default for depth data):
Quantize "rgba" 0 0 0 0

3.1.3 Implementation Options

The previous sections have described RIB statements that set many commonly-used op-
tions. There are many additional options that do not have their own separate RIB state-
ments, either because they are less commonly used or because they set parameters that are
extremely specific to a particular rendering method. Implementation-specific options are
set by using the extendibleOption call:

Option category ...parameterlist...

Sets options of a particularcategory(a string representing an option category rec-
ognized by the renderer). Specific parameters in that category are supplied as a
list of token-value pairs. Options apply to the entire scene and must be set prior
to WorldBegin.

If categoryis "user", the token and value are added to the option state even if it

NEW!is not recognized as a standard option. This value can later be retrieved through the
shading language functionoption(). User optionsmusthave their types declared,
either through the use of “inline declares” or theDeclare command.
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EXAMPLE:

Option "limits" "integer texturememory" [10000]

Option "user" "float temperature" [212]

The remainder of this section describes the implementation-specific options that are
recognized byEntropy. In most cases, the new “inline declaration” syntax is used to clarify
the expected data types, and the default values are provided as examples.

Option Entropy defaults
Rendering options:
Spatial antialiasing quality [1 1]
Temporal antialiasing quality 4
Minimum shadow bias 0.01
Maximum ray depth 4
Indirect illumination number of bounces 1
Indirect illumination “save file” none
Indirect illumination “seed file” none
Texture cache memory 10000 (10 MB)
Default specular function "entropy"
Z threshold color (1, 1, 1)
Verbosity "normal" (some messages printed)
Statistics level 0 (no stats printed)
Statistics log file none (stats print tostdout)

Search paths:
Archive search path ""
Texture search path ""
Shader search path ""
Procedural search path ""
Display driver search path ""

Table 3.2: Implementation options and their default values.

Search Paths

Various external files may be needed as the renderer is running, and unless they are specified
as fully-qualified file paths, the renderer will need to search through directories to find those
files. There exists an option to set the lists of directories in which to search for these files.

Option "searchpath" "archive" [pathlist ]
Option "searchpath" "texture" [pathlist ]
Option "searchpath" "shader" [pathlist ]
Option "searchpath" "procedural" [pathlist ]
Option "searchpath" "display" [pathlist ]
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Sets the search path that the renderer will use for files that are needed at runtime.

The different search paths recognized byEntropy are:

"archive" files included byReadArchive.
"texture" texture, shadow, and environment maps.
"shader" compiled shaders.
"procedural" DSO’s and executables forProcedural calls.
"display" DSO’s for custom display drivers.

Search path types inEntropy are specified as colon-separated lists of directory names
(much like an execution path for shell commands). There are two special strings that
have special meaning inEntropy’s search paths:

& is replaced with theprevioussearch path (i.e., what was the search path before
this statement).

•• $ARCH is replaced with the name of the machine architecture (intelnt, linux,
or sgi m3). This allows you to keep compiled software (like DSO’s) for differ-
ent platforms in different directories, without having to hard-code the platform
name into your file.

NEW!• $V AR, ${V AR}, $(V AR), and%V AR% are replaced by the value of environment
variableVAR, if it exists (for any environment variable).

For example, you may set your procedural path as follows:

Option "searchpath" "procedural"
["/usr/local/entropy:/usr/local/entropy/$ARCH:&"]

The above statement will cause the renderer to find procedural DSO’s by first looking
in /usr/local/entropy, then in a directory that is dependent on the architecture,
then wherever the default (or previously set) path indicated.

Statistics and Messages

Option "statistics" "integer endofframe" [0]

When nonzero, this option will causeEntropy to print out various statistics about
the rendering process. Greater values print more detailed data: 1 just prints time and
memory information, 2 gives more detail, 3 is all the data that the renderer ever wants
to print. (Usually 2 is just fine for lots of data.)

Option "statistics" "string filename" [""]

When non-null, this option will causeEntropy’s statistics to be echoed to the given
filename, rather than printed tostdout.

Option "runtime" "string verbosity" ["normal"]

This option controls the same output as the-v and-stats command line options.
The verb parameter is a string which controls the level of verbosity. Possible values,
in order of increasing output detail, are:"silent", "normal", "stats", "debug".
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Global Illumination Controls

NEW! Option "indirect" "integer maxbounce" [1]

Sets the maximum number of bounces of indirect lighting. Larger numbers will take
more time to compute, but may have more correct results for scenes in which much of
the light propagation is from complex multiple-bounce paths. The default (if indirect
lighting is used at all) is one (1) bounce.

Option "indirect" "string savefile" [""]

If you specify this option with a non-empty string, when rendering is done the con-
tents of the irradiance data cache will be written out to disk in a file with the name
you specify. This is useful mainly if the next time you render the scene, you use the
following option:

Option "indirect" "string seedfile" [""]

If you specify this option with a non-empty string, the irradiance data cache will start
out with all the irradiance data in the file specified. Without this, it starts with nothing
and must sample for all values it needs. If you read a data file to start with, it will
still sample for points that aren’t sufficiently close or have too much error. But it can
greatly save computation by using the samples that were computed and saved from
the prior run.

Occlusion Information Controls

These options control aspects of the computations that are used by theocclusion() shader
function (see Section 5.6.8).

NEW! Option "occlusion" "string savefile" [""]

If you specify this option with a non-empty string, when rendering is done the con-
tents of the occlusion data cache will be written out to disk in a file with the name
you specify. This is useful mainly if the next time you render the scene, you use the
following option:

Option "occlusion" "string seedfile" [""]

If you specify this option with a non-empty string, the occlusion data cache will start
out with all the irradiance data in the file specified. Without this, it starts with nothing
and must sample for all values it needs. If you read a data file to start with, it will
still sample for points that aren’t sufficiently close or have too much error. But it can
greatly save computation by using the samples that were computed and saved from
the prior run.
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Rendering Options

Option "render" "float minshadowbias" [0.01]
Option "shadow" "float bias" [0.01]

These two options are just different names for the same control, which sets the min-
imum distance that one object has to be in order to shadow another object. This
keeps objects from self-shadowing themselves. If there are serious problems with
self-shadowing, this number can be increased. You may need to decrease this num-
ber if the scale of your objects is such that 0.01 is on the order of the size of your
objects. In general, however, you will probably never need to use this option if you
don’t notice self-shadowing artifacts in your images.

NEW!Option "render" "string specularbrdf" ["entropy"]

Specifies which of several specular highlight shapes is used in rendering.Entropy’s
default specular function, specified by"entropy", is a modified Cook-Torrance
function with Torrance-Sparrow distribution (see Roy Hall,Illumination and Color
in Computer Generated Imagery, pp. 83 and 96). Also available are"bmrt" (a mod-
ified Blinn-Phong). The default specular function may be overridden by supplying
the specular function name to thespecular() function itself (see Section 5.6.8).

Option "limits" "color zthreshold" ["1 1 1"]

Specifies the minimum opacity for an object to be considered sufficiently opaque to
show up in a shadow depth map. If an object’s opacity (Oi) is not greater than this
limit, it will not affect the “z” output channel (though it will still contribute to the
pixel color and alpha).

Quality/Performance Tradeoff Options

NEW!Option "limits" "integer spatialquality[2]" [1 1]
Option "limits" "integer temporalquality" [4]

Sets the quality level of the antialiasing. Unlike other renderers that use a single
PixelSamples value to antialias in all dimensions at once,Entropy lets you set the
required spatial antialiasing (for geometric edges and depth of field) separately from
the additional amount of work needed to resolve motion blur. One advantage of this
approach is that significant savings can be achieved for scenes in which only some
objects are undergoing motion blur.

The default spatial quality is1× 1, which gives an appearance roughly like what you
would get fromPixelSamples 2 2 in a point-sampling-based renderer like PRMan
or BMRT. A spatial quality level of2 × 2 is about as good asPixelSamples 5 5
in BMRT or PRMan, and should be adequate for most images. Higher values may
be needed for scenes with lots of thin geometry (like hair). Images with a significant
amount of motion blur should also ensure that the"temporalquality" option is set
(see below).
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The default temporal quality is 4, which should be adequate for moderate amounts
of motion blur. For scenes with significant motion blur, this can be raised up to 8.
Setting a high temporal quality does not increase rendering time for scenes that do
not have motion blur, or for pixels that do not intersect with blurring objects.

ThePixelSamples x y command actually setstemporalquality to 4, and sets
spatialquality to a total ofx/2× y/2.

NEW! Option "limits" "integer raydepth" [4]

Sets the maximum depth of recursive rays that will be cast between reflectors and
refractors. This has no effect if there are no ray traced reflections or refractions in
the scene. (This option performs the same function as the deprecated BMRTOption
"render" "max raylevel".)

Option "limits" "integer texturememory" [10000]

Sets the texture cache size, measured in Kbytes. The renderer will try to keep no more
than this amount of memory tied up with textures. Setting it low keeps memory con-
sumption down if you use many textures. But setting it too low may cause thrashing
if it just can’t keep enough in cache. The default is 10000 (i.e., 10 MB). The texture
cache is only used fortiled textures, i.e., those made with themkmipprogram. For
regular scanline TIFF files, texture memory can grow very large.

NEW! Option "limits" "integer texturefiles" [100]

Sets the maximum number of simultaneously-open texture file handles. On some
systems, there is a maximum number of allowable open file handles. This option
helps you to ensure thatEntropy does not exceed that allotment. When the limit is
reached, files that have not been accessed recently are closed to make room for newer
file handles. The default of 100 simultaneously open files should be adequate for
almost all systems and scenes.

Option "limits" "integer bucketsize[2]" [32 32]

Sets the size (inx andy pixels) of the screen buckets that represent units of work
for the renderer. By default,Entropy will choose an appropriate bucket size based
on the resolution and sampling rate of your image, unless you override by setting
this option. There should be no reason to override the default for ordinary scenes;
however, advanced users may wish to tune performance on problematic scenes by
adjusting this option. Setting either thex or y bucket size to 0 reset to the default.

Option "limits" "integer gridsize" [256]

Sets the number of surface points that will be shaded at one time. The default is 256.
There should be no reason to override the default for ordinary scenes.
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rgl-Specific Options

Option "limits" "integer curvethinning" [1]
Option "limits" "integer curvethinthreshold" [1]

Whenrgl draws manyCurves primitives, it can turn into a big unshaded mess. It
may be that you decide that drawing fewer curves actually makes a more understand-
able preview. The"curvethinning" frequency value tells how often a curve should
be drawn: a value of 2 indicates to draw every other curve, a value of 100 means that
only every 100th curve should be drawn. Furthermore, this thinning is only per-
formed forCurves statements that have more individual hairs than is specified with
the"curvethinthreshold" parameter. If the"curvethinning" frequency is set
to zero, no curve thinning will take place at all.
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3.2 Attributes

Attributesare properties that apply to individual objects in the scene, and may be different
for each object. Examples of object attributes include color, object transformation (posi-
tion/orientation), and shader assignments. The full list of “standard” attributes, each of
which is set by a dedicated command, is given in Table 3.3. A number of more rarely-used
attributes, generally related toEntropy’s specific algorithms, are set through a more general
mechanism and are listed in Table 3.4.

Attribute Entropy defaults
Shading attributes:
Surface color (1,1,1) (white)
Surface opacity (1,1,1) (fully opaque)
Texture coordinates (0, 0, 1, 0, 0, 1, 1, 1) (s = u, t = v)
Light Sources none
Area light source none active
Surface shader defaultsurface
Atmosphere shader none
Exterior volume shader none
Interior volume shader none
Shading rate 1 (approx. one shade per pixel)
Matte flag 0 (objects are not hold-out mattes)

Geometric attributes:
Displacement shader none
Orientation "outside" (normals have the same handedness

as the transformation)
Sides 2 (ok to view both sides of objects)
Cubic basis matrices Bezier
NURBS trim curves none (draw all of each NURBS surface)
Detail Range (0, 0,∞,∞) (draw all primitives)

Table 3.3: Standard attributes and their default values.

As it parses scene file commands, the renderer keeps track of thecurrent attribute state
— that is, the full set of attributes and their values. When a geometric primitive is declared,
a copy of the current attribute state isbound, or permanently attached, to that geometric
primitive. Thus, setting attribute values can affect the appearance of subsequently declared
geometry, but does not change previously declared geometry. Because attributes may be
changed for each object, is convenient to save the attribute state, modify attributes and de-
clare geometric primitives, then restore the attribute state to its prior condition. A command
is provided to perform this action:

AttributeBegin
AttributeEnd

Save and restore the attribute state, including the current transformation (seeTransformBegin
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andTransformEnd, section 3.2.3). UponAttributeEnd, the current attribute set is
replaced by the attribute set that was in effect at the correspondingAttributeBegin.

EXAMPLE:

AttributeBegin
AttributeEnd

It is perfectly legal tonestblocks delimited byAttributeBegin/ AttributeEnd. In
other words, the renderer maintains astackof attributes that ispushedbyAttributeBegin
andpoppedby AttributeEnd.

3.2.1 Standard Attributes

Color [r g b ]

Sets the default surface color. This color is the value that the shader variableCs has
if it is not overridden by supplying a value on the geometric primitive.

EXAMPLE:

Color [1 0.5 0.5]

DeprecatedGeometricApproximation type value

This routine is obsolete, and inEntropy is exactly equivalent to:

Attribute "dice" "float type " [value ]

EXAMPLE:

GeometricApproximation "motionfactor" 1

Matte onoff

If onoff is nonzero, subsequent geometry will be treated as a “hold-out matte.” Matte
objects block the view of objects behind them, but nonetheless have 0 opacity, thus
leaving a “hole” in the final image. The default is for all geometry to be non-matte
(ordinary geometry).

EXAMPLE:

Matte 0

Opacity [r g b ]

Sets the default surface opacity (0 is transparent, 1 is opaque). This opacity is the
value that the shader variableOs has if it is not overridden by supplying a value on
the geometric primitive.

EXAMPLE:

Opacity [1 1 1]
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Orientation orient

Sets the current orientation (that is, which of the two possible directions are cho-
sen for the surface normal). Theorient parameter is a string indicating one of four
possible settings:

"outside" same as the coordinate system’s handedness
"inside" opposite the coordinate system’s handedness
"lh" left handed orientation (regardless of CTM handedness)
"rh" right handed orientation (regardless of CTM handedness)

EXAMPLE:

Orientation "outside"

ReverseOrientation

Switch the current orientation from its current state to the opposite state (i.e., from
left handed to right handed, or from right handed to left handed).

EXAMPLE:

ReverseOrientation

ShadingRate area

Determines the spacing of shading calculations are performed on surfaces, so that the
pixel area for each sample isarea. For example, the default value of 1.0 indicates
that surfaces should be shaded approximately once per pixel. A value of 4.0 would
indicate that surfaces would be shaded about once every four pixels.

We strongly recommend using the default value of 1.0 for all ordinary high-quality
rendering. Values smaller than 1 will make rendering take longer, but generally will
not improve the final image. Larger values will render more quickly, but will have
less detail and may appear blurry (but this may be desired for faster previews).

EXAMPLE:

ShadingRate 1

Sides nsides

If nsidesis 2, subsequent geometry is “two-sided” and can be seen from either side.
If nsidesis 1, this indicates that the geometry forms a closed opaque object whose
natural geometric normals always point to the outside of the object (or whichever
side the camera will be on).Sides 1, therefore, is a hint to the renderer that if such
geometry is pointed away from the camera, it must be on the “far side” of the object,
and so will be found to be occluded, hence may be ignored.

EXAMPLE:

Sides 2



3.2. ATTRIBUTES 31

TextureCoordinates [ s0 t0 s1 t1 s2 t2 s3 t3 ]

For parametric primitives (patches and patch meshes, NURBS, and quadrics), set the
affine mapping between parametric(u, v) and texture coordinates(s, t). Specifically,
(u = 0, v = 0) will get texture coordinates(s0, t0), (u = 1, v = 0) will get tex-
ture coordinates(s1, t1), (u = 0, v = 1) will get texture coordinates(s2, t2), and
(u = 1, v = 1) will get texture coordinates(s3, t3). By default,s = u andt = v.
TextureCoordinates does not affect polygons or subdivision surfaces. Even on
those primitives that do honorTextureCoordinates, any supplied"s" and"t"
vertex coordinates take precedence.

EXAMPLE:

TextureCoordinates [0 0 1 0 0 1 1 1]

3.2.2 Implementation Attributes

The previous section described RIB statements that set many commonly-used attributes.
There are many additional attributes that do not have their own separate RIB statements, ei-
ther because they are less commonly used or because they set parameters that are extremely
specific to a particular rendering method. The implementation-specific attributes are set by
using the extendibleAttribute call:

Attribute category ...parameterlist...

Sets attributes of a particularcategory(a string representing an attribute category
recognized by the renderer). Specific parameters in that category are supplied as a
list of token-value pairs. Attributes apply to specific pieces of geometry, and are
saved and restored by theAttributeBegin andAttributeEnd commands.

NEW!If category is "user", the token and value are added to the attribute state even
if it is not recognized as a standard attribute. This value can later be retrieved
through the shading language functionattribute(). User attributes honor the usual
AttributeBegin/AttributeEnd scoping rules, butmusthave their types declared,
either through the use of “inline declares” or theDeclare command.

EXAMPLE:

Attribute "caustic" "color specularcolor" [0 0 0]

Attribute "user" "point refpoint" [3.14 2 1]

The remainder of this section describes the implementation-specific attributes that are
recognized byEntropy. In most cases, the new “inline declaration” syntax is used to clar-
ify the expected data types, and the default values are provided as examples. All of the
attributes and their defaults are summarized in Table 3.4.
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Attribute Default
Geometric attributes:
Trim curve sense "inside" (keep the inside of the trim curves)
Displacement bound radius 0 (no displacement bound padding)
Displacement bound space "object"

Dicing and Subdivision attributes:
Ray trace truly displaced geometry 1 (on)
Binary dicing 0 (off)
Motion factor 0 (no adjust of shading due to motion)
Curvature max angle 5 (degrees)
Curvature max refinement factor 1 (don’t adjust)

Light Source attributes:
Area light samples 1
Caustic number of light photons 0 (do not photon map the light)

Rendering attributes:
Camera visibility 1 (objects are visible to the camera)
Ray-traced reflection visibility 0 (objects do not appear in RT reflections)
Ray-traced shadow visibility 0 (objects do not appear in RT shadows)
Shadow ray opacity "opaque" (do not run the shader for shadow rays)
Trace against truly displaced objects? 1 (yes)
Indirect illum max error 0.25
Indirect illum max pixel distance 20
Indirect illum number of samples 256
Caustic max pixel distance 16
Caustic number of photons to gather 75
Caustic specular color (0,0,0) (object not specularly reflective)
Caustic refraction color (0,0,0) (object not refractive)
Caustic refraction index 1

Table 3.4: Implementation attributes and their default values.

Visibility of Primitives

NEW! Attribute "visibility" "integer camera" [1]
Attribute "visibility" "integer reflection" [0]
Attribute "visibility" "integer shadow" [0]

Controls which rays mayseean object. The default is for all objects to be visible
in the camera view, but not to cast ray-traced shadows or to appear in ray-traced
reflections. For any of the visibility types, a visibility of0 indicates that it is not
visible, and any nonzero value indicates that it is visible.
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This attribute is useful for certain special effects, such as having an object which
appears only in the reflections of other objects, but is not visible when the camera
looks at it. Or an object which only casts shadows, but is not in reflections or is
not seen from the camera. Objects which are only visible from the camera, but not
from ray traced reflections or shadows, can be handled much more efficiently by the
renderer.

NEW!Attribute "render" "string casts shadows" ["opaque"]

Controls how surfaces shadow other surfaces. A value of"opaque" indicates that
when hit by a shadow ray, the object is opaque. A value of"Os" indicates that the
shadow ray should have a “density” indicated byOs. A value of"shade" indicates
that the occluder’s surface shader should be run at the intersection of the shadow ray
in order to evaluate the specificOi at that point.

The choices"opaque" (the default) and"Os" are much less expensive than"shade",
but sometimes you need"shade" if you want the shader to control the shadow opac-
ity on a point-by-point basis. Of course, no matter what the setting of this attribute,
the object will not cast shadows unless it has been included in the ray-traced shadow
list by Attribute "visibility" "shadow" [1].

Displacement and Subdivision Attributes

Attribute "displacementbound" "string coordinatesystem" ["current"]
"float sphere" [0]

For truly displaced surfaces, specifies the amount that its bounding box should grow
to account for the displacement. The box is grown in all directions by theradius
argument, expressed in the given coordinate system (a string).

NEW!Attribute "render" "integer tracedisplacements" [1]

Controls whether, for traced rays, the displacement shaders are run on entire grids
(making many small pieces that need to be traced), or whether a bump-mapping
approximation can be used. For objects where the amount of displacement is suf-
ficiently small that a bump approximation is good enough (as seen in reflections or
shadows), setting this attribute to 0 cangreatly reduce the time and memory neces-
sary to render the object. In either case, displacement shaders will truly move points
to create ragged silhouettes as seen by the camera — this attribute only affects the
appearance of objects in ray traced reflections or shadows.

Attribute "dice" "integer binary" [0]

When nonzero, causes dicing rates for patches to be rounded up to the next high-
est power of 2. This makes rendering a bit more expensive, but can be helpful in
eliminating tiny cracks between adjacent pieces of geometry.
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NEW!Attribute "dice" "float motionfactor" [0]

Scales the effective shading rate of motion-blurred objects. The more an object
moves, the coarser it will be shaded. This can speed up rendering of motion-blurred
objects, which, due to blur, tend not to show much detail anyway. A value of1 is
typical. Larger values scale the shading rate more aggressively, smaller values more
conservatively. The default is 0 (no adjustment ofShadingRate is performed for
moving objects).

NEW! Attribute "dice" "float maxscanlinecurvature" [120]

Forces extra dicing every time a patch bends by an angle greater than this parameter
(measured in degrees), even when the usual arc length metrics indicate that fewer
divisions are needed. This keeps really thin features (like tubes) from degenerating.
The default value (120 degrees) is the maximum, and should be adequate in nearly
all cases. But very occasionally, it is useful to decrease the threshold if you are losing
geometric detail or experiencing highlight aliasing on highly curved objects.

NEW! Attribute "dice" "float maxraytracingcurvature" [5]

Analogous to"maxscanlinecurvature", but of course for ray tracing. Increasing
this threshold will make ray tracing faster, but with possible loss of fine geometric
detail in ray-traced reflections and shadows. Decreasing this threshold will capture
more geometric detail in the ray tracing of highly curved geometry, but at some addi-
tional expense. In no case will this parameter ever cause the ray-traced geometry to
dice more finely than it would have for scanline rendering (i.e., using the arc length
and"maxscanlinecurvature" metrics).

NEW! Attribute "dice" "integer keepcreases" [1]

When nonzero (the default), creases (2nd order discontinuities or repeated knot val-
ues) are guaranteed to be preserved by having a splitting or dicing division at that
position. When set 0, this parameter allows the renderer to “dice over” a crease. This
can come in handy for faster rendering of very small (but creased) geometry.

Object Appearance

Attribute "trimcurve" "string sense" ["inside"]

By default, trim curves on NURBS will make the portions of the surface that are
inside the closed curve. You can reverse this property (by keeping the inside of
the curve and throwing out the part of the surface outside the curve) by setting the
trimcurve sense to"outside".
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Light Source Attributes

Unlike all of the other attributes that bind to subsequent geometric primitives, the following
attributes bind to subsequent light sources.

Attribute "light" "integer nsamples" [1]

Sets the number of times to sample a particular light source for each shading calcu-
lation. This is especially useful for reducing the noise in area light soft shadows. By
increasing the number of samples, you can reduce the noise in the shadows.

NEW!Attribute "light" "integer motionrays" [0]

If this attribute is passed a nonzero integer value, anyshadow() calls made in the
light shader that cause rays to be traced will attempt to motion blur those shadows.
This works very well if the visible object (the one the shadow is being cast upon)
is still, but the occluding object is moving. It can have artifacts if the visible object
(upon which the shadow falls) is also moving, but in most cases this will not be
objectionable. If it is, you can always turn the attribute off. Note that a light source’s
ray-traced shadows will also be motion blurred if the surface has itsAttribute
"render" "motionrays" turned on; in other words, either the light or the surface
may trigger motion blurred shadow rays.

DeprecatedAttribute "light" "string shadows" ["off"]

Turns the automatic ray cast shadow calculations on or off on a light-by-light basis.
This attribute can be used for anyLightSource or AreaLightSource which is
declared. For example, the following RIB fragment declares a point light source
which casts shadows:

Attribute "light" "shadows" ["on"]
LightSource "pointlight" 1 "from" [ 0 10 0 ]

Note, however, that we consider this attribute deprecated, and strongly prefer that
shadows be controlled in the light source shader by ashadow() call. SinceEn-
tropy extendsshadow() to allow ray traced shadows, it should be easy to write light
shaders that are flexible enough to support shadow maps or ray tracing with minimal
modification.

Miscellaneous

NEW!Attribute "render" "integer motionrays" [0]

If this attribute is passed a nonzero integer value, subsequent objects will attempt to
motion blur any shadows or reflections that fall upon them. This works very well if
the visible object is still, but the reflected (or occluding) object is moving. It may
have artifacts if the visible object (upon which the reflections or shadow fall) is also
moving, but in most cases this will not be objectionable. If it is, you can always turn
the attribute off. Note that for ray traced shadows, motion blur can also be turned on
for the light usingAttribute "light" "motionrays".
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Attribute "identifier" "string name" [""]

Sets the name of subsequent object. This is used, among other things, for printing
more helpful error messages by indicating which object had the error.

Global Illumination Controls

Attribute "indirect" "float maxerror" [0.25]

A maximum error metric. Smaller numbers cause recomputation to happen more
often. Larger numbers render faster, but you will see artifacts in the form of obvi-
ous ”splotches” in the neighborhood of each sample. Values between 0.1-0.25 work
reasonably well, but you should experiment. But in any case, this is a fairly straight-
forward time/quality knob.

Attribute "indirect" "float maxpixeldist" [20]

Forces recomputation based roughly on (raster space) distance. The above line basi-
cally says to recompute the indirect illumination when no previous sample is within
roughly 20 pixels, even if the estimated error is below the allowable maxerror thresh-
old. Smaller numbers are higher quality, but use more memory and take longer to
render.

Attribute "indirect" "integer nsamples" [256]

How many rays to cast in order to estimate irradiance, when generating new samples.
Larger is less noise, but more time. It should be obvious how this is used. Use as low
a number that gives an acceptable appearance, as the amount of time spent calculating
indirect illumination is directly proportional to this.

Caustic Controls

Attribute "caustic" "float maxpixeldist" [16]

Limits the distance (in raster space) over which it will consider caustic information.
The larger this number, the fewer total photons will need to be traced, which results
in your caustics being calculated faster. The appearance of the caustics will also be
smoother. If the maxpixeldist is too large, the caustics will appear too blurry. As the
number gets smaller, your caustics will be more finely focused, but may get noisy if
you don’t use enough total photons.

Attribute "caustic" "integer ngather" [75]

Sets the minimum number of photons to gather in order to estimate the caustic at
a point. Increasing this number will give a more accurate caustic, but will be more
expensive.
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There’s also an attribute that can be set per light, to indicate how many photons to trace
in order to calculate caustics:

Attribute "light" "integer nphotons" [0]

Sets the number of photons that we want the light to shoot and store in order to
calculate caustics. The light may actually shoot many more photons in order to get
this number of photons reflected/refracted and stored. The default is 0, which means
that the light does not try to calculate caustic paths. Any nonzero number will turn
caustics on for that light, and higher numbers result in more accurate images (but
more expensive render times). A good guess to start might be 50,000 photons per
light source.

The algorithm for caustics doesn’t understand shaders particularly well, so it’s impor-
tant to give it a few hints about which objects actually specularly reflect or refract lights.
These are controlled by the following attributes:

Attribute "caustic" "color specularcolor" [0 0 0]

Sets the reflective specularity of subsequent primitives. The default is[0 0 0],
which means that the object is not specularly reflective (for the purpose of calcu-
lating caustics; it can, of course, still look shiny depending on its surface shader).

Attribute "caustic" "color refractioncolor" [0 0 0]
Attribute "caustic" "float refractionindex" [1]

Sets the refractive specularity and index of refraction for subsequent primitives. The
default forrefractioncolor is [0 0 0], which means that the object is not spec-
ularly refractive at all (for the purpose of calculating caustics; it can, of course, still
look like it refracts light depending on its surface shader).

rgl-Specific Attributes

Attribute "division" "integer udivisions" [nu ]
Attribute "division" "integer vdivisions" [nv ]

rgl will dice curved primitives into flat polygons for OpenGL to draw. It basically
guesses at how many polygons to subdivide into, and it usually chooses well enough
for previews, but sometimes you may want to override the dicing criteria. This option
allows you to explicitly specify how many subdivisions to make in subsequently
curved surfaces. The argumentsnuandnvare both integers.

3.2.3 Transformations

As it parses scene file commands, the renderer keeps track of thecurrent transformation
(sometimes called theCTM for “current transformation matrix.” When a geometric prim-
itive is declared, a copy of the CTM isbound, or permanently attached, to that geometric
primitive. More specifically, the geometric primitive adopts the CTM as its"object"
space, and therefore any point locations (such as vertex positions"P") are relative the CTM
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that was in effect at the time that the geometric primitive command was encountered. Thus,
transformation commands affect the appearance of subsequently declared geometry, but do
not change previously declared geometry.

Because each object has its own position, and because complex models are often de-
scribed as hierarchies, it is convenient save the transformation state, modify the transforma-
tion and declare geometric primitives, then restore the transformation to its prior condition.
A command is provided to perform this action:

TransformBegin
TransformEnd

Save and restore the current transformation. UponTransformEnd, the current trans-
formation is set to the transformation that was in effect at the correspondingTransformBegin.

EXAMPLE:

TransformBegin
TransformEnd

Remember that the current transformation is actually part of the attribute state, there-
fore the CTM is also saved and restored (along with the rest of the attribute state) by
AttributeBegin andAttributeEnd.

A variety of commands are available to replace or modify the current transformation.
The two most fundamental (and upon which all others are based) areTransform and
ConcatTransform.

Transform [ transform ]

Replace the current transformation with the 4x4 matrix supplied.

EXAMPLE:

Transform [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

ConcatTransform [ transform ]

Concatenate the given 4x4 transformation matrix onto the current transformation.

EXAMPLE:

ConcatTransform [1 0 0 0 0 1 0 0 0 0 1 0 3 0 0 1]

The Transform andConcatTransform routines, which replace and concatenate the
CTM, respectively, are fully general. For several of the most useful and common transfor-
mations, there are specific routines that have a more compact, simpler syntax:

Identity

Set the current transformation to the identity transformation. This is identical to the
call:

Transform [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]



3.2. ATTRIBUTES 39

Translate x y z

Prepend the current transformation with the given translation. This is idenical to the
call:

ConcatTransform [1 0 0 0 0 1 0 0 0 0 1 0 x y z 1]

EXAMPLE:

Translate 2 0 0

Rotate angle x y z

Prepend the current transformation with a rotation ofangledegrees about the axis
defined by(x, y, z).

EXAMPLE:

Rotate 30 0 0 1

Scale sx sy sz

Prepend the current transformation with a scale factor of (sx, sy, sz). This is idenical
to the call:

ConcatTransform [sx 0 0 0 0 sy 0 0 0 0 sz 0 0 0 0 1]

EXAMPLE:

Scale 2 2 2

Skew angle x1 y1 y2 x2 y2 z2

Prepend the current transformation with a matrix that skews by shifting points along
lines parallel to (x2, y2, z2). Point are by an amount that maps points on the axis (x1,
y1, z1) to an axis that forms an angle ofanglewith (x1, y1, z1).

EXAMPLE:

Skew [30 0 0 1 0 1 0]

Perspective fov

Prepends the current transformation matrix with a perspective matrix having the given
field of view (in degrees). Perspective matrices have nasty singularities that make
some regions of space unable to transform correctly.

EXAMPLE:

Perspective 90

Several coordinate systems have pre-declared names:"world", "camera", "screen",
"NDC", "raster". The user may tag other coordinate systems with names; these names
are then added to a list of named coordinate systems. Two routines exist to name and recall
coordinate systems:

CoordinateSystem name
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Create a named alias for the current transformation. Thenamemay be used with
CoordSysTransform or as the name of a transformation in the various shader rou-
tines that can specify named transformation. The mapping between names and co-
ordinate systems is global and is not saved and restored with the rest of the attribute
state. If there are two calls toCoordinateSystem with the samename, the second
one will simply overwrite the first. This routine does not modify the current transfor-
mation in any way.

EXAMPLE:

CoordinateSystem "leftarm"

CoordSysTransform name

Replace the current transformation with the named transformation, which may either
be a standard coordinate system name (such as"world", "camera", etc.) or a name
defined byCoordinateSystem.

EXAMPLE:

CoordSysTransform "leftarm"

3.2.4 Shaders and Lights

Every object has a collection of shaders bound to it: displacement, surface, atmosphere,
interior, and exterior. Only the surface shader is required; the other shader types may be
set to nothing. For ordinary objects as viewed by the main camera, shaders are run in the
following order: displacement (if it exists), surface, atmosphere (if it exists).

For ray traced reflections or refractions, the sequence is similar, except that no atmo-
sphere shader is run. Rather, either the interior or exterior shader is run, depending on the
direction of the traced ray compared to the normal of the surface.

TheLightSource command creates a light. TheAreaLightSource creates an area
light, to which all subsequently-declared geometric primitives will be added, until the en-
closing attribute block is exited (viaAttributeEnd).

The attribute state includes a list of currently active lights. TheLightSource and
AreaLightSource commands add their newly-created lights to the active list. Note that the
active light list is part of the attribute state and will be saved and restored byAttributeBegin
andAttributeEnd. Thus, if a light is declared inside an Attribute block, it will be turned
off for all primitives declared after the surroundingAttributeEnd. But theIlluminate
command can override this behavior by turning individual lights on and off for subsequently
declared primitives. Note also that a light cannot possibly illuminate a geometric primitive
that is declared earlier in the scene file. For this reason, lights are typically declared imme-
diately afterWorldBegin, before any ordinary scene geometry is created.

Following are descriptions of the commands that alter shader assignments and lights:

Surface shadername ...parameterlist...

Sets the surface shader toshadername. Surface shaders are responsible for determin-
ing the color (Ci) and opacity (Oi) of a point on the geometric primitive, as it appears
from a viewing direction.
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The optionalparamlistis a list of token-value pairs giving parameters specific to the
particular shader being used. All parameters should either have their types declared
“inline” or have been previously declared withDeclare.

EXAMPLES:

Surface "wood" "float Kd" [0.75] "color darkwood" [.1 .08 .03]

Displacement shadername ...parameterlist...

Sets the displacement shader toshadername. Displacement shaders are run prior
to the surface shader, and may be used to make small-scale adjustments (such as
scratches, bumps, or dents) to the shape of the geometric primitive.

The optionalparamlistis a list of token-value pairs giving parameters specific to the
particular shader being used. All parameters should either have their types declared
“inline” or have been previously declared withDeclare.

EXAMPLES:

Displacement "dented" "float dentamp" [1.3]

Atmosphere shadername ...parameterlist...

Sets the atmosphere shader to a volume shadershadername. Atmosphere shaders run
after the surface shader, to account for howCi andOi are altered as the light from the
surface travels through the participating media to arrive at the camera. Atmosphere
shaders are not called on ray-traced reflections or refractions.

The optionalparamlistis a list of token-value pairs giving parameters specific to the
particular shader being used. All parameters should either have their types declared
“inline” or have been previously declared withDeclare.

EXAMPLES:

Atmosphere "thickfog" "float density" [0.01] "color fogcolor"
[1 .9 .3]

Interior shadername ...parameterlist...

Sets the interior volume shader toshadername. Interior shaders are used to adjust the
attenuation of light of refracted rays (much as atmosphere shaders adjust light that
travels from a surface to the camera).

The optionalparamlistis a list of token-value pairs giving parameters specific to the
particular shader being used. All parameters should either have their types declared
“inline” or have been previously declared withDeclare.

EXAMPLES:

Interior "glassint" "float extinction" [.01]
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Exterior shadername ...parameterlist...

Sets the interior volume shader toshadername. Exterior shaders are used to adjust
the attenuation of light of reflected rays (much as atmosphere shaders adjust light that
travels from a surface to the camera).

The optionalparamlistis a list of token-value pairs giving parameters specific to the
particular shader being used. All parameters should either have their types declared
“inline” or have been previously declared withDeclare.

EXAMPLES:

Exterior "thickfog" "float density" [0.01] "color fogcolor" [1
.9 .3]

LightSource shadername lightid ...parameterlist...

Make a light source that uses the light shadershadernameand add the light to the list
of currently active (illuminated) lights. The light source’s identifier islightid, which
may be either an integer or a quoted string. The identifier may be used to turn the
light on and off withIlluminate.

The optionalparamlist is a list of token-value pairs giving parameters specific to
the particular light shader being used. All parameters should either have their types
declared “inline” or have been previously declared withDeclare.

EXAMPLES:

LightSource "barnlight" 13 "color lightcolor" [.5 1 .5] "string
shadowname" ["lgt5.sm"]

AreaLightSource shadername lightid ...parameterlist...

Make an area light source that uses the light shadershadernameand add the light
to the list of currently active (illuminated) lights. The light becomes the “active
area light,” so any subsequent geometry is added to that area light, until we hit
AttributeEnd. The light source’s identifier islightid, which may be either an inte-
ger or a quoted string. The identifier may be used to turn the light on and off with
Illuminate.

The optionalparamlist is a list of token-value pairs giving parameters specific to
the particular light shader being used. All parameters should either have their types
declared “inline” or have been previously declared withDeclare.

EXAMPLES:

LightSource "arealight" 21 "float intensity" [100]

Illuminate lightid onoff

Add or remove a light that has already been declared withLightSource orAreaLightSource.
The lightid is corresponds to the identifier of a previously declared light (and thus
may be either an integer or quoted string, depending on how the light was declared).
If onoff is 0, the light is removed from the active light list, and therefore does not
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shine on subsequently declared geometry). Ifonoff is 1, the light is added to the
active light list (if it not already active), and therefore will shine on subsequently
declared geometry.

EXAMPLE:

Illuminate 13 1
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Chapter 4

Geometric Primitives

4.1 Primitive Overview

Entropy supports several types of geometric primitives:

• Polygons — objects made of flat facets.

• Parametric patches — curved rectilinear parametric surfaces defined as bilinear, bicu-
bic, or NURBS patches.

• Subdivision surfaces — curved surfaces defined by a control hull and refinement
rules.

• 1-D curves and 0-D points — ideal for describing hair, fur, and small particles.

• Quadrics — simple shapes such as spheres and cylinders.

• Implicit (“blobby”) primitives.

All of the primitive types except for quadrics define their shape in terms of a collection
of control points, passed on their parameter lists as"P" or "Pw" data. "P" values are
ordinary 3D points defining the control hull of a nonrational surface;"Pw" values are 4D
homogeneous points defining a rational surface. The quadrics are defined in canonical
positions and do not need"P" or "Pw" values.

In addition to the positional information required for most primitives, the parameter
lists may also contain user-supplied data that will be passed along to the shader, overriding
shader parameter data of the same name passed through shader assignments. All primitives
allow this arbitrary data to have one of severalstorage classes:

constant A single data value is supplied for the entire geometric primitive.

vertex The number of data elements is identical to the number of control points (i.e., the
length of the"P" or "Pw" arrays), and the values are interpolated across the primitive
in the same manner as the position"P" (that is, bicubically or linearly or as NURBS,
etc., depending on the primitive type).

45
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In addition, some primitives can also accept data with storage classuniform, varying,
andfacevarying (which have meanings specific to each primitive).

uniform One value per face, per subpatch, or per curve, and whose value does not change
over each face/subpatch/curve. For quadrics,uniform is identical toconstant.

varying One value per face or subpatch corner, or per curve end, and whose value is
linearly or bilinearly interpolated over that subpatch. Note that for polygons and
quadrics,varying is identical tovertex.

NEW! facevarying A special case for polygon and subdivision meshes, for which the values
are specified in the same order as the vertex index array – in other words, allowing
for multiple values at each vertex, one per face that borders the vertex.

Data supplied asconstant will replace the shader parameter default, regardless of
whether the shader parameter was defined asuniform or varying (the value will be
replicated if necessary), and data supplied asuniform will do so on a face-by-face ba-
sis. Data supplied asvertex, varying, or facevarying may only be used to override
shader parameters that were declared asvarying. It is an error to passvertex, varying,
or facevarying data when auniform shader parameter was expected.

For the majority of primitives that do not have special meanings for these classes,
uniform is identical toconstant, andvarying andfacevarying are identical tovertex.
Even for primitives where they are meaningful,varying and uniform primitive vari-
ables are confusing and rarely useful; we advise avoiding them and using onlyvertex
or constant.

To recap, it may help to think ofconstant as “per primitive,”vertex as “per control
point,” uniform as “per piece” (for certain primitives that are made from multiple pieces),
andvarying as “linearly interpolating across pieces” (withfacevarying being a slight
modification of that for some primitives). We apologize for the awkward terminology, es-
pecially the confusing similarity to the entirely separate concept ofuniform andvarying
values in shaders.

It is also possible to use the parameter lists to override certain geometric values or values
from the attribute state — in particular,"Cs" (the surface color ordinarily set byColor),
"Os" (the surface opacity set byOpacity), "s" and"t" (the texture coordinates), and
"N" (the shading normal). For example, here is the declaration of a triangle that attaches
user-supplied normals, such as might be interpolated on a polygonal mesh:

Polygon "P" [0 0 0 1 0 0 .5 2 0]
"vertex normal N" [-0.2 -0.2 1 0 .25 1 0 0 1]

The result will be that the renderer interpolates the"N" values across the surface before
supplying them to the shader as variableN, giving the appearance of a smoothed surface
instead of a faceted one.

The remainder of this chapter presents the commands for all of the geometric primitive
types, plus the facilities for making procedural primitives.
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4.2 Polygons and Polygon Meshes

Polygon ...parameterlist...

Create a single simple, closed, convex polygon. Theparameterlistis a list of token-
value pairs that must contain position data ("P") and may optionally contain other
primitive variables. The number of vertices comprising the polygon is determined by
the number of points contained in the"P" data.

EXAMPLE:

Polygon "P" [0 0 0 1 0 0 .5 2 0]

GeneralPolygon [nverts ] ...parameterlist...

Create a single polygon that may be concave and have multiple loops. If there is
more than one loop, the first loop is the outer boundary of the polygon, and the other
loops are “holes.”nvertsis an array of integers whose length (number of entries) is
the number of loops, and whose data are the number of vertices in each loop.

Theparameterlistis a list of token-value pairs that must contain position data ("P")
and may optionally contain other primitive variables. The length of the vertex point
list ("P") should be the sum of the numbers of vertices in all loops.

EXAMPLE:

GeneralPolygon [4 3] "P" [0 0 0 0 1 0 1 1 0 1 0 0 .5 .5 0 .75
.75 0 .5 .75 0]

The above declares a polygon with a quadrilateral outer boundary and a triangular
hole.

PointsPolygons[nverts ] [verts ] ...parameterlist...

Create many simple, convex polygons, possibly with shared vertex data. The length
of the integer arraynvertsis the number of polygonal faces, and the data innvertsis
the number of vertices in each face. The integer arrayverts, whose length should be
the sum of all entries innverts, contains the vertex indices for each face, in order.

Theparameterlistis a list of token-value pairs that must contain position data ("P")
and may optionally contain other primitive variables. The length of the vertex point
list ("P") must be at least as long as the highest vertex index invertsplus one. (In-
dices, like C arrays, begin with 0).

PointsPolygons objects will accept primitive variables of classconstant (one
value for the whole mesh),uniform (one value per face),vertex andvarying (both
taking one value per"P" vertex entry), andfacevarying (similar tovarying, but
given in the same order as thevertsarray – i.e., with each face’s vertex values given
separately, thus allowing a variable to take on a separate value for each face, even at
a shared vertex).

EXAMPLE:

PointsPolygons [3 3] [0 1 2 0 2 3] "P" [0 1 0 1 0 0 0 -1 0 -1
0 0]
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PointsGeneralPolygons[nloops ] [nverts ] [verts ] ...parameterlist...

Create many polygons, possibly with shared vertex data, and which may be concave
and/or have holes. The length of the integer arraynloopsis the number of general
polygons, and the data innloopsis the number of loops in each polygon. The integer
arraynverts, whose length must be the total number of loops in all polygons (i.e.,
the sum of all entries innloops), contains the number of vertices in each loop (in
polygon order). The integer arrayverts, whose length should be the sum of all entries
in nverts, contains the vertex indices for each loop, for each face, in order.

Theparameterlistis a list of token-value pairs that must contain position data ("P")
and may optionally contain other primitive variables. The length of the vertex point
list ("P") must be at least as long as the highest vertex index invertsplus one. (In-
dices, like C arrays, begin with 0.)

PointsGeneralPolygons objects will accept primitive variables of classconstant
(one value whole mesh),uniform (one value per face),vertex andvarying (both
taking one value per"P" vertex entry), andfacevarying (similar tovarying, but
given in the same order as thevertsarray – i.e., with each face’s vertex values given
separately, thus allowing a variable to take on a separate value for each face, even at
a shared vertex).

EXAMPLE:

PointsGeneralPolygons [1 1] [3 3] [0 1 2 0 2 3] "P" [0 1 0 1 0
0 0 -1 0 -1 0 0]

4.3 Patches, Meshes, and NURBS

Basis ubasisname ustep vbasisname vstep

Basis [ubasismatrix ] ustep [vbasismatrix ] vstep

This routine does not create a geometric primitive, but rather sets attributes specify-
ing theu andv basis matrices for cubicPatch, PatchMesh, andCurves primitives,
and theu andv step sizes for cubicPatchMesh andCurves primitives. The ba-
sis matrices and steps are ordinary attributes and may be saved and restored with
AttributeBegin andAttributeEnd.

The basis matrices are either specified by name (one of"bezier", "bspline",
"catmull-rom", or "hermite"), or as a matrix of 16 floats. The step sizes are
integers and should be 3 for Bezier, 1 for B-spline or Catmull-Rom, or 2 for Hermite.

EXAMPLE:

Basis "bezier" 3 "bezier" 3

Patch type ...parameterlist...

Creates a single bilinear patch (if the stringtypeis "bilinear") or bicubic patch (if
typeis "bicubic"). In the case of a bicubic patch, the bicubic basis will be the one
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specified in the attribute state by theBasis function. APatch is parameterized byu
andv parameters each ranging from 0 to 1.

Theparameterlistis a list of token-value pairs that must contain control vertex posi-
tions, and may optionally contain other primitive variables that will be interpolated
and made available to shaders. The control vertex positions may be given as ordinary
3-points ("P"), or as homogeneous 4-D coordinates ("Pw"). A bilinear patch requires
4 (2 × 2) control vertex positions, while a bicubic patch requires 16 (4 × 4) control
vertex positions.

Primitive vertex variables require the same number of data entries as the control
vertex positions (4 for bilinears, 16 for bicubics),varying variables require 4 data
entries and are interpolated bilinearly across the patch (even if it is a bicubic patch),
anduniform andconstant variables both require a single data entry.

EXAMPLE:

Patch "bilinear" "P" [0 0 0 1 0 0 0 1 0 1 1 0]

PatchMesh type nu uwrap nv vwrap ...parameterlist...

Creates a rectangular mesh of bilinear or bicubic patches, depending on whether the
string type is "bilinear" or "bicubic". In the case of a bicubic patch mesh, the
bicubic basis and the mesh step size will be the ones specified in the attribute state
by theBasis function. APatchMesh is parameterized byu andv parameters each
ranging from 0 to 1.

The uwrap and vwrap are strings taking the value of either"nonperiodic" or
"periodic", indicating whether or not theu and v directions wrap all the way
around to form a continuous ring.

Theparameterlistis a list of token-value pairs that must contain control vertex posi-
tions, and may optionally contain other primitive variables that will be interpolated
and made available to shaders. The control vertex positions may be given as ordinary
3D points ("P"), homogeneous 4D coordinates ("Pw"), or 1Dz values ("Pz"). In the
case of 1D"Pz" values, the correspondingx andy values in"object" space will be
equal to the patch’s(u, v) coordinates.

The control vertices form a rectangular array ofnu × nv points. The number of
individual patches forming the mesh can be computed based onnu, nv, and the basis
steps:

bilinear nupatches =

{
nu if uwrap = periodic
nu − 1 if uwrap = nonperiodic

bicubic nupatches =


(

nu
nustep

)
if uwrap = periodic(

nu−4
nustep

)
+ 1 if uwrap = nonperiodic

The analogous computation forv yieldsnvpatches. The number ofpatch cornerscan
then be computed:
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uwrap vwrap ncorners
"nonperiodic" "periodic" (nupatches + 1) · nvpatches
"nonperiodic" "nonperiodic" (nupatches + 1) · (nvpatches + 1)
"periodic" "nonperiodic" nupatches · (nvpatches + 1)
"periodic" "periodic" nupatches · nvpatches

Primitive vertex variables require the same number of data entries as the control
vertex positions (nu × nv ); varying variables require one data entry per patch cor-
ner (ncorners); uniform variables require one data entry per patch (nupatches ×
nvpatches); andconstant variables require a single data entry.

EXAMPLE:

PatchMesh "bicubic" 2 "nonperiodic" 1 "nonperiodic" "P" [-1 -0.7
0.7 -0.33 -0.7 -0.33 -1 -0.1 -0.33 -0.33 -0.1 -0.33 ]

NuPatch nu uorder [uknot ] umin umax

nv vorder [vknot ] vmin vmax ...parameterlist...

Create a NURBS (non-uniform rational B-spline) mesh. The integer valuenu gives
the number of points making up the control hull in theu direction. The integer
uorder is the order (i.e., the degree of the polynomial plus one) of the patch in the
u direction. The float arrayuknot is the knot vector for theu direction, and should
have lengthnu + uorder . Theuminandumax(both floating point numbers) give the
u parametric boundaries of the patch. Thenv, vorder, vknot, vmin, andvmaxare the
analogous parameters describing thev direction of the patch mesh.

Theparameterlistis a list of token-value pairs that must contain control vertex posi-
tions, and may optionally contain other primitive variables that will be interpolated
and made available to shaders. The control vertex positions may either be given as
ordinary 3D points ("P") denoting a nonrational patch, or as homogeneous 4D coor-
dinates ("Pw") denoting a rational patch. The total number of control vertices must
benu × nv .

A NuPatch may also be thought of as being composed of(nupatches)×(nvpatches)
individual patches, wherenupatches = (1 + nu − uorder) andnvpatches = (1 +
nv − vorder).

Any vertex primitive variables should havenu × nv entries;varying primitive
variables should have(nupatches + 1)× (nvpatches + 1) entries (one per “subpatch
corner”;uniform variables should have(nupatches)× (nvpatches) entries (one per
“subpatch”); andconstant variables should have just one data item.

If there is atrim curve in effect in the attribute state at the time that aNuPatch is
declared, parts of the patch mesh may be trimmed when the patch is rendered.

EXAMPLE:

NuPatch 2 2 [0 0 1 1] 0 1 2 2 [0 0 1 1] 0 1 "P" [-3 -1 4 -3 1
4 -1 -1 4 -1 1 4]
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TrimCurve ncurves order knot min max n u v w

Sets the trim curve, which determines which parts of any subsequently-declared
NuPatch primitives are trimmed. The trim curve is comprised by a number of closed
NURBS curve loops.

The number of closed loops is equal to the length of the integer arrayncurves, whose
entries are the number of curve segments in each loop. The integer arrayorder,
whose length is the total number of curves (i.e., the sum of all entries inncurves),
contains the order (polynomial degree + 1) of each curve. The floating-point array
knotcontains the knot vectors of all the curves, in order. The floating point arraysmin
andmaxcontain the parametric minimum and maximum value for each of the curves,
respectively, in order. The integer arrayn contains, for each curve, the number of
control points comprising the curve. And the floating-point arraysu, v, andw contain
the homogeneous parametric coordinates (on theNuPatch) of all the control vertices
of all the NURBS curve segments. The meanings of all these parameters is analogous
to the similarly named parameters ofNuPatch.

Note thatTrimCurve is an attribute, and may be saved and restored along with the
rests of the attribute state withAttributeBegin andAttributeEnd.

EXAMPLE:

TrimCurve [1] [4] [-.75 -.5 -.25 0 .25 .5 .75 1 1.25 1.5 1.75
] [0] [1] [7] [.9 .5 .01 .5 .9 .5 .01] [.5 .01 .5 .9 .5 .01 .5] [1
1 1 1 1 1 1]

4.4 Subdivision Surfaces

SubdivisionMesh scheme [nverts ] [vertices ]
[tags ] [nargs ] [intargs ] [floatargs ] ...parameterlist...

Create a subdivision surface mesh. Theschemeis a string specifying the name of the
subdivision method (currently only"catmull-clark" is recognized). Much like
PointsPolygons, the length of the integer arraynvertsis the number of faces, and
the data innvertsis the number of vertices in each face. The integer arrayvertices,
whose length should be the sum of all entries innverts, contains the vertex indices
for each face, in order.

Theparameterlistis a list of token-value pairs that must contain position data ("P")
and may optionally contain other primitive variables. The length of the vertex point
list ("P") must be at least as long as the highest vertex index invertsplus one. (In-
dices, like C arrays, begin with 0.)

SubdivisionMesh objects will accept primitive variables of classconstant (one
value for whole mesh),uniform (one value per face),vertex (one per"P" vertex
entry, interpolating just like position),varying (also one value per vertex, but in-
terpolating linearly across each face), andfacevarying (similar to varying, but
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given in the same order as thevertsarray – i.e., with each face’s vertex values given
separately, thus allowing a variable to take on a separate value for each face, even at
a shared vertex).

Faces, edges, and vertices may be tagged with additional properties. Thetagsparam-
eter is an array of strings giving the tag names. The integer arraynargshas length
ntags × 2, and for each tag contains the number of integer arguments, followed by
the number of floating-point arguments, for that tag. The integer arrayintargsand the
floating-point arrayfloatargscontain all of the integer and float arguments, respec-
tively (the length of theintargsshould be the sum of all the even elements ofnargs,
and the length of thefloatargsshould be the sum of all the odd elements ofnargs).
Tags may include:

"hole" Specifies certain faces are holes. The tag hasn integer arguments,
which specify the face numbers that are holes, and no floating-point
arguments.

"crease" Specifies a chain of edges that form a crease. The tag hasn inte-
ger arguments that specify a list of vertices that make up the crease,
and one floating point argument giving the “sharpness” of the crease
(larger values are sharper).

"corner" Marks vertices as sharp corners. The tag hasn integer arguments that
specify the vertices which are corners, and eithern or 1 floating-point
arguments that specify the “sharpness” of the corners (larger values
are sharper). If only one sharpness value is given, all of the designated
corners have the same sharpness.

"interpolateboundary"
If this tag is present, it indicates that the subdivision surface should
interpolate boundary faces all the way to their edges. It requires no
integer and no floating-point arguments.

NOTE: Entropy 3.1 only supports the"hole" tag, and ignores the other tags. This
is expected to be fixed in a future release.

EXAMPLE:

SubdivisionMesh "catmull-clark" [4 4 4 4 4 4] [0 2 3 1 4 6 7 5
5 1 3 4 2 0 7 6 6 4 3 2 1 5 7 0] [] [] [] [] "P" [ 25 -25 -25 25 25
-25 25 -25 25 25 25 25 -25 25 25 -25 25 -25 -25 -25 25 -25 -25 -25]

4.5 Curves and Points

Curves type [nvertices ] wrap ...parameterlist...

Draws a number of curve primitives, which may appear as tubes (like hair) or ribbons.

The typeis a string, either"linear" or "cubic", indicating whether the individual
curves are piecewise linear or piecewise cubic. Piecewise cubic curves use thev
basis matrix set byBasis. The integer arraynverticeshas length equal to the total
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number of individual curves, and its data are the number of vertices in each curve.
The stringwrap is either"periodic" or"nonperiodic", describing whether or not
the individual curves wrap end-to-end.

Theparameterlistis a list of token-value pairs that must contain position data ("P")
and may also contain other primitive variables. The total number of control points
"P" must be the total vertices in all the curves (i.e., the sum of all entries in the
nverticesarray).

Like patch meshes, curves obey the basis matrix and basis step. Therefore, the num-
ber of segments in an individual curve withnv vertices, and therefore the number of
varying data items on that curve, is

nsegments =


nv − 1 for nonperiodic linear curves

nv for periodic linear curves
(nv−4

vstep ) + 1 for nonperiodic cubic curves
nv

vstep for periodic cubic curves

nvarying =

{
nsegments + 1 for nonperiodic curves

nsegments for periodic curves

Any vertex primitive variables must have the same number of data entries as the
number of points (i.e., they must have the same length as"P"). Any uniform prim-
itive variables contain one data entry per individual curve. Anyvarying primitive
variables have one entry for every segment boundary, that is, a total of

∑
nvarying i.

Any constant primitive variables have only one data item.

If the parameterlistcontains a primitive variable"width", of typevarying float,
the width values (one per curve segment end) will be used as the"object" space
sizes of the particles. Alternately, if there is a primitive variable"constantwidth",
of type constant float, the single value supplied will be used as the"object"
space sizes of all the particles. If neither"width" nor "constantwidth" are sup-
plied, particles will all be 1 unit in diameter (measured in"object" space).

Curves primitives actually produce ribbons. The"P" control points obviously define
the “spline” of the curve. If primitive variable normals ("N") are supplied, these
normals are used to orient the ribbon surface to always be perpendicular toN. If no
"N" values are supplied, the curves are oriented “toward the camera” (or toward the
ray origin for ray tracing), so they will appear as thin tubes like hair or spaghetti.

EXAMPLE:

Curves "cubic" [4] "nonperiodic" "P" [ 0 1 0 -1 0 0 -1 -1 0 0
-1 0] "varying float width" [.1 .04]

Points ...parameterlist...

Draws point-like particles. Theparameterlistis a list of token-value pairs that must
contain position data ("P") and may also contain other primitive variables. The total
number of particles is determined by the length of the"P" array.
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If the parameterlistcontains a primitive variable"width", of typevertex float,
the width values (one per point) will be used as the"object" space sizes of the
particles. Alternately, if there is a primitive variable"constantwidth", of type
constant float, the single value supplied will be used as the"object" space
sizes of all the particles. If neither"width" nor "constantwidth" are supplied,
particles will all be 1 unit in diameter (measured in"object" space).

EXAMPLE:

Points "P" [0 0 0 1 0 0 1 1 0 0 1 0] "constantwidth" [0.1]

4.6 Quadrics

Six quadrics, plus the torus, are supported as geometric primitives. The quadrics all share
several important properties. Most notably, unlike all of the previously-described primi-
tives, quadrics are not described by a mesh of control vertices, and therefore do not require
"P" values to be supplied. Rather, each quadric is defined parametrically, using trigono-
metric equations that sweep it out as a function of two parameters.

The quadrics are all created by sweeping a curve around thez-axis in its local coor-
dinate system, soz is always “up.” The sweep angle,thetamax, is given in degrees (360
being a closed, fully-swept shape). Athetamax < 0 creates a quadric that is inside-out;
The quadrics all have simple controls for sweeping a partial quadric, using ranges ofz or
the parametric angles. Quadrics are defined relative to their"object" space coordinate
systems, and are placed by using a transformation, since they have no built-in translation or
rotational controls.

Quadric parameter lists are used solely for applying primitive variables, and so do not
affect the shape of the primitives. All quadrics require four data values for anyvertex or
varying parameters (one for each parametric corner) and one data value for anyuniform
or constant parameter.

The quadric primitives are illustrated in Figure??. The individual quadric API routines
are explained below.

Cone height radius thetamax ...parameterlist...

Creates a cone with an open base on thex-y plane and apex at(0, 0, height). The
equation of the surface is:

θ = u · thetamax
x = radius · (1− v) · cos θ
y = radius · (1− v) · sin θ
z = v · height

EXAMPLE:

Cone 3.0 1.0 360.0
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Cylinder radius zmin zmax thetamax ...parameterlist...

Creates a cylinder with the givenradius. The cylinder is parallel to (and centered
upon) thez-axis and extends fromz = zmin to z = zmax . The equation of the
surface is:

θ = u · thetamax
x = radius · cos θ
y = radius · sin θ
z = v · (zmax − zmin)

EXAMPLE:

Cylinder 1.0 -0.5 1.2 360.0

Disk height radius thetamax ...parameterlist...

Creates a disk parallel to thex-y plane withz = height . The equation of the surface
is:

θ = u · thetamax
x = radius · (1− v) · cos θ
y = radius · (1− v) · sin θ
z = height

EXAMPLE:

Disk 0 2 360

Hyperboloid x1 y1 z1 x2 y2 z2 thetamax ...parameterlist...

Create a hyperboloid by sweeping the line segment joining points(x1, y1, z1) and
(x2, y2, z2) about thez-axis with the given sweep anglethetamax.

The hyperboloid is actually quite a flexible superset of some of the other primitives.
For example, if these points have the samex- andy-coordinates, and differ only inz,
this will create a cylinder. If the points both have the samez coordinate, it will make
a planar ring (a disk with a hole cut out of the center). If the points are placed so
that they have the same angle with thex-axis (in other words, are on the same radial
line if looked at from the top), they will create a truncated cone. In truth, some of
these special cases are more useful for geometric modeling than the general case that
creates the “familiar” hyperboloid shape.

The equation of the surface is:

θ = u · thetamax
xr = (1− v)x1 + v · x2

yr = (1− v)y1 + v · y2

zr = (1− v)z1 + v · z2
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x = xr · cos θ − yr · sin θ
y = xr · sin θ + yr · cos θ
z = zr

EXAMPLE:

Hyperboloid 1 0 0 0 0.5 2 360

Paraboloid topradius zmin zmax thetamax ...parameterlist...

Creates a partial paraboloid swept around thez-axis. The paraboloid is defined as
having its minimum at the origin and has radiustopradiusat heightzmax, and only
the portions abovezminare drawn. The equation of the surface is:

θ = u · thetamax
z = v · (zmax − zmin)

r = topradius ·
√
z/zmax

x = r · cos θ
y = r · sin θ

EXAMPLE:

Paraboloid 3.0 0 6 360

Sphere radius zmin zmax thetamax ...parameterlist...

Creates a partial or full sphere with the givenradius, centered at the origin. Thezmin
andzmaxparameters can cut off the top and bottom of the sphere if they are not equal
to±radius. The equation of the surface is:

φmin =

{
asin

(
zmin

radius

)
if zmin > −radius

−90.0 if zmin ≤ −radius

φmax =

{
asin

(
zmax
radius

)
if zmax < radius

90.0 if zmax ≥ radius

φ = φmin + v · (φmax − φmin)
θ = u · thetamax
x = radius · cos θ · cosφ
y = radius · sin θ · cosφ
x = radius · sinφ

EXAMPLE:

Sphere 2.0 -2.0 2.0 360
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Torus majorradius minorradius phimin phimax thetamax ...parameterlist...

Creates a quartic “donut” surface (technically not a quadric). The cross section of
a torus is a circle of radiusminorradiuson thex-zplane, and the anglesphiminand
phimaxdefine the arc of that circle. It will be swept aroundz at a distance ofma-
jorradius to create the torus. Thus,majorradius + minorradius defines the outside
radius of the entire torus (its maximum size), whilemajorradius − minorradius
defines the radius of the hole. The equation of the surface is:

θ = u · thetamax
φ = phimin + (phimax − phimin)
r = minorradius · cosφ
z = minorradius · sinφ
x = (majorradius + r) · cos θ
y = (majorradius + r) · sin θ

EXAMPLE:

Torus 3 0.5 0 360 360

4.7 Implicit Surfaces

NEW!Blobby [ code ] [ floats ] [ strings ] ...parameterlist...

TheBlobby documentation is currently incomplete. Sorry about that.

Entropy’s Blobby primitives are incompletely implemented. Currently, they only
support ellipsoid blobs (not segments or planes), and only support the add, multiply,
max, min, and subtract operations.

EXAMPLE:

Blobby 2 [1001 0 1001 16 0 2 0 1]
[0.5 0 0 0 0 0.5 0 0 0 0 0.5 0 0.6 0.1 0.05 1
0.65 0 0 0 0 0.64 0 0 0 0 0.63 0 0.81 0.12 0.74 1] [ ]
"varying color Cs" [1 0.3 0.389422 0.2 1 0.378140]

4.8 Procedural Geometry

A procedural primitiveis a collection of geometry for which you only tell the renderer its
location and spatial extent as a bounding box. Only if (and when) the renderer needs to
know the what is inside the box, the renderer will invoke a procedure (such as running a
program or reading another file) to generate the geometry inside the box.

Extensive use of procedural primitives is an excellent way to reduce the memory con-
sumption of very large scenes. Procedurals that are outside the camera view or occluded by



58 CHAPTER 4. GEOMETRIC PRIMITIVES

other objects may never get expanded, and thus use almost no memory whatsoever. Even
those procedurals that do get expanded will delay doing so until they are absolutely needed,
further reducing the “working set” of geometry needed at any time by the renderer.

Procedural procname [procargs ] [boundingbox ]

Adds a “procedural primitive” to the scene. The string parameterprocnameis the
type of procedural primitive. Theprocargsparameter is an array of strings whose
meaning is specific to the type of procedural. Theboundingbox(expressed as an
array of six floats:xmin, xmax, ymin, ymax, zmin, zmax) describes the spatial extent
of the procedural primitive, relative to the CTM coordinate system.

There are three procedural types supported byEntropy:

Procedural "DelayedReadArchive" [filename ] [boundingbox ]

TheDelayedReadArchive procedural takes a single string array argument: thefile-
nameof a RIB file containing the geometry comprising the procedural primitive.
When the contents of the procedural’s bounding box are needed, the file will be read
to provide the geometry to the renderer.

Any time you are inclined to useReadArchive, you should try instead to useDelayedReadArchive
if it is at all possible to bound the contents of the file.

EXAMPLE:

Procedural "DelayedReadArchive" ["chair.rib"] [-20 20 -30 30 0
100]

Procedural "RunProgram" [programname datablock ] [boundingbox ]

The RunProgram procedural takes a two arguments in its array of string parame-
ters: theprogramnameis the name of an executable program to run (including any
command line arguments), and thedatablockis a string giving arguments or other
data that is meaningful to the procedural program (it can be an empty string if the
program does not require any further information). When the contents of the proce-
dural’s bounding box are needed, the program will be run with the given arguments,
providing the geometry to the renderer.

EXAMPLE:

Procedural "RunProgram" ["makechair -height 30" ""] [-20 20 -30
30 0 100]

Procedural "DynamicLoad" [dsoname paramdata ] [boundingbox ]

TheDynamicLoad procedural takes a two arguments in its array of string parameters:
thedsonameis the name of a shared object file (called DSO’s or DLL’s, depending
on your operating system), andparamdatais a string giving arguments or other data
that is meaningful to the procedural program. When the contents of the procedu-
ral’s bounding box are needed, the program will be run with the given arguments,
providing the geometry to the renderer.
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Procedural DSO’s must have three public interface routines:
void * ConvertParameters (const char * initialdata );
void Subdivide (void * blinddata , float detailsize );
void Free (void * blinddata );

TheConvertParameters routine takes a pointer to theparamdata, creates any inter-
nal representation needed for the procedural, and returns a(void *) blind pointer
to the procedural data. TheSubdivide routine, which is only called if the pro-
cedural needs to be expanded, takes that same blind pointer that was created by
ConvertParameters. TheSubdivide routine is responsible for generating the con-
tents of the procedural (using the C API for describing scenes). Finally, theFree
routine, which also takes the same blind pointer, is called at the end of the frame, and
should free any resources associated with the procedural.

EXAMPLE:

Procedural "DynamicLoad" ["chair.so" ""] [-20 20 -30 30 0 100]

Because the whole point of procedurals is that the renderer does not need to know the
contents of the procedural until exactly when it is needed, it is impossible for the renderer to
know about any attributes set inside the procedural. For ray tracing, this is very important
— the Attribute "visibility" (see Section 3.2.2, p. 32) determines whether or not
primitives appear at all in reflections or shadows. For efficiency reasons, you don’t want
the renderer to have to fully expand the procedural just to find out if anything inside will
require ray tracing.

Therefore,Attribute "visibility" "reflection" orAttribute "visibility"
"shadow" must be set when the procedural is declared (i.e., as if the procedural itself was
a primitive binding to the attribute state), orEntropy will assume that nothing inside the
procedural will be needed for ray tracing. It’s okay if the contents of the procedural turn re-
flection or shadow visibility off again — but if anything inside will be visible in ray tracing,
the entire procedural must be marked as potentially visible in traced rays.
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Chapter 5

Shading Language

This chapter gives a terse, yet complete, specification forEntropy’s shading language.

5.1 Preliminaries

5.1.1 Shader Types

There are four types of shaders supported byEntropy:

surface
Surface shaders describe the appearance of surface geometry as viewed by the camera
or as it appears in a reflection or shadow ray. Surface shaders are bound to geometry
with theSurface call.

displacement
Displacement shaders can actually deform geometry in order to add surface detail.
Displacement shaders are bound to geometry with theDisplacement call.

volume
Volume shader describe how light is attenuated as it passes through volumes of partic-
ipating media. Volume shaders may be bound to geometry through theAtmosphere,
Interior, or Exterior calls.

light
Light shaders determine how much light from a particular light source arrives at a
point in space. Light shaders are bound to lights in the scene using theLightSource
andAreaLightSource calls.

5.1.2 Overall shader structure

A shader is organized as follows:

[ optional function definitions ]

shadertype shadername( [params] )

61
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{
statements

}

Theshadertypeis one ofsurface, displacement, volume, light, or imager. The
shadernameis the name of the shader, chosen by the user. The optionalparamsis a list of
parameter declarations.

type paramname= defaultvalue{ , paramname= defaultvalue} { ; moreparams}

The type is one of the shading language data types (described in Section 5.2). The
paramnameis the name of the parameter, and it is given adefaultvalue, which will be the
value of the parameter if another value is not supplied in the scene file. Several parameters
of the same type may be declared together, separated by commas. Several parameter sets of
different type may be declared in the parameter list, separated by semicolons. Below is an
example shader declaration:

surface pitted ( float Ka=1, Kd=1, Ks=0.5;
float angle = radians(30);
color splotcolor = 0;
color stripecolor = color (.5, .5, .75);
string texturename = "";
string dispmapname = "mydisp.tx";
vector up = vector "shader" (0,0,1);
varying point Pref = point (0,0,0);
output varying normal surfNorm = 0;

)
{
...

}

The storage class (see Section 5.2.6) for shader parameters is assumed to beuniform,
but you may use thevarying keyword to force a parameter to bevarying. You must
declare a parameter asvarying if you intend to passvarying or vertex data on the
geometric primitive for that variable.

Shader parameters are treated as read-only — your shader may not modify their values
— unless you declare them using theoutput keyword. Declaring a parameter asoutput
makes it writable, and by writing new values your shader can communicate with other
shaders attached to the same geometry or specify new data to be incorporated into the
image output.

Prior to the definition of the shader itself, there may be any number of functions (sub-
routines) declared. Those functions may then be called by the shader.

5.1.3 Identifiers

Identifiers, used for names of variables, functions, and shaders, consist of one or more
letters, numerals, or the underscore character. The first character of an identifier may not be
a digit.
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The following are valid identifiers in the shading language:

i
Foo19
bar
really long name

The following are not valid identifiers:

7seas (can’t start with a numeral)
wow! (can’t include punctuation)
my variable (definitely can’t contain spaces!)

Identifiers arecase sensitive; in other words, the identifiersindex and the variable
Index are completely different variables.

5.1.4 Comments

NEW!As in C, any text enclosed by/* and*/ is considered a comment, and will be ignored. As
with C++, any text following//, until the end of the line, is considered a comment and will
be ignored.

5.1.5 Preprocessor

Shaders are assumed to be filtered by a preprocessor, just like C programs. The follow-
ing preprocessor directives are supported and perform the same functionality as in the C
language:

#include
#define
#ifdef
#ifndef
#if
#endif
#else

5.2 Data Types

Entropy’s shading language provides several built-in data types for performing computa-
tions inside your shader, as shown in Table 5.1.
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Table 5.1: Shading Language data types.
float Scalar floating-point data (numbers)
point
vector
normal

Three-dimensional positions, directions, and surface orienta-
tions

color Spectral reflectivities and light energy values
matrix 4× 4 transformation matrices
string Character strings (such as filenames)

5.2.1 float

Thefloat type is used for all scalar numeric values (including integer values), and is nearly
identical to the equivalent data type in the C language.float constants are constructed the
same way as in C, for example:1, 1.14, 1.0e-6. The named constantPI is predefined to
be the value toπ (to the accuracy of thefloat data type).

5.2.2 color

Thecolor data type is used to represent 3-component spectral reflectivities and light ener-
gies (such as radiance).1 The components of colors are referent to a particularcolor space.
Colors are by default represented as RGB triples"rgb" space. You can assemble a color
out of three floats, either representing an RGB triple or some other color space known to
the renderer, for example:

color (0, 0, 0) /* black */
color "rgb" (.75, .5, .5) /* pinkish */
color "hsv" (.2, .5, .63) /* specify in "hsv" space */

All three of these expressions above return colors in"rgb" space. Even the third ex-
ample returns a color in"rgb" space — specifically, the RGB value of the color that is
equivalent to hue 0.2, saturation 0.5, and value 0.63. In other words, when assembling a
color from components given relative to a specific color space in this manner, there is an
implied transformation to"rgb" space. Table 5.2 lists the color spaces thatEntropy knows
by name.

The +, -, *, and/ operators can be applied to two colors, performing the operations
component-by-component. Colors may be compared using the== and!= boolean oper-
ators. All of these operations may be performed between acolor and afloat, treating
thefloat as if it were acolor with all three components being identical. Section?? lists
built-in functions that manipulate colors, including functions to retrieve and set individual
color components and that transform colors among different color spaces.

1Note that reflectivities are only physically meaningful of each component is between 0 and 1, whereas
radiance values may have unbounded positive values.Entropy makes no attempt to police either the values you
store incolor’s or your semantic use of reflectivity versus radiance.
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Table 5.2: Names of color spaces.
"rgb" The coordinate system that all colors start out in, and in which the renderer

expects to find colors that are set by your shader (such asCi, Oi, andCl).
"hsv" hue, saturation, and value.
"hsl" hue, saturation, and lightness.
"YIQ" the color space used for the NTSC television standard.
"xyz" CIE XYZcoordinates.
"xyY" CIE xyYcoordinates.

5.2.3 point, vector, normal

A point is a position in 3D space. Avector has a length and direction, but does not exist
in a particular location. Anormal is a vector that is perpendicular to a surface, and thus
describes the surface’s orientation. All three of these types are internally represented by
three floating-point numbers.

This manual will often refer to these types collectively as “point-like” types (or, with-
out loss of generality, simply as points). Note that points, vectors, and normals transform
between coordinate systems using different transformation rules, so it is important that you
choose the right types and use the right transformation routines on them.

All points, vectors, and normals are described relative to some coordinate system. All
data provided to a shader (surface information, graphics state, parameters, and vertex data)
are relative to one particular coordinate system that we call the"current" coordinate
system. The"current" coordinate system is one that is convenient for the renderer’s
shading calculations.

You can construct a point-like type out of three floats using a constructor, for example:

point (0, 2.3, 1)
vector (a, b, c)
normal (0, 0, 1)

These expressions are interpreted as a point, vector, and normal whose three components
are the floats given, relative to"current" space .

As with colors, you may also specify the coordinates relative to some other coordinate
system:

Q = point "object" (0, 0, 0);

This example assigns toQ the point at the origin of"object" space. However, this
statement doesnotset the components ofQ to (0,0,0)! Rather,Q will contain the"current"
space coordinates of the point that is at the same location as the origin of"object" space.
In other words, the point constructor that specifies a space name implicitly specifies a trans-
formation to"current" space. This type of constructor also can be used for vectors and
normals.

Table 5.3 lists the coordinate systems thatEntropy recognizes by name. The RIB state-
mentCoordinateSystem may be used to give additional names to user-defined coordinate
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systems. These names may also be referenced inside your shader to designate transforma-
tions.

The +, -, *, and/ operators can be applied to two point-like values, performing the
operations component-by-component. Point-like values may be compared using the== and
!= boolean operators. All of these operations may be performed between a point (or vector
or normal) and afloat, treating thefloat as if it were apoint with all three components
being identical. The shading language also defines the^ operator to be cross-product (taking
two vector operands and returning a vector) and the. operator to be dot-product (taking
two vector operands and returning a float).

Table 5.3: Names of predeclared geometric spaces.
"current" The coordinate system that all points start out in and the one in which all

lighting calculations are carried out.
"object" The local coordinate system of the graphics primitive (sphere, patch, etc.)

that we are shading.
"shader" The coordinate system active at the time that the shader was declared (by

theSurface, Displacement, or LightSource statement).
"world" The coordinate system active atWorldBegin.
"camera" The coordinate system with its origin at the center of the camera lens,x-

axis pointing right,y-axis pointing up, andz-axis pointing into the screen.
"screen" Theperspective-correctedcoordinate system of the camera’s image plane.

Coordinate (0,0) in"screen" space is looking along thez-axis of
"camera" space.

"raster" The 2D, projected space of the final output image, with units of pixels.
Coordinate (0,0) in"raster" space is the upper left corner of the image,
with x andy increasing to the right and down, respectively.

"NDC" Normalized device coordinates — like raster space, but normalized so that
x andy both run from 0 to 1 across the whole image, with (0,0) being at
the upper left of the image, and (1,1) being at the lower right (regardless of
the actual aspect ratio).

5.2.4 matrix

Thematrix type represents a matrix required to transform points and vectors between one
coordinate system and another. Matrices are represented internally by 16 floats (a4 × 4
homogeneous transformation matrix).

A matrix can be constructed from a single float or 16 floats. For example:

matrix zero = 0; /* makes a matrix with all 0 components */
matrix ident = 1; /* makes the identity matrix */

/* Construct a matrix from 16 floats */
matrix m = matrix (m00, m01, m02, m03, m10, m11, m12, m13,

m20, m21, m22, m23, m30, m31, m32, m33);
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Assigning a single floating-point numberx to a matrix will result in a matrix with diagonal
components all beingx and other components being zero (i.e.,x times the identity matrix).
Constructing a matrix with 16 floats will create the matrix whose components are those
floats, in row-major order.

Similar to point-like types, amatrix may be constructed in reference to a named space:

/* Construct matrices relative to something other than "current" */
matrix q = matrix "shader" 1;
matrix m = matrix "world" (m00, m01, m02, m03, m10, m11, m12, m13,

m20, m21, m22, m23, m30, m31, m32, m33);

The first form creates the matrix that transforms points from"current" space to"shader"
space. Transforming points by this matrix is identical to callingtransform("shader",...).
The second form prepends the current-to-world transformation matrix onto the4×4 matrix
with componentsm0,0...m3,3. Note that although we have used"shader" and"world"
space in our examples, any named space is acceptable.

Matrix values can be compared with== and!=. Also, the* operator between matrices
denotes matrix multiplication, whilem1 / m2 denotes multiplyingm1 by the inverse of
matrixm2. Thus, a matrix can be inverted by writing1/m.

5.2.5 string

Thestring type may hold character strings. The main application of strings is to provide
the names of files where textures may be found. Strings can be compared using== and!=.

String constants are denoted by surrounding the characters with double quotes, as in"I
am a string literal". As in C programs, strings may contain special escape sequences
that begin with the backslash (‘\’) character: ‘\n’ (newline), ‘\r’ (carriage return), ‘\t’
(tab), ‘\\’ (backslash character), ‘\"’ (double quote character).

5.2.6 Storage classes:uniform and varying

In addition to a datatype, all variables and values in the shading language have astorage
class, which may be eitheruniform or varying. A uniform variable is one whose value
is the same at all points on a surface (or at least all the surface points that are shaded at any
one time). Avarying variable is one that can take on different values at different positions
on the surface. Expressed another way,uniform values areper objectwhereasvarying
values areper surface point.

It is important to remember thatuniform does not mean “read only.”Uniform vari-
ables are perfectly free to be reassigned or to take different values at different times; they
are just prohibited from taking different values at different locations in space.

If no storage class is explicitly specified in a shader parameter declaration, it will be
assumed to beuniform. If no storage class is specified in a local variable declaration, it
will be assumed to bevarying. Strings may beuniform only (even if they are declared as
local variables), but all other data types may be eitheruniform or varying.

You should declare as many of your parameters and variables asuniform as possible
— uniform values take up much less storage and can be computed much more rapidly than
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varying values. It is especially helpful (in terms of optimizing your shaders) to be sure
that you useuniform values and variables for controlling conditionals and loops.

5.3 Language Syntax

The bodies of shaders and shader functions are composed ofstatements. Statements in the
shading language are terminated by semicolons (; ). The types of statements allowed are:

Variable Declaration A local variable may be declared, and optionally, an initial value
may be assigned to it.

Assignment A previously declared variable may have its value set to the evaluation of an
expression.

Procedure call A previously declared function or a built-in function may be invoked.

Conditional The shading language supportsif andif-else statements, much like the C
language.

Loop The shading language supportsfor andwhile loops, much like the C language.

Loop Modifier Thebreak statement causes a loop to terminate, and thecontinue state-
ment skips to the next iteration. Both statements may be called only within a loop.

Lighting Statement The shading language allows light shaders to generate light with the
solar andilluminate statements, and for surface shaders to gather light with the
illuminance statement.

Function Declaration A new function may be declared and defined, able to be called and
invoked later within the same lexical scope.

New scopeA new naming scope may be declared by enclosing statements with curly
braces:{ }

5.3.1 Variable Declarations and Assignments

Local variables are those that you, the shader writer, declare for your own use. They are
analogous to local variables in C or any other general-purpose programming language. The
syntax for declaring a variable in the shading language is (items in brackets are optional):

[class] type variablename[ = initializer]

where

• The optionalclassspecifies one ofuniform or varying. If classis not specified, it
defaults tovarying for local variables.

• typeis one of the basic data types, described earlier.
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• variablenameis the name of the variable you are declaring.

• If you wish to give your variable an initial value, you may do so by assigning an
initializer.

Arrays are also supported, declared as follows:

class type variablename[ arraylen] = { init0, init1 ... }

Arrays must have a constant length; they may not be dynamically sized. Also, only 1D
arrays are allowed. Other than that, however, the syntax of array usage is largely similar to
C.

Some examples of variable declarations are

float a; /* Declare; current value is undefined */
uniform float b; /* Explicitly declare b as uniform */
float c = 1; /* Declare and assign */
float d = b*a; /* Another declaration and assignment */
float e[10]; /* The variable e is an array */

When you declare local variables, you will generally want them to bevarying. But
be on the lookout for variables that take on the same value everywhere on the surface (for
example, loop control variables), because declaring them asuniform may allowEntropy
to take shortcuts that allow your shaders to execute more quickly and use less memory.

5.3.2 Procedure Calls

Just like in C and many other programming languages, you may call functions by specifying
their name, followed by parentheses, optionally with a comma-separated argument list:

functionname( )

functionname( arg1, ... , argn)

If the function does not return any value (avoid function) or if you wish to ignore the
return value, a bare procedure call as above is a valid program statement. The function’s
return value (if it has one) may also be assigned to a variable, used in an expression, or
passed as an argument to another function.

5.3.3 Conditionals

Conditionals inEntropy’s shading language work much as in C:

if ( condition)
truestatement

and
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if ( condition)
truestatement

else
falsestatement

The statements can also be entire blocks, surrounded by curly braces. The condition may
be one of the following Boolean operators:==, != (equality and inequality);<, <=, >,
>= (less-than, less-than or equal, greater-than, greater-than or equal). Conditions may be
combined using the logical operators:&& (and),|| (or), ! (not).

Unlike C, in shaders it is not legal to use afloat, point, or color directly as the
condition (it must be acomparisonbetween two values), nor may a boolean expression be
assigned to afloat.

5.3.4 Loops

Two types of loop constructs work nearly identically to their equivalents in C. Repeated
execution of statements for as long as a condition is true is possible with awhile statement:

while ( condition)
truestatement

Also, C-likefor loops are also allowed:

for ( init ; condition; loopstatement)
body

As with if statements, loop conditions must be relations, not floats. As with C, you
may usebreak andcontinue statements to terminate a loop altogether or skip to the next
iteration, respectively.

5.3.5 Lighting Statements

The shading language has some special syntactic structures for emitting light in light shaders,
and for gathering light in surface or volume shaders.

Emission of Light: solar and illuminate

Within light shaders, thesolar andilluminate statements are available to control the
emission of light from infinitely far and finite positions, respectively. Both statements set
theL variable appropriately, and both expect that its statements will set theCl variable to
the amount of light arriving at surface positionPs.

solar ( vector axis ; float spreadangle ) {
statements ;

}
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The effect of thesolar statement is to send light to everyPs from the same direction, given
by axis. Thesolar statement sets theL variable to its first argument. The result is that rays
from such a light are parallel, as if the source was infinitely far away (like the sun).

The spreadangleparameter is usually set to zero, indicating that the source subtends
an infinitesimal angle and that the rays are truly parallel. Values forspreadanglegreater
than zero indicate that a plethora of light rays arrive at eachPs from a range of directions,
instead of a single ray from a particular direction. Such lights are known asbroad solar
lights and are analogous to very distant but very large area lights (for example, the sun
actually subtends a 1/2 degree angle when seen from Earth).

For lights that have a definite, finitely close position, there is another construct to use:

illuminate ( point from ) {
statements ;

}

illuminate ( point from ; vector axis ; float angle ) {
statements ;

}

The first form of theilluminate statement indicates that light is emitted from position
from, and is radiated in all directions. Theilluminate statement implicitly setsL = Ps
- from. The second form ofilluminate also specifies a particular cone of light emission,
given by an axis and angle. IfPs does not fall within the cone, the body of theilluminate
statement will not be executed.

Gathering of light: illuminance

Surface and volume shaders may gather available light using another statement:illuminance.

illuminance ( point position ) {
statements ;

}

illuminance ( point position ; vector axis ; float angle ) {
statements ;

}

Theilluminance statement loops over all light sources visible from a particularposition.
In the first form, all lights are considered, and in the second form, only those lights whose
directions are withinangleof axis (typically, angle=π/2 andaxis=N, which indicates that
all light sources in the visible hemisphere fromP should be considered). For each light
source, thestatementsare executed, during which two additional variables are defined:L
is the vector that points to the light source, andCl is the color representing the incoming
energy from that light source.
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5.3.6 Scoping and Function Definitions

Even though the shading language provides many useful functions, you will probably want
to write your own, just as you would in any other programming language. Defining your
own functions is similar to doing it in C:

returntype functionname( params)
{

... do some computations ...
return return value;

}

However, in many ways shader function definitions are not quite like C:

• Only onereturn statement is allowed per function. The exception to this rule is for
void functions, which have noreturn statement.

• All function parameters are passed by reference. In other words, unlike C, the func-
tion does not have private copies of its parameters that can be modified without af-
fecting their originals. Rather, function parameters are merely new names for the
original variables (much like using the& reference parameters in C++).

• You may not compile functions separately from the body of your shader. The func-
tions must be declared prior to use and in the same compilation pass as the rest of
your shader (though you may place them in a separate file and use the#include
mechanism).

Valid return types for functions are the same as variable declarations:float, color,
point, vector, normal, matrix, string. You may declare a function asvoid, indicating
that it does not return a value. You may not have a function that returns an array.

Although parameters are passed by reference, any parameters you want to modify must
be declared with theoutput keyword, as in the following example:

float myfunc (float f; /* you can’t assign to f */
output float g;) /* but you can assign to g */

Entropy expands functions inline, instead of compiling them separately and calling
them as subroutines. This means that there is no overhead associated with the call sequence.
The downside is increased size of compiled code and the lack of support for recursion.

Functions obey standard variable lexical scope rules. Functions may be declared outside
the scope of the shader itself, as you do in C. By default, shader functions may only access
their own local variables and parameters. However, this can be extended by use of an
extern declaration — global variables may be accessed by functions if they are accessed
asextern variables. You may also define functions inside shaders or other functions —
that is, functions may be defined anyplace where a local variable might be declared. In the
case of local functions, variables declared in the outer lexical scope may be accessed if they
are redeclared using theextern keyword. Following is an example:
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float x, y;

float myfunc (float f)
{

float x; /* local hides the one in the outer scope */
extern float y; /* refers to the y in the outer scope */
extern point P; /* Refers to the global P */
...

}

5.4 Expressions

The expressions available in the shading language include the following:

• constants: floating-point (e.g.1.0, 3, -2.35e4), string literals (e.g.,"hello"), and
the named constantPI

• point, vector, normal, or matrix constructors, for example:
point "world" (1,2,3)

• variable references (by name)

• function calls

• unary and binary operators on other expressions, for example (in order of prece-
dence):

- expr (negation)
expr. expr (vector dot product)
expr/ expr (division)
expr* expr (multiplication)
expr^ expr (vector cross product)
expr+ expr (addition)
expr- expr (subtraction)

The operators+, -, *, /, and the unary- (negation) may be used on any of the numeric
types. For multicomponent types (colors, vectors, matrices), these operators combine
their arguments on a component-by-component basis.

The^ and. operators only work for vectors and normals and represent cross product
and dot product, respectively.

The only operators that may be applied to thematrix type are* and/, which respec-
tively denote matrix-matrix multiplication and matrix multiplication by the inverse of
another matrix.

• relations between variables (all lower precedence than the numeric operators):
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expr== expr (equal)
expr!= expr (not equal)
expr< expr (less than)
expr<= expr (less than or equal to)
expr> expr (greater than)
expr>= expr (greater than or equal to)

The== and!= comparisons may be performed between any two values of equal type,
and are performed component-by-component for multicomponent types. The relative
ordering comparisons (such as< and>) may only be performed between twofloat’s.

Note that relations produce Boolean (true/false) values. Boolean values may not be
assigned to variables, but may be used in conditionals and loops.

• logical combinations of Boolean expressions:

expr&& expr (and)
expr|| expr (or)
! expr (not)

• another expression enclosed in parenthesis:( ). Parenthesis can be used to guarantee
associativity of operations.

• type casts, specified by simply having the type name in front of the value to cast:

vector P /* cast a point to a vector */
point f /* cast a float to a point */
color P /* cast a point to a color! */

The three-component types (point, vector, normal, color) may be cast to other
three-component types. Afloat may be cast to any of the three-component types
(by placing the float in all three components) or to amatrix (which makes a matrix
with all diagonal components being thefloat). Obviously, there are some type casts
that are not allowed because they make no sense, like casting apoint to afloat, or
casting astring to a numerical type.

• ternary operator, just like C: condition? expr1: expr2
If conditionis true,expr1is returned, but ifconditionis false,expr2is returned.

5.5 Global variables

In addition to shader parameters and locally-defined variables, the shading language makes
information about the surface available through pre-declared “global” variables. Somewhat
different sets of global variables are available in different types of shaders. Table 5.8 lists all
of the predefined global variables, with information about how their meanings differ among
shader types. The global variables are read-only except where noted as “writable.”
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5.5.1 Surface shaders

The purpose of surface shaders is to modify theCi andOi variables to be the color and
opacity of the surface at the point being shaded. If the shader does not explicitly setCi, it
will retain its default of 0 (black). If the shader does not explicitly setOi, it will retain its
default value of 1 (fully opaque).

Variable Description
varying color Cs Surface color
varying color Os Surface opacity

varying point P Surface position (WRITABLE*)
varying vector dPdu, dPdv Partial derivatives∂P/∂u and ∂P/∂v of the

surface.
varying normal N Surface shading normal (WRITABLE)
varying normal Ng Surface geometric normal

varying float s, t Surface texture coordinates
varying float u, v Surface parameters
varying float du,dv Change in surface parameters between adjacent

shading points

varying vector L Incoming light ray direction (only available inside
illuminance statements)

varying color Cl Incoming light ray color (only available inside
illuminance statements)

varying point E Position of the eye
varying vector I Incident ray direction
uniform float time Current shutter time
uniform float dtime The amount of time covered by this shading sample.
varying vector dPdtime How the surface position P is changing per unit

time, as described by motion blur in the scene.
varying color Ci Incident ray color (WRITABLE)
varying color Oi Incident ray opacity (WRITABLE)

(*) Writing to P in surface shaders will not result in true displacement, only bump mapping.

Table 5.4: Surface Shader “Global” Variables

5.5.2 Displacement shaders

Displacement shaders have access to most of the same global variables as surface shaders.
They may not write toCi or Oi or interrogate light sources, but if displacement shaders
modify P, the surface will deform (displace).
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Variable Description
varying point P Surface position (WRITABLE*)
varying vector dPdu, dPdv Partial derivatives∂P/∂u and ∂P/∂v of the

surface.
varying normal N Surface shading normal (WRITABLE)
varying normal Ng Surface geometric normal

varying float s, t Surface texture coordinates
varying float u, v Surface parameters
varying float du,dv Change in surface parameters between adjacent

shading points

varying point E Position of the eye
varying vector I Incident ray direction
uniform float time Current shutter time
uniform float dtime The amount of time covered by this shading sample.
varying vector dPdtime How the surface position P is changing per unit

time, as described by motion blur in the scene.
(*) Writing to P in displacement shaders will deform the surface.

Table 5.5: Displacement Shader “Global” Variables

5.5.3 Volume shaders

Volume shaders attenuate light as it passes through volumes of participating media. At the
beginning of volume shader execution,Ci andOi variables contain the color and opacity
of whatever was “behind” the volume. The volume shader should modifyCi andOi as
necessary to reflect what happens to that light as it passes through the volume.

Variable Description
varying color Ci, Oi Color and opacity of light on the far side of the vol-

ume.
varying point P Far volume endpoint.
varying vector I Incident ray through the volume.
varying point E Position of the eye
varying vector L Incoming light ray direction (only available inside

illuminance statements)
varying color Cl Incoming light ray color (only available inside

illuminance statements)

uniform float time Current shutter time
uniform float dtime The amount of time covered by this shading sample.

varying color Ci, Oi Incident light color and opacity as it exits from the
near side of the volume.

Table 5.6: Volume Shader “Global” Variables
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5.5.4 Light shaders

Light shaders are supposed to setL andCl to reflect the direction and color of light arriving
at pointPs.

Variable Description
varying point Ps Position of the surface being illuminated
varying point P Position on the light source
varying vector dPdu, dPdv Partial derivatives∂P/∂u and∂P/∂v of the area

light source surface
varying normal N Surface shading normal on the light
varying normal Ng Surface geometric normal on the light
varying normal Ns Normal on the surface that caused the light to be

run. Be very careful using this – its value is unde-
fined when lights are run at positions other than the
surface’sP (for example, in volume marching).

varying float s, t Surface texture coordinates on the light
varying float u, v Surface parameters on the light
varying float du,dv Change in surface parameters between adjacent

shading points

varying vector L Outgoing light ray direction (only available inside
illuminate andsolar statements)

varying color Cl Outgoing light ray color (WRITABLE)

uniform float time Current shutter time
uniform float dtime The amount of time covered by this shading sample.

Table 5.7: Light Shader “Global” Variables
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Variable Description
varying color Cs, Os Input surface color and opacity (surface shaders

only)
varying point P Surf: surface position

Disp: surface position (WRITABLE to displace)
Vol: position at far end of the volume
Light: position on the area light geometry

varying vector dPdu, dPdv Surf/disp: Partial derivatives∂P/∂u and∂P/∂v of
the surface.
Light: Partial derivatives of the area light source
geometry.

varying normal N Surf/disp: shading normal (WRITABLE)
Light: shading normal of the area light geometry

varying normal Ng Surf/disp: true geometric normal
Light: true geometric normal of area light geometry

varying float s, t Texture coordinates
varying float u, v Geometric parameters
varying float du,dv Change in surface parameters between adjacent

shading points

varying vector L Insideilluminance: incoming light direction
Inside lights (WRITABLE): outgoing light direc-
tion

varying color Cl Insideilluminance: incoming light color
Inside lights (WRITABLE): light arriving atPs.

varying vector I Surf/disp: Incident ray direction
Vol: ray through the volume

varying point E Position of the eye
varying vector dPdtime How the surface position P is changing per unit

time, as described by motion blur in the scene.
varying color Ci, Oi Incident ray color and opacity (WRITABLE)

varying point Ps Lights: Position of the surface being illuminated

uniform float ncomps Number of color components

uniform float time Current shutter time
uniform float dtime The amount of time covered by this shading sample.

Table 5.8: Shader “Global” Variables summary table.

5.6 Built-in Library Functions

Entropy’s shading language provides a variety of built-in functions. For brevity, functions
that are identical to those found in the standard C library are presented with minimal elabo-
ration. Note that some functions arepolymorphic, that is, they can take arguments of several



5.6. BUILT-IN LIBRARY FUNCTIONS 79

different types. In some cases we use the shorthandptypeto indicate a type that could be
any of the point-like typespoint, vector, or normal.

5.6.1 Mathematical Functions

float radians (float d)
float degrees(float r)

Convert degrees to radians, and radians to degrees, respectively.

float sin (float angle)
float cos (float angle)
float tan (float angle)

float asin (float f)
float acos (float f)
float atan (float y, x)
float atan (float y over x)

Basic trigonometry. Angles, as in C, are assumed to be expressed in radians.

float pow (float x, float y)
float exp (float x)
float log (float x)
float log (float x, b)

Exponentials: returnxy, ex, lnx, andlogb x, respectively.

float sqrt (float x)
float inversesqrt (float x)

Return
√
x and1/

√
x, respectively.

float abs (float x)

Return|x|.

float sign (float x)

Returns 1 ifx > 0, -1 if x < 0, 0 if x = 0.

float floor (float x)
float ceil (float x)
float round (float x)

Return the highest integer less than or equal tox, the lowest integer greater than or
equal tox, or the closest integer tox, respectively.

float mod (float a, b)

Just like thefmodfunction in C, returnsa− b ∗ floor(a/b).
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type min (type a, b, ...)
type max (type a, b, ...)
type clamp (type x, minval, maxval)

Themin andmax functions return the minimum or maximum, respectively, of a list
of two or more values. Theclamp function returns

min(max(x,minval),maxval),

that is, the valuex clamped to the specified range. Thetypemay be any offloat,
point, vector, normal, or color. The variants that operate on colors or point-like
objects operate on a component-by-component basis (i.e., separately forx, y, andz).

float mix (float x, y; float alpha)
color mix (color x, y; float alpha)
point mix (point x, y; float alpha)
vector mix (vector x, y; float alpha)
normal mix (normal x, y; float alpha)

Themix function returns a linear blending of any simpletype(any offloat, point,
vector, normal, or color): x ∗ (1− α) + y ∗ (α)

5.6.2 Geometric and Color Functions

float comp (color c; float i)
float comp (ptype p; float i)

Return theith component of a color or point-like value.

void setcomp (output color c; float i, float x)
void setcomp (output ptype p; float i, x)

Modify color c (or point-likep) by setting itsith component to valuex.

float xcomp (ptype p)
float ycomp (ptype p)
float zcomp (ptype p)

Return thex, y, z, or simply theith component of a point-like variable.

void setxcomp (output ptype p; float x)
void setycomp (output ptype p; float x)
void setzcomp (output ptype p; float x)

Set thex, y, z, or simply theith component of a point-like type. These routines alter
their first argument but do not return any value.
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color ctransform (string tospacename; color c rgb)
color ctransform (string fromspacename, tospacename; color c from)

Transform a color from one color space to another. The first form assumes thatc rgb
is already an “rgb” color and transforms it to another named color space. The second
form transforms a color between two named color spaces.

float length (vector V)
float length (normal V)

Returns the length of a vector or normal.

float distance (point P0, P1)

Returns the distance between two points.

float ptlined (point P0, P1, Q)

Returns the distance fromQ to the closest point on the line segment joiningP0 and
P1.

vector normalize (vector V)
vector normalize (normal V)

Return a vector in the same direction asV but with length 1, that is,V / length(V)

vector faceforward (vector N, I, Nref)
vector faceforward (vector N, I)

If Nref . I < 0, returnsN, otherwise returns-N. For the version with only two
arguments,Nref is implicitly Ng, the true surface normal. The point of these routines
is to return a version ofN that faces towards the camera — in the direction “opposite”
of I.

To further clarify the situation, here is the implementation offaceforward ex-
pressed in Shading Language:
vector faceforward (vector N, I, Nref)
{

return (I.Nref > 0) ? -N : N;
}

vector faceforward (vector N, I)
{

extern normal Ng;
return faceforward (N, I, Ng);

}

vector reflect (vector I, N)

For incident vectorI and surface orientationN, returns the reflection directionR = I
- 2*(N.I)*N. Note thatN must be normalized (unit length) for this formula to work
properly.
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vector refract (vector I, N; float eta)

For incident vectorI and surface orientationN, returns the refraction direction using
Snell’s law. Theeta parameter is the ratio of the index of refraction of the volume
containingI divided by the index of refraction of the volume being entered.

void fresnel (vector I; normal N; float eta;
output float Kr, Kt; output vector R, T);

According to Snell’s law and the Fresnel equations,fresnel() computes the reflec-
tion and transmission direction vectorsR andT, respectively, as well as the scaling
factors for reflected and transmitted light,Kr andKt. TheI parameter is the normal-
ized incident ray,N is the normalized surface normal, andeta is the ratio of refractive
index of the medium containingI to that on the opposite side of the surface.

point transform (string tospacename; point p current)
vector vtransform (string tospacename; vector v current)
normal ntransform (string tospacename; normal n current)

Transform a point, vector, or normal (assumed to be in"current" space) into the
tospacename coordinate system.

point transform (string fromspacename, tospacename; point pfrom)
vector vtransform (string fromspacename, tospacename; vector vfrom)
normal ntransform (string fromspacename, tospacename; normal nfrom)

Transform a point, vector, or normal (assumed to be represented by its"fromspace"
coordinates) into thetospacename coordinate system.

point transform (matrix tospace; point p current)
vector vtransform (matrix tospace; vector v current)
normal ntransform (matrix tospace; normal n current)

point transform (string fromspacename; matrix tospace; point pfrom)
vector vtransform (string fromspacename; matrix tospace; vector vfrom)
normal ntransform (string fromspacename; matrix tospace; normal nfrom)

These routines work just like the ones that use the space names but instead use trans-
formation matrices to specify the spaces to transform into.

point rotate (point Q; float angle; point P0, P1)

Returns the point computed by rotating pointQ by angle radians about the axis that
passes from pointP0 to P1.

float depth (point p)

Return the depth of pointp, normalized so that points at the near clip plane return a
depth of 0, and points at the far clip plane return a depth of 1.
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5.6.3 Matrix Functions

float comp (matrix M; float r, c)

Return a component of the matrix:Mr,c

void setcomp (output matrix M; float r, c, x)

Modify the matrixm by setting one of its components:Mr,c = x.

float determinant (matrix M)

Returns the determinant of matrixM.

matrix translate (matrix M; point t)
matrix rotate (matrix M; float angle; vector axis)
matrix scale (matrix M; point t)

Return a matrix that is the result of appending simple transformations onto the ma-
trix M. These functions are similar to the RIBTranslate, Rotate, andScale com-
mands, except that the rotation angle inrotate() is in radians, not in degrees as
with the RIBRotate. There are no perspective or skewing functions.

5.6.4 Pattern Generation Functions

float step (float edge, x)

Returns 0 ifx < edge and 1 ifx ≥ edge.

float smoothstep (float edge0, edge1, x)

Returns 0 ifx ≤ edge0, and 1 if x ≥ edge1, and performs a smooth Hermite
interpolation between 0 and 1 whenedge0 < x < edge1. This is useful in cases
where you would want a thresholding function with a smooth transition.

type noise (float u)
type noise (float u, v)
type noise (point p)
type noise (point p; float t)

Thenoise() function returns a continuous, pseudo-random (but repeatable) scalar
field defined on a 1- (float), 2- (2float’s), 3- (point), or 4-dimensional (point
andfloat) domain. The function always lies between 0 and 1, with a large-scale
average value of 0.5, is fairly isotropic, has no easily detectable periodicity, and has
most of its energy at frequencies between 0.5–1. This makes it ideal to use as a basis
function for producing complex natural-looking patterns.

The returntypemay be any offloat, color, point, vector, ornormal, depending
on the type of the variable the result is assigned to (or based on an explicit type cast).
For multi-component return types (e.g.,point), each component is an uncorrelated
float noise function.
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type pnoise (float u; uniform float uperiod)
type pnoise (float u, v; uniform float uperiod, vperiod)
type pnoise (point p; uniform point pperiod)
type pnoise (point p; float t; uniform point pperiod; uniform point tperiod)

Thepnoise() function is just likenoise(), but repeats with the specified periodic-
ity (which must beuniform and will be rounded down to the nearest integer). Other
than the user-set periodicity, the appearance and statistical properties ofpnoise are
identical to those ofnoise().

type cellnoise (float u)
type cellnoise (float u, v)
type cellnoise (point p)
type cellnoise (point p; float t)

Thecellnoise() function returns a discrete pseudo-random (but repeatable) scalar
field defined on a 1- (float), 2- (2float’s), 3- (point), or 4-dimensional (point
andfloat) domain. The function is uniformly distributed on(0, 1), and has no easily
detectable periodicity. The function is continuous between integer values and discon-
tinuous just before integer values — in other words,cellnoise(x) = cellnoise(floor(x)).

The returntypemay be any offloat, color, point, vector, ornormal, depending
on the type of the variable the result is assigned to (or based on an explicit type cast).
For multi-component return types (e.g.,point), each component is an uncorrelated
float cellnoise function.

NEW!
type random ( )
type random (float x)
type random (point p)

Returns a random value uniformly distributed between 0 and 1. Therandom() func-
tion may be eitheruniform or varying (depending on what it’s assigned to) but
randomgrid() always returns auniform value (even if assigned to avarying vari-
able).

The returntypemay be any offloat, color, point, vector, ornormal, depending
on the type of the variable the result is assigned to (or based on an explicit type
cast). For multi-component return types (e.g.,point), each component is a separate
uniformly distributed random number.

If random() is called with no arguments, a truly “random” result is returned, and it
is not repeatable. If either afloat or point (or, technically, avector or normal) is
passed as an argument, therandom() function returns a seemingly random number
that is really is ahashof its argument (and is therefore repeatable if passed the exact
same argument again).

uniform type randomgrid ( )
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Returns auniform random value uniformly distributed between 0 and 1. Therandomgrid()
function is likerandom(), but always returns auniform value (even if assigned to a
varying variable).

The returntypemay be any offloat, color, point, vector, ornormal, depending
on the type of the variable the result is assigned to (or based on an explicit type
cast). For multi-component return types (e.g.,point), each component is a separate
uniformly distributed random number.

type spline (float x; type y0, y1, ... yn−1)
type spline (string basis; float x; type y0, y1, ... yn−1)
type spline (float x; type y[])
type spline (string basis; float x; type y[])

Fit a spline to uniformly spaced data valuesy0...yn−1, returning the interpolated
value atx (which will be clamped to lie on[0, 1]). Instead ofn data values, you may
pass an array. Thespline function will determine the length of the array.

The returntypemay be any offloat, color, point, vector, ornormal, depending
on the type of the data valuesy. For multi-component splines (e.g.,color splines),
each component is interpolated separately.

Optionally, a spline basis may be specified by name. Valid basis names are:"catmull-rom",
"bezier", "bspline", "hermite", or "linear". If no basis name is supplied,
"catmull-rom" is used. The number of data values must be4n + 3 for Bezier
splines, and4n+ 2 Hermite splines. Any number of knots may be used for Catmull-
Rom or Linear splines, but the number of knots must be≥ 4. To maintain consistency
with the other spline types, linear splines will ignore the first and last data value, in-
terpolating piecewise-linearly betweeny0 andyn−2.

The following basis names are also supported:"solvecatmull-rom", "solvebezier",
"solvebspline", "solvehermite", "solvelinear". For any of the"solve"
spline types, whose data values may only befloat, the spline’sinverseis computed.
That is,spline() returns the lookup value for which the spline’s result would bex.
Results are undefined and likely unstable if the knots do not determine a monotoni-
cally increasing spline.

5.6.5 Derivatives, Area Operators, and Antialiased Functions

float Du (float x), Dv (float x), Deriv (float x y)
vector Du (point x), Dv (point x), Deriv (point x; float y)
vector Du (vector x), Dv (vector x), Deriv (vector x; float y)

Compute derivatives of the argument.Du andDv compute∂x/∂u and∂x/∂v, re-
spectively, whereu andv are the 2D parametric surface coordinates.

Deriv() attempts to calculate∂x/∂y, but it is not particularly robust. We do not
recommend relying onDeriv, and we consider it deprecated.
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float area (point p)

Computeslength(Du(p)*du ^ Dv(p)*dv).

normal calculatenormal (point p)

ComputesDu(p) ^ Dv(p). In other words, it computes the surface normal of the
surface that is defined by pointp (asp is computed at all surface points).

float filterstep (float edge, s; ...)
float filterstep (float edge, s0, s1; ...)

Thefilterstep function provides an analytically antialiased step function. In its
two-argument form, it takes parameters identical tostep, but returns a result that is
filtered over the area of the surface element being shaded. In its three-argument form,
the step function is filtered in the range between the two valuess0 ands1 (i.e.,s1-s0
= w). This low-pass filtering is similar to that done for texture maps.

In both forms, an optional parameter list provides control over the filter function,
and may include the following parameters:"width" (also known as"swidth"), the
amount to “overfilter” ins; "filter", the name of the filter kernel to apply. The filter
may be any of the following:"catmull-rom" (the default),"box", "triangle", or
"gaussian".

5.6.6 String Functions

void printf (string template, ...)

Much as in C,printf takes a template string and an argument list. Where the format
string contains the characters%f, %c, %p, %m, and%s, printf will substitute argu-
ments, in order, from the argument list (assuming that the arguments’ types are float,
color, point-like, matrix, and string, respectively). In addition,%d and%i will also
print float’s, truncating and printing them as if they were integers.

string format (string template, ...)

The format function, like printf, takes a template and an argument list. But
format returns the assembled, formatted string rather than printing it.

NEW! void error (string template, ...)

Theerror function is just likeprintf, but is printed as a renderer error message,
including information about the name of the shader and the object being shaded.

string concat (string s1, ..., sN)

Concatenates a list of strings, returning the aggregate string.

float match (string pattern, subject)

Does a string pattern match onsubject. Returns 1 if thepattern exists anywhere
within subject and 0 if thepattern does not exist withinsubject. Thepattern
can be a standard Unix expression. Note that the pattern does not need to start in the
first character of thesubject string, unless the pattern begins with the^ (beginning
of string) character.



5.6. BUILT-IN LIBRARY FUNCTIONS 87

5.6.7 Texture, Reflection, and Shadow Access Functions

float texture (string filename; float s, t; ...params... )
float texture (string filename; float s0, t0, s1, t1, s2, t2, s3, t3;

...params... )
color texture (string filename; float s, t; ...params... )
color texture (string filename; float s0, t0, s1, t1, s2, t2, s3, t3;

...params... )

Perform an antialiased lookup into an image file, indexed by 2D coordinates. The
version with a single 2D(s, t) coordinate automatically examines hows andt vary
over the surface in order to antialias the lookup. Alternately, four corner coordinates
(i.e., a total of 8 floats) may be used to specify a quadrilateral bound of the area to be
filtered.

The texture() function may perform either a single-channel lookup (returning a
float) or a three-channel lookup (returning acolor), depending on what kind of
variable the results are assigned to (or whether an explicit type cast is made).

The 2D lookup coordinate(s) may be followed by optional token/value arguments.
Meanings of the arguments are described in Table 5.9.

Parameter Type Description
"blur" float Specifies additional blur when looking up the texture

value. The default value is 0.
"sblur" float Separately specifies"blur" in thes direction.
"tblur" float Separately specifies"blur" in thet direction.

"width" uniform float Scales the size of the filter specified by coordinates, or the
filter area that the renderer estimates from examining the
derivatives of the coordinate. The default value is 1.

"swidth" uniform float Separately specifies"width" in thes direction.
"twidth" uniform float Separately specifies"width" in thet direction.

"fill" uniform float Specifies the value to return for any channels that are not
present in the texture file.

"firstchannel"
uniform float Specifies the first channel to look up from the texture map.

"alpha" varying float The alpha channel (i.e., the next channel after the channels
returned by the function call) will be stored in the variable
specified. This allows for RGBA lookups in a single call
to texture().

Table 5.9: Optional parameters fortexture().
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float environment (string filename; vector R; ...params... )
float environment (string filename; vector R0, R1, R2, R3; ...params... )
color environment (string filename; vector R; ...params... )
color environment (string filename; vector R0, R1, R2, R3; ...params... )

Perform an antialiased lookup into an environment map, indexed by a direction vec-
tor. The version with a single direction automatically examines how the direction
varies over the surface in order to antialias the lookup. Alternately, four direction
vectors may be used to specify a solid angle to be filtered.

Theenvironment() function may perform either a single-channel lookup (returning
a float) or a three-channel lookup (returning acolor), depending on what kind of
variable the results are assigned to (or whether an explicit type cast is made).

NEW! If the filenameparameter is the string"reflection", Entropy will perform ray
tracing instead of an environment file lookup. Thus, a shader may perform either en-
vironment mapping or ray tracing with a singleenvironment() call, and the name
of the environment map (which can be passed as an argument to the shader) deter-
mines which file to use, or alternately that ray tracing should be performed. The
environment() function will only “see” objects that are tagged as visible in reflec-
tions (with Attribute "visibility" "reflection" [1], see Section 3.2.2).
Note that when ray tracing, the optional"blur" and"width" parameters are only
honored if"samples" is greater than 1.

The directional coordinate(s) may be followed by optional token/value arguments.
Meanings of the arguments are described in Tables 5.10 and 5.11. The latter table
describes parameters that only have meaning when ray tracing.
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Parameter Type Description
"blur" float Specifies additional angular blur when looking up the envi-

ronment value. The default value is 0.
"sblur" float Separately specifies"blur" in thes direction.
"tblur" float Separately specifies"blur" in thet direction.

"width" uniform float Scales the size of the lookup filter. The default value is 1.
"swidth" uniform float Separately specifies"width" in thes direction.
"twidth" uniform float Separately specifies"width" in thet direction.

"fill" uniform float Specifies the value to return for any channels that are not
present in the map file.

"firstchannel"
uniform float Specifies the first channel to look up from the map.

"alpha" varying float The alpha channel will be stored in the variable specified (this al-
lows for RGBA lookups in a single call toenvironment()). For
ray tracing, this returns the analogous quantity — an alpha value of
0 indicates that the sample rays hit no objects in the scene.

Table 5.10: Optional parameters forenvironment().
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Parameter Type Description
"samples" uniform float How many sample rays to average to give the final result.

"bias" float Ignores ray hits closer than this value in order to prevent
incorrect self-reflection of surfaces. If no"bias" is sup-
plied, or if its value is less than 0, the global shadow bias
will be used.

"maxhitdist" float Ignores ray hits farther than this value (measured in
"current" space units). If no"maxhitdist" is sup-
plied, there is no maximum hit distance.

"hitdist" varying float The average distance to hits for all sample rays will be
stored in the variable specified. Only sample rays that hit
scene objects will be included in the average. For environ-
ment maps, the value will be 1e30.

"Phit" varying point The average position of hits for all sample rays will be
stored in the variable specified. Only sample rays that hit
scene objects will be included in the average. For environ-
ment maps, the variable is unchanged.

"Nhit" varying vector The average surface normal of hits for all sample rays will
be stored in the variable specified. Only sample rays that
hit scene objects will be included in the average. For en-
vironment maps, the variable is unchanged.

Table 5.11: Optional ray tracing parameters forenvironment(). These parameters are
ignored whenenvironment() is using an environment map instead of ray tracing.
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float shadow (string shadowname; point P; ...params... )
float shadow (string shadowname; point P0, P1, P2, P3; ...params... )
color shadow (string shadowname; point P; ...params... )
color shadow (string shadowname; point P0, P1, P2, P3; ...params... )

Perform an antialiased lookup into a shadow depth map file, returning the amount
of occlusion at a point. The version with a single point automatically examines how
the position varies over the surface in order to antialias the lookup. Alternately, four
points may be used to specify an area over which the shadow information is filtered.

NEW!If the shadownameparameter is the string"shadow", Entropy will perform ray trac-
ing instead of a shadow map file lookup. Thus, a shader may perform either shadow
depth mapping or ray tracing with a singleshadow() call, and the name of the
shadow map (which can be passed as an argument to the shader) determines which
file to use, or alternately that ray tracing should be performed. Theshadow() func-
tion will only “see” objects that are tagged as visible in shadows (withAttribute
"visibility" "shadow" [1], see Section 3.2.2).

Theshadow() function may return either afloat or acolor, depending on what
kind of variable the results are assigned to (or whether an explicit type cast is made).
When performing a shadow map lookup (which is inherently single-channel), the
color shadow() function replicates the shadow value in all three channels. When
performing a ray traced shadow probe (which is inherently three-channel), thefloat
shadow() function uses just the red channel. We therefore recommend always using
thecolor shadow() function, which performs as expected for both ray tracing as
well as shadow map lookups.

The positional coordinate(s) may be followed by optional token/value arguments.
Meanings of the arguments are described in Table 5.12.
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Parameter Type Description
"blur" varying float Additional blur when looking up the shadow value. The

default value is 0 (sharp shadows). For maps, the amount
is expressed as a fraction of the shadow map view angle;
for ray-traing, it is scaled so that a blur of 1.0 indicates a
sampling angle of 90 degrees.

"sblur" float Separately specifies"blur" in thes direction.
"tblur" float Separately specifies"blur" in thet direction.

"width" uniform float Scales the size of the lookup filter. The default value is 1.
"swidth" uniform float Separately specifies"width" in thes direction.
"twidth" uniform float Separately specifies"width" in thet direction.

"samples" uniform float How many samples to compute and average to give the fi-
nal result. For shadow map lookups (but not for ray traced
shadows), a minimum of 16 samples are taken.

"bias" float The amount to add to lookups in order to prevent incor-
rect self-shadowing of surfaces. For values less than 0, the
global bias (Option "shadow" "bias") is used instead.

Table 5.12: Optional parameters forshadow() calls.
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5.6.8 Lighting Functions

color ambient ()

Returns the contribution of so-calledambientlight, which comes from no specific
location but rather represents the low level of scattered light in a scene after bouncing
from object to object.2

color diffuse (vector N)

Calculates light widely and uniformly scattered as it bounces from a light source off
of the surface. Diffuse reflectivity is approximated by Lambert’s law:

nlights∑
i=1

Cli max(0, N · Li)

where for each of thei light sources,Li is the unit vector pointing toward the light,
Cli is the light color, andN is the unit normal of the surface. Themax function
ensures that lights withN · Li < 0 (i.e., thosebehindthe surface) do not contribute
to the calculation.

The N vector is assumed to be of unit length. For lights that have a parameter
called nondiffuse, thediffuse() function scales the contribution of that light
by (1- nondiffuse).

NEW!color specular (vector N, V; float roughness)
color specular (string funcname; vector N, V; float roughness)

Computes so-calledspecularlighting, which refers to the way that glossier surfaces
have noticeable bright spots or highlights resulting from the narrower (in angle) scat-
tering of light off the surface. TheN andV vectors are assumed to be of unit length.
For lights that have a parameter callednonspecular, thespecular() function
scales the contribution of that light by(1- nonspecular).

If the optionalfuncnameis supplied, it selects which of several specular highlight
shape functions to use. Currently supported functions include:"entropy" (a mod-
ified Cook-Torrance-Sparrow) or"bmrt" (BMRT’s specular function, a modified
Blinn-Phong). The function name"default", as well as not specifying a func-
tion name at all, will result in using the default specular function set byOption
"render" "specularbrdf" (see Section 3.1.3).

NEW!color specularbrdf (vector L, N, V; float roughness)
color specularbrdf (string funcname; vector L, N, V; float roughness)

2In most renderers, ambient light is typically approximated by a low-level, constant, non-directional light
contribution set by the user in a rather ad hoc manner. When renderers try to accurately calculate this inter-
reflected light in a principled manner, it is known asglobal illumination, or, depending on the exact method
used, asradiosity, path tracing, Monte Carlo integration, and others.
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Computes the attenuation of light coming fromL and bouncing off a surface with
normalN and givenroughness, as viewed from directionV. All of L, N, andV are
assumed to be of unit length.

If the optionalfuncnameis supplied, it selects which of several specular highlight
shape functions to use (see the explanation forspecular()).

color phong (vector N, V; float size)

Compute specular lighting using the Phong illumination model. TheN andV vectors
are assumed to be of unit length. For lights that have a parameter callednonspecular,
thephong() function scales the contribution of that light by(1- nonspecular).

color trace (vector R; ...)
color trace (point Pos; vector R; ...)

Use ray tracing to determine the color of light arriving at pointPos from the direc-
tion R. If no Pos is supplied, the ray tracing is done from the surface pointP. The
trace() function will only “see” objects that are tagged as visible in reflections
(with Attribute "visibility" "reflection" [1], see Section 3.2.2).

We strongly encourage the use of theenvironment("reflection", ...) func-
tion instead oftrace().

color visibility (point P0, P1)

Use ray tracing to compute the visibility (color 1 if unoccluded,color 0 if fully
occluded) between pointsP0 andP1. Thevisibility() function will only “see”
objects that are tagged as visible in shadows (withAttribute "visibility" "shadow"
[1], see Section 3.2.2).

We strongly encourage the use of theshadow("shadow", ...) function instead of
visibility().

float rayhittest (point Pos; vector R; output point Phit; output vector Nhit)

Use ray tracing to detect the distance to the nearest object as seen from pointPos
looking in the direction of the vectorR (which does not need to be normalized). If no
object is hit in that direction, the function will return1e38 and the output parameters
Phit andNhit will not be altered. If an object is hit,Phit will be set to the position
of the intersection,Nhit will be the surface normal of the object that was hit at the
point of intersection, and the return value ofrayhittest() will be the distance to
the object.

Therayhittest() function will only “see” objects that are tagged as visible in re-
flections (withAttribute "visibility" "reflection" [1], see Section 3.2.2).



5.6. BUILT-IN LIBRARY FUNCTIONS 95

NEW! float occlusion (point Pos; vector R; float angle;
[output vector Nunocc;] ...)

Use ray tracing to probe the cone with apexPos, in directionR and with half-angle
angle. The return value is the portion of the solid angle that is occluded (1 if all
sample rays hit objects, 0 if all sample rays miss all objects). If the optionalNunocc
is supplied, it will have its value replaced by the average direction of the probe rays
that were not occluded. Theocclusion() function takes optional arguments, much
like trace(), including"samples", "bias", and"maxhitdist".

The occlusion information is computed sparsely and interpolated, much like indi-
rect illumination, and honors the several indirect illumination attributes described
in Section 3.2.2. The"samples" parameter, if supplied, overrides theAttribute
"indirect" "nsamples".

Theocclusion() function will only “see” objects that are tagged as visible in reflec-
tions (withAttribute "visibility" "reflection" [1], see Section 3.2.2).

Currently, the true value ofangle is ignored, and a value ofPI/2 is assumed. This
means thatocclusion() samples the hemisphere centered aroundR.

5.6.9 Message Passing

float displacement (string name; output type destination)

Examine the parameters of the displacement shader, looking for a parameter with the
givenname. If the parameter exists and has the same type and storage class asdesti-
nation, the value of the parameter will be stored indestinationand thedisplacement()
function will return1.0. If the named parameter is not found in the displacement
shader, or if its type and storage class do not match that ofdestination, thendestina-
tion will not be modified anddisplacement() will return 0.

Thedisplacement() function may be called from any other shader, but only when
called from a surface shader will it return the correct values of anyoutput parameters
that were actually set by the displacement shader. Callingdisplacement() from
light, atmosphere, or other shaders will only correctly return the ordinary parameter
values, notoutput parameters.

float surface (string name; output type destination)

Examine the parameters of the surface shader, looking for a parameter with the given
name. If the parameter exists and has the same type and storage class asdestination,
the value of the parameter will be stored indestinationand thesurface() function
will return 1.0. If the named parameter is not found in the surface shader, or if its
type and storage class do not match that ofdestination, thendestinationwill not be
modified andsurface() will return 0.

Thesurface() function may be called from any other shader, and can even be used
to query values ofoutput parameters that are set by execution of the surface shader,
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except when called from the displacement shader (since the surface shader has not
yet run).

float atmosphere (string name; output type destination)

Examine the parameters of the atmosphere shader, looking for a parameter with the
givenname. If the parameter exists and has the same type and storage class asdesti-
nation, the value of the parameter will be stored indestinationand theatmosphere()
function will return1.0. If the named parameter is not found in the atmosphere
shader, or if its type and storage class do not match that ofdestination, thendestina-
tion will not be modified andatmosphere() will return 0.

Theatmosphere() function may be called from any other shader, but since atmo-
sphere shaders are run last, there’s no way that other shaders can find out the values
of anyoutput parameters that were set by execution of the atmosphere shader.

float lightsource (string name; output type destination)

When called from inside anilluminance loop in a surface or volume shader, this
function examines the shader of the current light source being examined, looking
for a parameter with the givenname. If the parameter exists and has the same type
and storage class asdestination, the value of the parameter will be stored indesti-
nation and thelightsource() function will return1.0. If the named parameter
is not found in the light shader, or if its type and storage class do not match that of
destination, thendestinationwill not be modified andlightsource() will return 0.

Thelightsource() function may only be called withinilluminance statements,
and may therefore only be called from shaders that can haveilluminance state-
ments (surface and volume shaders).

float incident (string name; output type destination)
float opposite (string name; output type destination)

Examine the parameters of the interior or exterior shader, looking for a parameter
with the givenname. If the parameter exists and has the same type and storage class
asdestination, the value of the parameter will be stored indestinationand the function
will return 1.0. If the named parameter is not found in the surface shader, or if its
type and storage class do not match that ofdestination, thendestinationwill not be
modified and the function will return0.

Theincident() function queries whichever of the interior or exterior shader is on
the same side of the surface asI. Theopposite() function queries whichever of the
interior or exterior shader is on the opposite side of the surface asI.

Theincident() andopposite() functions may be called from any other shaders,
but may only be used to query values of ordinary parameters, notoutput parameters.
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5.6.10 Renderer State Queries

float option (string name; output type destination)

Examine the renderer options, looking for a parameter with the givenname. If the
option exists and has the same type and storage class asdestination, the value of
the option will be stored indestinationand theoption() function will return1.0.
If the name is not recognized or if its type does not match that ofdestination, then
destinationwill not be modified andoption() will return 0. Table 5.13 lists the
option names thatEntropy understands. All option values returned areuniform.

NEW!User options (see Section 3.1.3) can be retrieved using theoption() function using
thenameprefixed withuser:. For example, if you set a user option with the scene
file command

Option "user" "float temperature" [212]
you may retrieve it from the shader with:

option ("user:temperature", tempdata);
The data type must, of course, match the declaration at the time of theOption call.

Name Type Description
"Format" float [3] The x andy resolution and pixel aspect ratio,

as passed to theFormat statement.

"DeviceResolution" float [3] The x and y resolution and the pixel as-
pect ratio of the actual image, taking into
consideration howRiFrameAspectRatio or
RiScreenWindow can effectively override
Format.

"FrameAspectRatio" float Frame aspect ratio.

"CropWindow" float [4] Boundaries of the crop window.

"DepthOfField" float [3] Fstop, focallength, focaldistance.

"Shutter" float [2] Shutter open and close time.

"Clipping" float [2] Near and far clip plane depths.

"user:name" user-specified Retrieves the user-set optionname.

Table 5.13: Data names known to theoption function. Option values are alwaysuniform.

float attribute (string name; output type destination)

Examine the attributes of the geometric primitive being shaded, looking for a pa-
rameter with the givenname. If the attribute exists and has the same type and stor-
age class asdestination, the value of the attribute will be stored indestinationand
the attribute() function will return1.0. If the name is not recognized or if its
type does not match that ofdestination, thendestinationwill not be modified and
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attribute() will return 0. Table 5.14 lists the attribute names thatEntropy under-
stands. All attribute values returned areuniform.

NEW! User attributes (see Section 3.2.2) can be retrieved using theattribute() function
using thenameprefixed withuser:. For example, if you set a user attribute with the
scene file command

Attribute "user" "point refpoint" [3.14 2 1]
you may retrieve it from the shader with:

attribute ("user:refpoint", tempdata);
The data type must, of course, match the declaration at the time of theAttribute
call.

Name Type Description
"ShadingRate" float Shading rate.

"Sides" float 1 or 2, depending on whether the surface is
single- or double-sided.

"Matte" float 1 if the surface is aMatte object, 0 otherwise.

"dice:motionfactor" float The value of the"motionfactor" attribute.

"displacementbound:sphere"
float The amount of displacement bound.

"displacementbound:coordinatesystem"

string The coordinate system used for the displace-
ment bound.

"identifier:name" string The name given to the geometry.

"user:name" user-specified Retrieves the user-set attributename.

Table 5.14: Data names known to theattribute function. Attribute values are always
uniform.

float rendererinfo (string name; output type destination)

Return information about the renderer brand and version. If the named field exists
and has the same type and storage class asdestination, its value will be stored in
destinationand therendererinfo() function will return1.0. If the name is not
recognized or if its type does not match that ofdestination, thendestinationwill not
be modified andrendererinfo() will return 0. Table 5.15 lists the data names that
Entropy understands. All values returned areuniform.

float textureinfo (string texturename, paramname; output type destination)

Return information about a particular stored texture file. If the file exists and the pa-
rameter is recognized and has the same type and storage class asdestination, its value
will be stored indestinationand thetextureinfo() function will return1.0. If the
file does not exist, or the name is not recognized, or if its type does not match that
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Name Type Description
"renderer" string The brand name of the renderer (e.g.,

"Entropy").

"version" float [4] Major, minor, release, and patch numbers
(e.g.,{ 3, 1, 0, 0 }).

"versionstring" string The release numbers expressed as a string
(e.g.,"3.1.0.0").

Table 5.15: Data names known to therendererinfo function. Data values are always
uniform.

of destination, thendestinationwill not be modified andtextureinfo() will return
0. Table 5.16 lists the data names thatEntropy understands. All values returned are
uniform.

Name Type Description
"resolution" float [2] The resolution of the highest resolution version

of the image stored in the texture map.

"type" string Returns one of: "texture", "shadow", or
"environment".

"channels" float The number of channels in the texture map.

"viewingmatrix" matrix (Shadow maps only) The matrix that transforms
points from"current" space to the"camera"
space from which the texture was created.

"projectionmatrix" matrix (Shadow maps only) The matrix that transforms
points from"current" space to a 2D coordi-
nate system wherex andy range from -1 to 1.

Table 5.16: Names known to thetextureinfo function. All values returned areuniform.

uniform float raylevel ( )

Returns0 if the shader is computing the appearance of a surface directly visible from
the camera,1 if it is calculating the appearance of a one-bounce reflection ray,2 if a
two-bounce reflection ray, etc.

uniform float isshadowray ( )

Returns1 if the shader is being run to evaluate the opacity of an object for the purpose
of a ray-traced shadow, otherwise returns0.

NEW!uniform float isindirectray ( )

Returns nonzero if the shader is being run to evaluate indirect illumination, otherwise
returns0.
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string shadername ( )
string shadername ( string shadertype )

Returns the name of the shader being executed (if no string is passed), or the name of
the shader type specified (such as"surface", "displacement", etc.).
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Getting Things Done
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Chapter 6

Invoking Entropy from the
Command Line

The entropy program is the main high-quality renderer of theEntropy package. The
format for invokingentropy is as follows:

entropy [options] scenefile

Usually, this will result in one or more image image files to be written to disk. If the
file specified framebuffer display (as opposed to file), or you override with the-d flag, the
resulting image will be displayed as a window on your screen.

If no scene file name is specified toentropy, it will attempt to read commands from
standard input (stdin). This allows you to pipe output of another program directly to
entropy. For example, suppose thatmyprog dumps RIB commands to its standard output.
Then you could display frames from myprog as they are being generated with the following
command:

myprog | entropy

The file which you specify may contain either a single frame or multiple frames (if it is
an animation sequence).

6.1 Command line arguments

The following optional command-line arguments are accepted byentropy:

-help

Print out the possible command line arguments.

-arch

Just print out the architecture name (e.g.,sgi m3, linux, etc.).

-beep

Rings the terminal bell upon completion of rendering.

103
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-crop xmin xmax ymin ymax

Specify that only a portion of the whole image should be rendered. The meaning of
this command line switch is precisely the same as if theCropWindow directive was
in your file (and aCropWindow option in the scene file takes precedence over any
command line arguments).

-cwd path

Before rendering, change the working directory topath.

-d

By default, any fully rendered frames are sent to an image file of the type determined
by theDisplay command. The-d command line option overrides theDisplay
command and forces use of the"framebuffer" display server.

-frames first last

Sometimes you may only want to render a subset of frames from a multi-frame file.
You can do this by using the-frames command line option. This option takes two
integer arguments: the first and last frame numbers to display. For example,

entropy -frames 10 10 myfile.rib

This example will render only frame number 10 from this file. If you are going to use
this option, it is recommended that your frames be numbered sequentially starting
with 0 or 1.

-res xres yres

Sets the resolution of the output image. Note that if the scene contains aFormat
statement that explicitly specifies the image resolution, then the-res option will be
ignored and the window will be opened with the resolution specified in theFormat
statement.

-samples xsamp ysamp

Sets the number of samples per pixel toxsamp(horizontal) byysamp(vertical). Note
that if the file contains aPixelSamples statement which explicitly specifies the sam-
pling rate, then the-samples option will be ignored and the sampling rate will be as
specified by thePixelSamples statement.

-silent

Suppresses most of the output ordinarily generated (such as percentage of the image
completed).

-progress

Print an alternate, more brief percentage progress message.
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-Progress

Print another alternate progress message that is in a format that Alfred understands.

-stats

Upon completion of rendering, output various statistics about memory and time us-
age, number of primitives, and all sorts of other debugging information. Using
this option on the command line is equivalent to puttingOption "statistics"
"endofframe" [1] in your file.

NEW!-threads n

Usesn CPU’s (on the same machine) to render the image. The default isn = 1.

-v

Verbose output — this prints more status messages as rendering progresses, such as
the names of shaders and textures as they are loaded.

-version

Print out the version ofEntropy.

6.2 Initialization File

Before rendering any scene files specified on the command line or piped to it,entropy
(or rgl) will first read the contents of the file$ENTROPYHOME/.entropyrc (if the file ex-
ists), followed by the file$HOME/.entropyrc. By putting commands in one of these files,
you can set various options forEntropy before any other scene input is read. Notice that
commands in$HOME/.entropyrc can override those set in$ENTROPYHOME/.entropyrc.

6.3 Return Codes

NEW!The entropy program itself returns a code of 0 if rendering was completed, 13 if the
rendering aborted because no free licenses could be found, and 1 if rendering terminates
for any other error condition. These return codes may be checked from scripts that launch
entropy.

6.4 Previewing scene files withrgl

Once a scene file is created, one may use thergl program to display a preview of the scene.
Geometric primitives are displayed either as Gouraud-shaded polygons with simple shading
and hidden surface removal performed, or as a wireframe image.

The following command will display a preview of the animation in an OpenGL window:

rgl myfile.rib
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If no filename is specified torgl, it will attempt to read the scene from standard input
(stdin). This allows you to pipe output of a scene-generating process directly torgl. For
example, suppose thatmyprog writes to its standard output. Then you could display frames
from myprog as they are being generated with the following command:

myprog | rgl

The scene file that you specify may contain either a single frame or multiple frames (if
it is an animation sequence). If the input consists of multiple frames, by defaultrgl will
display all of the frames as quickly as possible. When the last frame is displayed, it will
remain in the window. If you hit the ESC key (with the mouse in the drawing window),rgl
will terminate.

Though the output ofrgl is in color, it is important to note that it is not designed to be a
particularly accurate preview of a rendered image. It really cannot be, since there is no way
for rgl to know very much about the types of shaders that you are using. It does a fairly
good job of matching ambient, point, distant, and spot lights. But it can’t figure out area
lights or any nonstandard light source types. Also, every surface is displayed as if it were
"matte", regardless of the actual surface specification.

Note thatrgl can also display primitives as lines. This is done by invoking:

rgl -lines myfile.rib

6.4.1 rgl Command Line Options

In addition to theentropy command-line arguments described in Section 6.1,rgl also
accepts several additional command-line arguments specific to its functions as a GL-based
previewer:

-1buffer

Rather than render the polygon preview to the “back buffer” and displaying frames
as they finish (as you would want especially if you are previewing an animation),
this option draws to the front buffer, thus allowing you to see the scene as rendering
progresses. The-1buffer option may be used in combination with any of the other
drawing style options.

-unlit

Lights all geometry with a single light at the camera position. This is useful for using
rgl to preview a scene that does not contain light sources. The-unlit option may be
used in combination with any of the other drawing style options.

-lines

Rather than the default drawing mode of filled-in Gouraud-shaded polygons, this
option causes the images to be rendered as lines. Note that this cannot be used in
combination with-sketch.
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-sketch

It’s not clear what the real use of this is, but it makes an image that looks a little like
a human-drawn sketch of the objects. Note that this cannot be used in combination
with -lines.

-rd multiplier

You can speed uprgl by changing the refinement detail that it uses to convert curved
surfaces to polygons by using the-rd command line option, which takes a single
numerical argument, generally between 0 and 1. The lower the value, the fewer poly-
gons will be used to approximate curved surfaces. Using a value of 1 will result in
identical results as if you did not use the-rd option at all. Good values to try are
0.75 and 0.5. If you go below 0.25, the curved surface primitives may become unrec-
ognizable, though they will certainly be drawn quickly. If you use values larger than
1, even more polygons than usual will be used to approximate the curved surfaces.

IMPORTANT NOTE: the-rd option can only speed up the rendering of curved
surface primitives (e.g. spheres, cylinders, bicubic patches, NURBS). It WILL NOT
speed up the drawing of polygons. If your model contains too many polygons to be
drawn quickly, the-rd option will not help you.

-dumprgba
-dumprgbaz

The default operation ofrgl simply previews the scene to a window on your display.
But using the-dumprgba option instead causes the resulting preview image to be
saved to a TIFF file. The filename of the TIFF file is taken from theDisplay com-
mand in the file itself, orri.tif if no Display command is present in the file. The
-dumprgbaz option does the same thing as-dumprgba, but also saves the z buffer
values to a file. The z values are saved in the same zfile format used by Pixar’s
PhotoRealistic RenderMan, and the name of the file is also taken from theDisplay
command, substituting “zfile” for “tif” in the filename.

-sync framespersecond

When previewing a series of frames for an animation, it is often necessary to synchro-
nize the display of frames to the clock in order to check the timing of the animation
when it is played back at a particular number of frames per second. The default ac-
tion of rgl is to display the frames as fast as possible. You can override this, causing
rgl to try to display a particular number of frames per second, by using the-sync
command line option.

-nowait

By default, the last frame will stay in the drawing window until you hit the ESC key.
The-nowait causesrgl to terminate immediately after displaying the last frame in
the sequence (for example, if it is part of an automated demo).
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6.4.2 Limitations of rgl

Sincergl is an OpenGL-based polygon previewer, it cannot possibly support all the features
that would be supported by other types of renders. This section outlines the features which
are not fully supported byrgl.

• The following commands are ignored because they have no real meaning in an OpenGL
previewer: DepthOfField, Shutter, PixelSamples, PixelFilter, Exposure,
Imager, Quantize, Hider, Atmosphere, Opacity, TextureCoordinates, ShadingRate,
Matte.

• TheLightSource directive works as expected for"ambientlight", "distantlight"
and"pointlight". It isn’t smart enough to know exactly what to do for custom light
source shaders, but it will try to make its best guess by examining the parameters to
the shader, looking for clues like"from", "to", "lightcolor", and so on. The
AreaLightSource directive has no effect.

• Shaders do nothing. All surfaces are displayed as if they were using the standard
matte.sl shader.

• When motion blocks are given, only the first time key is used.

• Multiple levels of detail are not supported.

• Solids are all displayed as unions, i.e., all of the components of a CSG primitive are
displayed.

• Texture map generation functions (e.g.,MakeTexture) do nothing inrgl.



Chapter 7

Image Output

This chapter covers the basic details of how the CG camera is placed in the scene, and
the various options that must be set to determine image resolution and framing, camera
attributes, image quality, exactly what data is saved, and how you can determine the image
file types and other properties.

7.1 The Camera

7.1.1 Camera Projection

Even with the camera as the center of the universe, the scene is still three-dimensional,
but the final image is two-dimensional. The reduction from three to two dimensions is
accomplished byprojection. In any projection, all points along a “line of sight” correspond
to the same 2D location in the final image.Entropy supports bothorthographic(parallel
lines of sight) andperspective(lines of sight converging at a point). Along any line of sight,
the closest object to the camera will be the one seen (although if it is partially transparent,
you may also see other objects behind it). This is illustrated by Figures 7.1 and 7.2.

camera camera

Figure 7.1: Left: Orthographic projections view along parallel rays. Right: Perspective
projections view along rays that converge at the camera position.
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Figure 7.2: Example of an orthographic (left) and perspective (right) projections.

The projection is selected using theProjection command (see Section 3.1.1). Setting
an orthographic projection is performed by:

Projection "orthographic"

Orthographic projections are primarily used for reproducing certain architectural or en-
gineering drawing methods, and for creating shadow maps for “distant” light sources (those
whose light emanates in parallel rays).

Perspective projections are more commonly used. Perspective projections are much
more similar to the projection used in an ordinary camera.1 You will almost always want to
use a perspective projection for “final” images from the main camera. Perspective projec-
tions should also be used when generating shadow maps for light sources that project light
from a single point (like a spotlight). Setting a perspective projection is performed by:

Projection "perspective"

The perspective projection also takes an optional"fov" parameter which sets the field-of-
view angle in degrees. For example, the following command sets a perspective projection
with a 30 degree field of view:

Projection "perspective" "fov" [30]

Each frame should have only oneProjection command, and it should be prior to
any other transformations. If noProjection command is encountered, an orthographic
projection is used.

7.1.2 Positioning the Camera

Objects in the scene are positioned relative to"world" space or some other local coordinate
system. This is the result of your having translated or rotated those objects to place them in
the scene.

1Real cameras are not exactly perfect perspective projections. But those details are beyond the scope of this
chapter. Perspective projections are good enough for most usage.
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The camera also has a certain position and orientation relative to the world. A special
coordinate system called"camera" space is centered about the camera, with thex axis
pointing to the camera’s right, they axis pointing up, and thez axis pointing in the direction
that the camera is looking.

In reality, theEntropy starts out with"camera" space as the transformation. Any trans-
formation routines (such asConcatTransform, Translate, orRotate) that happen prior
to WorldBegin are actually positioning the world relative to the camera. These transfor-
mations should be correctly specified by your modeling system. However, as an example
of how the camera transformation can be computed, please refer to Listing 7.1.

Listing 7.1 Sample code to generate the camera transformation, given a camera position,
center of interest, and “up” vector. This relies on aPoint class that obeys the usual rules
of vector math.
void
PlaceCamera (Point pos, Point interest, Point up, bool righthanded)
{

float M[4][4];
Point dir = normalize(interest - pos);
up = normalize(up);
up -= dot(up, dir) * dir;
up = normalize(up);
Point right = normalize(cross(up, dir));
if (righthanded)

right = -right;
M[0][0] = right[0]; M[1][0] = right[1]; M[2][0] = right[2]; M[3][0] = 0;
M[0][1] = up[0]; M[1][1] = up[1]; M[2][1] = up[2]; M[3][1] = 0;
M[0][2] = dir[0]; M[1][2] = dir[1]; M[2][2] = dir[2]; M[3][2] = 0;
M[0][3] = 0; M[1][3] = 0; M[2][3] = 0; M[3][3] = 1;
RiConcatTransform (M);
RiTranslate (-pos[0], -pos[1], -pos[2]);

}

An early step in rendering is for objects to be transformed into"camera" space. This
is illustrated figuratively in Figure 7.3.

camera

camera

object

object

world

Figure 7.3: Transforming objects into camera space.
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7.1.3 Motion Blur

Real cameras have a shutter that stays open for a certain amount of time to expose the
film. The longer the shutter stays open, the more that moving objects will appear as blurred
streaks on the film. This effect is actually critical to avoiding strobing when rendering
frames for an animation. The shutter interval may be set with theShutter command,
which takes the opening and closing times. For example,

Shutter 0 0.5

instructs the camera to open the shutter a time 0 and close it again at time 0.5.
The units (seconds, frames, etc.) do not matter, but they are expected to be calibrated

to the same scale as the times specified byMotionBegin for any moving or deforming
objects.

For real cameras, the longer the shutter stays open, the more light strikes the film, and
therefore the brighter the resulting image will be. This is not true for the synthetic camera —
the image will be no brighter or dimmer, no matter what theShutter statement specifies.
This can be independently adjusted withExposure.

Entropy 3.1 currently supports only two motion times for each motion block. This will
be extended in a future release.

7.1.4 Film Exposure

The “film sensitivity” may be adjusted with theExposure command.Exposure takes two
parameters,gain andgamma. The gain is a scaling factor that linearly increases the film’s
sensitivity to light. Gamma refers to the nonlinearity of the film or, alternately, compensates
for the nonlinearity of the intended display device.

In general, we do not recommend using a gamma value other than 1. Instead, we
strongly recommend always rendering with a strictly linear response and performing gamma
correction at display time, and for the particular display device being used.

7.1.5 Depth of Field

NEW!
Depth of fieldrefers to the way objects at a particular distance from the camera appear
in sharp focus, while objects that are closer or farther away will appear blurred (see Fig-
ure 7.4). It is a physical phenomenon caused by the finite aperture of a camera, and other
focusing attributes of the lens system.

By default,Entropy has depth of field turned off, meaning that all objects are in sharp
focus, regardless of their depth in the scene. The depth of field effect can be turned on with
theDepthOfField command, which takes three arguments giving the f-stop, focal length,
and focal distance.

The f-stop is the ratio of focal length to lens aperture, much as you would see f-stop
settings on a real camera lens — it lets you control the aperture size. The focal length is the
distance from the lens opening to the film plane. The focal distance is the depth from the
camera at which objects appear in sharp focus. Both the focal length and focal distance are
measured in the same units as"camera" space.
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Figure 7.4: Depth of field.

For example, if you had constructed your scene so that"camera" space units were
meters, then the following command would specify an f/4 aperture on a 50mm lens, set to
focus sharply objects that were 3.6 meters from the camera:

DepthOfField 4 .05 3.6

For real cameras, the wider the aperture (i.e., the smaller the f-stop number), the more
light enters the camera, and therefore the brighter the resulting image will be. This is not
true for the synthetic camera — the image will be no brighter or dimmer, no matter what the
DepthOfField statement specifies. This can be independently adjusted withExposure.

7.1.6 Clipping

In addition to objects being not visible to the camera if it is too far to the right or left, top
or bottom (that is, off-screen), you can also have the camera ignore objects that are too near
to, or too far from the camera. This is something that obviously cannot be done with a real
camera, but it can be very useful and often comes in handy with the CG camera. Objects are
ignored if their"camera" spacez values are less than thehitherplane, or if their"camera"
spacez values are greater than theyonplane.

Thez clipping planes can be set with theClipping command. For example, to set the
hither plane toz = 0.1 and the yon plane toz = 10, 000:

Clipping 0.1 10000

There is some benefit to attempting to set theClipping carefully. Tightly bounding
the depth of interest in your scene can preserve more computational precision in some parts
of the rendering process.

7.2 Image Resolution and Framing

7.2.1 Image Format

The imageformat refers to the number and shape of the pixels in the final image. The
Format command (see Section 3.1.1) can be used to set thex resolution,y resolution, and
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pixel aspect ratio. Thex andy resolution (whole numbers) are the size of the final image, in
pixels. The pixel aspect ratio describes the ratio of the width to height of an individual pixel
(and therefore is 1.0 for square pixels). For example, to render an image with640 × 480
square pixels:

Format 640 480 1.0

7.2.2 Frame Aspect Ratio and Screen Window

The aspect ratio of the frame is, by default, determined by thex and y resolution set
by theFormat command. However, you may override the frame aspect ratio using the
FrameAspectRatio command (see Section 3.1.1). IfFrameAspectRatio does not match
the aspect ratio implied byFormat, the image will be scaled to fit into the given resolution.

Once the scene is projected to a 2D plane, only a subset of the plane is actually turned
into the image. That subset is called thescreen window. By default, the screen window
maps screen window boundaries

(−frameaspectratio, frameaspectratio,−1, 1)

if frameaspectratio ≥ 1. If frameaspectratio < 1, the defaultScreenWindow coordinates
are:

(−1, 1,−1/frameaspectratio, 1/frameaspectratio)

Since the default is for the screen window to be centered and with the frame aspect ratio,
it is usually not necessary to include theScreenWindow command. However, there are two
instances where it is critical: (1) For an orthographic camera, theScreenWindow command
is almost certainly required to ensure proper framing of the image. (2)ScreenWindow can
be used to distort or shear the image by making the screen window’s aspect ratio not match
the frame aspect ratio, or by using an off-center screen window.

7.2.3 Crop Window

It is often very useful to render a subset of image pixels, particularly if you are debugging
or adjusting part of the scene and do not wish to wait for the entire image to rerender every
time a tweak is made. This is easily accomplished with theCropWindow command, which
takesx minimum and maximum, andy minimum and maximum range, expressed as a
portion of the total image (i.e., 0–1). For example, to render the upper-right quadrant of the
image only:

CropWindow 0.5 1 0 0.5

Even though the crop window is expressed with floating-point numbers, it will be
rounded in such a way as to result in a whole number of pixels.Entropy is careful to
round and to filter at the edges so that adjacent crop windows will match up exactly without
seams. For example, rendering one image with:

CropWindow 0 1 0 0.5
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and a second image of the same scene with:

CropWindow 0 1 0.5 1

will exactlyrender all pixels, without repetition and without seams if the two images are
assembled together.

7.3 Antialiasing and Filtering

Antialiasingrefers to the renderer’s efforts to correctly capture details smaller than a pixel
(including geometric edges) and to give a properly smooth appearance to the blur that results
from motion or depth of field.

There are two options that control the basic time versus quality tradeoffs when per-
forming antialiasing. The first control is thespatial quality, which describes the number of
subpixel regions (inx andy) comprising each pixel, for example:

Option "limits" "spatialquality" [2 2]

Dividing pixels into smaller regions, each of which is solved separately, is important to
antialiasing because smaller regions are geometrically simpler (contain fewer objects and
edges) and therefore easier to approximate with certain simplifying assumptions. More
subpixel regions will yield higher quality, but will take somewhat longer to render. Setting
"spatialquality" to [1 1] is good enough for previews, whereas[2 2] is high enough
quality for most final images.2 Higher values can be used for scenes that are unusually dif-
ficult to antialias (e.g., if there is lots of small geometry like hair, or that contain significant
depth-of-field blur).

If your scene contains motion-blurred objects, a second time versus quality control is
"temporalquality", for example:

Option "limits" "temporalquality" [4]

The temporal quality specifiesadditionalantialiasing for each spatial subregion. The to-
tal effective temporal quality is the"spatialquality"multiplied by the"temporalquality".
Specifying the spatial and temporal antialiasing controls separately helps the renderer to un-
derstand how to allocate its resources more optimally than if a single number were used.
In particular,Entropy uses the extra temporal quality only for pixels that actually contain
moving geometry. In other words, if only some objects in the scene are moving, less work
is done in pixels where all objects are still, therefore rendering is much faster than if the
work was done uniformly in all pixels.

As a shortcut, and in order to preserve backward compatibility with older renderers,
Entropy still supports thePixelSamples directive. SinceEntropy has no direct analog to
PixelSamples, thePixelSamples xsamp ysamp command sets both spatial and tempo-
ral quality controls as follows:

2If you have experience with other renderers, you may think that2×2 subsamples are not very high quality,
but you’re probably used to a render that does point sampling.Entropy’s use of a semi-analytic antialiasing
algorithm results in substantially higher quality (but also somewhat higher expense) for the same number of
subpixel regions.
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Option "limits" "spatialquality" [xsamp/2 ysamp/2]
Option "limits" "temporalquality" [4]

For example,PixelSamples 2 2 is equivalent to setting1 × 1 spatial subregions per
pixel, with a temporal quality of 4.PixelSamples 4 4 is equivalent to setting2×2 spatial
subregions per pixel, with a temporal quality of 4. This heuristic was chosen carefully so
that a particularPixelSamples setting will produce approximately the same overall quality
level withEntropy as with a point-sampling renderer such as BMRT or PRMan.

The several spatial subpixel regions must be combined to form the final discrete pixels.
To do so with high quality, each pixel gets a weighted average of nearby regions (including
regions outside the boundaries of the pixel. This process is known asfiltering. Filtering
has two aspects: the shape of the filter (specified by the name of the filtering function), and
the width of the region to which the filter is applied. The default filtering can be set by the
PixelFilter command. A2× 2 Gaussian filter (the default) may be specified by:

PixelFilter "gaussian" 2.0 2.0

Some people find the2 × 2 Gaussian filter to be overly blurry. If that is the case, you
could try a Gaussian filter with thinner width (but we wouldn’t recommend using a width
of less than 1.5), or you could use a different filter shape. The Catmull-Rom filter has nice
edge sharpening properties, and can be specified as:

PixelFilter "catmull-rom" 3.0 3.0

On the other hand, if it is important that pixels equally weight all regions and not con-
sider any spatial regions outside the pixel boundary, then you would want to specify the
(infamously low quality) box filter:

PixelFilter "box" 1 1

Feel free to experiment with different filter functions and window sizes, to achieve a
“look” that is right for your project. The available filters are listed in the formal description
of thePixelFilter command in Section 3.1.2. Note also that the pixel filter can be spec-
ified on theDisplay line itself, without the need for a separatePixelFilter command.

7.4 Image Output

Once pixel values are derived by filtering the data from the pixel subregions, an image must
be written to disk in some format, or displayed on some device.

Output streams and Channels

Upon rendering,Entropy produces one or moreimage output streams. You can think of
each output stream as a separate image of the scene. Each output stream may contain
different data — for example, one output stream may consist of color and alpha (RGBA),
while another output stream may containz depth information.

Each image output stream consists of one or morechannels. A channel is a single
“pane” of data, such as red or blue. A greyscale only image is a 1-channel image, an
ordinary color RGB image is a 3-channel image, and an RGBA image is a 4-channel image.
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Display servers

There are many different types of image file formats or devices on which to display images.
Entropy uses programs calleddisplay servers(sometimes also calleddisplay drivers) to
handle image output and display. There is one display server for each file format or display
type.Entropy comes with display servers that understand how to write TIFF files ("tiff"),
z-depth files ("zfile"), shadow maps ("shadow"), and how to display the image on a
computer screen ("iv"). Developers can expandEntropy’s format repertoire by writing
their own display servers, as explained in Chapter 16.

The basic way to specify what data goes to which file and in what format is with the
Display command:

Display name format data ...params...

Thenameis the filename of the file, theformat is the file format or display device (actually
the name of the display server), anddatais the name of the data to write to the output stream.
The optionalparamscontrol various aspects of the image output, including driver-specific
options.

As an example, to instructEntropy to write RGB color data to a TIFF file named
"myfile.tif":

Display "myfile.tif" "tiff" "rgb"

To write an image with RGB and alpha (coverage) as a 4-channel image:

Display "myfile.tif" "tiff" "rgba"

If the format is the special keyword"file", the default file display server will be
used (which is"tiff"). If format is "framebuffer", the default frame buffer display
server will be used (which is"iv"). Therefore, to display the image “live” to a framebuffer
display:

Display "myfile.tif" "framebuffer" "rgba"

Bit depth, quantization, and dither

Entropy computes pixel values with floating-point precision, but not all output formats
support floating-point data. Therefore, the display server may need to convert the raw pixel
data to an integer (whole number) representation. This process is known asquantization.

The Display command takes the optional parameter"quantize" that specify the
quantization mapping. The"quantize" parameter takes an array of four floating-point
numbers that specify thezero level, one level, min, andmaxvalues. When converted to
integers, the number of bits per channel is known as thebit depth. The bit depth is com-
puted automatically from themaxquantization value: ifmax ≤ 255, an 8-bit file is created;
otherwise, ifmax ≤ 65535, a 16-bit file is created; otherwise, a floating-point output file is
created. Also, if all ofzero, one, min, andmaxare 0, floating-point output will be selected.

For example, to write"myfile.tif" as 8-bit integers (this is a typical output format,
and also the default):
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Display "myfile.tif" "tiff" "rgba" "quantize" [0 255 0 255]

If 8 bits per channel are not enough precision for your application, you could generate
a 16 bit per channel image with the following command:

Display "myfile.tif" "tiff" "rgba" "quantize" [0 65535 0 65535]

To aid in reducing artifacts that result from the float-to-integer conversion, you can add
a randomdither to the image. This is just noise that helps to soften the edges and reduce
objectionable banding in the image. The dither amplitude can be set byDisplay using the
optional parameter"dither". The default dither level is 0.5. The main reason to override
this default is in the case of floating-point images, which do not need dither and therefore
should have their dither set to 0.

For example, to output color pixels with full floating-point precision (and no dither):

Display "myfile.tif" "tiff" "rgba" "quantize" [0 0 0 0] "dither" [0]

Filters

As described earlier in Section 7.3, selection of a pixel filter can be performed by the
PixelFilter command. The pixel filter can also be set with theDisplay command us-
ing the optional parameters"filter" (which takes a string giving the filter name) and
"filterwidth" (which takes two floats that specify thex andy support widths of the
filter). For example, to use the Catmull-Rom filter with width 3:

Display "myfile.tif" "tiff" "rgba" "filter" ["catmull-rom"]
"filterwidth" [3 3]

As another example,z depth images should not overlap pixel boundaries, must be float-
ing point, and need to use one of the depth filters ("min", "max", or "average"). There-
fore, the properDisplay command to write az depth file is:

Display "myfile.z" "zfile" "z" "filter" ["min"]
"filterwidth" [1 1] "quantize" [0 0 0 0] "dither" [0]

Arbitrary Output Variables

In addition to color, alpha, and depth, “global” shader variables (see Table 5.8) and any
arbitrary data computed and stored in anoutput variable of the surface shader may be
output as an image output stream. Output streams may contain id tags for objects; separate
ambient, diffuse, and specular lighting; normal (orientation) information of the surfaces —
in short, anything you can compute in the shaders.

To specify multiple output streams, you can use multipleDisplay commands. If the
first character of thenameparameter is the ‘+’ character, theDisplay command is in-
terpreted to indicate anadditionaloutput stream (rather than replacing the primary output
stream). Remember thatEntropy allows you to use entirely different display servers, for-
mats, quantization levels, and even pixel filters for each output stream.

For example, to have one output stream containing RGBA quantized to 16 bits per
channel, a second output stream with floating-pointz depth data, and a third output stream
containing floating-point color value for just the specular highlight:
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Display "myfile.tif" "tiff" "rgba" "quantize" [0 65535 0 65535]
Display "+myfile.z" "zfile" "z" "filter" ["min"]

"filterwidth" [1 1] "quantize" [0 0 0 0] "dither" [0]
Display "+normals.tif" "tiff" "N"

"quantize" [0 0 0 0] "dither" [0]
Declare "Cspec" "varying color"
Display "+specpass.tif" "tiff" "Cspec" "filter" ["gaussian"]

"filterwidth" [2 2] "quantize" [0 0 0 0] "dither" [0]

Notice that when output streams contain data declared by the shader, the data name is
simply the name of theoutput variable of the shader, and should have its type declared
with Declare. For shaders that do not contain theoutput variable with the correct name
and type, the variable will have value 0.

Setting defaults — older options

We recommend that you set the quantization level, dither, and filtering separately with the
Display command for each image output stream. However, for backward compatibility,
we still support the “older”Quantize andPixelFilter commands (see Section 3.1.2).
Remember thatQuantize andPixelFilter effectively set the defaults if these parameters
are not included on theDisplay command; any parameters given toDisplay override
these defaults.

7.5 Entropy ’s Built-in Display Servers

As discussed in Section 7.4, theDisplay command takes the name of a display server,
which is a plugin that actually writes the pixels in a particular format.Entropy ships with
several display servers already compiled in (and hence, can write to those formats). Users or
third parties may expand the formats by writing DSO’s/DLL’s, as described in Chapter 16.
This section describesEntropy’s built-in display server types.

7.5.1 "tiff" server

The built-in"tiff" display server writes output pixels as TIFF files. The driver can write
pixels as 8-bit unsigned integer, 16-bit unsigned integer, or floating-point data, depending
on the"quantize" parameter (or theQuantize command). The resulting output file is a
totally standard scanline-oriented TIFF. Accepted optional parameters are:
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Name Type Description

"quantize" float[4] Gives the conversion from floating point to integer, and
indirectly, the data format of the TIFF file, as described in
Section 7.4.

"dither" float The amplitude of random dither to add to output pixels, as
described in Section 7.4.

"gain" float A constant multiplicative factor applied to pixel values
prior to quantization.

"gamma" float A nonlinear gamma correction factor applied to pixel val-
ues prior to quantization.

"compression" string The name of the TIFF compression method — one of
"none", "lzw", "zip", "packbits", or "deflate".

"rowsperstrip" string The number of TIFF rows per strip, expressed as a string.
"ImageDescription"

string Optional description of the image.
"DocumentName" string Optional document name.
"PageName" string Optional “page name.”
"Artist" string Optional artist name.
"Copyright" string Optional copyright notice.

If any of the optional"ImageDescription", "DocumentName", "PageName", "Artist",
or "Copyright" parameters are given, their contents will be stored in the file as the TIFF
tags with the same names.

7.5.2 "shadow" server

The built-in"shadow" display server writes output depth buffers asEntropy shadow map
files. SinceEntropy stores shadow maps as tile-oriented, floating-point TIFF files, the
"ImageDescription", "DocumentName", "PageName", "Artist", and"Copyright"
parameters are accepted, and will be stored as TIFF tags in the resulting file.

7.5.3 "zfile" server

The built-in "zfile" display server writes output depth buffers as “zfiles” (adhering to
the format used byPRManand several other renderers). Those zfiles may be converted to
shadow map files usingmkmip. Note that it’s usually more expedient to write a shadow map
file directly using the"shadow" display server.

7.5.4 "iv" server

The built-in"iv" display server communicates its output images to an interactive session
of theiv image viewing program. The operation ofiv is described in Chapter 8.
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Viewing Images withiv

Once you render images, you need to view them. There are dozens, or possibly hundreds,
of programs that can display your ordinary images thatEntropy produces. But probably
none of them can display the tiled TIFF images used for textures, environment maps, and
shadow maps. Nor can most of them handle 16-bit and floating point images. And even
for ordinary images, many image viewers are lacking in certain features that you may find
handy. So we have providediv, the Image Viewer tool.

8.1 Invoking iv from the command line

Invokingiv is very simple:

iv [options] file1 ... filen

Any number of files may be specified on the command line. Several options may also
be specified before the files are listed:

-g gamma

Sets the gamma correction for subsequent images. Thegamma parameter is a floating
point number, which default to 1.0. Without the-g option, the gamma correction will
be taken from the$GAMMA environment variable. If no such environment variable
exists, no gamma correction will be performed. Note that you can have multiple-g
options on the command line, interspersed with image file names (this lets you correct
different images with different gamma values).

-info

When this flag is used, the name and resolution of each file will be printed tostdout.

-justinfo

When this flag is used, the name and resolution of each file will be printed tostdout
(as with -info), but the images are never displayed andiv never enters into its
interactive mode.

121
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-sb

Normally, you can use the middle mouse button to “drag” the image around if the
image resolution is greater than your display window. If you use the-sb command
line option,iv will also display scroll bars at the edge of the window.

8.2 iv hot keys and mouse commands

Once you are runningiv and viewing images, there are several keyboard and mouse com-
mands that you may find useful:

PgUp PgDn

The PgUp andPgDn keys cycle you to the previous and next images in the list of
images.

ENTER

TheENTER key will reload the current image from disk.

r g b a c

The r, g, b, anda keys will causeiv to display just the red, green, blue, or alpha
channels of images. Thec key will display full color again.

f

Thef key reframes the window. That is, it will readjust the size of the display window
to match the resolution of the currently viewed image.

m

Them key actives and deactivates the menu bar.

p

The p key opens apixel view windowthat shows you a zoomed view of the pixels
surrounding the mouse position, and numeric values for the pixel under the cursor.
Hitting ESCwith the cursor in the pixel view window will close the pixel view window
(but not the main window).

q

Theq key causesiv to close its windows and exit.

s

Thes invokes pixel select mode. In this mode, a single pixel is selected for the pixel
view window. The selected pixel no longer follows the mouse cursor, but can be
moved with the four arrow keys. Hittings again returns to the usual mouse cursor.
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Left-click

Clicking the left mouse button inside the image window zooms in (makes the pixels
bigger on screen).

Right-click

Clicking the right mouse button inside the image window zooms out (makes the pixels
smaller on screen).

Middle-drag

Moving the mouse with the middle button held down will drag the image around the
window, if the image resolution is greater than the window size.

8.3 iv menu bar functions

Hitting them key toggles a menu bar that appears across the top of theiv screen.
From the File menu, you can load additional images into the currentiv session, or save

the currently displayed image as a TIFF file.
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Chapter 9

Compiling Shaders

Shaders are the small programs that are run to determine the material appearance of objects,
refinements to their shape, attenuation of light through volumes, and the ways that light
sources distribute energy in the scene.

Like with many programming language systems, these shader programs must becom-
piled. That is, they must be translated from human-readable form (“source code”) into an
encoded version that is ready for the renderer to process (“object code”). This extra step
also serves another purpose — it allows the shader compiler to check your shader for errors
before it is in the middle of rendering a frame.

9.1 Compiling Shaders withsle

Entropy provides a compiler for your shaders, a program calledsle.1 The remainder of
this section describes the basic use of thesle program.

9.1.1 Theory of operation

By established convention, shader source code is stored in a file whose name is the same as
the name of the shader, with the extension.sl. For example, if you had a “plastic” shader,
you would store its source code in the fileplastic.sl.

To compile the shader stored inplastic.sl, invoke the shader compiler,sle:

sle myshader.sl

This will result either in a compiled shading language object file calledmyshader.sle, or
you will get error messages. Hopefully, the error message will direct you to the line in your
file on which the error occurred, and some clue as to the type of error.sle only can compile
one file at a time.

sle uses a ”preprocessor,”slpp, which must be present in the$ENTROPYHOME/bin
directory. If sle cannot findslpp, it will issue an error message. Theslpp program is

1BMRT users may notice the correspondence betweensle and BMRT’sslc program. These are mostly
the same program, but because the compiled shader format differs betweenEntropy and BMRT, we renamed
the binaries and changed the filename extension for compiled shaders, in order to reduce confusion for people
who are using both packages simultaneously.
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really just an ordinary C preprocssor, so you can use all the usual C preprocessor macros
(e.g.,#include and#define) in your shaders.

If your shader uses the#include preprocessor directive to “include” another file,sle
will need to know where to find the file. By default, it will only look in the current direc-
tory. But it’s easy to specify extra directories to search for included files by using the-I
command-line argument. For example,

sle -I/usr/local/shaders/include myshader.sl

will look in the directory/usr/local/shaders/include for any#include’d files. You
can specify multiple directories with multiple-I arguments.

Since shaders are passed through the preprocessor, you can also define and use macros
(with -D or with #define in the source code) or use “conditional compilation” (#if,
#ifdef, #ifndef, #else , #endif). To aid in writing shaders that can be compiled for
a variety of mostly-compatible renderers, we have predefined two preprocessor variables:
EXLUNA andENTROPY.

The output ofsle is an ASCII file for a sort of “assembly language” for a virtual
machine. Whenentropy renders your frame and needs a particular shader, this assembly
code is read, converted to bytecodes, and interpreted to execute your shader. Because the
sle’s output is ASCII and is for a virtual machine, it is completely machine-independent.
In other words, you can compile your shader on one platform, and use that.sle file on
any other platform. Don’t worry too much that it doesn’t compile to true machine code —
Entropy’s shader interpreter is very efficient and takes advantage of coherence in ways that
a true machine compiler probably could not.

9.1.2 Command line arguments

Thesle program takes the following command line arguments:

-Ipath

Just like a C compiler, the-I switch, followed immediately by a directory name
(without a space between-I and the path), will add that path to the list of directories
which will be searched for any files that are requested by any#include directives
inside your shader source. Multiple directories may be specified by using multiple
-I switches.

-Dsymbol
-Dsymbol =value

Just like a C compiler, the-D switch, followed immediately by a symbol name (and
possibly with an initial value), will define a proprocessor macro symbol. If novalue
is supplied, the macro is defined to have value1.

This allows you to have conditional compilation based on defined symbols using
the#if and#ifdef statements in your shader source code files. Thesle program
automatically defines the symbolsEXLUNA andENTROPY.
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-Usymbol

Just like a C compiler,undefinesa symbol. That is, a symbol that ordinarily would
have been set is eliminated.

-o name

Specifies an alternate filename for the resulting compiled shader. Without this switch,
the output file is the base name of your shader, with the extension.sle.

-q

Quiet mode, only reports errors without any chit-chat.

-v

Verbose mode, lots of extra chit-chat.

-x

Encrypts the resulting .sle file.

9.2 Usingsletell to list shader arguments

Sometimes you may need to know the names and default values of the parameters to a
shader, but you may not have the shader source code readily available. Thesletell pro-
gram reports the type of a shader and its parameter names and default values. Usage is
simple: just give the shader name on the command line. For example,

sletell plastic

reports:

surface "shaders/plastic.sle"
"Ka" "uniform float"

Default value: 1
"Kd" "uniform float"

Default value: 0.5
"Ks" "uniform float"

Default value: 0.5
"roughness" "uniform float"

Default value: 0.1
"specularcolor" "uniform color"

Default value: "rgb" [1 1 1]

sletell can only report the default values for parameters that are given defaults by
simple assignment. In other words, if a constant (or a named space point) is used as the
default value,sletell will report it correctly. But if the default is the result of a function,
complex computation, or involves a graphics state variable, there is no way thatsletell
will correctly report the default value.

Note thatsletell has no trouble reporting the parameters from shaders that are en-
crypted usingsle -x.
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Chapter 10

Using Texture Maps

Although Entropy accepts regular scanline (or strip) oriented TIFF files as texture maps,
it is able to perform certain optimizations if the TIFF files you supply happen to be tile-
oriented. In particular,Entropy is able to significantly reduce the memory needed for tex-
ture mapping with tiled TIFF files.

10.1 mkmip Command Reference

Themkmip program converts scanline TIFF files into multiresolution, tiled TIFF files, zfiles
into shadow maps (tiled float TIFFs), and will combine six views into a cube face environ-
ment map.

10.1.1 Texture Maps

mkmip [options] tifffile texturefile

This converts ordinary scanline TIFF files into tiled, multilevel MIP-map TIFFs (what
Entropy calls “texture” format). Using textures in the tiled multiresolution format
offers significant performance improvements over using the original image files di-
rectly. Options include:

-smode wrapmode

-tmode wrapmode

-mode wrapmode

wherewrapmodeis one of:periodic, black, clamp, or mirror. This speci-
fies the behavior of the texture when outside the [0,1] lookup range. Note that
-smode and-tmode specify wrapping behavior separately for the s and t di-
rections, while-mode specifies both at the same time. The default behavior is
black.
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-resize option

Controls the resizing of non-square and non-power-of-two textures when being
converted to MIP-maps. Theoption may be any of:up, down, round, up-,
down-, round-. The up, down, andround indicates that the texture should
be resized to the next highest power of two, the next lowest power of two,
of the “nearest” power of two, respectively. For each option, the trailing dash
indicates that the texture coordinates should always range from 0 to 1, regardless
of the aspect ratio of the original texture. Absence of the dash indicates that the
texture should encode its original aspect ratio and adjust the texture coordinates
appropriately at texture lookup time. For historical reasons, the default isup,
but we recommendup- as the most intuitively-behaved option.

10.1.2 Environment Maps

mkmip -envcube [options] px nx py ny pz nz envfile

This command takes six TIFF image files (all square and of the same resolution) and
combines them into a cubeface environment map inEntropy’s preferred environment
map format. Options include:

-fov fovangle

Specifies the field of view of the faces.

mkmip -envlatl [options] tifffile envfile

This command takes a single ordinary TIFF file representing a latitude-longitude
reflection map, and converts it to a “latlong” environment map inEntropy’s preferred
format.

mkmip -lightprobe lpfile envfile

This command takes a floating point TIFF in spherical “lightprobe” format (see
http://www.debevec.org/Probes for the angular formulas) and converts it to anEn-
tropy cube face environment map.

mkmip -twofish -fov <f> file1 file2 envfile

This command takes a two TIFF files, each a fisheye image taken180◦ apart, and
joins them to form anEntropy cube face environment map. The-fov option is
required, and should contain the field of view in degrees of the images (e.g., 183 for
the fisheye lenses for Nikon Coolpix digital cameras).
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10.1.3 Converting zfiles to Shadow Maps

mkmip -shadow [options] zfile shadowfile

If you’ve written out a depth map using the"zfile" driver, this command converts
it to a shadow map. This step is unnecessary if you write depth maps directly as
shadow maps using the"shadow" driver.

10.2 unmkmip

NEW!
Theunmkmip program convertsEntropy texture files, lat-long environment maps, and cube
face environment maps into ordinary scanline TIFF files. Command line usage is:

unmkmip texfile tifffile

Writes the highest resolution level of the texture filetexfileas an ordinary scanline-
oriented TIFF file written astifffile.

unmkmip latlongfile tifffile

Writes the highest resolution level of the latlong environment map filelatlongfileas
an ordinary scanline-oriented TIFF file written astifffile.

unmkmip cubefacefile tifffilespec

Writes the highest resolution level of the cube face environment map filecubefacefile
as a series of ordinary scanline-oriented TIFF files. One file is written for each face
of the cube, and the file names will betifffilespec.0, tifffilespec.1, ... tifffilespec.5.
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Chapter 11

Shadows, Reflections, and Global
Illumination

This chapter gives an overview of how to useEntropy to achieve variousglobal lighting
effects. These effects include shadows, reflections, indirect illumination, and caustics. In
some cases, multiple approaches (such as ray tracing and using texture maps) are discussed.

11.1 Shadows

Shadows are crucial to lighting an environment in a believable way.Entropy allows two
main techniques to generate shadows: shadow maps and ray tracing.

11.1.1 Shadow Maps

Shadow maps(also sometimes calledshadow depth maps) are a simple, relatively cheap,
and very flexible means to cause a light to cast shadows. The shadow map algorithm works
in the following manner. Before rendering the main image, separate images are rendered
from the vantage points of the lights. Rather than render RGB color images, these light
source views record depth only (hence the name,depth map). Figure 11.1 shows a simple
scene with and without shadows, as well as the depth map that was used to produce the
shadows. Most modeling systems geared toward generating input forEntropy will auto-
matically position and render the depth maps for each shadowing light source.

Once these depth maps have been created, the main image is rendered from the point of
view of the camera. In this pass, the light shader can determine if a particular surface point
is in shadow by comparing its distance to the light against that stored in the shadow map. If
it matches the depth in the shadow map, it is the closest surface to the light in that direction,
so the object receives light. If the point in question isfarther than indicated by the shadow
map, it indicates that some other object was closer to the light when the shadow map was
created. In such a case, the point in question is known to be in shadow.

Shading Language gives us a handy built-in function to access shadow maps:

float shadow ( string shadowname; point Ptest; ... )
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Figure 11.1: Shadow depth maps. A simple scene with and without shadows (left). The
shadow map is just a depth image rendered from the point of view of the light source (right).
To visualize the map, we assign white to near depths, black to far depths.

The shadow() function tests the pointPtest (in "current" space) against the shadow
map file specified byshadowname. The return value is 0.0 ifPtest is unoccluded, and
1.0 if Ptest is occluded (in shadow according to the map). The return value may also
be between 0 and 1, indicating that the point is in partial shadow (this is very handy for
soft shadows). Theshadow() call has several optional arguments that can be specified as
token/value pairs:

• "blur" takes afloat and controls the amount of blurring at the shadow edges, as
if to simulate the penumbra resulting from an area light source (see Figure 11.2). A
blur value of 0 makes perfectly sharp shadows; larger values blur the edges. It is
strongly advised to add some blur, as perfectly sharp shadows look unnatural and can
also reveal the limited resolution of the shadow map.

• "samples" is a float specifying the number of samples used to test the shadow
map. Shadow maps are antialiased by supersampling, so although having larger
numbers of samples is more expensive, they can reduce the graininess in the blurry
regions. We recommend a minimum of 16 samples, and for blurry shadows it may be
quite reasonable to use 64 samples or more.

• "bias" is afloat thatshifts the apparent depth of the objects from the light. The
shadow map is just an approximation, and often not a very good one. Because of
numerical imprecisions in the rendering process and the limited resolution of the
shadow map, it is possible for the shadow map lookups to incorrectly indicate that a
surface is in partial shadow, even if the object is indeed the closest to the light. The



11.1. SHADOWS 135

solution we use is to add a “fudge factor” to the lookup to make sure that objects are
pushed out of their own shadows. Selecting an appropriate bias value can be tricky.
Figure 11.3 shows what can go wrong if you select a value that is either too small or
too large.

• "width" is a float that multiplies the estimates of the rate of change ofPtest
(used for antialiasing the shadow map lookup). Its use is largely obsolete and we
recommend using"blur" to make soft shadow edges rather than"width".

Figure 11.2: Adding blur to shadow map lookups can give a penumbra effect.

Figure 11.3: Selecting shadow bias. Too small a bias value will result in incorrect self-
shadowing (left). Notice the darker, dirtier look compared to Figures 11.2 or 11.1. Too
much bias can also introduce artifacts, such as the appearance of “floating objects” or the
detached shadow at the bottom of the cylinder (right).

The Ptest parameter determines the point at which to determine how much light is
shadowed, but how does the renderer know the point of origin of the light? When the
renderer creates a shadow map, it also stores in the shadow file the origin of the camera
at the time that the shadow map was made — in other words, the emitting point. The
shadow() function knows to look for this information in the shadow map file. Notice
that since the shadow origin comes from the shadow map file rather than the light shader,
it’s permissible (and often useful) for the shadows to be cast from an entirely different
position than the point from which the light shader illuminates. Theshadowspot shader
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Listing 11.1 shows a basic light shader that uses a shadow map. This light shader is still
pretty simple, but the entirety of Chapter 14 ofAdvanced RenderMan: Creating CGI for
Motion Picturesdiscusses more exotic features in light shaders.

Listing 11.1 An example of a light shader that uses a shadow depth map.
light
spotlight ( float intensity = 1;

color lightcolor = 1;
point from = point "shader" (0,0,0);
point to = point "shader" (0,0,1);
float coneangle = radians(30);
float conedeltaangle = radians(5);
float beamdistribution = 2;
string shadowname = "";
float shadowsamples = 16;
float shadowblur = 0;
float shadowbias = -1e9;)

{
uniform vector axis = normalize(to-from);

illuminate (from, axis, coneangle) {
float cosangle = (L . axis) / length(L);
float atten = pow (cosangle, beamdistribution) / (L . L);
atten *= smoothstep (cos(coneangle), cos(coneangle-conedeltaangle),

cosangle);
Cl = atten * intensity * lightcolor;
if (shadowname != "")

Cl *= 1 - shadow (shadowname, Ps, "samples", shadowsamples,
"blur", shadowblur, "bias", shadowbias);

}
}

Here are some tips to keep in mind when rendering shadow maps:

• Select an appropriate shadow map resolution. It’s not uncommon to use 2k× 2k or
even higher-resolution shadow maps for film work. But choosing a resolution too
high is wasteful; experiment to find an appropriate resolution that avoids artifacts.

• View the scene through the “shadow camera” before making the map. Make sure that
the field of view is as small as possible, so as to maximize the effective resolution of
the objects in the shadow map. Try to avoid your objects being small in the shadow
map frame, surrounded by lots of empty unused pixels.

• Remember that depth maps should have a filter width of 1 and should use one of the
depth filters:"min", "max", or "average". Entropy will warn you if you choose
inappropriate settings for a shadow map pass. For example, the RIB file for the
shadow map rendering ought to contain the following options:

PixelSamples 1 1
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PixelFilter "min" 1 1
Display "shadow.sm" "shadow" "z"

• In shadow maps, only depth is needed, not color. To save time rendering shadow
maps, remove all lights, allSurface calls (except for surface shaders that modify
opacity in a complex way), and increase the number given forShadingRate (unless
the object contains a significant amount of displacement).

• When rendering the shadow map, only include objects that will actually cast shadows
on themselves or other objects. Objects that only receive, but do not cast, shadows
(such as walls or floors) can be eliminated from the shadow map pass entirely. This
saves rendering time when creating the shadow map and also eliminates the possibil-
ity that poorly chosen bias will cause these objects to incorrectly self-shadow (since
they aren’t in the maps anyway).

• It is easiest to use the"shadow" display type, generating anEntropy shadow map
directly. Alternately, you could generate file with the"zfile" format, but in that
case you must perform an additional step to transform it into a full-fledged shadow
map (much as an extra step is often required to turn ordinary image files into texture
maps). The command to perform this operation is:

mkmip -shadow shadow.zfile shadow.sm

This is not necessary if you generate a shadow map directly using the"shadow"
display server.

11.1.2 Ray Traced Shadows

Entropy also supports ray-traced shadows: instead of using a shadow map, the path joining
the light source to the point being shaded is tested for occlusion against other objects in the
scene.

Entropy extends theshadow() call to support ray tracing. If theshadowname param-
eter is the special name"shadow", ray tracing will be used instead of looking up from a
shadow map file. Thus, the preferred method for a light shader to produce shadows us-
ing ray tracing is simply to use theshadow() call. The advantage to this approach is that
there isno differencebetween a light shader that makes shadows using depth maps versus a
light shader that uses ray-traced shadows — indeed, a single shader (such asshadowspot
in Listing 11.1) can accommodate both, switching between techniques depending on the
name of the shadow passed as a parameter.

When using ray traced shadows, the"blur", "bias", and"samples" parameters work
analogously to their use for shadow depth maps. There are some minor differences, how-
ever.

The "blur" parameter causes a penumbra effect (in fact, a much more realistic ap-
pearance than blurred shadow maps), but is measured differently. For shadow maps, the
"blur" amount is interpreted as a fraction of the resolution of the shadow map camera,
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whereas when ray tracing,"blur" is interpreted as the apparent angular size of the light
source (1.0 being a 90 degree light source). In both cases, 0 means perfectly sharp and
larger values quickly become blurrier. But you should not expect the same blur value to
have an identical appearance when using ray tracing versus when using shadow maps.

The"samples" parameter controls the number of ray samples that are used to antialias
the shadow edge and to give the appearance of penumbra (for nonzero"blur"). Note that
to an even greater degree than with shadow maps, ray traced shadows become much more
expensive as"samples" increases. Furthermore, you must beware of the potential multi-
plicative effect that occurs when the light is run multiple times withAttribute "light"
"nsamples" — the shadow"samples" are the number of rays sampleseach timethe light
is run.

The "bias" parameter is also honored (and quite useful) for ray-traced shadows, al-
though the amount of bias required to eliminate self-shadowing artifacts is generally much
lower with ray-traced shadows than with shadow maps.

Another thing to keep in mind when using ray-traced shadows is that objects will only
cast ray-traced shadows if they are visible to shadow rays. In other words, they must have
been tagged with:

Attribute "visibility" "shadow" [1]

11.1.3 Area Lights

In the real world, shadows are generally not perfectly sharp, but rather have apenumbra
— an area of partial shadow caused by the fact that the light source itself is not really a
single point, but covers an extended angle. The"blur" parameter for shadow maps can
simulate penumbra rather crudely by simply blurring the shadow shape. When using ray-
traced shadows, the"blur" parameter can be used to sample the light direction over a solid
angle, giving a somewhat more accurate shadow effect but assuming a spherical source of
fixed solid angle width. For even more accurate penumbra effects,Entropy supports true
area lights.

An area light is a light source that is associated with a specific geometric primitive
(for example, aSphere, NuPatch, PointsPolygons, or other primitive). When the light
shader is run, the light direction is chosen to be distributed over the primitive. This can give
a very pleasing, rich appearance to the lighting, as seen in Figure 11.4. The only way to get
the correct shadowing effect with area lights sources is to use ray-traced shadows.

Declaring an area light source is similar to an ordinaryLightSource declaration, with
some minor differences:

• The light is declared withAreaLightSource instead ofLightSource.

• Subsequently declared geometric primitives are added to the light source geometry,
until the end of the enclosingAttributeBegin/AttributeEnd block.

• Because the light is enclosed inside anAttributeBegin/AttributeEnd block, you
must be careful to useIlluminate to turn the light “on” for the rest of the scene.
(Remember that a light is off by default once you exit the Attribute block in which it
was declared.)
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Figure 11.4: True area lights can drastically change the character of light and shadow.

• To reduce noise in the shadow penumbra regions, you will almost certainly want
to fine-tune the number of samples for the area light usingAttribute "light"
"nsamples" (see Section 3.2.2).

• To give the appearance of a luminaire, the surface shader assigned to the light source
geometry should beconstant.sl or some other self-illuminating or glowing shadow.

An example declaration of an area light source (from the scene shown in Figure 11.4) is
shown below:

AttributeBegin
Attribute "light" "nsamples" [16]
AreaLightSource "arealight" 1 "intensity" [30]

"string shadowname" ["shadow"] "float shadowbias" [.15]
Translate 4 2 4
Rotate 90 1 0 0
Rotate 60 0 1 0
Rotate -20 1 0 0
Scale 1.5 1.5 1.5
Surface "constant" # Give it a glowing appearance
Patch "bilinear" "P" [-1 1 0 1 1 0 -1 -1 0 1 -1 0]

AttributeEnd
Illuminate 1 1 # Make sure the light is turned on

Inside the light shader of an area light (i.e., the shader declared withAreaLightSource),
theP variable is a position on the light geometry (chosen by the renderer), andN is the nor-
mal of the light geometry at that point. To give the proper effect, the light shader assigned
to the area light should be sure to illuminate the scene fromP. Thearealight.sl shader
shown in Listing 11.2 is a simple light shader suitable for use as an area light source.

IMPORTANT NOTE: In the current implementation, only geometric primitives with 2D
parameterizations can be used as area light geometry. This means thatNuPatch, Polygon,
Patch, and all quadrics (Sphere, Cylinder, and the like) are fine to use as area light
geometry. But primitives that are made from lots of pieces and therefore lack a consistent
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Listing 11.2arealight.sl: A simple light shader suitable for use on an area light source.

light
arealight (float intensity = 1;

color lightcolor = 1;
string shadowname = "";
float shadowsamples = 1;
float shadowblur = 0;
float shadowbias = -1e9; )

{
illuminate (P, N, 1.5707963 /* PI/2 */) {

Cl = (intensity / (L.L)) * lightcolor;
if (shadowname != "")

Cl *= 1 - shadow (shadowname, Ps, "samples", shadowsamples,
"blur", shadowblur, "bias", shadowbias);

}
}

parameterization —PointsPolygons, PointsGeneralPolygons, SubdivisionMesh,
Curves, andPoints— cannot be used as area light geometry. The next major release of
Entropy will certainly lift this restriction.

11.2 Reflections

Many surfaces are polished to a sufficient degree that one can see coherent reflections of
the surrounding environment. The presence and appearance of reflections is controlled by
the surface shader.Entropy provides for three different methods for making reflections in
surfaces: environment mapping, flat reflection mapping, and ray tracing.

Environment mapping work best if the reflective object is curved, and is really the only
applicable technique if the environment is painted or is captured from a real scene.

Flat reflection mapping is generally superior to environment mapping if the reflective
object is flat (like a floor or a large flat mirror), but is tricky to do properly if there are
objects behind the mirror, or if the reflective object is not almost perfectly flat.

Ray tracing is much slower and more memory-intensive than environment or reflection
mapping, but is more geometrically accurate and may be the only method that looks right
for tricky situations such as mutually-reflective objects.

11.2.1 Environment Maps

Environment mappingtakes a pre-rendered, captured, or painted image of the reflective en-
vironment and looks up texture indexed by a direction vector, thus simulating reflection.
The environment map is either rectangular (called a latitude-longitude environment map)
or composed of six axis-aligned directions from a particular point (called a cube-face envi-
ronment map).
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Environment maps may be completely synthetic, from six rendered images, or a paint-
ing. Environment maps may also be captured from a real environment, as six90◦ photos,
two fisheye lenses, or a single spherical “light probe” map.

See Section 10.1 for details on converting various formats intoEntropy environment
maps. An example of an “unwrapped” environment map, captured from two fisheye lens
images of a real scene, is shown in Figure 11.5. Its use on a reflective object is shown in
Figure 11.6. Most modeling systems geared toward making input forEntropy will have an
automatic facility for generating cube face environment maps of your synthetic scene for
any object that is reflective.

Figure 11.5: An example environment map stitched together from two fisheye lens views
of a room.

Accessing an environment map from inside your shader is straightforward with the
built-in environment function:

type environment (string envname, vector R, ...)

The environment() function is quite analogous to thetexture() call in several
ways:

• The return type can be explicitly cast to eitherfloat or color. If you do not explic-
itly cast the results, the compiler will try to infer the return type, which could lead to
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Figure 11.6: Use of the environment map from Figure 11.5 to make reflections.

ambiguous situations.

• For environment maps, the texture coordinates consist of a direction vector. As with
texture(), derivatives of this vector will be used for automatic filtering of the en-
vironment map lookup. Optionally, four vectors may be given to bound the angle
range, and in that case no derivatives will be taken.

• Theenvironment() function can take the optional arguments"blur", and"width",
which perform the same functions as fortexture().

Environment maps typically sample the mirror direction, as computed by the Shading
Language built-in functionreflect(). For example, Listing 11.3 shows a typical use of
environment() to make a shiny object.

Environment maps must be indexed by a vector in the same coordinate system that
they were created in (typically"world" space). If you index the environment map in the
wrong space (particularly"current" space), you could get very strange results with your
reflections.

Note also that environment maps are indexed by direction only, not position. Thus,
not only is the environment map created from the point of view of a single location, but
all lookups are also made from that point. Alternatively, one can think of the environment
map as being a reflection of a cube of infinite size. Either way, two points with identical
mirror directions will look up the same direction in the environment map. This is most
noticeable for flat surfaces, which tend to have all of their points index the same spot on the
environment map. This is an obvious and objectionable artifact, especially for surfaces like
floors, whose reflections areverysensitive to position.

One solution to this problem is to attempt use reflection mapping (if the reflective object
is flat), or to use ray tracing. Another solution is to stick to environment mapping, but to try
to take the parallax into account. Thereflections.h file that is distributed withEntropy
contains a function calledEnvironment() that, in addition to a reflection direction, also
takes the name of the environment map’s coordinate space and a radius of the projection
(essentially the “size of the room”). This information is used to approximate the parallax
effect.
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Listing 11.3 shinymetal.sl: A simple surface shader that makes a mirror-like surface
with environment().
surface
shinymetal (float Ka = 1, Ks = 1, Kr = 1;

float roughness = .1;
string envname = "";
string envspace = "world";)

{
vector V = normalize(I);
normal Nf = faceforward (normalize(N),V);
vector D = vtransform (envspace, reflect (V, Nf));

color env;
if (envname != "")

env = Kr * color environment (envname, D);
else env = 0;

Oi = Os;
Ci = Os * Cs * (Ka*ambient() + Ks*specular(Nf,-V,roughness) + env);

}

11.2.2 Flat Surface Reflection Maps

For the special case of flat objects (such as floors or flat mirrors), there is an even eas-
ier and more efficient method for producing reflections, which also solves the problem of
environment maps being inaccurate for flat objects.

For the example of a floor, we can observe that the image in the reflection would be
identical to the image that you would get if you put the camera underneath the floor. This
geometric principle is illustrated in Figure 11.7. Alternately, you would achieve the same
effect if you made a mirror-image copy of the scene under the floor.1

Most modeling systems geared toward making input forEntropy will have an automatic
facility for generating reflection maps for any flat, reflective objects.

Once we create this reflection map, we can turn it into a texture and index it from our
shader. Because the pixels in the reflection map correspond exactly to the reflected image
in the same pixels of the main image, we access the texture map by the texture’s pixel
coordinates, not thes, t coordinates of the mirror. We can do this by projectingP into
"NDC" space:

/* Transform to the space of the environment map */
point Pndc = transform ("NDC", P);
float x = xcomp(Pndc), y = ycomp(Pndc);
Ct = color texture (reflname, x, y);

1Note that the reflection of a scene in a flat mirror is the same thing you’d see if the mirror were awindow
to another room in which everything were reversed.
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E

E

Figure 11.7: Creating a mirrored scene for generating a reflection map. On top, a camera
views a scene that includes a reflective floor. The view of the reflection is the same as if the
camera was viewing the room from below the floor.

11.2.3 Ray traced reflections and refractions

There are times when environment or reflection mapping is not adequate. Reflection maps
are really only applicable if the reflector is perfectly flat. Environment mapping doesn’t
work well for nearly flat objects, and is incorrect for objects that touch (or nearly touch)
the reflective object. There can be severe parallax problems. Neither technique works well
for scenes in which there are mutually-reflective objects, or in which an object must reflect
another part of itself. Also, it can be difficult (though certainly not impossible) to use
environment maps to convincingly model refraction.

Entropy also supports ray-traced reflections and refractions by extending theenvironment()
routine.2

If the environment name supplied to theenvironment() is the special name"reflection",
then theenvironment() function will ray trace in the reflection direction instead of look-
ing up the result from an environment map file. In other words, theshinymetal.sl envi-
ronment mapping shader in Listing 11.3 can be used for ray tracingwithout modification.
We only need to use"reflection" as the environment map name, and also ensure that
the ray direction is expressed in"current" space (instead of the usual transformation to
"world" space for environment map file lookups). In other words, specifying this shader
in the scene file as:

2There are other functions that can be used for ray tracing, as described in 5.6.8, but for most basic uses of
ray tracing,environment() is the preferred mechanism.



11.3. INDIRECT ILLUMINATION 145

Surface "shinymetal" "envname" ["room.env"] "envspace" ["world"]

will get reflections from the environment map"room.env", whereas

Surface "shinymetal" "envname" ["reflection"] "envspace" ["current"]

would use ray-traced reflections.
Most of the optional environment map parameters are implemented analogously when

performing ray tracing. The most useful optional ray tracing parameters are"blur",
"samples", and"bias". If you want blurry ray-traced reflections, there’s no reason to
write a loop with carefully selected samples. Rather, just callenvironment() with an
appropriate"blur" amount, exactly as you would if you were using an environment map
file. The renderer does the rest. Increasing the"samples" will antialias your reflections
and reduce the noise in the reflection blur (but of course will increase the expense of the
shader). The"bias" parameter works much like it does with shadow mapping — the bias
amount can be used to reduce self-reflection artifacts (sometimes known as “surface acne”).

Remember that ray tracing will produce strange results if the ray direction is not ex-
pressed in"current" space!

11.3 Indirect illumination

Direct illumination refers to light leaving a light source, traveling in a straight line, and
arriving (possibly shadowed) at an object seen by the camera. In the real world, much of
the light arriving at objects did not come via a straight line from the light. Rather, light
will bounce between objects in the scene. Thisindirect illuminationcan be computed by
Entropy, albeit at an additional expense. Figure 11.8 shows the contribution of indirect
illumination to an example scene.

Entropy supports indirect illumination using a Monte Carlo technique. Rather than en-
meshing the scene and solving the light transport up front (as finite element-based radiosity
techniques would do), the Monte Carlo approach is “pay as you go.” As it’s rendering,
when it needs information about indirect illumination, it will do a bunch of extra ray tracing
to figure out the irradiance. It will save those irradiance values, and try to reuse them for
nearby points.

To use the Monte Carlo irradiance calculations for global illumination, you need to
follow the following steps:

1. Turn on indirect illumination for the scene

Add a light source to the scene using the"indirect" light shader. The light does
not have any parameters.

LightSource "indirect" 42

2. Receivers

All objects that are illuminated by the"indirect" light will receive indirect illumi-
nation. If there are any objects that you specifically do not want indirect illumination
to fall on, you can just useIlluminate to turn the light off for those objects.
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Figure 11.8: Left: a character lit by a single light source. Much of the character is not
illuminated directly by the light. Right: the sky hemisphere is made emissive (by using the
"constant.sl" shader) and indirect illumination is used. (Model courtesy of Discreet.)

3. Reflected objects

Indirect illumination is, in many ways, just a very blurry ray-traced reflection. As
such, only objects that would show up in ray-traced reflections will contribute to the
indirect illumination. Thus, all objects that can “be seen” by the indirect illumination
rays must be tagged as being visible in reflections:

Attribute "visibility" "reflection" [1]

4. Adjust Parameters

It’s expensive to recompute the indirect illumination at every pixel, so it’s only done
sparsely, with the results interpolated or extrapolated. There are several time/quality
controls controlling how often this recomputation is done. These attributes, which
can be modified on an object-by-object basis, are shown here with their default values
as examples:

Attribute "indirect" "float maxerror" [0.25]
A maximum error metric. Smaller numbers cause recomputation to happen
more often. Larger numbers render faster, but you will see artifacts in the form
of obvious ”splotches” in the neighborhood of each sample. Values between
0.1-0.25 work reasonably well, but you should experiment. But in any case,
this is a fairly straightforward time/quality knob.

Attribute "indirect" "float maxpixeldist" [20]
Forces recomputation based roughly on (raster space) distance. The above line
basically says to recompute the indirect illumination when no previous sample
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is within roughly 20 pixels, even if the estimated error is below the allowable
maxerror threshold. Smaller numbers are higher quality, but use more memory
and take longer to render.

Attribute "indirect" "integer nsamples" [256]

How many rays to cast in order to estimate irradiance, when generating new
samples. Larger is less noise, but more time. Should be obvious how this is
used. Use as low a number as you can stand the appearance, as rendering time
is directly proportional to this.

Speeding up walk-throughs with global illumination

There is a way to greatly speed up global illumination calculations for there special case
where you are rendering an animation in which no objects that interact with global illumi-
nation move. An example of this is a camera moving through a static environment. Two
options make it possible to store and re-use indirect lighting computations from previous
renderings:

Option "indirect" "string savefile" [""]

If you specify this option with a non-empty string, when rendering is done the con-
tents of the irradiance data cache will be written out to disk in a file with the name
you specify. This is useful mainly if the next time you render the scene, you use the
following option:

Option "indirect" "string seedfile" [""]

If you specify this option with a non-empty string, the irradiance data cache will start
out with all the irradiance data in the file specified. Without this, it starts with nothing
and must sample for all values it needs. If you read a data file to start with, it will
still sample for points that aren’t sufficiently close or have too much error. But it can
greatly save computation by using the samples that were computed and saved from
the prior run.

You shouldn’t use the"seedfile" option if the objects have moved around. But if
the objects are static, either because you have only moved the camera, or because you
are rerendering the same frame, the combination of"seedfile" and"savefile" can
tremendouslyspeed up computation.

Here’s another way they can be used. Say you can’t afford to set the other quality
options as nice as you would like, because it would take too long to render each frame.
So you could render the environment from several typical viewpoints, with only the static
objects, and save all the results to a single shared seed file. Then for main frames, always
read this seed file (but don’t save!) and most of the sampling is already done for you, though
it will redo sampling on the objects that move around. You must make the judgment about
whether this time savings is worth the additional inaccuracy.
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Parameter selection strategy

It can be hard to tune the several parameters that control the speed and quality of the indirect
illumination. We recommend choosing one of two strategies.

Strategy 1: Sparse Computation In this strategy, we try to save time by utilizing the
caching computations.

Attribute "indirect" "float maxpixeldist" [20]
Attribute "indirect" "float maxerror" [0.25]
Attribute "indirect" "integer nsamples" [256]

For sparse computation, you will need a larger number of samples (typically at least
256). One or both of the"maxpixeldist" and "maxerror" parameters can be
adjusted as time versus quality tradeoffs (in both cases, lower numbers are higher
cost and higher quality).

Strategy 2: Final Gather In this strategy, we force the indirect illumination to be fully
recomputed at every shading sample:

Attribute "indirect" "float maxpixeldist" [0]
Attribute "indirect" "integer nsamples" [64]

By setting the"maxpixeldist" to 0, we force recomputation at every shading sam-
ple. The"maxerror" parameter is unused. We can set"nsamples" relatively low
(64 is a good starting point), and then adjust it as a straightforward time versus quality
knob (larger values are higher cost and higher quality).

The “sparse computation” strategy is much faster in many circumstances. However,
the time/quality parameters can be counterintuitive, and this method is sometimes plagued
by splotchy artifacts. The “final gather” strategy is more expensive computationally, and
will have minimal speed-ups with “seed” files because it does not the cache for the first
bounce, but this technique will be free of but blotchy artifacts. It can be noisy, depending
on nsamples, but you may find the noise much less objectionable than the splotches. We
recommend the “final gather” strategy if you can afford the render times.

11.4 Caustics

Figure 11.9 shows a vase made of plastic, and then changing the material properties to that
of glass. We can see that when the vase is made of glass, the shadow seems too “dense.” We
expect some of the light to make it through the glass anyway, and because of the refractive
nature of the glass, it should be concentrated or focused at particular points on the floor.

Causticsare bright spots caused by the focusing of light that is refracted or specularly
reflected, particularly by curved objects. This section discusses two ways to generate caus-
tics — one method based on physical simulation with photon mapping, and another very
fake method that may nonetheless be an adequate (and less expensive) substitute.



11.4. CAUSTICS 149

Figure 11.9: A plastic vase (left) and a glass vase (right).

11.4.1 Real caustics

Entropy can compute caustics by simulating the action of light withphoton mapping. This
involves several steps: turning on caustics in the scene, specifying which objects receive
caustics, specifying which lights contribute to caustics, and specifying which objects reflect
light to form caustics.

1. Turning on caustics for the scene

To turn caustics on in your scene, you must declare a light source with the special
"caustic" shader (like"indirect", it’s really a hook into various renderer internal
magic):

LightSource "caustic" 87

2. Caustic lights

For any light sources that should reflect or refract from specular objects, thereby
forming caustics, you will need to set the number of photons:

Attribute "light" "integer nphotons" [50000]

This indicates that a subsequently declared light should shoot 50,000 photons in order
to calculate caustics. If you do not set this option, the default is 0, which means that a
light will not try to calculate caustic paths. Any nonzero number will turn caustics on
for that light, and higher numbers result in more accurate images (but more expensive
render times). This attribute binds to the light, so it’s important to have it declared
before (and within the scope of) the light source that should make caustics.

3. Reflectors and Refractors

It’s important to give it a few hints about which objects actually specularly reflect or
refract lights. For reflective caustics (like mirrors):
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Attribute "caustic" "color specularcolor" [.9 .9 .9]

and for refractive caustics (like glass):

Attribute "caustic" "color refractioncolor" [.9 .9 .9]
Attribute "caustic" "float refractionindex" [1.5]

Obviously, you can customize the reflection and refraction colors and the index of
refraction to anything you like. Be very careful with specular or refraction colors that
have components with values greater than 1 — such objects are increasing the energy
of light as it bounces off them, which doesn’t happen in the real world and can lead
to strange results in your scene.

Any object that does not have either the"specularcolor" or"refractioncolor"
set (or has both set to[0 0 0]) will not reflect or refract caustics. (They may still
reflect or refract images of the scene, depending on their shaders.)

Also, all objects that reflect or refract caustics must be visible to reflection rays:

Attribute "visibility" "reflection" [1]

4. Blockers

All objects that canblockcaustics (i.e., shadow their transport from light to reflector,
or from reflector to receiver) must be marked as visible to shadow rays:

Attribute "visibility" "shadow" [1]

5. Receivers

You should useRiIlluminate to turn the master"caustic" light on for objects
that receive caustics (that is, those objects that have the bright caustics focused on
them). Turn it off for objects that should not not receive caustics. Illuminating just
the objects that are known to receive caustics can save lots of rendering time.

Also, all objects that receive caustics must be visible to reflection rays:

Attribute "visibility" "reflection" [1]

There are also two attributes that can affect the time/quality trade-offs for caustic
receivers:

Attribute "caustic" "float maxpixeldist" [16]
Limits the distance (in raster space) over which it will consider caustic infor-
mation. The larger this number, the fewer total photons will need to be traced,
which results in your caustics being calculated faster. The appearance of the
caustics will also be smoother. If the maxpixeldist is too large, the caustics will
appear too blurry. As the number gets smaller, your caustics will be more finely
focused, but may get noisy if you don’t use enough total photons.
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Attribute "caustic" "integer ngather" [75]
Sets the minimum number of photons to gather in order to estimate the caustic
at a point. Increasing this number will give a more accurate caustic, but will be
more expensive.

The final image using this technique is shown in Figure 11.10.

Figure 11.10: “Real” caustics.

11.4.2 Fake caustics

Perhaps even more so than refractions or shadows, it is very hard for the viewer to rea-
son about the correct appearance of caustics, and therefore potentially easy to fake. A
rather cartoonish understanding of caustics might be as follows: in the interior where a cast
shadow would ordinarily be, we see a bright spot. Can we mimic the appearance without
simulating the phenomenon? The main visual phenomenon appears to be that within the
normal shadow region, we expect some of the light to make it through the glass anyway,
but distorted and perhaps concentrated in the center.

Observe that in thespotlight shader (Listing 11.1) we blocked light by using a
shadow() call:

Cl *= 1 - shadow (shadowname, Ps, "samples", samples,
"blur", blur, "bias", bias);

If 1 - shadow() is the amount of light that gets through, then a light that multiplied by
shadow() instead would illuminate only the occluded region. To restrict ourselves to the
interior of the occluded region, we can blur the boundaries of the shadow map lookup and
threshold the results:
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float caustic = shadow (shadowname, Ps, "samples", samples,
"blur", blur, "bias", bias);

caustic = smoothstep (threshold, 1, caustic);
Cl *= caustic;

We can also add a little noise to simulate distortion in the glass:

point PL = transform ("shader", Ps);
caustic *= noiseamp * pow (noise(PL*noisefreq), noisepow);

We apply the caustic light only to the floor, using the very same shadow map that our
ordinary spotlight was using to create the shadows. The results can be seen in Figure 11.11.
Compare to the image computed from the “real” caustic computations. In many situations,
the “fake” technique can be yield satisfactory results more quickly than the photon map
simulation; in other cases, only the simulation will do. The shader for the fake caustic light
can be found inEntropy’s shaders directory asfakecausticspotlight.sl.

Figure 11.11: Fake caustics, including noise.

11.5 HDRI / Environment lighting

It is often useful to light objects using an environment map as the light source. This kind
of technique is particularly handy for inserting synthetic objects into real scenes or lighting
environments. To have a remotely accurate representation of a scene’s lighting, 8-bit integer
values of 0-255 will not do. Instead, to achieve a reasonable quality level, anHDR (high
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dynamic range) representation is needed, which really means that you need some kind of
floating point environment map.

Once you have an HDR environment map representing the lighting in your scene, there
are several techniques thatEntropy supports to light scenes using that map. The easiest two
techniques are described below.

11.5.1 Technique 1: Sky sphere

One simple way to light a scene using an environment map is to simply place a sphere
around the whole scene, which has a surface shader that is emissive (glows, without needing
external lights), and let the indirect illumination do its job. This involves the following steps:

1. Place a large sphere around the whole scene.

2. The surface shader of the sphere should color itself using a blurred lookup from the
environment map, without needing any other lights. The"envsurf" shader that
comes withEntropy is ideal. For example:

Surface "envsurf" "string envname" ["hdroom.env"] "float blur" [0.1]

3. Be sure to make the sphere visible to reflection rays (so it shows up in the indirect
illumination). If you don’t want the sphere (and the image on it) to be visible to
the camera, make sure to make it invisible to the camera. See Section 3.2.2 for the
commands to make objects visible (or not) to reflections or the camera.

4. Make sure you are using indirect illumination by adding the"indirect" light to
the scene, making objects visible to reflections, and tuning the indirect parameters
appropriately (see Section 11.3).

The main drawback to this technique is that you may require a large number of sam-
ples for your indirect illumination. The indirect"nsamples", "maxpixeldist", and
"maxerror" should be tuned as described in Section 11.3.

11.5.2 Technique 2: As a light source

A second technique is to make the environment lighting look like an actual light source in
the scene. The"envlight" light source shader that comes withEntropy is an example
shader that does exactly this, by looking up the lighting from the environment map. The
lighting is scaled by the “local occlusion” (calculated with theocclusion() function) and
the direction of the environment map lookup is perturbed toward the average unoccluded
direction. The steps for using this technique are straightforward:

1. Add a light using the"envlight" shader, specifying the name of the environment
map as the"envname" parameter.

2. Make objects visible to the occlusion calculations by making them visible to reflec-
tion rays.
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3. Adjust the indirect attributes described in Section 11.3. The various"indirect"
attributes affect the occlusion caching analogously to the way they affect indirect
illumination. Just as with indirect illumination, we recommend using a “final gather”
step, but you might be able to save time by using sparse sampling and the occlusion
cache.

With this technique, it is not necessary to add an"indirect" light (but is certainly
allowed if you want to also account for light interreflected between objects).



Chapter 12

Optimizing Your Renderings

Rendering can take a very long time, even considering thatEntropy can render complex
scenes very efficiently, perhaps more so than almost any other renderer. Choices in scene
design andEntropy invocation options can make a huge difference in the amount of time
and memory required to render. Careful choices can make the difference between fast and
slow rendering, and sometimes between slow rendering and not being able to render a scene
at all.

The remainder of this chapter lists a number of things to keep in mind for efficient
rendering. If your renders are taking too long, the first thing you should do is run through
this checklist to see if any of these tips are applicable to your scene.

12.1 Don’t ray trace if you don’t have to

Ray tracing is expensive. It takes lots of time to trace the rays, and it gets more expensive the
more geometry is in your scene. Ray tracing also greatly increases the amount of memory
required to render your scene — since a ray-traced reflection or shadow could hit an object
at any time, it’s almost never safe to throw the object away, even ifEntropy is no longer
working on the section of the screen that the object occupies. When few objects are ray
traced,Entropy can be extremely aggressive about minimizing the number of geometric
primitives that are in memory at any one time.

There are several ways that ray tracing can be avoided:

• Use environment maps (for curved objects) or reflection maps (for flat objects) in-
stead of ray-traced reflections. It is a rare circumstance when the viewer can really
tell the difference between a ray-traced reflection and an environment map.

When it doesn’t work: Environment mapping breaks down when you have two ob-
jects that are mutually reflective, or an object that must reflect a part of itself, or if
a reflective object is touching (or nearly touching) another object. But when these
circumstances are not present

• Use shadow depth maps instead of ray-traced shadows.

When it doesn’t work: If you are using area lights or HDRI environment lighting,
and want the shadows and penumbras to look good, you probably need ray tracing.

155
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• Use bounce lights instead of global illumination.

Sure, there are times when you really want to use global illumination. There are other
times when you can carefully place ordinary lights to achieve the same appearance.

• Use fake lights instead of caustics.

Section 11.4.2 gives an example of a way that caustics can be simulated without
actually performing photon mapping.

12.2 If you must ray trace, don’t do it wastefully

• Only cast shadows from key lights. Dim lights used for fill or bounce effects often
don’t need to be shadowed at all, let alone shadowed with ray tracing.

• Be careful with"samples" in ray-traced reflections and shadows. Expense of ray
tracing is directly proportional to the number of rays. If reflections and shadows are
not blurry, you may only need a small number of samples,

• Use Attribute "visibility" to tag as “ray-traceable” only those objects that
need to be seen in reflections, or that need to actually cast shadows. For example, in
an enclosed room, the walls, floor, and ceiling generally do not cast shadows (what
would they cast shadows on?), and thus do not need to be marked as visible in ray-
traced shadows. If the only reflective object in the scene is a flat mirror, objects
behind the mirror cannot show up in the reflection, and thus do not need to be ray
traceable.

In general, the fewer objects are that are ray traceable, the faster your scenes will
render, and the less memoryEntropy will require to render them.

• For objects that must be ray-traceable and have displacement shaders on them, con-
sider usingAttribute "render" "tracedisplacements" [0]. This makes ray
tracing much cheaper, as long as you’re willing to accept bump mapping rather than
true displacements, as seen in the reflections. Note that this attribute does not affect
the way objects appear to the camera.

• Use stand-ins.Attribute "visibility" can be used to make a complex scene
that’s visible only to the camera, but not in any shadows or reflections, and a much
simpler version of the scene that is only ray traced, and not visible to the camera at
all.

• Limit the ray depth withOption "limits" "raydepth". Do you really need to
see reflections in reflections? Similarly, when using global illumination,Option
"maxbounce" should be kept low, unless you can really see the difference made by
extra bounces.

• If you are using global illumination and not much in the scene is moving (especially
if just the camera is moving), make sure to useOption "savefile" andOption
"seedfile".
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• If using global illumination or caustics, carefully tune the controls described in Sec-
tions 3.1.3 and 3.2.2 so that they are as cheap as possible without compromising
noticeable quality.

• Some users have reported being able to speed up indirect illumination by increasing
the"minshadowbias".

• For ray tracing, it is much more efficient to use an actualSphere than aNuPatch
that is shaped like a sphere. And both of those choices are much more efficient than
using lots of polygons to approximate the shape of a sphere.

12.3 Use short-cuts when computing maps

• Choose appropriate resolutions.

Don’t compute higher resolution shadow, reflection, and environment maps than you
have to. Use your best judgment, but try to have the shadow or environment map
resolution be not much higher than the number of pixels that the cast shadow or
reflective object will be in the final image. For example, if you are rendering your
final images at video res (720×486) and you have a reflective object covering at most
1/4 of the screen, rendering the environment map at512 × 512 on each side should
be more than good enough.

• Not all lights need to cast shadows.

Only key lights need shadows — you can often get away without shadows on dimmer
fill lights.

• Not all objects cast shadows or appear in reflections.

As mentioned earlier with ray tracing, you should eliminate objects from shadow
maps if they aren’t expected to cast their shadows onto anything else. Common
examples include floors, ceilings, etc. Similarly, objects that don’t need to be seen in
reflections should simply not be included when creating environment and reflection
maps.

• Share maps among objects.

Suppose you have two reflective objects in the scene. You could compute two sepa-
rate cube-face environment maps, one for each object. But would the viewer really
know if you just computed one environment map, and used it for several of the envi-
ronment maps in your scene?

• Share maps among frames.

If the objects in your shadow map aren’t moving around, then you can compute the
map once for the entire shot, and reuse it for all the frames. If only some objects are
moving, consider putting the stationary object in one shadow map (computed only
once) and the moving objects in a second map (computed every frame), using a light
shader that understands how to combine both maps to compute shadows.
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Similarly, if your reflective object is moving around but not much else is, you can
probably compute the environment map once and use it for all the frames.

• Use generic maps if you can.

Do you really need to see the scene clearly in your reflective object, or are you just
putting a little bit of dim, blurry reflection to give the feeling that the object is shiny?
If the latter, you may not notice if the reflection isn’t really an image of the scene at
all. Consider keeping a few “generic” environment maps around — one for outdoors,
one for indoors, etc. — to throw on objects that need a little bit of reflection. Maybe
you can avoid making any scene-specific environment maps entirely.

• Use cheap rendering options for shadow maps

Shadow maps just record depth of objects in each pixel. Shadow maps don’t record
color, but they do need to know position and opacity. When doing a shadow map pass,
be sure to turn off all lights, use a simple stand-in surface shader (likeconstant.sl)
except for those shaders that modifyOi for opacity effects, and remove the displace-
ment shader unless it is moving the surface by an appreciable amount.

Also, for surfaces that are not displaced, consider using a larger number (coarser
tessellation) forShadingRate, for exampleShadingRate 16. This will greatly
speed up the rendering of the shadow map pass.

12.4 Tune the options

Make sure you are using the correct resolution for your image. Video resolution isFormat
640 480 1, or if you’re a real format geek, maybeFormat 720 486 0.9. Film resolution
is much less than many people suspect — theatrical films generally have CG elements with
a resolution of at most 2048 horizontal pixels (and quite frequently much less). If you are
rendering 3k or 4k images, you should be very careful that you really require such high
resolution.

PixelSamples should be kept as low as possible without sacrificing quality. Due to
Entropy’s new antialiasing algorithm,PixelSamples 4 4 is probably sufficient for most
images, including those with a moderate amount of motion blur. In special circumstances,
you may wish to increasePixelSamples, or even to set the spatial and temporal antialias-
ing levels separately (see Section 3.1.3).

Entropy usesShadingRate 1 by default. Some older articles and books claimed that
ShadingRate 0.25 should be used for “final images,” but we believe that if your shaders
properly antialias themselves,ShadingRate 1 is the right size, even for high-quality work.
Smaller values may occasionally be needed for special purposes, but generally speaking, if
you are tempted to use a smallerShadingRate, you may be compensating for a bad shader
or for another renderer option being set incorrectly.

The bucket size (how much screen space is processed at once) is determined auto-
matically byEntropy. But advanced users may wish to tune this parameter for difficult
shots withOption "limits" "bucketsize". The optimal value is somewhat scene-
dependent. If you’re rendering hundreds of frames of a difficult scene, it may be worth first
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rendering a single frame with several different bucket size parameters — say, 8x8, 16x16,
and 32x32. Then pick the one with the smallest rendering times and/or memory sizes, and
use that value for the rest of the frames.

12.5 Use high-level geometric primitives

Entropy is excellent at taking high-level descriptions of curved geometric primitives and
subdividing them just enough to draw them without artifacts. It’s not very good at taking
objects that are already diced into too many pieces.

Unlike many renderers, high-level primitives like NURBS are not inherently expen-
sive. In fact, withEntropy, a NURBS patch has about the same expense as asinglepoly-
gon that is the same size on screen. Thus, specifying curved primitives withNuPatch
or SubdivisionMesh is considerably less expensive than specifying the same shape with
thousands of tiny polygons, and additionally the curved surface will never show any polyg-
onal artifacts.

If you are doing any ray tracing, there is additional savings to be had by using quadrics
(like Sphere or Cylinder) rather than aNuPatch of the same shape.

Try to construct your area lights from simple geometry —Sphere, Cylinder, and
bilinear patches are the most efficient. TheSphere and Cylinder primitives also are
special-cased for more efficient area light sampling. A trueSphere or Cylinder as an
area light will render much faster, and with much less noisy shadows, than an equivalently-
shapedNuPatch.

12.6 Use procedural geometry

Entropy will internally store geometric primitives in one of three forms: (1) the original de-
scription of the primitive from the scene file, basically just the control vertices themselves;
(2) higher-resolution, split, diced, and shaded version of the primitive; or (3) not stored at
all.

Entropy will aggressively cull (throw away without storing) any primitives that are off-
screen or that are occluded behind other opaque objects (assuming that the object cannot
be ray traced).Entropy will try to keep the geometric description of the primitive as just
the control vertices for as long as possible, converting to the higher-res version only when
it’s working on the part of the image that the object occupies, and will try to reclaim the
memory as soon as it is done with the part of the screen where the object is seen.

This process can be further enhanced by using procedural geometry — that is, using a
Procedural primitive as a stand-in for a large amount of geometry that is close together.
Because an “unexpanded” procedural takes little more room than its bounding box, use of
Procedural primitives can reduce the memory used for geometry to the bare minimum —
even the control vertices don’t need to be stored untilEntropy is working on that part of the
screen, at which time theProcedural is run and the real geometry is read in. Furthermore,
if there are 1000 primitives inside a procedural, that procedural can be culled (if it’s off
screen or occluded) much more quickly than if all the primitives inside it would have to be
examined and culled individually.
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Aggressive use ofProcedural’s, for example by storing all complex objects or spatially-
coherent collections of objects in separate files referred to byDelayedReadArchive’s, can
easily reduce the memory footprint of a complex scene by a factor of 4 or more. This could
make the difference between being able to render a scene at all, or having it take more
memory than would be available on your machine.

12.7 Don’t be wasteful in your shaders

Entropy allows you to customize the appearance of objects in an extremely flexible manner,
by providing a shading language in which the user can perform arbitrary computations. Of
course, that freedom also allows shader to be arbitrarily expensive. It’s not much of an
exaggeration to say that shaders are executed in theinner loopof the renderer. Thus, a little
attention to efficiency in shader programming can greatly affect overall rendering time.

Even a very expensive surface or displacement shader will only be run once per surface
point. But an expensive light shader may be run many times — once for each light illumi-
nating the object. Thus, it pays to be especially careful that your light shaders don’t do any
more work than is necessary. It also pays to useIlluminate liberally, to make sure that
lights are “turned off” for any geometry that is outside the range of the light (too far away
to be significantly illuminated, or in the wrong position to be illuminated).

Try to identify computations that do not take on different values for each point on your
surface; those computations should be done usinguniform variables. Declaring variables
asuniform can save both time and storage during shader execution. If your shaders have
if, for, or while statements, try to ensure that the conditional tests controlling the loops
only involveuniform quantities and variables. Conditionals and loops that are controlled
by varying conditions execute much more slowly.

Favor vector-oriented operations where possible. For example, suppose you have a
color C and you want to multiply its green component by 0.5. Consider the following
statement:

C = color (comp(C,0), comp(C,1)*0.5, comp(C,2));

This actually involves five instructions — threecomp() calls, a multiply, and assigning a
color from floats. But if you wrote it as follows:

C *= color (1, 0.5, 1);

That executes as a single multiply instruction (in-place multiplication of a color with a
uniform color constant).

Be careful with the most expensive shader functions:transform() (really a ma-
trix/vector multiply, or about 30 flops),noise() (the 3D version is about 80 flops),texture()
(expensive filtering, plus it could cause a file read). We’re not saying not to do these opera-
tions — you have to make your shaders look good. But be aware of the expensive operations
and try not to use them if you cannot see the effect.
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12.8 Use multi-threading

If you are rendering a single frame on a two-CPU machine, you should definitely be invok-
ing entropy with the-threads 2 option. It probably won’t run exactly twice as fast, but
it’s often close, depending on the scene.
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Chapter 13

C API for Generating Scene Files

Chapter 2 described the formatting and commands forEntropy’s input scene files. Typi-
cally, scene files will be generated by a modeling system or an appropriate plugin or con-
verter. Most users will only have the need to read existing scene files, and occasionally
modify them in minor ways. For developers implementing applications that create scene
files, Entropy provides a C language API for writing scene files. The remainder of this
chapter describes this API.

Since this section is intended for experienced developers, the API will be described
in terms of ANSI C prototypes for the API functions, and some additional explanation
as necessary. There is a nearly one-to-one correspondence between C API routines and
scene file commands, so detailed explanations about the functionality of each routine is not
necessary here.

13.1 Data Types

The following type definitions are used to compactly express what data are needed by API
functions:

typedef short RtBoolean;
typedef int RtInt;
typedef float RtFloat;
typedef char *RtToken;
typedef RtFloat RtColor[3];
typedef RtFloat RtPoint[3];
typedef RtFloat RtVector[3];
typedef RtFloat RtNormal[3];
typedef RtFloat RtHpoint[3];
typedef RtFloat RtMatrix[4][4];
typedef RtFloat RtBasis[4][4];
typedef RtFloat RtBound[6];
typedef char *RtString;
typedef char *RtPointer;
#define RtVoid void
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13.2 Parameter Lists and Declarations

Just as with scene files, many API routines, including geometric primitives and shader
declarations, take a variable-length list of optional arguments in the form oftoken-value
pairs. The C API has two means of passing token-value lists: as variable-length argument
lists (“varargs”), and as separate arrays. Each routine that accepts token-value lists will
have two versions, one for each method.

For thevarargs version, a routine with a prototype such as:

void RiFoo (float a, ...);

will be passed alternating tokens (const char *, or RtToken) and pointers to array data,
with the token/value list terminated by aNULL. For example, to callRiFoo with the param-
etera = 1.5, and passing a point"P" and a string"texturename":

RtPoint Pval; /* Assume it gets a value somehow */
const char *name = "bar.tx";
RiFoo (1.5, "P", &Pval, "texturename", &name, NULL);

Alternately, there will always be a corresponding routineRiFooV with prototype:

RtVoid RiFooV (float a, int nargs, RtToken params[], RtPointer vals[]);

The fixed arguments will be identical, but instead of a varargs..., there will be three
trailing arguments: an integer supplying the number of token-value pairs, and arrays of the
parameter names and pointers to their values. As an example, an equivalent call ofRiFoo
corresponding to the example above would be:

RtPoint Pval; /* Assume it gets a value somehow */
const char *name = "bar.tx";
RtToken toks[10];
RtPointer vals[10];
int nargs = 0;
toks[nargs] = "P";
vals[nargs] = &Pval;
++nargs;
toks[nargs] = "texturename";
vals[nargs] = &name;
++nargs;
RiFooV (1.5, nargs, toks, vals);

The ordinary varargs routines and their array equivalents are interchangeable. You may
choose whichever one is more convenient for your application.

As with variable arguments in ASCII scene files, because these parameters represent
user data, their types must be declared to the renderer prior to being used. This can be
accomplished either by using “in-line declarations” by fully qualifying the data type in the
parameter name (just as it was done in Section 2.3), or by using theRiDeclare function
that exactly corresponds to the scene fileDeclare command:

RtToken RiDeclare (RtToken name, RtToken declaration
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Adds a new parameter name and its type to the global name-type dictionary. The
syntax for type declaration is identical to the scene fileDeclare command. The
RiDeclare routine returns a newRtToken that is aunique identifierfor the dictio-
nary entry.

We recommend using “in-line declarations” rather than usingRiDeclare, due mainly
to the inconvenience and potential confusion arising from the single global dictio-
nary. TheRiDeclare syntax is mainly supported for backward-compatibility with
older modeling programs.

13.3 Rendering Contexts and Block Structure

There may be multiplerendering contextsactive, with at most being designated thecurrent
rendering context. All API routines (except those that start and stop contexts) apply only to
the current context.

RtVoid RiBegin (RtToken name);

Begins a new rendering context and makes that new context the current context. The
name, in the case where the context is outputting a scene file archive, is the name of
the file. If the first character ofnameis the pipe symbol (|), the scene file output will
bepipedto a command or program given by the remainder of thename.

RtVoid RiEnd ();

Ends the current rendering context. AfterRiEnd, there is no current context.

RtContextHandle RiGetContext ();

void RiContext (RtContextHandle handle);

RiGetContext returns an opaque pointer specifying a unique handle for the current
rendering context.RiContext switches the current context to the one specified by
thehandle.

RtVoid RiFrameBegin (RtInt number);

RtVoid RiFrameEnd (void);

RtVoid RiWorldBegin (void);

RtVoid RiWorldEnd (void);

RtVoid RiAttributeBegin (void);

RtVoid RiAttributeEnd (void);

RtVoid RiTransformBegin (void);

RtVoid RiTransformEnd (void);

These functions begin and end frames, the world block, and push/pop attributes or
transformations. They all work analogously to the similarly named scene file com-
mands described in Chapter 3.
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RtVoid RiMotionBegin (int ntimes, ...);

RtVoid RiMotionBeginV (int ntimes, float *times);

RtVoid RiMotionEnd ();

Delimits a motion block. Between theMotionBegin andMotionEnd, there should
bentimescommands giving time-varying data at time values given bytimes. In the
varargs version, the time values are successively pulled off the stack.

13.4 Options and Attributes

13.4.1 Options

RtVoid RiClipping (float hither, float yon);

RtVoid RiClippingPlane (float x, float y, float z, float nx, float ny, float nz);

RtVoid RiCropWindow (float xmin, float xmax, float ymin, float ymax);

RtVoid RiDepthOfField (float fstop, float focallength, float focaldistance);

RtVoid RiDisplay (char *name, RtToken type, RtToken mode, ...);

RtVoid RiDisplayV (char *name, RtToken type, RtToken mode,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiExposure (float gain, float gamma);

RtVoid RiFormat (int xres, int yres, float aspect);

RtVoid RiFrameAspectRatio (float aspect);

RtVoid RiHider (RtToken type, ...);

RtVoid RiHiderV (RtToken type, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiImager (char *name, ...);

RtVoid RiImagerV (char *name, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiOption (char *name, ...);

RtVoid RiOptionV (char *name, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiPixelSamples (float xsamples, float ysamples);

RtVoid RiProjection (char *name, ...);

RtVoid RiProjectionV (char *name, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiQuantize (RtToken type, int one, int qmin, int qmax, float ditheramp);

RtVoid RiRelativeDetail (float relativedetail);

RtVoid RiScreenWindow (float left, float right, float bot, float top);

RtVoid RiShutter (float opentime, float closetime);

These routines set renderer options. Their semantics are identical to the analogous
scene file commands described in Section 3.1.

RtVoid RiPixelFilter (RtFilterFunc function, float xwidth, float ywidth);

Sets the pixel filter function. The following predefined pixel filters may be used as
thefunction:

float RiBoxFilter (float x, float y, float xwidth, float ywidth);
float RiCatmullRomFilter (float x, float y, float xwidth, float ywidth);
float RiGaussianFilter (float x, float y, float xwidth, float ywidth);
float RiSincFilter (float x, float y, float xwidth, float ywidth);
float RiTriangleFilter (float x, float y, float xwidth, float ywidth);
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13.4.2 Attributes

RtVoid RiAttribute (char *name, ...);

RtVoid RiAttributeV (char *name, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiColor (RtColor Cs);

RtVoid RiDetail (RtBound bound);

RtVoid RiDetailRange (float minvis, float lowtran, float uptran, float maxvis);

RtVoid RiGeometricApproximation (RtToken type, float value);

RtVoid RiMatte (RtBoolean onoff);

RtVoid RiOpacity (RtColor Cs);

RtVoid RiOrientation (RtToken orientation);

RtVoid RiReverseOrientation (void);

RtVoid RiShadingInterpolation (RtToken type);

RtVoid RiShadingRate (float size);

RtVoid RiSides (int nsides);

RtVoid RiTextureCoordinates (float s1, float t1, float s2, float t2,

float s3, float t3, float s4, float t4);

These routines set renderer attributes. Their semantics are identical to the analogous
scene file commands described in Section 3.2.

13.4.3 Transformations

RtVoid RiConcatTransform (RtMatrix transform);

RtVoid RiCoordinateSystem (RtToken space);

RtVoid RiCoordSysTransform (RtToken space);

RtVoid RiIdentity (void);

RtVoid RiPerspective (float fov);

RtVoid RiRotate (float angle, float dx, float dy, float dz);

RtVoid RiScale (float dx, float dy, float dz);

RtVoid RiSkew (float angle, float dx1, float dy1, float dz1,

float dx2, float dy2, float dz2);

RtVoid RiTransform (RtMatrix transform);

RtVoid RiTranslate (float dx, float dy, float dz);

These routines alter the current transformation analogously to those described in Sec-
tion 3.2.3.

13.4.4 Shaders and Lights

RtVoid RiAtmosphere (char *name, ...);

RtVoid RiAtmosphereV (char *name, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiDisplacement (char *name, ...);

RtVoid RiDisplacementV (char *name, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiExterior (char *name, ...);
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RtVoid RiExteriorV (char *name, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiInterior (char *name, ...);

RtVoid RiInteriorV (char *name, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiSurface (char *name, ...);

RtVoid RiSurfaceV (char *name, int nparams, RtToken *tokens, RtPointer *values);

Sets the shaders analogously to the scene file commands described in Section 3.2.4.

RtLightHandle RiAreaLightSource (char *name, ...);

RtLightHandle RiAreaLightSourceV (char *name,

int nparams, RtToken *tokens, RtPointer *values);

RtLightHandle RiLightSource (char *name, ...);

RtLightHandle RiLightSourceV (char *name,

int nparams, RtToken *tokens, RtPointer *values);

Creates a light or area light source. These routines return an opaque pointer called an
RtLightHandle that can be passed toRiIlluminate. Note that this is different than
the scene file command, which, due to the constraints of one-way communication,
must pass a handle number to the light source declaration.

RtVoid RiIlluminate (RtLightHandle light, RtBoolean onoff);

Turn a light source on or off. The light is specified by anRtLightHandle that was
returned when the light or area light was declared.

13.5 Geometric Primitives

13.5.1 Polygons and Polygon Meshes

RtVoid RiPolygon (int nverts, ...);

RtVoid RiPolygonV (int nverts,

int nparams, RtToken *tokens, RtPointer *values);

Create a single convex polygon withnverticesvertices. The token-value list must
contain position data ("P") and may optionally contain other primitive variables.

RtVoid RiGeneralPolygon (int nloops, int *nverts, ...);

RtVoid RiGeneralPolygonV (int nloops, int *nverts,

int nparams, RtToken *tokens, RtPointer *values);

Create a single, possibly concave, polygon withnloops loops. Thenvertsarray,
whose length isnloops, contains the number of vertices in each loop. The list of
token-value pairs must contain position data ("P") and may optionally contain other
primitive variables. The length of the vertex point list should be the sum of the num-
bers of vertices in all loops.
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RtVoid RiPointsPolygons (int npolys, int *nverts, int *verts, ...);

RtVoid RiPointsPolygonsV (int npolys, int *nverts, int *verts,

int nparams, RtToken *tokens, RtPointer *values);

Createnpolysconvex polygons with shared vertex data. The data innverts is the
number of vertices in each face. The arrayverts, whose length should be the sum of
all entries innverts, contains the vertex indices for each face, in order. The token-
value list must contain position data ("P") and may optionally contain other primitive
variables. The length of the vertex point list must be at least as long as the highest
vertex index invertsplus one.

RtVoid RiPointsGeneralPolygons(int npolys, int *nloops,

int *nverts, int *verts, ...);

RtVoid RiPointsGeneralPolygonsV(int npolys, int *nloops,

int *nverts, int *verts,

int nparams, RtToken *tokens, RtPointer *values);

Createnpolysgeneral polygons with shared vertex data. The arraynloopscontains
the number of loops in each polygon. The arraynverts, whose length must be the
total number of loops in all polygons (i.e., the sum of all entries innloops), contains
the number of vertices in each loop (in polygon order). The arrayverts, whose length
should be the sum of all entries innverts, contains the vertex indices for each loop,
for each face, in order. The token-value list must contain position data ("P") and may
optionally contain other primitive variables. The length of the vertex point list must
be at least as long as the highest vertex index invertsplus one.

13.5.2 Control-Point Primitives

RtVoid RiBasis (RtBasis ubasis, int ustep, RtBasis vbasis, int vstep);

This routine sets theu andv basis matrices for cubicPatch, PatchMesh, andCurves
primitives, and theu andv step sizes for cubicPatchMesh andCurves primitives.
The basis matrices and steps are ordinary attributes and may be saved and restored
with AttributeBegin andAttributeEnd.

The basis matrices are either specified by name (one ofRiBezierBasis, RiBSplineBasis,
RiCatmullRomBasis, or RiHermiteBasis) as a4 × 4 matrix of floats. The step
sizes are integers and should be 3 for Bezier, 1 for B-spline or Catmull-Rom, or 2 for
Hermite.

RtVoid RiPatch (RtToken type, ...);

RtVoid RiPatchV (RtToken type, int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiPatchMesh (RtToken type, int nu, RtToken uwrap,

int nv, RtToken vwrap, ...);

RtVoid RiPatchMeshV (RtToken type, int nu, RtToken uwrap, int nv, RtToken vwrap,

int nparams, RtToken *tokens, RtPointer *values);
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Creates a single patch or a rectangular mesh of patches. Thetypeshould be"bilinear"
or "bicubic". In the case of a bicubic patch or patch mesh, the bicubic basis and the
mesh step size will be the ones specified in the attribute state by theBasis function.
The uwrap and vwrap may be either"nonperiodic" or "periodic", indicating
whether or not theu andv directions wrap all the way around to form a continuous
ring.

RtVoid RiNuPatch (int nu, int uorder, float *uknot, float umin, float umax,

int nv, int vorder, float *vknot, float vmin, float vmax,

...);

RtVoid RiNuPatchV (int nu, int uorder, float *uknot, float umin, float umax,

int nv, int vorder, float *vknot, float vmin, float vmax,

int nparams, RtToken *tokens, RtPointer *values);

Create a NURBS (non-uniform rational B-spline) mesh. The meanings of the param-
eters are identical to the scene fileNuPatch command.

RtVoid RiTrimCurve (int nloops, int *ncurves, int *order,

float *knot, float *amin, float *amax,

int *n, float *u, float *v, float *w);

Sets the trim curve, analogously to the scene fileNuPatch command. Note that the
trim curve is an attribute, and may be saved and restored along with the rest of the
attribute state.

RtVoid RiSubdivisionMesh (RtToken scheme, int nfaces, int *nvertices,

int *vertices, int ntags, RtToken *tags,

int *nargs, int *intargs, float *floatargs, ...);

RtVoid RiSubdivisionMeshV (RtToken scheme, int nfaces, int *nvertices,

int *vertices, int ntags, RtToken *tags,

int *nargs, int *intargs, float *floatargs,

int nparams, RtToken *tokens, RtPointer *values);

Create a subdivision surface mesh. Theschemespecifies the name of the subdivision
method (currently only"catmull-clark" is recognized). Much likeRiPointsPolygons,
the arraynverts(of lengthnfaces) contains the number of vertices in each face. The
arrayvertices, whose length should be the sum of all entries innverts, contains the
vertex indices for each face, in order. The token-value list must contain position data
("P") and may optionally contain other primitive variables. The length of the vertex
point list ("P") must be at least as long as the highest vertex index invertsplus one.

Faces, edges, and vertices may be tagged with additional properties. Thetagsarray
contains the tag names. The arraynargs has lengthntags × 2, and for each tag
contains the number of integer arguments, followed by the number of floating-point
arguments, for that tag. The arraysintargs andfloatargscontain all of the integer
and float arguments, respectively (the length of theintargsshould be the sum of all
the even elements ofnargs, and the length of thefloatargsshould be the sum of all
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the odd elements ofnargs). The tags and their expected arguments are explained in
Section 4.4.

RtVoid RiCurves (RtToken degree, int ncurves, int *nverts, RtToken wrap, ...);

RtVoid RiCurvesV (RtToken degree, int ncurves, int *nverts, RtToken wrap,

int nparams, RtToken *tokens, RtPointer *values);

Draws ncurvescurve primitives. Thetype may be either"linear" or "cubic".
Piecewise cubic curves use thev basis matrix set byBasis. The arraynverticeshas
length equal to thencurves, and its data are the number of vertices in each curve. The
stringwrap is either"periodic" or "nonperiodic", describing whether or not the
individual curves wrap end-to-end. The token-value list must contain position data
("P") and may also contain other primitive variables. The total number of control
points"P" must be the total vertices in all the curves (i.e., the sum of all entries in
thenverticesarray).

RtVoid RiPoints (int npts, ...);

RtVoid RiPointsV (int npts, int nparams, RtToken *tokens, RtPointer *values);

Drawsnptspoint-like particles. The token-value list must contain position data ("P")
and may also contain other primitive variables.

13.5.3 Quadrics

RtVoid RiCone (float height, float radius, float thetamax, ...);

RtVoid RiConeV (float height, float radius, float thetamax,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiCylinder (float radius, float zmin, float zmax, float thetamax, ...);

RtVoid RiCylinderV (float radius, float zmin, float zmax, float thetamax,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiDisk (float height, float radius, float thetamax, ...);

RtVoid RiDiskV (float height, float radius, float thetamax,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiHyperboloid (RtPoint point1, RtPoint point2, float thetamax, ...);

RtVoid RiHyperboloidV (RtPoint point1, RtPoint point2, float thetamax,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiParaboloid (float rmax, float zmin, float zmax, float thetamax, ...);

RtVoid RiParaboloidV (float rmax, float zmin, float zmax, float thetamax,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiSphere (float radius, float zmin, float zmax, float thetamax, ...);

RtVoid RiSphereV (float radius, float zmin, float zmax, float thetamax,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiTorus (float majorrad, float minorrad,

float phimin, float phimax, float thetamax, ...);
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RtVoid RiTorusV (float majorrad, float minorrad,

float phimin, float phimax, float thetamax,

int nparams, RtToken *tokens, RtPointer *values);

Create the desired quadric primitive. Quadric parameters are explained in Section 4.6.

13.5.4 Implicit Surfaces

RtVoid RiBlobby (int nleaf, int ncode, int code[],
int nflt, float flt[], int nstr, RtString str[], ...);

RtVoid RiBlobbyV (int nleaf, int ncode, int code[],
int nflt, float flt[], int nstr, RtString str[],
int n, RtToken tokens[], RtPointer params[]);

13.5.5 Procedural Geometry

RtVoid RiProcedural (RtPointer data, RtBound bound,

RtProcSubdivFunc subdivfunc, RtProcFreeFunc freefunc);

Adds a procedural primitive to the scene. The procedural primitive is enclosed in the
bound, and carries around information pointed to by the opaque pointerdata. When
the contents of theboundare needed, the renderer will call the functionsubdivfunc.
When the renderer is done with the procedural primitive, it will call thefreefunc.
These functions have types and arguments defined by:

typedef RtVoid (*RtProcSubdivFunc)(RtPointer data, float detail);
typedef RtVoid (*RtProcFreeFunc)(RtPointer data);

Thedataparameter passed to the subdivide and free functions is the same blinddata
pointer that was specified toRiProcedural. Thedetail is a level-of-detail parameter
that contains the size of the bounding box on screen (expressed in square pixels).

Three useful built-in subdivide functions exist which may be specified by name (as
opposed to the user supplying her own function):

RtVoid RiProcDelayedReadArchive (RtPointer data, float detail);
RtVoid RiProcRunProgram (RtPointer data, float detail);
RtVoid RiProcDynamicLoad (RtPointer data, float detail);

These built-in functions correspond to the similarly-named functions described in
Section 4.8. There is also one built-in free function:

RtVoid RiProcFree (RtPointer data);

TheRiProcFree function simply callsfree(data).
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13.6 External Resources

void RiArchiveRecord (RtToken type, char *format, ...);

This function writes raw data into the output stream with aformatand optional argu-
ments, just like the Cprintf function. If typeis"comment", the output is prepended
by the comment symbol (#) and terminated by a linefeed. Iftype is "structure",
the output is prepended by two comment symbols (##) and terminated by a linefeed.
If typeis "verbatim", the output is emitted into the scene file without any modifica-
tion and is not terminated by a newline.

void RiReadArchive (RtString filename, RtArchiveCallback callback, ...);

void RiReadArchiveV (RtString filename, RtArchiveCallback callback,

int nparams, RtToken *tokens, RtPointer *values);

Parse and execute commands from an archive file infilename. If archive structure
records are encountered during parsing, thecallback routine will be executed. The
function prototype for the callback routine is:

typedef RtVoid (*RtArchiveCallback)(RtToken, char *, ...);

If you do not need to intercept comments or structures, you can just supplyNULL for
the callback routine and for the optional arguments.

RtVoid RiMakeCubeFaceEnvironment (char *px, char *nx, char *py, char *ny,

char *pz, char *nz, char *tex, float fov,

RtFilterFunc filterfunc,

float swidth, float twidth, ...);

RtVoid RiMakeCubeFaceEnvironmentV (char *px, char *nx, char *py, char *ny,

char *pz, char *nz, char *tex, float fov,

RtFilterFunc filterfunc, float swidth, float twidth,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiMakeLatLongEnvironment (char *pic, char *tex, RtFilterFunc filterfunc,

float swidth, float twidth, ...);

RtVoid RiMakeLatLongEnvironmentV (char *pic, char *tex, RtFilterFunc filterfunc,

float swidth, float twidth,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiMakeShadow (char *pic, char *tex, ...);

RtVoid RiMakeShadowV (char *pic, char *tex,

int nparams, RtToken *tokens, RtPointer *values);

RtVoid RiMakeTexture (char *pic, char *tex, RtToken swrap, RtToken twrap,

RtFilterFunc filterfunc, float swidth, float twidth,

...);

RtVoid RiMakeTextureV (char *pic, char *tex, RtToken swrap, RtToken twrap,

RtFilterFunc filterfunc, float swidth, float twidth,

int nparams, RtToken *tokens, RtPointer *values);
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These routines convert ordinary image files into texture, environment, and shadow
maps that can be accessed efficiently. They are equivalent to the routines explained
in Section 2.5.2.

13.7 Usingri.h and libribout

The ANSI C type definitions and prototypes for the API described in this chapter can be
found in the fileri.h, which comes in theinclude directory of theEntropy distribution.
Therefore, any program that wishes to use the functions must:

#include "ri.h"

The librarylibribout implements the C API in such a way that executing the API
calls will cause an ASCII scene file to be output to the file designated as the argument to
RiBegin.
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Calling C functions from Shaders

Although the shading language has both an extensive collection of built-in library functions
(see Section 5.6) and syntax for defining and calling user-written functions, there are some
things that are impossible to do in ordinary shaders. Examples include (non-texture) file
access, building of complex data structures, and access to certain OS functionality. For
this reason, there is a mechanism by which a functions written in C and compiled into
DSO’s/DLL’s1 can be called from shaders. These routines are sometimes called “DSO
Shadeops.”

14.1 Theory of Operation

To support polymorphism2 in the shading language, adispatch tablemust be in the DSO.
Each polymorphic version of the function in the dispatch table actually has three associated
routines:

• an initializer, which is called before the first time the DSO shadeop is executed;

• the implementation, which is the actual C function called to do the operation that the
DSO Shadeop is designed to perform;

• acleanuproutine, which is called after the DSO Shadeop is no longer needed.

The developer compiles these routines into a DSO. When compiling the shader, the
function may be called in the same manner as any built-in or user-defined shader function.
When the shader compiler,sle, encounters a call for a function that is not defined, it will
search all directories specified by the-I switch, looking for DSO’s. Any DSO’s that are
found will be searched for the appropriately-named dispatch table (see below), and if found
will understand that the call is to a DSO Shadeop.

For rendering, the DSO must be compiled and placed in one of the directories that
contain compiled shaders (see the search path options described in Section 3.1.3). The
DSO will be loaded only as needed at render time.

1For brevity, we will refer to these as “DSO’s.” Windows users, please understand that this is perfectly
synonymous with “DLL.”

2Polymorphismis the ability for one named function to have several versions, each with different sets of
parameters.
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14.2 Calling Conventions

The dispatch table is an array ofDS DispatchTableEntry records, which is defined in
"dsoshadeop.h" as:

typedef struct {
const char *implementation_prototype;
const char *initializer;
const char *cleanup_routine;

} DS_DispatchTableEntry;

The fields of the dispatch entry are character strings containing the names of the routines
to use. All routines must have implementation prototypes, but the initializer and cleanup
routines are optional; having no routine is signified with an empty string (""). The end of
the table is signified by a dispatch entry whose implementation routine is given by an empty
string ("").

The table must be namedop shadeops, whereop is the name of the function we are
implementing. For example, to implement a function calledmyabs, the dispatch table might
look like this:

EXPORT DS_DispatchTableEntry myabs_shadeops[] = {
{ "float myabs_f(float)", "myabs_init", "myabs_cleanup" },
{ "point myabs_p(point)", "", "" },
{ "vector myabs_v(vector)", "", "" },
{ "", "", "" }

};

The initializer and cleanup fields just supply the names of their functions. However,
the implementation contains a complete function prototype showing the argument types
and return value type, but using the name of theC implementation, rather than the shading
language routine name.

Note that theEXPORT symbol is defined indsoshadeop.h and correctly handles OS-
specific declarations of which routines must be visible to the renderer.

Initialization routines, which are optional, have the following prototype:

EXPORT void * init (int, void *);

The initialization function returns avoid *. If the initializer allocates memory or cre-
ates data structures, it should return a blind pointer to this memory. The prototype takes an
int and avoid *, but these parameters are not currently used.

Implementation routines have the following prototype:

EXPORT int implement (void *data, int nargs, void **args);

Thedata is the same blind pointer returned by the initializer routine, orNULL if there was
no initializer. Thenargs andargs are the number, and array of pointers to, the actual
arguments to the shadeop. Theargs[0] is the pointer to where the function result should
be stored. Forvoid functions,args[0] is unused. In either case, the actual arguments
passed to the function areargs[1] throughargs[nargs].

Finally, the optional cleanup routines have the prototype:
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EXPORT void cleanup (void *data);

The cleanup routine is passed the samedata pointer that was created by the initializer and
was passed to the implementation. If this points to any data structures or allocated memory,
the cleanup routine is responsible for freeing up the memory.

14.3 Example

As an illustrative example, below is the full source code for the implementation of an ab-
solute value function,myabs. Themyabs function is just like the built-inabs() for float
values, but also works on a per-component for vectors and points. The source code below
would ordinarily be stored inmyabs.c and compiled into the filemyabs.so (on Unix or
Linux) or myabs.dll (on Windows).

#include <math.h>
#include <stdio.h>
#include "dsoshadeop.h"

#ifdef __cplusplus
extern "C" {
#endif

EXPORT DS_DispatchTableEntry myabs_shadeops[] = {
{ "float myabs_f(float)", "myabs_init", "myabs_cleanup" },
{ "point myabs_p(point)", "", "" },
{ "vector myabs_p(vector)", "", "" },
{ "", "", "" }

};

EXPORT int myabs_f (void *data, int nargs, void **args)
{

float *result = (float *) args[0];
float *x = (float *) args[1];
*result = fabs (*x);
return 0;

}

EXPORT int myabs_p (void *data, int nargs, void **args)
{

float *result = (float *) args[0];
float *x = (float *) args[1];
for (int i = 0; i < 3; ++i, ++result, ++x)

*result = fabs (*x);
return 0;

}
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EXPORT void *myabs_init (int, void *)
{

/* myabs() doesn’t really need an initializer, but if it did, here
* is where it would go.
*/
return NULL;

}

EXPORT void myabs_cleanup (void *data)
{

/* myabs() doesn’t really need an cleanup, but if it did, here
* is where it would go.
*/

}

#ifdef __cplusplus
} /* extern "C" */
#endif

Below is an example shader that calls themyabs() function. Themyabs() function
is called just like any built-in or user-defined function; no special declaration is necessary.
Also note that polymorphism is correctly resolved based upon the arguments to the function.

surface testmyabs ()
{

float a = myabs(s-t); /* Take absolute value of the float (s-t) */
point pa = myabs(P); /* Make the components of P positive */
printf ("s-t = %f, myabs(s-t) = %f\n", s-t, a);
printf ("P = %p, myabs(P) = %p\n", P, pa);

}

The source code formyabs.c andtestmyabs.sl can be found in theEntropy distri-
bution underexamples/src/dsoshadeop.

14.4 Tips

There are a few things to remember to make your DSO Shadeop experience more pleasant:

• You may write your DSO Shadeops in C++, but the exported routines and the dispatch
table must have “C linkage,” which is why theextern "C" {...} is used in the
example above.

• On Windows, theEXPORTmacro (which actually expands todeclspec(dllexport))
is required, or the renderer will not be able to correctly reference the DSO routines.

• It is okay to put multiple DSO shadeops in the same DSO. Just be careful that each
shadeop has its own, properly named, dispatch table. It is also okay for multiple (pre-
sumably cooperating) shadeops to share initialization and cleanup routines.Entropy
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is careful to only call the initialize and cleanup routines once, even if it’s used by
multiple shadeops.

• Even though ordinary shaders are interpreted, they are usually very fast. Even though
DSO shadeops are compiled, there is significant overhead involved in making calls
to them. Therefore, a function that could be performed in the shading language will
almost never be sped up significantly by implementing it as a DSO shadeop. The
DSO shadeop mechanism does not exist for speed.

Rather, DSO shadeops are best used to add functionality that could not be performed
at all in ordinary shaders. Examples include: file I/O (other than reading texture
files), building complex data structures such as large tables or spatial search trees, or
accessing OS functionality such as pipes or resource management.
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Chapter 15

Interrogating Shader Arguments
with libsleargs

SomeEntropy users who are software developers may need to be able to understand the
parameters of compiled shaders.Entropy comes with a library,libsleargs, that allows
C++ applications to parse compiled shaders, reporting the name, type, storage class, and
default values of each shader parameter. If you are not developing such applications, this
chapter will not contain any useful information.

15.1 ThesleArgs class

The header filesleargs.h provides a definition for the C++ classsleArgs. ThesleArgs
class defines the following public member functions:

sleArgs::sleArgs (const char *shadername, const char *shaderpath =NULL)

The constructor ofsleArgs takes two arguments: theshadernameis the name of
the shader to read. The optionalshaderpathis a colon-separated (or semicolon-
separated) list of directories in which to search for the named shader.

Type sleArgs::shadertype ( )

Returns the type of the shader as one of the enumerated typesleArgs::Type (one of
TYPE SURFACE, TYPE DISPLACEMENT, TYPE LIGHT, TYPE VOLUME, TYPE IMAGER).

const char *sleArgs::shadername ( )

Returns the name of the shader.

int sleArgs::nargs ( )

Returns the number of shader parameters that the shader accepts.
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const Symbol * sleArgs::getarg (const char *name )
const Symbol * sleArgs::getarg (int i )

Return a pointer to asleArgs::Symbol record for one particular shader parameter.
The first form looks up the symbol byname, returningNULL if there is no parameter
by that name. The second form looks up the parameter by number (indexed beginning
with 0).

const Symbol *sleArgs::getarrayelement (const Symbol *array, int index )

Given the pointer to a parameter symbol for an array parameter,array, and a par-
ticular index, return a pointer to asleArgs::Symbol * for the particular element
index.

static const char * sleArgs::typestr (Type t )

This helper function takes ansleArgs::Type and returns the string for that data
type. For example,typestr(sleArgs::TYPE FLOAT) returns"float".

Several of these member functions use two types that are defined locally to thesleArgs
class,sleArgs::Type andsleArgs::Symbol. There is probably no clearer explanation
of these types than simply listing their definitions:

enum Type {
TYPE_ERROR = -1, TYPE_UNKNOWN = 0,
TYPE_FLOAT = 1, TYPE_COLOR, TYPE_POINT, TYPE_VECTOR, TYPE_NORMAL,
TYPE_MATRIX, TYPE_STRING,
TYPE_SURFACE = 16, TYPE_DISPLACEMENT, TYPE_LIGHT,
TYPE_VOLUME, TYPE_IMAGER

};

struct Symbol {
const char *name; // argument name
Type type; // data type
int arraylen; // array length, or 0 if not an array
bool output, varying; // is it an output param? is it varying?
const char *spacename; // name of space, or NULL if not applicable

Symbol ();
bool valisvalid ();
float floatval (int i) const;
const char *stringval (int i) const;

};

15.2 Usingsleargs.h and libsleargs

Following are the basic steps to following in order to parse the arguments of a shader.

1. Your program should be sure to include the filesleargs.h:
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#include "sleargs.h"

2. Begin parsing shader arguments by creating an object of typesleArgs. ThesleArgs
constructor requires the name of the file, and optionally the search path.

char *shadername; /* = "plastic" or whatever */
sleArgs argparser (shadername);

3. You can check the name of the shader and its type as follows:

const char *sname = argparser.shadername();
sleArgs::Type stype = argparser.shadertype();

The shadertype() method returns typesleArgs::Type, which can be one of
TYPE SURFACE, TYPE DISPLACEMENT, TYPE LIGHT, TYPE VOLUME, TYPE IMAGER
(all defined locally to classsleArgs).

If the shader was not found or could not be correctly parsed,shadername() will
returnNULL andshadertype() will return sleArgs::TYPE ERROR.

4. You can determine the total number of shader parameters using thenargs() method:

int n = argparser.nargs();

For each argument, you can retrieve information about it using thegetarg() meth-
ods, which returns a pointer to asleArgs::Symbol. You can access by name,

const sleArgs::Symbol *sym;
sym = argparser.getarg ("Kd");

or by argument number (between 0 andnargs()-1),

sym = argparser.getarg (3);

ThesleArgs::Symbol structure contains information about that parameter: its name,
its type (also one ofsleArgs::Type, such asTYPE FLOAT orTYPE VECTOR), whether
or not it’s varying, whether or not it’s anoutput parameter, its array length (0 if
it’s not an array), a pointer to its default value, and (where applicable) the name of
the space of the default value (e.g.,"shader").

5. The default values of the symbol can be accessed throughSymbol::floatval() or
Symbol::stringval():

if (sym->type == sleArgs::TYPE_COLOR)
printf ("color = %g %g %g\n", sym->floatval(0),

sym->floatval(1), sym->floatval(2));
else if (sym->type == sleArgs::TYPE_STRING)

printf ("string = ’%s’\n", sym->stringval(0));

6. If the symbol is an array (sym->arraylen > 0), you can access its elements indi-
vidually as symbols using thegetarrayelement() method:
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const sleArgs::Symbol *elemsym;
elemsym = argparser.getarrayelement (sym, index);

7. When thesleArgs object (argparser in our example above) is destroyed or exists
the scope, it will free any resources that it had allocated. There is no cleanup that the
user is required to do.

15.3 Example:sletell source code

As an illustrative example of the use oflibsleargs, we present the full source code of the
sletell application.

Listing 15.1: sletell.c source code

////////////////////////////////////////////////////////////////////////////
// sletell.c -- read and report the parameters to a compiled shader (.sle)
//
// Entropy / BMRT are:
// (c) Copyright 2001 Exluna, Inc. All rights reserved.
//
// $Revision: 1.3 $ $Date: 2001/08/20 17:01:58 $
//
////////////////////////////////////////////////////////////////////////////

#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <string.h>

#include "release.h"
#include "sleargs.h"

static void
printoptions (void)
{

cerr << SHADER_TELL " - Give info on compiled shader file (."
SHADER_EXTENSION ")\n"
" (c) Copyright 2001 Exluna, Inc. All Rights Reserved.\n"
"Usage: " SHADER_TELL " <shadername>\n"
"\n";

cerr.flush();
}

static void
print_default (const sleArgs::Symbol *v)
{

switch (v->type) {
case sleArgs::TYPE_FLOAT :

cout << v->floatval(0) << ’\n’;
break;

case sleArgs::TYPE_COLOR :
cout << "\"" << (v->spacename ? v->spacename : "rgb")

<< "\" [" << v->floatval(0) << ’ ’ << v->floatval(1)
<< ’ ’ << v->floatval(2) << "]\n";
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break;
case sleArgs::TYPE_POINT :
case sleArgs::TYPE_VECTOR :
case sleArgs::TYPE_NORMAL :

cout << "\"" << (v->spacename ? v->spacename : "current")
<< "\" [" << v->floatval(0) << ’ ’ << v->floatval(1)
<< ’ ’ << v->floatval(2) << "]\n";

break;
case sleArgs::TYPE_STRING :

cout << "\"" << v->stringval(0) << "\"\n";
break;

case sleArgs::TYPE_MATRIX :
cout << "[ ";
for (int m = 0; m < 16; ++m)

cout << v->floatval(m) << ’ ’;
cout << "]\n";
break;

}
}

static void
sletell (const char *sname)
{

char shadername[256];
strcpy (shadername, sname);
// If the bozo typed in "foo.sle" instead of "foo", chop off the ".sle"
int len = shadername ? strlen(shadername) : 0;
if (len > 4 && !strcmp(shadername+len-4, "." SHADER_EXTENSION))

shadername[len-4] = 0;

sleArgs args(shadername);
sleArgs::Type shadertype = args.shadertype();
if (shadertype == sleArgs::TYPE_ERROR) {

cerr << SHADER_TELL ": Could not find shader \"" << shadername
<< "\"\n";

return;
}
cout << sleArgs::typestr(shadertype) << " \"" << shadername << "\"\n";

for (int i = 0; i < args.nargs(); ++i) {
const sleArgs::Symbol *v = args.getarg(i);
cout << " \"" << v->name << "\" \""

<< (v->output ? "output " : "")
<< (v->varying ? "varying " : "uniform ")
<< sleArgs::typestr(v->type);

if (v->arraylen > 0) {
cout << "[" << v->arraylen << "]";
cout << "\"\n\t\tDefault values:\n";
for (int a = 0; a < v->arraylen; ++a) {

cout << "\t\t\t[" << a << "] ";
print_default (args.getarrayelement(v, a));

}
continue;

}
if (! v->valisvalid()) {

cout << "\"\n";
continue;

}
cout << "\"\n\t\tDefault value: ";
print_default (v);

}
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cout << ’\n’;
cout.flush();

}

int
main (int argc, char **argv)
{

if (argc <= 1)
printoptions();

for (int i = 1; i < argc; ++i) {
if (! strcmp (argv[i], "-") || ! strcmp (argv[i], "-help") ||

! strcmp (argv[i], "-h"))
{

printoptions ( );
break;

}
sletell (argv[i]);

}
return 0;

}
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Writing Custom Display Servers

Entropy ships with the ability to write images in a few standard formats: TIFF files for
ordinary images, a simple format for depth buffer images, etc. ButEntropy is by no means
restricted to those formats that its developers prefer. Programmers can write C++ plug-ins
called “display servers” (which exist as DSO’s or DLL’s) that captureEntropy’s raw pixel
output, and do whatever they want with that data (including, but certainly not limited to,
saving them to a custom file format).

Users and developers are encouraged to write these display servers, and even to dis-
tribute them for free or as commercial “third party extensions.”

16.1 Theory of Operation

The renderer’s primary output consists of floating-point pixel data. Pixels are sent to one
or more “displays streams” each of which will receive one or more “channels” of data. For
example, four channels representing red, green, blue, and alpha may be sent to one display
stream. A second display stream might have a single channel of depth (z) data.

The display streams are sent to “display servers,” which can be quite flexible. A display
server might write the data to a file in a particular format, or might display the data on
a CRT. A display server might even further process the data before handing it to another
process. We call them “servers” because they are receiving requests sent by a “client” (the
renderer).

Although the raw pixel data is all in floating-point format, the display server may need
to quantize the data to integer values in order to write it to a particular file or device. Some
file formats or devices may require particular formats (for example JPEG files must be 8 bits
per channel). Other formats or devices may be able to handle a variety of data formats, but
the user may have requested a particular format for the data. This information, among other
things, is communicated to the display server through a set of parameters, some provided
automatically by the renderer and others optionally given to theDisplay command.

All Entropy display servers are subclass of theExDisplay class. To create a cus-
tom display server, a developer should subclassExDisplay, overriding the pure virtual
functions. The resulting class methods can be put into a DSO (DLL on Windows sys-
tems), and this will be loaded at runtime by the renderer. The DSO itself has two public
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entry point symbols:DisplayVersion, which returns the display interface version (to
confirm that renderer and display server are using the same version of the protocol) and
CreateDisplay, which returns a pointer to the custom subclass ofExDisplay.

16.2 TheExDisplay class

The header fileexdisplay.h provides a definition for a C++ class calledExDisplay.
This class is actually anabstract base class— it provides almost no functionality itself,
but defines a standard interface for the renderer to communicate with a display server. A
programmer can create a custom display server bysubclassingtheExDisplay class, and
supplying the implementations of the missing member functions.

TheExDisplay class defines the interface for the following public member functions,
which your custom display driver must implement:

ExDisplay::ExDisplay ()

The constructor for the display server, which should require no arguments. You can
set up data structures in the constructor if you have to, but it’s probably more appro-
priate to do so in theopen member function.

ExDisplay::˜ ExDisplay ()

The virtual destructor of your display server should close any files you opened, free
any allocated memory, and so on.

bool ExDisplay::needsScanline()

The renderer sends rectangles of pixel data to the display server. If your display server
can only accept full scanlines for the output image, or can only accept the scanlines
one at a time and in screen order, you should provide aneedsScanline method
that returnstrue. On the other hand, if your display server can receive arbitrary
rectangles of the image pixels in arbitrary order, and you provide aneedsScanline
method that returnsfalse, Entropy will take advantage of this ability.

bool ExDisplay::canRedraw ()

Some display servers may wish to be treated as “write once.” If that is the case with
your display server, it should provide acanRedraw method that returnsfalse. On
the other hand, if your display server can accept “rewrites” of the same pixels (for
example, for re-renderings of an image that is being displayed on the screen), then
you should provide acanRedraw method that returnstrue.

bool ExDisplay::open (const char *name,
int numChannels, const char **channelNames,
int xRes, int yRes,
int rxorigin, int ryorigin, int rxpixels, int rypixels,
int nparams, const Parameter *params)
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Theopen method communicates all of the information from the graphics state (given
by Display, Quantize, and so on). Thename is the name of the output file. The
numChannels argument gives the number of output channels for this file (for exam-
ple, 3 for an RGB image), andchannelNames is an array of pointers to the names of
the channels. The total resolution of the image isxRes × Yres, but the crop region
that is actually being rendered has origin at (rxorigin, ryorigin) and has a size of
rxpixels × rypixels.

Theparams argument points to an array ofnparams parameters, stored as structures
of:

enum Type {
TYPE_UNKNOWN = 0, TYPE_FLOAT, TYPE_INT, TYPE_STRING

};

struct Parameter {
const char *token;
Type type;
int numElements; /* How many things of ’type’ are there ? */
const void *value;

};

The parameter list will always include the following parameters:

Name Type Elements Description

dither float 1 dither amplitude
quantize float 4 zero, one, min, max
gain float 1 Gain value for pixels
gamma float 1 Gamma correction requested for pixels
NP float 16 world-to-NDC matrix
Nl float 16 world-to-camera matrix
HostComputer string 1 Name of the computer
Software string 1 Name of the renderer
OriginalSize int 2 full resolution of the image
origin int 2 upper-left (x,y) of the crop window
near float 1 Near clipping planez value
far float 1 Far clipping planez value

In addition to those required parameters, the list will also contain any optional pa-
rameters that were specified with theDisplay command (see Section 3.1.2).

This method should returntrue if it completed correctly. If an error occurs, it should
call theerror() method to set the error message, and returnfalse.

bool ExDisplay::start ()

This method is called by the client to mark the beginning of transmission of image
pixels.
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This method should returntrue if it completed correctly. If an error occurs, it should
call theerror() method to set the error message, and returnfalse.

bool ExDisplay::data (const PixelPacket &pixels)

The data() method actually communicates a collection of pixels to the display
server. The pixels are arranged in a rectangle. Which pixels are covered, and the
data for those pixels, are all stored in thePixelPacket structure that is given as a
reference. ThePixelPacket structure, which is defined locally to theExDisplay
class, is:

struct PixelPacket {
int x0, y0;
int x1, y1;
int pixelStride;
int rowStride;
const float *data;

};

The pixels cover the rectangle whose upper-left pixel coordinates are (x0, y0) and
whose lower-right pixel coordinates are (x1, y1). The pixel data themselves are
pointed to bydata. The pixelStride gives the step size (in number of floats)
between adjacent horizontal pixels, androwStride gives the step size between ad-
jacent vertical pixels.

This method should returntrue if it completed correctly. If an error occurs, it should
call theerror() method to set the error message, and returnfalse.

bool ExDisplay::finish ()

Thefinish method is called when all of the image pixels have been sent to the dis-
play server. It’s possible, if yourcanRedraw function returnedtrue, that additional
start()/finish() cycles could occur.

This method should returntrue if it completed correctly. If an error occurs, it should
call theerror() method to set the error message, and returnfalse.

The ExDisplay defines several “helper functions.” You may find these useful when
implementing your custom display drivers. These routines are provided for you byEntropy;
you do not need to implement them on your own.

float ExDisplay::exposure (float value, float gain, float invgamma)

Applies gain and gamma correction as follows:

if (value > 0.f)
return pow (value * gain, invgamma);

else return 0.0f;
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int ExDisplay::quantize (float value, float zero, float one,
float Min, float Max, float ditheramp)

Rescales the floating-pointvalue and truncates to an integer as follows:

float dither = ditheramp * (2.0f*random01()-1.0f);
return (int)(.5+clamp(zero+value*(one-zero), Min, Max)+dither);

const void * ExDisplay::findValue (const char *tok, int &index,
int nparams, const Parameter *params)

Given a list ofnparams pointed to byparams, search for one whose name is given
by tok. Setindex to the element number of theparams array that matched, and
return a pointer to the data itself. If there is no parameter in the list that matches the
nametok, returnNULL. This helper function is primarily intended to be called from
the server’sopen() method.

const void * ExDisplay::findValue (const char *tok,
Type typeExpected, int numElementsExpected,
int &index,
int nparams, const Parameter *params)

Given a list ofnparams pointed to byparams, search for one whose name is given
by tok and whose type and number of elements also matchtypeExpected and
numElementsExpected. Setindex to the element number of theparams array
that matched, and return a pointer to the data itself. If there is no parameter in the
list that matches, returnNULL. This helper function is primarily intended to be called
from the server’sopen() method.

void error (const char *message)

Sets the error message, which can be retrieved later by the client. The contents of
message will be copied into a new area, so it’s okay to changemessage after the
error() call.

16.3 Making the DSO/DLL

Entropy may encounter a display request like this:

Display "out.tif" "mytiff" "rgba"

This indicates that RGBA data (4 channels) should be written to the fileout.tif by
the display server"mytiff". If the display server is not the name of a format already
known toEntropy (such as"tiff" or "zfile"), Entropy will search for a DSO named
"mytiff.so" (on Unix-like systems) or a DLL named"mytiff.dll" (on Windows).
Entropy will search through the several directories specified byOption "searchpath"
"display" (see Section 3.1.3).

Assuming that the DSO/DLL matching the name is found, it will be scanned for two
“public entry points” which must be present and have ordinary “C linkage.” The declara-
tions are as follows:
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extern "C" {
int DisplayVersion (void);
ExDisplay *CreateDisplay (int nparams, const ExDisplay::Parameter *params);

}

TheDisplayVersion() function must return the version of the display protocol, given
in exdisplay.h asEX DISPLAY VERSION. This ensures that the DSO/DLL was compiled
expecting the same protocol version that is being used by the renderer. If the protocols do
not match, the display server will not be used byEntropy and an error message will be
printed.

The second entry point,CreateDisplay(), returns a pointer to anExDisplay —
specifically, to a newExDisplay object created to implement your custom display server.
TheCreateDisplay() function takes a parameter list just like theExDisplay::open()
method. It’s up to you whether or not to do anything with the parameters.

Finally, the DSO/DLL must be compiled. Please refer to Appendix?? for details on
how to compile DSO/DLL libraries for your platform.

16.4 Example Display Server, Step by Step

As an example, let’s describe writing a very simple TIFF file display server. For simplicity,
let’s assume it can only output 8-bit data. This is much simpler than the full-featured TIFF
display server that comes built intoEntropy, but it’s still a useful example. We will create
the"mytiff" driver as follows:1

1. We start by making sure our file, which we’ll namemytiff.cpp, includes the"exdisplay.h"
file and declares a display server path that appropriately subclasses the public inter-
face ofExDisplay. Notice that we declare some private data that we’ll need to store
as we write the file.

#include "tiffio.h"
#include "exdisplay.h"

class MyTIFFDriver : public ExDisplay {
public:

MyTIFFDriver () : tif(NULL), filename(NULL) { };
virtual ~MyTIFFDriver ();

virtual bool needsScanline ();
virtual bool canRedraw ();
virtual bool open (const char *name,

int numChannels, const char **channelNames,
int xRes, int yRes,
int rxorigin, int ryorigin,
int rxpixels, int rypixels,
int nparams, const Parameter *params);

virtual bool start ();
virtual bool data (const PixelPacket &pixels);
virtual bool finish ();

private:
TIFF *tif;
char *filename;
int xres, yres, fullxres, fullyres, xorigin, yorigin;

1We will assume use of the excellent TIFF I/O library that can be found atwww.libtiff.org.
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float zero, one, minval, maxval, ditheramp;
float gain, gamma;
int samples, bitspersample, sampleformat;
bool debug;
int alphachannel;

};

Notice that we’ve declared some private data that we use to keep track of the open
TIFF file handle, quantization levels, and so on.

2. To keep things simple, we won’t buffer anything up. Rather, we’ll just write scanlines
as we get them. So we create methods to inform the client that we must receive whole
single scanlines in order, and cannot accept repeats of already-transmitted scanlines:

bool MyTIFFDriver::needsScanline() { return true; }

bool MyTIFFDriver::canRedraw() { return false; }

3. Theopen() method is the tricky. We must look for particular items in the parameter
list that give quantization, dither, gain, and gamma. For any of these that are not
present, we must use reasonable defaults. Also, we must use the quantization levels
to determine whether we are outputting 8-bit, 16-bit, 32-bit, or floating point images.

bool
MyTIFFDriver::open (const char *name,

int numChannels, const char **channelNames,
int xRes, int yRes,
int rxorigin, int ryorigin,
int rxpixels, int rypixels,
int nparams, const Parameter *params)

{
filename = strdup(name);
fullxres = xRes;
fullyres = yRes;
xorigin = rxorigin;
yorigin = ryorigin;
xres = rxpixels;
yres = rypixels;
samples = numChannels;

// Set reasonable defaults
zero = 0.0f; one = 255.0f;
minval = 0.0f; maxval = 255.0f;
ditheramp = 0.5f;
gain = gamma = 1.0f;
debug = false;

// Try to identify the alpha channel
alphachannel = -1;
for (int c = 0; c < numChannels; ++c) {

if (! strcmp(channelNames[c], "a"))
alphachannel = c;

}

int index;
float *fval;
int *ival;
if (fval = (float *)findValue("quantize", TYPE_FLOAT, 4, index,
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nparams, params)) {
zero = fval[0];
one = fval[1];
minval = fval[2];
maxval = fval[3];

}
if (fval = (float *)findValue("dither", TYPE_FLOAT, 1,

index, nparams, params))
ditheramp = fval[0];

if (fval = (float *)findValue("gain", TYPE_FLOAT, 1, index,
nparams, params))

gain = fval[0];
if (fval = (float *)findValue("gamma", TYPE_FLOAT, 1, index,

nparams, params))
gamma = fval[0];

if (ival = (int *)findValue("debug", TYPE_INT, 1,
index, nparams, params))

debug = (ival[0] != 0);
if (maxval == 0.0f) {

sampleformat = SAMPLEFORMAT_IEEEFP;
bitspersample = 32;

} else {
sampleformat = SAMPLEFORMAT_UINT;
if (maxval > 255.0)

bitspersample = 16;
else bitspersample = 8;

}
if (debug)

cerr << "Opening " << name << endl;
return true;

}

4. Our start() method actually opens the TIFF file, setting all the tags based on the
input parameters:

bool
MyTIFFDriver::start ()
{ if (debug)

cerr << "start\n";
tif = TIFFOpen (filename, "w");
if (!tif) {

error ("Could not open TIFF file");
return false;

}
TIFFSetField (tif, TIFFTAG_IMAGEWIDTH, xres);
TIFFSetField (tif, TIFFTAG_IMAGELENGTH, yres);
TIFFSetField (tif, TIFFTAG_XPOSITION, (double)xorigin);
TIFFSetField (tif, TIFFTAG_YPOSITION, (double)yorigin);
TIFFSetField (tif, TIFFTAG_PIXAR_IMAGEFULLWIDTH, fullxres);
TIFFSetField (tif, TIFFTAG_PIXAR_IMAGEFULLLENGTH, fullyres);
TIFFSetField (tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
TIFFSetField (tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField (tif, TIFFTAG_SAMPLESPERPIXEL, samples);
TIFFSetField (tif, TIFFTAG_BITSPERSAMPLE, bitspersample);
TIFFSetField (tif, TIFFTAG_SAMPLEFORMAT, sampleformat);
TIFFSetField (tif, TIFFTAG_PHOTOMETRIC,

(samples > 1) ? PHOTOMETRIC_RGB : PHOTOMETRIC_MINISBLACK);
if (samples == 4) {

unsigned short sampleinfo = EXTRASAMPLE_ASSOCALPHA;
TIFFSetField (tif, TIFFTAG_EXTRASAMPLES, 1, &sampleinfo);

}
return true;

}
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5. The data() method must write a scanline to the TIFF file. The trickiest part is
handling all the quantization and gamma correction, attempting to avoid unneces-
sary computation when the default values are used, and correctly converting to the
appropriate integer types.

bool
MyTIFFDriver::data (const PixelPacket &pixels)
{

if (debug)
cerr << "data of range (" << pixels.x0 << ’,’ << pixels.y0 << ") - ("

<< pixels.x1 << ’,’ << pixels.y1 << ")\n";
unsigned char *buf;
int xsamps = xres*samples;
buf = (unsigned char *)alloca (xsamps*bitspersample/8);
float *fbuf = (float *)alloca (xsamps*sizeof(float));
for (int y = pixels.y0; y <= pixels.y1; ++y) {

int x, c, i;
// Gamma correct, dither, and quantize
int offset = (y-pixels.y0)*pixels.rowStride;
for (x = pixels.x0, i = 0; x <= pixels.x1; ++x) {

for (c = 0; c < samples; ++c)
fbuf[i++] = pixels.data[offset+c];

offset += pixels.pixelStride;
}
if (gain != 1.0f || gamma != 1.0f) {

float invgamma = 1.0f/gamma;
for (x = 0; x < xsamps; x += samples)

for (c = 0; c < samples; ++c)
if (c != alphachannel) // Don’t correct alpha!

fbuf[x+c] = exposure (fbuf[x+c], gain, invgamma);
}
if (bitspersample == 8) {

for (x = 0; x < xsamps; ++x)
buf[x] = (unsigned char) quantize (fbuf[x], zero, one,

minval, maxval, ditheramp);
} else if (bitspersample == 16) {

for (x = 0; x < xsamps; ++x)
((unsigned short *)buf)[x] =

(unsigned short) quantize (fbuf[x], zero, one,
minval, maxval, ditheramp);

} else {
for (x = 0; x < xsamps; ++x)

((float *)buf)[x] = fbuf[x];
}
TIFFWriteScanline (tif, buf, y-yorigin);

}
return true;

}

6. Thefinish() method merely closes the open TIFF file:

bool
MyTIFFDriver::finish()
{

if (debug)
cerr << "finish\n";

if (tif)
TIFFClose (tif);

return true;
}

7. The MyTIFFDriver destructor must “clean up.” There isn’t much to do except to
free thefilename data that we had previously allocated withstrdup().
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MyTIFFDriver::~MyTIFFDriver()
{

if (debug)
cerr << "destroying MyTIFFDriver\n";

if (filename)
free (filename);

}

8. Finally, we need to make the two “C” linkable entry points,CreateDisplay() and
DisplayVersion(). We use theEXPORT macro defined inexdisplay.h, which
contains the magic commands to make the symbols exportable (this is only needed
on some operating systems).

extern "C" {

EXPORT ExDisplay *CreateDisplay (int, const ExDisplay::Parameter *)
{

return new MyTIFFDriver();
}

EXPORT int DisplayVersion (void)
{

return EX_DISPLAY_VERSION;
}

}

The full source code for this sample display server can be found in theexamples/src/display/
directory in theEntropy distribution. In addition, that directory contains the source code for
a sample display server that can be used to communicate betweenEntropy display servers
andPRMandisplay servers.
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Appendix A

Compatibility Guide

A.1 Differences betweenEntropy , BMRT, and PRMan

In the following subsections, when we refer to “BMRT,” we are specifically comparing to
BMRT 2.6, and when we refer to “PRMan,” we are comparing to Pixar’s PhotoRealistic
RenderMan 3.9.

A.1.1 Geometric Primitives

Entropy fully supports theCurves andBlobby primitives, whereas BMRT does not.
If Points primitives are very large on screen inPRMan, they will appear as hexagons.

With Entropy, Points primitives are perfectly round no matter what size they are on
screen.

Entropy does not support CSG, whereas both PRMan and BMRT do.Entropy effec-
tively ignoresSolidBegin andSolidEnd, drawing all parts of CSG objects.

Entropy supports the primitive variable storage class"facevarying", which is not
supported by BMRT orPRMan3.9.

A.1.2 Rendering Pipeline Issues

BMRT is strictly a conventional ray tracer — for each pixel, one or more rays are intersected
with scene geometry to reveal the closest object behind the pixel.Entropy uses a much
more efficient “scanline” algorithm to determine which objects are visible, though shaders
can still trace rays for reflections and refractions. The main result of this is that if you aren’t
using a substantial amount of ray tracing or global illumination, a given scene will render
much faster and using much less memory inEntropy than it would in BMRT.

PRManhas an"eyesplits" option that is used to help deal with objects that cross the
camera (z = 0) plane.Entropy has no such equivalent option, and has no trouble dealing
with objects that cross the camera plane, or even that intersect the camera position itself.

Entropy can have any number of display output channels, and they may be individually
assigned any filter and width.PRManhas a limit of 16 display output channels and they are
all filtered with"box" 1 1. BMRT does not support multiple output channels at all.

Entropy supports arbitrary clipping planes withClippingPlane.
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A.1.3 Antialiasing

Entropy’s new antialiasing and hidden-surface algorithm is not based on point sampling (as
are BMRT and PRMan), and so there isn’t a direct analog toPixelSamples. There are
now two new options:Option "limits" "spatialquality" andOption "limits"
"temporalquality" that directly control the antialiasing quality levels (see Chapter 3
for details). For backwards compatibility,PixelSamples now indirectly sets these two
attributes, such that the overall quality closely matches what you would get with the same
PixelSamples setting for BMRT or PRMan (even though it’s doing somethingentirely
different under the covers).

Entropy supports motion blur, and depth of field, whereas BMRT 2.6 does not.

A.1.4 Shading

Although Entropy, BMRT, and PRMan have almost completely compatible shading lan-
guage source code syntax, their formats for compiled shaders are not interchangeable. To
avoid confusion,Entropy’s shader compiler is namedsle and names its compiled shaders
with the.sle extension, versus BMRT’sslc compiler and.slc extension, and PRMan’s
shader compiler and.slo extension. Similarly,Entropy shaders are interrogated with a
library now calledlibsleargs, described in a header filesleargs.h.

In BMRT, as each screen ray determines the closest object, shaders are run at the single
location that the ray hit. (Strictly speaking, BMRT runs shaders at the intersection and
also at two nearby points, in order to estimate derivatives.) InEntropy, points are not
shaded only one (or three) at a time, but rather large sections of geometric primitives are
shaded. This leads tomuchfaster execution of shaders, better texture access coherence,
more accurate calculations of derivatives, and many other benefits.

In Entropy and PRMan,"current" space (the space that all parameters and global
variables are in when the shader executes) is the same as"camera" space, whereas in
BMRT "current" space is"world" space.

In shader source code,Entropy allows// to signify that the remainder of the text line
is a comment (just like C++). BMRT’s and PRMan’s shader compilers do not treat// as a
comment marker.

Entropy defines theENTROPY andEXLUNA symbols (which you can use for#ifdef and
so on) during shader compilation. BMRT defines theBMRT andEXLUNA symbols. PRMan
does not define either of these symbols.

Entropy looks for the preprocessor,slpp, specifically in the$ENTROPYHOME/bin di-
rectory. Youmustset$ENTROPYHOME for slc to compile shaders.

Entropy’s specular() function is quite different than BMRT (we think the new one
looks nicer), and is similar (but not identical) to PRMan’sspecular() function.

PRMan’snoise() functions differ in appearance fromEntropy’s. Objects whose ap-
pearances are largely due tonoise() patterns will appear different. However, PRMan’s
andEntropy’s noise() functions are statistically similar.

Entropy extends thetexture() andenvironment() functions with optional"firstchannel",
"maxhitdist", "alpha", and"hitdist" parameters. (See Section 5.6.7.) These param-
eters are not understood (but should be safely ignored) by PRMan and BMRT.
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Entropy extends theOption andAttribute scene file commands, and theoption()
andattribute() shading language functions, to allow users to create and set their own
options and attributes, and to retrieve their values from shaders. BMRT and PRMan do not
allow this.

A.1.5 Ray Tracing

Entropy supports a variety of ray tracing and global illumination functionality, described
in Sections 5.6.8, 3.1.3, and 3.2.2.

Compared to BMRT,Entropy has extended functionality of thetrace() function: the
position parameter is optional (defaulting toP if not supplied), and it can take optional to-
ken/value arguments analogous to environment mapping routines (see Section 5.6.8). How-
ever, we strongly recommend thattrace be avoided, and instead the new extensions to
environment() be used for ray tracing (see Section 5.6.7). Similarly, though BMRT’s
visibility routine is supported byEntropy, we recommend that ray traced shadows be
computed by using the extensions toshadow() (Section 5.6.7).

BMRT had all objects appear in ray traced shadows and reflections by default.En-
tropy, by default, does not include any objects in either ray traced shadows or reflec-
tions. Objects may be individually be put in the ray traced shadow or reflection lists by
using Attribute "visibility" (see Section 3.2.2). Note that this replaces BMRT’s
Attribute "render" "visibility", which had some notational sloppiness and is now
considered deprecated.

PRMandoes not perform any ray tracing or global illumination, will not make use
of any of the aptions or attributes related to ray tracing, indirect illumination, or caustics,
and has no equivalent to theindirect or caustic shaders. PRMan’strace() function
always returns zero and does not take the optional texture-like arguments (such as"blur"),
and theraylevel(), isshadow() functions do not exist at all in PRMan.PRMandoes
not support the ray-tracing extensions toenvironment() andshadow().

A.1.6 Miscellaneous

BMRT 2.6 and earlier would always check the current working directory for shaders, tex-
tures, and RIB archive files. If the files were not found in the current directory, the direc-
tories in the appropriate search path would be checked in turn.Entropy always strictly
respects the search path set in the scene file (or in.entropyrc). If you want the current
directory searched, you need to be sure that"." is explicitly in the search path.

Many of the sample shaders that come withEntropy have been changed from the
similarly-named shaders that come with BMRT and PRMan, in order to be improved or
to take advantage of newEntropy features not present in other renderers. In some cases
parameters have been added, removed, or renamed. CAUTION!

Older versions ofrgl did not support object instancing (ObjectBegin, ObjectEnd,
ObjectInstance). Entropy’s rgl (as well asentropy) support object instancing from
RIB files. However, we consider this a deprecated feature and strongly discourage its use,
favoringReadArchive or Procedural instead.

BMRT’s Attribute "render" "truedisplacement" is unnecessary withEntropy
and is considered deprecated. By default, all objects with displacement shaders undergo
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true displacement. However, there is a new hint,Attribute "render" "tracedisplacements",
that can instruct the renderer to use a cheaper bump-mapping approximation to displace-
ment for ray tracing of reflections or shadows (but in either case, true displacement is used
for the camera view of the object).

Entropy has a new, C++-based, interface for programming your own display servers.
This is described in Chapter 16.

Entropy’s mkmip program allows texture wrap mode"mirror".
Entropy accepts either integer or string light identifiers for theLightSource, AreaLightSource,

andIlluminate RIB commands. This is compatible withPRMan10. Earlier versions of
Entropy, PRMan, andBMRTonly accepted integers as light identifiers.

A.2 Deprecated Functionality

Deprecated
There are a number of features available in BMRT or other compatible renderers which we
now considerdeprecated. Though we still support these commands or features, we consider
them obsolete and they exist inEntropy strictly for backward-compatibility with existing
scene files designed for other renderers. It’s possible that these commands will someday be
disabled entirely. In the mean time, while they are currently harmless, we discourage use
of these features and urge you to use the preferred alternatives.

A.2.1 Scene File Commands

The following scene file commands are supported for backwards compatibility only, and
should be avoided when constructing new scenes:

Bound [xmin xmax ymin ymax zmin zmax ]

This is not used byEntropy.

ObjectBegin id

ObjectEnd
ObjectInstance id

ObjectBegin, which takes an integerid argument, andObjectEnd bracket the defi-
nition of an object.ObjectInstance adds the object (identified by the same integer
id used at its creation) to the scene. An object may be instanced multiple times.

Entropy supports instanced objects in scene files for backward compatibility only;
its use is considered deprecated.ReadArchive (or better,Procedural) should be
used if you want to make multiple identical copies of an object.

ShadingInterpolation type

Previously used to set interpolation to either"smooth" or "constant". This is not
used byEntropy, and even renderers that support it should always use"smooth".

SolidBegin solidtype

SolidEnd
Entropy does not support CSG. TheSolidBegin andSolidEnd statements are ef-
fectively ignored, and all parts of CSG objects are drawn.
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.entropyrc, 105

abs(), 79
acos(), 79
ambient(), 93
antialiasing, 25, 115
arbitrary output variables, 118
area light sources

number of samples, 35
area(), 86
AreaLightSource, 42
asin(), 79
atan(), 79
Atmosphere, 41
atmosphere(), 96
Attribute, 31
attribute(), 97
AttributeBegin, 28
AttributeEnd, 28
Attributes

user attributes, 31, 98
user options, 97

attributes, 28

Basis, 48
blobbies, 57
Blobby, 57
Bound, 204
bucket size, 26

calculatenormal(), 86
camera, 109–113

options, 15
positioning, 110
projection, 109

caustics,seeglobal illumination
ceil(), 79
cellnoise(), 84

clamp(), 80
Clipping, 15, 113
clipping planes, 113
ClippingPlane, 16
Color, 29
comp(), 80, 83
concat(), 86
ConcatTransform, 38
Cone, 54
constructive solid geometry,seeCSG
CoordinateSystem, 40
CoordSysTransform, 40
cos(), 79
crop windows, 17, 104, 114
CropWindow, 17
CSG, 201, 204
CTM, 37
ctransform(), 81
Curves, 52
Cylinder, 55

Declare, 11
degrees(), 79
DelayedReadArchive, 58
depth of field, 112
depth(), 82
DepthOfField, 17
Deriv(), 85
determinant(), 83
dicing

binary dicing, 33
curvature thresholds, 34

diffuse(), 93
Disk, 55
Displacement, 41
displacement bound, 33
displacement(), 95
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displacements
ray traced, 33

Display, 18, 116–119
display servers, 117

programming, 189–198
distance(), 81
DSO Shadeops, 177–181
Du(), 85
Dv(), 85
DynamicLoad, 58

environment(), 88
error(), 86
ExDisplay, 190
exp(), 79
Exposure, 19
Exterior, 42

faceforward(), 81
filtering, 116
filterstep(), 86
floor(), 79
Format, 17, 113
format(), 86
FrameAspectRatio, 17
FrameBegin, 8
FrameEnd, 8
fresnel(), 82

GeneralPolygon, 47
geometric primitives, 45

curves, 52
NURBS, 48
patches, 48
points, 52
polygons, 47
quadrics, 54
subdivision surfaces, 51

GeometricApproximation, 29
global illumination

caustics, 36–37, 148–154
indirect illumination, 24, 36, 145–148

global variables, 74
table of, 78

grid size, 26

Hider, 20
Hyperboloid, 55

Identity, 38
illuminance, 71
Illuminate, 42
illuminate, 70
Imager, 20
implicit surfaces, 57
in-line parameter declaration, 10
incident(), 96
indirect illumination,seeglobal illumina-

tion
Interior, 41
inversesqrt(), 79
isindirectray(), 99
isshadowray(), 99
iv, 121–123

length(), 81
libribout, 176
libsleargs, 183–188
LightSource, 42
lightsource(), 96
log(), 79

MakeCubeFaceEnvironment, 13
MakeLatLongEnvironment, 13
MakeShadow, 13
MakeTexture, 12
match(), 86
Matte, 29
max(), 80
min(), 80
mix(), 80
mkmip, 129
mod(), 79
motion blur, 11–12, 18, 112

motionfactor, 34
MotionBegin, 11
MotionEnd, 11
motionrays, 35

named coordinate systems, 39
named geometry, 36
noise(), 83
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normalize(), 81
ntransform(), 82
NuPatch, 50

object instancing, 204
ObjectBegin, 204
ObjectEnd, 204
ObjectInstance, 204
occlusion(), 95
Opacity, 29
opposite(), 96
Option, 21
option(), 97
Options

user options, 21
options, 15
Orientation, 30

Paraboloid, 56
parameter lists, 10–11
Patch, 48
PatchMesh, 49
Perspective, 39
phong(), 94
PixelFilter, 20, 116
PixelSamples, 20
pnoise(), 84
Points, 53
PointsGeneralPolygons, 48
PointsPolygons, 47
Polygon, 47
polygons, 47
pow(), 79
printf(), 86
Procedural, 58
procedural primitives, 57–59
Projection, 18
projection, 109
ptlined(), 81

quadrics, 54–57
quantization, 117
Quantize, 21

radians(), 79
random(), 84

randomgrid(), 85
ray tracing

maximum ray depth, 26
shadows, 137–138

rayhittest(), 94
raylevel(), 99
ReadArchive, 12
reflect(), 81
reflections

motion blurred and ray traced, 35
refract(), 82
rendererinfo(), 98
ReverseOrientation, 30
rgl, 105–108

command line options, 106
RiArchiveRecord, 175
RiAreaLightSource, 170
RiAreaLightSourceV, 170
RiAttribute, 169
RiAttributeBegin, 167
RiAttributeEnd, 167
RIB output library, 176
RiBasis, 171
RiBegin, 167
RiBlobby, 174
RiClipping, 168
RiClippingPlane, 168
RiColor, 169
RiConcatTransform, 169
RiCone, 173
RiContext, 167
RiCoordinateSystem, 169
RiCoordSysTransform, 169
RiCropWindow, 168
RiCurves, 173
RiCylinder, 173
RiDeclare, 167
RiDepthOfField, 168
RiDetail, 169
RiDetailRange, 169
RiDisk, 173
RiDisplay, 168
RiEnd, 167
RiExposure, 168
RiFormat, 168
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RiFrameAspectRatio, 168
RiFrameBegin, 167
RiFrameEnd, 167
RiGeneralPolygon, 170
RiGeometricApproximation, 169
RiGetContext, 167
RiHider, 168
RiHyperboloid, 173
RiIdentity, 169
RiIlluminate, 170
RiImager, 168
RiLightSource, 170
RiLightSourceV, 170
RiMakeCubeFaceEnvironment, 176
RiMakeLatLongEnvironment, 176
RiMakeShadow, 176
RiMakeTexture, 176
RiMatte, 169
RiMotionBegin, 168
RiMotionEnd, 168
RiNuPatch, 172
RiOpacity, 169
RiOption, 168
RiOrientation, 169
RiParaboloid, 173
RiPatch, 172
RiPatchMesh, 172
RiPerspective, 169
RiPixelFilter, 168
RiPixelSamples, 168
RiPoints, 173
RiPointsGeneralPolygons, 171
RiPointsPolygons, 171
RiPolygon, 170
RiProcedural, 174
RiProjection, 168
RiQuantize, 168
RiReadArchive, 175
RiRelativeDetail, 168
RiReverseOrientation, 169
RiRotate, 169
RiScale, 169
RiScreenWindow, 168
RiShadingInterpolation, 169
RiShadingRate, 169

RiShutter, 168
RiSides, 169
RiSkew, 169
RiSphere, 173
RiSubdivisionMesh, 172
RiTextureCoordinates, 169
RiTorus, 173
RiTransform, 169
RiTransformBegin, 167
RiTransformEnd, 167
RiTranslate, 169
RiTrimCurve, 172
RiWorldBegin, 167
RiWorldEnd, 167
Rotate, 39
rotate(), 82, 83
round(), 79
RunProgram, 58

Scale, 39
scale(), 83
ScreenWindow, 18
search paths, 22
setcomp(), 80, 83
setxcomp(), 80
setycomp(), 80
setzcomp(), 80
shader compiler,seesle
shadername(), 100
Shading Language

comments, 63
conditionals, 69
data types, 63

color, 64
float, 64
matrix, 66
point, vector, normal, 65
string, 67

expressions, 73
function definitions, 72
identifiers, 62
loops, 70
preprocessor directives, 63
procedure calls, 69
scoping, 72
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shader types, 61
storage classes, 67
syntax, 68
variable declarations, 68

ShadingInterpolation, 204
ShadingRate, 30
shadow maps,seeshadows
shadow(), 91
shadows, 133–140

motion blurred and ray traced, 35
ray traced, 137–138
shadow bias, 25, 134, 137, 138
shadow maps, 133–137

Shutter, 18
Sides, 30
sign(), 79
sin(), 79
Skew, 39
sle, 125–127

command line arguments, 126
sletell, 127–186
smoothstep(), 83
solar, 70
SolidBegin, 204
SolidEnd, 204
specular(), 93
specularbrdf(), 94
Sphere, 56
spline(), 85
sqrt(), 79
statistics, 23
step(), 83
storage classes, 67
SubdivisionMesh, 51
Surface, 40
surface(), 95

tan(), 79
texture mapping, 87–91, 129–131

maximum open files, 26
texture cache size, 26

texture(), 87
TextureCoordinates, 31
textureinfo(), 98
token-value pairs, 10

Torus, 57
trace(), 94
Transform, 38
transform(), 82
transformations, 37–40
TransformBegin, 38
TransformEnd, 38
Translate, 39
translate(), 83
trim curves, 34, 51
TrimCurve, 51

uniform, 67
unmkmip, 131

varying, 67
visibility of geometry, 32
visibility(), 94
vtransform(), 82

WorldBegin, 9
WorldEnd, 9

xcomp(), 80

ycomp(), 80

zcomp(), 80
zthreshold, 25


	Introduction
	Welcome to Entropy
	Compatibility, Ancestry, Versioning
	About This Manual

	I API Specifications
	Scene Files
	Lexical Elements
	Overall structure of scene files
	Parameter Lists and Declarations
	Motion Blur
	External Resources

	Options and Attributes
	Options
	Attributes

	Geometric Primitives
	Primitive Overview
	Polygons and Polygon Meshes
	Patches, Meshes, and NURBS
	Subdivision Surfaces
	Curves and Points
	Quadrics
	Implicit Surfaces
	Procedural Geometry

	Shading Language
	Preliminaries
	Data Types
	Language Syntax
	Expressions
	Global variables
	Built-in Library Functions


	II Getting Things Done
	Invoking Entropy from the Command Line
	Command line arguments
	Initialization File
	Return Codes
	Previewing scene files with rgl

	Image Output
	The Camera
	Image Resolution and Framing
	Antialiasing and Filtering
	Image Output
	Entropy's Built-in Display Servers

	Viewing Images with iv
	Invoking iv from the command line
	iv hot keys and mouse commands
	iv menu bar functions

	Compiling Shaders
	Compiling Shaders with sle
	Using sletell to list shader arguments

	Using Texture Maps
	mkmip Command Reference
	unmkmip

	Shadows, Reflections, and Global Illumination
	Shadows
	Reflections
	Indirect illumination
	Caustics
	HDRI / Environment lighting

	Optimizing Your Renderings
	Don't ray trace if you don't have to
	If you must ray trace, don't do it wastefully
	Use short-cuts when computing maps
	Tune the options
	Use high-level geometric primitives
	Use procedural geometry
	Don't be wasteful in your shaders
	Use multi-threading


	III Developer's Resources
	C API for Generating Scene Files
	Data Types
	Parameter Lists and Declarations
	Rendering Contexts and Block Structure
	Options and Attributes
	Geometric Primitives
	External Resources
	Using ri.h and libribout

	Calling C functions from Shaders
	Theory of Operation
	Calling Conventions
	Example
	Tips

	Interrogating Shader Arguments with libsleargs
	The sleArgs class
	Using sleargs.h and libsleargs
	Example: sletell source code

	Writing Custom Display Servers
	Theory of Operation
	The ExDisplay class
	Making the DSO/DLL
	Example Display Server, Step by Step


	IV Appendices
	Compatibility Guide
	Differences between Entropy, BMRT, and PRMan
	Deprecated Functionality



