—C&}crlptll)

Copyright 1997 CACI Products Co.
September 1997

All rights reserved. No part of this publication may be reproduced by any means without written permission from CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division

3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
Phone: (619) 824.5200 Surrey GU15 3YL UK

Fax: (619) 457.1184 Phone: +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume
the responsibility for any consequences resulting from the use thereof. The information contained herein is
subject to change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMGRAPHICS |, SIMGRAPHICS Il and SIMSCRIPT IL.5 are registered trademarks of CACI Products Company.

Windows is a registered trademark of Microsoft Corporation.

Table of Contents

=] = Lo < PR
[=y T I O = = = P

TRAINING COURSES..

1. Simulation and SIMSCRIPT II 5 ..

2. Developing SIMSCRIPT I1.5 Programsc.ccoecovvmevieeneeneenne.
2.1 PREPARING SOURCE FILES . iiuiiutiiiiieit ettt et e e et et et st e te e et e te e ea b es et ea b eseeneetesserereerens
D O Y Y 1 =TT T
B T {1010 1Y 1= T2
2.4 LINKING « et ett ittt it ee et et et ee e e teee it e s et ee e es et ee ot es e ee b es st ee b es e s eenee b eeee e neneeae e nenas
S T (o1 U N

B T =Y =1 T T
B A Y L == T =1

2.7.1 COMPIIALION SEQUEINCEoeiiitieie ittt ettt ettt e st ee e et ee e et ee e e bt ae e e e e
2.7.2 Make Description File FOIMALccouiiiiiie ettt ettt
2.7.3 Transformation RUIEScooiiiiiiiie ettt ettt e
2.7.4 SPECIAI NOTES ...ttt ettt et et eb e e e e bt ee e et e e e et ee e e e
2.7.5 SAMPIE MAKETIIE ... ettt

2.8 OBTAINING ONLINE HELP ..
2.9 EXAMPLE PROGRAM ..

3. SIMSCRIPT IL.5 Language ConS|derat|ons

R 20 A [N Y T o O 10 =T
3.2 MoDES AND PACKING CODES

3.2.1 AlIGNMENE OF VAIUES. ..ottt sr e e r e e e

3.3 NoN-SIMSCRIPT ROUTINES...
3.3.1 Calling C Routines

3.3.2 Calling FORTRAN ROUHNES ...o..oeeoeooeses oo e
4. SimDebug Symbolic Debuggercccoiiiiiiiiininie s

4.1 COMPILING FOR DEBUG AND INVOKING SIMDEBUGuiiuiiitiiiiiie et e ir et e ee et et e e e s e e e
4.1.1 Compiling for Debug

4.1.2 Invoking SimDebug ..
4.2 A Quick Tour oF SIMDEBUG .

4.2.1 Tour 1: Showing the Stack and Variables ..
4.2.2 Tour 2: Breakpoints and Single Stepping ..

4.2.3 Tour 3: Pointer Handling: Entity / Set Display
4.3 SIMDEBUG COMMAND REFERENCE .u.vtuitiututiitteuteestieeatesssiesasesssssesssnssessssnsssesssansssessennensessens
i N » AV 7N N3 = o T [0] =1 (3=

4.4.1 Batchtrace.v..

4.4.2 Signal Handlrng/ External Events

4.4.3 Reserved Names..
4.4.4 Displaying Arrays

4.4.5 Permanent Entities and System Owned Vanables/Sets...

4.4.6 Conditional Breakpoints ..
4.4.7 Continuous Variables ..

4.4.8 Unsupported SIMSCRIPT Features

UNIX SIMSCRIPT II.5 User’s Guide

APPENTICES ...ttt ee e e et ettt ee e aeean e e e 59
Appendix A. Compiler Warning and Error Messages ccccooevveiieiiiinivinnens 59
A.1 WARNING AND ERROR MESSAGES ...iiiiiiiiiiii e ettt ettt et st st e st e e s en e e s e e e eeeeee e be e e aeene e DO
Appendix B. Runtime Error MESSAgES ...cvoiiieiiiiiiicicieeieie et 75
B.1 RUNTIME ERROR MESSAGES ...iiieieiiiiiiiiiiiiieeee e e st sttt e e s e e e e e e s sn e nne s nnnnnn e e (D
Appendix C. Standard SIMSCRIPT I1.L5 Namescooovvviiiiiiiieiieieeeeeeeieeieeies 85

C.1 FUNCTIONS AND ROUTINES ututiiiutiiiiiitititt ettt et et et ettt e ee e et e e et eeee e eeee e s eeseatee st eneeseneseesennssenss OD
C.2 GLOBAL VARIABLES tutittuttitttuteetateeeetenaeetat e et eseesseeestateee et eseataeseseaaeeebe s aeseasae st eeeeseseesennnnen 101
ORI A i =11 =10 =1 PPN 105
(O B 07e] N1 - N TP 106

Preface

This document contains information on the use of CACI's SIMSCRIPT II.5 compilers for
systems using the UNIX operating system. The information contained here is specific to
running SIMSCRIPT I1.5 under UNIX.

CACI also publishes a series of texts that describe the standard SIMSCRIPT I11.5 language
available across all implementations:

* SIMSCRIPT 1.5 Programming Language A description of the programming
techniques used in SIMSCRIPT II.5.

 SIMSCRIPT 1.5 Reference Handboek A complete description of the
SIMSCRIPT II.5 programming language, without graphics constructs.

* SIMGRAPHICS Il User's Manual for SIMSCRIPT 15 Information about
SIMGRAPHICS I, the integrated graphics development and animation
environment for SIMSCRIPT I1.5.

* SIMGRAPHICS Il User’s Guide and CasebeekSupplementary information on
SIMGRAPHICS.

* Building Simulation Models with SIMSCRIPT Ik5 An introduction to building
simulation models with SIMSCRIPT I1.5.

The SIMSCRIPT I1.5 language and its implementations are proprietary program products
of the CACI Products Company. Distribution, maintenance, and documentation of the
SIMSCRIPT II.5 language and compilers are available exclusively from CACI.

1.1 Free Trial Offer

SIMSCRIPT I.5 is available on a free trial basis. We provide everything needed for a com-
plete evaluation on your computéerhere is no risk to you

1.2 Training Courses

Training courses in SIMSCRIPT 1.5 are scheduled on a recurring basis in the following
locations:

La Jolla, California
Washington, D.C.
London, United Kingdom

On-site instruction is available. Contact CACI for details.

UNIX SIMSCRIPT II.5 User's Manual

For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In the UK and Europe:
CACI Products Company CACI Products Division
3333 N. Torrey Pines Court Coliseum Business Centre
La Jolla, CA 92037 Riverside Way
(619) 824.5200 Camberley
Fax: (619) 457.1184 Surrey

GU15 3YL UK

+44 (0) 1276.671.671
Fax: +44 (0) 1276.670.677

1. Simulation and SIMSCRIPT I1.5

As an aid to making important decisions, the use of computer simulation has grown at an
astonishing rate since its introduction in the 1950s. Simulation was first used occasionally
in manufacturing, military, nuclear, and a few other pioneering applications. More recent-
ly, its use has expanded to many other areas of need. The growing list of successful appli-
cations includes models relating to urban growth, hydobec planning, transportation
systems, election redistricting, cancer and tuberculosis studies, hospital planning, commu-
nications, and multicomputer networks.

SIMSCRIPT I1.5 is a language designed specifically for simulation. It is the most efficient
and effective program development technique for simulation. This is due to the following:

Portability . Since the SIMSCRIPT 1.5 compilers are all developed and main-
tained by CACI, essentially the same SIMSCRIPT I1.5 language is implemented
on the various computer types. This facilitates the development of general-pur-
pose models and simulation applications that can be moved easily from one site to
another and from one organization to another.

Appropriate Constructs. SIMSCRIPT 1.5 provides constructs designed espe-
cially for simulation (e.g., processes, resources, events, attributes, entities, and
sets). These constructs make it easier to formulate a simulation model. Implemen-
tation of the simulation program is also quicker because these powerful tools do
not have to be invented anew.

Self-Documenting Language. Applications developed using the SIMSCRIPT

II.5 language are characteristically easy to read and understand. The language
encourages this because it is oriented toward the kinds of problems being solved
rather than the machines being used as tools. The very high level language fea-
tures of SIMSCRIPT II.5 were designed to make it possible to manage a compli-
cated simulation model.

Error Detection. SIMSCRIPT 11.5 performs a number of error checks that help to
assure that a simulation model is running correctly. When an error in a run is
detected, a complete snapshot of the program status is produced. This includes the
names and values of variables, system status, and other valuable information. This
reduces the time spent in developing and testing programs. The recently added in-
line symbolic debugger speeds up run-time analysis of model behavior.

Statistical Tools. Along with the mathematical and statistical functions most
often used in simulation (exponential functions, random number generators, and so
on), SIMSCRIPT IL.5 includes theccumulate andtally statements that allow

the model builder to collect statistics on key variables in his model.

Report Generator. A formatted report generator with headings and page number-
ing, along with therint ~ statement, is part of the SIMSCRIPT II.5 language.

SIMGRAPHICS. SIMGRAPHICS brings interactive animated and display
graphics to new and existing SIMSCRIPT 1.5 models. Graphitiiksrcan be eas-
ily tied to program entities, providing automatic animation and information display.

UNIX SIMSCRIPT II.5 User’'s Manual

Complete Methodology. The SIMSCRIPT 1.5 approach to simulation model
development provides the complete set of capabilities needed to develop a simula-
tion model. A simulation model developed in the SIMSCRIPT II.5 programming
language is readable by the analyst familiar with the system under study.

Support. CACI provides SIMSCRIPT 1.5 compiler software, documentation,
and training support to organizations using all major computer types. SIMSCRIPT
II.5 language consulting, programming support, and model development services
are available from CACI.

2. Developing SIMSCRIPT I1.5 Programs

Developing a SIMSCRIPT I1.5 program typically involves the following steps:

1. Preparing one or more SIMSCRIPT 1.5 source files using a text editor.
Compiling the program and checking for compilation errors.

Editing and re-compiling the program, as needed, until there are no compilation errors.
Linking the object files generated by the compiler to produce an executable file.
Executing the program.

Debugging the program. In case of errors during execution, the program should be
compiled with the debugging option, linked and then executed with the interactive
SIMSCRIPT symbolic debugger, to examine the state of the program and find the
cause of the error.

o gk wnN

2.1 Preparing Source Files

A SIMSCRIPT II.5 program may be prepared usihygmacs or any other text editor.

If the program is small, it is convenient to store the entire program within a single file. If
the program is large, it is best to store each routine in a file of its own. Files containing
SIMSCRIPT II.5 source code must be given nhames that endsiwith or .SIM .

Although itis not a requirement, it is easier to compile and link a SIMSCRIPT I1.5 program
that is stored in a directory of its own; i.e., a directory containing all of the source files of
the program in question and none of the source files of other programs.

2.2 Compiling

The SIMSCRIPT II.5 compiler translates a program written in the SIMSCRIPT II.5 pro-
gramming language into one or more object files. The compiler uses C as an intermediate
language, but this is transparent to you, the SIMSCRIPT II.5 program developer. The com-
piler will write diagnostics — error messages and warning messagestderto . Errors
prevent the generation of object files; warnings do not. Apeendix Afor a complete

list of error and warning messages that are issued by the compiler.

Thesimc command is used to invoke the SIMSCRIPT I1.5 compiler and linker. Its general
formis:

% simc [option] file.sim ...

For example, to compile and link a program consisting of a single source file named
abc.sim, enter:

% simc abc.sim

This command will compile the SIMSCRIPT source éite.sim , reporting compilation
errors and warnings to the terminal. If the cdatpn is successful, the objecodule
abc.o will be linked producing an executable file nanaealit .

UNIX SIMSCRIPT II.5 User’'s Manual

The SIMSCRIPT compiler options follow the same general format as many C compilers
and other standard UNIX compilers. The options available should be familiar to experi-
enced UNIX programmers. Below is a brief overview of a few of the most commonly used

options:

-0 name

Do not link any object files after compilation.

Enable SIMSCRIPT symbolic debugging.

Display a routine-by-routine program listing.

When linking, create an executable with the name provided.
Compile the preamble aVERY OLL". See below for more details.
Do not report any compiler warnings.

Display a local cross-reference listing for each routine.

Below is a complete list of the options available in the SIMSCRIPT I1.5 compiler:

-a

-b N

For each routine the compiler will produce a file containing the generated
source code for the routine together with the SIMSCRIPT source code as
comments. Produces.c file with “ALLSTARS” comments, which shows

the expansion of complex SIMSCRIPT statements into simpler ones.

This compiler switch is seldom us¢ The SIMSCRIPT 1.5 compiler gen-
erates C code as an intermediate step during the compilation. This is trans-
parent to you. On some platforms C compilers cannot compile source files
with a large number of C code lines, because of the static allocation of the
symbol table. By default, the SIMSCRIPT I1.5 compiler will generate the
intermediate C code into one file. To enforce splitting of generated interme-
diate C code into files with a defined (maximum) number of lines, you
should invoke the SIMSCRIPT I1.5 corfgr with the optional compiler
switch -b N " (break C code after N number of lines). For exarple:

simc -b 3000 big.sim

File big.sim will be transformed intig-1.c , big-2.c, etc.
Subsequently generated object modules wibig-1.0 , big-2.0 , etc

The compiler's default behavior is to link ussimld after compilation. If
you want to stop this from happening, use this option.

The compiler will generate code torfiem full runtime checking. This

code validates every array element reference and every attribute reference.
Also, in the event of a runtime error, a more elaborate traceback will be pro-
vided. This option allows SIMSCRIPT I1.5 to detect a larger class of run-
time errors and should be used when compiling a program that is not fully
debugged. Both the traceback and runtime error checking will make your
programs run somewhat slower. Note that runtime checking is not enabled
by default.

Developing SIMSCRIPT 1.5 Programs

As of release 1.8 this option has been enhanced in the following way: When
anentity is removed from a se, SIMSCRIPT now checks if this entity is
indeed part of the given set. This is accomplished by changing the contents
of theM.setname attribute of the entity, which not only indicates that this
entity is amember of some ¢, but also indicates (which se.

When the list is owned by a permanent entity, the M.setname now
contains thinde» (integer) to the head of the list. When the list is owned by
a temporary entityM.setname now contains pointer to the owner entity.
This means that source code that ch M.setname for 1, should check for
<>0.

Provide rutime checking for array element reference only without entity
class checking and set membership checking. Note tiC'zero", not
C'oh".

Selects 'compiling for debug'. The compiler is fully integrated with the
SIMSCRIPT 11.5 symbbc debugger. After linking, th@rogram can be
activated with the command line swit-debug to provide interactive
dialog with the debugger. The SIMSCRIPT II.5 symbolic debugger allows
you to study and change the behavior of a model ainmen Debugging
features include the following:

» Setting a break point in a given routine, or in an active SIMSCRIPT
process instance

» Single stepping one source line at a time
* Viewing source code

» Displaying of local, global variables and temporary entities in vari-
ous formats and their modifications

» Displaying the status of the program: I/0O and memory usage statis-
tics etc.

To use all the debugger functions, a SIMSCRIPT I1.5 program must be com-
piled witr the -d compilation switch. To start program in “debugging
mode” where you can set breakpoints etc., the executable should be invoked
with the-debug option:

simc -d prog.sim -0 prog
prog -debug

The-debug option is internal to SIMSCRIPT and will not be seen by the
user program.

A runtime error will automatically activate the debugger so that you can ex-
amine the current stack and variables that led to the error. If the program was
not compiled with thed option, only a minimal set of debugging functions

will be available. If the program was compiled with -d option, all de-
bugger functions will be available.

UNIX SIMSCRIPT II.5 User’'s Manual

-Ln

-0 name

An on-line help commanh will display a list of available debug commands
and parameters. Schapter .}

This compiler switch is seldom us SIMSCRIPT II.5 provides an interface

to NON-SIMSCRIPT and FORTRAN routinef FORTRAN routines are in-
voked from SIMSCRIPT II.5 programs without appending an underscore to
the FORTRAN routine name. In some computer environments this is nec-
essary. To generate calls with the appended underscore, the SIMSCRIPT
[1.5 compiler should be invoked with the optional compiler sw-F. For
example:

simc -F prog.sim

The compiler will provide a detailed traceback listing without enabling run-
time checking. Routines compiled w-g will be shown with the 'current
line number' and all their local variables in a traceback.

Link a SIMGRAPHICS program usirsimgld .

The compiler will write a listing to standard output. Typically, standard out-
put is redirected to a file. For example, to write a listing to a file named
listfile , enter:

% simc -l *.sim > listfile

The listing shows the source statements together with diagnostic messages,
if any. It may also include local and/or global cross-references (s-x the
and-X options).

The compiler will produce output listings wnl lines per pag The default
value is 55.

When linking, the executable file created will be caname. If this option

is not specifieda.out is the default executable name. For example, the
following command creates an executable cefile after compiling all
the.sim source files in this directory.

simc *.sim -o file

The C compiler's optimizer will be involved when compiling. This option
will increase compile time, but will reduce model runtime. On very rare oc-
casions, some optimizers may produce incorrect code, resulting in incorrect
behavior of your program. If this is suspected, try compiling without opti-
mization.

The following command will create an optimized executable ciprog
after compilingfilename.sim

simc -0 -0 prog filename.sim

Compile using profiling code. Seprof(1) andcc(l) inthe man pages
for details. This must be specified atkitime, either tirougl simc or

Developing SIMSCRIPT 1.5 Programs

simld . See paragrag2.€. This option may not be provided on all comput-
er platforms.

-S Create only ¢.c file. Do not produc.o or link.
-temp=dir

Specify the location of compiler temporary files. The defavtmp . This
does not affect where tIC compiler places its own temporary files.

-V This option meansVERY OLD PREAMBL. Itis used during re-compilation
of some SIMSCRIPT routines when there are no changes to the
Preamble.sim . It will speed-up the re-compilation process because
Preamble.o will not be generated. Also, tiPREAMBL will not appear in
the listing.

For example, enter the following command to re-confilel.sim into

an object file (which will be callefilel.o). The name of the file which
contains thiPREAMBL, Preamble.sim, must always be given because it
contains definitions for SIMSCRIPT data structures. -c option pre-
vents linking.

simc -cv Preamble.sim filel.sim

Enter the following command to create an executable (a.out (the de-
fault name) from the object files in this directory after re-compiling
routl.sim

simc -v Preamble.sim routl.sim *.0

-W The compiler will suppress warning messages, i.e., N0 warning messages
will be displayed.

X The compiler will write to the listing a local cross-reference for each rou-
tine. A local cross-reference shows the line number of every reference made
to each name in the routine.

-X The compiler will append to the listing a global cross-reference for the en-
tire program. A global cross-reference shows the name of every routine
which references each globally-defined name.

-1 The compiler will not generate code. It is sometimes desirable to quickly
check the syntax of a program and/or produce a listing without generating
any object files. Note, this is a “one” not an “ell”.

The following command compiles a program consisting of three sourceabc.sim,
def.sim andghi.sim . Warning messages will be suppressw option) and runtime
checking code will be generate-C option).

% simc -w -C abc.sim def.sim ghi.sim

UNIX SIMSCRIPT II.5 User’'s Manual

The compiler expects to find the preamble of the program at the beginning of the first file
specified. Thus, if the program in the above examples contains a preamble, it must be lo-
cated at the beginning of fiabc.sim or compilation errors will result.

The following is a convenient way to compile a program consisting of many source files
within a single directory:

% simc *.sim

In this example*.sim is automatically expanded into a list of source files sorted by name.
Since the compiler expects to find IPREAMBL in the first file it encounters, it is neces-
sary that the file containing trPREAMBL be given a name which precedes all others in
sorted order. Since upper-case hamesgue lower-case names, omaention which
may be followed is to store tiPREAMBL in a file name(®REAMBLE.sim and to name the
rest of the files using all lower-case characters.

2.3 Recompiling

Whenever a change is made to PREAMBL of a program, it is necessary to re-compile
the entire program. If a change is made only to routines of the program, only those routines
that have been modified need be re-compiled, and not the entire program.

Suppose that the routine in fxyz.sim has been modified. If this routine does not require
anything declared in trPREAMBL, then the following command can be used to re-com-
pile it:

% simc -c xXyz.sim

If this routine does reference something declared itPREAMBL, it is necessary to re-
compile thePREAMBL along with it:

% simc -cv PREAMBLE.sim xyz.sim

The-v option is specified to avoid regenerating the scripted routines contained in the
PREAMBLE.c.

2.4 Linking

If the -c option is used to suppress linking, the compiler generates object files which need
to be linked. Each of these files has a name that end<o . Thesimld command is
used to link a SIMSCRIPT II.5 non-graphical program. Its general form is:

% simld file.o ...

If there are any undefined references, the name of each missing routine will be displayed.
If there are no undefined references, an executable file na.out will be produced.

Suppose a program consists of only three routinmain.sim, subl.sim and
sub2.sim . Then the object files generated by the compilemain.o, subl.o and
sub2.0 . The following command will link this program:

Developing SIMSCRIPT 1.5 Programs

% simld main.o subl.o sub2.o

The following is a convenient way to link a program consisting of many object files within
a single directory:

% simld *.0

Note that it is necessary to link all of the object files generated by the compiler. Even if
just a single routine has been modified and re-compiled, it is necessary to re-link the entire
set of object files.

simld is a shell script which invokes the UNIX C compilcc, to link object files. Any
option which may be specified cc may also be specified simld . The most useful of
these is thro option. Itis used to name the executable file something othea.out .
For example, to create an executable file nacompute , enter:

% simld -0 compute *.0

simgld is another shell script which invokcc. It must be used insteadsimid to link
SIMGRAPHICS programs. For example, to link a SIMGRAPHICS Il program and name
the executable fi animate , enter

% simgld -0 animate *.o

Itis possible to create a library of SIMSCRIPT I1.5 routines using the UNIX archive utility,
ar . Tocreate a library namxyz from the object files in a directory, enter the following
command:

% ar r libxyz.a *.0
To make the library accessible to all users, enter the following sequence of commands:

% mv libxyz.a $SIMHOME!/lib
% ranlib $SIMHOME/lib/libxyz.a
% chmod 644 $SIMHOME!/lib/libxyz.a

SIMHOM is the environment variable which contains the full path where SIMSCRIPT I1.5
is installed. For more details of tISIMHOM, see the Installation Notes for therent
SIMSCRIPT I1.5 release.

Note tharanlib is not available on all systems. On systems where it is not available it is
not needed.

To link the object files in a directory with this library, enter:

% simld *.0 -Ixyz
A SIMSCRIPT II.5 program canall routines written in other languages, such as C or
FORTRAN. To link such a program, specifysimld (orsimgld if the program makes

use of SIMGRAPHICS features) the name of each object file created by the other compiler,
along with the name of each object file created by the SIMSCRIPT 1.5 compiler.

SIMSCRIPT I11.5 supports two graphics systems SIMGRAPHICS | and SIMGRAPHICS
II. As of Release 1.9, SIMGRAPHICS Il is the default SIMGRAPHICS in SIMSCRIPT

UNIX SIMSCRIPT II.5 User’'s Manual

I1.5 systems. Compiler swit-G will link graphical models with SIMGRAPHICS Il librar-
ies.

simc -G *.sim
Alsosimgld will automatically link with SIMGRAPHICS |I libraries.

If you want to use SIMGRAPHICS |, you must compile your model witl-c option and
usesimgldl as follows:

simc -c *.sim
simgldl *.o

SIMSCRIPT 1.5 runtime libraries as well as SIMGRAPHICS libraries are distributed in
two versions: dynamic link libraries and archive libraries. This facilitdynamic and
static linking. By default programs will be linked dynamically.

When a model is linked dynamically, the executable image does not include all the object
modules it needs for execution. It contains pointers to the dynamic link libraries also called
“shareable libraries”. The benefits of dynamic linking arefokd: first linking time is

shorter, second all SIMSCRIPT models in the same computer platform share the same run-
time libraries which results in substantial savings of disk space. When you use existing link
commands:simld, simgld, simgldl anc simgld2 your model will be linked dy-
namically.

If you want to execute your model on some other platform which does not have the same
release of SIMSCRIPT 1.5, or does not have SIMSCRIPT Il.5 installed at all, your model
must be linked statically. This means that you have to perform static link or “total link”. In
other words, your executable has to include all object modules in itself.

SIMSCRIPT II.5 provides commands for platform independent static linking or “total link-
ing” for both non-graphical and graphical SIMSCRIPT models:

tsimid - static link of non-graphical models

tsimgld - static link of graphical models by default with SIMGRAPHICS I
tsimgld1 - static link of graphical models with SIMGRAPHICS |

tsimgld2 - static link of graphical models with SIMGRAPHICS I

2.5 Executing

A SIMSCRIPT I1.5 program is executed by entering the name of the executable file. For
example:

% a.out

Parameters specified on the command line are available to the SIMSCRIPT 1.5 program
in the globatext array,parm.v . For example, consider the following command:

% a.out -i 10 WXYZ.dat

10

Developing SIMSCRIPT 1.5 Programs

Upon entry to this prograrparm.v will be set up as follow: ;

DIM.F(PARM.V(*)) = 3
PARM.V/(1) = -i
PARM.V(2) = 10
PARM.V(3) = WXYZ.dat

A SIMSCRIPT II.5 program can read from standard input by reading from UNIT 5. It can
write to standard output by writing to UNIT 6 and can write to standard error by writing to
UNIT 98. Any redirection of these units which is allowed by the operating system may be
specified on the command line.

Internal command line switches used for debugging-debug and-batchtrace, will
not be seen by the programparm.v .

If a runtime error is detected by SIMSCRIPT I1.5, the program will be stopped and:

1. A runtime error messageitWbe written to standardreor (seeAppendix E for a
complete list of runtime error messages) and the interactive debugger dialog will be
entered allowing you to examine the state of the program;

2. If the program was invoked with the command line sv~batchtrace , a run-
time error messag a traceback, a simulation status report, a memory status report
and an /O status report will be written to a simerr.trc and the user-supplied
snapshot routinesnap.r , will be called, if it exists. The level of debugging infor-
mation included in a traceback depends on the compiler switches used for compila-
tion: -d and-g will provide routine names with local variables and line numbers.
If none of these switches are used, only routine names will be written, without other
debugging information.

In the event that a runtime error goes undetected by SIMSCRIPT I1.5 and a program aborts
with a core dump, it is possible to analyze the core file using the UNIX debadb :r,

Any SIMSCRIPT I1.5 program may be invoked from a shell script. The exit status returned
by the program will be zero if the program was terminatedstop orend statement, and

will be non-zero if the program was aborted due to a runtime error. However, you may ex-
plicitly call exit.r to terminate your program and return a particular exit status.

2.6 Profiling

Profiling is useful when analyzing the performance of a program. Profiling helps determine
where most of the execution time in a program is spent. In the typical program, execution
time is confined to a relatively few sections of code. It may be profitable to concentrate on
improving coding efficiency in only those sections.

Profiling is platform specific, and may not be available on all UNIX platforms. We will
describe a common approach, usingprof comman: for profiling a SIMSCRIPT 1.5
model.

11

UNIX SIMSCRIPT II.5 User’'s Manual

Theprof command produces an execution profile of a program. The profile data is taken
from the profile file which is created by programs compiled witl-p option. That option
also links in versions of the library routines which are compiled for profiling.

When a program is profiled, the results appear in a file cmon.out (default filename)

at the end of the run. Every time the program is run, amon.out file is created over-
writing the old version. The profiled program must exit or return normally for the profiling
information to be saved in timon.out file. Theprof command is then used to interpret
the results of the profile.

prof displays the following information for each routine:

%time Percentage of the total time of the program, that was consumed by this rou-
tine.

cumsecs A running sum of the number of seconds accounted for by this function and
those listed above it.

#call The number of times this routine was called.
ms/call How many milliseconds this routine consumed each time it was called.
name The name of the routine.

To obtain a profile of a SIMSCRIPT I1.5 program, it is necessary to link the program using
the-p option. To tally the number of calls to a routine, the file that contains the routine
must be compiled with tF-p option.

Compile the modules you want profiled with -p flag:

% simc -c -p filel.sim file2.sim
% simc -c file3.sim

To link the program, type:

% simld -p filel.o file2.0 file3.0
Or simply:

% simc -p filel.o file2.0 file3.0

Run your program:

% a.out
Now useprof to write an execution profile to standard output:
% prof a.out

The following is some sample profile data createprof . Routines that beginw _H
are SIMSCRIPT library routines. Routines that begin \ R were generated by the
SIMSCRIPT compiler or are user routines. Routines that begin_C are SIMSCRIPT
or user left routines. Other routines are C library routines.

Note: The symbolmcount is a side effect of profiling, and indicates the overhead
incurred by profiling.

12

%time
21.4
18.6
11.9

6.9
3.9
3.5
2.3
2.2
2.0
1.7
1.6
1.5
1.4
1.3
1.3
1.2
1.2
1.1
1.1
0.9
0.9
0.8
0.8
0.7
0.7
0.7
0.6
0.6
0.6

Developing SIMSCRIPT 1.5 Programs

cumsecs #call ms/call name

25.66

47.91

62.12

70.34 220716
75.01 11755
79.16 165643
81.93 110445
84.62 110419
87.00 208985
89.08 86922
91.00 130610
92.84 86922
94.51 56318
96.11 208959
97.68 98664
99.12 55303
100.52 28165

_HP_SUSPEND_R
_HP_RESUME_R

mcount

0.04 _HTIMO_R

0.40 RJOB

0.03 HT_EV_S

0.03 _HRANDOM_F

0.02 _QS_N_X TRANSPORTER
0.01 HPRQ_R

0.02 _QS_N_X WORK_STATION
0.01 _calloc

0.02 QS WS NUM_MACH_WORKING
0.03 _QS_N_Q WORK_STATION

0.01 _HPSU_R
0.02 _HRNQ_R
0.03 _log

0.05 RT_Q_WORK_STATION

101.84 1 1320.00 _HTIME_R

103.12 98689
104.22 220716
105.28 208985
106.29 220716
107.21 130716
108.08 241264
108.90 429904
109.71 55210
110.46 43467
111.19 43467
111.86 55209

0.01 HREQ R

0.00 _HPCALL_R

0.01 HPSUSP_R

0.00 _HTIM1_R

0.01 _malloc

0.00 .mul

0.00 HDIM_F

0.01 _RT_X TRANSPORTER
0.02 _QS_WS DELAY_IN_QUEUE
0.02 _HERLANG_F

0.01 _RZ X TRANSPORTER

See the man page fprof(1) for more information.

13

UNIX SIMSCRIPT II.5 User’'s Manual

2.7 Makefiles

The file naming scheme that this compiler uses is compatible with the naming scheme used
by the C language compiler. Because of this, itis possible to use the“make” utility.

This utility only recompiles the source files that have changed since the last compilation.
This is an easy and reliable way to manage models of medium to largMake is not

very good at handling models whose sources are spread over many directories but, with
care, it is possible.

The makeutility relies on a special file, called a “make file”, to describe the rules for re-
building your particular model. By default, the “make file” is named emakefile or
Makefile . Other file names may be specified with -f option ofmake. See the man
page formake(1) for more information.

2.7.1 Compilation Sequence

The compiler knows about the following kinds of file extensions, and treats them as fol-
lows:

.sim: Compile as SIMSCRIPT source files.

SIM: Alternate suffix for SIMSCRIPT source files.

.0: Object files.

.C: C source files, produced in intermediate stage.
a Archive libraries to include in linking.

Filesmustbe named using this convention. For other kinds of file extensions, consult the
manual for youiC compiler. Files are named after the SIMSCRIPT source using the
following convention

myfile .sim-> myfile .o
This allows the use of makefiles.

The easiest way to use the compiler is to simply specify all the sources you want compiled,
and let the compiler compile and link them into an executable program. However, during
development of a large program, much time can be saved by only recompiling those source
files that have changed since the previous compilation. This is accomplished by saving the
object file for each source file. Then, when a source file is recompiled, the new object file
replaces the old, and all of the object files can be relinked to create a new executable. Link-
ing all of the object files imuchfaster than compiling all of the source files.

Make takes this one step further. It checks the modify time of each source file, and only
recompiles it if it isnewerthat its object file or the target executable. This way, only the
source files that need compiling are actually compiled. The actual compilation and linking
commands are specified in the makefile.

14

Developing SIMSCRIPT 1.5 Programs

2.7.2 Make Description File Format

The descriptions in this section are simplified. For a complete description of the file for-
mat, see the documentation that came with your system.

Entries in a makefile are of the following form:

targetl [target2 ...] : [dependentl ...]
<tab> command [# comments ...]

Items in square brackets are optional. <tab> must be a “tab” character. Shell meta-
characters such * and'?* are expanded. The entry is concluded with a blank line.

Makefiles can also contain simple macros. Macros can be defined in the make command
line, or more commonly, in the makefile. The definition is simple: a macro name, an
“equal’ sign, and the macro value. An examplPREAMBLE = Preamble.sim . A

macro is invoked by preceding the name with a dollar $$$ is used to represent a real
dollar sign). Macro names longer than one character must be parenthesized like this:
“$(PREAMBLE)". When the macro is invoked, its text is replaced with its current value, so

in our example, $(PREAMBLE)” would be replaced witPreamble.sim . Make also has

four predefined macros specific to the job it performs. These special mac$*, $@,

$?, and$<. These macros are re-evaluated before each command. They are evaluated as
follows:

* The$* macro is the root file name of the current file. For example, if the current
file werefrequency.sim , $* would equafrequency

* The$@ macro represents the current “target” file name.
» The$? macro is the string of file names found to be newer than the current target.
» The$< macro is the name of the file which caused this command to be executed.

2.7.3 Transformation Rules

A transformation rule is whimake uses to “transform” a source file into an object file, or
several object files into an executable. Many useful transformation rules are built into
maks, such as rules to compC, FORTRAN, or even assembler. Unfortunately, the rules
for SIMSCRIPT are not built in.

To providemakewith this information,makemust first be informed of the new source
suffix, .sim . This is done using a fake target cal. SUFFIXES. For our purposes,
.SUFFIXES: .sim .0 is sufficient. Nextmakeneeds to know how to transfol.sim

files into.o files. Wedo this using a transformation rule cal.sim.o . See the sample
makefile in paragrap2.7.t for an example. In transformation rules, the special macros are
set as follows$* is set to the file name without the suft$< is the name of the file to be
transformed, an$@ is the name of the file to be created (or updated).

15

UNIX SIMSCRIPT II.5 User’'s Manual

2.7.4 Special Notes

Each line in a makefile is executed by a new invocation of the shell, so commaicds like
for example, must be combined into one line using the shell command sep;; ”.tor, “

By default,makedisplays each command before executing it. This can be prevented by
preceding the command with an at si¢). (

If a macro is defined on ttrmakecommand line, it supersedes the makefile's definition, if
any is present. A typical use of this is to make SFLAGS=-O to use optimization on any
compiles that need to be performed.

There are several ways to force recompilation:

1. Usetouch(l) to update the source file's modify tirMakewill then consider the
source file “changed”. This will also force relinking if the corresponding object file
is a dependent of the executable.

2. Delete the corresponding object file. This has the same effect as the above.

3. Delete the executable. This will force relinking, but will not recompile any sources
unless they arout of date.

2.7.5 Sample Makefile

#

Generic makefile for SIMSCRIPT programs

#

MAKE ARGUMENTS:

<no arg> : Make executable with the name in the "PRG" parameter.
clean :Remove all non-source files, i.e. object files and

the executable and all intermediate files.

cleanexe : Remove the executable.
+H.

ke

FILL IN THE PARAMETERS BELOW UNTIL THE LINE
">>> END OF PARAMETERS <<<"

#
<<< PARAMETERS >>>

PRG: The name of the executable.
PRG = bounce

PREAMBLE: SIMSCRIPT source file containing the preamble.
SIMFILES: All other SIMSCRIPT source files. A "\" followed

immediately by a carriage return must be put at the

end of the line to continue to the next.

PREAMBLE = Preamble.sim

16

Developing SIMSCRIPT 1.5 Programs

SIMFILES = ball.sim bounce.sim done.sim init.sim main.sim menu.sim \
menuctl.sim output.sim

SFLAGS: SIMSCRIPT compile flags.
SFLAGS = -d

SIMLINK: Specify link command with SIMGRAPHICS I, SIMGRAPHICS II,
or no graphics; dynamic or static link.

<<< DYNAMIC LINK >>>
SIMGRAPHICS | - simgld1
SIMGRAPHICS II - simgld2 or simgld
NO GRAPHICS - simid

#
#
#
#
#
#
#
<<< STATIC LINK >>>

SIMGRAPHICS | - tsimgld1
SIMGRAPHICS Il - tsimgld2
NO GRAPHICS - tsimid
SIMLINK = simgld

#>>> END OF PARAMETERS <<<

#=========== BELOW HERE NO CHANGES SHOULD BE NECESSARY

SIMC: SIMSCRIPT compile command.
SIMC = simc

OBJS: List of .o files.
OBJS = $(PREAMBLE:.sim=.0) $(SIMFILES:.sim=.0)

The first (empty) .SUFFIXES clears the SUFFIXES list. The second
acknowledges only the .sim and .o suffixes. This avoids problems
with extraneous .c files and others.

.SUFFIXES:

.SUFFIXES: .0 .sim .c

$(PRG) : $(OBJS)
@echo "-- Linking ..."
$(SIMLINK) -0 $(PRG) $(OBJS)
@echo "-- $(PRG) was successfully built!"

clean :
@echo "-- Removing all intermediate files and the executable.”
rm -f *.0 *.c *.i *.s *~ core a.out $(PRG)

cleanexe :

@echo "--- Removing executables."
rm -f core a.out $(PRG)

17

UNIX SIMSCRIPT II.5 User’'s Manual

RULES

#
#

If preamble was changed, we need to recompile everything. Since
after that all *.o will be current, just the link is left in the
target above.

$(PREAMBLE:.sim=.0): $(PREAMBLE)
@echo "-- $(PREAMBLE:.sim=.0) outdated or missing!"
@echo "-- Recompiling everything ..."
$(SIMC) -c $(SFLAGS) $(PREAMBLE) $(SIMFILES)

How to make an individual object file from a simcript source file.

.sim.o:
$(SIMC) -cv $(SFLAGS) $(PREAMBLE) $*.sim

2.8 Obtaining Online Help

Online documentation regarding the use of the SIMSCRIPT I1.5 compiler can be obtained
by using thesimhelp command, e.g.

% simhelp simc

Simhelp by itself lists all topics for which help is available.

2.9 Example Program

The following is an example of a complete program and compilation.

% Is

Preamble.sim generator.sim main.sim

SIMUO1 job.sim stop.sim

% simc -| *.sim > listing

% Is

Preamble.o a.out* job.o main.o stop.sim
Preamble.sim generator.o job.sim main.sim

SIMUO1 generator.sim listing stop.o

% cat listing

18

CACI

©ooo~NOOUhWwWNERE

23
24
25
AS

26
27
28
29

Developing SIMSCRIPT 1.5 Programs

PAGE 1
SIMSCRIPT 1.5 (R) v2.0 6/26/1997 15:23:42

PREAMBLE

RESOURCES INCLUDE CPU AND MEMORY
PROCESSES INCLUDE GENERATOR AND STOP.SIM
EVERY JOB HAS A JB.PRIORITY
AND A JB.MEMORY.REQUIREMENT
DEFINE JB.PRIORITY AND JB.MEMORY.REQUIREMENT
AS INTEGER VARIABLES
DEFINE JOB.DELAY.TIME AS A REAL VARIABLE
EXTERNAL PROCESS IS JOB
EXTERNAL PROCESS UNITIS 1
DEFINE SMALL.JOB.INTERARRIVAL.TIME,
MEAN.SMALL.JOB.PROCESSING.TIME, RUN.LENGTH
AND STOP.TIME AS REAL VARIABLES
DEFINE NO.CPU AND MAX.MEMORY AS INTEGER VARIABLES
DEFINE MAX.MEMORY.QUEUE TO MEAN 1MAX.MEMORY.QUEUE

ACCUMULATE CPU.UTILIZATION AS THE AVG OF N.X.CPU
ACCUMULATE MEMORY.UTILIZATION AS THE AVERAGE
OF N.X.MEMORY
ACCUMULATE AVG.CPU.QUEUE AS THE AVG AND
MAX.CPU.QUEUE AS THE MAXIMUM OF N.Q.CPU
ACCUMULATE AVG.MEMORY.QUEUE AS THE AVG
AND MAX.MEMORY.QUEUE AS THE MAXIMUM OF N.Q.MEMORY

TALLY AVG.JOB.TIME AS THE AVERAGE AND NO.JOBS.PROCESSED

THE NUMBER OF JOB.DELAY.TIME

DEFINE HOURS TO MEAN UNITS

30 END "PREAMBLE

19

UNIX SIMSCRIPT II.5 User’'s Manual

PAGE 2
CACI SIMSCRIPTILL5 (R)v2.0 6/26/1997 15:23:42

PROCESS GENERATOR

1

2

3 UNTIL TIME.V >= STOP.TIME

4 DO

5 ACTIVATE A JOB NOW

6 LET JB.PRIORITY.. = RANDI.F(1,10,1)

7 LET JB.MEMORY.REQUIREMENT.. = RANDI.F(1,MAX.MEMORY,2)
8 WAIT EXPONENTIALF(SMALL.JOB.INTERARRIVAL.TIME,3) MINUTES

9 LOOP

10

11 END

20

CACI

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

Developing SIMSCRIPT 1.5 Programs

PAGE 3
SIMSCRIPT 1.5 (R) v2.0 6/26/1997 15:23:42

PROCESS JOB

DEFINE ARRIVAL.TIME AND PROCESSING.TIME
AS REAL VARIABLES
IF PROCESS IS EXTERNAL
READ JB.PRIORITY..,JB.MEMORY.REQUIREMENT.. AND
PROCESSING.TIME
ELSE
LET PROCESSING.TIME = MIN.F(EXPONENTIAL.F
(MEAN.SMALL.JOB.PROCESSING.TIME 4),2 *
MEAN.SMALL.JOB.PROCESSING.TIME)
ALWAYS
LET ARRIVAL.TIME = TIME.V
REQUEST JB.MEMORY.REQUIREMENT.. UNITS OF MEMORY (1)
WITH PRIORITY JB.PRIORITY..
REQUEST 1 CPU(1) WITH PRIORITY JB.PRIORITY. ..
WORK PROCESSING.TIME MINUTES
RELINQUISH JB.MEMORY.REQUIREMENT.. UNITS OF MEMORY(1)
RELINQUISH 1 CPU(1)
LET JOB.DELAY.TIME = TIME.V - ARRIVAL.TIME

END

21

UNIX SIMSCRIPT II.5 User’'s Manual

PAGE 4
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42
1 MAIN
2
3 WRITE AS /,"A COMPUTER CENTER STUDY", /, /
4
5 Open unit 1 for input
6
7 LET HOURS.V =1
8 CREATE EVERY CPU(1) AND MEMORY(1)
9 Let U.CPU(1) =1

10 Let UMEMORY(1) =6
11 LET NO.CPU =U.CPU(1)
12 LET MAX.MEMORY = U.MEMORY (1)

14 Let SMALL.JOB.INTERARRIVAL.TIME = 2.0

15 Let MEAN.SMALL.JOB.PROCESSING.TIME = 0.8
16 Let RUN.LENGTH = 12.0

17 LET STOP.TIME = RUN.LENGTH / HOURS.V

18

19 PRINT 6 LINES WITH U.CPU(1), UUMEMORY(1),

20 60/SMALL.JOB.INTERARRIVAL.TIME,

21 MEAN.SMALL.JOB.PROCESSING.TIME AND RUN.LENGTH THUS

A COMPUTER CENTER STUDY

NO. OF CPU'S ** STORAGE AVAILABLE ****
SMALL JOBS ARRIVE AT THE RATE OF ***/ HOUR

AND HAVE A MEAN PROCESSING TIME OF ****** SECONDS
LARGE JOBS ARE SUPPLIED AS EXTERNAL DATA
THE SIMULATION PERIOD IS **** HOURS
28
29 ACTIVATE A GENERATOR NOW
30 ACTIVATE A STOP.SIM IN STOP.TIME HOURS
31 START SIMULATION
32
33 END "MAIN

22

PAGE 5
CACI SIMSCRIPTIL.5(R)v2.0 6/26/1997 15

1 PROCESS STOP.SIM
2
3 SKIP 6 LINES

Developing SIMSCRIPT 1.5 Programs

:23:42

4 PRINT9LINESWITHTIME.V,CPU.UTILIZATION(1)*100/NO.CPU,

© 00 ~N O Ul

THUS
AFTER *** HOURS
THE CPU UTILIZATION WAS *** %
THE MEMORY UTILIZATION WAS *** %
THE AVG QUEUE FOR MEMORY WAS *.** JOBS
THE MAX QUEUE FOR MEMORY WAS *** JOBS
THE AVG QUEUE FOR A CPUWAS *** JOBS
THE MAX QUEUE FOR A CPU WAS *.** JOBS
THE TOTAL NUMBER OF JOBS COMPLETED WAS
WITH AN AVERAGE PROCESSING TIME OF = ****
19
20 STOP
21
22 END

MEMORY.UTILIZATION(1)*100/MAX.MEMORY,
AVG.MEMORY.QUEUE(1), MAX.MEMORY.QUEUE(1),
AVG.CPU.QUEUE(1), MAX.CPU.QUEUE(L),
NO.JOBS.PROCESSED AND AVG.JOB.TIME * MINUTES.V

*kk

MINUTES

23

UNIX SIMSCRIPT II.5 User’'s Manual

% cat SIMUO1

JOB 1.0031 5.00*
JOB 24612 7.00*
JOB 3.78 3310.00 *
JOB 9.28 22 30.00 *
JOB 10.48 1 4 40.00 *
JOB 24.22 1 560.00 *

% a.out
A COMPUTER CENTER STUDY

A COMPUTER CENTER STUDY
NO.OF CPU'S 1 STORAGE AVAILABLE 6
SMALL JOBS ARRIVE AT THE RATE OF 30/ HOUR
AND HAVE A MEAN PROCESSING TIME OF .800 SECONDS
LARGE JOBS ARE SUPPLIED AS EXTERNAL DATA
THE SIMULATION PERIOD IS 12.00 HOURS

AFTER 12.00 HOURS

THE CPU UTILIZATION WAS 47.74 %

THE MEMORY UTILIZATION WAS 10.39 %

THE AVG QUEUE FOR MEMORY WAS 1.16 JOBS

THE MAX QUEUE FOR MEMORY WAS 19.00 JOBS

THE AVG QUEUE FOR ACPUWAS .15JOBS

THE MAX QUEUE FOR A CPU WAS 2.00 JOBS

THE TOTAL NUMBER OF JOBS COMPLETED WAS 364
WITH AN AVERAGE PROCESSING TIME OF 3.527 MINUTES
%

24

3. SIMSCRIPT II.5 Language Considerations

Some features of the SIMSCRIPT I1.5 programming language vary from one
implementation to another. This chapter describes implememsgecific features of
UNIX SIMSCRIPT II.5.

3.1 Input and Output
Theopen statement associates a SIMSCRIPT I/O unit with a file. Its general form is

open [unit] EXPRESSION1
[for] {input]|output} <comma >
[[file] nameis TEXT1 |

binary |

recordsize is EXPRESSION2 |

noerror |

append |

scratch |

fixed
] < comma >

EXPRESSION1specifies the unit number. ifput is specified, thanit may appear in

use for input statements. Ibutput is specified, the unit may appearuse for
output statements. If bothhput andoutput are specified, thenit may appear in both
use for input statements angkse for output statements. However, it is necessary

to execute aewind statement before reading from an output file or writing to an input
file since the intermingling of 1/0O operations is not allowed.

TEXT1 specifies the name of the file associated with the unit. Hahe phrase is omit-
ted, the flenam&IMUnNn is assumed, where is the unit number. For example, for unit
3, the default flename SIMUO3.

The default file type is an ASCII file containing variable-length recordsindfy is spec-
ified, the file is treated as a binary file containing fixed-length recordiedf is speci-
fied, the file is treated as an ASCII file with fixed length records. The free4feat,
formattedread, print, write andlist statements are used with ASCII files. The
read as binary andwrite as binary statements are used with binary files.

Expression2 specifies the size of records in bytes. If iberdsize phrase is omit-

ted, the size of records is assumed to be 80. For binary files, this is the actual length of each
record. For files with variable length records, this is the maximum length of a record. Note
that the “newline” character is not counted as part of the record length. Examples are:

open unit 1 for input, recordsize is 132
open 7 for output, binary, name is "datafile"

25

UNIX SIMSCRIPT II.5 User’'s Manual

Normally, if a file cannot be opened for some reason, such as the file does not exist or the
filename is invalid, the program will be aborted with a runtime errcnoerror is spec-

ified, however, the program will not be aborted. Instead, a global varopenerr.v

for the current input unit, cwopenerr.v ~ for the current output unit, will be assigned a
non-zero value which may be tested by the program. For example:

open unit 12 for input,
file name is INPUT.FILENAME, noerror

use unit 12 for input

if ropenerr.v <>0
write INPUT.FILENAME as "Unable to open ™, T *, /
close unit 12

always

Note: Ropenerr.v andwopenerr.v will be set after thuse unit statement, not after
the open statement

If aunit which has not been opened appearsuse statement, it will be opened auto-
matically by the following statement:

open UNIT-NUMBER for input and output

The standard units — 5, 6 and 98 — are opened automatically by the system and may not
appear in aopen statement. The record size of each is 132. Unistdin , the standard

input unit. It is opene for input and is the current input unit when a program begins
execution. Unit 6 istdout , the standard output unit. It is operfor output and is

the current output unit when a program begins execution. Unitstderr , the standard

error unit. It is openefor output and is used for writing system error messages. Each

of the standard units is associated with the terminal unless it has been redirected.

The units 1-4 and 7-97 have no predefined meaning and are available for general use. Unit
99 isthe buffer . This unit may also appear in open statement, but trname phrase

is ignored and no physical file is associated with it. recordsize phrase is also ig-

nored. The record size fthe buffer is obtained from the global variabbuffer.v

with a default value of 132.

Theclose statement dissociates a SIMSCRIPT I/O unit from a file. Its general formis:
close [unit] EXPRESSION1
whereEXPRESSION1 specifies the unit number.

If the current input unit is closed, unit 5 becomes the current input unit. If the current output
unit is closed, unit 6 becomes the current output unit.

A unit which is open when a program terminates is closed automatically. All units, includ-
ing unit 99, may be closed, except for the standard units which emsirr open at all
times.

The global variablelines.v , indicates whether pagination is enabled for the current out-
put unit. By defaultlines.v=0 which indicates that pagination is disabled. To enable
pagination, initializelines.v to a non-zero value indicating the desired number of lines

26

SIMSCRIPT II.5 Language Considerations

per page. For example, to produce paginated output on unit 1, with 60 lines per page, spec-
ify:

use unit 1 for output

let lines.v =60

A record read from a file containing variable-length records will automatically have blanks
appended to it so that it is as long as the record size specified for the unit. Furthermore,
each tab character found in the record will be expanded into one or more blanks following
UNIX convention, i.e. tab stops are set every 8 columns, starting with column 1. The global
variablerreclen.v contains the length of the record last read from the current input unit
before blanks are appended but after tabs have been expanded.

3.2 Modes and Packing Codes

The followingmodes are supported:

Alpha An 8-bit unsigned integer used to store an ASCII character code
(O to 255)

Integer2 A 16-bit unsigned integer (0 to 65535)

Signed integer2 A 16-bit signed integer (-32768 to +32767)

Integer A signed integer of at least 32 bits

Real A floating-point number of at least 32 bits

Double A floating-point number of at least 64 bits

Pointer An address

Subprogram An address of a routine

Text An address of a character string

Bit packing is supported. For example, on 32 bit machines, any packing code (a-b) is al-
lowed provided that:

1l <ac<sb <£32
Examples: (1-4), (12-12), (21-22)

The following shows each of the available field-packing codes together with its equivalent
bit-packing code:

(1/2) (1-16)
22) (17-32)
(1/4) (1-8)
(2/4) (9-16)
(314) (17-24)
@414 (25-32)

Intrapacking codes, (*/2) and (*/4), are also supported.

27

UNIX SIMSCRIPT II.5 User’'s Manual

3.2.1 Alignment of Values

Some machines require strict alignment of double-precision floating point values on a dou-
ble word boundary. For maximum portability to these systems, variables and permanent
attributes of moddouble should be assigned to odd array numbers. Simildouble
temporary attributes should be assigned to odd word numbers or left for automatic defini-
tion.

3.3 Non-SIMSCRIPT Routines

This section illustrates how a SIMSCRIPT II.5 program can call a routine written in C or
FORTRAN.

3.3.1 Calling C Routines

Suppose we wish to call a subroutine naisub which is written in C and has two argu-
ments:

sub(inarg,outarg)
long inarg;
long *outarg;

The first argument is an input to the subroutine, and the second argument is an output. The
subroutine must be declared in the preamble:

define SUB as a nonsimscript routine

When calling this subroutine, the first argument should evaluinteger since this is
the SIMSCRIPT 1.5 mode which corresponds to the Clong . The second argument
must be a pointer to dnteger . This can be accomplished by passing a pointerin- n
teger array. For example:

define IN.ARG as an integer variable

define OUT.ARG as a 1-dim integer array

write as "Enter the input value:", /

read IN.ARG

reserve OUT.ARG(*) as 1

call sub(IN.ARG, OUT.ARG(*))

write OUT.ARG(1) as "The output value is ", | 10, /

Suppose we wish to call a function nanFUNC which is written in C and has one argu-
ment:

long func(inarg)
double inarg;

The declaration of the function in the preamble specifies the mode of the function:

define FUNC as an integer nonsimscript function

28

SIMSCRIPT II.5 Language Considerations

Here is an example of a call to this function:

define IN.ARG as a double variable
define RESULT as an integer variable

write as "Enter the input value:", /

read IN.ARG

let RESULT = FUNC(IN.ARG)

write RESULT as "The function resultis ", 1 10, /

It is very important that the SIMSCRIPT 1.5 mode of each argument and function matches
its C type. Here is a list of C types and the corresponding SIMSCRIPT 1.5 modes:

unsigned char alpha
unsigned short integer2
shorsigned integer2
long integer
float real
double double

If an argument is a pointer to a null-terminated character string, jtext value.

3.3.2 Calling FORTRAN Routines

Suppose we wish to call a subroutine naiISUE which is written in FORTRAN and has
two arguments:

subroutine SUB(inarg,outarg)
integer inarg
integer outarg

The first argument is an input to the subroutine, and the second argument is an output. The
subroutine must be declared in the preamble:

define SUB as a fortran routine

Unlike SIMSCRIPT I1.5 and C, FORTRAN passes arguments by reference, i.e., the address
of the argument is passed rather than its value. This is done automatically by the compiler
for all routines declared as FORTRAN routines.

write as "Enter the input value:", /

read IN.ARG

call SUB(IN.ARG, OUT.ARG)

write OUT.ARG as "The output value is ", | 10, /

Suppose we wish to call a function nanFUNC which is written in FORTRAN and has
one argument:

integer function func(inarg)
double precision inarg

29

UNIX SIMSCRIPT II.5 User’'s Manual

The declaration of the function in the preamble specifies the mode of the function:
define FUNC as an integer fortran function
Here is an example of a call to this function:

write as "Enter the input value:", /

read IN.ARG

let RESULT = FUNC(IN.ARG)

write RESULT as "The function resultis ", 1 10, /

It is very important that the SIMSCRIPT II.5 mode of each argument and function matches
its FORTRAN type. Here is a list of FORTRAN types and the corresponding SIMSCRIPT
I1.5 modes:

integer*2 signed integer2
integer integer

logical integer

real real

double precision double

Calling a FORTRAN routine that returnsreal or usesreal arguments results in a
special case. Unlike SIMSCRIPT II.5 and C which interreal/float function results
and assignments as 64-bit values, FORTRAN uses a 32-bit value. taio tis value
within a SIMSCRIPT I1.5 program, it is necessary to declare the function real but
asinteger and then “equivalence” céinteger andreal array to interpret the value as
real . For example, suppose we wish to call a function n.RFUNC which is written in
FORTRAN and has one argument:

real function rfunc(inarg)
real inarg

Declare the function in the preamble as follows:
define RFUNC as an integer fortran function
To call the function:

define IRESULT as a 1-dim integer array
define RRESULT as a 1-dim real array

write as "Enter the input value:", /

read IN.ARG

reserve IRESULT(*) as 1

let IRESULT(1) = RFUNC(IN.ARG)

let RRESULT(*) = IRESULT(*)

write RRESULT(1) as "The function result is", D(10,3),/

30

4. SimDebug Symbolic Debugger

SimDebugis the SIMSCRIPT I1.5 Symbolic Debugger. In contrast to other debuggers that
are separate programs, this debugger is built into the language. Simply compile the modules
you want to debug with debugging and then run your program with the command line ar-
gumentdebug . This will bring up the SimDebug dialog before the program starts. Since
the debugger is “always there,” any runtime error will also put you into the SimDebug di-
alog, where you can examine the stack, local and global variables, etc.

SimDebug'’s features include:

» single stepping

» setting breakpoints

* viewing stack and global variables

» displaying temporary and permanent entities

» displaying sets and arrays

» displaying system variables, 1/0O and memory statistics

» displaying the 1/O buffer

» displaying simulation status

* changing variables and attribute values

» stopping at a certain simulation time

» command/dialog logging

* and a lot more.
This chapter describes how to use SimDebug. We first describe how to compile for and run
SimDebug. Then we will give you a quick tour that introduces the usage and major features
of SimDebug in the style of a tutorial. A detailed alphabetical description of all the

SimDebug commands is given in paragrapB Some advanced topics related to
SimDebug are given in paragrapy.

4.1 Compiling for Debug and Invoking SimDebug

4.1.1 Compiling for Debug
This paragraph describes how to compile for debugging using the SIMSCRIPT I1.5.

There are three levels of debugging support that can be selected for compilation. The de-
bugging level is controlled through a command line optiainto . The three levels of de-
bugging are none, traceback only, and full debug. The selected debugging level applies to
all routines in the modules supplied to that invocatiosirof . The options arey for tra-

ceback, andad for full debug.

To be able to look at entities, system variables and global variables you must compile the
PREAMBLEvith debugging or traceback, i.e. with tde or-g option.

31

UNIX SIMSCRIPT II.5 User’'s Manual

You should not mix the debug and optimization flags irsimc call. That is, do not spec-
ify -d and-O at the same time, since this can lead to erroneous output from SimDebug.

4.1.2 Invoking SimDebug

To invoke SimDebug simply invoke your program with the command line o-debug .

This option will only be recognized by SimDebug and will not be visible to your
SIMSCRIPT I1.5 program as a command line argument. The position-debug option

on the command line is irrelevant.

SimDebug Dialog

When you invoke your program wi-debug you will be put into the SimDebug dialog.

Here you can examine the source, set breakpoints, and start your program. When you do
not specify the-debug option, your program will run as usual without any interference
from SimDebug.

At the beginning of the SimDebug dialog (whether you invoked it -debug or entered
the dialog through a runtime error) SimDebug looks for esimdebug.ini in the cur-
rent directory. If this file exists, it is loaded as a SimDebug command filREADCMEL).3
This way you can easily customize the setup and initialization of SimDebug.

SimDebug will always show SimDebug> prompt when it is ready for a new command.
Runtime Errors

Even when you do not compile your program with-d option and you do not call your
program with-debug, when SIMSCRIPT detects a run-time error, you are put into the
SimDebug dialog. You can then perform all SimDebuge@nds to inspect your pro-
gram, with one exception: You cannot continue execution from floating point errors, seg-
ment violations and bus errors!

When you do not want to enter the SimDebug dialog in case of a runtime error, you can set
the global system varial batchtrace.v=1 . Thisresults in the traceback being written

to simerr.trc , after which the program exits. This is a change from the behavior of the
previous release 1.9 where the traceback would always be output on the current output de-
vice (according twrite.v). However, using thtrace statement in your program will

still write the traceback to the current output uwrite.v).

Instead of settinbatchtrace.v = 1 in your program, you can also call your program
with the command line argumel-batchtrace . This automatically sets
batchtrace.v=1 . As with-debug , this command line argument will not be seen by your
SIMSCRIPT program.

If you want your program to exhibit the old traceback behavior and have a runtime error,
just write a traceback and then exit. Compile your program-g and then execute with
the option-batchtrace . The traceback will be written simerr.trc.

For further information see paragri4.4.1.

32

SimDebug Symbolic Debugger

Interrupting Running Programs

You can interrupt a running program by pressctrl-C (or the INTERRUPT key
combination defined for your system). This will put you in the SimDebug dialog where the
program is currently executing. This is very useful to detect endless loops or recursions. See
thectr-c command in the command reference paragraph for more details.

Text Input/Output

On UNIX platforms, the SimDebug dialog runs in the terminal window from which the pro-
gram was started. This means that the program's input/output using units 5,6, or 98 will be
intermixed with the SimDebug dialog, as you would expect.

However, when you redirect input or output when calling your program, this will not affect

the dialog of SimDebug. Thus, even if you tprog -debug < infile > outfile

the SimDebug dialog will still be connected to your terminal (window). This allows you to

debug programs that read a lot of input from unit 5 (standard-in) without the input interfer-
ing with the SimDebug dialog.

4.2 A Quick Tour of SimDebug

In this paragraph we will introduce SimDebug by example. In the following tutorial user
input is shown itbold face Courier , and SimDebuoutput and examplprogram

source are shown in thr egular Courier font . The SimDebug dialog is indent-
ed, our comments appear in between the dialog segmeitalic 1

We assume that we have recompiled all of our program usir-d compiler option (in-
cluding thePREAMBL so that we can see the attributes of entities).

4.2.1 Tour 1: Showing the Stack and Variables

Our program contains a runtime error. When the error occurs, SimDebug shows the error
messag floating point error. The meaning of the minor error code is machine
specific; here it means division by zero.

OS-prompt$ tst -debug
ERROR: Floating point error. Minor error code = 200

—--—--R1(sample.sim) Line=39
. 39> write B/Aas 14,/

SimDebug shows that the error occurred in rolR1, source filesample.sim , at line39.
The actual source code at that line is shown on the next line. To see a traceback of the rou-
tine call hierarchy, typt .

SimDebug> t

call stack =

--—-R1 (sample.sim) Line= 39

33

UNIX SIMSCRIPT II.5 User’'s Manual

Given Arguments:
A = 0 (Integer) [00000000]
B = 2 (Integer) [00000002]
Local Variables:
I = 5 (Integer) [00000005]
J = 1 (Integer) [00000001]

--—--R1 (sample.sim) Line= 36
Given Arguments:

A = 1 (Integer) [00000001]

B = 2 (Integer) [00000002]

Local Variables:
| = 5 (Integer) [00000005]
J = 1 (Integer) [00000001]

--—-MAIN (sample.sim) Line= 62
Local Variables:
#1 AARR = (null) (Pointer)

I = 6 (Integer) [00000006]
#2 IARR =00060548 (1-dim Integer array)
#3 IARR2 =0005C268 (2-dim Pointer array)
#4 LE = 0005C3E8 (Ptr--> class LISTELEM)

We now see theR1 is recursive and thiA is0. Obviously we tried to divide by zero.

A few more comments on the traceback output: The types of variables distinguished in the
output for each routine are: Given Arguments, Yielded Arguments, Local Variables, and
Saved Local Variables. Given and yielded arguments appear in the order in which they
were defined in the routine source code. All other variables (including the global variables)
appear in alphabetical order. Each line that shows a variable has basically the same format:

VarName Variable name

Value The value. Pointers are shown as 8 hex digits.

Mode Mode information for that variable. For pointers SimDebug shows
where it points to (which kind of entity, array etc.). For integers we also
show the value again as hex in [].

To see the global variables, tyglob . They are ordered by name and appear in the same
format as the variables in the traceback.

SimDebug> glob

#1 DSPLY.E = (null) (Pointer)

#2 F.LISTSET =0005C368 (Ptr--> class LISTELEM)
GLOBALD = 0. (Double)
GLOBALI = 0 (Integer) [0O000000]

#3 LISTELEM = (null) (Pointer)

#4 L.LISTSET = 0005C3E8 (Ptr--> class LISTELEM)
N.LISTSET = 5 (Integer2) [00000005]

34

SimDebug Symbolic Debugger

Again, we want to see where we are. wcommand shows us the context of the current
line (defaulit 5 lines) with a "=>" in front of the current line.

SimDebug> w

----R1(sample.sim) Line=39
.34 J=AB

.35 ifA>0

. 36 call R1(A-1, B)

. 37 else

. 38 writeas"B/A="

=>39 write B/Aasl4,/

. 40 endif

. 41 end

All these commands still apply to the current routine or the current frame in the traceback
(called hierarchy). If we want to see where we are in the routine that callR1, we must

move the current frame one level down (“Top of stack” is the last routine called, “Bottom
of stack” isSMAIN). Thedn command moves the current frame one level down and
SimDebug shows us the current line on that level. Then wtc to get a traceback of

only the current routine frame which is niR1 at stack leve2. Note that in this frame,

A=1. Withpv we can ask for only one variable. When it is in the current routine, that value
is printed. Otherwise, SimDebug looks at the global variables. Before actually printing the
line with the variable name, value and typv first prints whether the found variable is a
given or yielded argument, and whether it is a local, local saved, or a global variable.

SimDebug> dn

----R1(sample.sim) Line=36
36>. callR1(A-1, B)

SimDebug> tc

---—--R1(sample.sim) Line=
36
Given Arguments:

A = 1 (Integer) [00000001]

B = 2 (Integer) [00000002]

Local Variables:
I = 5 (Integer) [00000005]
J = 1 (Integer) [00000001]
SimDebug> pv A
Given Argument:
A = 1 (Integer) [00000001]

In large programs, variable names as well as routine names are generally quite long. To
avoid having to type in the whole variable name, you can enter just the first few letters.
SimDebugmatche your input with the defined variables. When your input uniquely iden-
tifies a certain variable, it will be printed as usual. When you pv G* and there are
several variables (locals or globals) that begin 'C, you will be offered a list of matches

from which you can select by number. In the same way, you can select from all variables
thatenc with a certairsuffix by usin¢ pv *suffix . When we want to use the input as a

35

UNIX SIMSCRIPT II.5 User’'s Manual

prefix the *" is optional. pv always looks in the current frame first, and then at global
variables to find variables with a certain name/pattern.

SimDebug> pv g*
---- Matching GLOBAL variable names ----

1 GLOBALD

2 GLOBALI
---> Select variable by number (O=none) > 2
Global Variable:

GLOBALI = 0 (Integer) [00000000]
SimDebug> pv li
#1 LISTELEM = (null) (Pointer)
SimDebug> pv *set
---- Matching GLOBAL variable names ----

1 F.LISTSET

2 L.LISTSET

3 N.LISTSET
---> Select variable by number (O=none) > 3
Global Variable:

N.LISTSET = 5 (Integer2)
[00000005]

In the same way you can restrict the output frorGLOt command with iprefixx or a
*suffix ~ argument. The following example ends our first tour:

SimDebug> glob g

GLOBALD = 0. (Double)
GLOBALI = 0 (Integer) [00000000]
SimDebug> glob *set
#1 F.LISTSET =0005C368 (Ptr--> class LISTELEM)
#2 L.LISTSET = 0005C3ES8 (Ptr--> class LISTELEM)
N.LISTSET = 5 (Integer2) [00000005]

SimDebug> quit
Leaving SSDB ...
OS-prompt$

4.2.2 Tour 2: Breakpoints and Single Stepping

We are now going to a different program that will illustrate the use of breakpoints, single
stepping and SimDebug's advanced pointer handling features. This program creates a few
entities and arrays. We call our program v-debug so that we are immediately put into

the SimDebug dialog. With tHr command we get a list of the routines in the program
that were compiled with debugging and their line number range. You can use wildcards at
the beginning and end of a routine name argumelr in the same way as with variable
names. Note hoR2, aleft routine, gets displayed. In these routines we can single step,
set breakpoints, etc. Wils we can look at the source of the roumain. A*“. ”in front

of a source line means that this line is executable and that you can set a breakpoint there.

36

SimDebug Symbolic Debugger

OS-prompt$ tst -debug
SimDebug (SIMSCRIPT Symbolic Debugger) Version 1.0

SimDebug> Ir {lists all routines compiled with debug or trace }

MAIN (sample.sim . 44- 64)
R1 (sample.sim 1 29-41)
R2-L (rtns.sim 0 1-32)
SimDebug> Irr {lists all routines that begin with an "R" }
R1 (sample.sim 1 29-41)
R2-L (rtns.sim . 1-32)
SimDebug> Is m { lists the (only) routine that begins with "M" }
--—-MAIN (main.sim: 44-64)
. 44 main

45 define LE as pointer variable
46 define IARR as 1-dim integer array
47 define AARR as 1-dim alpha array
48 define IARR2 as 2-dim integer array
49 define | as integer variable
50
. 51 reserve IARR as 10
. 52 reserve IARR2 as5 by 5
53
.54 forl=1t05
55 do
. 56 create a LISTELEM called LE
. 57 ATTRI(LE) = |
. 58 ATTRP(LE) = IARR2(1,*)
. 59 file LE in LISTSET
. 60 loop
61
. 62 callR1(3,2)
63
. 64 end

We can start our program simply by invoking s command (single step). But instead we

will set a breakpoint on the line where a new entity gets created andR1 gets called.
With Ib we get a list of the currently set breakpoints. \r we start the program which

runs until it hits the first breakpoint. A message is printed and the source line that will be

executed next is shown.

Note: The current line in SimDebug is the line that gets executed next. Thus, a breakpoint

at a certain line stops executibefore that line.

We also set a breakpoint at the beginninR2. Note that SimDebug asks for missing ar-

gument information.

SimDebug> sb main 56
SimDebug> sb m* 62 {"M" uniquely identifies MAIN, the "*" is optional}
SimDebug> sb r*
----- List of matching routines -----
1 R1

37

UNIX SIMSCRIPT II.5 User’'s Manual

2 R2-L
Enter routine by number > 1
Enter line number > 1
*** No executable source code at that line. Used line 4 instead.
SimDebug> Ib
------- List of Breakpoints --------
1 MAIN @ line 56
2 MAIN @ line 62
SimDebug> r
BREAK: User breakpoint

----- MAIN (sample.sim) --
Line = 56
56># create a LISTELEM called LE

After reaching the breakpoint, we single step through the program for awhile. Aftes' each
command, SimDebug shows the new 'current line' (that will be executed next). Since an
empty command repeats the last command we can simplyReturn to repeat the single-

step. If a line contains a routine cisl will stepinto the routine, whereen: will stepover

the routine. After we have stepped enough, we usc command to continue the program

until the next breakpoint.

38

SimDebug> s
57 ATTRI(LE) =1
SimDebug> { no input = repeat last command }
58 ATTRP(LE) = IARR2(l,*)
SimDebug>
59 file LE in LISTSET
SimDebug>
60 loop
SimDebug> ¢ { continue execution }
BREAK: User breakpoint

----- MAIN (sample.sim) -- — —

Line = 62

#>62 callR1(3,2)

SimDebug> Is { lists source of 'current routine'}
. 44 main

45 define LE as pointer variable
46 define IARR as 1-dim integer array
47 define AARR as 1-dim alpha array
48 define IARR2 as 2-dim integer array
49 define | as integer variable
50

. 51 reserve IARR as 10

. 52 reserve IARR2 as 5 by 5
53

.54 forl=1to5
55 do

56 create a LISTELEM called LE

SimDebug Symbolic Debugger

. 57 ATTRI(LE) = |
. 58 ATTRP(LE) = IARR2(I,¥)
. 59 file LE in LISTSET
. 60 loop
61
#>62 callR1(3,2)
63
. 64 end

Conditional Breakpoints: You can programatically set conditional breakpoints on ar-
bitrarily complex conditions by calling SimDebug itself! See para(¢4.4.€.

4.2.3 Tour 3: Pointer Handling: Entity / Set Display

Now the setis created and we are ready to look at the set and the entities.LISTSET

was declared in thrPREAMBL as 'owned by the system'. This is why the fields for the set
F.LISTSET, L.LISTSET andN.LISTSET are global variables. We first display the
global variables to see the variec)F.LISTSET , which holds the pointer to ttfirst
element in the set. Once we are in the set, we follow the pointersfp (follow pointer
debugger command) alc S.LISTSET (successor) to get to the next elements. Observe
that the attributATTRI is 1,2,3... and that thIATTRF points to the different arrays as
assigned in the loop.

SimDebug> glob

#1 DSPLY.E = (null) (Pointer)

#2 F.LISTSET =0005C368 (Ptr--> class LISTELEM)
GLOBALD = 0. (Double)
GLOBALI = 0 (Integer) [00000000]

#3 LISTELEM = (null) (Pointer)

#4 L.LISTSET = 0005C3E8 (Ptr--> class LISTELEM)
N.LISTSET = 5 (Integer2) [00000005]

SimDebug> fp #2
——————— Entity #2: 0005C368 (class LISTELEM) ----------

ATTRI = 1 (Integer) [00000001]
ATTRA =00 (hex) (Alpha)
#1 ATTRP =0005C2C8 (Ptr--> Array (5) of Integer)
#2 S.LISTSET =0005C388 (Ptr--> class LISTELEM)
#3 P.LISTSET = (null) (Pointer)
M.LISTSET = 1 (Integer2) [00000001]

SimDebug> fp #2
------- Entity #2: 0005C388 (class LISTELEM) ----------

ATTRI = 2 (Integer) [00000002]
ATTRA =00 (hex) (Alpha)

#1 ATTRP = 0005C2E8 (Ptr--> Array (5) of Integer)

#2 S.LISTSET = 0005C3A8 (Ptr--> class LISTELEM)

#3 P.LISTSET =0005C368 (Ptr--> class LISTELEM)
M.LISTSET = 1 (Integer2) [00000001]

SimDebug> {Pressing Return repeats last FP command. Step through set }

39

UNIX SIMSCRIPT II.5 User’'s Manual

------- Entity #2: 0005C3A8 (class LISTELEM) ----------

ATTRI = 3 (Integer) [00000003]
ATTRA =00 (hex) (Alpha)

#1 ATTRP =0005C308 (Ptr--> Array (5) of Integer)

#2 S.LISTSET =0005C3C8 (Ptr--> class LISTELEM)

#3 P.LISTSET =0005C388 (Ptr--> class LISTELEM)
M.LISTSET = 1 (Integer2) [00000001]

SimDebug> fp#1 {"FP" knows how to interpret pointers ; this is IARR(3,*) }
#1(1) =0 [00000000]
#1(2) =0 [00000000]
#1(3) =0 [00000000]
#1(4) =0 [00000000]
#1(5) =0 [00000000]

This concludes our quick tour of SimDebug. All commands are fully documented in para-
graph4..

4.3 SimDebug Command Reference

The SimDebug commands and their options are listed below in alphabetical order. When
commandhave abbreviations, the abbreviations are given on the next lines below the com-
mand. To list each command with its optional arguments the following notation is em-
ployed:

CMD arg: Command names and keywords are shown in UPPER CASE, arguments are
shown in lower case.

[...] Optional arguments are enclosed in square brackets.
a | b Alternatives are separated by the vertical slash.

For exampleLOG [CMDS|DIALOG|START|STOP|CLOSE] means that thLOC command

can have no argument, or can have one of the listed arguments. The T [from

[to]] ~means that the commaT (traceback) can have one or two optional arguments,
from andto. Command names and keyword arguments are shown in UPPER CASE,
arguments of commands are shown in lower caseREADCMDS cmdfile).

Basic Syntax: Each SimDebug command consists of command name followed by

one or more arguments, each seperated from each other by one or more spaces. There are
no parentheses and there is no nesting of expressions needed. SimDebug commnotds are
case sensitiv. Except for file names, upper/lower case is irrelevant.

Missing Arguments: Whenever possible, SimDebug will ask you for a missing argu-
ment instead of issuing an error message.

Repeat Last Command: When you presReturn (no command entered), the last com-
mand will be repeated. This is particularly useful fo S, N andFP commands.

Scrolling Output: The output of SimDebug will appear in the ‘terminal window' from
which you invoked your program. If your ‘terminal window' does not allow scrolling back,

40

SimDebug Symbolic Debugger

you can set a paramelSET SCROLLINES n so that the output will pause after evnry
lines (presReturn to continue).

Routine Names: Several SimDebug commands take routine names as arguments. You
can type the routine name just as you use it in your progranSTACK.ORDER.QUEL) .
Upper/ lower case in routine names is irrelevant.

Variable Names: You may use wildcards, i.e. th*", when entering variable names, or
may enter just the first few letters of the desired name. Whemplu iratches several
names you will be offered a list from which you can select the desired variable. Whenever
SimDebug looks for a variable, it looks in the 'current frame' first (local variables on the
stack), and when the specified variable is not found there, in the set of global variables.

List of SimDebug Commands:

#
Comment: The remainder of this line is discarded. This is useful for insert-
ing comments in command files ((READCML).;

?
Help: SeeHELF command.

BOT
Bottom: Set the 'current frame' to the bottom of the stack, iMAIN. See
note on ‘current frame' in tIDN command.

BPDIS n
Breakpoint disable: Disables breakpoirn (n comes from thé.B com-
mand).

BPEN n
Breakpoint enable: Enables breakpoim. TheLB command shows each
defined breakpoint with a number that can be use BPEN, BPDIS and
DE.

BR rtnname
Break in Routine: Sets breakpoint on the first executable line of the given
routine. Execution stops when the routine is entered.

BUF n

Show Buffer: Show the contents of the buffer of un. This can also be
used to show the contentsthe buffer , 1.e. unit 99.

ctr-c (INTERRUPT key)

This command interrupts your running program and enters SimDebug
SO you can see where you are in the program's executioncurrent
routine' is the currently executing routine.

41

UNIX SIMSCRIPT II.5 User’'s Manual

DB n

INTERRUPT in no-debug routine: When you do not compile the cur-
rent routine with debug, you will not be able to see the current line of
execution or the local variables/ arguments. You will only see the rou-
tine name. Ars (single step) command in a routine that was not com-
piled with debug will take you to the next line of code that was compiled
with debug (this may be several levels up in the calling hierarchy).

INTERRUPT during simulation: When you press the INTERRUPT
key while a simulation is running, SimDebug may report the current line
as the line that contains tstart simulation statement. This means
that your program is in between the last and the next process/event. A
single-step commars will take you into the next line of the next pro-
cess when you compiled that process routine with debug.

Continue: Continues execution. When there is no breakpoint set in the 'ex-
ecution path' the program runs until completion, until a runtime error oc-
curs, or until you presctrl-C to interrupt the running program.

Delete Breakpoint: Deletes breakpoirn (n is defined from the.B com-
mand).

DM [addr [type [count]]]

DN [n]

42

Display Memory: For the rare cases where you might want to look at mem-
ory in an unstructured way (e.g. for non-SIMSCRIPT data)DN com-

mand allows you to view areas of memory as Hex values (4 bytes each), as
Integers (4 bytes), Reals (4 bytes), 4 Doubles (8 bytes) or 40 characters (1
byte each). To display contiguous areas of memory, you ceDN in two

ways: First withDM addr type count , You set the starting point, the type
and the count of youmemory display. Then, subsequDN commands

(with NO ARGUMENTS) will continue memory display where the previ-
ous display left off. The arguments are:

addr Starting address (in hex)
type Type of display of itemH, P : 4 bytes as hell : integer,R:
real C: double, A : alpha. Default iH = hex.

count Number of items to display per command (always 4 per line).
For Alpha mode non-printable characters are show. ".s "

Down: Move 'current framen levels down (towardMAIN) in the stack. De-
faulttn=1 .

Note: Thecurrent frame is the routine being looked at in the cdlick
shown by theT traceback command. When you look at a certain variable

SimDebug Symbolic Debugger

with thePV command, you look first at the current frame, and then at global
variables to find this variable. Thus, wUP andDNyou can move the cur-

rent frame to allow inspection (e.g. a certain instance of a recursive routine
call).

ECHO argl arg? ...

EV

FP ptrvariable
FP ptrvalue
FP #n

Echo: Echoes the worcarg1, arg2, ... to the output. This is useful to
output messages from within a command file.

Event set:Prints information about the simulation, including the event set,
the current simulation time, the current and next process etc. For each pro-
cess/event the time of the next scheduled process/event and of the last
scheduled process/event of that class is shownpointer numbers|[#n]

in brackets behind the times. Using these pointer numjzercan step
through the event sets for each process/event type usiFP command.

The event/process that is scheduled next is marked v*" behind the

class number.

When only one process is scheduled in a class, ontime.a (First) is
printed (so you can easily tell that there is just one).

Entity in process.v : Process.v is a pointer to the process/event notice
of the currently active process/event. For a proCUSTOMER the entity
class will be CUSTOMER. This entity contains any user declared attributes
as well as some internal attributeNever ©iange any of the internal at-
tributes!

Follow Pointer: With this command you can display the contents of an ob-
ject that a pointer points to. This will generally be an entity, in which case
the entity attributes are shown, or an array, in which case the array elements
are shown. There are three varieties of the command:

FP ptrvariable . Ptrvariable Is the name of a (local or global)
pointer variable.

FP ptrvalue : Ptrvalue is a pointer value (in hex) taken from previ-
ous output.

FP#n : nis a pointer inde. Whenever a pointer is shown as output from
theT, FP or other commands, it is displayed with a prefix of the type
#n wheren is a running index. This way each pointer can be uniquely
identified by#n. The running inden is 'restarted’' by each command
that displays a pointer value. Th#n applies to the last display#n.
Thus, with theFP #n command you can follow a previously displayed

43

UNIX SIMSCRIPT II.5 User’'s Manual

FPN ...

GL [pattern]

pointer. This is very useful for all data structures that employ pointers,
such as lists, sets, your own graph structures etc.

Example: Walking through a set: To step through all elements of a set,
simply typeFP #n wheren is the index of the pointer that represents
F.setname (pointer to first in set). The first displayedegient will
have a pointer fielS.setname (to successor), say with ind#3. Re-
peated commancFP #3 will display one set member after another.

Temporary Entity Display: For temporary entities SimDebug shows the
whole entity with all attributes. Packing (*/2, */4, bit packing, overlap) is
fully supported. To see just one field of an entity, tFP entname
attrname

Note on Destroyed Entities Remember that when you destroy an entity,
the pointer to that entity is still there. But the storage freed by the 'destroy’
command will generally be reused immediately. Thus, a pointer variable
that points to an entity might suddenly displPtr --> Text ! Error

I "in its mode field, or appear to point to a different entity class even
though you did not touch that variable. This is especially noticeable for the
global process entitit that are deallocated when the corresponding process
is suspended or terminated.

Note on Global System Variables When global variables are listed you

will also see several internal/ system variables that are implicitly defined by
SIMSCRIPT 1.5 (such as resources, temporary entities etc). Instead of
hiding these values, SimDebug shows these internals since they are
documented, (such as fields of resources, etc). Howeveshould never
change a variable that you did not create/define you self.

Printing Text Values: SimDebug shows only a few characters of the text
in the normaPV output. To see the whole text, IFPtextvar . See notes
on the text display at trFP command.

Note on Integers Used as Pointer Since many SIMSCRIPT programs
useinteger variables to storpointer s as well, SimDebug allows you to
‘follow integers' as if they were pointers.

Like FP, but this command does not reset the pointer number counter. This
allows you to keep the 'access han#n to the entity after you have dis-
played it. This is needed for tISEV command (set entity values). See the
notes for theSEV command.

GLOB [pattern]

44

Globals: Prints a list of all global variables and their values (in alphabetical
order). See thT command for a description of the output.

H

HELP [name]

LB

SimDebug Symbolic Debugger

Pattern can beprefix orprefix* which shows all variables that begin
with the given prefix, o*suffix ~ which shows all variables that end with
the given suffix.

HELP: Gives an overview (just the names) of all SimDebug commands.
Whenname is given, SimDebug gives a more detailed description of the
topic/command with that namName can be either a command name, or a
topic name (such as 'breakpoints’). Both the command and topic names are
given in the help overview.

I/O Information: Shows information about the 1/O status of your program,
i.e. for each unit used whether it is input or output, which file is attached (if
any), how many records were read/written etc. UseBUF command to
look at buffer contents for units.

List Breakpoints: Lists all currently defined breakpoints. Disabled break-
points (seBPEN, BPDIS) appear in parentheses.

LOG [CMDS|DIALOG|STOP|START|CLOSE] [logfilename]

Command and Dialog Logging:You can have SimDebug wriall com-
mands or all of the dialog (commands and SimDebug output) to a log file.
Commancanc dialog logging cannot be active at the same time (there is
only one log file). The variants of the command are the only arguments list-
ed:

(without argument) Show status of logging.

CMDS [logfilename] Start command logging. Default file:
cmdlog.log

DIALOG [logfilename]
Start dialog logging. Default file:

dialog.log
STOP Stop current logging.
START Resume logging
CLOSE Close current log file. Allows you to start a

new log (command or dialog).

Whencomman logging is turned on, only the actual commands and not the
SimDebug> prompts are put into the log file. As a special cLOC com-
mands arenot put into the command | since you generally do not want

45

UNIX SIMSCRIPT II.5 User’'s Manual

them when repeating the command sequence. They are written to the dialog
log, however.

When you presReturn to repeat the last command, the full command name
will still be written to the command/dialog log.

LR [rntname|prefix*|*suffix]ALL|[NODEBUG]

List Routines: Liststhe names of the routines in your program in the fol-
lowing order:PREAMBLE, MAIN, and then all others in alphabetical order.

LR List all user routines compiled with debug or trace.

LR ALL List all user routines (nodebug routines prefixed \\; h
routines compiled witl-g are prefixed witlT).

LR TRACE List all routines compiled with tracebac-g).
LR NODEBUGLiIst all user routines that wenot compiled with debug.
LR prefix*

List user routines that begin wprefix ~ ("*" is optional).
LR prefix*-L

Append-L after the*” to see only left routines.
LR *suffix

List routines that end with a suffix (e LR *.CTRL)

Note: Continuous variables will display as right and left routines. When you
have a routine with the nanALL, TRACE or NODEBUG , you must use
ALL*, TRACE*, or NODEBUG* to get the routine individually.

LS [rtnname [from [to]]]

46

List Source: Lists the source lines of the given routine. The default is to
show the whole routine. Line numbers (from andto) are given relative
to the file (not relative to the routine beginning or the like).

When the program is active trtnname can be omitted in which case the
‘current routine’ (the source of the current frame) is shown.

Source Listing Format: Each output line consists of four fields:

1. A"." for executable source lines (you can set breakpoints there)
or a'#" when a breakpoint is set on that line

2. A ">"when this is the current line (of execution)

3. The source line number of the line (in the source file), and

4. The first 72 characters of the source line itself.

Note: Only the first 72 characters of a source line are printed so that all out-
put fits on one line.

SimDebug Symbolic Debugger

MEM

Memory Information: Shows memory statistics, such as how many enti-
ties of each type are currently created, and how many strings and arrays
there are.

Note: Since string and array counters are for both SIMSCRIPT internal use
and for user data, the numbers do not directly reflect your program's mem-
ory usage. Also, since SimDebug uses strings, the numbers will be higher
when compiling with debug. A good way to find out if your program has a
'memory leak' is to write down the number of strings, arrays etc. at the be-
ginning of the program, and then let it run for awhile. Interrupt the program
with ctrl-c and look again.

N [n]

Next: Execute the nexn (default:1) SIMSCRIPT source lines and then
return to the SimDebug dialoN steps over a routine call. This routine and

all routines called from this command execute until you are returned to the
SimDebug dialog. Unless, of course, there is a breakpoint set somewhere in
the called routines.

Also, see comment oiSpecifying Repeat index " in theS command.

Context Switch: When a context switch occurs durinN or S or Sk com-
mand, a message is printed accordingly.

PAV arrvarname [selvec]

Print array variable: With this command you can display all or part of a
multi-dimensional array or parts there Arrvarname must be an array
variable name and the whole array is printed by deiSelvec is the 'se-
lection vector' that allows you to limit the output. It consists of several ele-
ments with the following meanings:

n Show only this element from the current dimension

* Show all elements of this dimension

+ Stop display at this dimension.
A few examples will clarify this command. AssulARR3I is a 3-dimen-
sional integer array, reserved as (5,5,5). Then:

PAV ARR3I 1 Prints all elements (ARR3I(1,*,* (25 integers)

PAV ARR3I 23 PrintsARR3I(2,3,*) (5 integers)

PAV ARR3I *4 5

PrintsARR3I(1,4,5), (2,4,5), (3,4,5) ,
(5 integers)

PAV ARR3I 3+ Prints 5 pointers to the integer arrays of the last di-
mension, ie(3,1,*), (3,2,*), (3,3,%),

47

UNIX SIMSCRIPT II.5 User’'s Manual

Equivalencing: An array may be defined and reserved as a 5-by-5 integer
array. But if you assign this pointer to an array variable of m2-dim
alphaarray " you can look at the data as alphas. PAvcommand uses

the mode of the given array variakarrvarname) to determine how to in-
terpret the data.

PDV arrvarname [selvec]

PDV ptrvariable [selvec]

PDV ptrvalue [selvec]

Print descriptor variable: Same aPAV except that the array is printed
from the information contained in the array descriptors. That is, the array
will be printed with the mode it was first reserved as.

PT textvar|textptr

PV varname

48

Print text values in full: This command prints the whole text of a text vari-
able or a pointer pointing to a text value. This command is needeP\Mnce
only prints the first few characters of a text string. The whole text value is
printed with string quotes around it and- " at the end of each line when

the text continues on the next line. Thus, on an 80 character line you can see
77 characters of text (with two string quotes around it, a- " at the end).

Text attributes: If the text you want to see in full length is an attribute of
an entity, you can use the address of the text that is given with the attribute
output as an argument FP. The same holds for arrays of text pointers.

Print Variable: Prints the value and type information for the variable
varname . SimDebucfirst searches the current frai, and ifvarname is

not defined therethen the global variable for varname . As described at

the beginning of this paragraph, you can use wildcards to specify the
variable nameprefix, prefix*, *suffix). When several variables
match, a selection list is shown.

Format of output: Before printing the line with the actual variable,
SimDebug prints the type of variable it found: Given Argument, Yielding
Argument, Local Variable, Local Saved Variable, or Global Variable.

Then each line follows basically the same format:
ptrnum varname = value (mode information)

where the fields contain:

ptrnum For pointers: Th#n entries for thé=P (follow pointer) com-

mand.
varname The variable name.
value The value. Text is shown to the extent that it fits in the space,

where internal string quotes are not doubled (i.e. a string

QUIT

READCMDS cmdfilename

SimDebug Symbolic Debugger

containing a single string quote is printed as "™). Integers
and alpha characters are printed as usual, where non-
printablealpha values are also printed in hex. Freal s
anddouble s you can define the output format wSET
OREALF (seeSET command). Pointers and subprogram
variables are shown in hex.

mode info

Mode information. For integers, the value in "[]" in hex is ap-
pended. For pointers, pointer destination information (e.g.
entity class, array type) is show*** Bad pointer ***

means that this is an illegal address, i.e. an address that
would cause a segment violation if it were used. For subpro-
gram variables the subprogram name is shown. SETe
EXTINFOO when you do not want this extended information
for pointers.

Array mode info

Normally, arrays mode formation is shown as the array
was declared in the program, e.@2-dim integer

array ". With theSET parameteSHOWARRAYPT you can
choose to see the internal structure of the arrays, instead.
That is, you can see the pointer structure (arrays of pointers)
that make up multi-dimensional arrays. This is necessary
when dealing with ragged arrays or assigning array
fragments.

Printing Text Variables: The normal output cPVv andT shows just the
first 10 characters of the text. If you want to see the whole texiPTise

Quit: Quit/exit from SimDebug. All open log filesilvbe closed. Syn-
onyms areQ, EXIT, END, BYE

Run: Run/start your program from the beginning. You cannot start your
program 'in the middle’, or restart the program withk command. To re-
start for debugging you must call your program again -debug .

Read Commands from File:With this command you can put a series of
commands into a file and read them in just as if you had interactively typed
them at SimDebug. This is useful in corgtion with command logging

49

UNIX SIMSCRIPT II.5 User’'s Manual

S[n]

(seeLOC) when you want to store and then replay a sequence of commands
that got you to a certain place.

Normally commands reafdom a file are not echoed by SimDebug, even
though output from these commands (LR) is, of course, visible. When
you want to see the commands read from a command file yoSETin
OREADCMDS 1

Init Command File: At the beginning of the SimDebug dialog, SimDebug
looks for a filesimdebug.ini in the current directory. When this file ex-
ists, it is read as a SimDebug command file before you enter the SimDebug
dialog. In this file you can store your preferred SimDebug parameter set-
tings (se SET command).

Empty lines in a command file are ignored.Commands from a command

file are not remembered in the "last command" buffer. However, since '‘emp-
ty commands' that re-execute the last command are still written to the com-
mand log file in full, you will still get exactly the same behavior when
reading a command file previously written as a command log.

Step: Single step. It executes the nn (default:1) SIMSCRIPT source
lines and then returns to the SimDebug dialS steps iito routines when

the next instruction is a routine call. Thatis, it stops on the first instruction
in the called routine.

Specifying Repeat Index n:After a single step command, SimDebug will
show you the next executable source line. This is the source line that will
be executed by the neS comman. When you specify a repeat indnx

you generally do not want to see the output oin source lines executed.
However, if you do, you can enable the output for repeatable comns, 1ds (
N, UP, DN) with SET OREPCMDS ..

Context Switch: When a context switch occurs durinN or S or Sk com-
mand, a message is printed accordingly and the current simulation time is
printed.

SET [[parname] [newvalue]]

50

Set SimDebug Parameter Several aspects of SimbBeg commands are
controlled by parameters that you can charSET without arguments lists
the values of all SimDebug parameters. When a paremeter parname)
is given, you can change its value. For exanSET OREPCMDS .. You
only have to type the first few letters (SE7parameter that make it uniqtie.

SimDebug "SET parameters” and their meaningn: integer > On: 0 or
1; defaults are given in []):

SET WW n [5] (WhereWidth) Shov+ n lines withw command.
[5]

SimDebug Symbolic Debugger

SET OREALF deab

(OutRealFormat): Output format for Reals/ Doubles.
They are output ede(a,b), e.9g."E(14,4)'[D
176]

SET OREPCMDS m
Show output from repeated commann=1) or not.

[0]
SET OREADCMDS m
Show output from read commann=1) or not. [0]

SET EXTINFO m

Show extended information for pointer in mode field.
[1]
SET GLOBWTRACE m

Show global variablesGLOE) with trace command
(M. [0]
SET SHOWINTGL m

m=1: Show internal global variables wiGL. [0] In-
ternal global variableA.*, 1.*,G.*) are created
by SIMSCRIPT and are, in general, not useful to see.

SET SCROLLINES n

n>0: Output pauses aftni lines. PresReturn to
continue. [0]

SET SHOWARRAYPTRS m

nm=1: Show array mode information not 2-dim
integer array " but as the internal pointers that
implement this array. [0]

SET SHOWSTACKLEVELS m

m=1. ShowSL=.. , (the stack level in traceback). [0]
SET SHOWLIBRTNS m

n=1: Show library routines in traceback [0].
SET NAMECOMPLETION n

nm=1: Variable and routine hames are automatically
completed by SimDebug. That FP CU will follow

the pointer thabegin: with CL. In case of multiple
matches, you are offered a choice.

51

UNIX SIMSCRIPT II.5 User’'s Manual

Note on OREPCML anc OREADCMD: Even when output from read or
repeated commands is turned off, the output from the last command that
wasread or repeated will be shown so that you can see 'where you landed'.

SEV entname attrname value

Set Entity Values Allows you to change the attribute value of a temporary
entity. For quoting rules to set text values seeSv command. For
entname Yyou can enter the same values asFP: an entity pointer name,
an entity pointer value (in hex) own (pointer number).

Using#n for entname : When you get to an entity usiFP (follow pointer)
commands, the display of the pointer attribun the entity will ‘overwrite'
the pointer numben you used to display this entity (wiFP #n). Thus,
there is no longer a val#n to use folentname . You should 'go back out-
side' of the entity (e.g. back one element in a list) and theFPN #n to
display the entity FPNworks likeFP except that it does not reset the pointer
numbers. This way you will keep all pointers along the way for uSE\.y

Limitations: It is currently impossible to change values of permanent enti-
ties (i.e. arrays). Also, you cannot set the values of packed temporary entity
attributes.

SB rtnname lineno

SNAP

Set Breakpoint: Sets a breakpoint in routirtnname at linelineno . You
can use. " for the routine name to denote the current routine (routine in the
current frame).

Snap: Calls your specified 'snap routitSNAP.R. This is useful for debug-

ging complicated data structures that require special (user) code to display
relevant information. You can use normal write statements to output your
data.

Note that the output from thisnaj routine’ will NOT appear in the log file
(seeLOC) but in the normal program’s output. Thus, when output is redirect-
ed, the ‘snap routine’ will write into your output file.

SRCDIRS [src_dir_list]

52

Allows you to specify kernate directories where SimDebug can find the
SIMSCRIPT source files (fcLS, W etc.). src_dir_list is a list of di-
rectories seperated by spaces. Wheisrc_dir_list is given, the cur-
rent source directory list is shown.

In searching for source files, SimDebug always starts at the current
directory. If the surce file is noffound there, SimDebug looks into the
directories in the order they were given insrc_dir_list . When your
executable runs in a directory other than where it was built, it is advisable to
specify the source directoriesabsolute patt.s

SimDebug Symbolic Debugger

Example:
SRCDIRS /src/d1 /src/d2 /src/d3

STOPTIME [stoptime]

Stop at Simulation Time: Allows you to stop execution (and call
SimDebug) when the simulation time reaches the given stoptime. A
stoptime of 0.0 means that there 'is no stoptime active'. The stoptime is only
valid for 'one stop'. It is then reset to zero (set inactive again).

SV varname value

SYSVARS

T [from [to]]

Set Value: Allows you to the change values in your program! 'Sv to
change values of simple variables of any type. You can change local vari-
ables, arguments and global variables.

Fortext values:Enter the text enclosed in string (double) quotes. When the
string you want to enter should contain a string quote itself, it mdou-e

blec, i.e. a single string quote is denoted by """.

UseSEV to set attributes of entities.

System Variables:Shows the values of several system variables such as
read.v, write.v, buffer.v, prompt.v , anc hours.v

Traceback: Prints a traceback of the current caddck (the hierarchy of
called routines) starting at the last called routine dowMAIN. The argu-
mentsfrom andto can be given to limit the traceback to a range of routines
(useful for deep recursionFrom andto are specified as the level numbers
given in the traceback for each routiiMAIN is at level 1), where. " as a
level number means the 'current frame'.

By default, the level number{SL=...] in the routine header in
traceback) are not given in the traceback. However, they are useful for deep
tracebacks (when you want to see only part of the traceback) and for
recursion. You can enable the display of these stack levelsSET
SHOWSTACKLEVELS. SeeSETcommand.

Global variables: Generally the global variables are not considered a part
of the traceback and hence are not shown witlT command. If yolSET
GLOBWTRACE 1(seeSET command) you will also get the global variables
at the end of each traceback (implGLOE command).

Output: For each routine, SimDebug first prints a line with the routine
name, the file name, possibly the stack level and the current line number.
When a routine is compiled with debug, all its local variables are shown
with its values and modes. When a routine is not compiled with debug, only
the routine name is shown. The variables are given in a sequence of sections:

53

UNIX SIMSCRIPT II.5 User’'s Manual

TC

TOP

UP [n]

W [n]

Given Arguments (ordered as in routine definition), Yielding Arguments
(ordered as in routine definition), Local Variables (ordealphabeticall)
and Local Saved Variables (also ordealphabetically).

The extent of the output for each variable is controlled by several SimDebug
parameters. See ' SETcommand. The format of the output for each vari-
able is described by t Pv command.

The 'current frame' and 'current routine': The T command shows you

the whole traceback, i.e. all routines in the call stack. Each invocation of a
routine that is on the stack is calle(stack) frame: Initially, after aT com-
mand, thetop routine on the stack (farthest away frMAIN) is called the
current routine, which is in thecurrent frame. Since a routine can be
called recursively we must destinguish between 'routine’ (the source code)
and the 'frame' (invocation of the routine [its arguments and local vari-
ables]). WhelPV looks up a variable, it starts at the current frame and when
the variable is not found there, it looks at global variables. The commands
up. dn. top. bot move the 'current frame' up, down, to the top (last
routine called), or bottorrMAIN).

Traceback Current: Write trace of current frame.

Top Frame: Set ‘current frame' to the top of the stack which is the last user
routine called (farthest away froMAIN). See note on 'current frame' in the
DN command.

Up Frame: Set 'current framen levels up (away frorMAIN) in the stack.
Default:n=1 . [SL=...] in the header line shows the stack level. See
note on ‘current frame' in tIDN command.

Where: Shows where you are in the source in the current frame. It shows
n source lines around the current line. The defn is taken from the
SimDebug pameterw\ (se¢:SET command). The 'current source line' is
shown with a >" in front of it. Breakpoints appear witi#" in front of the

line.

WT [filename [from [to]]]

54

Write traceback (output ofT) and the output from thiO, MEN andEV
commands to a file. The default filenametrace.out . By specifying
from andto you can limit the traceback to those levels. When the trace file
exists it is overwritten.

SimDebug Symbolic Debugger

WTA [filename [from [to]]]

Write Trace Append: Same aW except that the output is appended to the
trace file.

55

UNIX SIMSCRIPT I1.5 User’s Manual
4.4 Advanced Topics

4.4.1 Batchtrace.v

Normally, when a SIMSCRIPT program runs into a runtime error, SimDebug will be called
SO you can examine the stack and variables to find out what went wrong. Sometimes you
may want to just get a traceback into a file and want the program to terminate on a runtime
error, e.g. when you run it in batch mode. When you set the system variable
batchtrace.v=1 , aruntime error will cause the traceback. The I/O, event and memory
information will be written to a fixed filsimerr.trc

Another way of settinbatchtrace.v to1 is to call your executable with the command
line option-batchtrace . As with-debug this option is not seen by your application pro-
gram.

Settingbatchtrace.v = 2 causes an immediate exit in case of a runtime error or a user
interrupt (e.gctrl-c). No traceback is written.

4.4.2 Signal Handling / External Events

SimDebug uses the signal handling facilities of the operating system to catch events like
floating point errors, segment violations etc. If your program uses C code that sets its own
signal() handling routines, you mustnement out that code as long as you want to use
SimDebug on that program. Any mix will not work.

4.4.3 Reserved Names

In SIMSCRIPT all names that begin wiiletter> . " or end with .<letter> ", where
"<letter> " is any letter, are reserved for the system's usage. This is why they do not ap-
pear in SimDebug.

If you use such an illegal name, e.g., for a routine, it will not appear as a user routine in
SimDebug. You can not see it with ILR command. Thus, even if such a routine name
does not clash with a system routine, you should not use these kind of names.

4.4.4 Displaying Arrays

Before discussing SimDebug's array display capabilities we must discuss some background
information. Each SIMSCRIPT object that a pointer can point to, such as arrays, text or

dynamic entities, has a descriptor that contains information on what this 'object’ is and how

to interpret the data. For instance, an entity descriptor contains the entity ID and, an array
contains the size of the array and the type of its elements. This means FP (follow

pointer) command can always follow a pointer to anything and display what it finds.

Apart from that, SIMSCRIPT supports array equivalencing. You can define an array
IA(*) forinstance as a 1-dim integer array, and then assign the [IA(*) to a variable
of type 1-dimalpha arrayAA(*) and look at the data as characters.

56

SimDebug Symbolic Debugger

The commanPA\ (Print Array Variable) looks at the arriéhrough the eyes of the array
variable, i.e. in the above examfAA(*) asalpha .

The commanPD\ (Print from Descriptor Variable) always looks at the array with the data
given in the descriptor. It looks at how the array was first created, and, in the example
above, looks at the array integer

4.4.5 Permanent Entities and System Owned Variables/Sets

Permanent entities are implemented as a set of 1-dimensional arrayifl Hygiear as glo-

bal arrays. Use trGLOE command. At this point the different fields of a permanent entity
are not shown together (e.g. with the entity name), but appear seperatelalpha bet-

ical listing of all global variables.

‘The system owns'... variables and sets show up as global variablealpha betical
order.

4.4.6 Conditional Breakpoints

Certain problemonly appear after a large amount of data has been processed. For exam-
ple, after 10000 iterations in a loop. To allow you to break the process and go into the de-
bugger upon any arbitrarily complex condition, SimDebug offers you a direct call to
SIMDEBUG.F.

When you call this routine from your application program you are put into the SimDebug
dialog just as if you had set a breakpoint. You camere the stack, global variables,
entities, and single step through the program in the usual manner.

Example:

fori =1 to 10000
do
.... do something
if i>10000 and A+B-C > DATTR(ENTPTR)
call SIMDEBUG.R
endif
loop

4.4.7 Continuous Variables

Continuous variables (for continuous simulation) are implementright and left func-
tions Therefore, they will show as right and left routines inLR command, but not as
variables.

4.4.8 Unsupported SIMSCRIPT Features

All SIMSCRIPT features are supported by SimDebug Release 1.0, with the exception of
packed permanent entities.However, packetemporan entities are supported.

57

UNIX SIMSCRIPT II.5 User’'s Manual

WARNING

Simdebug Recursion SimDebug protects itself from errors
that normally cause a program to fail, such as attempting to
use a bad pointer, or having unaligned accesses. However,
in some rare cases it can happen that SimDebug does not
catch an error condition that then causes another error 'with-
in' SimDebug. Since SimDebug is a program that is called
when an error occurSimDebug will be called from within
SimDebu! You will get a warning message.

You can look at some more variables, but you cannot contin-
ue the execution. Exit from SimDebug wQUIT and restart
your program to find the error.

58

A. Compiler Warning and Error Messages

A.1 Warning and Error Messages

During compilation, warning messages and error messages may be produced. The text of
each message appears below:

1001 Invalid syntax

A word found in the input stream did not conform to the syntax requirements of the
SIMSCRIPT II.5 language. The unrecognized word is ignored and the error scan resumes
with the next statement keyword in the input stream.

1002 Missing ')’

An arithmetic expression or subscript is missing a right parenthesis. A (possibly mis-
placed) right parenthesis is assumed.

1003 Missing terminal " in ALPHAliteral

An ALPHAumeric string must be contained on one line.

1004 More format specifications than variables

In formattedread andwrite statements, there must be a one-to-one correspondence be-
tween variables and format descriptors. The format descriptors, including “/,” must be sep-
arated by commas. Inpaint statement, fields are defined by “*” or a sequence of at least

8 contiguous periods.

1005 More variables than format specifications
See message 1004.
1006 Conflicting or redundant properties indefine

More than oneMODE, DIMENSION or TYPE specification appears in the sadedine
statement. The indicated statement is ignored.

1007 Number of subscripts different from definition or previous use

A subscripted variable is redefined with a different number of subscripts than originally, or
asetname infdle orremove statementis improperly subscripted.

1008 else or always without matching if

The indicated statement is misplaced in the program.

1009 if not terminated by always

This error is detected at the end of a routine.

59

UNIX SIMSCRIPT II.5 User’'s Manual

1010 Use conflicts with definition

The previous definition or use of this name precludes its use in this context. This message
can apply in a number of cases. The most common are described below.

* Abelong clause in alevery statement does not refer to a set name.

» Common membership in sets is limited to temporary entities.

* Anevery statement attempts to define an entity but the name has already been
defined differently.

* A define statement attempts to define a variable, a procedure or a set, but the
name has already been defined differently.

* The variable in aexternalunit statement has already been defined differently.

* The attribute of has clause has already been defined differently or a common
attribute is defined with a differeword assignment or packing code.

* Attempttcread or write a variable defined as a set.

* Attempt torelease a quantity which is not an array, a routine or a subprogram
variable.

* Attempt to store in random variable.
1011 lllegal assignment target

This error is caused by an illegal attempt to store information in a built-in function. Built-
in functions includeabs.f, div.f, int.f, real.f, mod.f, max.f, min.f and

all text -related functions. Except fisubstr.f , these functions cannot be used on the
left-hand side of assignment statements «ielded arguments.

1012 Array number out of range

Application has more than 8000 variables and/or permanent entities. The maximum per-
missible array or word number for global variables or permanent attributes is 8000. Use of
an array number larger than this is not permitted in this implementation.

1013 Context requires routine name

A routine statement uses an incorrect name or the name appearing is not a routine name.

1014 return with not allowed here

Event routines and left-handed routines cannot return any values.

1015 loop without a matching do

Theloop statement is ignored by the compiler.

1016 Implied subscripting attempted on a common attribute

Common attributes must be explicitly subscripted.

60

Compiler Warning and Error Messages

1017 Number of given arguments inconsistent with definition

A call or function reference uses a number of arguments different than that defined for
the subject routine.

1018 Multiple definition of label

The label has been defined elsewhere in the routine.

1019 Subscript required on label

The label name was previously encountered with a subscript.
1020 Name repeated in parameter list

The names in thgiven arguments list or in thyielded arguments list may each appear
only once in the list.

1021 Undefined label

This error is detected at the end of a routine.

1022 do without a matching loop

This error is detected at the end of a routine.

1023 MAIN routine should usestop

The MAIN routine should not usereturn statement. The compiler substitutestop
statement.

1024 Missing end

The compiler supplies ttend statement and completes the processing for the routine.

1025 define to mean or substitute incomplete

An end-of-file was encountered during the processingsubstitute statement or no
substitutable text was found. Blanks and comments (") are invalid substitutable text. The
statement is ignored.

1026 Inappropriate mode or dimension for implicit subscript

Due to local redefinition, the mode or dimensionality for this implied subscript is inappro-
priate. The compiler ignores the dimensionality but uses the new mode.

1027 Attribute in first 5 words of event notice is illegal

The first five words of an event notice containtime.a, m.ev.s, p.ev.s, s.ev.s
andeunita attributes. These attributes cannot be redefined. The compiler ignores the
specification.

61

UNIX SIMSCRIPT II.5 User’'s Manual

1028 Context requires an unsubscriptecsubprogram variable

An indirect call to a function using tt$ name feature requires that subprogram vari-
able name be unsubscripted, as the subscripts are treated as given arguments for the indirect
call.

1029 Attribute in first 8 words of process notice is illegal

See message 1027. In additiorprocess notice contains thepc.a, rsa.a,
sta.a andfrs.s attributes.

1030 Temporary attribute word number out of range

The maximum permissible entity length is 1023 words. Entities of this size should never
be required.

1031 Subscripts not permitted for this variable

A variable defined as unsubscripted is used with a subscript.
1032 Non-integer subscript on a temporary attribute
Temporary attribute subscripts must be pointers.

1033 Negative constant used as a subscript

This illegal condition cannot be compiled.

1034 Subscript not permitted on label

A label is used with a subscriptirgoto statement or is defined as subscripted although
it has already appeared without a subscript.

1035 thenif statement appears outsidif

Thethen keyword can only be used within if block. The compiler ignores tlthen
word.

1036 Missing ‘)" in logical expression

A (possibly misplaced) right parenthesis is assumed.

1037 div.f valid only with integer values

A floating-point division is performed.

1038 Number of yielding arguments inconsistent with definition
See message 1017.

1039 Attribute of mixed compound entity must be a function

Attributes of mixed compound entities (compound of at least one permanent entity and at
least one temporary entity) must be functions. The compiler assumes a function definition.

62

Compiler Warning and Error Messages

1040 Attempt to equivalence function attributes

Function attributes are not assigned any storage and therefore cannot be equivalenced.
1041 Missing)" in equivalence attribute group

A (possibly misplaced) right parenthesis is assumed.

1042 Attempt to pack function attribute

Function attributes are not assigned any storage and therefore cannot be packed.

1043 Attempt to pack unsubscripted system attribute

The packing definition cannot be honored.

1044 lllegal packing code

For bit packing, the bit numbers should satisfy the ineqi 1l < n < n < 32. For field
packing and intra-packing, the denominator mus2 or 4.

1045 Packing code */n) illegal for temporary attribute

The*/N packing codes can only be used for arrays (such as attributes of permanent entities
or subscripted attributes the system). A field packing ofl/N is assumed.

1046 Compound entity may not belong to a set
The compiler ignores ttbelong clause.
1047 Attempt to define non-local variable as saved or recursive

This is an attempt to define a local variable inPREAMBL. The definition is not pro-
cessed.

1048 Incorrect mode specified for packed variable
Packing applies only iNTEGEF quantities.
1049 Defining set not previously declared irevery statement

Set definitions must be placed after owns anc belongs clauses defining their owner
and members. The definition of the set is ignored. This may cause follow-on errors.

1050 Statement should be preceded by a control phrase

A compute statementfind statementwhen statement or a controll read or write
statement must be withinfor , while oruntil block.

1051 write format used inread statement
A character string appears in fas clause of #ead statement.
1052 lllegal or out of place *'

Either an attribute of a temporary entity or an argument to a function call is subscripted by
an*, or an array reference has* before the last subscript.

63

UNIX SIMSCRIPT II.5 User’'s Manual

1053 Attempt to perform set operation on a non-set

A file statement, remove statement, for each of set statement, aif set
isempty or abefore orafter statement references a quantity not defined as a set.

1054 Statement requires attributes not defined for named set

Afile statement, remove statement, aif set is empty or ¢ for each of set
phrase is used, but the necessary set attributes were deletwithout phrase.

1055 Name of a permanent entity required in this context

A create each statement or for each statement must refer to a permanent entity.

1056 also statement outsidedo ... loop

Analso statement appeared outside do block. The compiler assumedo statement
after thealso block.

1057 Name of a temporary entity required in this context

A create statementdestroy statement obefore orafter statement must refer to a
temporary entity.

1058 group used without column repetition
An in groups of phrase must be controlled bfor phrase. The statement is ignored.
1059 Name of anevent required in this context

Theevent, process, activate, cause, cancel, break ties andpriority
statements must refer to an event or process name. Inthe ca event orprocess
statement, a routine namRO is assumed.

1060 Misuse of suppression amid column repetition group

The suppression phrase is misplaced.

1061 Context requires afor phrase to follow the wordprinting
Theprinting phrase is not properly programmed.

1062 Column repetition context requiresin groups of phrase
The column repetition clause must includein groups of phrase.
1063 Column repetition group size is illegal

Thein groups of phrase specifies0 group size. The compiler assumes a valLl: of
in its subsequent error scan.

1064 end statement required to terminate report heading

An end statement is assumed at this point by the compiler.

64

Compiler Warning and Error Messages

1065 end statement required to terminate report

An end statement is assumed at this point by the compiler.
1066 print O lines statement is ignored

Subsequent error messages may refer to form lines.

1067 Too few formats or too many expressions print

There must be a one-to-one correspondence between expressions and format specifications.

1068 Set owner or member not defined

A set name must appear in bothowns clause and belongs clause to be defined. Both
theowns and thebelongs clauses must precede the set definition.

1069 Attributes of common set must be declared in aevery statement

The set pointers must appear inevery statement. No attribute definition takes place.

1070 Mode of quantity conflicts with automatic definition

Thelv orN attribute for a set, or ttN.entity name for a permanent entity were explicitly
defined withreal mode. They must kinteger

1071 Number of subscripts conflicts with automatic definition

The attributes of a set were explicitly defined with an incorrect dimension, or the
N.entity = name for a permanent entity was defined as a subscripted variable.

1072 Explicit definition conflicts with automatic definition

One of several conditions has appeared:

» The owner or member attributes of a set were explicitly defined and their definition
conflicts with theowns orbelongs clause for the set.

« TheN.entity name for a permanent entity is neither a global variable nor aper-
manent attribute cthe system

« TheF.name or S.name of arandom variable should be left for automatic defini-
tion.

1073 Ranking attribute must be declared in anevery statement
The ranking attribute in trdefine set statement is not an attribute of the member entity.

1074 lllegal file statement for ranked set

The file first, file last, file before , anc file after statements are not
permitted on ranked sets.

1075 Number of given arguments exceeds the maximum allowed

The combined number given andyielding arguments cannot excel27.

65

UNIX SIMSCRIPT II.5 User’'s Manual

1076 Number of yielding arguments exceeds the maximum allowed
See message 1075.

1077 Number of subscripts exceeds the maximum allowed

The maximum number of subscripts allowe254.

1078 Label subscript must be between 1 and 3000

The maximum subscript allowed on a labe3000. Since subscripted labels require a ta-
ble as large as the maximum subscript value, smallest program size suggests that subscripts
should normally range froiliton in increments o1.

1079 Number of recursive local variables exceeds available space.

Each routine has 1024 words of storage available for recursive local variables. Some of
this total is used by variables which the compiler generates internally.

1080 Context requires subscripted label
A subscripted label is required at this point.
1081 Yielding arguments illegal in left-function

Yielding arguments are not allowed in monitoring routines or left-handed functions. The
routine is scanned by ignoring tyielding argument list.

1082 enter statement permitted only in left-functions

This statement should be the first executable statement in a left-handed routine.
1083 Global properties specified in loce define

Local variables cannot be monitored, packed, or definstream variables.

1084 Incorrect number of given arguments in left-function

A routine monitoring a variable must be given the same number of arguments as the num-
ber of subscripts originally defined for the variable.

1085 move statement not allowed here

A move to statement can only appear in a right-handed routinmove from can only
appear in a left-handed routine. The statement is out of place.

1086 before creating and after destroying options not allowed
After creating anc before destroying can be used to collect usage statistics.
1087 More arguments than defined attributes inprocess or event

It is necessary to define an attribute to hold each argument received by the event. The ex-
cess arguments supplied can receive no values.

66

Compiler Warning and Error Messages

1088 More arguments than defined attributes inactivate

It is necessary to define an attribute to hold each argument received by the event. The ex-
cess arguments supplied cannot be stored anywhere.

1089 Context requires name of an entity

A list attributes of statement does not refer to a temporary entity.
1090 lllegal attempt to break ties on an external event

External events cannot appeabreak ties statements.

1091 lllegal attempt to equivalence random attributes

Random attributes cannot be equivalenced with other variables of any type.
1092 lllegal mode for a random variable

A random variable cannot be alpha or text mode.

1093 stream phrase ignored - variable not defined arandom

Thedefine name asstream statement should be placed after the definition of the vari-
able as irandom variable.

1095 cycle orleave ignored - no loop in effect

Eithercycle orleave must appear withindo ... loop block.

1096 Missing here for a jump back

A here statement must exist prior to the occurrence of a matjump back statement.
1097 Missinghere for a jump ahead

A here statement must appear aftump ahead . This error is detected at the end of
the routine.

1098 Both accumulate andtally illegal on the same variable

The mixing of statistics type is not allowed for a given variable. See message 1099.
1099 accumulate/tally illegal for monitored/random variables

These operations are in fact implemented by constructing monitoring routines.

1100 Statistic requested twice for the same variable

One statistical keyword appeared more than once for a given variable.

1101 Improper type of variable for accumulate or tally

Accumulate ortally can be requested for unsubscripted global variables, attributes of
permanent entities, temporary entities, event notices, processes, resources and compound
entities. They cannot be requested for subscripted global variables, subscripted attributes
of the system , or common attributes of temporary entities.

67

UNIX SIMSCRIPT II.5 User’'s Manual

1102 Attribute for accumulate or tally improperly pre-defined

The variables containing the accumulated or tallied statistics should be left for automatic
definition by the compiler. They should not appecdefine statements.

1103 Accumulate ortally on an undefined variable

The name of the variable is probably spelled wrong.

1104 Histogram of attribute of a temporary entity is forbidden

Histogram s may be requested for global variables, system attributes, and attributes of per-
manent entities.

1105 Improper word boundary for a variable of mode double

Certain systems — the Gould and IBM mainframes among them — require that all double-
precision floating point numbers be aligned on a double-word boundary. This requires that
unsubscriptedouble permanent attributes be assigned to odd-numinarray num-

bers, and thedouble temporary attributes be assigned to in word numbers. Other
systems — such as the VAX — do not require such assignments, but are compatible with
them.

1106 Multiple else statements not allowed on if

The language allows only oelse statement. Other diagnostic messages may indicate
the priorif statement was not processed.

1107 Thenif statement aftelelse - obscure structure

Thethenif construction is not permitted on a structuif . Correct by explicitly using
else andalways statements as appropriate instead of uthen if

1108 Else statement afterthenif - obscure structure
See message 1107.
1109 A statement above this point is unreachable

An unlabeled statement group of satements follows return or an unconditional
transfer. This may be due to a missing laelse, orcase statement.

1110 Process not declared routine assumed

Theprocess routine has not been declared inPREAMBL .2
1111 This statement may appear only in grocess

1115 lllegal implied conversion betweertext and other modes

Usettoa.f oratotf or access conversion routineswrite andread using the
buffer

68

Compiler Warning and Error Messages

1116 Improper argument mode for intrinsic function

An argument of modtext was expected and not found, ctext argument was given
where a numeric argument was expected.

1119 Packed variable cannot be passed in this context

Array rows of variables that are bit packed, or packed (n/m), cannot be passed as arguments
to NONSIMSCRIPT routines. Individual elements or arrays pac/m) are valid argu-
ments.

1120 Improper first argument to left substr.f
The first argument 1 substr.f must be an unmonitored text variable.
1121 Attempt to equivalencetext variable

Text variables cannot be equivalenced with other variables.

1124 Conflicting parameters in open or close

Theopen orclose statement was used improperly.

1126 open does not specify eitheinput or output

Eitherinput oroutput (or both) must be specified asopen statement option.
1127 text function illegal in store statement

Thestore statement should generally not be used text data. In this instance, its use
would result in permanent loss of a block of memory.

1128 double variable overlap caused by equivalencing

A double variable occupies two successive array number locations. The second of these
should not be assigned to any other use.

1129 always is preferred usage in this context
The else (otherwise) statement should be changed tcalways .

1130 Number of labels exceeds allowed maximum

Implementation constraints impose a limit on the allowed number of statement labels. The
routine should be subdivided into two or more routines.

1131 Subprogram variable used out of context
A subprogram variable may not be used within a computation.
1132 Implicit conversion of subprogram variable

Onlysubprogram variables osubprogram literal values may be assigned to a variable
declared as mocsubprogram .

69

UNIX SIMSCRIPT II.5 User’'s Manual

1133 Dimensioning of attributes not permitted

Attributes of temporary and permanent entities are implicitly 1-dimensional, subscripted by
an entity pointer value. The explicit dimensioning of these may cause ambiguity. A di-
mension of 1 is substituted.

1134 lllegal use ofstore with quantities of differing mode
This usage ostore may have undesirable side-effects and is no longer permitted.
1135 Use ofstore with text quantities may have undesired effect

The use of thstore statement betweetext quantities is allowed, but strongly discour-
aged, because it disables the automatic actions that assure the intetext values.

1136 Variable is undefined or not fully defined

This message appears when the background mode has been explicitlundefined
using enormally statement.

1137 Parameter inopen statement not supported

Differences in operating systems do not allow complete compatibility between
SIMSCRIPT 1.5 implemetations of theopen statement. Ungported paraeters are
ignored.

1138 Release routine statement no longer supported
The statement is ignored.
1139 Reset references variable notaccumulate dortally ed

Totals do not exist for a variable which has not been the objec! accumulate or
tally statement.

1140 Reset uses qualifier not declared as such

Only a qualifier defined for aaccumulated ortally ed statistic may be specified in a
reset statement.

1141 This statement not supported or no longer required

1142 Local variable used only once

The indicated local variable appears only once in the routine. This could be due to a typo-
graphical error.

1143 Local variable never modified

The indicated local variable has not been modified by the routine. This means that its value
is always zero (¢™ , if atext variable). This could be due to a typographical error.

70

Compiler Warning and Error Messages

1144 Bad Block structure - overlappinc do andif

The statement violates SIMSCRIPT I1.5's structured programming nesting rules, by over-
lapping one of the following three control structures:

e do...loop
e |f... else ... endif
e select ... case ... default ... endselect

For example, if the statement in error Jloop statement, then &f block was not ter-
minated by alendif , or aselect was not terminated by «endselect . The error will
also be seen when one block overlaps a portion of another blockif ... do ...

else ... loop ... endif

1145 Variable or function name required

A non-numeric quantity — such as a set — cannot be the objecread, print , or
list statement. A statement sucl list attributes of each entity in set
may have been intended.

1146 Assignment between incompatible data types

Check the modes on both sides of the equal sign in an assigilet) statement.

1147 Implicit conversion of pointer variable

The indicated variable must be either mpointer or modeinteger

1148 Name of aresource required

Therequest andrelinquish statements apply to resources only.

1150 Multiple MAIN routines encountered

Only oneMAIN routine may be included in any compilation.

1151 case control outsideselect...endselect

A case ordefault statement can be used only between a corresposelect ...
endselect pair.

1152 Mode ofcase term does not matchselect

The mode of the term is incompatible with the mode ¢ select expression. Some
mode conversion is performed. real expression may include integer terms, and both
text andalpha expressions require string litecase terms. If necessary, assign the
expression to a variable of the appropriate mode.

1153 case term duplicates previous term(s)

This term is unreachable because itis completely blocked by corresponding terms in an ear-
lier case statement. This message will not be giverselect expressions with a mode
of real, double , Ortext

71

UNIX SIMSCRIPT II.5 User’'s Manual

1154 Statement not allowed afterdefault

Thecase ordefault statement is not valid withir select block after the use of the
default statement.

1155 Nocase statements appear withinselect

Eachselect ... endselect block must include at least ocase statement.

1156 Selectcase without matching endselect

Eachselect case block must be terminated by a matchendselect statement.

1158 Symbol redefinition

A localdefineto mean is redefining a glob definetomean , without an intervening
suppress substitution . This may have unexpected consequences. For example, if
the PREAMBLEcontains the statemedefine .NUMBER to mean 10 , and a routine
contains the statemedefine .NUMBER to mean 20 , the compiler will first substitute

10 for .NUMBER in the routine, making the statement rdefine 10 to mean 20 ,

and will then substitut10 for 20 throughout the remainder of the routine.

1161 Changing PROCES pointer may affect implicit subscripting

Changing the pointer to PROCES within its PROCES routine will prevent the routine

from later accessing the attributes of the current process. Such attributes are often
referenced through implied subscripts. This warning may be the resulactivate

create or remove statement intended to point to a different process notice. Use a
different pointer name to avoid this problem.

1162 Storage may not be deallocated odestroy of aprocess

When aPROCESSterminates normally, SIMSRIPT I1.5 autoratically peforms some
memory management functions. By explicidestroy ing thePROCES pointer, these
functions are disabled. In general, iPROCES may be terminated prematurely, the
PROCES itself should check for the conditions requiring termination, rather than having
the PROCES pointer destroyed by a separate routine.

1163 Context requires the name of (HISTOGRAM

A statement of the forraccumulate HISTOGRAM.NAN (LO to HI by INCREMENT)
as the histogram of VARIABLE.NAME must appear in trPREAMBL. Also see mes-
sagell0s.

1164 Name of routine is not a monitored variable

SIMSCRIPT I1.5 monitors global variables by defining routines with the same name. In
this case, you have provided a routine with the same name as a global variable, but the vari-
able is not being monitored. Rename the variable or the routine.

72

Compiler Warning and Error Messages

1165 Statement out of place

A PREAMBL type statement appeared in a routine, or vice versa. The unrecognized word
is ignored and the error scan resumes with the next statement keyword in the input stream.

1166 Invalid literal value
The value of the literal provided is too large to hold in a variable location.

1167 Returned Function mode undefined

The mode of the value returned by a function must be declaredPREAMBLE(define

FN as a FN.MODE function). If the mode is not explicitly included in tldefine
statement, the background (i.normally mode is...) mode currently in effect is as-
sumed.

1168 Function should return a value
1169 Statement incomplete
1170 Pointers can test for equality only

1171 Used as imlicit subscript

SIMSCRIPT I11.5 is free format and allows for usage of implicit subscripts. This increases
the expressive power of the language but sometimes is error prone. You can suppress im-
plicit subscripts by using the SIMSCRIPT 1.5 language statement:

suppress implicit subscripts

The compiler will generate warning message 1171 whenever it detects implicit subscripts
usage. The scope of tsuppress statement is global if used in a PREAMBLE or local if
used in a routine. Usage of implicit subscripts can be resumed by the statement:

resume implicit subscripts
Any number oisuppress/resume statements are allowed in a routine.

1172 Subscript should be pointer mode

73

UNIX SIMSCRIPT II.5 User’'s Manual

74

B. Runtime Error Messages

B.1 Runtime Error Messages

When a runtime error is detected, a runtime error message is written to standard error. The
text of each message appears below:

2001 zero raised to a negative power

2003 negative number raised to a real power

2004 invalid I/O unit

The unit number is less than 1 or greater than 99.

2005 negative expression in SKIP INPUT statement

2006 attempt to file an entity in a set it is already in

TheM.set attribute of an entity beingILE d in a set is not equal to zero.

2007 attempt to file before or after an entity that is not in the set

TheM.set attribute of the entity in thieefore orafter phrase is equal to zero.
2009 attempt to remove from an empty set

TheF.set attribute is equal to zero whememnove operation is attempted.

2010 attempt to remove an entity that is not in a set

TheM.set attribute is equal to zero whemeanove specific operation is attempted.

2011 invalid random number stream

The absolute value of the stream number is less than 1 or greater than the number of random
number streams (normally 10).

2013 attempt to schedule an event/process already scheduled

Them.ev.s attribute of the event/process is not equal to zero whkelmedule operation
is attempted.

2014 attempt to cancel an event/process not scheduled

Them.ev.s attribute of the event/process is equal to zero whwanal operation is at-
tempted.

2016 no memory space available

The program is attempting to dynamically allocate more memory than the operating system
will allow.

75

UNIX SIMSCRIPT II.5 User’'s Manual

2017 negative argument initoa.f

2018 argument > 9 initoa.f

2019 attempt to use a write-only 1/O unit for input

An /O unit opened for output only appears iuse for input statement.
2020 attempt touse a read-only I/O unit for output

An 1/O unit opened for input only appears use for output statement.
2021 attempt touse a unit for input that is in the output state

An 1/O unit las used for output appears in use for input statement without an
interveningrewind .

2022 attempttouse a unit for output that is in the input state

An 1/O unit lastused for input appears in use for output statement without an
interveningrewind .

2023 unable to open existing file

See the UNIX error message on the line following this message for more information.

2024 unable to create new file

See the UNIX error message on the line following this message for more information.

2025 subscript out-of-range

An array subscript is less than 1 or greater than the number of array elements.

2027 range error on computedgo to

The index value used ina compLgoto statementis less than 1 or greater than the num-
ber of labels.

2028 formatted read goes beyond the end of input record

An attempt is made to read characters beyond the record size specified for the unit.

2030 formatted write goes beyond the end of output record

An attempt is made to write characters beyond the record size specified for the unit.
2032 negative field width in input format

2036 negative field width in output format

2040 mixed binary and character I/O

An 1/O operation allowed only on an ASCII file is attempted on a binary file, or vice versa.

76

Runtime Error Messages

2041 invalid character while reading 'C' format

A character is read which is not one of the following: blank, 0-9, A-F, or a-f.
2044 output format field width greater than record size
2048 input format field width greater than record size

2051 zero entity pointer

The pointer used to identify a temporary entity is equal to zero.

2052 reference to destroyed entity

This error can be caused by keeping copies of an entity pointer in several variables, destroy-
ing one copy, and referencing attributes of another copy.

This error is detected by the runtime checking option. If the of-C) is omitted, a “bus
error” may occur instead, or bad values may enter a computation, causing a delayed failure.

This is actually a special case of error “2053: invalid entity pointer.” It is not always pos-
sible to detect a destroyed entity, since the memory may have been reused since it was de-
stroyed. If this is the case, you will get error 2053 instead.

2053 invalid entity pointer

The pointer used to identify a temporary entity does not contain the address of a temporary
entity.

2054 wrong temporary entity class

The pointer used to identify a temporary entity contains the address of a temporary entity
which belongs to an entity class different from the one that was expected.

2058 reference to unreserved array

The pointer used to identify an array is equal to zero.

2060 zero or negative subscript specification irreserve statement

The number of array elements specified reserve statement is less than 1.
2061 dim.f for array is > 65535

The number of array elements specified reserve statement is greater th65535 .
2062 attempt to create invalid entity class

The entity class is not recognized when attemptircreate an entity, which is usually
caused by failing to link the compiler-generated rousetup.r

2066 invalid array pointer

The pointer used to identify an array does not contain the address of an array.

77

UNIX SIMSCRIPT II.5 User’'s Manual

2067 reference to a released array.

This error also appears for references to attributes of a permanent entity that has been de-
stroyed. The error is detected by the runtime checking option. The comments that apply
to destroyed entities apply here as well.

2068 end of file encountered during read operation whileeof.v =0

2069 fatal 1/0O error during read

See the UNIX error message on the line following this message for more information.

2070 fatal 1/O error during write

See the UNIX error message on the line following this message for more information.

2071 record length exceeds specifi¢ recordsize

A record is read from the current input unit which is longer than the record size specified
for the unit.

2072 'B' format input column is not within record

The column number is less than 1 or greater than the record size specified for the unit.

2076 'B' format output column is not within record
See error 2072.

2077 incomplete record on a fixed format file

The last record read from a binary file is shorter than the record size specified for the unit.

2084 invalid character in 'I' format during input

A character is read which is not one of the following: blank, +, -, or 0-9.

2088 integer number too large for input

A value is read which falls outside the rang integer values: -2147483648 to
+2147483647 .

2093 attempt to createtext string > 32,000 characters

2094 attempt to erase nontext entity

A value which is notext is encountered in a situation whertext value is required.
2095 position zero or negative irsubstr.f
2096 length negative ir substr.f

2097 offset negative inmatch.f

78

Runtime Error Messages

2101 transfer to missinc case in select

In aselect statement, the expression is not equal to any of the values specified in any of
the case statements and rdefault statement has been specified.

2103 wild transfer in subprogram variable CALL

The value of thsubprogram variable is not equal to the address of a routine.

2104 wild transfer in subscripted goto statement

An attempt is made tgoto an undefined subscripted label.

2106 attempt to suspend when no process is active

A wait, work, suspend, request orrelinquish statement is executed by a rou-
tine which is neither a process nor a routine called from a process.

2107 attempt to relinquish more resources tharrequest ed

An attempt is made trelinquish units of a resource that were not previously obtained
by arequest

2112 parameter 2 negative in 'D' or 'E' format

A negative number of decimal places is specified.

2116 parameter 2 > parameter 1 in 'D' or 'E' output format

The number of decimal places exceeds the total width of the field.

2122 parameter 2 > parameter 1 in 'D' or 'E' input format
See error 2116.

2124 real number too large for input

A value is read which falls outside the rang double values.
2128 invalid character in 'D' or 'E' format during input

A character is read which is not one of the following: blank, period, +, -, E, e, or 0-9.
2130 negative argument taskip fields — cannot skip backwards

2132 mean inexponential.f call<0

2133 mean inerlang.f call<0

2134 number of stages irerlang.f call<0

2135 mean inlog.normal.f call<0

2136 standard deviation inlog.normal.f call<0

2137 standard deviation innormal.f call<0

79

UNIX SIMSCRIPT II.5 User’'s Manual

2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2152
2153
2154
2155
2159
2160
2161
2162
2169
2171
2173

mean inpoisson.f call<0

second parameter less than first irandi.f call
second parameter less than first iuniform.f call
number of trials in binomial.f call<0
probability in binomial.f call<0

shape parameter <= 0 irweibull.f call

scale parameter< 0 in weibull.f call

mean ingamma.f <0

shape parameter ingamma.f <0

first parameter in beta.f call<0

second parameter itbeta.f call<0

value oflog.e.f orlog.10.f argument<O
absolute value ofarcsin.f or arccos.f argument>1
values ofarctan.f arguments = (0,0)

value ofsqrt.f argument <0

negative time expression in call anday.f
negative time expression in call cweekday.f
negative time expression in call chour.f

negative time expression in call cminute.f
(minimum < mean< maximum) is false intriang.f
attempt to open a unit already open

invalid recordsize inopen statement

The record size is less than 1 or greater than 65534.

2176

attempt to close a file already closed

An attempt is made tclose orrewind a unit that is not open.

2177

attempt to close a standard SIMSCRIPT unit

An attempt is made tclose orrewind unit5, 6 or 93

80

Runtime Error Messages

2178 unable to close file

See the UNIX error message on the line following this message for more information.
2185 unable torecord memory

2186 unable torestore memory

2188 unable to reopen or reposition a file duringrestore memory

2193 system service error

For VMS systems only - unexpected error condition from VMS received by SIMSCRIPT
library procedure.

2213 Originr must be called before calendar functions

2217 negative argument tcout.f

An attempt is made to reference a column position less than 1.

2218 argumenttooutf exceeds buffer length

An attempt is made to reference a column position greater than the record size specified for
the unit.

2220 simulation time decrease attempted

The value otime.v has decreased since the last event occurred.

2221 no event/process to match name in external event data

The external event data contains the name of an external event/process which has not been
defined in the preamble.

2222 invalid external event name
2224 error in use of calendar time format

2225 attempt to destroy an entity owning a non-empty set

An F.set attribute of theentity is not equal to zero wheidestroy operation i attempted.

2226 attempt to destroy an entity that is in a set

AnM.set attiibute of the entity is not equal to zero\n adestroy operation is attemed.
2227 attempt to use a random variable that has not been read

2228 Alpha probability encountered in random variable data

2229 probability not between 0.0 and 1.0 in random variable data

2230 end of file while reading value field in random variable data

2231 Alpha value encountered in random variable data

81

UNIX SIMSCRIPT II.5 User’'s Manual

2232 Real value whereinteger expected in random variable data

2233 first cumulative probability not zero in data for random linear variable
2234 cumulative probability values not in increasing order

2235 individual probability values not allowed for random linear variables
2236 sum of probability values more than 1 plus rounding margin

2237 Jump to missingHere statement

See compilation warning.
2238 Time.v decreased since lasreset

2239 month origin error

A month is specified which is less thl or greater thal2.

2240 day origin error

A day of the month is specified which is less t1 or greater than the number of days in
the month.

2241 invalid event/process class

An event/process class is specified which is less1 or greater than the number of event/
process classes.

2300 graphics system error
See the error message on the line preceding this message for more information.
2301 value ofvxform.v is invalid

The number of the current viewing transformation is less1 or greater thal5 when an
attempt is made to define a window or viewport.

2302 invalid viewport dimensions

An attempt is made to define a viewport having dimensions which do not satisfy the fol-
lowing requirement:

0<xlo <xhi £32767 and (<ylo <yhi <32767
2303 invalid window dimensions

An attempt is made to define a window having dimensions which do not satisfy the follow-
ing requirement:

xlo #xhi and ylo Z yhi

2304 attempt to delete the open segment

82

Runtime Error Messages

2305 segment already open

An attempt is made to open a segment when there already is an open segment.

2306 segment already closed

An attempt is made to close a segment when there is no open segment.
2307 segment does not exist

2308 invalid segment priority

The segment priority is less than zero or greater255.

2309 invalid POINTS argument

Thepoints array is unreserved or does not contain enough points.

2310 form/graph/icon not found

83

UNIX SIMSCRIPT II.5 User’'s Manual

84

C. Standard SIMSCRIPT I1.5 Names

C.1 Functions and Routines

Function abs.f (arg)
Arguments:

arg Aninteger ordouble value
Description: Returns the absolute valuewaf .
Mode: The mode adirg .

Function and.f (arg1, arg2)

Arguments:
argl Aninteger value.
arg2 Aninteger value.

Description: Returns the logical productanl andarg?2.

Mode: Integer

Function arccos.f (arg)
Arguments:

arg A double value betweenl and+1.
Description: Returns the arc cosineao§ .
Mode: Double

Function arcsin.f (arg)
Arguments:
arg A double value betweenl and+1.
Description: Returns the arc sineaof .
Mode: Double

85

UNIX SIMSCRIPT II.5 User’'s Manual

Function arctan.f (argl, arg2)

Arguments:
argl A double value
arg2 A double value

Description: Returns the arc tangentargl/arg2.
Mode: Double

Function atot.f (arg)
Arguments:
arg An alpha value.
Description: Returns &ext value of lengtll containingarg .
Mode: Text

Function beta.f (k1, k2, stream)

Arguments:
k1 A double value greater than zero specifying the power of X.
k2 A double value greater than zero specifying the power of (1-X).

stream Aninteger value specifying the random number stream.
Description: Returns a random sample from a beta distribution.
Mode: Double

Function binomial.f (n, p, stream)

Arguments:
n Aninteger value specifying the number of trials.
P A double value specifying the probability of success.

stream Aninteger value specifying the random number stream.
Description: Returns a random sample from a binomial distribution.

Mode: Integer

86

Standard SIMSCRIPT 1.5 Names

Function concat.f (argl, arg2, ...)
Arguments:
argl,
arg2, .. Two or moretext values.
Description: Returns the concatenationargl, arg2, ...
Mode: Text

Function cos.f (arg)
Arguments:
arg A double value specifying an angle in radians.
Description: Returns the cosine arg .
Mode: Double

Function date.f (month, day, year)

Arguments:
month Aninteger value specifying the month.
day Aninteger value specifying the day within the month.
year Aninteger value specifying the year.

Description: Returns the cumulative simulation time for the given calendar date based on
values given torigin.r.

Mode: Integer

Routine date.r yielding date, time

Arguments:
date A text value containing the current date in the ftMM/DD/YYYY.
time Atext value containing the current time in the fcHH:MM:SE.

Description: Returns the current date and time.

Function day.f (time)
Arguments:
time A double value specifying a cumulative simulation time.

Description: Returns the day portion corresponding to the simulation time based on val-
ues given teorigin.r

87

UNIX SIMSCRIPT II.5 User’'s Manual
Mode: Integer

Function descr.f (string)
Arguments:
string A text value text variable or expression.

Description: Indicates an argument to a NONSIMSCRIPT routine is passed by descrip-
tor. Used for VMS, ignored by UNIX systems.

Mode: n.a.

Function dim.f (array(*))
Arguments:
array(*) An array pointer.
Description: Returns the number of elements in the array.

Mode: Integer

Function div.f (arg1, arg2)

Arguments:
argl Aninteger value.
arg2 Aninteger value not equal to zero.

Description: Returns the truncated valueargl/arg2

Mode: Integer

Function efield.f
Arguments: None

Description: Returns the ending column of the next data field to be read by a free-form
read statement. Returns zero if there are no more data fields.

Mode: Integer

Function erlang.f (mu, k, stream)

Arguments:
mL A double value greater than zero specifying the mean.
k Aninteger value greater than zero specifying the number of stages.

stream Aninteger value specifying the random number stream.

88

Standard SIMSCRIPT 1.5 Names

Description: Returns a random sample from an Erlang distribution.

Mode: Double

Routine exit.r (status)
Arguments:
status Aninteger value specifying an exit status.

Description: Terminates program execution passing the exit status to the command level.

Function exp.f (arg)
Arguments:

arg A double value.
Description: Returns “e to tharg .
Mode: Double

Function exponential.f (mu, stream)
Arguments:
mu A double value greater than zero specifying the mean.
stream Aninteger value specifying the random number stream.
Description: Returns a random sample from an exponential distribution.
Mode: Double

Function fixed.f (txt, len)

Arguments:
txt Atext value.
len A non-negativenteger value.
Description: Returns a copy cxt which is either space-padded or truncated so that its
length islen .
Mode: Text

Function frac.f (arg)
Arguments:
arg A double value.
Description: Returns the fractional part arg .

Mode: Double

89

UNIX SIMSCRIPT II.5 User’'s Manual

Function gamma.f (mu, k, stream)

Arguments:
mu A double value greater than zero specifying the mean.
k A double value greater than zero specifying the shape.

stream Aninteger value specifying the random number stream.
Description: Returns a random sample from a gamma distribution.
Mode: Double

Function hour.f (time)
Arguments:

time A double value specifying a cumulative event time.
Description: Returns the hour portion corresponding to the event time.

Mode: Integer

Function int.f (arg)
Arguments:
arg A double value.
Description: Returnsarg rounded to the nearest integer.

Mode: Integer

Function itoa.f (arg)

Arguments:
arg Aninteger value in the range 0 to 9.
Description: Returns aralpha value containing the ASCII representation of the given
digit.
Mode: alpha

Function itot.f (arg)
Arguments:
arg Aninteger value.
Description: Returns ¢ext value containing the ASCII representation of the given value.
Mode: Text

90

Standard SIMSCRIPT 1.5 Names

Function length.f (arg)
Arguments:
arg A text value.
Description: Returns the number of character:arg .

Mode: Integer

Function log.e.f (arg)
Arguments:

arg A double value greater than zero.
Description: Returns the natural logarithm arg .
Mode: Double

Function log.normal.f (mu, sigma, stream)
Arguments:
mu A double value greater than zero specifying the mean.
sigma A double value greater than zero specifying the standard deviation.
stream Aninteger value specifying the random number stream.
Description: Returns a random sample from a log normal distribution.
Mode: Double

Function log.10.f (arg)
Arguments:

arg A double value greater than zero.
Description: Returns the base 10 logarithmarg .

Mode: Double

Function lower .f (arg)

Arguments:
arg Atext value.
Description: Returns a copy carg with each upper-case character converted to lower-
case.
Mode: Text

91

UNIX SIMSCRIPT II.5 User’'s Manual

Function match.f (string, pattern, offset)
Arguments:

string Atext value.

pattern Atext value.

offset A non-negativeénteger value.

Description: Returns the position withistring of the first occurrence (pattern , or
zero if there is no such occurrence. The search begins after skipping the
first offset characters cstring

Mode: Integer

Function max.f (arg1, arg2, ...)
Arguments:

argl,

arg2,.. Any combination of two or morinteger ~ or double values.
Description: Returns the maximum argl, arg2, ...

Mode: Integer if each of the argumentsinteger . Otherwisedouble .

Function min.f (argl, arg2, ...)
Arguments:

argl,

arg2,... Any combination of two or morinteger ordouble values.
Description: Returns the minimum cargl, arg2, ...

Mode: Integer if each of the argumentsinteger . Otherwisedouble .

Function minute.f (time)
Arguments:

time A double value specifying a cumulative event time.
Description: Returns the minute portion corresponding to the event time.

Mode: Integer

92

Standard SIMSCRIPT 1.5 Names

Function mod.f (argl, arg2)

Arguments:
argl
arg2

Description:

Mode:

Aninteger ordouble value.
Aninteger ordouble value not equal to zero.
Returns a remainder computed as:

argl - (trunc.f(argl/arg2) * arg2)

Integer if both arguments alinteger . Otherwisedouble .

Function month.f (time)

Arguments:
time

Description:

Mode:

A double value specifying a cumulative simulation time.

Returns the month portion corresponding to the simulation time based on
values given torigin.r

Integer

Function nday.f (time)

Arguments:
time

Description:

Mode:

A double value specifying a cumulative event time.
Returns the day portion corresponding to the event time.

Integer

Function normal.f (mu, sigma, stream)

Arguments:
mu
sigma
stream

Description:

Mode:

A double value specifying the mean.

A double value greater than zero specifying the standard deviation.
Aninteger value specifying the random number stream.

Returns a random sample from a normal distribution.

Double

Function or.f (argl, arg2)

Arguments:
argl
arg2

Aninteger value.

Aninteger value.

93

UNIX SIMSCRIPT II.5 User’'s Manual

Description: Returns the logical sum argl ancarg?2.

Mode: Integer

Routine origin.r (month, day, year)

Arguments:
month Aninteger value specifying the month.
day Aninteger value specifying the day within the month.
year Aninteger value specifying the year.

Description: Defines the calendar date of the start of simulation.

Right function out.f (column)
Arguments:
column Aninteger value specifying a column position.

Description: Returns the character in the specified column of the current record of the
current output unit.

Mode: Alpha

Left function out.f (column)
Arguments:

column Aninteger value specifying a column position.
Enter with: An alpha value.

Description: Stores the assigned character in the specified column of the current record
of the current output unit.

Function poisson.f (mu, stream)
Arguments:
mu A double value greater than zero specifying the mean.
stream Aninteger value specifying the random number stream.
Description: Returns a random sample from a Poisson distribution.

Mode: Integer

94

Standard SIMSCRIPT 1.5 Names

Function randi.f (low, high, stream)

Arguments:
low Aninteger value specifying the beginning value.
high Aninteger value specifying the ending value.

stream Aninteger value specifying the random number stream.

Description: Returns a random sample uniformly-distributed betviow andhigh in-
clusive.

Mode: Integer

Function random.f (stream)
Arguments:

stream Aninteger value specifying the random number stream.
Description: Returns a pseudo-random number between 0 and 1.

Mode: Double

Function real.f (arg)
Arguments:

arg Aninteger value.
Description: Returnsarg as adouble value.
Mode: Double

Function ref.f (any)
Arguments:
Description: Indicates an argument to a NONSIMSCRIPT routine is passed by reference.

Mode: n.a

Function repeat.f (txt, count)

Arguments:
txt Atext value.
count A non-negativeénteger value.

Description: Returns &ext value which is the concatenationcount copies oftxt .
Mode: Text

95

UNIX SIMSCRIPT II.5 User’'s Manual

Function sfield.f
Arguments: None

Description: Returns the starting column of the next data field to be read by a free-form
read statement. Returns zero if there are no more data fields.

Mode: Integer

Function shl.f (arg1, arg2)

Arguments:
argl Aninteger value.
arg2 Aninteger value.

Description: Returns the value argl shifted leftarg2 bit positions.

Mode: Integer

Function shr.f (arg1, arg2)

Arguments:
argl Aninteger value.
arg2 Aninteger value.

Description: Returns the value @rgl shifted rightarg2 bit positions.

Mode: Integer

Function sign.f (arg)
Arguments:
arg A double value.
Description: Returns+1 if arg is positive-1 if arg is negative, ano if arg is zero.

Mode: Integer

Function sin.f (arg)
Arguments:
arg A double value specifying an angle in radians.
Description: Returns the sine @rg .
Mode: Double

96

Standard SIMSCRIPT 1.5 Names

Routine sleep.r (time)
Arguments:
time A double value specifying time in seconds.

Description: Suspends execution of your program for acsfied time period. Imple-
mented on VMS platforms only.

Routine snap.r
Arguments: None

Description: User-supplied snapshot routine that is called when a runtime error is detected.

Function sqrt.f (arg)
Arguments:

arg A non-negativedouble value.
Description: Returns the square rootarg .
Mode: Double

Right function substr.f (txt, pos, len)

Arguments:
txt A text value.
pos An integer value greater than zero.
len A non-negativenteger value.

Description: Returns the substring txt of lengthlen starting at positiopos .
Mode: Text

Left function substr.f (txt, pos, len)

Arguments:
txt A text value.
pos Aninteger value greater than zero.
LEN A non-negativénteger value.

Enter with: A text value.

Description: Replaces the substring txt of lengthlen starting at positioipos with
the assignetext value.

97

UNIX SIMSCRIPT II.5 User’'s Manual

Routine system.r (command, status)

Arguments:
command A text value specifying command string.
status Aninteger value specifying VMS return status.

Description: Implemented on VMS platforms only. Executes VMS DCL command.

Function tan.f (arg)
Arguments:
arg A double value specifying an angle in radians.
Description: Returns the tangent arg .
Mode: Double

Function triang.f (min, mu, max, stream)

Arguments:
min A double value specifying the minimum.
mu A double value specifying the mean.
max A double value specifying the maximum.

stream Aninteger Vvalue specifying the random number stream.
Description: Returns a random sample from a triangular distribution.
Mode: Double

Function trim.f (txt, flag)

Arguments:
txt Atext value.
flag Aninteger value.

Description: Returns a copy «xt which has leading and/or trailing blanks removed. If
flag <0, leading blanks are removed;flag =0, trailing blanks are re-
moved.

Mode: Text

98

Standard SIMSCRIPT 1.5 Names

Function trunc.f (arg)

Arguments:

arg

Description:

Mode:

A double value.
Returns the truncated valuearg .

Integer

Function ttoa.f (arg)

Arguments:
arg

Description:

Mode:

A text value.
Returns the first character arg .
Alpha

Function uniform.f (low, high, stream)

Arguments:
low
high
stream
Description:
Mode:

A double value specifying the beginning value.

A double value specifying the ending value.

Aninteger value specifying the random number stream.
Returns a random sample uniformly-distributed betviow andhigh .
Double

Function upper.f (arg)

Arguments:
arg

Description:

Mode:

Function
Arguments:
Description:
Mode:

A text value.

Returns a copy carg with each lower-case character converted to upper-
case.
Text

val.f (any)

Indicates an argument to a FORTRAN routine is passed by value.

n.a.

99

UNIX SIMSCRIPT II.5 User’'s Manual

Function weekday.f (time)

Arguments:
time

Description:

Mode:

A double value specifying a cumulative event time.
Returns the weekday portion corresponding to the event time.

Integer

Function weibull.f (shape, scale, stream)

Arguments:
shape
scale
stream

Description:

Mode:

A double value greater than zero specifying the shape.
A double value greater than zero specifying the scale .
Aninteger value specifying the random number stream.
Returns a random sample from a Weibull distribution.
Double

Function xor.f (arg1, arg2)

Arguments:
argl
arg2

Description:

Mode:

Aninteger value.
Aninteger value.
Returns the logical difference argl andarg2 .

Integer

Function year.f (time)

Arguments:
time

Description:

Mode:

100

A double value specifying a cumulative simulation time.

Returns the year portion corresponding to the simulation time based on val-
ues given t origin.r

Integer

Standard SIMSCRIPT 1.5 Names

C.2 Global Variables

between.v

Description: If non-zero, specifies a routine which is called before each event or process
is executed. The default is zero.

Mode: subprogram

buffer.v

Description: Specifies the length the buffer . The default i132.
Mode: Integer

dir.name.v

Description: Contains the directory the program was run from.
Mode: Text
eof.v

Description: For the current input unit, specifies, the action to take when end-of-file is
encountered. leofv = 0 (the default), the program is aborted with a
runtime error. lleofv =1 ,the program is not aborted aeof.v is set
to 2.

Mode: Integer

event.v
Description: Contains the event/process class of the event or process to occur next.

Mode: Integer

events.v
Description: Contains the number of event/process classes.

Mode: Integer

f.ev.s(i)

Description: Contains the first-in-set pointer of the event ev.s , for event/process
class'i”.

Mode: Pointer

101

UNIX SIMSCRIPT II.5 User’'s Manual

heading.v

Description:

Mode:

hours.v
Description:
Mode:

l.ev.s(i)

Description:

Mode:

line.v

Description:

Mode:

lines.v

Description:

Mode: Integer

mark.v

Description:

Mode:

minutes.v
Description:
Mode:

102

If non-zero, specifies for the current output unit a page-heading routine
which is called for each new page. The default is zero.

Subprogram

Specifies the number of hours per simulated day. The def24.0.
Double

Contains the last-in-set pointer of the eventev.s , for event/process
class'i”.

Pointer

Contains, for the current output unit, the line number of tireeat line
within the current page.

Integer

Specifies whether pagination is enabled for the current output unit. If
lines.v =0 (the default), pagination is disabledlines.v >0, pagina-
tion is enabled anlines.v specifies the number of lines per page.

Specifies the termination character for external event data and random vari-
able data. The default i*”.

Alpha

Specifies the number of minutes per simulated hour. The def60.0.

Double

n.ev.s(i)

Description:

Mode:

page.v
Description:
Mode:

pagecol.v

Description:

Mode:

parm.v(i)
Description:
Mode:

process.v

Description:

Mode:

prog.name.v
Description:
Mode:

prompt.v

Description:

Mode:

Standard SIMSCRIPT 1.5 Names

Contains the number of events or processes of event/process ” in the
event setev.s .

Integer

For the current output unit, contains the page number of the current page.

Integer

Specifies for the current output unit whether a line containing the page
number should be written aumatically as the first line of each page. If
pagecol.v > 0 , this feature is enabled apagecol.v specifies the
starting column of the phrasePAGE nnnn”. If pagecolv =0 (the
default), this feature is disabled.

Integer

Contains thei "th command-line parameter.

Text

If non-zero, contains a pointer to the process notice of the currently-execut-
ing process. If zero, no process is executing.

Pointer

Contains program name. Any directory information is removed.

Text

The string of characters to be output when reading an input from terminal.
Default is “.

Text

103

UNIX SIMSCRIPT II.5 User’'s Manual

rcolumn.v

Description:

Mode:

read.v

Description:

Mode:

record.v(i)

Description:

Mode:

ropenerr.v

Description:

Mode:

rreclen.v

Description:

Mode:

rrecord.v

Description:

Mode:

seed.v(i)

Description:

Mode:

time.v

Description:

Mode:

104

For the current input unit, contains the column number of the last character

read from the current record, or zero if no character has been read from the

current record.

Integer

Contains the unit number of the current input unit.

Integer

Contains the number of records read from or written to unit nuni . r “

Integer

If non-zero, indicates that an error occurred opening the current input unit.

Integer

For the current input unit, contains the length of the current record.

Integer

Contains the number of records read from the current input unit.

Integer

Contains the seed value used to generate a random number fromi ”.2am*

Integer

Contains the current simulated time.

Double

wcolumn.v

Description:

Mode:

wopenerr.v

Description:

Mode:

wrecord.v

Description:

Mode:

write.v

Description:

Mode:

Standard SIMSCRIPT 1.5 Names

For the current output unit, contains the column number of the last character
written to the current record, or zero if no character has been written to the
current record.

Integer

If non-zero, indicates that an error occurred opening the current output unit.

Integer

Contains the number of records written to the current output unit.

Integer

Contains the unit number of the current output unit.

Integer

C.3 Attributes

The following attributes are automatically declared for an event or process notice:

eunit.a

Description:

Mode:

m.ev.s

Description:

Mode:

p.ev.s

Description:

Mode:

Contains zero for an endogenous event. Contains the unit number for an ex-
ogenous event.

Integer

Contains 1 if the notice is in the event ev.s . Contains O if it is not in

the event set.

Integer

Contains a pointer to the event set predecessor.

Pointer

105

UNIX SIMSCRIPT II.5 User’'s Manual

S.ev.s
Description: Contains a pointer to the event set successor.

Mode: Pointer

time.a

Description: Contains the simulated time at which the event or process is to occur, or for
aninterrupt ed process, the amount of time lefwork orwait .

Mode: Double

The following attributes are automatically declared for a process notice only:

frs.s

Description: Contains the first-in-set pointer for the set of resources owned by the process.
Mode: Pointer

ipc.a

Description: Contains the process class correspondind.process .

Mode: Integer

rsa.a
Description: Contains a pointer the recursive storage save area for a suspended process.

Mode: Pointer

sta.a

Description: Contains the state of the proce<0 if passivewait ing),1 if active work-
ing), 2 if suspend ed, or3 if interrupt ed.

Mode: Integer

C.4 Constants

exp.c
Description: The value of e”, 2.718281828459045.
Mode: Double

106

inf.c

Description:

Mode:

pi.c

Description:

Mode:

radian.c

Description:

Mode:

rinf.c

Description:

Mode:

Standard SIMSCRIPT 1.5 Names

The largest representalinteger value.

Integer

The value of pi3.141592653589793.
Double

The number of degrees per radi57.29577951308232.
Double

The largest representalreal value.
Double

107

UNIX SIMSCRIPT II.5 User’'s Manual

108

D. ASCII Character Set

96
97

64
65
66

Space

32

NULL
SOH
STX
ETX

0

33
34
35

98

99

67

100

68

69
70
71

36
37
38

EOT

101
102

%

ENQ
ACK
BEL
BS
HT
LF
VT

103

39

104

105

72

40

73
74
75

41

106
107

42
43

10
11
12
13

108
109

76
77

44
45

FF

CR

110
111

78
79
80

46

SO
Sl

14
15
16
17
18
19
20
21

47

112

48

DLE

113
114

81

49

DC1
DC2
DC3
DC4
NAK
SYN
ETB

82
83

50
51

115
116
117

84
85

86
87
88
89

52
53

118

54
55
56
57

22
23

119
120
121

CAN
EM

24
25
26
27
28
29

122

90

58

SUB

123

91

59
60
61

ESC
FS
GS

124
125

92
93

126

94
95

RS 62
us

30
31

DEL

127

63

109

UNIX SIMSCRIPT II.5 User’'s Manual

110

A
= T 1 | N 3,10
ADC.SIM.uiiiiiiii i 3....
ADS. s 60, 85
accumulate statemeé.........ccooveeevvvervvevnvverennnnnn 1.
alphe. .o 27, 29, 67
AN 85.
APPEND.....o e 6, 25
(ool 0 = 85.
arCSiNf.ccoiii 8h.
arctan.d......ccoooiei i 86.
AITAYS. oevvvvveerneneieanaeeeeeeaeaeaaaans 36, 47, 49, 56, 63
ASCIl i, 109
AtOL.f . i 86..
B
1= 7= TR 86..
DEIWEEN.V......ceveviviiiiiccce e, 101
DIiNAry ..oooooei i 25..
binomial.f.........ovvvviiiiiicicec e 86..
bit PACKING ..vvvveeeeeeiiicccecee e, 27
BOT oo 41
DOT e 54...
BR oot 41...
break in routint...........ccccooveveiie 41
BUF .. 41
BUIFEI.V e 101
C
C e 42,
Call StaCK......covveiieiiiiiiee e 42,53
close statemer........ccooeeeevivviieiiiiieeeeeeeenenn, 26, 69
command and dialog loggir..........cccccoeeeunnnne 45
compilation SeqUeN............coeeiiieieeeiieiiies 14
compiler OPtioNt........cuuviiiiieeiiiiie e 4.
CONCAL.f.ueeiiiic e, 87.
CONLINUE ...vueeeeeeeiiec e 42.
COTE AUMP..ciiiiteeeee e 11.
COS. i 87...
CrOSS-referenC.....ccoeeeeeiiiiiiiee i, 4,6
CHI=Carceee e 47,
current frame..........ccooeeeeeiiiiviieennnnns 35, 41, 46, 53
D
Aate.feereei i, 87..
(0 1= L (ST OO 87...
day. e 87..
] = S 42..
-debug......ccoovieiii e, 5,11, 31, 32, 56
delete breakpoir..........coccvvviiieiiiiiiieceies 42,
AESCI e 88..
dEeSCrIPLOL...eeeeiiiiiiee e, 48, 56, 88
iMoo 88.
(o [Tt aT=1 00 [Tk O 101
display memory........cccccooviiiiiieeiiniiee e, 42,

AV e, 88
DM ..ot 42..
DN o 42..
DOUDBIE .o, 27,29
(0 (0111, o TSP 42
E
ECHO ..o 43..
efield.f 88.
end StatEMEL......eveeiiiiiiei e 11
[0] A 2SR 101
eqUIVAIENCINL.....cceei i 48
ErlaNg. e 88.
(10 111 8= 105
BV e 43
EVENTE SBL. it 43..
LAV L= 1 P 101
(oA V=) 0| ST TSR 101
executable file........ccooeeeviiiiiiii i, 3,6,9
L T 49
EXIt STAtUL e 11
1S3 1 11, 89
EXP G 106
EXP.F e 89.
exponential.........ccccevvieeieinie e, 89
F
FOV.S(I) it 101
F IS S e 106
field-packing.........ccceeiiiieeiiii e 27
11D G I 25,
fIXEA.T o 89
follow POINter........coviviiiiiiie e, 43
FORTRAN.........ccoeviveeeeeve, 6, 9, 28, 29, 99
R 43..
7= (o7 P 89,
G
[0 =11 0] 1 1 = VS 90
global variable.............cccoovevieie s 53, 57
GLOBWTRACE.......ccciieeieeeeeviieee e, 51,53
H
heading.........cccoov i, 102
NOUN L 90.
NOUIS.V ..o 102
|
inf.c 107
Nt E 90..
INEEOEL ettt 27.
INEEQEI2...ceii 27,29
INTERRUPT ... 42
Intrapacking..........cccuveeeiiiiiiii e 27..
] o o3 =TT PUPUPPPPT 106
100 = T8 90..

111

UNIX SIMSCRIPT I1.5 User's Manual

100] A SO 90. P
L DBV, S it 105
LBVttt ettt 102 PAGEV.ci 103
IENGENLT oo 91, PAYECOLV...iiiiii 103
BDFAY oot 9,51 PAGINALON......oiiiiii, 26, 102
INE.V. et 102 PAMLN 103
[INES.V.ieiiiiceeie e, 102 PErManent entitie. ..., 31,52
Ilnklng __ 3,4,8, 14 pIC .. 107
1St FOULINES. ..o 46. Po_lnte R IR 27..
ISt SOUICE ...ttt 46, POINEETINARX....ooorivriii 43.
LOG e 45.. POINter NUMDE. ..o 43, 44, 52
10G FIIE +vveoeveeeeee e 45, POISSONL...cii 94..
10G10.F e 91 PREAMBLE......oooiiin, 46, 63, 68, 72
0G5 e 91 Printarray variabl..........cooiiiininss 47
10G.NOMMALL....vvveeeecececeee e 91 Print descriptor variab............covivvninnen 48
IOGGING evvvveieeeeeeeeeeeeeeeee e 45, PrNtEXtVaAlUES iN fU....ooovveis 48
JOWELF e g1, Printvariable. ... 48.
LR 44.. printing text variable..............coonns 49
LS 46, PIOCESS.V.woiiiii 103
Profilingccoovviii e, 11..
M Prog.Name.......ccceeeeieieeeeeeeeeeeeeeee e 103
TN BV.S ottt e e 105 PrOMPLV..ccceecceeecee e 103
MAKE ..o 14, ptrvalu€.........oooeveeeeieeeceeecee e 43,
Makefile ... 14,16 ptrvaniabIe.........ccooeeervieeeieece e, 43,
MAFK.V oo 102 Q
MAtCh.f. 92.
MAX.T oo 92, QUIT o 49
MEM . 47.. R
MEMONY iNfOMALON.....oovvovs A7 radiaN.C.ovee e 107
MINF 92 (NI Lo 95.
MINUEEF 92 LANAOM L..ovooeoii 95..
MINUEES.V. ..ot 102 (columniv..one 104
(00070 18 TR 93.. LA N oo 104
(00016 [T 27. READCMDS....oooooooo 49
MONEN.T e, 93 REA. oo 27,29
N reall. ..o, 95..
DLBV.Se et en e 103 TECOMN s 104
nday.f .. 93.. (Y T 95..
NOERROR. .o 95, TePeAL ..., 95.
NOBITOL ...veeeeeeeeesee e, 25, TEPOMTgENerali. ..ot L.
normalfe oo 93 MNF.C o, 107.
TOPENEIT. .ottt 104
O ITECIEN.V ..o 104
object files ... 3,7, 14 record.. ..o, 104
open statemMe...........oceveeiiiiiiiiiine, 25, 09 [SA.tuuiiiiei i 106
OFf e O3, TUN e 49..
OREADCMBDS.......ccoii e 50 rUNLIME €ITO.ccooveeeee e eiieeee e 4,56, 75
OREALF ..., 51 S
OREPCMDS.......ccoi i) 50.
OTIGIN.T ettt 94, S-BV:S.i 106
T SO 94, SCIALCHL oo 25
OULPUL FOPMAL. ..o 49, SCripted routine..........cooviiiiiin 8...
SCROLLINES.......co e 41, 51
SEEA.V. oo 104

112

SET i 50
set breakpoin..........cccovveeiiiiiii e 52.
set entity ValU€...........ooeeviiiiiiiineiieeee 52
set SimDebug parame.........ccccvviiiieininnenn. 50
SELVAIUEooiiiiiiiec e 53.
Sfield.fu 96.
Shell SCHPt....ceeeeee e, 9...
SHLT 96...
ShOW DUFfEL...eeeieiiiiii 41
SHET e 96...
SIGN.T o 96..
Signed iNtEger......ccooviiiiieiiieeee e 27
SHMIC ettt e e e 3.....
SIMAEbUG.INT...eeeiiiiiiiieec s 32,50
SIMDEBUG.Rooiiiiiiiiiieniee e 57.
SIMEIT.AIC ., 11, 32, 56
SIMAI oo 6,9
SIMIA oo 7,8,9, 12
SINLF) 96..
SlEEP.I e 97..
SNAP .. 52.
SNAP.L. .ot 97...
SOUICe dir€CLONE.uuvveeeeiiiiiiiieee e 52
SOUICE fIl@S....eiiiiiiiiiiie e 3.
ST e 97...
SRCDIRES....ciiiiiiitee e 52..
151 7 1 H T 106
standard erro.........cccoevveieieiiie e 11, 26
standard INPU..........ooooriiirenineiieeee 11, 26
standard OULPL.......covcvveeee e 26
statistical toOIS............coovriiiiiiiie e, 1.
SIEP et 50
stop at simulation tim..........cccoceeeeiiiieeeens 53
Stop Statemer...........ocovvviiiiiiis 11
SUDbProgran. ... 27..
SUBDSEI L. 97.
SYSEEM OWNK ..o 57.
system variable..........cccccoiiiiiiii s 53
SYSEEM...iiiiiiiiii 98.
SYSVARS. ..o 53
T

T e 53.
tally statemen..........ccocviviiiiiiieeeee e, 1,70
tANT e 98...
T e 54...
TEXE e 27.
Text INPUH/OULPU......ceeiiiiiiicieeeeee e 33
TIME.A o 106
HME.LV e 104
TOP e 54,
tOP framMe. ..o 54..
traceback........cccoooviiiiiii 53..
traceback CUrre........ccveeiiiiii e, 54

Index

THANG L 98.
HMLT 98.
TIUNC. L 99.
TEO@L. e 99
U
UNIFOrML . e 99
UP e 54...
UP Frame. ..o 54.
UPPEI e 99..
\Y
VERY OLD PREAMBLEcoooviiiiiiiiceeens 7.
W
W 54..
WArNING MESSAG . .cieiuerreeeeiirireeeeairreeeeeaieees, 7.
WA ¢ttt 3...
WCOIUMNLY Lo 105
WEEKAAYeiiiiviiieiiiiiiiie e 100
WEIDUILT L 100
WHEIE oo 54
WOPENEIT. V..o 105
L LTeT0] (o 1N USSP 105
WIIte trace apPer.....coccvveveiiiiiieee e, 55
Write tracebac........cvvveeviiiieieiii e 54
WITEE.V ittt e 105
W e 54
WTA e 55
X
DL (o] 8 T 100
Y
L= 100

113

UNIX SIMSCRIPT I1.5 User's Manual

114

	Table of Contents
	Preface
	1.1 Free Trial Offer
	1.2 Training Courses

	1. Simulation and SIMSCRIPT II.5
	2. Developing SIMSCRIPT II.5 Programs
	2.1 Preparing Source Files
	2.2 Compiling
	2.3 Recompiling
	2.4 Linking
	2.5 Executing
	2.6 Profiling
	2.7 Makefiles
	2.7.1 Compilation Sequence
	2.7.2 Make Description File Format
	2.7.3 Transformation Rules
	2.7.4 Special Notes
	2.7.5 Sample Makefile

	2.8 Obtaining Online Help
	2.9 Example Program

	3. SIMSCRIPT II.5 Language Considerations
	3.1 Input and Output
	3.2 Modes and Packing Codes
	3.2.1 Alignment of Values

	3.3 Non-SIMSCRIPT Routines
	3.3.1 Calling C Routines
	3.3.2 Calling FORTRAN Routines

	4. SimDebug Symbolic Debugger
	4.1 Compiling for Debug and Invoking SimDebug
	4.1.1 Compiling for Debug
	4.1.2 Invoking SimDebug

	4.2 A Quick Tour of SimDebug
	4.2.1 Tour 1: Showing the Stack and Variables
	4.2.2 Tour 2: Breakpoints and Single Stepping
	4.2.3 Tour 3: Pointer Handling: Entity / Set Displ...

	4.3 SimDebug Command Reference
	4.4 Advanced Topics
	4.4.1 Batchtrace.v
	4.4.2 Signal Handling / External Events
	4.4.3 Reserved Names
	4.4.4 Displaying Arrays
	4.4.5 Permanent Entities and System Owned Variable...
	4.4.6 Conditional Breakpoints
	4.4.7 Continuous Variables
	4.4.8 Unsupported SIMSCRIPT Features

	A. Compiler Warning and Error Messages
	A.1 Warning and Error Messages

	B. Runtime Error Messages
	B.1 Runtime Error Messages

	C. Standard SIMSCRIPT II.5 Names
	C.1 Functions and Routines
	C.2 Global Variables
	C.3 Attributes
	C.4 Constants

	D. ASCII Character Set
	Index

