& 2)
%

Copyright 1997 CACI Products Co.
September 1997

All rights reserved. No part of this publication may be reproduced by any means without written permission from CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division

3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
Phone: (619) 824.5200 Surrey GU15 3YL UK

Fax: (619) 457.1184 Phone: +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume
the responsibility for any consequences resulting from the use thereof. The information contained herein is
subject to change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMGRAPHICS |, SIMGRAPHICS Il and SIMSCRIPT IL.5 are registered trademarks of CACI Products Company.

Windows is a registered trademark of Microsoft Corporation.

Contents

o] (1 1= (o < SRR

WHy Use GRAPHICS? ..
ORGANIZATION OF THIS MANUAL

1. Overview Of SIMGRAPHICS 1l oot

1.1 EFFECTIVE USE OF GRAPHICS AND THE USER INTERFACE ..iuiiutiiiiiiiee et ettt e e aa e

1.1.1 Selecting Colors...

1.1.2 Scale and Size . .

1.1.3 Designing a Background .

1.1.4 Representing Changes in System State

1.1.5 How Many Objects Should Be Dlsplayed?
2. TULOMIAL .oecee e

2.1 How 70 OPEN A SIMGRAPHICS Il WINDOW WITH A TITLE utuiiiniietiiiinieiteeiieeeeereseensesassnneenens
2.2 DISPLAY ICONS IN THE DEFAULT WINDOW +eiuuiitttitieietitisieteatesieseestessensastessensentessensennessnssenserens
2.3 USE OF MULTIPLE GRAPHICS LIBRARIES. ... iittutiett ettt ee e ee et ee et e e e e e s ee s eeee et s e n e e s eneeeevens

2.4 EXAMPLE "WINDOW". ..
2.5 How 10 OPEN MULTIPLE SIMGRAPHICS II WINDOWS

2.6 SIMDRAW — THE GRAPHICS EDITOR
P A O =17 1 | N N (o] N

2.8 ADDING ANIMATION ..
2.9 CREATING A DiALOG Box

2.10 ADDING GRAPHICAL USER |NTERACTION USING DIALOG BOXES

2.11 CREATING A GRAPH..
2.12 ADDING PRESENTATION GRAPHICS

2.13 CREATING A POSTSCRIPT FILE tutiiitiiiiii s ettt e ee e et s ee e e e et er e e e e e et e et eeeea s eeeens
2.14 USING A BITMAP AS A BACKGROUND ...iitiiiiieit ettt i ee e eeee e ee et s et ee st eeee e eese it e e et eneensneesens
2.15 CREATING CASCADEABLE IMENUS ..uuuuiiiitiiiiie et i ee e eeee e ee et s ee e ee et eeee st eese e e et eeeesanaenens
2.16 USING CASCADEABLE MENUS ..iutiiitiiii it ettt e ee et e ee e e ettt ettt e e et eeee e e e ee e e be st eeee s s aenens

2.16.1 Cascadeable Menus in Simulation Programs............ccciciviieine e e ce s sveie e e e e e
3. SIMDRAW s

3.1 SIMDRAW OVERVIEW ..
3.2 RuUNNING SIMDRAW ..
3.3 LOADING AND SAVING SIMGRAPHICS II FILES

3.4 EDITING AN EXISTING OBJECT
3.5 ADDING AN OBJECT TO THE LIBRARY ..uuiiiitiiie ittt ettt e ee e e et e ee e e e et e et eeee s e aeeens
3.6 REMOVING AN OBJECT FROM THE LIBRARY ..ittutiiitiiie ettt et ettt e ee et eeee e ee et e e be et eeee s e aeaens
3.7 MAKING A DUPLICATE OF AN OBJIECT «uuiiitiiieie et e et ee et ee et ettt e e et eeee e ee et e et eeeesaneeeens
3.8 CHANGING THE NAME OF AN OBUJECT +uuititiiieiinteeeutieee e eeee e eeeeat s et ee st eeeesenseseat e et eaeesaneesens
3.9 ADDING AN OBJECT FROM ANOTHER LIBRARY ...ueiutiiiieie et ee et e et e ee et e e e ee et e e et eneen e eeeens
3.10 EDITING IMAGES AND GRAPHS IN SAME WINDOW ...uuiiiiiiiiirie et ieienes e teestst e ee e eaeeneeeeaen e s
311 USER PREFERENCES .tutitittnieieutarettites et eeee et e ettt aesneeae e aeaeat s eeanee st esaeaeneseesnns et eneensneeeens

3.12 ComMMAND LINE ARGUMENTS ..
3.13 UsING THE IMAGE EDITOR ..

3.13.1 Mode, Style, and Color PalEtEScccociiiiieiiiie e e r e e e e naes

3.13.2 Selecting, Moving, and Resizing ..
3.13.3 Using the Clipboard (Cut, Copy, Paste Commands)

3.13.4 Importing / Exporting to Other Graphical FOrmatsccccoeiieiiiicin e
3.13.5 Creating PriMILIVEScccoiiieie e e e s st r e e e e et e st et e e ae e e e s e st st n e e e teeees e ensennnes
3.13.6 Creating IMAGESceieii e ettt et ee e et st r e e e ee e et e st e e e e ee e ee e s e stn st e e e e te e e e en nre e

SIMGRAPHICS Il User’s Guide

3.13.7

3.13.8

3.13.9

3.13.10
3.13.11
3.13.12
3.13.13
3.13.14
3.13.15
3.13.16
3.13.17

3.14 USING THE GRAPH EDITOR ittt ittt ettt ettt ettt et s ee e et e r e e et e e ae i ee b e e aeanee e e

Style, and COlOr PalEtES . ..ouiieiieie ettt et r e e e
Selecting, Moving, and RESIZING.......cuiiiuieii ittt
ChartS (2-D PlOLS) ..ottt ettt ettt et e et e e e
(ST O g -1 £
(O [0 Y]
DHAIS .ot e e e e re e beaen
Yy Y 1Y (Y N
DiIgItal DISPIAYS ... v v ettt ettt et e
LIS Y L= (=] T OO PPSP

3.14.1
3.14.2
3.14.3
3.14.4
3.14.5
3.14.6
3.14.7
3.14.8
3.14.9

Editing the ROOL IMAJEeeiiiiee e e e e
Editing POINtS 0N @ PrIMILIVE ...ttt e e
Defining Stacking Order O PriOFtYcoooiiiueereirieie et e
Defining the Center Point of & SNAPEcocoiieiiiiiiee e
Using the Flip and RoOtate TOOISccouiiiiiiiiieiie et
AlIGN @Nd DISTIHDULE. ... e e

Using Grid Lines
Changing Views (Pannlng and Zoomlng)

Changing Dimension (Coordinate Space Boundarles)..

Changing the Layout Size and Color..

PrOgram ACCESS ...ttt ettt e e e e s e e e e e eeeeeeee et ae e ae e e e e ae e enes

3.15 UsiNG THE DiaLoG EDITOR .

3.15.1
3.15.2
3.15.3
3.15.4

Selecting, Moving, and Resizing ..
Dialog Box Coordinate System ..
Using the Clipboard (Cut, Copy, Paste Commands)

(0010170 =3

3.16 UsING THE MENU BAR EDITOR ..

3.16.1
3.16.2
3.16.3
3.16.4
3.16.5

3.17 USING THE PALETTE EDITOR . ittt ettt ee et e e et e e e et e e ae e ee e

3.17.1
3.17.2
3.17.3
3.17.4
3.17.5

4. Creating Presentation Graphics

4.1 VARIABLE DECLARATION
4.2 DISPLAYING PRESENTATION GRAPHICS .iuuiutittiieat ettt ietettieeeassteeseasssnessessssnessnsssanesssssesneessssens
4.3 EXAMPLES

Selecting and Moving (Transferrlng)

Using the Clipboard (Cut Copy and Paste Commands)

Editing the Menu Bar ..

EditiNg & MENU ..ot e
Editing @ MENU ITEM ...ttt e e e

Selecting and Moving (Rearrangement of) Buttons..

Using the Clipboard (Cut Copy and Paste)

Editing the Palette ..
Editing a Palette Button

Editing Palette Separators

4.3.1 Example 1: A Simple Tallied Histogram ...

4.3.2 Example 2: A Time-Weighted Accumulated Dynam|c H|stogram

4.3.3 Example 3: Displaying Simple Scalar Values ..

4.3.4 Example 4: Using a Trace t0 PIOt X-Y CUIVES.......coiiiiiiiieee ettt
4.3.5 Example 5: The Bank MOGEL.coo ittt
5. Forms and Graphical Interaction

5.1 INTRODUCTION

IV O =1y 1 [NN o] =1 Y TN
5.2.1 Reference Names and Field AHDULESoooovuiiii i e ee e
5.3 USING THE FORM IN A PROGRAM 1. etuiiutititietes et te it st te it st e sees st eseensaatessensasteseensentesserennases

SIS T2 [0] (] = Tox £ (0] g 1Y (0 Yo [P

D1 FIELD AT TRIBUTES ttttutiitiiutiiittiettesetnteatessenseatessenseasesseseassese s se s teses st s sesssstessensestereensestersensennenes

5.4.1 ValU ALIDULES ..ottt ettt e ettt ee e et ee e e st ee e e e
5.4.2 Terminating BULTONS.cuiiiiiiie ittt et e et e et e e e
5.4.3 VErifyiNg BULLONScoiitiiieii ittt ettt ettt et ee e et ee e e st ee e e e eas

5.5 FORM CONTROL ROUTINES ..ottt ittt ie ettt ee et ettt e et et e et st e ee e et eseeaee st esseaea st esseaea st sesesentaens
5.6 DETAILS OF FIELD OPERATIONS 1t tttuiiutititnietetittette e st te st st te s esatesteassatessensesteseenrestessesenneres

5.6.1 The DISPLAY COMMANG......iiutiiiiitieie ittt et ee e et s ee e e e et eeesaea e s es e et esee e saaenen
5.6.2 The ACCEPT.F FUNCHON ..ottt et et e e e e e e e e e e e et e e e e e e sasaes

5.6.3 The ERASE Command .
5.6.4 The DESTROY Command

5.6.5 The SET.ACTIVATION.R Routlne
5.7 DIALOG BOXES AND THEIR FIELDS .iuiiutiiiiniiiiiiteeeiiie e et et et et enee i ee st eseease st esseseatessensentesseesennaens
I A BT (oo I = o b T PO PP UP T VPTOPR

5.8 PREDEFINED DiALOG BOXES..
5.8.1 Standard Message Dlalog

5.8.2 Custom Message Dlalogs (AIert Stop, Informatlon and Quesuon)

5.8.3 File Selection Dialog ..
5.8.4 System Font Browser ..

5.8.5 Printing the Contents of a Graphlcs Wlndow (or Ind|V|duaI Segment)
5.9 MENU BARS AND PALETTES tottututututtitttuin s et st st eseses e e eeaeaeaeeae e te et e e et tssnes ss st st st e e e e e aeae e s

LIRS TR R Y 1= o [U == P
B5.9.2 PAlEIES ..ot

B5.10 EXAMPLES it ii ittt ettt ettt et et e sr et ee e e e e e e
6. Creating Animated GraphiCsccccocvviiiiiiiiiiiiiii

6.1 GRAPHIC ENTITY DECLARATION .tiituiiutitititteite et tea et e eets st eseensastesseaeestes st sestessesseanessesseanss
5.2 COORDINATE SYSTEM S . u ittt itiiuitutitien ittt eseesetanesse st teat et teat et s tea s st essensestessensessesrnsseanessnssennes

6.2.1 Normalized Device COOrdINALEScouiiiiieie ettt e e e e e e e e
6.2.2 Setting a Viewing TransformMation e e
6.2.3 Defining The World: SETWORLD.R........oovii e

6.2.4 Defining a Viewport: Routine SETVIEW.R

6.2.5 Modelling TransSforMatiONScoooie oottt ee e ee e e e e
6.3 ANIMATING DYNAMIC GRAPHIC ENTITIES 1tuiiuiiiit ittt et et et ee et et e e ee e e e e ae e e an e aeaae
(SR B = = 1N 4 | LT [@] N R
8.5 AN EXAMPLE «ooiit ittt e

B.5.1 Prea@mble ... et e e e
A Y/ VT T o | - oo PR

6.5.3 Process Shape ...
6.6 DESTROYING AND ERASING ICONS ..

6.7 SYNCHRONIZING SIMULATION TIME AND REAL TIME
7. Example Programsccccccceeeiieieniineinein e

7.1 THE GOLD MINE PROGRAM ... ciuiiut ittt it ettt ettt e et et e ee it st e ee e ee b e ee i ea b esseee b essase b esbe e senas

Contents

80
81
82

82
83

84

84
85
85

85
86

86
86
... 86

.87
. 87

87
87
.. 92
. 92

................................ 92

. 93
.. 93

............................ 94

94
94

SIMGRAPHICS Il User’s Guide

7.1.1 MeNU Bar PrOCESScoueuiiieiee ettt e

7.1.2 FOrm Control ROULINE ...cooivitiiii ettt et e e e ee e e e e e e e ee b e ee e e s e arbn e
7.2 THE DYNHIST MODEL .ciuttiiiiiieiiei e et e s e e e e e e
7.3 THE PORT MODEL «ctuiiiiie ettt e e
7.4 THE CALSHIP MODEL ccuvtiiiiieiiee ettt et et e e
7.5 THE SPRING MODEL .uuiiiiiiiii ettt et e
7.6 THE PILOT EIJECTION MODEL .utuiutiiiiiit ettt et ee et ettt e et s e e et e e e e e e e et e e e eeee s eeeeeeae e es

8. Managing Multiple WINdOWS ccccvveviiiiiiiiiieeineeneee

8.1 MuLTIPLE WINDOW SUPPORT ..

8.2 SETTING AND GETTING THE ATTRIBUTES AND EVENTS OF A WINDOW
8.2.1 WiINdow ALHDULES OF “FIEIAS”eeeet et e
8.3 WINDOW BEVENTS .ttt ii it ettt ettt ettt ee s e ee e s te e re e s e renaens

8.4 SCROLLABLE WINDOWS ..cvvtiieeitietateeee et e eesene et e ee e st esee e ae et e e e anee s
8.5 STATUS BARS ittt ettt e e

9. AdvanCed TOPICS .ocuveuireeiiiiiiieieereee e ee e e e e e e e e
9.1 DRAWING ICONS WITHOUT SIMDRAW ...ttt ettt et ee et te et e ee s
0.2 WRITING A DISPLAY ROUTINE ittt tiit ittt et et ee et te e et te et as e et ee b es st ee e s etenteneeatereen s

9.2.1 COlOF ettt
9.2.2 DraWing AlCASceeiiiiueietireeie e et ee et e et see e eee
9.2.3 Drawing LINESuoeiiiiiiiie ittt

9.2.4 Drawing Points (Markers) ..
9.2.5 Direct Character Output ..

9.2.6 Character Output Using System Text

9.2.7 System Font Browser .. .
9.2.8 Loading a Font Re- def|n|t|on Flle
9.2.9 The Shape Example Revisited ..

0.3 USING SEGMENTS ttitiiiutiitiiiiiieet et iieetee st esie it ee st s et se b esaese b eeae e seanaens

9.3.1 SegmMENt PrIOMLY ...c.oieiiiiieiireeie ettt e
9.3.2 USING PrIOMtY ZEIO ..cociiuiiieiii ettt e
9.3.3 Other SEgMENt OPEIAtiONS.c.ciiiiuiiee ittt ettt et e e e e
9.3.4 Drawing BacCKgrOUNGScoouiiiiiiiiiie et e ettt e sen e e e e

9.4 ADDITIONAL ATTRIBUTES OF [DYNAMIC] GRAPHIC ENTITIES....utiviiiitieiieiiitiieie et et
0.5 LOW-LEVEL INPUT CONSTRUGCTS .t ututtttrteseres e attiesiereeserets e st snssss e e seees e s as e snn st aeeesesen e nnaas

9.5.1 SEeleCtiNg @ SEOMENTeeiiiiii et et e et e e e e e e e st e e e e e ee e en e seebeenes

9.6 PROGRAMMATICALLY DEFINABLE SYSTEM CURSOR ..
9.7 Time UNIT CONVERSION FOR SIMULATION GRAPHICS

Appendix A. SIMGRAPHICS Il Variables and Routines

Appendix B. Conversion to SIMGRAPHICS Il

B.1 WHAT s SIMGRAPHICS I1? ..

B.2 DIFFERENCES BETWEEN SIMGRAPHICS I AND II

B.2.1 ICONS ..ot e e
B.2.2 Graphs ..o
B.2.3 FOIMMS .t e e e e
B.2.4 MENU BArSovvieii e e e
B.2.5 Dialog BOXES ..ottt e
B.2.6 PUSh BULONScoiiiiiiice et e e aeas
B.2.7 RAdiO BUIIONS .. .ccoiiiiiiie et e

Contents

B.3 USING THE CONVERSION UTILITY tutiitiiititiitie i ie et et es et ee st ettt ee s ee st s eeaee bt s ea s as e seeease b eeaeeeanes 173
B.3.1 Calling SIMCVT — Command Line ArgUMENTSc.uiuiieiieeriieie i veieiieie e eeeeeen e e 173
B.3.2 Possible Problems With FOIMMISouiiiii et e 174
B.3.3 A Menu Bar Within @ FOIMoooiiiiiii et ettt e ae et e eene e e 174
B.3.4 Conversion of Files from PC DOS SIMSCRIPT ...ouvutiiiiie e e 175
B.3.5 MiISCEIIANEOUS NOESciviiiiiie i e ee e s e e e et sb s s e e et e s eeee e b e s 175
B.3.6 Features No Longer Supported in SIMGRAPHICS ll.......cccoeieiiiiviiiviieeeee e eeviiieen,. 175

1T =GP 177

SIMGRAPHICS Il User’s Guide

Vi

List of Figures

Figure 2-1. EXamMPIe WINGOWooiiiiiiiir ettt ettt st sn e see e et e e eneneeen

Figure 2-2. Multiple WINdOW EXAMPIEoouiiiii et
Figure 2-3. SIMDRAW Main WINGOWcuvuuiiiiiiiie ettt et sn e esnbe e e e eees
Figure 2-4. Creating a Cart Icon

Figure 2-5. Output of the Image-1 Routme ..

Figure 2-6. Dialog BOX EAItOr WINGOWccoiiiiiiiiiiie ettt e e e ee e e e e
Figure 2-7. Dialog Box for EXample IMAGE 2coooiiiiiiiiee et
Figure 2-8. EXample IMAGE-3 ... ettt e e
Figure 2-9. Example “San Diego” Showing Imported Bitmapccocoevieivnieivie e
Figure 2-10. Example of a Bitmap Used as a Background...........cccccocceeveeririiviiviieiniecr e e e e

Figure 2-11. Cascadeable MENUc.oiiiiiiiiiii e e e e e e e e e e e e s e e eerae e
Figure 3-1. Main WINGOW ..ot ettt ettt ettt e e e e e ee et e e e e e e ee e en e st e e
FIgure 3-2. ImMage EITOroo ittt et ettt e e e s n e e e

Figure 3-3. DIalog EQITOrcueeuiiriieiie ettt ettt sttt e e e n e e n e e e

Figure 3-4. MenU Bar EQIOrooooiuiiriiiieie ettt st e n e e en e
Figure 3-5. Palette EQItOrccc e ettt e e e e e e e e e st e ae e e e ee e e e e

1o [0 I I T Uy]] [P PRST
FIQUIE 4-2. EXAMPIE 2 .ottt ettt e et ettt e e e e e e e ea e b e e e e aeee e e s e eenes
FIgUIe 4-3. EXAMPIE 3 ..ottt ettt ettt ettt e e e e e e e e e r e e n e
FIGUIE 4-4. EXAMPIE 4 ..ottt ettt e ettt e e e e et r e e e

Figure 4-5. The Bank MOGEIooiiiiiii ittt et n e e eeas

Figure 5-1. Form for the ATM EXamMPIEccooeiiiee et e e e e st st e e e ee e e e
Figure 5-2. Form for LIStL EXAMPIEuoueiiii it e e e e st srn e e e ae e e e e e
Figure 6-1. Animated ICONSccccvviviiririinennnen
Figure 6-2. Coordinate Transformatlons ..
Figure 6-3. Object Origin
Figure 6-4. Output of the Shape Routme ...
Figure 7-1. The Gold Mine . .
Figure 7-2. Output of the DYN HIST Model ..
Figure 7-3. The POrt MOUEI ettt e e e ee e e e e
Figure 7-4. The CALSHIP MOUEIooiiiiiiie ettt
Figure 7-5. The SPring MOTEIocuiiiiiiii et
Figure 7-6. The EJECT MOEIcooiiiiiii ittt ettt ettt e e

Vii

SIMGRAPHICS Il User’s Guide

viii

Preface

Over the past few years interactive colored graphics based on windows systems have be-
come standard on every personal computer and workstation. These graphical systems are
provided by computer system vendors and all have different programming interfaces.
There is no standard, so graphical programs developed on a PC platform using the Win-
dows toolkit cannot easily be ported to a UNIX workstation without changes in source
code, and vice versa. In addition, vendor’s toolkits change constantly and are not easy to
use. Graphical programs which use them directly are not portable and are difficult to main-
tain.

Following our tradition of developing easy-to-use, stable and reliable products, pioneering
new concepts and exploiting proven stat¢he-arttechnologies, CACI has developed
SIMGRAPHICS IP, the second generation of CACI's SIMGRAPHICS.

SIMGRAPHICS IF preserves all the best, well tested, and proven concepts from its prede-
cessor: the same programming interfdigh expressive powgsimplicity, ease of usand
portability across various platforms.

Programs written in SIMSCRIPT 11.5 with SIMGRAPHICS 1l are portable. They can run
on another platform without any source code changes. And, because SIMGRAPHICS Il
uses underlying system vendor toolkits, graphical SIMSCRIPT I1.5 programs automatical-
ly acquire théook-and-feel of the platform they are running on without any program mod-
ifications.

To preserve your investments in program development, SIMGRAPHICS Il was designed
with forward and backward compatibility in mind. It is superset of SIMGRAPHICS | and
graphicalprograms written in SIMGRAPHICS liW run using SIMGRAPHICS 11 with

only minor changes.

SIMGRAPHICS Il is a self-containedtate-of-the-art graphical package irhedd with
SIMSCRIPT II.5. It provides all the necessary tools, language statements and data struc-
tures for creating new interactive graphical programs, or adding an interactive graphical in-
terface, static or dynamic presentation graphics and animation graphics to existing
SIMSCRIPT I1.5 models.

It also provides automatic generation of encapsul@sdScript output from the running
models for hard copy documentation.

SIMGRAPHICS II provides support for bitmaps, allowing geographic maps, street maps,
airport layouts, etc., to be used as a background, to create realistic presentations and im-
prove the accuracy of simulated environments.

Synchronous presentation in multiple windows allows the modeler to better structure visual
information and graphical interactions.

SIMGRAPHICS Il User’s Guide

Why Use Graphics?

The goal of a system simulation is to increase the understanding of the operation of a com-
plex system. Unfortunately, the results of simulation studies are often presented only as
pages of numbers, which fail to communicate the understanding gained. The complexity
of the system and the simulation can make it difficult for users and decision makers to fully
appreciate the interactions between system elements. Results are often noteell

stood. Premature action may be taken based on invalid assumptions, incorrect data, or hid-
den modeling errors. Conversely, valid simulation results may not be quickly appreciated.

Often the best way to represent a dynamic system is graphically. Animated graphics clearly
show the operation of the simulated system and graphic results are easily evaluated. Sys-
tem operation is better understood, and decision makers have more confidence in the sim-
ulation results.

Graphical representation facilitates debugging. Coding, data and modeling errors are ap-
parent, thus avoiding the need for tedious error tracking.

SIMSCRIPT I1.5 has a wide range of applications, and SIMGRAPHICS 1l is flexible
enough to represent Bties ranging from aircraft omunways to messages in a
communications network. It is easy to use. All graphics features are part of a self-
documenting SIMSCRIPT II.5 model program. Control of the simulation is separated from
the running of the animation. Animated graphical output can easily be added to existing
models.

Organization of This Manual

This manual is organized to let you add interactive colored graphics to your SIMSCRIPT
I1.5 applications almost immediately. The fundamental concepts of SIMGRAPHICS Il are
covered inChapter . A brief tutorial on SIMGRAPHICS Il is presentedChapter .
SIMDRAW is described in detail iChapter . Presentation graphics, graphical interac-
tions through forms, and animated graphics are described in Ch4, 5, and6. These
chapters use a cookbook approach and include all the information necessary to create most
kinds of animated displays. All three types of graphics can be included in a single simula-
tion simultaneously, and examples of simulations including each kind of graphics are given
in Chapter 7. Managing multiple windows is describeChapter .. Chapter ' covers ad-
vanced topics such as the programmatic approach for the manipulation of graphic images,
real-time synchrongtion, etc. Appendix A is a reference to all of SIMGRAPHICS IlI's
variables and routineAppendix E is a guide to converting SIMGRAPHICS | programs to
SIMGRAPHICS II.

Additional information regarding the behavior of a specific computer system is contained
in the SIMSCRIPT I1.5 User's Mant for that system.

For information on the free trial of SIMSCRIPT II.5 with SIMGRAPHICS Il, or
SIMSCRIPT I1.5 documentation or books, contact:

In the U.S. & Pacific Rim:

CACI Products Company
3333 North Torrey Pines Court
La Jolla, CA 92037

(619) 824-5200

Fax (619) 457-1184

Preface

In Europe:

CACI Products Division
Coliseum Business Centre
Riverside Way, Camberley
Surrey GU15 3YL

United Kingdom

+44 (0) 1276 671 671

Fax +44 (0) 1276.670.677

SIMGRAPHICS Il User’s Guide

1. Overview of SIMGRAPHICS Il

SIMGRAPHICS Il lets you easily incorporate presentation graphics, interactive graphics
and animation in your SIMSCRIPT II.5 programs. SIMGRAPHICS Il uses the system ven-
dors' toolkits so your programs acquire the look and feel of whatever system they are run-
ning on.

SIMGRAPHICS II's ease of use comes from a design which separates the appearance of
icons from the programming of the entities they represent. You do not blindly program the
way your graphics look. You see them as you design them. You can change them at any
time without recompiling your program.

Presentation graphics include histograms, pie charts, 2-D graphs and other graphics for the
visual display of data. Data accumulated in a SIMSCRIPT 1.5 program can be presented
by adding just a few statements to the program. Most of the work of formatting the graphics
is easily done within SIMDRAW.

Interactive programs require input from the user. SIMEBRICS Il allows you to design

input forms using SIMDRAW. Programming for user interaction is usually very tedious.
You must watch for mouse clicks, check the range of data entered on forms, check for the
opening and closing menus, etc. SIMGRAPHICS Il lets you design these types of interac-
tions painlessly using SIMDRAW. You can design forms that include dialog boxes, value
boxes, check boxes, list boxes, buttons and menu bars.

Animation requires the design and implementation of icons. Designing icons is very easy
in SIMGRAPHICS Il. You simply construct the ones you need from a few basic graphic
objects: lines, circles, boxes, areas, sectors and polylines. You have the features of an ad-
vanced drawing program at your disposal including thetyalbo cut and paste objects,

group objects, snap to a grid, and so on.

These three types of graphics generated by the editor are stored in a single ASCII file called
graphics.sg2 . This file is normally stored in the same subdirectory as their program
code. It can be moved between different machines and operating systems without modifi-
cation.

This graphics file can be easily utilized in an application. The program need only contain
concepts familiar to the SIMSCRIPT programmer, such a3AheY or ACCUMULATE
commands, and simple SIMGRAPHICS Il constructs sucBHOWDISPLAY, ERASE

or ACCEPT.F

1.1 Effective Use of Graphics and the User Interface

Over the past few years there has been a revolution in computing. It used to be that all pro-
grams were text-based and the results were pages of numbers. Since printouts of numbers
are not the most effective method of communicating the results of a program, visual output
has become more prevalent.

SIMGRAPHICS Il User’s Guide

At first programs were used to drive hard copy output devices such as a plotters, but as com-
puter displays have become more sophisticated (and prices have fallen) graphical displays
on the computer screen have become commonplace.

Now, not only is the output from a program displayed graphically, but the whole user in-
terface is becoming graphical. Graphical user interfaces can be more intuitive and easier
to use than the command line interface. Input can be greatly simplified with interactive
graphics. The user can leave some information as its default, alter other data, and be
prompted in each step. SIMGRAPHICS Il can even use asynchronous input: input which
alters the simulation on the fly. Straight text interactions can almost always be improved
upon with graphics.

Animated or graphical output is often the most easily absorbed information. The simula-
tion state and results are usually not conveyed as clearly by plain text or value output.

1.1.1 Selecting Colors

Often, the purpose of animated color graphics is to explain or present the results of a sim-
ulation study. To this end, select a color scheme that is harmonious, attractive, and mean-
ingful. Remember that color can be over used. This detracts from the entire presentation.

The background color should provide contrast, drawing attention to important information.
Effective background colors complement the main color.

Bright colors such as red, orange, and yellow attract attention. These colors can be used
for important objects in a display. Subdued colors can be used for less important objects.

Borders around areas help define them. Either a black border or a white border can help
set the area off from the background and enhance the entire picture.

Colored objects will look different when surroundings or background fields are different in
color. Remember that the appearance of color is a relative feature of the viewer's percep-
tion, not an absolute property of color itself.

1.1.2 Scale and Size

Big displays have more visual impact, so whenever possible, use the full area of the screen,
even if objects touch or overlap the edge. Objects that overlap the edge will be clipped, and
usually look fine.

Scale drawings tend to make objects look insignificant. Using exact scale, while important
with CAD systems, is often inappropriate with animation. The better technique is to exag-
gerate, cartooning the information. Use size, intensity, color, and motion for emphasis. Im-
portant objects should be large, and in bright colors.

1.1.3 Designing a Background

A well-designed background makes an animated display more attractive. It also introduces
a viewer to the problem, and can provide information about the display. Static items (walls,

Chapter 1. Overview of SIMGRAPHICS |I

stairs, a factory floor layout, an airfield) help associate the simulation results with the real
system they represent. A legend can indicate the meaning of different colors or icons. A
plain background can change color to indicate a change from day to night shift, and so on.
The purpose of animated graphics is often to give simulation results more concrete mean-
ing, and adding a realistic background can be a great help.

1.1.4 Representing Changes in System State

Graphical objects can convey information about changes in system state by changing color,
shape, or through motion. For example, a busy machine could be shown in red, an idle one
in green, and a broken one in black. Similarly, a busy machine could be represented by one
icon and an idle machine by another. An icon representing a machine under repair could
include a maintenance person. Labels can also be added to icons, indicating, for example,
the type of machine, the type of part being processed, or position in a queue.

1.1.5 How Many Objects Should Be Displayed?

Overall simplicity helps visual presentati. Too many etails make it difficultfor the
viewer to get the message, or may call attention to the wrong features. Less important ob-
jects should be simplified or made smaller.

In simulations which contain many objects, it may be desirable to represent only a fraction
of them and to label the icon accordingly. A queue of 1000 parts could be represented by
10 icons, each of which stands for 100 parts. Similarly, a numeral could stand for the num-
ber of parts being transported, waiting in line, and so on. Also consider your audience when
determining the level of detail to depict. Some users are interested in the minute workings
of the simulation, while others will only want to see the general pattern of results.

SIMGRAPHICS Il User’s Guide

2. Tutorial

SIMGRAPHICS Il is part of SIMSCRIPT I1.5. It is simple and easy-to-use. Let us see how
to create SIMSCRIPT I1.5 graphical programs which use SIMGRAPHICS II.

You simply write your SIMSCRIPT 11.5 program using additional graphical statements or
routine calls, compile it and link with the SIMGRAPHICS Il graphical library. Existence
of this library or set of libraries is transparent to you. To link with SIMGRAPHICS Il on
a PC Windows platform, just declare your application S8MGRAPHICS I Applica-

tion in your project options. On UNIX you have only to use the sshipgld for linking.

Graphical statements and calls to graphical library routines are used to declare graphical en-
tities, to open one or more graphical windows, to show a graphical entity with an icon, to
animate its motion or to dynamically display variables which change their values over time
using smarticons like: graphs, dynamic bar charts, pie charts, clocks etc. or to accept values
through dialog boxes.

Icons, graphs and dialog boxes are graphical elements which you create independently of
your program. To create them you use the graphical editor SIMDRAW and then store the
elements in a library of graphical elements. The default name for this library is
graphics.sg2 , but you can create and use different libraries of graphical elements with
arbitrary names as long as they all have the extersian.

To change the appearance of your program you do not have to do any programming,
recompiling or relinking. You change the graphical elements used in your program using
SIMDRAW. You then store the elements in your library, and execute your program again.

To follow the examples in this tutorial, we assume that you know how to write SIMSCRIPT
I1.5 programs and how to compile, link and execute them on the specific platform which
you are using. SIMSCRIPT II.5 User Manuals for PC Windows, UNIX or VAX/VMS
explain in detail each development environment: compiling, linking and running
SIMSCRIPT II.5 models.

In this chapter we will show the basics of creating and using SIMGRAPHICS Il programs
using simple examples.

All graphics elements appear in the graphics window, so first, we will learn how to open a
SIMGRAPHICS Il window on the screen, write a title in it and display a few icons.

2.1 How to Open a SIMGRAPHICS Il Window with a Title

You do not have to open a graphics window. When you create your SIMSCRIPT II.5 pro-
gram as a SIMGRAPHICS Il applicationdafault window without any title will be
opened automaticallyevery time the program is executed.

If you want to open a window with a specific title, size and position you can use the graph-
ics library callOPENWINDOW.Rith given arguments: position, title and mapping factor,
to getWINDOW.IDand pass it to the graphical system usingStEewWINDOW.Routine.

SIMGRAPHICS Il User’s Guide

By default, the background of the window will be black. If you want to change the color of
the background you can use GCOLOR.Iroutine, and s«€COLOR.INDEX=0 to a desired
RGB combination. Here is an example:

Main

"Open graphics window with specified coordinates and a title,
"and background color

Define WINDOW.ID as integer variable

" Set background color
call GCOLOR.R(0,0,500,0) "dark green

call OPENWINDOW.R given 4096, 28672, 0 , 32767,
" My Title - For Simgraphics Window",
0
yielding WINDOW.ID

call SETWINDOW.R given WINDOW.ID

" This message will keep your window opened until you click “OK”
call MESSAGEBOX.R (“Exit”, “End of the program”)
end

You can find a detailed explanation of the graphics routines used and their arguments in
Appenidx A.

Now we will learn how to display icons in the graphics window.

2.2 Display Icons in the Default Window

To display a few icons in the window, first you have to create them using graphics editor
SIMDRAW and store them in a library of graphics elements. We have created three icons:
car.icn, plane.icn andimage.icn and preserved them in the library called
graphics.sg2 . This library is the default SIMGRAPHICS Il library of graphical
elements. It is searched first whenever you want to display a certain graphics element.
Here is an example of how you display three icons from the default library in the default
graphics window. You must declare graphical entities in the preamble using the
SIMSCRIPT I1.5 statemenDynamic graphic entities include... and associate

their graphical representation with an icon usdisplay entity_name with

icon_name in the program. As part of the initialization of the graphics system, the world
view and view port have to be set before you draw in the window. R(SETWORLD.R

and variabl VXFORM.\ are provided for this purpose.

Preamble
" Example "Show Icons"

Dynamic graphic entities include IMAGE1, IMAGEZ2, IMAGE3
End "Preamble

Main
"Set world view and view port
Let VXFORM.V =1

Chapter 2. Tutorial

call SETWORLD.R(-1000.0, 1000.0, -1000.0, 1000.0)

" Display icons from the default graphics.sg2 library
display IMAGE1 with "car.icn" at(0.0, 0.0)
display IMAGE2 with "plane.icn" at (-500.0 , 500.0)
display IMAGES3 with "image.icn" at (500.0, -500.0)

" This message will keep the window open until you click “OK”
call MESSAGEBOX.R ("Exit", "End of the program")
end

We did not have to mention the name of the libgraphics.sg2 , and we did not have

to open a graphics window. This was done for us by the SIMGRAPHICS Il run-time sup-
port. But, you can also create multiple libraries of graphical elements with arbitrary names
and read icons from them as explained in the following paragraph.

2.3 Use of Multiple Graphics Libraries

SIMGRAPHICS | provides you with the possibility of organizing graphetsments of

your application in one or multiple libraries. Graphical elements are classified in three cat-
egories: icons, graphs and forms. There is a haming convention: all icons have extension
dcn, all graphs.grf and all forms have extenticfrm . The librarygraphics.sg2

will always be searched automatically, so graphical elements which are always needed
should be placed in this library. Additional libraries can also be created with SIMDRAW.
They must be explicitly read/searched during execution time usiREAD.GLIB.R rou-

tine.

You can keep graphical elements from multiple applications in the common library because
only elements which you want to show in your application will actually be loaded in the
memory. Names of graphical elements from the same category in multiple libraries should
be unique. Generally you can have two or more icons with the same name in different Ii-
braries, but the one from the last read library will take precedence.

See the following example “Window” as an illustration of the use of multiple libraries.

2.4 Example "Window"

The “Window” example given below is included with every SIMSCRIPT I1.5 distribution,
and summarizes what we have learned so far. It shows how to open a graphics window
with a default position and size on the screen, write a title in it and shows how to display
graphic entities with associated icons. In this example, litgraphics.sg2 , which is
always loaded during the initialization phase of SIMGRAPHICS Il, contcar.icn,
plane.icn andimage.icn . Additional librarycart.sg2 containscarticn . It was
read-in using library caREAD.GLIB.R to display one of the graphical entities with
cart.icn

Preamble

" Example "Graphics window"

Normally mode is undefined
Dynamic graphic entities include IMAGEL, IMAGE2, IMAGE3, IMAGE4

SIMGRAPHICS Il User’s Guide

End "Preamble

Main
" Open graphics window with specified coordinates and a title
Define WINDOW.ID as integer variable

call OPENWINDOW.R given 4096, 28672, 0, 32767,
" My Title - For Simgraphics Window",
0
yielding WINDOW.ID

call SETWINDOW.R given WINDOW.ID

" Set world view and view port
Let VXFORM.V =1
call SETWORLD.R (-1000.0, 1000.0, -1000.0, 1000.0)

" Display icons from default graphics.sg2 library
display IMAGE1 with "car.icn" at(0.0, 0.0)
display IMAGE2 with "plane.icn" at (-500.0 , 500.0)
display IMAGES3 with "image.icn" at (500.0, -500.0)

" Display icon from additional cart.sg2 library
call READ.GLIB.R ("cart.sg2")
display IMAGE4 with ("cart.icn") at (-500.0, -500.0)

" This message will keep window open until you click on "OK”
call MESSAGEBOX.R ("Exit", "End of the program™)
end

Figure 2-1. Example Window

Compile, link and execute this example. As you see, during execution time you can repo-
sition, resize, and iconize this window. The images displayed in the window will rescale in
accordance with the window dimensions.

Chapter 2. Tutorial

You can experiment by changing the title, initial position, and size of the window from your
program. You can also open multiple non-square windows and position them on the screen
in an arbitrary way, as shown in the following example.

2.5 How to Open Multiple SIMGRAPHICS Il Windows

In SIMGRAPHICS Il you can programmatically open multiple non-square windows. Each
window has its own title, position and world space to present. Example “nwindows” illus-
trates how to open three windows and display two icons in the upper window and one icon
in each of the lower windows:

Preamble "Example "Multiple Graphics Windows"
Normally mode is undefined
Dynamic graphic entities include IMAGE1, IMAGE2, IMAGE3, IMAGE4

Define .window1 to mean 1
Define .window?2 to mean 2
Define .window3 to mean 3

End "Preamble

Main
" Open graphics windows with specified coordinates,
" and a title

Define WINDOW1.1D as integer variable
Define WINDOW?2.1D as integer variable
Define WINDOWS3.ID as integer variable

call OPENWINDOW.R given 4096, 28672, 16383, 32767,
" Simgraphics Upper Window ",
0
yielding WINDOW1.1D

call OPENWINDOW.R given 4096, 16383, 0, 16383,
" Simgraphics Lower Window1l ",
0
yielding WINDOW?2.1D

call OPENWINDOW.R given 16383, 28672, 0, 16383,
" Simgraphics Lower Window?2 ",
0
yielding WINDOWS3.ID

let VXFORM.V = .windowl
call SETWINDOW.R given WINDOWL.ID
call SETWORLD.R (-1000.0, 1000.0, 0.0, 1000.0)

let VXFORM.V = .window?2
call SETWINDOW.R given WINDOW?2.ID
call SETWORLD.R (-1000.0, 0.0, -1000.0, 0.0)

SIMGRAPHICS Il User’s Guide

let VXFORM.V = .window3
call SETWINDOW.R given WINDOWS3.ID
call SETWORLD.R (0.0, 1000.0, -1000.0, 0.0)

let VXFORM.V = .window1
show IMAGEL1 with "car.icn" at (500.0, 500.0)
show IMAGE?2 with "plane.icn" at (-500.0 , 500.0)

let VXFORM.V = .window?2
call read.glib.r ("cart.sg2")
show IMAGE4 with ("cart.icn") at (-500.0, -500.0)

let VXFORM.V = .window3
show IMAGE3 with "image.icn" at (500.0, -500.0)

" This message will keep windows open until you click "OK"
call MESSAGEBOX.R ("Exit", "End of the program")
end

Simgraphics Upper Window

I
Ei

Figure 2-2. Multiple Window Example

Every window is independent and can be individually repositioned, resized and iconized.
A more elaborate example, “calship,” can be found in the examples of the SIMSCRIPT I1.5
distribution.

Icons in the librariegraphics.sg2 andcart.sg2 are created without any programming
using SIMDRAW. Learn how to use SIMDRAW by experimenting. First, look at the ex-
isting libraries and then draw your own graphedésments: icons, graphs, dialog boxes,
menus, and palettes.

10

Chapter 2. Tutorial

2.6 SIMDRAW — the Graphics Editor

SIMDRAW is the editor provided by the SIMGRAPHICS Il system to create and editicons

or graphic images, charts and graphs and user interface items such as menu bars, dialog
boxes and palettes. The editor is portable across all systems on which MODSIM Il is
available. It produces graphics files which are also portable.

Graphic items are built from primitives such as lines, circles, polygons, etc. Typically these
parts are grouped together for convenience in handling. Each group and primitive can have
a field name. This is used as a “handle” to identify the graphic objects when they are in a
graphics library or when they are part of another graphics object.

Any graphics item can be saved in a graphics library.

SIMDRAW's main window is shown below. This window categorically lists all objects
contained in the currently loaded library file. From this window you can create and edit
images, icons, graphs (2-D charts, level meters, etc.), dialog boxes, menu bars, and palettes.
A separate window is created for each object being edited. This allows you to copy parts
of an object into thelipboardand paste them into another object of the same type. To add

an object to the library, select one of the palette buttons on the left side of the window.
Editing an existing object can be accomplished by double clicking on its name in the listing.

| Save fo current '.sg2" file ‘ | Delete selected ohject fram Iibrary|
‘ Jpen an existing " sg2" file| \ ‘ Duplicate selected object |
| Create a new ".sg2" file | | Invoke editor for selected Dbjeu:tJ_
|

: CEVACEMDS alry LN LRI B F it Graphs
sert |Optigns [¥indow HelpgandImagesin

[same window
a|g|n Y

‘ Cateqories of ohjects |

| Create an Image|

Create a graph [—

|
|
1
|
=
|
‘Create a Dialog Eli| |
I
|
|
1
|
|
1

‘ Create an Alert Box ‘

> Objectin librany

‘ Create a Menu Bar |

Create a Palette |—

Figure 2-3. SIMDRAW Main Window

11

SIMGRAPHICS Il User’s Guide

Double clicking on an image in the listing will invoke a separate window calladdbe

Editor which will contain only that image. Images are composed of circles, polygons, sec-
tors, arcs, polylines, text, and bitmaps. Primitives are added to the image by selecting a
primitive type from theviode palette on the left. Bitmaps are added usingrtlemport

option. Primitives can be repositioned, resized, flipped, and rotated. The style and color
of a selected primitive can be changed usingcthe palette on the bottom and thgle

palette on the right side of tireitor . Points defining a polygon or polyline can be added,
removed and repositioned.

A Layout Editor allows you to position and resize any number of images and graphs within
the same window.

The Graph Editor allows you to edit a variety of 2-D charts, pie charts, clocks and meters.
Clicking on theBar Chart palette button on the left side of thg window will present the
following dialog

= Select Graph Type

Fie chart

=
i

Cancel
Analog clock

Chgital clock.

Level meter

Chigital display

"
"
"
" Dial
"
"
"

Text meter

The above graph types can be used to graphically display values of monitored or “display”
variables. Thed Chart is used to represent SIMSCRIPT histograms. These are defined in
the preamble as follows:

Define < monitored_variable> as a real variable

Tally <histogram_name> (<lo_bound> to <hi_bound> by <delta>) as the
dynamic histogram of

<monitored_variable>

In your program, the histogram is loaded as follows:
Display histogram <monitored_variable> with “chart_name.grf”

where“chart_name.grf ” is thelibrary namegiven to the object in SIMDRAW.

12

Chapter 2. Tutorial

ThelLevel meter, Dial, andDigital display are used to represent display variables. A display
varible can be defined in your preamble as:

Define < monitored_variable> as a real variable
Display variables include <monitored_variable>

and loaded into your program with a statement of the form:

Display = <monitored_variable> with “meter_name.grf”

where“meter_name.grf " is thelibrary namegiven to the object from within
SIMDRAW.

The Analog clock andDigital clock objects display time. The preamble definition is as fol-
lows:

Define < time_variable> as a real variable
Display variables include <time_variable>

and loaded into your program with a statement of the form:
Display <time_variable> with “clock_name.grf’

where“clock_name.grf " is thelibrary namegiven to the object from within
SIMDRAW.

The Pie chart can be used to monitor an array of variables. The preamble definition is as
follows:

Define < monitored_array > as a 1-dim integer array
Display variables include <monitored_array>

and loaded into your program with a statement of the form:

Display = <monitored_array> with “pie_name.grf”

where“pie_name.grf " is thelibrary namegiven to the object from within SIMDRAW.

The Text meter monitors a variable of type “text”.

13

SIMGRAPHICS Il User’s Guide

Define < monitored_text> as a text variable
Display variables include < monitored_text>

Display < monitored_text> with “text_display.grf”

2.7 Creating an Icon

One of the nice things about SIMGRAPHICS Il is that changing the graphical display pro-
duced by an application program can be accomplished simply by using the editor, rather
than by modifying source code. So if you would rather animate a rocket or a race car, feel
free to draw one of those instead. We only picked a cart because its easy to draw—just a
box with two circles for wheels!

To create the icon, you should first enterimage edito by clicking on the upper-left pal-

ette button on the main window. Timage Editor window will appear allowing you to
draw lines, paofgons, circles, arcs, sectors and text. You can also import bitmaps created
by another drawing tool such as “MS Paint”.

To create a wheel for the cart, first click on the “circle” tool on the left side palette to enter
“circle drawirg” mode. Now click and dgpan outline of a circle in the canvas of the win-
dow. You can now resize the circlg @iragging one of the smalireen “resize handles” of

the selected circle. Moving the circle is even easier; just click and drag!

You can make the second circle by copying the first one. U<Edit/Copy option to copy

the selected circle into the clipboard. Now selecEdit/Paste option and drgathe outline

of the copied circle to where you want it. The body of the cart can be made with a simple
rectangle. Click on the “rectangle” tool on the left palette and drag an outline for the body
of your cart. You can set the color angabf these primitivesyoselectirg them and click-

ing on buttons in color and style palettes on the bottom and right-hand sides of the editor
window.

If you want the wheels to appear on top of the body, hold dow<shift> key and click
on each (unselected) circle. Both wheels should now be selected. |Layout/Bring to
front option to re-stack the pdcts.

If you want to resize the whole ig& a ‘group” should be made contaigifoth wheels

and the body. Click in the canvas and drag a selection rectangle over all the primitives.
With both circles and the box selected, useLayout/Group option to make a grouping.

The resultiig group can now be resized. Tg®up can be destyed without deletig your
objects using thLayout/Ungroup option.

Before saving this object to tlgraphics.sg2 file, you should define the image’s prop-
erties using thEditimage... option. After theimage Detail dialog box appears, set the name
of the olpect shown in thiLib. Name text box tccart.icn . This is the same name that is
used in your program in statements of the form

14

Chapter 2. Tutorial
Display IMAGE with “cart.icn” at (X,Y).

Next, the cart should be re-centered. Click onSelect.. button to select a new center-
point. You will then be asked to click inside the window to define the center-point. (The
center point would correspond to (X,Y) in the above SIMSCRIPT code). Click ©OKthe
button to return to the editor. Save the image and library file usirFie/Save option.

The edit session can be terminated by closing the editor's window. Refer to figure 2-4.

|Sh0w“pr0perties“ dialog | | Fotate |

oy Slmdra\n

dh
[Feumosseavisly k.
[Eovspovmnl3 A
[Browerecorde 15 Il
[Drovasscor 13 8K

| Draw a freehand palygon Bﬁ
[ovazavind} 2
By Y

Draw a freehand line @ Ab
L=
=

21 Tag|ak
I—I—I—I—I—I—_I—I—I—I—ll—l— N ST]EE

| | | Z

Selected component F"J Ab

Figure 2-4. Creating a Cart Icon

2.8 Adding Animation

SIMGRAPHICS Il has high expressive power. With a very few powerful graphical
statementyou can add animation to a graphical entity. Example “Image-1” (figure 2-5)
shows a graphical entity, IMAGE, displayed with iccart.icn in the default graphical
window. Motion of the graphical entity, IMAGE, is described with the SIMSCRIPT I1.5
processIMAGE.MOTION which is written usincORIENTATION.A andVELOCITY.A
attributes of the graphical entity. Synchronization with real-time is achieved through the
TIMESCALE.V variable. This example is included with every SIMSCRIPT I1.5
distribution. It will run successfully if you added iccarticn ~ tographics.sg2 using
SIMDRAW in the previous paragraph. When you want to show a graphical entity with a
certain icon, graphics librargraphics.sg2 is searched first. You can also change this
example to use the libraicart.sg2 which containscart.icn , or you can show

15

SIMGRAPHICS Il User’s Guide

graphical entity IMAGE with some other icon liker.icn |, plane.icn orimage.icn
which are in the librargraphics.sg2 , as shown in the example “Window,” figuzel.

Figure 2-5. Output of the Image-1 Routine

Preamble "Example "IMAGE-1"
Normally mode is undefined

Define NUM.ROTATIONS and SPEED as double variables
" Animation declarations:
Dynamic graphic entities include IMAGE
Processes include IMAGE.MOTION

End "Preamble

Main
" Set up the world view and view port
Let VXFORM.V = 1
Call SETWORLD.R (-1000.0, 1000.0,-1000.0, 1000.0)

" Set real-time synchronization and motion parameters
Let TIMESCALE.V =100
Let SPEED = 300
Let NUM.ROTATIONS =2

" Set graphical representation for graphics entity IMAGE,
" Icon cart.icn is in the default library graphics.sg2.
" Activate 'image.motion' process.
Show IMAGE with "cart.icn"
Activate an IMAGE.MOTION now
Start simulation

End "Main

Process IMAGE.MOTION
" Describes the motion of graphical entity IMAGE
" by setting the orientation and velocity of the IMAGE

16

Chapter 2. Tutorial

Define CURRENT.COURSE, NUM.SIDES, ANGLE as real variables
Define I, J, CURRENT.TICK as integer variables

For 1 =1 to NUM.ROTATIONS
Do
let NUM.SIDES = 4
Let ANGLE = (2 *PI.C*(1-2*RANDI.F(0,1,2))) / NUM.SIDES

For J = 1 to NUM.SIDES
Do

Let ORIENTATION.A(IMAGE) = CURRENT.COURSE
Let VELOCITY.A(IMAGE) = velocity.f(SPEED, CURRENT.COURSE)

Work (1000 * PI.C) / (NUM.SIDES * SPEED) units
Add ANGLE * min.f(NUM.SIDES - J,1) to CURRENT.COURSE
Loop
Loop
End " process IMAGE.MOTION

When declared as graphical, an entity gets a few internal attributes that are stored by the
graphical system: its position, velocity, orientation, and a pointer to an icon. Some of these
attributes can be accessed programmatically, either directyORENTATION.A or

through anattachedoutine/function likeVELOCITY.A, which is accessedhiough the
functionvelocity.f

This example has hard coded values for icon name, and motion parameters. You can pro-
vide the user of your program with the possibility of entering these parameters in text form
or with using a more convenient graphical user interface. In the following two paragraphs
we will show how to create a dialog box and use it in your SIMSCRIPT I1.5 program.

2.9 Creating a Dialog Box

The user of your program needs some way to influence what the program will do. To this
end, SIMGRAPHICS Il provideforms For your simulation you can create a dialog box
which allows the user to choose an icon name to represent the imagecenitdy:
plane.icn, image.icn orcarticn . Or you could create a dialog box to define mo-

tion parameters: speed, number of rotations and time scale, and then either to signal that
those values are correct by pressingrrbutton, or else to end the program by pressing a
Cancel button.

To create the dialog box click on the appropriate palette button on the left-hand side palette
of the main window. This action will bring up tbelog Box Editor window. See figure

2-6. You can add buttons, check boxes, text boxes, etc. to a “template” dialog box shown
in theEditor window. The template will already contain@k and aCancel button. You

can move these buttons around by clicking and dragging them with the mouse.

17

SIMGRAPHICS Il User’s Guide

[Simdraw - C:ASIMSCRIP\DEMOS\IMAGE3\... MEIE
7| File Edit Miew Layout Window Help _|2|x|

Button | E | X

Selection tool

S|

Text biox —
el box] X ——=————

Check box

Radio box - Image Dema
List box @ F aMarne of image l—”
bulti-line box S j Iﬂn::x Timescale value I_
Table +{ FFFA Speed of image]

| Label, graup b.:,xi_..-—-" T Mumber of rotations
p=fie cae
T | il Tabl _
ree lis " @ ‘ \ Lrl

Frogress bar r.a

1 \ Y

i
| Selected contraol |

[Ul!llll

. 9
u] =
o o
- (m]
i} o
fiv] o
m =

Figure 2-6. Dialog Box Editor Window

Double click on th«ok button and #roperties dialog will be brought up allowing you to
set its attributes. EntoOK in theField Name text box. Bring up thProperties dialog for
the Ccancel buttons and ent¢cCANCEL in the text box labeleField Name .

Now add a text box to the dialog. Click on the “text box” button on the left palette and
move an outline of the text box to your dialog. Double click on this new text box to make
its Properties dialog appear. Enter the text “lICON NAME” into tField name box. Enter

the text “Name of Image” into ttLabel box. The small green boxes shown on the selected
text box are called “resize handles”. You can resize the text box by clicking and dragging
one of these handles.

Now add three value boxes to your dialog in the same manner as above. Editthe properties
of each value box and change their field names to “TIMESCALE”, “SPEED”, and “NUM
ROTATIONS?”, respectively. Set the labels to “Timescale value”, “Speed of image”, and
“Number of rotations”, respectively.

This dialog is now almost completed. Before you save it, you need to assign properties to
the dialog box itself. Double click on the header bar of the sample dialog to bring up its
properties. Enter the teximage.frn" into theLib. Name box. This same text string is used

to load the dialog box into your program! Enter “Image Demao” int(itle box to set the

18

Chapter 2. Tutorial

title displayed in its header bar and then return to the editor by clickiog.on

If you want to see what the “real” dialog will look like, use thgout/Show dialog option.
Use its “go away” button in the header bar to erase it. Ustdlgave option to save both
the dialog anddraphics.sg2 ".

2.10 Adding Graphical User Interaction Using Dialog Boxes

Example IMAGE-2 is the same as IMAGE-1 with only one addition. It uses a dialog box
to accept user choice for icon name, speed, time scale and number of rotations. See figure
2-7. All added lines for GUI are imain and are highlighted.

To add a graphical user interface to example IMAGE-1, you only need to create a dialog
box and to use it in your program through appropriate graphical routines and attributes like:
accept.f, dfield.f, DTVAL.A andDDVAL.A.

Figure 2-7. Dialog Box for Example IMAGE 2

Preamble "Example "IMAGE 2"
Normally mode is undefind
Define NUM.ROTATIONS, SPEED as double variables

" Animation declarations:
Processes include IMAGE.MOTION
Dynamic graphic entities include IMAGE

End "Preamble
Main

" Forms definitions:

19

SIMGRAPHICS Il User’s Guide

Define FORM.PTR as a pointer variable

" Set up the view port and world view
Let VXFORM.V =1
Call SETWORLD.R (-1000.0, 1000.0,-1000.0, 1000.0)

" Display the form and accept model parameters
Show FORM.PTR with "image.frm"
If accept.f(FORM.PTR, 0) eq "OK"
" Set timescale and speed:
" timescale is the number of 1/100ths seconds
" that will pass for every simulation time unit.
" The speed is in real world units / second.

Let TIMESCALE.V = DDVAL.A(dfield.f("TIMESCALE", FORM.PTR))
Let SPEED = DDVAL.A(dfield.f("SPEED", FORM.PTR))

Let NUM.ROTATIONS = DDVAL.A(dfield.f("NUM ROTATIONS", FORM.PTR))

" Accept icon name for graphics entity IMAGE,
" show it with that name and
" activate an 'image.motion’ process.

Show IMAGE with DTVAL.A(dfield.f("ICON NAME", FORM.PTR)
Activate an IMAGE.MOTION now

Start simulation
Always
End "Main

Process IMAGE.MOTION
Define CURRENT.COURSE, NUM.SIDES, ANGLE as real variables
Define I, J, CURRENT.TICK as integer variables

For | = 1 to NUM.ROTATIONS
Do
let NUM.SIDES = 4
Let ANGLE = (2 * PI.C * (1 - 2 * RANDL.F(0,1,2)))
/ NUM.SIDES

For J =1 to NUM.SIDES
Do
Let ORIENTATION.A(IMAGE) = CURRENT.COURSE
Let VELOCITY.A(IMAGE) = velocity.f(SPEED,
CURRENT.COURSE)

Work (1000 * PI.C) / (NUM.SIDES * SPEED) units
Add ANGLE * min.f(NUM.SIDES - J,1) to CURRENT.COURSE
Loop
Loop
End " process IMAGE

20

Chapter 2. Tutorial

To show simulation time changes is easy. We create a smart icon clock, and associate it
with a display variable which will be updated every time simulation time changes. First,
though, learn how to create a smart icon graph with SIMDRAW.

2.11 Creating a Graph

Run SIMDRAW, load the library and create a graph clock by clicking on the palette button
on the left hand side of the main window. ChoAnalog clock and clickOK to bring up
theGraph Editor and a “clock” template. Its easy to change the styles and colors of any part
of the clock. Just select the part of the clock you wish to change, and use the style and color
palettes.

To move the clock just click and drag with the mouse. To resize it, drag a selection box
over the entire graph. This will select twhole clock and not just a part of it. You can
now resize it using the small green resize handles on the selection box.

You can change properties of the clock by double clicking on it to bring (Clock Detail

dialog. Enteimage.grf into theLib. Name box and “Simulation time” into thTitle box,
and then clickok. You can now save this clock agraphics.sg2 with theFile/Save
option.

2.12 Adding Presentation Graphics

Example IMAGE-3, figure 2-8, is the same as IMAGE-2, except for the addition of
presentation graphics. It defines a display variCLOCK.TIME and useimage.grf for
representing simulation time. User written roulCLOCI is supplied to update the display
variable CLOCK.TIME and to synchronize with real-time through the variable
TIMESYNC.V.

1L
E E

g
Simulation time

Figure 2-8. Example IMAGE-3

21

SIMGRAPHICS Il User’s Guide

Preamble "Example "IMAGE-3"
Normally mode is undefined
Define NUM.ROTATIONS, SPEED as double variables

" Animation declarations:
Processes include IMAGE.MOTION
Dynamic graphic entities include IMAGE

" Presentation graphics declarations:
Define CLOCK.TIME as double variables
Display variables include CLOCK.TIME

End "Preamble
Main
" Forms definitions:
Define FORM.PTR as a pointer variable

" Set up the world view and view port
Let VXFORM.V =1
Call SETWORLD.R (-1000.0, 1000.0,-1000.0, 1000.0)

" Presentation graphics:
Let TIMESYNC.V = 'CLOCK'
Show CLOCK.TIME with "image.grf"

" Display the form and get model parameter
Show FORM.PTR with "image.frm"
If accept.f(FORM.PTR, 0) eq "OK"

" Set timescale and speed:

" timescale is the number of 1/100ths seconds
" that will pass for every simulation time unit.

" The speed is in real world units / second.

Let TIMESCALE.V = DDVAL.A(dfield.f("TIMESCALE", FORM.PTR))

Let SPEED = DDVAL.A(dfield.f("'SPEED", FORM.PTR))

Let NUM.ROTATIONS = DDVAL.A(DFIELD.F("NUM ROTATIONS",
FORM.PTR))

" Accept icon name for graphics entity IMAGE,
" show it with that name and
" activate an 'image.motion’ process.

Activate an IMAGE.MOTION now
Show IMAGE with DTVAL.A(dfield.f("ICON NAME", FORM.PTR))

Start simulation

Always
End "Main

Process IMAGE.MOTION
Define CURRENT.COURSE, NUM.SIDES, ANGLE as real variables

22

Chapter 2. Tutorial

Define I, J as integer variables

For 1 =1 to NUM.ROTATIONS
Do
Let NUM.SIDES =4
Let ANGLE=(2*PI.C*(1-2* RANDI.F(0,1,2))) /NUM.SIDES

For J = 1 to NUM.SIDES
Do
Let ORIENTATION.A(IMAGE) = CURRENT.COURSE
Let VELOCITY.A(IMAGE) = velocity.f(SPEED,
CURRENT.COURSE)

Wait (1000 * PI.C) / (NUM.SIDES * SPEED) units
Add ANGLE * min.f(NUM.SIDES - J,1) to CURRENT.COURSE
Loop
Loop
End " process IMAGE

Routine CLOCK given TIME yielding NEWTIME
Define TIME, NEWTIME as double variables

Let CLOCK.TIME = TIME / (24*60*60)
Let NEWTIME = TIME

return

end

This is a simple, yet complete, example with all three types of SIMGRAPHICS elements
represented: animation graphics, input forms and presentation graphics.

2.13 Creating a PostScript File

SIMGRAPHICS Il provides an automatic way of creating PostScript files for better docu-
mentation of a simulation process. Without additional programming, you can automatical-
ly create snap shots in PostScript form during a simulation run. Execute any of the tutorial
examples and click on the PostScript icon (the small “PS” inside a circle) in the upper-right
corner of the SIMGRAPHICS Il window. A PostScript fprintl.ps will be created.
Subsequent clicks on the icon will create a snapshot nprint2.ps , etc. These encap-
sulated PostScript files can be printed on a PostScript compatible laser printer or imported
into a text processor for improved documentation of the simulation progress and simulation
results.

2.14 Using a Bitmap as a Background

Many simulation models require use of geographical maps, road maps or airport layouts as
a background, with airplanes, vehicles or other icons moving in the foreground. Maps or
other color images can be transformed to raster files or bitmap files using a color scanner.
Acceptable file formats for bitmaps are Windows Bitnm.BMP) on PCs and X-Windows
format (.xwd) on UNIX platforms.

23

SIMGRAPHICS Il User’s Guide

Bitmaps can be used as icons, as static objects in a background, or as dynamic moving su-
per-imposed objects.

First, create raster/bitmap images using any color scanner, or using some of the system soft-
ware tools like Paintbrush on the PC Windows platform. The bitmap file you create must be
in the same directory as your graphics library file. Invoke SIMDRAW, load your graphics
library, and then invoke tfrimage Editor by clicking on its palette button in the top left side

of the main window. From within ttimage Editor , use theFile/Import option and enter the

name of your bitmap file. After a few seconds the bitmap should appear in your window.
This bitmap can now be saved into your image object. Remember to IEdit/image...

option before saving and assign the library name and a center point to your image.

In your SIMSCRIPT II.5 program, after the ialization phase of the graphics system,
show your background map and then display and animate your superimposed icons.
SIMGRAPHICS Il will take care of the redrawing of the necessary parts of the background
icon as the icons move across the screen.

Figure 2-9. Example “San Diego” Showing Imported Bitmap

Example: “sandiego” in the SIMSCRIPT II.5 distribution, shows a San Diego road map
saved as a bitmap and used as a background, with a vehicle token icon moving along the
freeway.

Preamble "Example "San Diego"
Normally mode is undefined
Dynamic graphic entities include CITY.MAP,
COMPANY.LOCATION,VEHICLE1
Processes include vehicle.motion
End "Preamble

main

" Open graphics window with specified coordinates and a title
Define WINDOW.ID as integer variable
call OPENWINDOW.R given 4096, 28672, 0 , 32767,

24

Chapter 2. Tutorial

" San Diego roads", 0
yielding WINDOW.ID
call SETWINDOW.R given WINDOW.ID

" Set world view and view port
Let VXFORM.V =1
call SETWORLD.R (-32767.0, 32767.0, -32767.0, 32767.0)

" Display icons from default graphics.sg2 library
show CITY.MAP with "sandiego.icn" at (0.0, 0.0)
show COMPANY.LOCATION with "caci.icn" at (-27000.00, 11000.00)
show VEHICLE1 with "token.icn" at (-4500.0, 0.0)

Let TIMESCALE.V =100
Activate a VEHICLE.MOTION now
Start Simulation

call MESSAGEBOX.R ("Exit", "End of the program")
end

Process VEHICLE.MOTION
Let MOTION.A(VEHICLE1) = 'LINEAR.R'
Let VELOCITY.A(VEHICLE1) = VELOCITY.F(700.0, PI.C/2.4)
Work 12 units

Let VELOCITY.A(VEHICLE1) = VELOCITY.F(700.0,(P1.C/2.4+P1.C/4.0))
Work 14 units

Let VELOCITY.A(VEHICLE1) = VELOCITY.F(700.0,
PI1.C*(1.0/2.4+1.0/4.0+1.0/3.0))
Work 8 units

Let VELOCITY.A(VEHICLE1) =0
Work 5 units
end

25

SIMGRAPHICS Il User’s Guide

The following example, “eagle,” included with the SIMSCRIPT II.5 distribution, shows
how you can use a bitmap to create a realistic background for your simulation.

Figure 2-10. Example of a Bitmap Used as a Background

Note: Bitmap files are not copied into the library of graphical elemeLibrary .sg2 only
contains the names of t.omp files, so if you transfer your SIMGRAPHICS Il application
to another directory or another system, you must transfer correspt.sg2 libraries and
bmp or.xwd files.

2.15 Creating Cascadeable Menus

A cascadeable menu bar is a menu bar with nested menus. In other words, it is a menu
which contains other menus. An example of a simplenested menu bar would be a
menu bar with two menuQuIT andSHOW, whereQuUIT has two menu itemrCANCEL and

OK, while sHOw has a list of countries created as menu items, for instance: USA,
CANADA, JAPAN, ENGLAND and ITALY. This list can be very long, and in order to
provide faster access and more structured orgtaizwe would like to introduce three
menus for continents and restructureSHOw menu in the following way:

QUIT> SHOW>
CANCEL AMERICA>
OK CANADA
USA
ASIA>
JAPAN
EUROPE>
ENGLAND
ITALY

26

Chapter 2. Tutorial

This is an example of cascadeable menus. To create a cascadeable menu bar is easy. You
use SIMDRAW as with any other graphical element and store it in a lisg@y Example
menusincluded with every SIMSCRIPT I1.5 distribution has a library of graphical ele-
mentsmenu.sg2 with showmenu.frm which represent a cascacadeable menu as a form.

If you want to see this form, start SIMDRAW, loa@nu.sg2 , and then double click on

the objectshowmenu.frm . This will invoke theMenu Bar Editor . A template of the
showmenu.frm menu bar is displayed in the window. You can interact with this menu bar
by clicking on its component menus. Unlike a “real” menu bar, many menus can be pulled
down at once. This allows you to transfer submenus and menu items from one place to
another on the menu bar.

Double-clicking on any menu or menu item label will invokeriisperties dialog. This

allows you to see thgeld name used by your program to reference the sub-menu or item.
You can add sub-menus and menu items witlsalvemenuandmenu itempalette buttons

on the left hand side of the window. Justdrag a new menu or item from the palette to the
appropriate place on the template. UseLtyeut/Show menu bar option to see the “real”

menu bar.

Before saving a menu bar, remember to double-click on the bar itself and_&eNisme
field to showmenu.frm .

2.16 Using Cascadeable Menus

In this section we will show how to use the created cascadeable menu bar in a SIMSCRIPT
[I.5 program.

From SIMDRAW you can define one of the following three actionadoept.f to take
when displaying your menu bar:

Asynchronous If a simulation is running, suspend thetige process. Reactivate
this process when the control routine returns a STATUS value of
lllll.

Synchronous Waitinaccept.f until the control routine returns a STATUS value
of "1". Useful for programs not involving simulation.

Don’'t Wait accept.f will display the menu bar and return immediately. The
control routine will be called whenever a menu item is selected.
Useful if other dialog boxes and palettes are to be displayed simul-
taneously.

2.16.1 Cascadeable Menus in Simulation Programs

We will first concentrate on the asynchronous technique whichtées asynlbronous

user interaction during a simulation run. It automatically suspends the current simulation
process and transfers control to the menu bar process whenever the user clicks on the menu
bar. Graphical functioaccept.f is used to detect and accept user input and transfer con-

trol to the control routine for the menu bar. The menu bar control routine is application-
specific and must be written by the program implementor. The reference name of the last

27

SIMGRAPHICS Il User’s Guide

selected menu item is passed to the provided menu bar control routine, which contains a
case statement with the defined actions for each menu item’s reference name. When a re-
quired action is finished, the menu bar process is suspended and control is transferred back
to the suspended simulation process.

In figure 2-11, we have used an asynchronous cascadeable menu bar represented with the
showmenu.frm from the librarymenu.sg2 . The basic action in this example is to show

the map of a country selected from the cascadeable menus and to exit the program using
QUIT or OK from the menu. Actions for every menu item in cascadeable menus are
specified in the routinMENU.CTRI. You do not have to provide actions for intermediate
menus because they are not selected. Only menu items are selected. Navigation through
menu structures is automatically performed by SIMGRAPHICS Il run-time support.
Routine MENU.CTRL is passed as argument accept.f in the process
DISPLAY.MENUBAF activated from main, before the start of the simulation. Another
processCOUNTE is created here only to illustrate asynchronous transfer of control from
the menu bar to simulation processes and vice versa. This process will open a text window
and count and print numbers whenever it is active. Click on the graphics window to bring

it up-front and use the cascadeable menu bar.

= T BE
5 Hov |

AMERICA ¥

ASIA 4

EUROPE ENGLAND

ITALY

Figure 2-11. Cascadeable Menu

28

Chapter 2. Tutorial

Preamble
Whkkkkkkkkkkkkhhhhhhkkkkkkkkkkkkhhhhhdhhhhhhkkkkkkkkhkhhkhhhhhhik

"* Example: Asynchronous cascadeable menubar *
" Show the map of a country *

g *

"* Structure of the menubar represented with showmenu.frm is: *

"k *

" QUIT> SHOW> *
" OK AMERICA> *
" CANCEL CANADA *
n USA *

nx EUROPE> *
nx ENGLAND *
n ITALY *

nx ASIA> *

n JAPAN *

"k *

Whkkkkkkkkhkkkhkkkhkkkkkkkkkhkkkhkkkhkkdhkkkhkkkhkkkkkkhkkkkhkkkkkkkk

Normally mode is undefined
Processes include DISPLAY.MENUBAR, COUNTER
Dynamic graphic entities include USA.MAP, ITALY.MAP, ENGLAND.MAP,
CANADA.MAP, JAPAN.MAP
Define QUIT.OK as integer variable
End

Main

Call INIT.GRAPHICS

Activate a DISPLAY.MENUBAR now

Activate a counter now

Start simulation

Call MESSAGEBOX.R("EXxit", "End of this demo")
End

Routine INIT.GRAPHICS
Define WINDOW.ID as integer variable " non-square window

Define .XLO to mean 4096 " 0-----0 xhi,yhi
Define .XHI to mean 32786-4096 A
Define .YLO to mean 4096 " 0-----0
Define .YHI to mean 32786 " xlo,ylo

CallOPENWINDOW.R (.XLO, .XHI,.YLO, .YHI,"Show some countymap", 0)
yielding WINDOW.ID
Call SETWINDOW.R(WINDOW.ID)
Call READ.GLIB.R("menu.sg2")
End

Process DISPLAY.MENUBAR

"This process will always be activated whenever we click on menu bar
"It will be distroyed and menubar will disappear when MENU.CTRL
"routine returns Status = 1,in our example when we click on QUIT-OK

Define FIELD.NAME as text variables
Define MENU.PTR as pointer variables

29

SIMGRAPHICS Il User’s Guide

Display MENU.PTR with "showmenu.frm"
FIELD.NAME = accept.f(MENU.PTR,'MENU.CTRL")
End

Routine MENU.CTRL given FIELD.ID, FORM yielding STATUS
Define FIELD.ID as text variables
Define FORM as pointer variables
Define STATUS as integer variables

Select case FIELD.ID

case "OK”
let QUIT.OK =1
STATUS =1 " exit from accept.f

case "CANCEL"

case "ENGLAND"
erase USA.MAP, ITALY.MAP, CANADA.MAP, JAPAN.MAP
show ENGLAND.MAP with "england.icn" at (4096.0, 26000.0)

case "ITALY"
erase USA.MAP, ENGLAND.MAP, CANADA.MAP, JAPAN.MAP
show ITALY.MAP with "italy.icn" at (4096.0, 4096.0)

case "USA"
erase ENGLAND.MAP, ITALY.MAP,CANADA.MAP, JAPAN.MAP
show USA.MAP with "usa.icn" at (4096.0, 4096.0)

case "CANADA"
erase USA.MAP, ENGLAND.MAP,ITALY.MAP, JAPAN.MAP
show CANADA.MAP with "canada.icn" at (10000.0, 16000.0)

case "JAPAN"
erase USA.MAP, ENGLAND.MAP,ITALY.MAP, CANADA.MAP
show JAPAN.MAP with "japan.icn" at (16000.0, 16000.0)

case "INITIALIZE"

case "BACKGROUND"

default

Endselect
End

Process COUNTER
"This process is here only to ilustrate asynchronous menus
" It will be suspended whenever we click on menu bar
While QUIT.OK <> 1
do
COUNT = COUNT + 1.0
Wait 5 units
Print 1 line with COUNT thus
COUI’\t = *kkkkkhkkkk
Loop
End

30

3. SIMDRAW

3.1 SIMDRAW Overview

SIMDRAW is an interactive menu based program for creating and editing SIMGRAPHICS

Il objects. These objects can be used for animation, presentation graphics, and interactive
graphical input. Types of objects inclumkeages dialog boxesmenu barspalettes and

various charts and graphs. These objects are saved to and loaded from SIMGRAPHICS I
.sg2 files that can be accessed by a SIMSCRIPT II.5 program.

Animation graphics omagesare built by drawing lines, circles, polygons, arcs, sectors,
bitmaps, and text. These primitives can be grouped together to form more complex images
containing parts that can be manipulated independently by the application program. Images
are built by themage Editor .

Presentation graphs are constructed by setting attributes such as titles, minimums, maxi-
mums, etc. Several different graph types can be built. They include 2-D plots, level meters,

pie charts, trace plots, clocks, dials, text displays, and digital displays. All graph types are

built with theGraph Editor .

A Layout Editor is available for sizing and positioning multiple graphs and images within
the same window.

Using thebialog Editor , dialog boxes can be constructed for receiving interactive modal or
modeless data input. The dialog box can contain buttons, check boxes, text boxes, combo
boxes, list boxes, and radio button fields. A dialog box can also contain the more compli-
cated multi-line text boxes and 2-D tables. Tabbed dialog boxes can be created.

Menu bars can be built with theenu Bar Editor for receiving modeless command input.
Menus can be attached to other menus producing any desired level of depth. Menu option
keyboard accelerators and mnemonic keys can be defined.

Palettes are built with thealette Editor for receiving simple command input. They can be
(initially) docked on any edge of the window or can be floating. A palette contains palette
buttons and separators.

3.2 Running SIMDRAW

SIMDRAW can be started from within SIMSCRIPT II.5, or from the command line. Upon
execution a main window containing a palette and toolbar is displayed (8gi)ré& he
window will contain a listing of the currently loaded SIMGRAPHICS Il library. The palette
on the left is used to add new objects to the library.

31

SIMGRAPHICS Il User’s Guide

| Sawve to current " .sg2" file ‘ | Delete selected object from librany |
‘ Open an existing " sg2" file| \ ‘ Duplicate selected object |
| Create a new " sg2" file | | Invoke editor for selected Dbjeu:tJ_
|

: CEVICEMOS aIrg MBS Edit Graphs
sert |Optigns Wlnduw Help and Images in

[same window
D|m|ﬂ B ELY

‘ Cateqories of objects |

| Create an Image|

Create a graph [—

‘Create a Dialog BD)C|

‘ Create an Alert Box ‘

16 > Objectin librany

‘ Create a Menu Bar |

Create a Palette |—

Figure 3-1. Main Window

3.3 Loading and Saving SIMGRAPHICS Il Files

TheFile/Open... menu option will load an existing SIMGRAPHICS Il library file and show
its objects in the list window. Use tlFile/Save or File/Save As menu option to save all
objects shown in the list window, including objects being edited. UsOptions/Binary

File menu option to toggle between saving the file in ASCII or binary format.

3.4 Editing an Existing Object

To edit one of these objects, select its name in the listing, and then [Edit/Properties

menu option or thProperties toolbai option. A new window containing the appropriate ed-
itor will appear showing its graphical representation. After moving, resizing, or changing
attributes of the object and its sub-componeselec theFile/Save Or File/Save As menu
option to write this object to its SIMGRAPHICS Il library file. To end editing of this ob-
ject, close its editor's window using the "go away" button in the top left corner of the win-
dow's header bar.

32

Chapter 3. SIMDRAW

3.5 Adding an Object to the Library

Objects can be added to this library file by clicking on one of the "create" buttons on the
left palette, or by using thile/insert menu optionCreatinganobjectwill automatically
invoke the editor for that object.

3.6 Removing an Object from the Library

To remove an unwanted object from the current library, select the object's name in the list-
ing, and then use theiit/Clear menu option. The library must be saved usirgsave be-
fore this change is permanent.

3.7 Making a Duplicate of an Object

Any graphical object in the library can be duplicated by selecting its name in the main list
and then using theditDuplicate menu option. The library must be saved usimgSave
before this change is permanent.

3.8 Changing the Name of an Object

To change the name of an object shown in the main list, select it and as@/phaperties
menu option to bring up its editor. Use #ug/Properties menu option of this editor to ob-
tain a dialog box showing the object's attributes. Changetiiaey Name text field to the
new name, and then save the object withrtlegsave menu option.

3.9 Adding an Object from Another Library

If you want to add object(s) contained in a different SIMGRAPHICS Il file, use€ile
Merge... menu option. Once a file is selected, a list box containing the names of all objects
in this source library will be displayed. Choose the objects you wish to copy to your library.
Theshift andctri keys can be used in conjunction with the mouse to select multiple objects.

3.10 Editing Images and Graphs in Same Window

Sometimes a set of images and/or graphs must be displayed in the same context to get their
size and position correct. Multiple objects can be positioned and resized from within one
window using the.ayout Editor . Select the.ayout button on the far right-hand side of the
toolbar. Using theshift andctrl keys, select the set of images and graphs to be resized and
positioned from the list box. After editing the objects, us&ithsave menu option to save

all edited objects to the SIMGRAPHICS 1l file.

3.11 User Preferences

You can set preferences regarding the order in which objects in the currently loaded library
are listed using theptions/Preferences menu option. One of the following three methods
can be used to list your objects:

33

SIMGRAPHICS Il User’s Guide

* Time of creation — Objects are ordered based on time of creation. The last objects
added to the library are show at the bottom of the list.

* Alphabetical — Alphabetical order based on name

» Categorical — Objects are listed categorically. The categoriesimage, Graph,
Dialog Box, Menu Bar , andPalette. A "heading" is created for each category, with
the objects listed alphabetically under the appropriate heading. Chick ¢) toe (
the left of the heading to expose the names of the objects. To collapse the list, click
on the +).

The Preferences dialog also has options for specifying how SIMDRAW is started up.
SIMDRAW can be configured to “remember” its previous window position, and which
library file was loaded. Objects being edited in eithelLayout Editor , or aSingle Editor

can optionally be reloaded at startup.

3.12 Command Line Arguments

SYNOPSIS:

simdraw [-l file_name] [-S sys_path_name]

[-B sys_path_name] [-sim] [-e] [-dim xlo ylo xhi yhi]
[-nodialog] [-noimage] [-nograph] [-nomenu] [-nopalette]

[-W path_name] [object names]

The following command line @uments are regmized ly SIMDRAW:.

-l file_name Specifies the name of the SIMGRAPHICS Il graphics file
to edit.

-e, -single Specifies "single edit" mode. The specified objects will be
edited with no control window containing library informa-
tion.

-nodialog Eliminates editing of the specified object types.

-nograph

-noimage

-nomenu

-nopalette

-dim xlo ylo Specifies the default real world coordinate space used by

xhi ylo the Image Editor .

-B path_name Specifies the path ibitmay files used by SIMDRAW.

-S path_name Specifies the path to system files needed to run
SIMDRAW (trailing delimiter '/* or '\' must be included).

-W path_name Specifies path to user SIMGRAPHICS Il files.

34

Chapter 3. SIMDRAW

3.13 Using the Image Editor

Thelmage Editor is used to create and eprimitivessuch as lines, polygons, circular ob-
jects, and bitmaps. Primitives can be grouped hierarchicallyimage:. The editor win-
dow contains three paletteMode, Style, andColor. TheMode palette on the left side of the
window is used for adding primitives.

| Feturn to Select Mode ‘— 3

Draw a paksgon g
Draw & rectangle J— ﬂ

Diraw & circle '— 6

(D asecor |- 5

| Draw a freehand polygon {—ﬁ
[Oavapmbind 2 |

Vl |Se|e|::ted component F":l Ah

Dirawe a freehand line o Abl AL

| i_@ ted pdt“
[Add text = T o[fants

I I 2 Taglan

EEEEEEE-C 2 ARREEEEEE ST/
| | v

Figure 3-2. Image Editor

3.13.1 Mode, Style, and Color Palettes

Thestyle palette contains the set of dash styles, hatch styles, line widths, and text fonts that
can be applied to the primitives. TColor palette contains 64 colors that can also be ap-
plied to the primitives. When a primitive is selected,Style andColor palettes will be up-

dated to reflect the style and color of that primitive. At this tiStyle andColor palette
changes will also be applied to the selected primitive.

35

SIMGRAPHICS Il User’s Guide

TheMode palette is shown on the left-hand side ofliigye Editor window. Use it to add
primitives to your drawing. Refer to paragreph3.4

3.13.2 Selecting, Moving, and Resizing

Shapes are selected by clicking the mouse button over the desired shape. For example,
polylines must be selected by clicking on the line itself, NOT in the line's bounding box.
Multiple shapes are selected by holding dowrstlite key and clicking on several shapes.
Multiple shapes may also be selected by clicking in the background of the window and
dragging the mouse over the shapes you want to select.

A grouping of shapes is selected by clicking on one of the objects in the group. Subsequent
clicks over the group will select shapes within that group. Primitives inside a group can be
selected directly by holding down thel key and clicking on the shape. Using the key,
subsequent clicks will select the growestainingthe currently selected shape.

Selected shapes are marked by a bordering green or cyan box. Sides and corners of this box
contain eight small square resize handles. Resizing is performed by clicking down and
dragging a resize handle.

Click and drag a shape to move it to the desired position. Be careful not to click down on
the resize or point handles.

3.13.3 Using the Clipboard (Cut, Copy, Paste Commands)
& 2

Thelmage Editor supports the standard cut, copy, and paségations found under tizait

menu. Thecut option deletes selected shapes and places them in the clipboard. The deleted
item remains on the clipboard until the next timauaor Copy is performed. You can use

the Paste option to paste as many copies as you want from the clipboard into the image.
Shapes can be deleted without changing the clipboard by usibpgiékeoption.

The clipboard is shared among all actinege Editor sessions. You can copy graphics
from one image into another by activating the source edit window, usigheoption,
activating the destination editor and usingRhste option.

3.13.4 Importing / Exporting to Other Graphical Formats
Using SIMDRAW, you can import graphics created by other graphics editors. This is ac-

complished by invoking thenage Editor and using the&ile/lmport option. Graphics files
in any of the following formats can be loaded into the editor:

36

Chapter 3. SIMDRAW

* MS Windows Bitmaps.fmp) (MS Windows only). Note that the bitmap file must
reside in the same folder as yosg2 file.

X Window Dump (xwd) (X-Windows only). The raster file must reside in the
same directory as yowsg2 file.

* AutoCAD files (dxf). Simple 2d AutoCAD files can be imported. The vector de-
scription will be maintained.

* Windows Metafile fvmf) (MS Windows only). The vector description will be
maintained.

You can also convert an existing SIMGRAPHICS 1l drawing into one of the following for-
mats through theile/Export option:

* MS Windows Bitmaps.fmp) (MS Windows only).
e X Window Dump (xwd) (X-Windows only)
* EPS Color PostScripteps, .ps)

When exporting toomp or.xwd files, a mask bitmap will automatically be created. The
mask file is needed to maintain transparency when rendering non-rectangular bitmaps. The
mask file will be named after the export file but will have gihcharacter appended to the
file-name. (Exporting to the fileestbmp will automatically createestm.bmp .)
SIMGRAPHICS Il will automaticay try to load the mask file whenever thegimal bitmap

is loaded. The mask can be deleted if it is not needed.

3.13.5 Creating Primitives

Thelmage Editor supports creating and editing seven different primitive types. The primi-
tives are polygons, polylines, circles, arcs, sectors, text, and bitmaps.

Polylines

¥©

Polylines are createdytxlicking either the freehand or ptihe buttons on th#&lode pal-

ette. To create a polyline, select the polyline button on the mode palette. Point to where you
want to start the line and drag to draw a line segment. Continue pointing and clicking until
all but the last line ggnent has been defined. Double click to create the last vertex and re-
turn toSelect mode.

To create a freehand polyline press the freehand line button stdbgalette. Drag the
mouse around the canvas area to draw the line. Reddhsimouse button will retulyou
to Select mode.

Use thestyle palette to define dash style and line width. There are eight dash styles and six
line widths to choose from.

37

SIMGRAPHICS Il User’s Guide

Another attribute of the polyline isunding.Corners defined by intersecting line segments

can be given arounded edge by selecting the polyline, and usidittheperties... menu

option. TheRound Corners By Vvalue box contains the length of the segment adjacent to
each vertex to be replaced by a rounded corner. This value is specified with respect to the
real world coordinate space dimensionof the editor (the default dimension is [0, O,
32767, 32767]). A value of 1000.0 is reasonable for rounding corners.

Polygons

A @

Polygons are created by clicking either tieehand polygon or rectanglebuttons on the

Mode palette. To create a polygon, pressRbiggon button on thesode palette. Point and

click in the window to define vertices. Double click to create the last vertex and return to
Select mode.

To create a freehand polygon pressHieehand fill button on themode palette. Drag the
mouse around the canvas area to draw the shape. Release the mouse buttontto ret
Select mode.

To create a simple rectangle pressRb&angle button on thevode palette. Point to where
you want the lower left-hand corner of the rectangle to start, and drag the mouse to the de-
sired top right corner. Release the mouse button to rets#ieto mode.

Use thestyle palette to define a hatch pattern. There are eight patterns to choose from.

Circles

@

Circles are added by pressing ttiele button on thevode palette. InCircle mode, point
to where you want the center of the circle to go and drag the mouse to define the radius.
Release the mouse button to draw the circle and return gzitee mode.

Use thestyle palette to give the circle a hatch pattern. There are eight patterns to choose
from.

Sectors

&

A sector is a filled semicircular shape similar to a pie slice. Sectors are composed of a center
point, a starting point and an ending point, and are drawn counterclockwise from the start-

ing point to the ending point. To draw a sector, first presséler button on theviode

palette. Point to where you want the center point of the sector to go, and drag the mouse.

38

Chapter 3. SIMDRAW

Release the mouse over where you want the starting point of the arc to go. Drag the mouse
to where you want the sector to end and release to retaseto mode.

Use thestyle palette to give the sector a hatch pattern. There are eight patterns to choose
from.

Arcs

)ﬁ

An arc is a curved line contained on the circumference of a circle. Arcs are composed by a

center point, a starting point and an ending point, and are drawn counterclockwise from the

starting point to the ending point. To draw an arc, first presarthéutton on theviode

palette. Point to where you want the center point of the arc, and drag the mouse. Release
the mouse over where you want the starting point of the arc. Drag the mouse to where you
want the arc to end and release to returgetect mode.

Use thestyle palette to define dash style and line width. There are eight dash styles and six
line widths to choose from.

Text

T

Single line text primitives can be created and added to your image. To create a text primi-
tive, press th@ext button on theviode palette. Point to where you want the center of the
text to go and click the mouse button. UsegtigProperties... menu option to define the

text string to be displayed. The text string can contain more than one line.

There are two different types of texgctor texandsystem textVector text fonts are fully
scaleable in any dimension and are portable between MS Windows and X Windows plat-
forms. A vector text font can be assigned to a primitive by pressing any of thewight
palette buttons showingp.

System text fonts are "built-in" to the tool kit on which your server is running. Text defined
using a system font is non-scaleable and can only be resized by changing the font. A system
font is defined by font name, point size, and whether or not its uses italic and/or boldface
calligraphy. To assign a system font to a text primitive select the primitive, and then press
theDialog Box button on the lower right-hand corner of tige palette. The resultingpnt

box will display all fonts, point sizes, and calligraphy styles loaded on your server. The font
you select will be applied to the selected text primitive. This same font can now be applied
to other primitives using th&T button at the lower left corner of tisg/le palette.

Text alignment with respect to the image can also be defined. For example, if you wanted
a text primitive defined with a system font to remain centered as an image is scaled, its
alignment should be centered horizontally and vertically usingdinBroperties... menu

option.

39

SIMGRAPHICS Il User’s Guide

Through therroperties dialog box, you can define whether the text can be defined pro-
grammatically through theTVAL.A attribute of its display entity field. Text color can be
defined througIbCOLOR.A For example, if this option is chosen and the text primitive’s
reference name i8MY.TEXT” , you can include it into your program code:

Let DTVAL.A(DFIELD.F(“MY.SHAPE”, ICON.PTR)) = “Hello World”

Bitmaps
&

Bitmaps(or "snap shots") are not created directly byiiheye Editor , but can be created
using another drawing tool and can themiygorted On MS Windows systems, "Windows
bitmap" files with thebmp extension can be imported and added to your image. On X Win-
dows systems, X Windows dump file formats endingavd can be imported.

To add a raster file to your image useRrh& mport... menu option. Select.amp or.xwd
file from the dialog box and press tb& button to import the bitmap.

Once in themage Editor, bitmaps can be resizeable or non-resizeable. To change the scal-
ability, select the bitmap and use #t/Properties... menu option. Remember that resiz-

ing bitmaps may take longer to render the first time, and can loose meaningful pictorial
information if made smaller.

Alignment can be applied to bitmaps as well as text primitives. For example, if you wanted
a non-scaleable bitmap to remain centered as an image is scaled, its alignment should be
centered horizontally and vertically from theperties dialog.

3.13.6 Creating Images

¢

An image represents a grouping of primitives and/or other images. Images can contain oth-
er images forming a hierarchy. To create an image, select the shapes to be grouped using
the shift key, and then select thayout/Group menu option. The resulting group will be
shown bounded by the green selection box. Uskeatfo@t/Ungroup menu option to destroy

an image.

An image is selected by clicking on one of the primitives within it. Repeated selections of
an image will select the shapes within it. Select primitives directly by clicking on them
while holding down thetrl key.

Shapes can be removed from an image by selecting the shape and usipgutiRe move
from Group menu option. You can also add shapes to an existing image by selecting first
the shapes, then an image, and then usingatle@t/Add to Group menu option.

40

Chapter 3. SIMDRAW

3.13.7 Editing the Root Image

Qo
AEE

The editor's window shows all objects contained by the image being edited or shows the
rootimage. To change properties of this image (such as its name), gs@/thege menu
option to display thénage Detail dialog.

To reset the center point of the root image, first click ors#heet button in theProperties

dialog. Next, position the mouse in the canvas of the edit window over where you want the
center point and click. The center can also be defined by editing the fields directly in the
Properties dialog.

The Image Detail dialog can be used to specify the size and angle of rotation of the image
by editing thewidth, Height andRotate by fields. Another way to resize the root image
would be to use thedit/Select All menu option to select all of its shapes, and thenayse
out/Group to make a group. Dragging the square resize handles on the green selection box
will resize this group. When the root image is appropriately sized,ays&/Ungroup to
eliminate the grouping.

3.13.8 Editing Points on a Primitive

The vertices defining a primitive can be moved, added and deletedimsatrgEditor .

Clicking on a selected primitive will enable point editing for that primitive. A primitive in
point edit contains a green skeleton which connects its vertices. Representing each vertex
point is a hollow green square mwint handle The currently selected point is shown by a

blue point handle.

To move a point, select and drag the appropriate point handle. To delete a point, select its
point handle and use tleit/Delete menu option (or press timelete key). To add a new

point to the primitive, click on the green skeleton and drag the mouse. When the mouse but-
ton is released, a new point is inserted between the indicated vertices.

To leavePoint Edit mode , click on the background or another shape.

3.13.9 Defining Stacking Order or Priority

¥

You can specify how shapes are stacked when they ovestiagkig order) To move
shapes in front of or behind other shapes, us@rthgto Front 0r Send to Back options
from theLayout menu.

41

SIMGRAPHICS Il User’s Guide

Stacking order is with respect only to other shapes in the same group or image. In other
words, theBring to Front menu option will bring the selected shape to the front of all other
shapes in that group, but not necessarily to the front of all shapes in the window.

3.13.10 Defining the Center Point of a Shape

A

The center point of any image or primitive can be changed by selecting the shape, then us-
ing theEdit’/Recenter menu option. A set of green cross-hairs will appear showing the cur-
rent center point. Point to where you want the center point of the object to be, and click. To
leave therRecenter mode, press either tlox or Cancel buttons on the dialog box.

You can reset the center point of the entire drawing (root image) by usiagithege
menu option.

3.13.11 Using the Flip and Rotate Tools

Any selected shape can be rotated about its center point by any amount. To do this, select
the shape(s) and then use Hu/Rotate/Clockwise Or the Edit/Rotate/CounterClockwise

menu options. If you want to set the angle by which an object is rotated, s/ Hoeate/

Set Angle menu option.

To flip an object about its x-axis use thét/Flip/Horizontal menu option. To flip an object
about the y-axis use thmgit/Flip/Vertical menu optionRemember that the intersection of
the x-axis and y-axis of a shape isagnter point{defined using th&ditRecenter menu
option). Before flipping or rotating a shape, first make sure that its center point is defined
appropriately.

3.13.12 Align and Distribute

Multiple shapes can be aligned either vertically or horizontally to the primary selection
(shown enclosed by green selection handles). They can be aligned vertically with respect
to either their left edge, right edge or center. Shapes can be aligned horizontally with re-
spect to their top edge, bottom edge, or center. To align, first select multiple objects using
theshift key, and then use thayout/Align menu option. Select an alignment scheme from

the resulting dialog box.

TheLayout/Distribute menu option allows you to distribute three or more shapes in relation

to each other. Shapes can be distribbi@izontallyso that the same space exists between

left and right edges of adjacent shapes. Distribwtergcally will reposition the shapes so

that the same space exists between the bottom and top edges of adjacent shapes. Shapes can
be distributed uniformly along the circumference of a circle.

42

Chapter 3. SIMDRAW

3.13.13 Using Grid Lines

-

A grid can be used to perform precise positioning and sizing of shapes, by breaking the ed-
itor window up into divisions. You can show (or hide) grid lines by togglinyiveGrid
menu option.

You can change the color of the grid by selecting a color fronzdlee palette and then
using theview/Grid Color menu option. The granularity of the grid can be adjusted using
the View/Grid Spacing menu option. By toggling theiew/Snap menu option, you can re-
strain positioning and resizing of shapes to the intersections of the grid. Usiwigwthe

Grid Spacing option you can define the grid line interval by specifying either the total num-
ber of grid lines, or the distance (in real world coordinates) between successive grid lines.

If the snap mode is active, theiew/Snap From menu option allows you to specify which
corner of a shape's bounding box will be aligned to the grid intersections during reposition-
ing. If View/Snap from/Center is selected, a repositioned shape's center point will be glued
to the grid intersections.

3.13.14 Changing Views (Panning and Zooming)

Q,

If working on a highly detailed portion of the image, you may want to magnify a portion of
the window. To zoom in to some area of the window, first seledtighezoom In menu

option. Drag out a rectangle with the mouse over the area of detail. When the mouse button
is released, the area inside the rectangle will be expanded to encompass the entire window.
To zoom back out, use tew/Zzoom Out menu option.

When zoomed in, you can pan to other areas of the window using the horizontal and vertical
scroll bars.

Return to the default view by using thiew/View [1:1] option. Unless the window is square,

the top or bottom portion of the view may not be visible. To see the entire coordinate space,
use theview/Fitin Window option. This viewing mode will leave dead space off to the right

of the window, but guarantee the entire coordinate space will be seen.

3.13.15 Changing Dimension (Coordinate Space Boundaries)

Coordinate space boundaries danensiof can be assigned to the editor window. The de-
fault coordinate space is the commidormalized device coordinates (xlo=0, ylo=0,
xhi=32767, yhi=32767). These dimensions determine an object's coordinate system when
it is saved. The dimension should be set to match the world coordinate system used within
the program. This ensures that the positions of shapes defined franagheditor will

43

SIMGRAPHICS Il User’s Guide

remain the same when they are displayed within that program. Useytlh&Dimension
menu option to change the dimension initheye Editor .

The Allow Icons to Scale... check box specifies the rule defining how the image is scaled
when used in the application program. If this item is checked, the image will automatically
be scaled according to the world coordinate system defined by the application program. If
this item is not set, the shape will stay the same size no matter what world it is attached to.

To see the current location of the pointer with respect to the editor's dimension, toggle the
View/Coordinates menu option. The pointer's (x,y) location will be displayed in the status
bar at the lower right-hand corner of the editor window.

3.13.16 Changing the Layout Size and Color

To change the editor window's background color, select the desired color frawiohe
palette and then use th&yout/Layout Color menu option.

If you want to increase the size of the editing area beyond what is defined by the boundaries
of the world coordinate system, use thgout/Layout Size menu option. A dialog will be
displayed allowing you to increase the number of "screens," thereby adding space to the
right and bottom sides of the editing area. This new space can be scrolled to using the right
and bottom scroll bars attached to the editor window.

3.13.17 Program Access

Any image or primitive added to the root image can be accessed from inside an application
by specifying &eference or Field name through theroperties dialog box.

You can define whether a primitive’s color can be defined programmatically through the
DCOLOR.Aattribute of its display entity field. For example, if a primitive is “definable”
and the display entity pointer is ICON.PTR, your program can set the primitive’s color to
“15” as follows:

Let DCOLOR.A(ICON.PTR) = 15

3.14 Using the Graph Editor

TheGraph Editor can be used to create and edit a variety of graphical objects whose purpose
is to depict a single value or set of numerical values. 2-D plots, pie charts, clocks, level
meters, dials, and digital displays are some of the graph objects that can be created. Graphs
are not built by the user as in tiveage Editor . Instead you start off with a template which

can be modified as necessary.

3.14.1 Style, and Color Palettes

Thestyle palette on the right hand side of the window contains the set of dash styles, hatch
styles, line widths, and text fonts that can be applied to the selected graph components. The

44

Chapter 3. SIMDRAW

Color palette on the bottom of the window contains 64 colors that can be applied to a com-
ponent. When a component is selected Style andColor palettes will be updated to re-

flect the style and color of that graph part. At this tiStyle andColor palette changes will

be applied to the selected part.

3.14.2 Selecting, Moving, and Resizing

Graph parts are selected by clicking the mouse button over a visible portion. Selected parts
are marked by a bordering green or cyan box. Multiple components can be selected by
holding down theshift key and clicking on several parts. You can also select multiple com-
ponents by clicking in the background of the window and dragging the mouse over the parts
you want to select.

For resizing, it is necessary to select the entire graph. UEdit/Select Al menu option

or drag theselect rectangle over the whole graph. Sides and corners of the selection box
contain eight small, square resize handles. Resizing is performed by clicking on down and
dragging the appropriate resize handle.

To move the graph, select the graph or any of its components and drag it to the desired lo-
cation.

3.14.3 Charts (2-D Plots)

Ll

A chart is a 2-D plot used to display one or more data sets represented as histograms, bar
graphs, surface charts, or simple plots of 2-D data. Charts have one x-axis, one or two y
axes, data sets, a title, and an optional legend.

3.14.3.1 Modifying Chart Attributes

To modify the title, legend display, or any attribute of the chart itself, select the title. Then
use theedit/Properties menu option.The Chart Detail dialog box will be displayed. It con-
tains the following information:

Library Name — The name used to load the chart into your application program.

Tite — The title shown on the top of the chart.

Axes on Edges — If checked, numbering and tic marks will be forced to appear on
the edges of the plot area. For better visual reference, two extra axes will be drawn
on both the top and right sides of the plot area.

Time Trace Plot — Setting this item implies that the chart is a time trace plot.
Whenever a variable being monitored by the chart is modified, its new value is
plotted along the Y-axis and the currsimulation timeis plotted along the X-ax-

is.

45

SIMGRAPHICS Il User’s Guide

Show Legend — Chart will show a legend below the plot area. The fill style and
color of each data set is shown preceding its name.

Show Border — A chart can be defined to draw a rectangular background under-
neath.

Data Sets — A data set can be added usingabe button, or removed by selecting
its name in the list box and then pressingRtr@ove button. To change the name
of a data set, select its current name in the list box and then prest thatton.
(see ‘Attributes of a Data S8t

Handling of Multiple Data Sets — If “stacked," all discrete data sets will be stacked

on top of each other. In other words, the value plotted in a data cell is reflected as
the heightof the bar, not its top. Thereforackingmeans that the bottom of a

cell in data set is equal to the top of the same cell in datanskt I.e. higher num-

bered data sets are stacked onto the lower numbered ones.

3.14.3.2 Modifying the X-Axis

To change the range, numbering interval, or any other property associated with the X-axis,
first choose the axis (or one of its components), double click on the axis or choose the axis
(or one of its components), and use Ha@/Properties menu option. The X-axis has the
following properties:

Title — Label for X-axis displayed below numbering.

Rescaleable — Specifies whether the X-axis will be re-numbered (scaled) when
one of the data points extends beyond its limit. In this cas€pth@ess Data

item determines whether a scrolling window is used, and whether old data is dis-
carded, or the range of the graph is to be expanded showing all data. Note that re-
scaling may modify the tic mark, numbering, and grid line intervals to maintain a
similar visual representation of the chart. If this item is not checked, data points
falling beyond the limits of the X-axis will be discarded.

ShowGridLines — If the thisitemis omgrid lineswill be shown crossing the X- axis.

Tics Centered, Tics Inside, Tics Outside — Defines the tic mark alignment with re-
spect to the X-axis line. Tics marks can be attached to the X-axis from their center,
left or right sides.

Compress Data — When this item is set, re-scaling the X-axis will increase the co-
ordinate area of the chart enough to encompass the offending data point. As a re-
sult, existing data will shrink in size. Clearing this item will have datalled

along the X-axis during axis rescale. In this case, data scrolled out of view will be
discarded.

Minimum, Maximum — Defines the initial X-axis data range of the chart.

Tic Interval (Major & Minor) — Defines the distance along the X-axis between con-
secutive tic marks. If an interval is zero, tic marks will not be displayed.

Numbering Interval — Defines the distance along the X-axis between consecutive
number labels on the axis.

46

Chapter 3. SIMDRAW

Grid line Interval — Defines the distance along the X-axis between consecutive grid
lines.

Y Intersection Point — Defines the point (in x-axis coordinates) along the X-axis
where the Y-axis intercepts.

Y2 Intersection Point — Defines the point (in x-axis coordinates) along the X-axis
where the second Y-axis intercepts.

Data Scaling Factor — Defines the factor multiplied to the X component of all data
plotted to the chart at runtime.

3.14.3.3 Modifying the Y-Axis

To change the range, numbering interval, or any other property associated with the Y-axis,
double click on the axis or choose the axis (or one of its components), and Edit/ the
Properties menu option. The Y-axis has the following properties:

Title — Label for Y-axis displayed to the left of its numbering.

Rescaleable — Specifies whether the Y-axis will be re-numbered (scaled) when
one of the data points extends beyond its range. Note that re-scaling may modify
the tic mark, numbering, and grid line intervals to maintain a similar visual repre-
sentation of the chart. If this item is not checked, data points falling beyond the
limits of the Y-axis will be clipped.

Show Grid Lines — If this item is ongrid line< will be shown crossing the Y-axis.

Tics Centered, Tics Inside, Tics Outside — Defines the tic mark alignment with re-
spect to the Y- axis line. Tic marks can be attached to the Y- axis from their center,
left or right sides.

Minimum, Maximum — Defines the initial Y-axis data range of the chart.

Tic Interval (Major & Minor) — Defines the distance along the Y-axis between con-
secutive tic marks. If an interval is zero, tic marks will not be displayed.

Numbering Interval — Defines the distance along the Y-axis between consecutive
number labels on the axis.

Grid Line Interval — Defines the distance along the Y-axis between consecutive
grid lines.

X Intersection Point — Defines the point (in y-axis coordinates) along the Y-axis
where the X-axis intercepts.

Data Scaling Factor — Defines the factor multiplied to the Y component of all data
plotted to the chart at runtime.

3.14.3.4 Modifying the Second Y-Axis

To change the range, numbering interval, or any other property associated with the second
Y-axis, double click on the axis or choose the axis (or one of its components), and use the
Edit/Properties menu option. The second Y-axis has the following properties:

Tite — Label for Y-axis displayed to the left of its numbering.

47

SIMGRAPHICS Il User’s Guide

Rescaleable — Specifies whether the Y-axis will be re-numbered (scaled) when
one of the data points extends beyond its range. Note that re-scaling may modify
the tic mark, numbering, and grid line intervals to maintain a similar visual repre-
sentation of the chart. If this item is not checked, data points falling beyond the
limits of the second Y-axis will be highlighted.

Show Grid Lines — If the this item is orgrid lines will be shown crossing the sec-
ond Y-axis.

Tics Centered, Tics inside, Tics Outside ~ — Defines the tic mark alignment with re-
spect to the second Y-axis line. Tics marks can be attached to the Y-axis from
their center, left or right sides.

Minimum, Maximum — Defines the initial data range of the second Y-axis.

Tic Interval (Major & Minor) — Defines the distance along the second Y-axis be-
tween consecutive tic marks. If an interval is zero, tic marks will not be displayed.

Numbering Interval — Defines the distance along the second Y-axis between con-
secutive number labels on the axis.

Grid Line Interval — Defines the distance along the second Y-axis between consec-
utive grid lines.

Data Scaling Factor — Defines the factor multiplied to the Y component of all data
plotted to the chart at runtime.

3.14.3.5 Attributes of a Data Set

You can edit individual attributes of a data set by selecting the bars or plot line of the de-
sired data set and using iEdit/Properties menu option. ItDetail Dialog detail includes:

48

Representation — Defines how the overall data set is structured. You can choose
one of the following data set types:

1. Bar Graph — Contains a fixed number of cells. Each new data point changes the
nearest cell's plot. Neighboring cells are NOT connected. The first cell begins
at (X_Minimum - Cell_Width / 2) units. The individual bar is centered over
the cell, and there is a small gap between bars.

2. Histogram — Also contains a fixed number of cells. Each new data point chang-
es the nearest cell's bar. There is no connection between neighboring cells. The
bar is set at the left edge of the cell, and there is no gap between bars. The first
data cell begins at the X-axis minimum.

3. Discrete Surface — Neighboring cells are connected to form a surface, however
there are still a fixed number of cells. Each new data point changes the nearest
“peak or valley” on the surface. The first cell begins at (X_Minimum -
Cell_Width / 2) units.

4. cContinuous Surface — Variable number of cells, i.e. a new cell is added to the
graph each time a data point is plotted at the given (x,y) location. Neighboring
cells are connected.

Chapter 3. SIMDRAW

Plot Type — A data set can be shown using a filled region or a simple silinece
with or without marker::

1. Fill — Plot a data cell using a filled polygon. The fill style can be reset using
the Style palette .

2. Line — Plot data cell using a polyline. Use style palette to reset the line
width or dash style.

3. Marker — Use a small marker to represent the data point. The specific marker
used for the data point is determined from Edit/Mark Style menu option
menu. Markers are only valid for the “continuous surface” representation.

Cell width — For bar, histogram and discrete surface data sets, this is the size of
each data cell. For histograms, the first data cell begins at the X-axis minimum.
For bar and surface graphs, the first cell begins at (X_Minimum - Cell_Width / 2)
units.

Interpolate — This check box determines whether there is linear interpolation in
forming the connecting surface between consecutive data points. If this item is
NOT checked, the surface will be shown with only horizontal and vertical lines.

Use Left Axis / Use Right Axis — Your chart can be defined to simultaneously show
two sets of independently scaled data by using a second Y-axis (generally shown
to the right of the plot area). Each data set in your chart can belong to either the
left or right (second) Y-axis.

Static — This item is used to enhance performance whenever you do not intend the
plot to be modified once it has been displayed. In this case, a single polygon (or
polyline) will be used to display all cells in the data set.

3.14.3.6 Creating a Time Trace Plot

If you want the cha to be used to plot the value of a single variable over simulation time,
a time trace plot should be used. To create a trace plot, select the graph anEdive the
Properties option. Set thTime Trace Plot checkbox in th«Chart Detail Dialog .

3.14.4 Pie Charts

«

A pie chart can depict a fixed sized array of scalar values in relation to one another. By
selecting therie Chart and using thEdit/Properties menu option you can change the names
and initial values shown by each pie slice. The color and fill style of individual slices and
other components (including legend text, title, and borders) can be changed by selecting
them and using thstyle or Color palettes. ThiDetail Dialog for a pie chart contains the
following:

Library Name — The name of the object within the current graphics library.

49

SIMGRAPHICS Il User’s Guide

Tite — Text of title displayed on top.

Show borders — Determines whether to put borders around the legend, title, and
plot of a pie chart.

Slice List Box — This list box contains the names of all slices in the chart.

1. To add a slice, set the new slice’s name and value slithevame andSlice
Value text boxes below, and press thil button.

2. Toremove a slice, select its name in the list box and pregetiwe button.

3. To change the name or value of a slice, first select its name in the list box, and
then update thslice Name andsSlice Value text boxes and press tbipdate
button.

3.14.5 Clocks

Q B3

Clocks are used to display simulation time within a program. Both analog and digital va-
rieties of clocks are available. By selecting the clock and usingdit#eroperties menu

option you can change its various attributes including axis scaling parameters as well as
whether or not to display hours, minutes and seconds. The color and fill style of individual
components (including face, title, and border) can be changed by selecting them and using
the Style or Color palettes. Theetail dialog for a clock contains the following:

50

Library Name — The name of the object within the current graphics library.

Title — Text of title displayed on bottom.

Interval — (Analog clock only) Distance between tic marks around the face.
Num Interval — (Analog clock only) Distance between numbers around the face

Max Hours — The maximum number of hours the clock (shown at the top of the
face) that the clock is capable of showing (generally 12). As this value is exceed-
ed, the time display will start over from 0:00:00.

Show Hours, Show Minutes, Show Seconds — You can control displaying the hour,
minute and second hands with these items.

Hours Per Day — Currently, this parameter has no effect on the layout of the clock.
It is only used within the application program.

Minutes Per Hour — Defines the time interval before theurs” are incremented by one.
Seconds Per Minute — Defines the time interval before “minutes” are incremented.

Show Borders — (Analog clock only) Determines whether to put borders around
the legend, title, and plot of a pie chart.

Chapter 3. SIMDRAW

3.14.6 Dials

X

A dial can be created in tle@aph Editor for displaying a single scalar value. The hand of
the dial rotates clockwise as its value gets larger. By selecting the dial and usnig the
Properties menu option you can change the various attributes shown below:

Library Name -The name of the object within the current graphics library.
Title — Text of title displayed on bottom.

Minimum, Maximum — Defines the range of values shown by the dial.
Interval — Distance between tic marks around the face.

Num Interval — Distance between numbers around the.face

Min Theta — Angle in degrees where the minimum value is placed around the dial
circumference.

Max Theta — Angle in degrees where the maximum value is placed around the dial
circumference.

Scale Factor — Factor multiplied by value before being displayed in the dial.
Show Border — A square background can be shown under the dial face and title.

3.14.7 Level Meters
I

A level meter shows a single scalar numerical value. The level meter is composed of a bar
which grows and shrinks along a vertical axis. The height of the bar reflects the magnitude
of the value being plotted. By selecting the meter and usinggdtitroperties menu op-

tion you can change the attributes shown below:

Library Name — The name of the object within the current graphics library.
Title — Text of title displayed on bottom.

Minimum, Maximum — Defines the range of values shown by the meter.
Interval — Distance between tic marks along the axis.

Num Interval — Distance between numbers along the.axis

Show Grid Llines — Horizontal grid lines extending across the plot area can be
shown.

Scale Factor — Factor multiplied by value before being displayed in the meter.

51

SIMGRAPHICS Il User’s Guide
3.14.8 Digital Displays

32.3

A digital display is for showing a single scalar numerical value. The value is shown explic-
itly as numerical text and is enclosed by a box. By selecting the display and usidg the
Properties menu option you can change its various attributes shown below:

Library Name — The name of the object within the current graphics library.
Title — Text of title displayed on bottom.
Minimum, Maximum — Defines the range of values shown by the meter.

Field width — Number of places allotted for the entire value (including decimal
point).

Precision —Number of places to the right of the decimal point. If zero, an integer
value is shown.

Scale Factor — Factor multiplied by value before being displayed in the meter.
3.14.9 Text Meters

TEXT

This is a titled text value enclosed by a box. The following attributes can be set:

Library Name — The name of the object within the current graphics library.
Title — Text of title displayed on bottom.
width — Number of places allotted for the text value.

3.15 Using the Dialog Editor

—_—

El=

The Dialog Editor (figure 3-3) provides a fast and easy to use drag and drop facility for cre-
ating and editing dialog boxes. A dialog box is a container for controls which accept var-
ious types of input. A dialog box can contain buttons, single and multi-line text boxes,
combo boxes, value boxes, list boxes, radio boxes, check boxes, text labels, and tables.
Tabbed dialog boxes can also be created. Items contained by a dialog box or a dialog box
tab are calledontrols

Controls are created and added to the dialog box viadte paletteon the left-hand side

of the window. To create a control, first select the control type fromdhe palette. Po-
sition the pointer over where you want the control to go into the dialog box and press the

52

Chapter 3. SIMDRAW

mouse button. The dialog box will automatically resize as needed to fit the controls it con-
tains. Itis OK to drop a controltsideof the dialog box in order to make the box bigger.

The actual dialog box you are working on can be displayed usingyh&/Show Dialog
menu. Double click on the*in the header bar of the dialog window to make it disappear.

imdraw - CASIMSCRIP\ADEMOS\IMAGE3\... [M[=]F3

File Edit Yiew Layout Window Help _|E|£|

Selection tool

Button }Jn | Elx |
b
Text box = —
e e | ===

Check baox
Irmage Demao

Fadio box .
List box @ ("-: aMarme ofimage lin

Tirmescale value l_

Speed ofimage I—

Mumber of rotations I—

kulti-line box

[Hjl!llll

Tahle
| Lakel. group bu:ux|--'

Combo box 1-"" =
Tree list - -
et g = —
,
(Tebpose \ 4

i
| Selected contraol |

Figure 3-3. Dialog Editor

3.15.1 Selecting, Moving, and Resizing

Selected controls are marked by a bordering green or cyan box. Sides and corners of this
box may contain small square resize handles. A resize handle is present for each dimension
that the control can logically be resized in. Resizing is performed by clicking down and
dragging a resize handle.

To move a control, click down onaind drag to the desired location.

3.15.2 Dialog Box Coordinate System

Controls are positioned iiont units The width of a font unit is the width occupied by a
single digit within a dialog box. The height of a font unit is the maximum of button and
text box heights. The origin of a dialog box’s coordinate system is at its top left-hand cor-
ner with Y-values increasing downward.

53

SIMGRAPHICS Il User’s Guide

3.15.3 Using the Clipboard (Cut, Copy, Paste Commands)
b i

The Dialog Editor supports the standacut, Copy, andPaste operations found under the

Edit menu option. Thcut option deletes selected controls and places them in the clipboard.
The deleted item remains on the clipboard until the next time you UEdit/Cut or Edit/

Copy option. Use thiedit/Paste option to paste as many copies as you want from the clip-
board into the image. Controls can be deleted without changing the clipboard by using the
Edit/Delete option.

The clipboard is shared among all actDialog Editor sessions. You can copy graphics
from one image into another by activating the source edit window, usiiCopy option,
and activating the destination editor and usincPaste option.

Note: The dialog box itself can never be “cut” or “deleted”. It can, however, be selected
for the purpose of changing its properties.

3.15.4 Controls

To create a control (check box, button, text box, etc.) select the appropriate control from
theMode pallette and drag its outline to where you want it to go on the dialog box. All con-
trols have the following attributes:

* X, Y Position — Position in font units from the upper left-hand corner of the dialog
box.

* Reference (Field) name —Any control added to the dialog can be accessed from in-
side an application by specifyin(Reference Or Field name.

Buttons

A button receives simple input and contains no data from the user. UsiEdit/e
Properties menu option you can set the following attributes of a button:

Label — This is the text shown on the face of the button.

Default — Setting this item will make this button the “default” button. This button
will be pressed when you press Enter key.

Verifying — This will cause the button to check the contents of all value boxes in
the same dialog when it is pressed.

Terminating — Setting this check box will make the button erase its dialog box
when pressed.

54

Chapter 3. SIMDRAW

Text Boxes

Text

Text boxes are used to receive single line text string input. UsirglitlReoperties menu
option you can set the following attributes of a text box:

Label — The text appearing on the left-hand side of the box.

width — The number of characters that the text box can show.

Text — The text string initially shown in the box.

Selectable Using Return — Defines whether the application program will be notified
when you press theeturn key while this text box has input focus.

Value Boxes

[92

A value box is used to receive or show a single numerical value to the user. USidig the
Properties menu option you can set the following attributes of a value box:

Label — The text on the left-hand side of the box identifying value type to the user.

Min — The minimum value the box can contain. If a value typed into the box is out
of range, the user will be informed wheneveeafying buttonis pressed.

Max — The maximum value the box can contain.

Precision — Precision is used to format output and round input. It defines the num-
ber of digits to the right of the decimal point. (0 = integer value, 1 = 0.1, 2 = 0.01,
-1 =rounded to 10's, -2 =rounded to 100’s etc.)

Value — The initial value displayed in the value box.

Use Scientific Notation — Indicates whether output should be formatted using scien-
tific notation. (i.e. 71 = 7.1e+1).

Selectable Using Return — Defines whether the application program will be notified
when the user presses taurn key while this text box has input focus.

Check Boxes

)

A check box is used to receive and show yes/no input. Usirgitf@operties menu op-
tion you can set the following attributes:

Label — The text on the right-hand side of the box identifying it to the user.
Checked — Initial state of the check box.

55

SIMGRAPHICS Il User’s Guide
Radio Boxes

C

C

C

The radio box accepts input from a fixed list of alternatives. It contains arseli@but-

tons You can only select one radio button at a time; when you select a new button, the pre-
viously selected button pops up automatically. You can add and remove radio buttons from
the radio box using thedit/Properties menu option:

To add a button, enter igbel, andreference nama therRadio Buttons area of the
Properties dialog, and then press thed button.

To remove a button, selectits label in the list box and then preResntbes button.
To change the attributes of a button, select its label in the list box, modify its label,
or reference name, and then presdiuate button.

List Boxes

=

A list box is used to accept input from a list of text values. The list may vary in length and
will be scrollable, if needed. You can define the list to accept only single item selections,
or accept multiple item selections using $ihét and/orctrl keys. Using th&dit/Properties

menu option you can set the following attributes:

Wwidth — The width in font units of the list (including scroll bars).
Height — The height in font unitsf the list.

Allow Multiple Selections — Allows the user to select several items in the list using
the shift andctrl keys.

Multi-line Text Box

A multi-line text box can receive and show unlimited lines of text. Horizontal and vertical
scroll bars are attached, if needed. You can easily edit the text it contains using the mouse.
Using theedit/Properties menu option you can set the following attributes:

width — The width in font units of the box (including scroll bar).
Height — The height in font units of the box (including scroll bar) .
Text — The text initially displayed in the box.

Allow Horizontal Scrolling — If checked, a horizontal scroll bar will be attached
whenever a line of text is too long to be viewed in the text box. If not checked, long
text lines will be truncated.

56

Chapter 3. SIMDRAW

Labels & Group Boxes

T

A label is used to place explanatory textithes in a dialogoox. It can be positioned any-
where within the dialog. A group box can be attached to the label and sized to enclose a
set of controls with some common property. UsinggdieProperties menu option you can

set the following attributes:

Label — The text of the label.

Show Group Box — Defines whether a group box will be shown.
Width — The width in font units of the group box.

Height — The height in font units of the group box.

Through theProperties dialog, you can define whether the label is defined programmati-
cally through thédTVAL.A or DDVAL.A attributes of its field pointer. One of the following
three access modes can be defined:

a. Use thé®TVAL.A attribute to define the text.
b. Use theDTVAL.A attribute to define the text. Truncate the textidé@ width places.

c. Use theDDVAL.A attribute to define a real value displayed by the label. Fie
width text box specifies the total number of places, whilectb@sion box defines
the number of places after the decimal point.

For example, if the label's reference name is “MY.LABEL”, you could programmatically
set the label as follows:

Let DTVAL.A(DFIELD.F(“"MY.LABEL”, FORM.PTR)) = “Hello World”
or

Let DDVAL.A(DFIELD.F(“MY.LABEL”, FORM.PTR)) = 12.5

Combo Boxes

B

A combo (combination) box is a text box containing a small “drop down” button. When
that button is pressed, a scrollable list of choices for the text field is displayed. The combo
box can be defined to allow only those alternatives shown in the list entered, or to be fully
editable like a text box. Using timelit/Properties menu option you can set the following
attributes:

Label — The text on the left-hand side of the box identifying the box.
Width — The width in font unitsf the text box plus the drop down button.

57

SIMGRAPHICS Il User’s Guide

Height — The number of visible items in the drop down list.

Editable — Defines whether or not you can edit the text field, or, if it is restricted, to
contain only one of the items shown in the drop down list.

Sorted Alphabetically — If checked, items in the drop down list will be shown in al-
phabetical order.

Progress Bar

Ll

A progress bar is a programmatically adjustable horizontal bar usually used to indicate the
completion status of a task. The length of the bar is proportional to the value given to it by
the program. The bar cannot be adjusted by the user, only by the program.gditsing
Properties menu option you can set the following attributes of the bar:

» Label — The text on the left hand side of the bar identifying it to the user.
* Width — The maximum visible size of the bar in font units.

e Min — The bar will have zero length when set to this value.

* Max — The bar will have maximum length when set to this value.

e Value — The initial value displayed by the bar.

Tables

Atable is a two dimensional array of selectable text fields or “cells”. The table can be hor-
izontally and vertically scrollable. All cells in the same column have the same width, but
you can define the width of this column.

A table can have both column and row headers. A row of “column headers” is shown on
top of the array of cells. This special row of cells will scroll horizontally with the rest of
the table, but not vertically. “Row headers” are shown in a column to the left of the table.
This column scrolls with the table only in the vertical direction.

You can navigate through a table using the left-, right-, up- and down-arrow keys. The
program will be informed of cell ssttion whenever anri@w key is used to move to a
different cell. You can tell the table to automatically add a new row of cells to its bottom
row whenever the you attempt to move past the last row using the down-arrow key. Use the
Edit/Properties menu option to set the following attributes:

Viewed Width — The total width in font units of space occupied by the entire table
(including row headers, and scroll bar).

Viewed Height — The total height in font units of space occupied by the entire table
(including column headers and scroll bar).

58

Chapter 3. SIMDRAW

Number Columns — Number of columns of cells (not including headers).
Number Rows — Number of rows of cells (not including headers).

Column Headers — If checked, the table will contain a separate row of column head-
ers at the top of the cells.

Row Headers — If checked, the table will contain a separate column of row headers
on the left of the cells.

Automatic Grow — If checked, the table will automatically add a row, if the you at-
tempt to move past the last row with the “down-arrow” key.

The attributes of all columns in the table are shown within a segaraten Detail table
invoked by clicking on th€olumns button:

e Column(1,2,...) Width — The number of characters shown in the cells of a particular
column. Select the cell in the column corresponding to the one you want to
change, and type in a new width.

* Column(1,2,...) Alignment — Textin a table cell can be justified to the left or right,
or can be centered. Within tlelumn Detail table (=Left justified,c=Centered,
andr=Right justified).

You can also set the initial contents of the cells in the table by clicking aordhets ...
button. A duplicate table of the one you are working on will show the initial contents of all
cells. To change the initial contents of a cell, select the corresponding celCui theail

table, and then type in the new text and presan .

Dialog Box

—_—

E=

Although the dialog box annotation cannot be moved or resized, it can still be edited by se-
lecting it and using thedit/Properties menu option. The dialog box can be defined with
the following attributes:

* Library Name — The name used to access the dialog box from inside the application.
» Title — The text shown on the header bar of the dialog.

* Modal Interaction — Defines whether the dialog is “modal” or “modeless”. When a
modal dialog box is displayed, the user cannot interact with any other component
of the application but the contents of that dialog box. Modeless dialogs can be in-
teracted with asynchronously.

* Position with Respectto Screen — Specifies which corner of the dialog will be offset
from the lower left-hand corner of the screen. For exampieitifm Right posi-
tioning is selected, theOffset andy Offset fields define the distance from the bot-
tom left-hand corner of the screen to the bottom right corner of the dialog box. This
distance is specified in “screen coordinates” where the width and height of the com-
puter screen each are each 100 units.

59

SIMGRAPHICS Il User’s Guide

* Tab Ordering of Members — If you wish to use th&ab key to transfer input focus
from one control to the next while interacting with the dialog box, the order in
which this traversal takes place can be established ahead of time. A list box shows
the labels of all controls in the dialog that can have input focus. The order of items
in this list is the order in which input focus will proceed when thie key is
pressed. Use the up- and down-arrow keys to shift the tab ordering of controls.

You can also define howCCEPT.F will behave when displaying the form. See paragraph
5.3.2

Tabbed Dialogs

Tut!

TheDialog editor can be used to creatbed Dialogs or to convert existing dialogs to be
tabbed. Using d@abbed Dialog you can attach sets of contrédsoverlappingrab Fields .

Only the toprab Field can be seen; all other tab fields and attached controls remain hidden
underneath. The only visible portion ofab Field is a small rectangular area containing

its name, or #&b. Clicking on the tab will bring theab Field to the top of the tab area and
show all controls attached to it.

To create &abbed Dialog , you must first make sure that the area on the dialog box where
theTab Field is to be placed is cleared of controls (they should be moved or temporarily cut
to the clipboard.) CreateTab Field by dragging it from the palette onto the dialog box.
Any number ofrab FieldS can be dropped onto the dialog box. The tab area can be resized
by resizing the topab Field , but cannot be moved.

Dropping a control onto the tapb Field will automatically attach it to that tab. Controls
can be dragged from tivede palette, pasted from the clipboard, or moved onto theaiop
Field .

The tab area is not automatically resized when controls are dropped on4o Hied . It
should be sized manually prior to adding controls.

To remove a@ab Field , first remove all controls it contains and then usethcut or Edit/
Delete menu options. Using th&litProperties menu option you can set the following at-
tributes of the selectethb Field :

* Label — The text label shown on the “tab” part of ta Field .

* IconName — The resource or file name (without extension) of the bitmap shown on
the front of the tab.

60

Chapter 3. SIMDRAW

3.15.4.1 Converting Conventional Dialog Boxes to be Tabbed

Perform the following steps to add tabs to an existing (untabbed) dialog box.

1. Create space for the tab area by selecting all controls usiagjttBelect Al menu
option and moving them into a saved area on the dialog box (move them down or
to the right by a liberal amount.)

2. Drag aTab onto the dialog box from theode palette. Resize theab according
to how much space it needs.

3. Move each control which must go onto thi® Field from the saved area.

4. Repeat steps two and three untilTalbs have been created and filled with con-
trols.

5. Selecteachab and use theditProperties menu option to set the label on the,
its icon, etc.

3.15.4.2 Align and Distribute

Multiple controls can be aligned either vertically or horizontally to the primary selection
(shown enclosed by green selection handles). They can be aligned vertically with respect
to either their left edge, right edge or center. Controls can be aligned horizontally with re-
spect to their top edge, bottom edge, or center. To align, first select multiple objects using
theshift key, and then use theyout/Align menu option. Select an alignment scheme from

the resulting dialog box.

The Layout/Distribute menu option allows you to distribute three or more controls in rela-

tion to each other. Controls can be distributedzontallyso that the same space exists be-
tween left and right edges of adjacent controls. Distributergjcally will reposition the

controls so that the same space exists between the bottom and top edges of adjacent controls.

3.15.4.3 Using Grid Lines

A

A grid can be used to perform precise positioning and sizing of controls by breaking the
editor window up into divisions. You can show (or hide) grid lines by togglinyithe
Grid menu option.

You can change the color of the grid by selecting a color fronzdloe palette and then
using theview/Grid Color menu option. The granularity of the grid can be adjusted using
the View/Grid Spacing menu option. Granularity can b&e, Medium , Or Coarse :

* Fine — 1 font unit wide, 0.25 font units high.
* Medium — 2 Font units wide, 0.5 font units high.
* Coarse — 3 Font units wide, 1 font unit high.

61

SIMGRAPHICS Il User’s Guide

By toggling theview/Snap menu option, you can restrain positioning and resizing of shapes
to the intersections of the grid.

3.15.4.4 Changing Views (Panning and Zooming)

Q,

You may want to magnify a portion of the dialog. To zoom in to some area of the window,
first use theview/Zzoom In menu option. Then drag out a rectangle with the mouse over the
area of detail. When the mouse button is released, the area inside the rectangle will be expand-
ed to encompass the entire window. To zoom back out, useiliEzoom Out menu option.

When zoomed in, you can pan to other areas of the window using the horizontal and vertical
scroll bars.

You can return to the default view by using thev/View [1:1] menu option. Unless the
window is square, the top or bottom portion of the view may not be visible. To see the entire
coordinate space, use tliew/Fit In Window menu option. This viewing mode will leave
dead space off to the right of the window, but guarantees the entire coordinate space will
be seen.

3.15.4.5 Changing the Layout Size, Color and Font

To change the editor window's background color, usedywit/Set Color... menu option.
Select the RGB values of the background color.

Use theLayout/Set size... menu option if you want to increase the size of the editing area to
allow you to create or edit very large dialog boxes. A dialog will be displayed allowing you

to increase the number of "screens," thereby adding space to the right and bottom sides of
the editing area. This new space can be "scrolled" to using the right and bottom scroll bars
attached to the editor window.

The font used to depict labels and other text shown in a dialog can be reset wathutie
Set Font... menu option. To have the icons representing your controls appear smaller or
larger, simply select a smaller or bigger font.

3.16 Using the Menu Bar Editor

File Edik
H

s
Opre
[

A menu bar containsienuswhich can contain either menu items, or other menus. The
Menu Bar Editor (figure 3-4) allows you to construct a menu bar by interactively dragging
and dropping icons representing menus and menu items onto a menu bar icon.

62

Chapter 3. SIMDRAW

Menus and menu items items are created and added to the menu bamagetipalette

on the left-hand side of the window. To create a menu, first presgtbebutton on the

Mode palette. Position the pointer over where you want the menu to go onto the menu bar
and press the mouse button. The menu will automatically be inserted into the menu bar.

Change benu / kenu item
Froperies

| IZut || Cl:npy||Paste| | Delete|

Slmdraw D'-,hfip\menuharrgz [mainmeaubar] - | -
= [Eile JEdi] view - :
File Edit
$EleX| =E
|Se|en:ted menul--!..__s__ﬁ__ ‘
—— s
| * File E dit Inzert Options Help
Add Menu |~k I:a_"l Hew Duplicate
s Open..| Clear
[Add Menu temeliten]l| | Close
Properties. ..
Lave
Save As_
Print...
Merge. ..
E xit
&
4-| | -+
| Y.

Figure 3-4. Menu Bar Editor

Menu panes can be displayed by simply clicking on the menu label. Unlike a “real” menu
bar, multiple menu panes can be dropped down at the same time allowing you to transfer
their menu items from one menu to another. A new menu item can be added to a menu by
first dropping down the menu pane, and then dragging a menu item fromdé@alette

to the position in the pane where you want it to go.

A usable menu bar can be interacted with using &geut/Show Menu Bar menu option.

A temporary window will be displayed containing a “test” menu bar. Double click on the
"-"in the header bar of the temporary window to make it disappear.

63

SIMGRAPHICS Il User’s Guide

3.16.1 Selecting and Moving (Transferring)

A menu or menu item can be selected by clicking the mouse button over its label. Selected
menus are marked by a bordering green or cyan box. Selecting the label of a menu will
drop down its pane, showing all the items it contains. Multiple items can be selected by
holding down theshift key and then clicking on several items. To add a menu or item to
another menu, drop it onto the menu’s open pane.

You can also select the menu bar and edit its properties, but the bar cannot be moved. You
are not allowed to resize menus or the menu bar; they are resized automatically when new
items are added to them.

3.16.2 Using the Clipboard (Cut, Copy and Paste Commands)
+ e

The Menu Bar Editor supports the standard cut, copy, and pagégations found under the

Edit menu. Thecut option deletes selected items and places them in the clipboard. The de-
leted item remains on the clipboard until the next time you usEditieut or Edit/Copy

options. You can use tlgiitPaste option to paste as many copies as you want from the
clipboard onto any open menu pane. Items can be deleted without changing the clipboard
by using theedit/Delete option.

The clipboard is shared among all actixgw Bar Editor Sessions. You can copy graphics
from one menu bar into another by activating the source edit window, usicgpth®p-
tion, and then activating the destination editor and usingdte option.

Note: The menu bar itself can never be cut, copied, or deleted. It can, however, be selected
for the purpose of changing its properties.

3.16.3 Editing the Menu Bar

File Edit
M

The menu bar is not movable or resizeable, but usingditieroperties menu option you
can modify theLibrary Name of the menu bar.

You can also define hoACCEPT.Fwill behave when displaying the form. See paragraph
5.3.2

64

Chapter 3. SIMDRAW

3.16.4 Editing a Menu

11
Laud

You can add menus to the menu bar or other menus by dragging and dropping. The menu’s
pane can be displayed or hidden by clicking on its text label within its container. A menu
is defined by the following parameters:

* Reference (Field) name — Any menu added to the menu bar or another menu can be
accessed from inside an application by specifyirgference or Field name. The
field name is passed to the callback routine whenever a menu item is clicked on.

* Label — The name identifying the menu which appears within the container menu
bar or menu.

* Mnemonic — A letter in the menu’s label that can be typed from the keyboard
(while holding down thenit key) to bring down the menu pane. The mnemonic
character will appear underscored in your application.

3.16.5 Editing a Menu Item
|item|

A menu item can only be contained on a menu pane, and cannot contain other items. Your
application program is only informed of selections of a menu option, not of a menu or menu
bar. Double click or use timiit/Properties menu option to change the attributes of a menu
option:

* Reference (Field)name — Any menu item can be accessed from inside an application
by specifying itReference or Field name. The field name is passed to the callback
routine whenever a menu item is clicked on.

* Label — The name identifying the menu item appearing within the container menu.

* Mnemonic — A letter in the item’s label that can be typed from the keyboard (while
holding down thelt key) to activate the item. The mnemonic character will appear
underscored in your application.

* Accelerator Key Name — While running the application, you can use the keyboard to
activate menu options instead of using the mouse. Any menu item can have its own
accelerator key. This attribute determines which key will be mapped to this menu
item. To use enable keys such as [a-Z], [0-9], and other punctuation and symbols
keys to activate the menu item, just type the key character directly. The naming
convention for keys performing functions are defined below:

» “escape” — Names theEsc or Escape key.

» “delete” —Names theel orDelete key.

* “return” — Names th&nter or Return key.

* “packspace” — Names the- or theBackspace key.

65

SIMGRAPHICS Il User’s Guide

* “tab "— Names th@ab key.

* “f1”,%f2", .., “fn = Names the function keys1”, “F2”, ..., “Fn” at the top of the
keyboard.

* Use Alt, Use Ctrl, Use Shift — Specifies which modifier key must be held down in
conjunction with the accelerator key described above.

* Accelerator Key Label — This is the name appended to the menu item label used to
describe how to invoke the keyboard accelerator. For example, the@ming)”
could describe an accelerator activated by holding dowatthkey and pressing
“c”.

* Status Message — If the window containing this menu bar has a status bar, this help
message will appear in the first status bar pane. The text will be displayed whenever
this menu item isighlighted by the pointer (not necessarily activated).

* Checked —Menu items can have an “off/on” state shown by a small check mark next
to the label. The initial state is defined by thecked attribute.

Note: This state is NOT changed automatically when the item is clicked on, but
must be updated by the application program.

3.17 Using the Palette Editor

ThePalette Editor (figure 3-5) provides a fast and easy to use drag and drop facility for cre-
ating and editing palettes, toolbars etc. A palette is usually attached to the side of your
window (but is sometimes a separate window) and contains an array of buttons. The face
of each button can contain a bitmap icon or show a color. Separator objects can be added
to the palettes to produce space between groups of buttons.

You can define the number of columns or rows that the palette contains. For palettes at-
tached to the left and right sides of the window, or for floating palettes, the number of col-

umns is specified. The number of rows is used for palettes glued to the top or bottom
window edges.

Palette buttons and separators are created and added to the palett®ada fhaletteon

the left-hand side of the edit window. To create a palette button, first selgatitheicon

from theMode palette. Position the pointer over where in the palette you want the buttons
to go, and click the mouse. The palette will automatically resize as needed to fit the buttons
it contains. It is OK to drop a butt@utsideof the palette in order to make it larger.

The actual palette you are working on can be displayed and testedhgsiagput/Show

Palette menu option. Double click on the*‘in the header bar of the palette test window
to make it go away.

66

Chapter 3. SIMDRAW

| Cut |||:I:Ip'y' || Faste || Delete| |Change F"rn:uperties| |Test |

L[

Selected buttan

Al Button]—- -

| Add Separatn:ur|.- al —

| Falette being edited |

|Palette separator |
] =]
100

L

Figure 3-5. Palette Editor

3.17.1 Selecting and Moving (Rearrangement of) Buttons

A palette button or separator item can be selected by clicking the mouse button over the top
of it. Selected buttons are marked by a bordering green or cyan box. Multiple items can be
selected by holding down tismift key and clicking on several items. To move a palette
button from one place to another, drop it over the top of the button whose position you want
it to occupy. You can select the palette and edit its properties, but it cannot be moved.

You are not allowed to resize palette buttons or the palette. All palette buttons are sized
equally based on the size of the “first” button (at top left hand corner of the palette). This
“first” palette button is automatically made big enough to contain its bitmap icon.

However, palette separators can be resized. Resizing a separator has the effect of adjusting

the space between palette buttons. To resize the separator, first select it and then drag the
green resize handle shown on a side of the selection rectangle.

67

SIMGRAPHICS Il User’s Guide

3.17.2 Using the Clipboard (Cut, Copy and Paste)
b izl

The Palette Editor supports the standard cut, copy, and paptrations found under the

Edit menu. Thecut option deletes selected items and places them in the clipboard. The de-
leted item remains on the clipboard until the next time you usEditieut or Edit/Copy

options. You can use tlgiitPaste option to paste as many copies as you want from the
clipboard onto any open menu pane. Items can be deleted without changing the clipboard
by using theedit/Delete option.

The clipboard is shared among all acthetette Editor sessions. You can copy graphics
from one palette into another by activating the source edit window, usigggheption,
and then activating the destination editor and usingdke option.

Note: The palette itself can never be cut, copied, or deleted. It can, however, be selected
for the purpose of changing its properties.

3.17.3 Editing the Palette

A palette contains an array of selectable palette buttons. Palettes can be attached to any
edge of the application window, or be floating (not unlike a modeless dialog box.) On MS
Windows systems, palettes candoekablemeaning they can be moved from one edge of

the window to another while running the application. Palettes cannot be resized; they are
automatically sized to fit their contents. Double clicking on a palette will display the fol-
lowing detail:

* Library Name — The name of this palette in the graphics library.
» Title — Title text displayed in the header bar of a floating palette.

* # Columns for Left/Right Dock — Number of columns of palette buttons and separa-
tors whenever the palette is docked on the left or right edges of the window, or the
palette is floating.

* # Rows for Top/Bottom Dock — Number of rows of palette buttons and separators
whenever the palette is docked on the top or bottom edges of the window.

* # Columns for Floating — Number of columns of palette buttons and separators
whenever the palette is not docked on a window edge, but floating free.

You can also define howCCEPT.F will behave when displaying the palette. See para-
graph5.3.2

68

Chapter 3. SIMDRAW

3.17.4 Editing a Palette Button

*

Palettes are occupied by an array of palette buttons. A palette button has the following at-
tributes which are adjustable via thdit/Properties menu option:

* Reference (Field) Name — Any button added to the palette can be accessed from
inside an application by specifyingraference or Field name. The field name is
passed to the callback routine whenever the button is clicked on.

* IconName — The name of the bitmap resource or file (without extension) icon dis-
played on the front of the palette button. Pressing the small brow$eitton
next to this text box will allow you to browse the file system to select a bitmap file
name. Remember that the bitmap file MUST be in the sameatiyess your li-
brary (sg2) file.

» Status Message — Text displayed in pane 0 of the parent window’'s status bar (if
present) whenever the pointer passes over this button.

* Tool Tip — Identifies the tool tip pop up message shown at the pointer’s current lo-
cation when it passes over this button.

* Momentary/Draggable/Toggle — Determines the variety of input interaction. One
of three button types can be selected:

1. Momentary — Button will automatically pop back up after it is pressed.

2. Toggle — Two state button. The state (up or down) alternates with each acti-
vation.

3. Draggable — Like Toggle but allows you to hold the mouse button down and
drag an outline of the palette button bitmap onto the window.

* Icon Button/Color Button — If thelcon Button item is activated, the face of the
palette button will show the bitmap defined by ttw Name field above. For
Color Buttons the button will be colored using the R,G,B parameters defined
below.

e Button Face Color (Red,Green,Blue) — You can set the color tifie Color Button s
through these value boxes. Color is defined by the percentage of Red, Green, and
Blue (range [0-100]).

3.17.5 Editing Palette Separators

e

Palette separators receive no user input and cannot be seen on the test palette. They only
serve to provide a gap between buttons. This separation can be changed either by dragging
the resize tag on a selected separator, or by usimgittreoperties menu option. Separa-

tion is defined by percentage of button width (or height), and ranges from 0 to 100.

69

SIMGRAPHICS Il User’s Guide

70

4. Creating Presentation Graphics

This chapter describes features of the SIMSCRIPT I1.5 language which support both the
display of numerical information in a variety of static and dynamic chart formats, and the
representation of changing values using dynamic “smart icons.” Graph types include:

* Histograms,

* Grouped histograms,

» Dynamic bar charts,

* Pie charts,

* X-Y plots, and

» Trace plots exhibiting variables traced over time.

These features are supported by SIMSCRIPT II.5 language enhancements. In general, data
are collected with versions of tAALLY statement anACCUMULATRBtatements. Data
are then displayed with several forms of IISPLAY statement.

Both static and dynamic graphs are supported. Data structures can be defined to represent
either the immediate state of variables or to generate dynamic displays that automatically
change over simulated time, as the program modifies the variables being observed. The di-
mensionality of structured data must match the dimensionality of the icon—for example, a
scalar value can be shown on a dial or level gauge, but a bar-chart, graph, or piechart is re-
quired to represent an array of values. In general the type and format of the icons are se-
lectable at run time without the need to recompile any code.

To create presentation graphics:

1. Declare the relevant globally-defined variableBEPLAY in the program pream-
ble;

2. Format the display icons using SIMDRAW and save thegnaiphics.sg2

3. Add statements to the executable code to associate display variables with the icon
description stored igraphics.sg2

Each of these steps is described below.

4.1 Variable Declaration

Any globally defined numeric variables, either scalars, arrays, or attributes, may be de-
clared aDISPLAY variables in the preamble with the statement:

DISPLAY VARIABLES INCLUDE statement namel, nameZ2...
This declaration is mada additionto normal variable declarations.

Histograms are a special case. Histogram names should not be includBiSiALaAY
VARIABLES INCLUDE... statement. Histograms automatically acquire display capa-

71

SIMGRAPHICS Il User’s Guide

bility. Including the special qualifielDYNAMI(creates histograms that are automatically
updatecas the data chan,, without the necessity of issuing repeeDISPLAY commands:

TALLY histname(low TO high BY interval) AS THE DYNAMICHISTOGRAM OF name

(wherename is already defined as an attribute or global variable).

4.2 Displaying Presentation Graphics

Once the icons are defined, a display variable is associated with an icon descriptor file using
the statement:

DISPLAY [HISTOGRAM] namel,name2,.. WITH "iconname"
[AT (posx, posy)]

or
SHOW namel, name2,... WITH "iconname" [AT (posx,posy)]

DISPLAY causes the icon to become immediately visiSHO\ merely associates the
variable with the icon. A statement:

DISPLAY name

or assignment to the variable, in the case of dynamic icons, is then required to make the
icon visible at some later point in execution. If more than one data set is to be displayed in
a single chart, all should be@amed in a singlISHOW/DISPLA" statement. The clause
"[AT(posx,posy)]" is optional. Any positioning should be in NDC units (Normalized De-
vice Coordinates, see paragre6.2) and overrides the icon position determined during
icon editing. SubsequeDISPLAY statements for this variabl&@auld not include the

WITF clause.

Histograms are again a special case. For histogram data, the icon association must be made
by executing the statement:

SHOW <HISTOGRAM> histname WITH "iconname"

before any values are assigned to the monitored variable (and before any other reference is
made to the histogram name). This is because the stored information is maintained in the
histogram structure. The first assignment to the monitored variable for dynamic histograms
will cause the histogram to be displayed, and any further references will cause the display
to be updated. Thus, for a dynamic histogrDISPLAY statements are redundant.

If variable names are used for the histogram limits (low, high, interval) these will be auto-
matically initialized from the X-axis graduations specified on the graph icon. These can be
edited in SIMDRAW. Should the displayed bounds on the Y-axis be exceeded during the
simulation, the histogram will rescale automatically.

Icons may be erased by specifying their display variables ERASI statement .
ERASE namel, ...

Dynamic histograms may be destroyed by specifying their names ERASE
HISTOGRAI statement:

72

Chapter 4. Creating Presentation Graphics

ERASE HISTOGRAM namel, ...

4.3 Examples

4.3.1 Example 1: A Simple Tallied Histogram

fi Simple Tallied Histogram

=
{7}

=
1]
-3
o

a

4 4 6 8 10
Independent Uariable

Figure 4-1. Example 1

Preamble
define RANDVAR as a double variable
tally HISTO(O to 10 by 1) as the histogram of RANDVAR
end
main
define COUNT, NSAMPLES as integer varlables
show HISTO with "hist. grf"
let NSAMPLES =50
for COUNT =1 to NSAMPLES
let RANDVAR = exponentlal f(5 0,1)
display HISTO
read as /
end

This program is conventional SIMSCRIPT with the exception of the two lines commented
with " *

Be sure that thshow. . . statement precedes the first assignmelRANDVA. This
assignment triggers data collection, and the icon structure must be known by then. The
display. . . statement makes the icon visible. The fread as / is just waiting

for anEnter key (carriage return) before termtimg the program, and thus erasing the
graphics display.

73

SIMGRAPHICS Il User’s Guide

4.3.2 Example 2: A Time-Weighted Accumulated Dynamic Histogram

mTinefueighted accumulated dynamic histogram

4 4 [} 8 10
Independent Variable
Il Data Foints

Figure 4-2. Example 2

Preamble
define RANDVAR, LO, HI, INTERVAL as double variables
accumulate HIST(LO to HI by INTERVAL) as the dynamic histogram of
RANDVAR
processes include SAMPLE
end
main
show HIST with "hist.grf"
activate a SAMPLE now
start simulation
read as /
end
process SAMPLE
until TIME.V gt 100
do
wait exponential.f(5.0, 1) units
let RANDVAR = uniform.f(0, 10, 2)
loop
end

Accumulated statistics are weighted by the duration of simulated time for which the value

remains unchanged. For this reason the example is written to use a process to generate the
sample data, waiting for simulation time to elapse between each sample.

Note: Histogram limits are declared in terms of variables. These variables obtain their val-
ues from the X-axis specification of the graph icon.

Because the histogram is specified as dynamic, it redisplays any time the VaaisDMAR

is assigned a value. BISPLAY statement would be redundant. Substituting the word
display for show would cause the graph to display immediately upon loading, before the
simulation has started.

74

Chapter 4. Creating Presentation Graphics

4.3.3 Example 3: Displaying Simple Scalar Values

g
©
E:
L]
.
£
z
&

=

R NWLNDN®RD S

~—— Sample points

Displaying simple scalar values

6 16 20 30 40 50 60 70 80 90 100

Time

Figure 4-3. Example 3

Preamble

define RANDVAR as a double variable
display variables include RANDVAR

processes include SAMPLE

end
main

show RANDVAR with "trace.grf"

activate a SAMPLE now
let TIMESCALE.V =10
start simulation
read as /

end

process SAMPLE
until TIME.V gt 100
do

let RANDVAR = uniform.f(0, 10, 2)

wait exponential.f(5.0, 1) units

loop
end

This example is also constructed as a simulation so that it can be used to illustrate the use
of a trace plot. A dial or level meter could be substituted merely by editing a suitable icon

and naming itrace.grf

This example is more interesting if simulation time is scaled to real time so that the process
actually waits some noticeable time between samples. Use the global system variable
TIMESCALE.V to achieve thiSTIMESCALE.V specifies the number ¢fundredths of a
realtime second that should correspond to one unit of simulated time.

75

SIMGRAPHICS Il User’s Guide

4.3.4 Example 4: Using a Trace to Plot X-Y Curves

X-Y Plot using a trace

0
S
E
E
©
=
Eal

X values
— Sample points

Figure 4.4 Example 4

Preamble
define X, Y as a 1-dim double array
define YPLOT as a double variable
display variables include YPLOT

end

main
define SAVTIME as a double variable
reserve X(*), Y(*) as 10

forl=1to9
let X(I+1) = X(I) + uniform.f(0, 0.2, 1)
forl=1to0 10

let Y(I) = 1 - EXP.C ** (-X(I))
show YPLOT with "trace.grf"
let SAVTIME = TIME.V
for 1 = 1 to DIM.F(X(*))

do

let TIME.V = X(1)
let YPLOT = Y(I)
loop
let TIME.V = SAVTIME
read as /
end

This example shows how a trace plot can be “tricked” into plotting one set of VéJues,
against another seX,

YPLOTIs a display variable used solely to generate the trace plot.

Trace plots expect to derive the X-axis coordinate from the current valusied , the
simulation time. If using this trick in the context of a simulation, be sure to save and restore

TIME.V .

76

Chapter 4. Creating Presentation Graphics

4.3.5 Example 5: The Bank Model

As an example of the use of presentation graphics in a simulation model, a very simple sin-
gle-queue, multiple-server bank model has been augmented to include displays of the sim-
ulated time on an analog clock, the queue length as a level meter, and the waiting time of
customers as a dynamic bar chart (or histogram). All code which is not essential to the il-
lustration of graphical concepts (i.e., the menu-driven selection of input parameters and the
gathering and reporting of numerical statistics) has been omitted. The code and icon files
for the complete model are included on the distribution kit for SIMSCRIPT 11.5. Part of
the output is shown in figure 4.5.

The simulation model is described in fPieeamble, Main , thelNITIALIZE routine,

and in theGENERATORNdCUSTOMERrocesses. The presentation graphics are
described in lines 12 to 17 of the preamble, line 3 of the main routine, and in two routines,
CLOCK.UPDATEANINITIALIZE.GRAPHICS

In addition to the model enhancements, SIMDRAW was used to produce descriptions of
three icons to be used for display purposes. Theselack:grf, queue.grf , and
wait.grf

Hulti-Server Single-Queue

Customer Waiting Time

. b
&

Elapsed Time

16

of Customers ~ Bin

[
5 10
Minutes Spent Maiting

9
&
7
[
)
%
3
Z
1
@
#

in Queue

Figure 4-5. The Bank Model
preamble " BANK - Modernizing a Bank
normally, mode is undefined
processes include GENERATOR and CUSTOMER
resources include TELLER
define NO.OF.TELLERS as an integer variable

define MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, DAY.LENGTH
and WAITING.TIME as real variables

Define WLO, WHI and WDELTA as integer variables
Define CLOCKTIME as a double variable

77

SIMGRAPHICS Il User’s Guide

78

Display variables include CLOCKTIME, N.Q.TELLER
Graphic entities include SHAPE

Tally WAITING.TIME.HISTOGRAM (WLO to WHI by WDELTA)
as the dynamic histogram of WAITING.TIME

end "preamble

main
call INITIALIZE
call INITIALIZE.GRAPHICS
start simulation
read as /
end "main

routine INITIALIZE
let NO.OF.TELLERS =4
let MEAN.INTERARRIVAL.TIME = 2.0
let MEAN.SERVICE.TIME = 7.0
let DAY.LENGTH =4/ hours.v "days
create every TELLER(1)
let u.TELLER(1) = NO.OF.TELLERS
activate a GENERATOR now

end " routine INITIALIZE

routine INITIALIZE.GRAPHICS

Define DEVICE.ID and TITLE as pointer variables

Let timescale.v = 1000 " clock ticks (1/100 sec) per unit
Let timesync.v = 'CLOCK.UPDATE'

Display CLOCKTIME with "clock.grf"
create a SHAPE called TITLE
display TITLE with "title" at (15000.0, 21000.0)

Display N.Q.TELLER(1) with "queue.grf"
Display histogram WAITING.TIME.HISTOGRAM with "wait.grf"

end "INITIALIZE.GRAPHICS

routine CLOCK.UPDATE given TIME yielding NEWTIME
Define TIME, NEWTIME as double variables
Let NEWTIME = TIME
Let CLOCKTIME = TIME

End "CLOCK.UPDATE

process GENERATOR
until time.v >= DAY.LENGTH
do
activate a CUSTOMER now
wait exponential. f(MEAN.INTERARRIVAL.TIME, 1) minutes
loop
end "GENERATOR

process CUSTOMER
define ARRIVAL.TIME as a real variable
let ARRIVAL.TIME = time.v
request 1 TELLER(1)
let WAITING.TIME = (time.v - ARRIVAL.TIME) * minutes.v * hours.v
work exponential. f(MEAN.SERVICE.TIME, 2) minutes
relinquish 1 TELLER(1)
end "CUSTOMER

5. Forms and Graphical Interaction

5.1 Introduction

A graphical user-interface is made up of menu bars, buttons, pickable icons and other con-
structs, each with its own behavior and function in the program. SIMGRAPHICS Il incor-
porates a form-based approach for easily creating these interfaces and adding them to
programs. This chapter is organized into three loose parts:

» After reading paragraptis2 through 5.4 you should be able to easily use interactive
graphics to improve your programs. These paragraphs give all the information
needed for simple input using powerful SIMGRAPHICS Il entities.

» Paragraph®.5 and 5.6 are meant as a more complete description of the basic
SIMGRAPHICS Il forms-based concepts and commands.

» Refer to paragraphs.7 through 5.9 for complete details of each SIMGRAPHICS
Il entity (Button, Menu bar, ...) as they are needed. Paragraplontains several
simple example programs, with relevant concepts listed before each. These should
be referred to if the use of any concept seems unclear.

Constructing an application interface involves designing the layouts of the interactive
graphics and writing the code to manage their behavior. Without SIMGRAPHICS II, the
application developer is often burdened with controlling, at a detailed level, the mechanics
of the particular interaction environment: Has the mouse button been pressed?; Was that a
backspace key?; Should | echo it?; etc.

SIMGRAPHICS Il offers tools to help design the layout of the interaction screens. These
may be composed by combining a number of interaction primitives to display lists, accept
numeric values, check options, etc. These layouts are then filed for later use by an appli-
cation program. At execution time, SIMBRHICS Il takes over most of the interaction
management—tracking the mouse, toggling highlights, scrolling lists. This leaves the ap-
plication developer free to concentrate on the mechanics of his or her program.

A form is composed of a group of fields. There are three principle types of forms: pull-
down menus, dialog boxes and palettes that may contain values boxes, text boxes, list boxes
and buttons.

Forms are generated and modified by SIMDRAW. This editor was created using the forms
concepts, so it is an excellent example of its own capabilities. The editor saves coded de-
scriptions of these structures to files. The application program can retrieve any form and
rebuild its structure, with a single statement. A function call initiates and manages the in-
teractive behavior of a form. The run-time support library knows how to generate the dis-
play screens and manage the details of the user interaction. The steps for accomplishing
the simplest interactions are summarized as:

1. Design a form with SIMDRAW.

79

SIMGRAPHICS Il User’s Guide

2. Save the form.

3. Use the commanSHO\ and the functiotACCEPT.F in your program to display
and input information with your form.

4. Use the built-in SIMSCRIPT functions and attributes to identify fields and retrieve
data.

During forms editing, each field is tagged with an arbitrary reference name. The applica-
tion program uses this reference name to refer to a particular field within a form structure.
This is how the program can retrieve data values and selections from the interaction and
even alter the values or other internals in some of the fields. Each field has control at-
tributes, specified during forms editing, which help determine its behavior during the inter-
action.

The application program has the option of selectively using code to manage the behavior
of specific fields in a form. This is done by supplying a control routine for a form. This
control routine is invoked each time any field in the form is selected. Based on the field
Identifier, the control routine can supply any behavior, analysis, or validation desired.

5.2 Creating a Form

You create a form with SIMDRAW. Typically, this is run in the subdirectory of the model
for which the form is being created, because, by default, files are saved in this subdirectory.

Types of fields available in SIMDRAW include buttons, radio buttons, check boxes, text
boxes, value boxes, list boxes, combo boxes, tables, tree lists and a progress bar. Refer to
table 5-1.

Different field types may have different associated data types. The attiDDVAL.A,
DTVAL.A, andDARY.A are used to access numeric, string, or array values respectively, giv-
en the pointer to the relevant field.

80

Chapter 5. Forms and Graphical Interaction

Table 5-1. Simple Behaviors and Field Types

In the first two columns of the table below are the requirements you may have for a par-
ticular field in a dialog box. The third column lists which attributes of the field pointer
(obtained byDFIELD.F) should be specified in your program. The fourth column ljsts

all of the objects available from SIMDRAW that could be used to implement the refjuire-
ment. These objects are described in greater detail later.

REQUIREMENTS USER ENTITY CONTROLS TO USE
ACCESS ATTRIBUTES
One numerical value | RW DDVAL.A Value box
One numerical value| R DDVAL.A Label
Progress bar
One text value RW DTVAL.A Text box
One text value R DTVAL.A Label
One boolean value RW DDVAL.A Check box
(Oor1) Radio button
Menu item
Many text values RW DARY.A Multi-line text box
Select from an array | R DARY.A List box
of text DTVAL.A Combo box
DDVAL.A Tree list
Table

5.2.1 Reference Names and Field Attributes

Each field within a form, to be accessible to an application, must be tagged with a unique
reference name. This name is a text string specified for the field during forms editing. The
name is used when invoking a SIMSCRIPT run-time library function which accesses a spe-
cific field in the form data structure.

The attributes of any field are categorized as graphic, controlling its appearance, or control,
determining its behavior. Values for these attributes may be chosen at editing time. The
most important ones for now are:

 The Reference Name¢ This is the name you give a field when you create it in
SIMDRAW. Itis needed to refer to the field later.

* Value Attributes. These includDDVAL.A, DTVAL.A , andDARY A, for numeric,
text, and array values, respectively. These can be used for input or can be set by the
program for use as output.

81

SIMGRAPHICS Il User’s Guide

All of these can be set (or left to the default) in SIMDRAW. They will be elaborated on in
later sections.

5.3 Using the Form in a Program

An application program refers to a form by either a local or a global pointer variable:
define FORM.PTR as pointer variable

Then, aSHOVgtatement,
show FORM.PTR with "formname"

rebuilds the internal data structure for the form from the specified formHA®E&RM.PTR
now points to the form.

Note that theSHOV¢tatement does not display the form. It loads it from the form file and
assigns it to the pointer variable. The form will be automatically displayed when input is
needed.

5.3.1 Using ACCEPT.F

The display interaction is initiated bgvioking a run-time support functiohCCEPT.F,

which takes as parameters the pointer to the fordy aptionally, an assated control
routine. This function displays the form and manages the interaction dialog. The function
call will not be completed until either a terminating button (i.e. a button marked as
"Terminating” in SIMDRAW) is selected, or until forced to do so by the control routine.
When completed, the reference name of the last selected field is returned.

define FIELD.NAME as a text variable

let FIELD.NAME =ACCEPT.F(FORM.PTR, control.routine)
[or ACCEPT.F(FORM.PTR, 0)]

By examining the returned value, the application can make a decision about the outcome
of the interaction. For example, a very simple form might present only two selectable fields
with IdentifiersGOandSTOR The returned value indicates whether the user wants to pro-
ceed past this point in execution.

if ACCEPT.F(FORM.PTR, 0) eq "STOP"
stop
endif

Typically, aform will include two terminating buttons, (labed, for examplepk and
Cancel) which are used to indicate that the user wishes to terminate the oxoiglls the
program to accept the data or instructions gained in the interactieel instructs the
program to back up a step, causing the interaction to have no effect.

If data is to be retrieved, selected fields may be examined, using a run-time support func-
tion,DFIELD.F . This function takes as input the field Identifier tag assigned during forms
construction, and the pointer to the form.

82

Chapter 5. Forms and Graphical Interaction

let ELEVATION.PTR = DFIELD.F("elevation”, FORM.PTR)

Data is retrieved using an attribute which depends on the field type. These attributes in-
cludeDDVAL.A,DTVAL.A , andDARY.A., for numeric, text, and array values respectively.
For instance:

let ELEVATION.VARIABLE = DDVAL.A(ELEVATION.PTR)

Table 5-2. Some Graphics Interaction Constructs

SHOW: Loads the form and sets a pointer to it.
SHOW FORM.PTR with "Filename"

ACCEPT.F: Initiates a graphics interaction.

let EXIT.STATUS = ACCEPT.HFORM.PTR, CONTROL.ROUTINE)
CONTROL.ROUTINE may be 0

DFIELD.F: Returns the pointer to a field given its name and the form pointer.
let ELEVFIELD.PTR = DFIELD.F("elevation", FORM.PTR)

DDVAL.A: Accesses a numeric value associated with a field.
let ELEV.VARIABLE = DDVAL.A(ELEVFIELD.PTR)

DTVAL.A: Accesses a text value associated with a field. DDVAL.A.
let PILOT.NAME = DTVAL.A(NAMEFIELD.PTR)

DARY.A: Accesses an array pointer associated with a field.DDVAL.A
letENGINE. THRUSTS(*) =DARY.A(THRUSTFIELD.PTR)

5.3.2 Interaction Modes

With regarcto execution control, the behaviorACCEPT.F can be defined using tEdit/
Properties.. option on the dialg box, menu bar, or palette from within SIMDRAW. The
ACCEPT.F function will behave according to one of thinteraction mode:

1. Asynchronous : If this interaction mode is useACCEPT.F will suspend the active
process when called. Whenever a status valul” is returned from the control
routine or a terminating button is pushed, this process is resumed. If there is no sim-
ulation running and hence no active processSynchronous interaction mode is
used.

2. Synchronous : Regardless of the simulaticACCEPT.F will not return until a status
value of '1" is returned from the control routine or a terminating button is pushed.

83

SIMGRAPHICS Il User’s Guide

3. Don'twait : ACCEPT.Fwill not wait for any action by the user but will return im-
mediately. Subsequent action on the form will invoke the control routine.

5.4 Field Attributes
All attributes, including value attributes, can be set within SIMDRAW.

5.4.1 Value Attributes

Each field is represented by a SIMSCRIPT structure. Each of these field structures has sev-
eral value attributes that are accessible from application code.

Having the reference name and the form pointer, a run-time support function will return a
pointer to the field structure:

define FIELD.ptr as pointer variable
let FIELD.PTR = DFIELD.F(FIELD.NAME, FORM.PTR)

Field attributes accessible to the application code are defined as:

define DDVAL.A as double variable

define DTVAL.A as text variable
define DARY.A as pointer variable

All numeric values are held DDVAL.A. This includes the values 0 and 1 associated with
binary selection of options.

Text data values are heldTVAL.A.

DARY.Ais commonly used as a pointer to a one dimensional array of text variables when
dealing with selections from lists.

These can be accessed by a program as in the following examples:

let | = DDVAL.A(FIELD.PTR)
let DTVAL.A(DFIELD.F(FIELD.NAME, FORM.PTR)) = TEXT.VARIABLE
let TEXT.ARRAY(*) = DARY.A(FIELD.PTR)

Field attributes are initialized to zero for numbers and pointers and to null string for text
variables. A program can get and set the values of these attributes at any time after loading
the form and before destroying it.

If DFIELD.F cannot find a field with a reference name matching the specified
FIELD.NAME, it returns a null pointer, i.e. zero. So, if there is a chance that the Identifier
will not be matched, program as follows:

let FIELD.PTR = DFIELD.F(FIELD NAME, FORM.PTR)
if FIELD.PTR ne O
let PART.NUMBER = DDVAL.A(FIELD.PTR)
else
" error processing
endif

84

Chapter 5. Forms and Graphical Interaction

5.4.2 Terminating Buttons

Typically, a form has more than one interactive field. These may be selected in any order,
and may be selected repeatedly during a single form interaction. At least one button, how-
ever, should be designated from within SIMDRAW as a termination button, often labelled
OK, ACCEPT, Or RETURN. This terminates the display management phase and returns to
the application, which can then interrogate the form structure to retrievathealues

from each field. As previously noted, a form may have more than one terminating field,
€.9.0K andCANCEL. Thus, selection of the terminating field may also convey some infor-
mation in addition to ending the dialog.

5.4.3 Verifying Buttons

From within SIMDRAW, you can mark a button as "Verifying". Typically, Ok button
is marked as a verifying button. Clicking on a verifying button causes all ranges on value
boxes to be checked.

5.5 Form Control Routines

By default, ACCEPT.F calls no control routine. This is specified by passing 0 as the second
argument. In this case, only the standard processing is called. The automatic processing
can accept or reject any user input (for instance if a number is out of bounds), and will take
care of terminating the dialog interaction, when a terminating field is clicked.

Additional processing can be specified by declaring a control routine and passing its name
as the second argumeniACCEPT.F. A control routine is declared as:

routine DIALOG.ROUTINE
given FIELD.NAME, FORM.PTR
yielding FIELD.STATUS

define FIELD.NAME as text variable
define FORM.PTR as pointer variable
define FIELD.STATUS as integer variable

This control routine is called after user input to any field on the form, after the automatic
processing is completed.

The control routine is passed the field identifier. Based on this it can select suitable valida-
tion or cross-checking to perform. The return valuFIELD.STATUS will communicate
the following toACCEPT.F:

-1 Reject the input (and retry)
0 Accept the input
1 Terminate the interaction.

Setting the return value FIELD.STATUS affects the continuing interaction.

Control routines, if present, are also called with the predefined reference names
INITIALIZE andBACKGROUNI The control routine is called with the field name
INITIALIZE only once, before the dialog box is displayed. It is called with the field

85

SIMGRAPHICS Il User’s Guide

nameBACKGROUT whenever the user clicks on the canvas of the graphics window. You
can retrieve the location of this mouse click through LOCATION.A attribute of the
display entity pointeDINPUT.V (if nonzero).

5.6 Details of Field Operations

The following operations can be applied to individual fields or to an entire form.

5.6.1 The DISPLAY Command

To redisplay a form:
display FORM.PTR
If some initially displayed fields were erased, they will be redisplayed.

To redisplay a field in its current position:
display FIELD.PTR

Once the form has been displayed, individual fields can displayed and redisplayed. The
values displayed in the fields are taken from the appropriate field attributes, depending on
the field type.

Displaying a radio button has a side effect wWDDVAL.A =1 . If another radio button in
the same group hiDDVAL.A =1 , itis setto zero and that button is redisplayed.

5.6.2 The ACCEPT.F Function

let FIELD.ID = ACCEPT.F(FORM.PTR, 0)
let FIELD.ID = ACCEPT.F(FORM.PTR, 'DIALOG.ROUTINE)

We have already described the usACCEPT.F for initiating a form-driven dialog.
let FIELD.ID = ACCEPT.F(FIELD.PTR, 0)

ACCEPT.F called on a form returns the reference name of the field that caused the termi-
nation of the dialog ACCEPT.F should not be called on a single field.

5.6.3 The ERASE Command
erase FORM.PTR

This causes the form to disappear from the scree DISPLAY statement, or another
ACCEPT.F, specifyingFORM.PTF will bring it back. Note that any values in the form are
unchanged.

erase FIELD.PTR

This erases a single field from the screen.

86

Chapter 5. Forms and Graphical Interaction

5.6.4 The DESTROY Command

The destroy command not only erases a form from the screen, but clears all memory allo-
cated to it, reversing the effect of tISHO\command. The syntax is:

destroy FORM.PTR

5.6.5 The SET.ACTIVATION.R Routine

This routine can be called to either deactivate (gray out) or activate (make usable) a field
on the form. The syntax is:

call SET.ACTIVATION.R given FIELD.PTR, ACTIVATION.STATUS

The FIELD.PTR parameter is the field pointer obtained fr<(DFIELD.F .
ACTIVATION.STATUS is a flag where “0” means to gray out the field and “1” means to
make it active. You can deactivate an entire form 'SET.ACTIVATION.R if you pass

the form pointer as its first parameter.

5.7 Dialog Boxes and Their Fields

5.7.1 Dialog Box

This is a container for all the other control types. You can set the initial screen position of
the dialog box from within SIMDRAW by selecting the dialog box’s background and using
the Edit/Properties... option. The position can also be set programmatically using the
LOCATION.A attribute of the form pointer. (The lower left-hand corner of the screen maps
to coordinate (0,0) while the upper right-hand corner maps to (32767,32767). Use
SIMDRAW to define which of the four corners of the dialog box is positioned. Note that
the value ofLOCATION.A is updated automatically whenever the user repositions the
dialog.

A dialog box can be eithd¢abbed ornon-tabbed. A tabbed dialog box contains a section

of overlapping pages of fields. Generally, fields in the same page should have a common
functionality. A page is made visible when the user clicks ctab at the top of the page.

A tab is composed of a text label and optionally a small bitmap icon. Tabbed dialog boxes
are created within SIMDRAW and require no additional programming over traditional di-
alog boxes. The control routine is NOT called when the user selects a tab page. Manage-
ment of these pages is done automatically.

Button

A Button is a box with an explanatory text string in it. Itis the simplest input field. When
a button is clicked on, the control routine gets only the field name of the field. It gets no
other data. Remember that buttons can be "terminating” or "verifying".

87

SIMGRAPHICS Il User’s Guide

Check Box

A Check Box toggles between the values zero and one. When the form is loaded, check
boxes have the default value set during forms editing. The state of a check box is deter-
mined by setting or examining the attribDDVAL.A of that check box.

When a check box is seled,ACCEPT.F toggles the value (DDVAL.A, redisplays the
check box to reflect the new value, and calls the control routine, if provided. The field is
not redisplayed after returning from the user's control routine.

Radio Buttons

Radio Buttons are differentiated from check boxes in that they are contained in a radio box.
Only one radio button in the box can be turned on. The state of a radio button is determined
by the attributeDDVAL.A. It assumes values zero and one. When the form is loaded, the
radio buttons have the values set during forms editing. The radio box itself has no value
attributes.

When a radio button is selecttACCEPT.F sets the value (DDVAL.A to one, redisplays
the field to reflect the new value, and calls the control routine, if one is provided.

Text Box (Editable)

The value associated with a Text Box is a text strirDTVAL.A. The initial value can be
specified when creating the field by using SIMDRAW. If the field is markiSelectable
using Return in SIMDRAW, the control routine will be called if the user preReturn af-
ter entering the data.

Text Label (Non-editable)

A label is used to place explanatory text, values or titles in a dialog box. The text of the
label can be reset programmatically but cannot be modified by the user. The control routine
is not called when the user clicks on a label. From within SIMDR/AW can define
whether the text is specified by tDTVAL.A or theDDVAL.A attribute of its field pointer.
SIMDRAW can define one of the following behaviors for a text label:

a. Use theDTVAL.A attribute to define the text. There is no limit to string length.

b. Use theDTVAL.A attribute to define the text. Allocate a fixed number of places for
the string.

c. Use theDDVAL.A attribute to define a real value displayed by the label. The total
number of places, and number of places after the decimal point can be defined in
SIMDRAW.

For example, if the label’s reference nameMY.LABEL ”, you can prgrammaticaly set
the label as follows:

Let DTVAL.A(DFIELD.F(*"MY.LABEL", FORM.PTR)) = “Hello World”

or
Let DDVAL.A(DFIELD.F(“MY.LABEL”, FORM.PTR)) =12.5

88

Chapter 5. Forms and Graphical Interaction

Multi-line Text Box

A multi-line text box allows the user to type in as many lines of text as he wants to. Hor-
izontal and vertical scroll bars are shown if the visible area of the text edit window is not
large enough to enclose the text. The initial text can be set from within SIMDRAW or by
program code. The current contents of the text box are held DARY.A attribute which

points to a SIMSCRIPT I1.5 array of text. Note that the control routine is NOT called when
theReturn key is pressed. TIDARY.A attribute is automatically updated to reflect the cur-
rent text box contents before the control routine is called in response to an action on any
othel field in the form.

Value Box

The Value Box is used to read a number. When it is selected the box prompts for input.
The value of the number is DDVAL.A and is initially zero. In SIMDRAW this field can

be associated with a range of acceptable values by specifying the minimum and maximum
value. The number read from the field is not accepted if it falls outside of this range. The
maximum and minimum values can only be set or examined during dialog box editing. The
value box's contents is checked when a verifying button is clicked on.

Progress Bar

A Progress Bar is useful for indicating the “time to completion” of some task being per-
formed by your program. Itis composed of a horizontal bar whose size indicates a magni-
tude relative to some lower and upper bound. The minimum and maximum values are
defined in SIMDRAW while the length of the bar is defined programmatically, using the
DDVAL.A attribute. The user cannot interactively change the position of the bar with the
mouse.

List Box

A List Box is associated with an array of text variables. Each array element is displayed
on a separate line of the list box. To select an item from the list, the mouse is clicked over
that line. New items can not be typed into a list box. Only existing items can be selected.
To add new items to the list box, a program must add them to the list box text array. The
array pointeDARY.A points to the array of text variables that represent the list. This pointer
is initially zero. The index of the selected element DDVAL.A. The selected array ele-
ment is copied intDTVAL.A.

If the array has more elements than the list box can display, a vertical scroll bar will be
shown on the right-hand side. By clicking over the up- or down-arrow in the scroll bar, the
additional list items can be brought into view. This scrolling is done automatically. The
control routine is called only when a selection is made.

When an item from the list box is selectACCEPT.F updatesDDVAL.A andDTVAL.A.
The selected item is highlighted and highlighting is removed from the item that was previ-
ously selected.

List boxes can be defined in SIMDRAW to allow multiple selections. The callback routine
will be called each time an item is selected. DDVAL.A attribute of the list box field will

89

SIMGRAPHICS Il User’s Guide

contain the index of the item last selected. To synchronously poll a list box for its selected
contents theLISTBOX.SELECTED.R routine is usedThis routine can also be used to de-
termine if the user hedouble-clickec on an item in the listbox. Given a pointer to the list
box field and item number, this routine yie2: if the item has been double-clicked 1n,

if this item is selected, arO otherwise.

"-- Synchronous polling of multiple selection list
"-- boxes. First get input from the form
let FIELD.ID = ACCEPT.F(FORM.PTR, 0)
let LIST.ITEMS(*) = DARY.A(DFIELD.F("LISTBOX", FORM.PTR))

"-- use a loop to show which items were selected
for | = 1 to DIM.F(LIST.ITEMS(*))
do
call LISTBOX.SELECTED.R
given DFIELD.F("LISTBOX", FORM.PTR), |
yielding ITEM.SELECTED.FLAG
select case ITEM.SELECTED.FLAG

case 0
write LIST.ITEMS(I) as “ITEM “, T *, “not selected.”, /

case 1
write LIST.ITEMS(I) as “ITEM “, T *, “was selected!”, /

case 2
write LIST.ITEMS(l) as “ITEM “, T* *“ was double-clicked!”, /

endselect
loop

Note: To deselect all items in a multiple selection list box, sSeDDVAL.A attribute tcO
and redisplay the field.

"-- deselecting all selected items in a multiple selection list box
let DDVAL.A(DFIELD.F("LISTBOX", FORM.PTR)) =0
display DFIELD.F("LISTBOX", FORM.PTR)

Combo Box

A combo box is made up of a text box and an initially hidden list box which is displayed
when the dropdown button is pushéDARY.A contains a selectable list of choices for the
text displayed in the text box. When the user picks one of these text strings, it is
automatically displayed in the box. If a combo box is defined to be “Editable” from within
SIMDRAW, the user is allowed to type his own choice into the text box (instead of picking
from the list). The control routine will be invoked whenever the user selects an item in the
list. If the combo box is defined Selectable using Return in SIMDRAW, then the control
routine is invoked when the user pressesReturn key.

Tree View List

Lists of items can be viewed hierarchically with items containing other items. In addition,
items in the list can be denoted with a small bitmap icon. Items can be added to the list
either from within SIMDRAW or from your program.

The items contained in the list are defined througIDARY.A attribute. The name speci-
fication uses the/ ™ character to separate the container name from the item name and
works much the same way as a path name for the file system, i.e.

90

Chapter 5. Forms and Graphical Interaction

<top_container_name>/.../bottom_container_name>/<item_name>
For example, if you wanted to show following items:

"San Fransisco" contained in California" which is in 'Usa States"

a
b. "San Diego" contained in California" which is in 'Usa States"
Cc. "LasVegas" contained in Nevada" which is in 'Usa States"

d

. "Berlin" contained in Germany" which is in 'Europe ".

The DARY A attributes should contain the following text strings:

"Usa States/California/San Fransisco"
"Usa States/California/San Diego"
"Usa States/Nevada/Las Vegas"
"Europe/Germany/Berlin"

To define the bitmap icon to place next to the item name, usq " character after the

name specification to separate the path name from bitmap file (or resource) name (without
extension). For example, to use bitmrZOOM_ for item 'Zoom Tool " in category

"Tools ", the array item would be:

"Tools/Zoom Tool|ZOOM_L"

To define an icon for a category, list the category by itself on a separate line wi " the "
character and the bitmap names, i.e.

"Tools|SELTOOL_L"

If you need to use th¢ " or "/ " characters in your item name, you can literalize them using
a preceeding backslas\ " character.

The DDVAL.A attribute of a tree list field pointer will contain the index of the last selected
item. In the above example, if the user clicked on Las Vegas " item, the field's
DDVAL.A attribute would be3". You can set the selected item in the tree by setting
DDVAL.A and redisplaying the field. From above, set the selected iteSan Diego ™

let DDVAL.A(DFIELD.F("MY_TREE", DIALOG.PTR)) = 2
display DFIELD.F("MY_TREE", DIALOG.PTR)

Table

A table contains a matrix of selectable rectangular text cells. A 1-dimensional text array
containing labels displayed in cells is accessible thrDARY.A. This array can be set up
programmatically, but it must contain the same number of text strings as total cells in the
table. DARY.A is organized in row-major ordeDDVAL.A contains the index of the item

last selected, whilDTVAL.A has the text for this item.

Setting the text for some row and column programmatically would involve statements of
the form :

91

SIMGRAPHICS Il User’s Guide

let ITEMS = DARY.A(TABLE.PTR)
let ITEMS((ROW-1) * NUMBER.COLUMNS + COLUMN) = TEXT.VALUE
display TABLE.PTR

Getting which column and row were selected can be done from within the control routine
as follows:

let SELECTED.ROW = DIV.F(DDVAL.A(TABLE.PTR)-1, NUM.COLUMNS) + 1
let SELECTED.COLUMN = MOD.F(DDVAL.A(TABLE.PTR)-1, NUM.COLUMNS) + 1

where row number one (1) is the top row in the table and column number one is the leftmost
column.

In SIMDRAW, you can add row and column headers to your table. Row headers are shown
in a column on the left-hand side, while column headers are laid out as the top row of the
table. If headings are added to the table, the row headers bcolumr number one, and

the column headers becoirow number one.

5.8 Predefined Dialog Boxes

5.8.1 Standard Message Dialog

If you wish to display a simple, one line message to the user and force him to respond to
this message before execution of the program can resume, you canMESSAGEBOX.R
routine. This routine will instruct the toolkit to display a dialog box containing the one line
message, and one button labeoK or Continue . MESSAGEBOX. will not return until the

user presses this button.

let TITLE = “Completion Status...”
let MESSAGE = “Your task has been completed!”
call MESSAGEBOX.R given MESSAGE, TITLE

5.8.2 Custom Message Dialogs (Alert, Stop, Information and Question)

You can define more customized dialogs to deliver simple information to the user and re-
ceive a response. Your program can disjAlert, Question, Information ~andsStop dialog

boxes. These forms are built using SIMDRAW (usingMessage Dialog button on the
left-handmode palette shown with SIMDRAW's main window.)

A custom message dialog can be one of the following five styles:

Plain

Stop Sign

Question mark

Alert (Exclamation point)
e. Information.

Qoo

It will contain one of the following sets of response buttons:

92

Chapter 5. Forms and Graphical Interaction

OK button only

OK andcancel buttons

Yes andNo buttons

Yes, No andcancel buttons
Retry andCancel buttons

Abort, Retry and Ignore buttons.

~® o0 o

Custom message dialogs are displayed usinSHO\ statement and then tACCEPT.F
routine (like a conventional dialog). Control routines are not used with message dialogs.
The text of the message can be set from SIMDRAW or by your programrDARY A at-
tribute of the message dialog form points to a text array containing the lines of message text.

The field name returned IACCEPT.F describes which button was pressed. Valid respons-
es returned bACCEPT.Fare 'OK", "CANCEL", "YES", "NO", "ABORT", "RETRY" and
"IGNORE." (Note: there is no display entity corresponding to these field names. Do not
useDFIELD.F on a message dialog box). The following example shows a typical interac-
tion with a message dialog:

show MESSAGE.PTR with "retry_cancel.frm"
let TEXT.LINES(1) = "D:\ is not accessible"

let TEXT.LINES(2) = "The device is not ready."
let DARY.A(MESSAGE.PTR) = TEXT.LINES(*)

select case ACCEPT.F(MESSAGE.PTR, 0)
case "RETRY" ...
case "CANCEL" ...
endselect

5.8.3 File Selection Dialog

Toolkits provide standard dialogs for browsing through the directory structure of the file
system. These dialogs can now be accessed from within a SIMSCRIPT program using the
FILEBOX.R routine as:

let FILTER = “*.dat”
let TITLE = “Select a data file...”
call FILEBOX.R given FILTER, TITLE yielding PATH.NAME, FILE.NAME

The FILTER variable can either be a wild card, or a fully or partially qualified file name.
The selected file and its path are returned inFILE.NAME andPATH.NAMI variables.
TheTITLE parameter is the text shown in the title bar of the dialog.

5.8.4 System Font Browser

A predefined dialog box can be brought up programmatically allowing the user to select
system font attributes from those available on the server. This is done by calling
FONTBOX.F as follows:

let TITLE = “Select a font”
call FONTBOX.R given TITLE yielding

93

SIMGRAPHICS Il User’s Guide

FAMILY.NAME, POINT.SIZE, ITALIC.DEGREE, BOLDFACE.DEGREE

The yielded arguments are identical to those described aboTEXTSYSFONT.R.
FONTBOX.F will not return until a font has been selectedcance has been pressed. In
this case the result FAMILY.NAME will be™ .

5.8.5 Printing the Contents of a Graphics Window (or Individual Segment)

Microsoft Windows users can programmatically have the contents of either an entire win-
dow or an individual segment sent to a printer through the system print dialog box with the
following routines:

call PRINTWINDOW.R given WINDOW.PTR, USE.DIALOG
yielding SUCCESS
call PRINT.SEG.R given SEGMENT.ID, USE.DIALOG yielding SUCCESS

where WINDOW.PT is the display entity returned froOPENWINDOW. If the
USE.DIALOG integer parameter is non-zero, the system print dialog is displayed allowing
the user to set print optionsSEGMENT.IC is either obtained from thSEGID.A icon
attribute or fromSEGID.V. The intege SUCCES is non-zero if printing was completed
successfully. On UNIX systems, the graphics are written to an EPS PostScript file.

5.9 Menu Bars and Palettes

5.9.1 Menu Bar

A menu bar is composed of several menus arranged in a row on a bar across the screen.
Clicking on one causes its menu to be displayed. Clicking on an item inside a menu causes
it to be selected. In addition to being returneACCEPT.F, the index number of the item
selected is accessible through DDVAL.A of the particular menu, as in:

let ITEM.NUM= DDVAL.A(DFIELD.F(MENU.TXT, FORM.PTR))

where the menu name (here a variable) must be all capitals. The indexing begins at 1.

From SIMDRAW, the constructed menu bar carcascadeabl (i.e. menus can contain

other menus). This hierarchy is preserved in your program with respect to fields accessible
byDFIELD.F . To access a menu contained within another menu, pass the reference name
of the desired sub-menu along with a pointer to the parent nDFIELD.F will then re-

turn a pointer to the sub-menu. SIDFIELD.F is recursive, it can be used regardless of
how many layers of menus are between the form and the desired field.

You can have check marks displayed programatically next to any menu item. To display
the check mark, set ttDDVAL.A attribute of the menu item field pointer t1”, and then
re-display the field. For example:

let DDVAL.A(DFIELD.F("MENUITEM_TO_CHECK", MENUBAR.PTR)) = 1

let DDVAL.A(DFIELD.F("MENUITEM_TO_UNCHECK", MENUBAR.PTR)) = 0

display DFIELD.F("MENUITEM_TO_CHECK", MENUBAR.PTR)
display DFIELD.F("MENUITEM_TO_UNCHECK", MENUBAR.PTR)

94

Chapter 5. Forms and Graphical Interaction

Remember that a menu item can be grayed out or can be deactivated with the
SET.ACTIVATION.R routine.

call SET.ACTIVATION.R(DFIELD.F(*"MENUITEM_TO_GRAY”,MENUBAR.PTR), 0)

5.9.2 Palettes

SIMSCRIPT applications can have palettes attached to the sides of the windows. A palette
contains rows and columns of square palette buttons. On the face of each palette button is
a bitmap icon. This bitmap comes fror.omp file on MS Windows machines anc.xwd

file on XWindows machines which must be in the same directory asgraphics.sg2

library file. Palettes are created only by SIMDRAW.

Palettes are used inside your program the same way that menu bars are; by calling
ACCEPT.F given pointers to both the palettes display entity and the control routine. The
ACCEPT.F call must be made from within a process and, a control routine must be included
to allow the palette to behave asyncronously. Whenever the user clicks on a palette button,
the control routine is called given the buttofield nam..

From within SIMDRAW you can define your palette buttons to be one of three varieties:
momentary, toggle or dragable. “Momentary” buttons pop back up automatically after
being pressed, while “toggle” buttons stay down. Like dialog boxes and menu bars, the
buttons in a palette are representefieldsof the palette form. ThDDVAL.A attribute of

the “toggle” button field (obtained usiiDFIELD.F) indicates whether the button is cur-
rently “down” or “up”.

“Dragable” buttons allow the user to click down on a palette button, and then drag its
outline to the canvas of the window. When the mouse button is released, the palette's
control routine is called. From within the control routine, the drop point can be retrieved
through theLOCATION.A attributes o DINPUT.V. TheDIVAL.A attribute ofDINPUT.V

will contain the viewing transform number corresponding to that drop location.

Displaying the palette can be done as follows:
process PALETTE
éhow FORM.PTR with "mypalette.frm"

let FIELD.ID = ACCEPT.F(FORM.PTR, ‘PALETTE.CTRL)
" (will suspend this process)

This is a typical palette control routine:

routine PALETTE.CTL given FIELD.NAME, FORM.PTR yielding STATUS

select case FIELD.NAME
case "INITIALIZE" " called once just after ACCEPT.F call

case "BACKGROUND" " called when clicked onwindow canvas background

case “MOMENTARY BUTTON"
write as “A palette button has been pushed...”, /

95

SIMGRAPHICS Il User’s Guide

case “TOGGLE BUTTON"
write DDVAL.A(DFIELD.F(FIELD.NAME, FORM.PTR)) as
“State of toggle buttonis “, 13,/

case "MY_DRAGGABLE_BUTTON"
let VXFORM.V = DIVAL.A(DINPUT.V)
display NEW.ICON at with "temp.icn" at
(LOCACION.X(DINPUT.V), LOCATION.Y(DINPUT.V))
endselect
end

5.10 Examples

The first example is a form that might be used for a deposit in the simulation of an auto-
mated teller machine. The form has a text box where you enter a name, a value box where
you can enter the amount of the deposit, radio buttons that let you choose either the check-
ing or savings account, and a check box that lets you optionally print a record of the trans-
action.

This example relies on standard field processing to validate that the deposit amount is not
negative and to terminate whok or Cancel is selected. It does not need to use a control
routine.

Main
Define FORM as a pointer variable "Form Pointer
Define CHECKBOX as a pointer variable "Field Pointer

Show FORM with "atm.frm" " Build the form

If ACCEPT.F(FORM, 0) eq "OK" " OK Button was clicked
Let CHECKBOX = DFIELD.F("STATEMENT", FORM)
If DDVAL.A(CHECKBOX) ne 0
Write DDVAL.A(DFIELD.F("AMOUNT", FORM)) as d (6, 2)
If DDVAL.A(DFIELD.F("SAVINGS", FORM)) ne 0
Write as " Deposited to savings account "
Else
Write as " Deposited to checking account "
Endif
Write DTVAL.A(DFIELD.F("ACCOUNT NAME", FORM)) as t *, /
Endif
Endif

End

96

Chapter 5. Forms and Graphical Interaction

Deposit transaction
panclloosdor |

C Wsavings

_Jerint Record M e WChecking

Figure 5-1. Form for the ATM Example

Following convention, only the two button fielcok andCANCEL, can terminate the in-
teraction. These button attributes are set in the editor. Action is taken only if the program
detects thaok was clicked. The fields may be clicked and edited in any order until the
user is satisfied with the settings. On completion, the checkbox field is queried to deter-
mine whether a transaction record is to be printed. The prototype form used radio buttons
to select between two alternatives: savings or checking account. SincSAVINGES is
gueried, another check box could be substituted without changing the program code.

The next example, Listl, creates a form that lets you pick a name from a list. The name
will be highlighted when picked. Scroll bars let you scroll through the names to find the
one you want. Agairok or Cancel will terminate the selection.

Enterprize
Jim
Spock +

Bones

Figure 5-2. Form for Listl Example

97

SIMGRAPHICS Il User’s Guide

Main
Define FORM as a pointer variable "Form Pointer
Define FIELD as a pointer variable "Field Pointer
Define FIELD.ID as a text variable "Field ID
Define NUMBER.OF.NAMES, | as integer VARIABLES
Define NAMES as a 1-dimensional text array

Open 1 for input, name is "names.dat"
Read NUMBER.OF.NAMES using 1
Reserve NAMES(*) as NUMBER.OF.NAMES " Create an array of names
For |1 = 1 to NUMBER.OF.NAMES
Read NAMES(I) using 1

Show FORM with "list1.frm" " Build the form

Let FIELD = DFIELD.F("MYLIST",FORM) " Identify List Box field
Let DARY.A(FIELD) = NAMES(*) " Initialize with names

Let FIELD.ID = ACCEPT.F(FORM, 0) " Request user input

If FIELD.ID ne "CANCEL" " OK Button was clicked
Let | = DDVAL.A(FIELD)
Iflne0

Write NAMES(]) as "The selected name is ", t *, /

Endif

Else " CANCEL was clicked
Write as "No selection was made", /

Endif

End

Note the check for a zero value@DVAL.A. The user could have clicked or without
making any selection in the list box! Be aware that the list box field is given a copy of the
array pointerNAMES(*). If a program releases such an array DXARY.A attribute of the

list box should be reset to zero, or reinitialized with a new array. Correspondingly, if the
list box is destroyed by any means, any array pointed @ABRY.Awill be released. Any
subsequent reference in the program would be invalid.

The next example, List2, is similar to List1, but uses a control routine. By checking that a
valid selection has been made wimnis clicked, it removes the need to check for a non-
zero selection from thIAIN program. This example also shows how the control routine
can provide pre-processing of the form data by acting oiNti@ALIZE call. No auto-
maticTERMINATEcall is required. Any appropriate action can be provided when process-
ing the terminating fields.

Main
Define FORM as a pointer variable "Form Pointer
Define FIELD as a pointer variable "Field Pointer
Define FIELD.ID as a text variable "Field ID
Define NUMBER.OF.NAMES, | as integer VARIABLES
Define NAMES as a 1-dimensional text array

Open 1 for input, name is "names.dat", noerror

Use 1 for input

If ROPENERR.V eq 0
Read NUMBER.OF.NAMES

Reserve NAMES(*) as NUMBER.OF.NAMES " Create an array of names
For | = 1 to NUMBER.OF.NAMES

98

Chapter 5. Forms and Graphical Interaction

Read NAMES(I)
Endif
Close 1

Show FORM with "listl.frm" " Build the form

Let FIELD = DFIELD.F("MYLIST",FORM) " Identify List Box field
Let DARY.A(FIELD) = NAMES(*) " Initialize with names

Let FIELD.ID = ACCEPT.F(FORM, 'MYLIST.CTRL") " Request input

If FIELD.ID ne "CANCEL" " OK Button was clicked
Let | = DDVAL.A(FIELD)
Write NAMES(]) as "The selected nameis ", t *, /
Endif
End
Routine MYLIST.CTRL Given FIELD.ID and FORM Yielding STATUS

Define FIELD.ID as a text variable

Define FORM as a pointer variable

Define STATUS as an integer variable "Accept/Reject Data
Define .BEEP to mean 7 "ASCII <bel> character value

Select case FIELD.ID

Case "INITIALIZE" " Default to select 1st entry
If DARY.A(DFIELD.F("MYLIST",FORM)) ne O

Let DDVAL.A(DFIELD.F("MYLIST",FORM)) = 1
Endif

Case "OK"

If DDVAL.A(DFIELD.F("MYLIST",FORM)) eq 0
"No item is selected; beep and do not terminate
Write .BEEP as a 1, + using 6
Let STATUS =-1

Endif

Default
Endselect

End "MYLIST.CTRL

99

SIMGRAPHICS Il User’s Guide

100

6. Creating Animated Graphics

Both static and dynamic (moving) icons can be created using SIMGRAPHICS Il. These
icons are screen images of SIMSCRIPT II.5 program entities, and changes in their position
or appearance correspond to changes in the system being simulated. For example, parts can
accumulate in a manufacturing queue, and partially-compfetatlicts can move from

station to station in a production line model; ships can arrive at a dock or wait at sea for a
tugboat to escort them; and so on.

Further, static or dynamic icons can change color or shape to indicate a change in status: an
idle machine could be shown in blue, a busy machine in green, and a broken machine in
red. Similarly, icons can change shape to indicate status: the icon for a busy conveyor could
include its cargo, for example. These effects can be combined to produce meaningful back-
grounds and displays that bring the results of simulation to life.

There are two ways to create icons, by drawing them on the screen with a mouse using the
Icon environment within SIMDRAW, or by specifying the coordinates as a set of points
which are then connected, filled and colored by library routines suelhlaSREA.R and
LINECOLOR.R (AppendixA). SIMDRAW is the preferred means of icon manipulation

and is described below. The connect-the-dots method is described in Ghapter

The basic steps in adding animation to a SIMSCRIPT II.5 simulation are:

1. Decide what to animate and define those entiti€&SRA&PHICin the pro-
gram preamble;

2. Define visual icons to represent the prograntieston the screen, using
SIMDRAW;

3. Translate the model's world into a screen world by defining a coordinate
system; (Define this same coordinate system in SIMDRAW)

4. AddDISPLAY and animation control statements to your code.

Each step is described, in turn, below.

101

SIMGRAPHICS Il User’s Guide

Animation

Create simple icons for animation
during simulations.

Figure 6-1. Animated Icons

6.1 Graphic Entity Declaration

The principal elementary objects in any SIMSCRIPT simulation program are processes and
temporary entities. SIMGRAPHICS Il provides an easy way to associate graphical images
with the entities in a model.

SIMGRAPHICS Il supports botGRAPHIC entities ancDYNAMIC GRAPHI(entities.
DYNAMICGRAPHIC entities can move across the screcGRAPHIC entities are motion-
less. Any temporary entity, including processes, may be declareGRAPHIC by add-
ing the following statement to the program preamble:

[DYNAMIC] GRAPHIC ENTITIES INCLUDE namel [, name2] ...

This statement may be placed anywhere after the entity definitionin the preamble. Declaring
an entity aGRAPHICor DYNAMICGRAPHICautomatically provides additional attributes
that are used by SIMGRAPHICS Il to maintain the graphical image.

6.2 Coordinate Systems

SIMGRAPHICS Il has no inherent measurement units. Many applications have their own
geometry and are easier to design and understand if all measurements are given in the rel-
evant units (miles or meters, for example). Other applications may use the Y-axis to rep-
resent some measured value, such as queue length, and the X-axis to represent some other
unit, such as time.

102

Chapter 6. Creating Animated Graphics

Spaces in SIMGRAPHICS Il are thus defined in a model-oriented manner, in real-world
coordimate units. These are transformed into coordinates suitable for graphics display
through the viewing transformations (figure 6-2) described below.

CALL SETVIEW.R(1000, 8000, 14000, 21000)
CALL SETWORLD.R(0, 10, 0, 10)

22755
CALL MZROTATE.R(PI.C * 0.75)

CALL MXLATE.R(5, 5)

0
_@ Z o0 10
| World Space

2

0

0 NDC Space 32767
— ——

Modelling Viewing
Transformation Transformation

Figure 6-2. Coordinate Transformations

6.2.1 Normalized Device Coordinates

Because the resolution of display screens vary, the coordinate points of shapes to be drawn
are specified in Normalized Device Coordinates (NDC units), which represent a mapping
of an arbitrary space onto available pixels. NDC units range from 0 to 32767 along both
the X- and Y-axes. Scaling in both directions is assumed to be the same, so that squares and
circles can be easily specified. Inthe NDC system of notation, the origin point (0,0) is lo-
cated in the lower-left corner of the display surface. The lower-right corner has the coor-
dinates (32767,0), and the upper-left corner is (0,32767).

The default space, or viewport, provided by SIMGRAPHICS Il is a one-to-one mapping of
real-world coordinates into NDC units. Objects that overlap the edge of the screen are par-
tially displayed (clipped). The units thus conform to the aspect ratios used by many display
devices.

6.2.2 Setting a Viewing Transformation

The NDC system provides a default space in which a display may be designed. However,
the world space in which the simulated system operates differs from model to model. In
one case, the action may take place on a factory floor; in others, an entire continent or the
bus lines on a printed circuit board may be involved. All these displays are presented on a
standard screen, so some variable scaling is obviously desired.

It is convenient for the program to specify a region in its world space which is to be por-
trayed on the display aa window onto world space. The graphics system can then calcu-
late the scaling required and apply it to each graphic primitivetdar to represent the
region of world space on the display. By altering the parameters of this transformation, the

103

SIMGRAPHICS Il User’s Guide

display can appear to zoom in or out, or to pan up, down, or sideways, displaying different
regions of world-space.

Users may create Cartesian Coordinate systems scaled to their own applications by defin-
ing viewing transformations. SIMGRAPHICS Il permits up to 15 user-defined mappings,
indicated by setting the variabl&XFORM.V to a value between 1 and 15. (The default
transformationyXFORM.V =0 , represents the entire NDC space described above and can-
not be changed.)

Thus, for example, a representation of some physical layout may coexist on the display with
a menu of choices. Clearly the transformation appropriate for objects in the layout is dif-
ferent from that applied to the wording on the menu. Further, the shape of an icon can be
specified in NDC units while its position is given in terms of a fansation. This makes

it possible to zoom in or out on the display without the icon changing size.

EachVXFORM.Vtransformation is defined or redefined with calls on the system routines
SETWORLD.RaNdSETVIEW.R (described below). The program must\$8EORM.Vbe-

fore cdling these routines. Multiple transformations may operate in different units, and
they may overlap. For instance, a factory floor, measured in meters, can map into a view-
port on part of the display screen, while a menu is displayed on another part.

A particularly convenient transform is one which is 80 wide by 24 high with its origin at
the top left. This transformation can be used to map text to the screen in a way which is
analogous to standard text screens. Thus, the following statement prepares to write at col-
umn 65 of row 18:

LET VXFORM.V = 1
CALL SETWORLD (0, 79, -23, 0)
CALL MXLATE.R (65, 18)

6.2.3 Defining The World: SETWORLD.R

Routine SETWORLD.Restablishes the coordinates of a space, given in real-world units.
These coordinates are converted into device coordinates (NDC units) through parameters
given to the routinSETVIEW.R. SETWORLD.Rlefines a rectangle in real world space that

is to be mapped into the NDC space. Areas and points outside the area are clipped. This
routine is called with the statement:

CALL SETWORLD.R (w.xlo, w.xhi, w.ylo, w.yhi)

wherew.xlo andw.xhi are real numbers, in real world coordinates, defining the limits
of the x-axis, anev.ylo andw.yhi are real numbers, in real world coordinates, defining
the limits of the y-axisyv.xlo <w.xhi andw.ylo <w.yhi

The argument values establish the area to be mapped onto the display surface. For exam-
ple, in the Gold Mine problem (Chapt®r the display is centered around the top of a mine
shaft and extends 50 feet to the left of the shaft and 200 feet to the right, 220 feet under-
ground and 20 feet above ground. Thus, the statements:

LET VXFORM.V =1
CALL SETWORLD.R(-50.0,200.0,-200.0,20.0)

would appear in the main routine.

104

Chapter 6. Creating Animated Graphics

6.2.4 Defining a Viewport: Routine SETVIEW.R

RoutineSETVIEW.R defines a viewport rectangle on the display surface, using NDC units.
The area defined tSETWORLD. is uniformly mapped into this area. Calls take the form:

CALL SETVIEW.R (v.xlo, v.xhi, v.ylo, v.yhi)

wherev.xlo andv.xhi are integers in Normalized Device Coordinate L0 <v.xlo

< v.xhi (32767 ; andv.ylo andv.yhi are integers in Normalized Device Coordi-
nate units, <v.ylo <wvyhi <32767. This routine defaults to full window display. It
needs be called directly only if a smaller display is desired.

SETVIEW.R andSETWORLD. operate with rectangular areas. In many applications, the

X- and Y-axes are scaled in the same units. To avoid distorting square objects, make sure
that the parameters givenSETWORLD.| andSETVIEW.R map squares in real world co-
ordinates into squares in Normalized Device Coordinates. The squareness requirement can
be mathematically stated as:

abs.f((w.xhi - w.xlo)/(v.xhi - v.xlo))
= abs.f((w.yhi - w.ylo)/(v.yhi - v.yl0))
This relationship uses the fact that NDC units in SIMGRAPHICS Il preserve the aspect ra-
tio. An easier way is just to use a square worldview with a square viewport on part of the
screen. This also frees part of the screen for other uses.

Although the two calls intera(SETWORLD. andSETVIEW.R may be called in any order.
Subsequent calls on either or both routines can be used to partially or totally redefine a
viewing transform. This property can be used very effectively to perform a zoom opera-
tion.

Note that wheneveSETWORLD. andSETVIEW.R are called, all objects drawn under the
current viewing transformation are automatically redisplayed. If you wish to change both
the world coordinate system and the viewport, then bracket the cSETWORLD. and
SETVIEW.R by calls tctGDEFERRAL.I as follows:

call GDEFERRAL.R(1)

call SETWORLD.R(w.xlo, w.xhi, w.ylo, w.yhi)
call SETVIEW.R(v.xlo, v.xhi, v.ylo, v.yhi)

call GDEFERRAL.R(0)

6.2.5 Modelling Transformations

In addition to the viewing transformation described above, the ambitious programmer may
use a modelling transformation to specify or change an object's location or to rotate an ob-
ject around its origin (figure 6-3). The SIMGRAPHICS Il system uses modeling transfor-
mations to produce animated effects. Modeling transformations also make it easy to
display copies of static objects in various positions in world space by specifying a master
pattern for the image with its “virtual position” at the origin. The modeling transformation
then produces a copy of the object in the desired position and orientation.

Every graphic entity is automatically provided with attributes to control its modeling
transformation. These attributes are:

105

SIMGRAPHICS Il User’s Guide

ORIENTATION.A (entity) Orientation (in radians), counterclockwise from
3 o'clock.
LOCATION.A (entity) Location of the object with respect to its origin.

Values may be assigned directlyORIENTATION.A. LOCATION.A must be set using the
value produced by the system functLOCATION.F (xpos, ypos) as follows:

LET LOCATION.A (entity)=LOCATION.F(xpos, ypos)

wherexpos andypos are real world coordinates. Changing the location causes the image
to be redrawn automatically, so change orientation before changing location.

You can specify the origin of your icon with respect to the points which define it from with-
in SIMDRAW. When in thdmage Editor use th Edit/Image... option. Click on thiSelect...
button inside thimage Attributes dialog, and then point to where you want the origin to be.
The object will be rotated about this point if ORIENTATION.A attribute is assigned in
your program.

+20

-20

Figure 6-3. Object Origin

The modelling transformation is supported by the library routines:

MXRESET.R (entity) Set modeling transform from an entity.
MZROTATE.R (radians) Rotate counterclockwise around origin.
MXLATE.R (xval , yval) Translate (move)in X andY.

(System attributes, functions, and routines are completely descritAppendix A).

These are called as a standard part oDISPLAY routine . Their explicit use may be
necessary in certain advanced situations. Rotation is performed before translation. The ef-
fects of successive calls on b(MZROTATE.I andMXLATE.F are cumulative.

The modelling transforation is applied before the viewing transformation specified by
VXFORM.\. The modelling transformation is logically separate from the viewing
transformation.

106

Chapter 6. Creating Animated Graphics

6.3 Animating Dynamic Graphic Entities

Dynamic graphic entities follow the same rules as static graphic entities, but have addition-
al display features which manipulate their location, orientation, and velocity. The dynamic
nature of such entities is controlled by giving them a velocity. As simulation time progress-
es, the location is automatically updated as determined by the velocity, causing the entity
to be redrawn on the display surface.

Control of animation is provided by the system funci@v.OCITY.A (entity), a left
function that sets velocity. Except for the special value of 0, which stops linear motion, the
value of VELOCITY.A must be set to a value produced by the system function
VELOCITY.F (speed, theta), wherespeed is a real value in Real World Coordinate
Units per Simulated Time Units, ambdeta is the direction of motion in radians. For
example, in the Gold Mine problem (Chapfgrthe mine elevator travels straight down at

a speed of 33.33 feet/minute. Thus, the statement:

LET VELOCITY.A(lift) = VELOCITY.F(100/3,-PI.C/2)
appears in the code.
Note that motion continues until an entity is explicitly stopped with the statement:

LET VELOCITY.A(entity) = 0

Assigning a value ofELOCITY.F(0., 0.) toVELOCITY.A makes an object mark time.
Its image is refreshed as simulated time passes, but the position is not updated. This can be
useful for objects whose animation consists of something other than simple linear motion.

VELOCITY.A changes the value @DCATION.A as simulated time changes. An object's
starting position is obtained by settib@CATION.A.

6.4 Displaying Icons
In order to display an object, execute BNSPLAY statement:

DISPLAY namel [WITH "iconname"] [AT (posx, posy)]
wherenamel is a graphics entity pointer. Or use 8idOVgtatement:
SHOW namel [WITH "iconname"] [AT (posx, posy)]
These statements may be placed anywhere in the executable flow of program control.

If the DISPLAY statement is executed, any previous image of the object is removed from
the display surface, and the new image appears at the screen locatior{ pe$xyy
posy) above or A OCATION.F statement.

The SHOVEtatement by itself does not make an icon visible, but rather associates the object
with an icon. To make the icon visible aftesldOVEtatement, either the explicit statement:

DISPLAY name
or assignment tbOCATION.A must be executed.

107

SIMGRAPHICS Il User’s Guide

6.5 An Example

The animated graphical features will now be illustrated in the context of a complete simu-
lation example. The simulation aspects of this model have been simplified to focus atten-
tion on the graphical interactions.

6.5.1 Preamble

This preamble defines one process (cashape) and declares it to be DYNAMIC
GRAPHIC entity. The icon foshapewas prepared using tlicon Editor , and can be any
shape whatsoever. For this example, it was drawn as an arrow.

Preamble "Case Study "NEWSHAPE"

' A simple dynamic graphics output using SIMGRAPHICS II.
' It draws a shape and moves it around the screen.

Normally mode is undefined
Processes include SHAPE
Dynamic graphic entities include SHAPE

End "Preamble

Figure 6-4. Output of the Shape Routine

6.5.2 Main Program

Prior to starting the animated simulation, there are some initial conditions which must be
established. Lines 3 and 4 set up the viewport and dimension the world to be seen in that
viewport. Line 7 determines how simulated time should be scaled to real time (see para-
graph6.7). Finally, to begin the simulation, oshape is activated and assigned its icon.

108

Chapter 6. Creating Animated Graphics

Main
" Set up the world view and view port
Let vxform.v =1 " View port number

Call setworld.r(0.0, 2000.0,0.0, 2000.0)

1 second of real time per second of simulated time
Let TIMESCALE.V = 100

' Create a shape and specify the icon for it
Activate a SHAPE now
Show SHAPE with "shape"

Start simulation
End "Main

6.5.3 Process Shape

The shapeprocess describes the life of the object. Normally, this module would contain
much more complex logic to describe its interaction with other objects, use of resources,
etc. In this example, it merely experiences a series of time delays interspersed with changes
in direction of motion. The setting of tMELOCITY.A attribute causes the animation to
appear.

This program is complete and will execute as is. The only thing not listed here is the output
from SIMDRAW. The program is included on the distribution disks for SIMSCRIPT as
NEWSHAPE and may be run from there. We recommend that a new user of
SIMGRAPHICS Il run this model as is and then modify it to do other things. (For example,
you might draw a different shape or change the path the object follows.)

A version of this same model which does not use SIMDRAW output is included in Chapter
9. Itis instructive to compare the two models to see how much code is eliminated through
use of the editor.

Process SHAPE
Define | as an integer variable

' Set up the parameters for controlling motion
Let velocity.a(SHAPE) = velocity.f(200.0, pi.c/4)
Let location.a(SHAPE) = location.f(0.0, 0.0)

Make the first move
Wait 10 units

' Change the direction of motion to straight down
Let velocity.a(SHAPE) = velocity.f(200.0, -pi.c / 2)
Wait 5 units

' Change the direction of motion again
Let velocity.a(SHAPE) = velocity.f(200.0, 0.8*pi.c)
" Make the shape rotate
Forl=1to 60do
Add PI.C / 60 to orientation.a(SHAPE)"make it tumble
Wait 0.1 units
Loop

109

SIMGRAPHICS Il User’s Guide

' Stop the movement and pause to admire the results
Let velocity.a(SHAPE) = 0
Wait 5.0 units

End " process SHAPE

6.6 Destroying and Erasing Icons

The image of a graphic entity is placed on the displafase when the firsDISPLAY
statement is executed. Subsequent executioDESTRO statement causes the associ-
ated image to be removed from the display surface. All extra memory utilized for graphics
data is reclaimed when tDESTRO statement is executed. TERASE statement merely
removes an image from the screen.

6.7 Synchronizing Simulation Time and Real Time

Synchronization between real time and simulation time in SIMGRAPHICS Il is facilitated
with the real global variabITIMESCALE.V. The value oTIMESCALE.V establishes a
scaling between real-time (in units of 1/100 second) and simulation time. For example, the
statement:

LET TIMESCALE.V = 100

establishes a one-to-one mapping of simulation time units and real elapsed seconds—if the
computer can work that fast.
Examples are:

Simulated Real
TIMESCALE.V Time Units Time

1 1 0.01 second
1 100 1 second
100 1 1 second
6000 1 60 seconds

SIMGRAPHICS Il updates the display of all dynamic graphic entities whenever the simu-
lation time clock is updated. If simulation time is passing faster than wall clock time, the
displays are updated at more frequent intervals. If the desired rate is faster than processing
speed allows, SIMGRAPHICS II will be unable to catch up.

Decreasing the value TIMESCALE.V has the effect of making the simulation run faster,

in less elapsed time, provided there is enough computer power to do both the computational
simulation and the animated graphics. When there is not enough computer power, addi-
tional elapsed real time will be taken.

The timing process of SIMGRAPHICS Il also supports user intervention in the process,
through the global variabTIMESYNC.V. TIMESYNC.V is a subprogram variable which,
when non-zero, points to a user-supplied time synchronization exit routine. This routine is
called from the event scanning mechanism offering the simulation time of the most immi-
nent event.

110

Chapter 6. Creating Animated Graphics

The TIMESYNC routine has the option of consulting the computer's real time clock and
substituting a lower value to be used to update simulation time. This forces re-scanning of
the event list until thTIMESYNC routine is prepared to accept the tendered value of
TIME.V . Re-scanning the event list allows the possibility that the future event may change
either as a result of some action in TIMESYNC(routine, or completion of an asynchro-
nous read request. During this activity, of course, the routine can choose to provide a con-
tinually updated display of simulation time, in any appropriate format.

The user's exit routine is called whenever the simulated clock is to be updated, but before
any animation is performed. This routine may perform several functions, including provid-
ing a graphical display of simulated time, fine-detail time synchronization or adjustment,
scheduling or canceling events or processes, or collision avoidance computations. The first
is the most common use.

The TIMESYNC.V exit can serve as a convenient means for adjusting the flow of real time
and simulated time, to improve R&ame control. When lockstep operation is desired,
TIMESYNC.V can reschedule heavy computation or adjust the detail of the simulation as
appropriate.

The value OfTIMESCALE.V could also be adjusted to smoothly catch up after heavy
computation. By using the library routiSYSTIME.R, the program can compare the cur-
rent simulation time to the simulation time which should have been advanced to at the cur-
rent real time. The program can then adTIMESCALE.V, accordingly.

111

SIMGRAPHICS Il User’s Guide

112

7. Example Programs

This chapter describes the programs included in the SimLab distribution kit. They are ac-
tual SIMSCRIPT I1.5 simulations in which graphic effects of various kinds have been added.

7.1 The Gold Mine Program

The Gold Mine model simulates the operation of a two level mine. Ore moves from the
shafts to the surface in a single elevator that serves both levels. Loads from the lower level
have priority over loads from the upper level.

Only a few routines from the model are presented here. The rest of the application is in-
cluded in the distribution kit. It includes animated graphics on a static background, along

with a variety of presentation graphics. Note that the menu bar in the example is asynchro-
nous—the simulation parameters may be altered on the fly. All graphics were created using
SIMDRAW. Figure 7-1 shows the Gold Mine simulation running.

In this model, the lift is the only dynamic graphic entity. The loads are graphic entities but
their motion is controlled by the lift. Consequently, the lift must have a user-written display
routine (Chapte®) to control the movement of the loads onto and off of the lift.

The asynchronous menu bar allows the user to alter the presentation graphics displayed as
the model runs (a clock, and two plots of the queues at the two levels). It also lets the user
terminate the simulation or alter the rate of ore arrival and the lift capacity. The queue
length on each level is displayed as either a trace plot or a dial or level meter. Of course,
these presentation graphics could be further modified by use GfdftreEditor .

The clock is updated through thevESYNC.V mechanism, and time is allowed to take dis-
crete jumps since the events are occurring rapidly enough to appear relatively smooth.

113

SIMGRAPHICS Il User’s Guide

OPTIONS ICONS

Figure 7-1. The Gold Mine
The motion of the lift is controlled entirely from within the lift process. Since the direction
is either up or down, no computations of coordinate geometry are required in this model.

Listed below are the process, control routine, and form dump of the menu bar. They are
included here because of the asynchronous nature of the input. The complete program is
included in all distributions.

7.1.1 Menu Bar Process
Process MENUPROC

Define FIELD.ID as text variable
Define MENU as pointer variable
Define MENUCURSOR as pointer variable

Show MENU with "goldmenu.frm"
Let FIELD.ID = ACCEPT.F(MENU,'MENUBAR.CTRL")
Let FIELD.ID = FIELD.ID

Activate a FINAL.REPORT now

End "MENUPROC

7.1.2 Form Control Routine

Routine MENUBAR.CTRL Given FIELD.ID and FORM Yielding STATUS

Define DIALOG as a pointer variable

114

Chapter 7. Example Programs

Define FIELD.ID as text variable
Define FORM as pointer variable
Define ICONS as a 1-dim text array
Define STATUS as integer variable

"If the menubar was selected, then find out which button on the bar
"or a pulldown was pressed.
If FIELD.ID eq "MENU"

Let FIELD.ID = DTVAL.A(DFIELD.F("MENU",FORM))
Endif

Select case FIELD.ID
Case "INITIALIZE"

Case "QUIT"
Let STATUS =1

Case "OPTIONS"
Case "ICONS"

Case "LIFT CAP"
Show DIALOG with "liftcap.frm"
Let DDVAL.A(DFIELD.F("CAPACITY",DIALOG)) = LIFT.CAPACITY

Let FIELD.ID = ACCEPT.F(DIALOG,0)

If FIELD.ID ne "CANCEL"
Let LIFT.CAPACITY = DDVAL.A(DFIELD.F("CAPACITY",DIALOG))
Endif

Case "ARRIVAL 1"
Show DIALOG with "arrive.frm"
Let DDVAL.A(DFIELD.F("ARRIVE",DIALOG)) = MEAN.RATE(1)

Let FIELD.ID = ACCEPT.F(DIALOG,0)

If FIELD.ID ne "CANCEL"

Let MEAN.RATE(1) = DDVAL.A(DFIELD.F("ARRIVE",DIALOG))
Endif

Case "ARRIVAL 2"
Show DIALOG with "arrive.frm"
Let DDVAL.A(DFIELD.F("ARRIVE",DIALOG)) = MEAN.RATE(2)

Let FIELD.ID = ACCEPT.F(DIALOG,0)

If FIELD.ID ne "CANCEL"

Let MEAN.RATE(2) = DDVAL.A(DFIELD.F("ARRIVE",DIALOG))
Endif

Case "TIME"
Show DIALOG with "time.frm"
Let DDVAL.A(DFIELD.F("SCALE",DIALOG)) = SCALER
let DDVAL.A(DFIELD.F("LENGTH",DIALOG)) = STOP.TIME
Let FIELD.ID = ACCEPT.F(DIALOG,0)

If FIELD.ID ne "CANCEL"
Let SCALER = DDVAL.A(DFIELD.F("SCALE",DIALOG))

115

SIMGRAPHICS Il User’s Guide

"clock ticks (1/100 sec) / unit

Let TIMESCALE.V = SCALER*100/60.0
let STOP.TIME = DDVAL.A(DFIELD.F("LENGTH",DIALOG)) "hours
Endif

Case "QUEUE 1"
Show DIALOG with "icon.frm"
Reserve ICONS as 3
Let ICONS(1) = "tracel.grf"
Let ICONS(2) = "levell.grf"
Let ICONS(3) = "diall.grf"
Let DARY.A(DFIELD.F("PICK",DIALOG)) = ICONS(*)

Let FIELD.ID = ACCEPT.F(DIALOG,0)

If FIELD.ID ne "CANCEL" and DDVAL.A(DFIELD.F("PICK",DIALOG)) ne 0
Let ICONS(*) = DARY.A(DFIELD.F("PICK",DIALOG))
Let QUEUE.ICON(1) = ICONS(DDVAL.A(DFIELD.F("PICK",DIALOG)))

"Load the new graph
Display N.LOAD.QUEUE(1) with QUEUE.ICON(1)
Endif

Case "QUEUE 2"
Show DIALOG with "icon.frm"
Reserve ICONS as 3
Let ICONS(1) = "trace2.grf"
Let ICONS(2) = "level2.grf"
Let ICONS(3) = "dial2.grf"
Let DARY.A(DFIELD.F("PICK",DIALOG)) = ICONS(*)

Let FIELD.ID = ACCEPT.F(DIALOG,0)

If FIELD.ID ne "CANCEL" and DDVAL.A(DFIELD.F("PICK",DIALOG)) ne 0
Let ICONS(*) = DARY.A(DFIELD.F("PICK",DIALOG))
Let QUEUE.ICON(2) = ICONS(DDVAL.A(DFIELD.F("PICK",DIALOG)))

"Load the new graph
Display N.LOAD.QUEUE(2) with QUEUE.ICON(2)
Endif

Default
Endselect

End "MENUBAR.CTRL

116

Chapter 7. Example Programs

7.2 The DYNHIST Model

DYNHIST illustrates the use of dynamic histograms. Samples from a uniform distribution
and samples from a normal distribution are displayed as histograms. In addition, a level
meter is used to display the number of samples taken. This type of display can be used
alone or can be included in the margins of an animated display. A sample of its output is
shown in figure 7-2.

of Samples = 274
UNIFORM.F Histogram

1000
750

500

NORMAL .F Surface Chart

Samples ~ Bin

Sample Bins

Figure 7-2. Output of the DYNHIST Model

117

SIMGRAPHICS Il User’s Guide

7.3 The Port Model

The African Port has been modelled in many languages in many simulation textbooks. This
is the SIMSCRIPT I1.5 version with animation. Several important animation concepts are

illustrated in it. In particular, segmentation is used to prioritize passing ships. Color is used
to differentiate different classes of ships and to highlight ships which need attention. Out-
putis shown in figure 7-3.

The animation reveals a logic flow error in this model. On occasion, the tug makes an
unnecessary dead-heading trip when it could just as well have served a ship in its present
location. The reader may find it an instructive exercise to find the error.

Port Simulation

613 |

Figure 7-3. The Port Model

118

Chapter 7. Example Programs

7.4 The CALSHIP Model

This model is an expansion of the PORT model above. It illustrates the relative ease of
extending a simple model to include more of the entire system. In this case, the simple port
model is duplicated to represent two ports (Valdez, Alaska and San Pedro, California) be-

tween which tankers trave
is shown in another windo
ing to San Pedro. Output

l. Each port is shown in a separate window. The entire coastline
w. This window also shows tanker traffic from Indonesia com-
is illustrated in figure 7-4.

H-—-‘-

Pacific shipping

Sderersl ot EE o 4

Ed Ocean M= || 22 valdez M= F3

Valdez, Alaska

EZ/San Pedro

Son Pedro, California

Figure 7-4. The CALSHIP Model

119

SIMGRAPHICS Il User’s Guide

7.5 The Spring Model

This model introduces the use of animation in conjunction with the continuous simulation
constructs of SIMSCRIPT I1.5. Plots of displacement, velocity, and acceleration (figure 7-
5) are produced simultaneously.

Figure 7-5. The Spring Model

120

7.6 The Pilot Ejection Model

Chapter 7. Example Programs

EJECT is derived from a classic example of continuous simulation. A pilot ejects from a
plane at low altitude. Dials display the pilot's speed in the X and Y directions and the time
since ejection. Animation is used to display the position of the plane, the pilot, and the de-
ployment of his parachute. The continuous simulation constructs of SIMSCRIPT 1.5 are
used to implement the set of differential equations describing the motion of each object.

Output is shown in figure 7-6.

0 30
0] 401
Seconds 1/10 =sec Pilot X ft-sec

Q.,.

Pilot ¥ ftrssec

Figure 7-6. The EJECT Model

121

SIMGRAPHICS Il User’s Guide

122

8. Managing Multiple Windows

8.1 Multiple Window Support

SIMGRAPHICS Il can now give the SIMSCRIPT programmer multiple windows with var-

ious sizes, positions, titles, and mapping styles. Each window can optionally have a hori-
zontal and vertical scroll bar, and a multi-pane status bar. In addition, messages are passed
from the window manager to your program whenever the user manipulates a component of
the window, (i.e. resizing, closing, moving the thumb on a scroll bar, etc.).

A window is created with thO@PENWINDOW.Ball described below:

routine OPENWINDOW.R given XLO, XHI, YLO, YHI, TITLE,
MAPPING.MODE yielding WINDOW.PTR

The parameter¥LQ XHI, YLO, andYHI specify the size and position of the window with
respect to the computer screen. These coordinateENgEeGERSIin the range
0..32767 . The point(0,0) defines the lower left-hand corner of the screen, and
(32767,32767) is the upper right-hand corner. Window size and position specifica-
tionsincludetitle bar, border and menu bar, (a window whys#é is 16383 will NOT
overlap a window whos¥LOis 16383). TheTITLE parameter is of modeEXT and
specifies the window title.

The MAPPING.MODBparameter defines how the window contenii appear inside the
visible portion of the window. The following modes are available:

MAPPING.MODE = 0:

Contents mapped to largest centered square within window.
MAPPING.MODE = 1:

WORLD.XLJof world coordinate system set BgTWORLD.Ris mapped to the left
border of the windowWORLD.YLOis mapped to the bottom border, and
WORLD.XHlis mapped to the right border. The top portion of the world coordinate
space may not be visible depending on window size. This mode is useful when the
background you want to display is significantly wider than it is tall.

MAPPING.MODE = 2:

WORLD.XLQAs mapped to the left border of windowORLD.YLQOs mapped to bot-

tom border, an8VORLD.YHIis mapped to the top border. The right portion of the
world coordinate space may not be visible depending on window size. This mode
is useful when the background you want to display is significantly taller than it is
wide.

Selecting which window will display your icons, graphs, and forms is accomplished by as-
sociating the window with one or more viewing transforms. In this wayXf®RM.V
variable not only specifies which viewing transform will be used to draw subsequent graph-
ics, but also in which window the graphics appear. It should therefore be noted that objects

123

SIMGRAPHICS Il User’s Guide

drawn under the sanVXFORM.\ valuecanno appear in two different windows. Viewing
transforms are "attached" to a window throughSETWINDOW. call. SelvXFORM.\to
the desired transformation number, and thenSETWINDOW. given theWINDOW.IC of
the window that should contain the objects drawn under this transform. For example:

"-- create two windows, one directly above the other
call OPENWINDOW.R given 8192, 24576, 16383, 32767,
"Top Window", 1 yielding WINDOW1.PTR
call OPENWINDOW.R given 8192, 24576, 0, 16383,
"Bottom Window", 1 yielding WINDOW2.PTR

"-- attach viewing transform 1 and 2 to the top
"-- window, and 3 to the bottom

let VXFORM.V =1
call SETWINDOW.R given WINDOW1.PTR
let VXFORM.V = 2
call SETWINDOW.R given WINDOWL1.PTR
let VXFORM.V =3
call SETWINDOW.R given WINDOW2.PTR

"-- show iconl in top window and icon2

"-- in bottom window
let VXFORM.V =2
display ICON1 with "iconl.icn" at (16383, 16383)
let VXFORM.V =3

display ICON2 with "icon2.icn" at (16383,16383)

8.2 Setting and Getting the Attributes and Events of a Window

Calling OPENWINDOW Yyields a display entity pointer. TIDFIELD.F routine can then

be used to access winddields. In addition, a windovcontrol routine can be defined by

the programmer. As with dialog box, menu bar, and palette control routines, the window
control routine is called automatically whenever a user performs some action upon the win-
dow with the mouse.

8.2.1 Window Attributes or “Fields”

A window display entity has several predefined field names. See table 8-DFIELD.F

routine is used to get a pointer to the field, while attritDDVAL.A, DARY.A, andDTVAL.A

can be read or written to the field by your program. Fields with the access code “RW”
represent modifiable components of your window. To see the result of a change made to a
DDVAL.A, DARY.A or DTVAL.A attribute you must redisplay the modified field using a
DISPLAY statement.

124

Chapter 8. Managing Multiple Windows

Table 8-1. Window Display Field Names

Field Name Attribute Access Description
WIDTH DDVAL.A RwW Current window width in screemace
HEIGHT DDVAL.A RwW Current window hajht in screengace
VIEWWIDTH DDVAL.A R Width of visibleportion of NDC pace
VIEWHEIGHT DDVAL.A R Height of visibleportion of NDC gace
TITLE DTVAL.A RW Title displayed at t@ of window
HSCROLLABLE DDVAL.A RW > 0 if window should have a horizontal scroll|
bar
VSCROLLABLE DDVAL.A RwW > 0 if window should have a vertical scroll bgr
HTHUMBSIZE DDVAL.A RW Width of horizontal scroll bar thumb
rarge (0.0 - 1.0)
VTHUMBSIZE DDVAL.A RW Height of vertical scroll bar thumb
rarge (0.0 - 1.0)
HTHUMBPOS DDVAL.A RwW Currentposition of the horizontal scroll bar
from left edye, ramge (0O-HTHUMBSIZE)
VTHUMBPOS DDVAL.A RwW Currentposition of the vertical scroll bar from
top edge, rame (0-VTHUMBSIZE)
PANEWIDTH DARY.A RW Array of integers describig width (in charac-
ters) of eaclpane of the status bar.
STATUSTEXT DARY.A RwW Array of text values shown in each status baf
pane
XCLICK DDVAL.A R X location of last mouse click (in NDC units)
YCLICK DDVAL.A R Y location of last mouse click (in NDC units)
XMOVE DDVAL.A R Current X location of mouse (in NDC units)
YMOVE DDVAL.A R Current X location of mouse (in NDC units)
BUTTONDOWN DDVAL.A R If nonzero, the mouse button is currgntl
being held down
BUTTON DDVAL.A R Identifies which of the mouse buttons was
lastpressed
DOUBLECLICK DDVAL.A R If nonzero, the last click was a double click.

For example, to dynamically reset the title on a window, use:

let DTVAL.A(DFIELD.F(“TITLE”, WINDOW.PTR)) = “My New Title”
display DFIELD.F(“TITLE”,. WINDOW.PTR)

To determine the top of the window canvas after the window has been resized, use:

125

SIMGRAPHICS Il User’s Guide
let TOP = DDVAL.A(DFIELD.F(“VIEWHEIGHT”, WINDOW.PTR))

8.3 Window Events

To receive asynchronous notification of window events such as scrolling, resize and close,
the programmer must set up a control routine for the window using the routine
SET.WINCONTROL.Ras follows:

call SET.WINCONTROL.R given WINDOW.PTR, CONTROL.ROUTINE

where the control routine is formatted as follows:

routine CONTROL.ROUTINE given EVENT.NAME, WINDOW.PTR
yielding BLOCK.DEFAULT

Define EVENT.NAME as a text variable
Define WINDOW.PTR as a pointer variable
Define BLOCK.DEFAULT as an integer variable

The control routine code should 8&OCK.DEFAULTto “1” if the default action is NOT to
be performed. The text variall®ENT.NAMEcontains one of the event names shown in
table 8-2.

Table 8-2. Event Names

Event Default Affected Description
Name Action Fields
CLOSE Terminate None Sent when user selects windgov
goplication awagy icon.
RESIZE Redraw window WIDTH Sent when the user resizes or maxj-
contents HEIGHT mizes the window.
VIEWWIDTH
VIEWHEIGHT
VSCROLL None VTHUMBPOS Sent whenever the user moves the

vertical scrollbar thumb.

HSCROLL None HTHUMBPOS Sent whenever the user moves the
horizontal scrollbar thumb.

MOUSE- None XCLICK Sent whenever grmouse button is
CLICK YCLICK pressed down, or liftedpu
BUTTONDOWN
BUTTON
DOUBLECLICK
MOUSE- None XMOVE Sent whenever mouse movement dc-
MOVE YMOVE curs.

126

Chapter 8. Managing Multiple Windows

For example, the following control routine can be used to receive some window events:
routine WINDOW.CONTROL given EVENT.NAME, WINDOW.PTR
yielding BLOCK.DEFAULT

select case EVENT.NAME
case “CLOSFE”
write as “Attempt to close window...”, /
let BLOCK.DEFAULT = 1" dont terminate application

case “WVSCROLL"
write DDVAL.A(DFIELD.F(*VTHUMBPOS", WINDOW.PTR)) *32768 as
“Window vertically scrolled to “, D(7,2), /

default
endselect
end

8.4 Scrollable Windows

Scroll bars provide a more natural mechanism for panning across a scene too large to fit
inside the boundaries of your window. This is a common conditionzfteninginto a
rectangular section of your graphics area. Scroll bars should be added to the window at the
time itis created through tiSCROLLABLENAVSCROLLABLHields. The following code
creates a scrollable window:

call OPENWINDOW.R (4096, 28672, 0, 32768, “Scrollable Window”, 0)
yielding WINDOW.PTR

let DDVAL.A(DFIELD.F(*HSCROLLABLE", WINDOW.PTR)) = 1

let DDVAL.A(DFIELD.F(*VSCROLLABLE”, WINDOW.PTR)) = 1

call SET.WINCONTROL.R(WINDOW.PTR, ‘CONTROL.ROUTINE)

call SETWINDOW.R(WINDOW.PTR)

You can set the width of the scroll bar thumb either before or after the window has been
displayed. Th®DVAL.A attribute of theHTHUMBSIZEandVTHUMBSIZEfields contains a

real number between 0.0 and 1.0. Set this attribute to the percentage of the scroll bar area
you wish the thumb to occupy. The size of a scroll bar thumb should represeiotioé
viewable area to total area. For example, if the boundaries defire8ThyORLD.Rare

(w.xlo, w.xhi, w.ylo, w.yhi), but thelarger total area occupied by graphics is

(t.xlo, t.xhi, t.ylo, t.yhi) you should set up the thumb sizes as follows:

let DDVAL.A(DFIELD.F(*"HTHUMBSIZE", WINDOW.PTR)) =
(w.xhi - w.xlo) / (t.xhi - t.xlo)

let DDVAL.A(DFIELD.F("VTHUMBSIZE”, WINDOW.PTR)) =
(w.yhi - w.ylo) / (t.yhi - t.ylo)

display DFIELD.F(“HTHUMBSIZE”, WINDOW.PTR))
display DFIELD.F(“VTHUMBSIZE”", WINDOW.PTR))

Manipulation of the scroll bars by the user will not automatically pan the scene in the window.
This action will only send &SCROLLor VSCROLLevent to the window's control routine
informing of the change to the scroll bar thumb position. At this tim®Dv&L.Aattribute

of theHSCROLLPO$field will specify the distance from the left-hand side of the horizontal
scroll thumb to the left-hand side of the winddDVAL.A of VSCROLLPO#$ the distance

from the top of the window to the top of the vertical scroll thumb. In each case “1.0” is the

127

SIMGRAPHICS Il User’s Guide

total length of the scroll bar. Therefore, these attribute values are in the0.0, 1.0-
HTHUMBSIZI] and 0.0, 1.0-VTHUMBSIZE], respectfully. To implement “panning”
in the above example you would need the following code in your window control routine:

routine WINDOW.CONTROL given EVENT.NAME, WINDOW.PTR
yielding BLOCK.DEFAULT

select case FIELD.NAME
case “VSCROLL”", “HSCROLL”"
let w.xlo = t.xlo + (t.xhi-t.xlo) *
DDVAL.A(DFIELD.F(*HSCROLLPOS”, WINDOW.PTR))
let w.xhi = w.xlo + (t.xhi-t.xlo) *
DDVAL.A(DFIELD.F(“HSCROLLSIZE", WINDOW.PTR))
let w.ylo = t.ylo + (t.yhi-t.ylo) *
DDVAL.A(DFIELD.F(“VSCROLLPOS”, WINDOW.PTR))
let w.yhi = w.ylo + (t.yhi-t.ylo) *
DDVAL.A(DFIELD.F(*"VSCROLLSIZE”, WINDOW.PTR))

call SETWORLD.R(w.xlo, w.xhi, w.ylo, w.yhi)

8.5 Status Bars

All windows can display a status area at the bottom of the frame cestatus bar. The

status bar is composed of several individual rectangles (panes) of varying width; each con-
taining a line of text. You can define the size of each pane before the window is displayed,
and set the text displayed in a pane after the window has been rendered.

Each element of the array pointed to byDARY.A attribute of th(e ANEWIDTI field spec-

ifies the maximum number of characters that can be shown by the corresponding pane.
Note that the width of the first status pane is automatically set based on the size of the win-
dow. The width specification for the first status pane is always ignored.

Each element of thDARY.A attribute of theSTATUSTEX field defines the text to display

in the corresponding pane. The first pane is also used to show the status text for a high-
lighted menu item, or palette button (See che3). A window containing a status bar with

three panes could be initialized as follows:

" create the window
call OPENWINDOW.R given 16383, 32768, 8192, 24576,
"Example Window...", 0 yielding WIN.PTR

“ add a status bar to the window

reserve PANE.WIDTHS(*) as 3

let PANE.WIDTHS(1) =0 * not used by SIMGRAPHICS II

let PANE.WIDTHS(2) = 10

let PANE.WIDTHS(3) = 20

let DARY.A(DFIELD.F("PANEWIDTH", WIN.PTR)) = PANE.WIDTHS(*)

" associate this window with the current viewing transformation.
" This operation will display the window
call SETWINDOW.R(WIN.PTR)

 Set the status bar text

128

Chapter 8. Managing Multiple Windows

reserve STATUS.TEXT(*) as 3

let STATUS.TEXT(1) = “Pane One”

let STATUS.TEXT(2) = “Pane Two”

let STATUS.TEXT(3) = “Pane Three”

let DARY.A(DFIELD.F("STATUSTEXT", WIN.PTR)) = STATUS.TEXT(*)

 Update display of the status bar text only
display DFIELD.F(“STATUSTEXT”, WIN.PTR)

129

SIMGRAPHICS Il User’s Guide

130

9. Advanced Topics

9.1 Drawing lcons Without SIMDRAW

Icons are specified in SIMGRAPHICS Il as arrays of pairs of coordinate values. Each pair
of coordinates gives the location of a point in Cartesian space. SIMDRAW produces these
arrays automatically. However, they may also be generated manually. The first subscript
in a coordinate pair selects either x-coordinates (index = 1) or y-coordinates (index = 2);
the second subscript determines a point. For example, the statements:

LET SHAPE.ARRAY(1,1) = 40.
LET SHAPE.ARRAY(2,1) = -100.
LET SHAPE.ARRAY(1,2) = 40.
LET SHAPE.ARRAY(2,2) = 0.

specify points at (40,-100) and at (40,0).

The coordinate arrays are storedRBAL (not DOUBLE mode. This allows a range of
model-oriented coordinates and provides sufficient precision for a display device.

Obviously, each coordinate array can only specify an area drawable by an unbroken line.
However, complex images can easily be built up using separate arrays for each separate ar-
ea. These arrays can be referenced in individual subroutines (which ipaligd® the
graphics control routines described in the next section) which are called fronSPEAY

routine for the complete icon. Thus, only a sinQISPLAY routine is required for each

icon, however complex; and the individual components of an icon can be controlled sepa-
rately (e.g., they can change color or size, as required by the application).

9.2 Writing a Display Routine

A display routine is an attribute of a display entity which can be set programmatically. This
routine is called automatically by SIMGRAPHICS Il whenever it is necessary to display a
graphical entity. This routine can contain code to either draw a display entity from scratch
using calls to create output primitives, or to modify the display of a display entity created
in SIMDRAW. The attribute is calledRTN.Aand is set as follows:

Let DRTN.A = 'V.<routine_name>"'
The heading of the actual routine is defined like this:

Display routine <name> given ICON.PTR
define ICON.PTR as a pointer variable

The SIMSCRIPT II.5 run-time library routines (described below and in Appendix A) sup-
port a number of graphic primitives directly. These routines are called by SIMDRAW. The
programmer can also call them directly fro®I&PLAY routine to draw lines, polygons,
circles and arcs, fill delineated areas with color patterns, and write strings of characters.
Other primitives allow selection of line style, text sizing, and a variety of colors and fill pat-
terns.

131

SIMGRAPHICS Il User’s Guide

TheDISPLAY routine generates a screen image of an icon. It connects the points specified
in the coordinate arrays described above, and then adds color, a fillstyle, a line style, and
so on, to the image. SIMGRAPHICS Il provides a defDISPLAY routine,DICON.R.

When icons are generated using SIMDRAW, either this default or a user-DISPLAY

routine may be used. When icons are generated without the editor, a user-written routine
must be provided. Use of a non-default routine is indicated by assigning a value to the at-
tribute DRTN.A:

LET DRTN.A(entity) = 'name’

DISPLAY routines consist largely of calls on the graphic style routines described below.
Other statements may be included to pass values to these routines. All style values remain
set until they are changed.

9.2.1 Color

In SIMGRAPHICS Il color is specified uggran inteer value raging from 0 to 255. This

value is an index into a color table whose entries must be initialized programmatically. The
routineGCOLOR.I defines a color index given the red, green and blue components of the
color (color component values iganfrom 0 to 1000). For example, to define index 15 as
‘green’™

letRED =0

let GREEN = 1000

let BLUE =0

call GCOLOR.R(15, RED, GREEN, BLUE)

Color index numbeO refers to the bagkound color of the window selected thgbu
VXFORM.\. To set a window’s background color to “blue™:

call GCOLOR.R(0, 0, 0, 1000)

If your icon has been created by SIMDRAW, you can still reset its color in your program.
To enable this feature, from SIMDRAW you must select the primitive whose color you
want to be prgrammaticaly definable and use thEdit/Properties option. From the
Properties dialog, check thDefine color using DCOLOR.A check box. The following code

will set the color of appropriately defined primitives to “green”:

let DCOLOR.A(ICON.PTR) = 15

9.2.2 Drawing Areas

The primitive operations in this section generate a closed polygon that may be hollow or
filled with a solid color, a hatch style, or a pattern. The graphic style routines for areas are
called first, and set the appearance of the area.

CALL FILLSTYLE.R(style)
Set fillstyle, as follows:

0 = hollow

132

Chapter 9. Advanced Topics

1 = solid
2 = pattern
3 = hatch

CALL FILLINDEX.R (index)
Set pattern or hatch fill selection. Six distinct styles of hatch are available. Hatch
styles are as follows:

1 = Narrow spaced diagonal lines
2 = Medium spaced diagonal lines
3 = Wide spaced diagonal lines

4 = Narrow spaced cross hatch

5 = Medium spaced cross hatch

6 = Wide spaced cross hatch

CALL FILLCOLOR.R (color)
Set color of solid or hatched area.

CALL FILLAREA.R (n, points(*))
Fill the area, joining the last point to the first point, if necessary, using the present
fillstyle and fillcolor.

CALL CIRCLE.R (points(*))
Draw a circle, wherpoints (..,1) indicates the center, ajpoints (..,2) is
any point on the perimeter.

CALL SECTOR.R (points(*), rad)

Draw an arc, wherpoints (..,1) indicate the center, a points (..,2) and
points (..,3) are the end points. The sector is drawn counterclockwise from the
second to the third points specified.rad is not zero, join ends of arc to the center
point, and fill.

9.2.3 Drawing Lines

The primitive operations in this section generate solid and dotted lines. The graphic style
routines are called first, and set the appearance of the line.

CALL LINESTYLE.R(style)
SIMGRAPHICS Il supports a number of line styles. The following styles are pro-

vided on most implementations:

1 = (solid)
2 = (long dash)
3 = (dotted)

4 = (dash dotted)
5 = (medium dashed)
6 = (dash with two dots)

CALL LINECOLOR.R (color)
Color (as described in Chap4).

133

SIMGRAPHICS Il User’s Guide

CALL LINEWIDTH.R (width)
Width, given in NDC units.

CALL POLYLINE.R (n, points(*))
Joins n points whose x and y coordinates are given in the 2-dimensional real array
points(*) .

9.2.4 Drawing Points (Markers)

SIMGRAPHICS Il supports a primitive operation to mark points on the display surface.
The graphic style routines that control appearance are called first.

CALL MARKTYPE.R (type)
Where type is a polymarker type, and where:

1 =dot

2 = Ccross

3 = asterisk
4 = square
5=X

6 = diamond

CALL MARKCOLOR.R (color)
Polymarker color.

CALL MARKSIZE.R (size)
Polymarker size, in NDC units.

CALL POLYMARK.R (n, points(*))
Writesn markers using the current marker type, color, and height.

9.2.5 Direct Character Output

Text can be written directly onto the graphics screen. Itis displayed using the text size and
color attributes. The output is centered around coordinate points (0, 0), and consequently
a modeling transformation can be used to place the information where desired on the dis-
play surface.

For example:

LET VXFORM.V =5
CALL SETWORLD.R(O, 79, 0, 23)

It may be useful to define a transform to an 80 by 24 coordinate system for writing lines of
text, as above. If a text string is to be written, the following call may be used:

CALL WGTEXT.R (strina. x. v)
Writes string at (X,y) using current text font, color, height, angle, and alignment.

The following graphics routines may be used in display routines to control the appearance
of text output:

134

Chapter 9. Advanced Topics

CALL TEXTFONT.R(font)
Sets font to use. The following fonts are available:

0—SIMGRAPHICS Il system font 1—Simple

2—Roman 3—Bold Roman
4—1Italic 5—Script
6—Greek 7—Gothic

CALL TEXTCOLOR.R (color)
Set color index to use for drawing text.

CALL TEXTSIZE.R (size)
Size given in NDC units. Five sizes are available. Exact details depend on the de-

vice driver.

CALL TEXTALIGN.R (horiz, vert)
Set text alignment, in tenths of degrees from 0 to 360°. The PC implementation
only supports 0, 90, 180 and 270°.

CALL TEXTANGLE.R (degrees*10)
Set text rotation angles in tenths of a degree.

9.2.6 Character Output Using System Text

Subsequent text primitives created by cal WGTEXT.F can be defined to use a raster text
font with a call tcTEXTSYSFONT.L i.e.

let FAMILY.NAME = "Times Roman"

let POINT.SIZE =12

let ITALIC.DEGREE =100 “ range is 0-100
let BOLDFACE.DEGREE =0 “ range is 0-100

call TEXTSYSFONT.R given
FAMILY.NAME, POINT.SIZE, ITALIC.DEGREE, BOLDFACE.DEGREE
call WGTEXT.R(“Hello World” X, Y)

From aboveFAMILY.NAME is a string known to the toolkit which identifies the font. Font
sizes are ipoints, the size of which is determined by the toolkit. An integer is used to de-
fine both the amount of “slant” in the italic, and the darkness of the boldface (for most fonts
only two degrees are provided.). CallTEXTFONT.F will re-enable vector fonts.

9.2.7 System Font Browser

A predefined dialog box can be brought up programmatically allowing the user to select
system font attributes from those availible on the server. This is done by calling
FONTBOX.F as follows:

let TITLE = “Select a font”

call FONTBOX.R given TITLE yielding
FAMILY.NAME, POINT.SIZE, ITALIC.DEGREE, BOLDFACE.DEGREE

135

SIMGRAPHICS Il User’s Guide

The yielded arguments are identical to those described aboTEXTSYSFONT.FE!
FONTBOX.F will not return until a font has been selectedcance has been pressed. In
this case the result FAMILY.NAME will be “”.

9.2.8 Loading a Font Re-definition File

Since the family names for fonts vary from system to system, it is desireable to have a font
re-definition file. This file equates a generic family name given in the program to one or
more possible system specific names for that font. The format is as follows:

“generic_nam;* “system_nam7” “ system_nam;3” “ system_nams” ...
“generic_namz* “system_namy3” “ system_nam3’ “ system_nan3” ...

z

“generic_nam;* “system_nam3" “ system_nam;z" “ system_nam3” ...
A typical re-definition file could look like this:
"times roman" "Times Roman" "Times New Roman" "Times"

wheretimes roma is the name used within the program. The first font name out of the
subsequent re-definition which corresponds to a font available on the system will be used
in place oftimes roman . A font file is loaded using the routiLOAD.FONTS.R given
FILE.NAME.

9.2.9 The Shape Example Revisited

This program accomplishes exactly the same function as the program NEWSHAPE dis-
cussed in Chapté. It is repeated here to illustrate the code which must be included in a
model if SIMDRAW is not used. There are situations in which this might be necessary.
For example, if some aspect of the icon changes dynamically during the simulation, there
is no way to describe that to SIMDRAW. The appearance of the icon could be made de-
pendent on attribute values which change as the simulation proceeds. (We have already
seen an example of this in the Gold Mine of Cha7.)er

Preamble "Case Study "OLDSHAPE"
" This shows a simple dynamic graphics output using SIMGRAPHICS II.
It draws a shape and moves it around the screen.

"This version does not use the Icon Editor.
"It shows the details for generating an icon without the Icon Editor.

Normally mode is undefined
Processes

Every SHAPE has

a SHAPE.ICON

Define SHAPE.ICON as a pointer variable
Dynamic graphic entities include SHAPE
Define . X to mean 1
Define .Y to mean 2

' Change SIMGRAPHICS Il indices from numbers to words

Define .RED to mean 2
Define .GREEN to mean 3
Define .SOLID.FILL to mean 1

136

Chapter 9. Advanced Topics

End "Preamble

Mam

Set up the world view and view port

Let VXFORM.V =7 " View port number
Call setworld.r(0.0, 2000.0, 0.0, 2000.0) " World view
Call setview.r(0, 32767, 0, 22755) " Screen view

Reserve the array that describes the ICON and fill it.
Define ICON.ARRAY as a 2-dim real array
Reserve ICON.ARRAY as 2 by 7

Let ICON.ARRAY(.X,1) = 40. LetICON.ARRAY(.Y,1) = -100.
Let ICON.ARRAY(.X,2) = 40. LetICON.ARRAY(.Y,2)= 0.
Let ICON.ARRAY(.X,3) = 100. LetICON.ARRAY(.Y,3)= O.
Let ICON.ARRAY(.X,4) = 0. LetICON.ARRAY(.Y,4) = 100.
Let ICON.ARRAY(.X,5) = -100. Let ICON.ARRAY(.Y,5)= 0.

Let ICON.ARRAY(.X,6) = -40. LetICON.ARRAY(.Y,6)= O.
Let ICON.ARRAY/(.X,7) = -40. LetICON.ARRAY(.Y,7) = -100.

" Make 1 second of real time pass for every second of simulated time

Let TIMESCALE.V =100

Put the process notice for this shape on the event list
and associate the icon with it.

Activate a SHAPE now

let SHAPE.ICON(SHAPE) = ICON.ARRAY (*,*)

Start simulation

Release ICON.ARRAY (*,*)

End "Main

Process SHAPE

Define | as an integer variable
Set up the parameters for controlling motion
Let DRTN.A(SHAPE) = 'V.SHAPE'
Let MOTION.A(SHAPE) ='LINEAR.R'
Let VELOCITY.A(SHAPE) = VELOCITY.F(200.0, PI.C/4)
Let LOCATION.A(SHAPE) = LOCATION.F(0.0, 0.0)
Make the first move
Work 10 units
Change the direction of motion to straight down
Let VELOCITY.A(SHAPE) = VELOCITY.F(200.0, - PI.C/ 2)
Work 5 units
Change the direction of motion again
Let VELOCITY.A(SHAPE) = VELOCITY.F(200.0, 0.8 * PI.C)
Make the shape rotate
Forl=1to 60
Do
Add PI.C /60 to ORIENTATION.A(SHAPE)
Work 0.1 units
Loop
Stop the movement and pause to admire the results
Let VELOCITY.A(SHAPE) =
Work 5.0 units

End " SHAPE

Display routine SHAPE Given SHAPE

Define SHAPE as a pointer variable "The particular SHAPE to be drawn

Define NUMBER.OF.POINTS as an integer variable
Define ICON.ARRAY as a 2-dim real array

Let ICON.ARRAY(*,*) = SHAPE.ICON(SHAPE)

Let NUMBER.OF.POINTS = dim.f(ICON.ARRAY(1,%))
Call fillstyle.r(.SOLID.FILL)

Call fillcolor.r(.RED)

Call fillarea.r(NUMBER.OF.POINTS, ICON.ARRAY (*,%))
Call linecolor.r(GREEN)

Call polyline.r(NUMBER.OF.POINTS, ICON.ARRAY (*,*))

End "SHAPE

137

SIMGRAPHICS Il User’s Guide

9.3 Using Segments

Effective generation of moving or changing display images requires either the complete re-
drawing of the display at each change or the ability to selectively erase and redraw parts of
the display. The first approach requires redundant work in the common case where a few
objects are required to move against a static background.

An alternative is to structure the display, identify the grouped components of each object
representation, and then provide facilities for manipulating these components. This is done
using "segment.” Each segment has an identifier and comprises a logical grouping of re-
lated graphic primitives. SIMGRAPHICS Il provides operations to make a segment visible
or invisible or to delete it entirely. Further, by attaching a priority level to each segment,
the graphics support can consistently resolve the ambiguity when object representations in-
tersect on the display, i.e. "priority" determines which segment is displayed on top.

A segment provides a means of grouping a related sequence of display primitives (gener-
ated by calls to the graphics library routines) and attaching an identifier to the group. The
identifier is an integer number returned to the application program when the segment is cre-
ated, and is usable as a handle to change segment properties (such as visibility).

A program can build segments using one of the following routines:

CALL OPEN.SEG.R
Opens a segment. A segment identifier is set in the global vaiSEGID.V.

CALL CLOSE.SEG.R
Closing a segment makes it visibtSEGID.V is zeroed.

CALL DELETE.SEG.R (segid)

Deletes the indicated segment. All primitives in the segment are erased from the
display surface.

Only one segment may be open at any time. A segment may not be re-opened and edited.
While a segment is open, its ID is available in the global varSEGID.V. This value is

copied to theSEGID.A attribute of the display entity upon exit fronDISPLAY routine.

Note thaOPEN.SEC andCLOSE.SEC should never be called from within a display routine.

Once a segment is closed, its attributes may be modified using this identifier and the follow-
ing library routines:
CALL GPRIORITY.R (segid, pri)

Explicitly set or change the priority of a segmepri is an integer in the range 0
to 255.

CALL GVISIBLE.R (segid, vis)
Make a segment visible or invisible, whwis is an integer; 0 = invisible, 1 = vis-
ible.

CALL GDETECT.R (segid, det)
Make a segment detectable to the locator, wdet is an integer; 1 = detectable,
0 = not detectable.

138

Chapter 9. Advanced Topics

CALL GHLIGHT.R (segid, hi)
where hi is an integer; 0 = off, 1 = highlight on. Set the highlighting status of a
segment. When highlighted, the entire segment is drawn using color index number
15.

9.3.1 Segment Priority

A segment may have a priority. This priority determines the precedence of any overlapping
or intersecting images. A high priority segment is drawn on top of an underlying low pri-
ority segment. Priorities are also used to maintain the accuracy of the screen. One image
will emerge from behind another unscathed. Segments of zero priority, howewnot are
preserved in this way.

Note that the relationship between differing priorities only exists with segments drawn un-
der the samvxform.v value. All segments drawn under cxform.v value will over-
lap segments drawn under any higvxform.v value, regardless of priority.

When objects overlap, segment priorities determine the order of redrawing moving objects.
When priorities are equal, the item drawn last covers anything under it.

When a display routine exits, the valueSEGPTY.A (display entity) is given to
GPRIORITY.R to set the priority of the segment. A value of zero for this attribute causes
the default priority, zero.

9.3.2 Using Priority Zero

Objects in priority zero are not redrawn when their bounding box is overlapped by moving
objects. This makes animation faster. Objects in priority zero will be eaten if they are over-
lapped by moving objects.

Static objects that will never be crossed or otherwise overdrawn by an animated object may
be drawn with priority zero. This is particularly important if the bounding box of the static
object is much larger than the object itself and is crossed by animated objects.

Unimportant items crossed by moving objects can often be represented in priority zero.
This could leave their image in a temporarily damaged state, but prig¥itle a visual

trace of the path of moving objects. For instance, if the entire display surface is cross-
hatched in priority zero (usirFILLSTYLE.R), moving objects will appear to wear paths

in the image. A model could then periodically refresh its background to repair the damage.

9.3.3 Other Segment Operations

Library routineGDEFERRAL.I determines whether or not the screen is immediately updat-
ed as segment status changes. When several overlapping segments are being modified at
once, faster operation may result from the following sequence of statements:

CALL GDEFERRAL.R(1)
(modify the segments)
CALL GDEFERRAL.R(0)

139

SIMGRAPHICS Il User’s Guide

9.3.4 Drawing Backgrounds

Color number zero is the background color and often makes a good background surface.
RoutineGCOLOR.Ican be used to make it appropriate to the application. Forinstance, blue
could represent water, green could be grass, and grey or brown could serve for a factory
floor.

GCOLOR.Ican also be used to change the current representation of a color. For example,
the background color could be changed from dark to light to represent the time change from
night to day.

9.4 Additional Attributes of [Dynamic] Graphic Entities

Graphical properties can be given only to temporary entities, and not to permanent ones.
In addition to the attributes described above and any user-defined attributes, an entity de-
fined asGRAPHIC has the following system-defined attributes:

SEGID.A (entity) Integer, segment identifier
SEGPTY.A (entity) Integer variable. Display priority.
ORIENTATION.A (entity) Angle in radians.

LOCATION.A (entity) Location in world coordinates.

The following constructs can be queried directly to access the X and Y coordinates of the
location represented t[LOCATION.A (actually, functions are invoked to access the val-
ues.):

LOCATION.X (entity) X-coordinate of entity location.
LOCATION.Y (entity) Y-coordinate of entity location.

Both LOCATION.X andLOCATION.Y return values in real world coordinate units. When
working withDYNAMIC GRAPHI(entities, the values LOCATION.X andLOCATION.Y

will change as simulated time advances. They are always up-to-date in SIMSCRIPT event
and process routines.

DYNAMIC GRAPHIC entities have the following additional system-defined attributes:

VELOCITY.A (entity) Velocity of the object.

MOTION.A (entity) Subroutine pointer to a subroutine called period-
ically to animate the object.

CLOCK_.A attribute (entity) Doublevariable; time of last position update. This
value is maintained by the routine called through
MOTION.A.

The following functions are provided to accessX andY components of the velocity vec-
tor represented EVELOCITY.A:

VELOCITY.X (entity) X-component of velocity.
VELOCITY.Y (entity) Y-component of velocity.

140

Chapter 9. Advanced Topics

LOCATION.A andVELOCITY.A are left-monitored attributes. Any change in the location

of a graphic entity must cause it to be redisplayed. Thatis why the location must be updated
using theLOCATION.F function, not by updating the X and Y coordinates separately. The
function LOCATION.F takes the coordates and generates a value of the same type as
LOCATION.A. You must set the values of location and velocity as follows:

let LOCATION.A(entity)=LOCATION.F(X_coord,Y_coord)
let VELOCITY.A(entity)=VELOCITY.F(speed, angle)

VELOCITY.F works in a similar way for velocity attributes.

9.5 Low-Level Input Constructs

This paragraph covers more elementary interactive input than was covered by the para-
graphs on SIMGRAPHICS Il forms. Graphical input is provided by the mouse. The fol-
lowing routines apply.

RoutineREADLOC.F, described in AppendiA, returns the location of a mouse click, in
real world coordinates. The calling routine gives the following input parameters:

POSX X-coordinate of a position in the window, in real world coordinates.
POSY Y-coordinate of the position.

This point is transformed onto the window surface with a viewing transformation specified
by the current value (vXFORM.\. The graphical cursor is placed on the display surface at
the indicated point. The value of the nexguanent indicates the representation of the
graphical cursor, as follows:

STYLE Style of graphical cursor:
0= Cross-hair. Moves as the mouse is moved.

1= Rubber Band. Draw a straight line from the initial point to the cur-
sor position, following the moving cursor.

2= Rubber Box. Draw a rectangle. One corner is at the initial cursor
position, and the other corner follows the cursor.

3,4 = Ifthe global variablDINPUT.V points to another icon, that icon fol-
lows the cursor on the screen, at the location of the mouse.

16= Read locatorasynchronously from within a process routine.

The graphical cursor is under control of the mouse, and remains so until the mouse button
signals completion of the graphical input operation.

When the operation is completed, the final cursor position is returned in the three yielding
parameters:

NEWX X-coordinate of a position on the display surface, in Real World Co-
ordinates.
NEWY Y-coordinate of the position.

141

SIMGRAPHICS Il User’s Guide

VXFORM.V Viewing transformation in effect at new cursor position.

READLOC.F, called with one of the styles listed above, can be called either from a process
or outside of simulation, e.g. froMAIN. If called from a process, it stops the scheduling

of all processes. This effectively stops the animation. With avaSTYLE equal tcl16,

you must calREADLOC.Ffrom a process, either directly or through a chain of routine calls.
Such a call suspends only the process that cREADLOC.F, while the otheprocesses
continue to be scheduled. OtherwSTYLE=16 behaves likSTYLE=2. The suspended
process is reactivated when a mouse button is pressed. If the yDINPUT.V is set to
pointto someicon, iILOCATION.Aattribute is updated automatically as the locator is moved.
DINPUT.V is always displayed under viewing transformation nurOler

9.5.1 Selecting a Segment

SIMGRAPHICS Il allows the operator to select a specific object from those displayed on
the screen. This is done by calling two routines, as follows:

GDETECT.F Marks segments as detectable. Selection applies only to detectable seg-
ments.

READLOC.F A side effect oREADLOC.F s that the identity of the nearest detectable
segment is returned in global variaG.4. AppendixA describes the
rules that determine which segment is nearest.

A special routine is provided to simplify handling of the most common case of selection.
RoutinePICKMENU.F, described in AppendiA, is the simplified menu selector.

9.6 Programmatically Definable System Cursor

The system cursor is usually shown by a small arrow. The default cursor can be changed
in your SIMGRAPHICS program as follows:

call SETCURSOR.R(1) " set to busy (watch) cursor

call SETCURSOR.R(0) " reset to the normal (arrow) cursor

9.7 Time Unit Conversion for Simulation Graphics

Many users of graphics have similar needs regarding time and distance units, and related
unit conversions. This section contains information to help centralize solutions to these
needs.

The SIMSCRIPT II.5 language provides standard time unDAY¢, with built-in conver-

sion procedures to handle weeks, months, and years, and other conversion procedures to
handleHOUR andMINUTES. The words in the language operate under the assumption that
TIME.V = 1.0 UNITS means that one day has elapsed in the simulation.

142

Chapter 9. Advanced Topics

SIMGRAPHICS II provides time synchronization ¢lugh the variablTIMESCALE.V.
This variable converts elapsed time (in hundredths of a second) into simulated time units.
The operation:

LET TIMESCALE.V =100

will cause 1 unit (1 day) of simulation time to operate in every elapsed second, assuming
only that the computer can process the model fast enough. Likewise, the operation:

LET TIMESCALE.V = HOURS.V * MINUTES.V * 60 * 100

will cause exact real time synchronization, with 1 unit of simulation time to operate in every
elapsed day.

Many problems work better in different units. For these, SIMSCRIPT provides the
undimensioned synteUNITS, which is scaled by the user. The language syntax that de-
scribesMINUTES, HOURS, DAYS, WEEKS, MONTHS, andYEAR?¢is not used in problems
worked inUNITS.

For example, consider a problem in which it is decided that the basic time unit is the mi-
crosecond. It is better to use statements like:

WAIT 7 UNITS "units in microseconds

which allows 7 microseconds of simulated time to pass. To observe simulation progress at
the rate of 1 microsecond of simulated time every 1 second of elapsed time, use the
initialization operation:

LET TIMESCALE.V = 100

143

SIMGRAPHICS Il User’s Guide

144

Appendix A. SIMGRAPHICS Il Variables and
Routines

This appendix describes the routines and variables that are common to all implementations
of SIMSCRIPT 11.5 SIMGRAPHICS 1I.

Function ACCEPT.F (FORM.PTR, CNTRL.RTN)
Arguments:

FORM.PTR A pointer to the graphic input form to be used. This pointer was ob-
tained in theSHOVgtatement.

CNTRL.RTN This is either the name of a control routine to control the graphic in-
teracton, or simply O to specify no control routine. If there is no
control routine, then it is left entirely up to the automatic processing
to manage the interaction.

Function: Accept graphic input from the screen.

Description: Returns the reference name of the last selected field in a form. Any
data which may have been entered by the user is then accessible
through the value attributes and names of the various fields in the
form.

Routine CIRCLE.R (POINTS(*))

Arguments:
POINTS(*) Real, 2-dimensional array, reserved as 2 by N, whexr@ NValues
are in real world coordinate®OINTS(1, ...) are the x-coordi-
nates.POINTS(2, ...) are the corresponding y-coordinates.
Function: Draw a circle.
Description: A circle is drawn, with the center at the first given point. The second

given point is any point on the circumference. Any points after the
second are ignored.

The circle is drawn with attributes set througihLCOLOR.R,
FILLSTYLE.R , and FILLINDEX.R .

Routine CLEAR.SCREEN.R

Description: Erases all graphics in the current screen. No segments or entities are
destroyed.

Attribute CLOCK.A (DSPLENT)
Mode: Double.
Subscript: Pointer to @RAPHICentity or to aDYNAMIC GRAPHICentity.

145

SIMGRAPHICS Il User’s Guide

Description: Time of last position update. This value is maintained by the routine
called througtMOTION.A.

Routine CLOSE.SEG.R

Side effects: The value 0SEGID.V is set to zero.

Function: Close a segment.

Description: The segment is closed. No additional primitives may be added to it. Its rep-
resentation is made up-to-date on the displayasatfNo drawing occurs
until the segment is closed.

Routine CLOSEWINDOW.R (WINDOW.ID)

Arguments:

WINDOW.PTR Pointer. Identifier returned tOPENWINDOW.R

Description: Closes a SIMGRAPHICS Il window given its pointer. Note that graphical
entities contained in this window are NOT destroyed.

Attribute DARY.A (FIELD.PTR)

Arguments:

FIELD.PTR A pointer to a field in a graphic input form.

Description: An array of text variables from a field on an input form. For instance, in list
boxes it is a pointer to the array of text variables in the list.

Attribute DDVAL.A (FIELD.PTR)

Arguments:

FIELD.PTR A pointer to a field in a graphic input form.

Function: Access the numeric value attribute of a field.

Description: This is used to accept or alter information in one field of a form. For in-
stance, in value boxes it is the value which the user entered or which was
pre-set.

Routine DELETE.SEG.R (SEG.ID)

Arguments:

SEG.ID Integer. Identifier of a segment, as producedOPEN.SEG.F.

Function: Delete a segment.

146

Appendix A. SIMGRAPHICS Il Variables and Routines

Description: The segment is deleted. Its representation is removed from the display sur-
face. Space occupied by its data structures is recycled.

Function DFIELD.F (FIELD.NAME, FORM.PTR)

Arguments:

FIELD.NAME The text string name of a graphic field.
FORM.PTR A pointer to a graphic input form.
Function: Returns a pointer to the specified field.

Description: The acquired field pointer is used to access the attributes of the graphic input
field, for examining input, altering values, or setting control attributes.

Attribute DRTN.A (DSPLYENT)

Mode: Subprogram variable. The subprogram does not return a value.

Subscript: Pointer to éGRAPHIC entity or to eDYNAMIC GRAPHIC entity.

Function: Associates a display routine with an instance of an entity.

Description: The use of a particular display routine is indicated through the value of the
DRTN.A attribute. The display routine is normally generated by the com-
piler and has a name of the fo' V.routine_name '

Attribute DTVAL.A (FIELD.PTR)

Arguments:

FIELD.PTR A pointer to a graphic input field.
Function: Access a text value associated with the field.
Description: DTVAL.A is used to access a text value associated with a field. For instance,

in text boxesDTVAL.A has the value of the input or pre-set text.

Routine FILEBOX.R(FILTER, TITLE) yielding PATH.NAME, FILE.NAME

Arguments
FILTER String. This variable can either be a wild card, or a full or partial file
name that uses wildcards.
TITLE String. The title of the file selection dialog box.

PATH.NAME String The path to the file selected by the user.
FILE.NAME String The name of the file selected from the dialog box.

147

SIMGRAPHICS Il User’s Guide
Function: Displays the standard dialog box for browsthroughthe directory structure.

Routine FILLAREA.R (COUNT, POINTS(*)

Arguments:

COUNT Integer. Number of points to process.

POINTS(*) Real, 2-dim array, reserved as 2 by N, wher= COUN. Values
are in real world coordinate:POINTS(1, ...) are the x-coordi-
nates.POINTS(2, ...) are the corresponding y-coordinates.

Function: Draw a line or a polygon.

Description: A filled area (polygon) is drawn connecting the indicated points. The area
is drawn in the current fillcok, fillindex, and fillstyle specifiedhrough
routinesrFILLCOLOR.R, FILLINDEX.R , andFILLSTYLE.R . If the last
point is not the same as the first, they will be connected to close the filled
area.

Routine FILLCOLOR.R (COLOR.INDEX)

Arguments:

COLOR.INDEX Integer. Color index number. May have values from O to
255.

Function: Set color of subsequent fill areas.

Description: See the discussion of colors elsewhere in this report for further information.

Routine FILLINDEX.R (INDEX)

Arguments:
INDEX Integer. Identifies a style of fill hatch:

1 = narrow diagonals
2 = medium diagonals
3 = wide diagonals
4 = narrow crosshatch
5 = medium crosshatch
6 = wide crosshatch

Function: Set style of subsequent fill hatch areas.

Description: The standard configuration offers six fill hatch styles.

148

Appendix A. SIMGRAPHICS Il Variables and Routines

Routine FILLSTYLE.R (STYLE)

Arguments:
STYLE Integer. Identifies a style of fill:
0 = Hollow area
1 = Solid color
2 = Pattern (appearance is device-dependent)
3 = Use hatch fill. Pattern is set FILLINDEX.R .
Function: Set style of subsequent fill areas.

Description: The standard configuration offers the indicated styles.

Routine FONTBOX.R(TITLE) yielding FAMILY.NAME,
POINT.SIZE,BOLDFACE.DEGREE ITALIC.DEGREE

Arguments:
TITLE String. The label for the font dialog box.
FAMILY.NAME String. The return of the font name selected in the dialog box.
POINT.SIZE Integer. The size of the font selected in points.

ITALIC.DEGREE Integer. Return value of the font slaelected by the user. The
range is from 0 to 100. For most fonts only two values are allowed.

BOLDFACE.DEGREE

Integer. Return value of the “boldness” of the font. The range is

from 0 to 100. For most fonts only two values are allowed.

Function: Provides a predefined dialog box for font specification that can be brought

up programatically to allow the user to select system font attributes.

Routine GCOLOR.R (COLOR.INDEX, RR, GG, BB)

Arguments:

COLOR.INDEX COLOR.INDEX is an integer with values from 0 to 255.

RR Integer. Amount of red to use, 0 to 1000.
GG Integer. Amount of green to use, 0 to 1000.
BB Integer. Amount of blue to use, 0 to 1000.
Function: Set a color representation for subsequent use under the indicated color in-

dex. RR,GC, andBE are the portions of red, green, and blue to use. The ef-

fect is seen as objects are redrawn.

149

SIMGRAPHICS Il User’s Guide

Routine GDEFERRAL.R (DEFER)
Arguments:

DEFER Integer.

1 = set deferral on
0 = set deferral off

Function: Set deferral status of entire system.

Description: When deferral is on, system changes may be made without updating the dis-
play. When deferral is off, changes to the display will be seen immediately.

For example, when a number of possibly overlapping segments are deleted,
response may be faster if deferral is on before deletion, and is then turned
off afterwards.

Routine GDETECT.R (SEG.ID, DETECT)

Arguments:
SEG.ID Integer or integer. A segment ID value as returneOPEN.SEG.F.
DETECT Integer.

0 = set undetectable status
1 = set detectable status

Function: Make a segment detectable or not.

Description: A detectable segment can be detected (READLOC.F or PICKMENU.F.

Routine GHLIGHT.R (SEG.ID, HIGHLIGHT)

Arguments:
SEG.ID Integer. A segment ID value as returnecOPEN.SEG.F.
HIGHLIGHT Integer.
0 = normal display
1 = highlighted

Function: Set the highlighting status of a segment. A highlighted segment draws at-
tention to itself on the display surface.

SIMGRAPHICS Il implements highlighting by drawing the entire segment
using the color index number.

150

Appendix A. SIMGRAPHICS Il Variables and Routines

Routine GPRIORITY.R (SEG.ID, PRIORITY)

Arguments:
SEG.ID Integer. A segment ID value as returnecOPEN.SEG.F.
PRIORITY Integer. Range is 0to 255. The entire graphical display is composed

by drawing segments in the order of their priority, starting with pri-
ority zero. This implies that, if segments overlap, the segment with
the higher priority overwrites the segment with lower priority. For
segments of the same priority, the drawing order is undefined. De-
leting a segment automatically redraws all segments with bounding
boxes intersecting the bounding box of the deleted segment, but not
segments with priority zero.

Function: Set or change the priority of a segment.

Routine GUPDATE.R

Description: Draws all unsegmented primitives.

Routine GVISIBLE.R (SEG.ID, VISIBLE)

Arguments:
SEG.ID Integer. A segment ID value as returnel OPEN.SEG.R.
VISIBLE Integer.
0 = Set invisible status
1 = Set visible status
Function: Make a segment visible or invisible.

Routine HANDLE.EVENTS.R(WAIT.FOR.EVENT)
Arguments:
WAIT.FOR.EVENT

Integer.

0—Return immediately
1—Wait for a mouse event to occur.

Description: Routine to handle low-level toolkit events such as window resizing. Neces-
sary for tight loop constructs occupying a large amount of time.

151

SIMGRAPHICS Il User’s Guide

Routine LINEAR.R (DSPLYENT)

Arguments:
DSPLYENT Pointer to eDYNAMIC GRAPHI(entity.
Function: Manage one object with linear motion.

Description: The values oLOCATION.A (present location) anCLOCK.A (time of last
change) are updated, and the entity displays itself. The user does not call
this routine. It is automatically assigned as the motion attribute of a
DYNAMIC GRAPHIC entity.

Routine LINECOLOR.R (COLOR.INDEX)
Arguments:

COLOR.INDEX Integer. COLOR.INDE)> is an integer with values from 0 to 255.
Function: Set color of subsequent lines.

Description: See the discussion of colors elsewhere in this report for further information.

Routine LINESTYLE.R (STYLE)
Arguments:

STYLE Integer. The following style values are supported:

1 =solid
2 =long dash
3 = dotted

4 = dash dotted

5 = medium dashed

6 = dash with two dots
7 = short dash

Function: Set style of subsequent lines.

Routine LINEWIDTH.R (WIDTH)
Arguments:
WIDTH Integer. In NDC units. The typical range is 00 to 32767 NDCs.

Function: Set width of subsequent lines.

152

Appendix A. SIMGRAPHICS Il Variables and Routines

Routine LISTBOX.SELECTED.R (LISTBOX.PTR, INDEX) Yielding SELECTED

Arguments:

LISTBOX.PTR Pointer to a listboFIELD within a form.

INDEX

Integer. Index into array of list items

SELECTED Return valuel if item has been selecte? if it has been double-

clicked on,0 otherwise.

Description: Given a listbox field pointer and an index into the array of items, this routine

returns whether this item is currently selected or has been double-clicked.

Routine LOAD.FONTS.R(FILE.NAME)

Arguments:
FILE.NAME String. The name of the file to be loaded.
Description: Loads the font re-definition filFILE.NAME. A font re-definition file der-

fines equivalent names for font families. For example, a program may use
the font name Times, when on Windows systems the equivalent system font
is Times New Roman and on Unix systems it is Times Roman. Then the
font re-definition file would consist of the line:

"Times"'Times New Roman™Times Roman"

The first entry is the generic (program) name and the subsequent entries are
the equivalent system fonts.

Left Monitoring Routine LOCATION.A (DSPLYENT)

Arguments:

DSPLYENT Pointer to a graphic entity, dynamic or static.

Function input valueA pointer to aLOCATION.E entity. The value must be obtained

Function:

Description:

from LOCATION.F (x, y) . This value indicates the location of
the origin of the object, in real world coordinates.

Provide location for modeling transformation.

Set or change the location of a moving object. Draw or redraw the object if
and as necessary. Assignment to this attribute triggers redisplaying of the
graphic entity. If you also want to chanORIENTATION.A, do it before
assignment to this attribute. If orORIENTATION.A is to be changed, the
object should be explicitly redisplayed.

153

SIMGRAPHICS Il User’s Guide

Function LOCATION.E (X, Y)

Arguments:
X Real, in real world coordinates.
Y Real, in real world coordinates.
Function value: Pointer to eLOCATION.E entity. This entity is constructed from the
x and y values to represent a coordinate position, and should only be
used in an assignmentLOCATION.A.
Function: Set a present location given x and y.

Function LOCATION.X (DSPLYENT)

Arguments:

DSPLYENT Pointer to a graphic entity, dynamic or static.
Function value: Real, in real world coordinates. This is a read-only value.
Function: Inquire the present X position.

Function LOCATION.Y (DSPLYENT)

Arguments:

DSPLYENT Pointer to a graphic entity, dynamic or static.
Function value: Real. In real world coordinates. This is a read-only value.
Function: Inquire the present Y position.

Routine MARKCOLOR.R (COLOR.INDEX)
Arguments:

COLOR.INDEX Integer. COLOR.INDEX is an integer with values from 0 to 255.
Function: Set color of subsequent markers.

Description: See the discussion of colors elsewhere in this report for further information.

Routine MARKSIZE.R (SIZE)

Arguments:
SIZE Integer. The value is 0 to 32767, in NDC units.
Function: Set size of subsequent markers.

154

Appendix A. SIMGRAPHICS Il Variables and Routines

Routine MARKTYPE.R (TYPE)
Arguments:

TYPE Integer. Identifies a marker type. Permitted values include:

1 =dot
2 = Cross
3 = star
4 = square
5=X
6 = diamond
Function: Set type of subsequent markers.

Routine MESSAGEBOX.R (MESSAGE.TEXT, TITLE.TEXT)

Arguments:
MESSAGE.TEXT Text. Identifies a one line message.
TITLE.TEXT Text. Title displayed in title bar of message.
Function: Display a one-line message to the user.

Description: A modal dialog box containing oroK button and a one line message will
be displayed. The user must click on OK button before execution can
resume.

Attribute MOTION.A (DSPLYENT)

Mode: Subprogram variable. The subprogram does not return a value.

Subscript: Pointer to eDYNAMIC GRAPHI(entity.

Function: Provides an animation velocity management routine.
Description: The use of a particular animation velocity management routine is indicated
through the value of ttMOTION.A attribute. The default routine is named
" LINEAR.R" .
Routine MSCALE.R (FACTOR)
Arguments:
FACTOR Scale factorDOUBLI:

Function: Set the scaling component of the system modelling transformation.

155

SIMGRAPHICS Il User’s Guide

Description: The effect of this routine is reset upon entry DISPLAY routine, or with
an explicit call c MXRESET.R with argument zero, aall to this routine
with the argument equal to zero, or before the display of an icon. The scal-
ing factor will take effect only if called from within a display routine or be-
fore a call tcCLOSE.SEG.F.

Routine MXLATE.R (POSX, POSY)
Arguments:
POSX Real. Distance to move.
POSY Real. Distance to move.

Function: Modelling transformation, translation from within a display routine or be-
fore a call tcCLOSE.SEG.F.

Description: Specifies translation (movement) component of a modeling transformation.
The translation is cumulative with previous translations. All rotation speci-
fied througl MZROTATE.R is performed before translation.

Will only take effect if called.

Routine MXRESET.R (DSPLYENT)
Arguments:

DSPLYENT Pointer to a graphic entity. An argument of O resets all the compo-
nents of the system's modeling transformation to null.

Function: Reset the modelling transformation to that of the given object.

Description: The rotation is set frotORIENTATION.A(OBJECT). The translation is set
from the LOCATION.A attribute of the given graphic entity.

Routine MZROTATE.R (THETA)

Arguments:
THETA Real value of rotation, in radians. Positive values indicate counterclockwise
rotation.
Function: Modeling transformation, rotation.

Description: Specify rotation component of a modeling transformation. Successive calls
on this routine are cumulative. The given rotation is added to previous rota-
tions.

Will only take effect if called from within a display routine or before a call
to CLOSE.SEG.Fk.

156

Appendix A. SIMGRAPHICS Il Variables and Routines

Routine OPEN.SEG.R
Side effects: Changes the value of global variaSEGID.V.

SEGID.V Integer. ldentifier of a new segment.

Function: Open a new segment.

Description: A new graphic segment is opened and made able to accept graphic primitive
operations.

Routine OPENWINDOW.R (XLO, XHI, YLO, YHI, TITLE, MAPPING yielding

WINDOW.PTR
Arguments:
XLO Integer. NDC coordinate for left edge of window (with respect to screen)
XHI Integer. NDC coordinate for right edge of window (with respect to screen)
YLO Integer. NDC coordinate for bottom edge of window (with respect to
screen)
YHI Integer. NDC coordinate for top edge of window (with respect to screen)

TITLE Text. Title of window
MAPPING Integer. Mapping mode of windo\0=LCS, 1=X major , 2=Y major)

WINDOW.PTR Pointer to a window display entity.

Description: Opens up SIMGRAPHICS Il window of the prescribed dimensions on the
screen and returns a display entity forSETWINDOW. can then be used
to associate a viewing transformation to this window. MAPPINC flag
defines how NDC space is mapped to the four boundaries of the window.

Attribute ORIENTATION.A (DSPLYENT)
Mode: Real, in radians. Positive values specify counterclockwise rotation.
Subscript: Pointer to :tGRAPHICentity or to eDYNAMIC GRAPHI(entity.

Description: Sets orientation of a graphic entity, for the modelling transformation. When
ORIENTATION.A is used, it should be set before a valuLOCATION.A is
set.

Routine PICKMENU.R GIVEN ARRAY(*) YIELDING INDEX

Arguments:
ARRAY (*) 1-dim POINTER array. Each element of the array is a graphic entity
pointer.
INDEX Integer. Subscript to array producedPICKMENU.F.

157

SIMGRAPHICS Il User’s Guide

Function: Selection from a menu using the mouse.

Description: Waits for the user to make a selection using the mouse. Reads the position
of the cursor when the user completes the selection. If the cursor is outside
the bounding box of any of the passed entities, sets index to zero. Otherwise,
returns the index of the highest priority object with the bounding box con-
taining the point where the mouse was clicked.

Routine POLYLINE.R (COUNT, POINTS(*))

Arguments:

COUNT Integer. Number of points to process.

POINTS(¥) Real, 2-dimensional array, reserved as 2 by N, whe=:COUNT
Values are in real world coordinat POINTS(Z, ...) are the x-
coordinates.POINTS(2, ...) are the corresponding y-coordi-
nates.

Function: Draw a line or a polygon.

Description: A line is drawn connecting the indicated points. The line is drawn with the
current line color, line style, and line width, as set by calling
LINECOLOR.R,LINESTYLE.R ancLINEWIDTH.R . If the last point is the
same as the first, this line will close to form a polygon.

Routine POLYMARK.R (COUNT, POINTS(*))

Arguments:

COUNT Integer. Number of points to process.

POINTS(*) Real, 2-dimensional array, reserved as 2 by N, whe=:COUN
Values are in real world coordinatePOINTS(1, ...) are the x-
coordinates.POINTS(2, ...) are the corresponding y-coordi-
nates.

Function: Draw a series of markers.

Description: Markers are drawn at the indicated points. The markers are drawn in the
current markcolor, marksize, and marktype, provided through routines
MARKCOLOR.R, MARKSIZE.F, andMARKTYPE.I

Routine POSTSCRIPTCTRL.R(ENABLE, SHOWICON)

Arguments:
ENABLE Integer. Enable conversion of window to PostScript.
SHOWICON Integer. If the value is greater than 0 the conversion button will be

displayed in the top-right corner of the window.

158

Appendix A. SIMGRAPHICS Il Variables and Routines

Description: Enables and configures PostScript output.

Routine POSTSCRIPT.R(PSFILE, PSSIZE, PSBORDER, PSMONO,
PSINVERT,PSHATCH, PSDIALOG)

Arguments:
PSFILE Text. The name of the output file.
PSSIZE Real. Height and width of the output in inches.
PSBORDER Integer. Show a window border in the output.
PSMONO Integer. Not yet implemented.
PSINVERT Integer. Not yet implemented.
PSHATCH Integer. Not yet implemented.
PSDIALOG Integer. Bring up a dialog box to get options for the conversion to

PostScript.

Description: Converts all graphics in the current window to PostScript.

Routine PRINT.SEG.R given SEGMENT.ID, USE.DIALOG Yyielding SUCCESS
Arguments:

SEGMENT.ID Integer. Segment identifier.

USE.DIALOG Integer. IfUSE.DIALOG is nonzero the system print dialog is dis-
played allowing the user to set print options.

SUCCESS Integer. Nonzero if printing was completed.

Description: Prints a portion of a window.

Routine PRINT.WINDOW.R given WINDOW.PTR, USE.DIALOG yielding SUCCESS
Arguments:

WINDOW.PTR Pointer to awindow display entity. Returned IOPENWINDOW.R.

USE.DIALOG Integer. IfUSE.DIALOG is nonzero the system print dialog is dis-
played allowing the user to set print options.

SUCCESS Integer. Nonzero if printing was completed.

Description: Prints a window.

Routine READ.GLIB.R (FILE.NAME)
Arguments:

FILE.NAME Text. File name of the graphics library.

159

SIMGRAPHICS Il User’s Guide

Function: Read a graphics library file from disk.

Description: This routine will read a graphics library file created by SIMDRAW into
SIMGRAPHICS Il. Subsequently, all icons, forms and graphs contained in
the library can be accessed throughSHO\ andDISPLAY statements.
Note that the filegraphics.sg2 is automatically read in during
SIMGRAPHICS Il initialization (if it exists).

Routine READLOC.R (POSX, POSY, STYLE) YIELDING NEWX, NEWY, XFORM.V
Arguments:
POSX Real, in real world coordinates: X anchor point of the cursor.
POSY Real, in real world coordinates: Y anchor point of the cursor.
STYLE Integer:

0 = Draw only cursor while reading
1 = Draw rubber band while reading
2 = Draw box while reading

3,4 = allows a global variabDINPUT.V to be assigned a pointer to a
SIMGRAPHICS Il graphic entity which will be repeatedly updat-
ed with a nevLOCATION.A value, thus tracking the locator until
the locator read is terminated.

16 = may be used within a SIMSCRIPT process routine (which
READLOC.F will suspend). The locator position will be sampled
from the timing mechanism, allowing the locator to be active
while a simulation is running. A suspended process is reactivated
after the mouse is clicked.

NEWX Final X position of the mouse in real world coordinates.
NEWY Final Y position of the mouse in real world coordinates.

XFORM.V Value of the viewing transformation used to map NDC locator position into
real world coordinates.

Function: Location function, using the mouse.

Description: The graphic cursor is started at the givPOSX,POS"). The operator
moves the cursor as desired, and the cursor is tracked by hardware or soft-
ware. READLOC.F scans the viewing transformations in reverse numerical
order - from 15 to O - until the NDC position can be reverse-transformed. If
the locator is within a viewport specified by some transformation number,
this number is returned. In this way, movement of the mouse between view-
ports or menus may be detected and acted upon. As a side effect, the global
integerG.4 will be set to thdD of the selected segment.

160

Appendix A. SIMGRAPHICS Il Variables and Routines

Function RGTEXT.F (X, Y, MAXLEN)

Arguments:
X (ignored)
Y (ignored)

MAXLEN (ignored)
Function: Read graphic text.

Description: A text string is read in from a popup dialog box and returned.

Routine SEARCH.GLIB.R yielding ARRAY.OF.ITEMS
Arguments:

ARRAY.OF.ITEMS
1 dimensional text array. An array containing the names of objects in any
loaded graphic library.

Description: Returns an array containing names of all objects in any loaded graphics li-
braries. The array should NOT be released.

Routine SECTOR.R (POINTS, FILL)

Arguments:
POINTS(¥)
Real, 2-dimensional array, reserved as 2 by N, whex 3. Values are in
real world coordinates POINTS(1, ...) are the x-coordinates.
POINTS(2, ...) are the corresponding y-coordinates.
FILL Integer. Identifies filling procedure:
0 = Draw an arc of a circle using current line style and color
1 = Draw a sector of a circle, fill with current fill style and fill color
Function: Draw an arc or a sector of a circle.

Description: The first point identifies the center of a circle. The second point, any point
on the circumference, is the beginning of the arc. An arc is drawn counter-
clockwise to the third point. Any points after the third are ignored.

Routine SEG.BOUNDARIES.R (SEGMENT.ID)
yielding SEG.XLO, SEG.XHI, SEG.YLO, SEG.YHI

Arguments:

SEGMENT.ID Integer. Identifies a segment.

161

SIMGRAPHICS Il User’s Guide

SEG.XLO Integer. Left side of bounding box in NDC units.
SEG.XHI Integer. Right side of bounding box in NDC units.
SEG.YLO Integer. Bottom side of bounding box in NDC units.
SEG.YHI Integer. Top side of bounding box in NDC units.
Function: Compute the bounding box of any existing segment.
Description: Computes the NDC coordinates defining the bounding rectangle of

the segment given kISEGMENT.IC. Can be called before the seg-
ment has been made visible.

Left Monitoring Routine SEGID.A (DSPLYENT)
Arguments:
DSPLYENT Pointer to a graphic entity.
Function input valuelnteger. A segment identifier as producecOPEN.SEG.F.

Function: Utility operation. Removes image of a segment and causes a new image to
be drawn.

Description: An assignment to this attribute will delete the previous segment, if one ex-
ists. Assigning the value 0 to this attribute will erase the representation of
an object.

Assignment to this attribute has the following side-effects:

1. Ifthe old value is not zero it is taken to be a segment identifier of an
existing segment. That segment is deleted.

2. If the new value is not zero, it is taken to be a segment identifier of
an existing segment. That segment is displayed with modeling
transformation determined ILOCATION.A andORIENTATION.A.

Global Variable SEGID.V
Mode: Integer. Segment identifier.

Description: While a segment is open, its ID is available in the global varSEGID.V .
This value is copied SEGID.A upon exit from iDISPLAY routine.

When a segment is closed, the vall SEGID.V becomes zero.

Attribute SEGPTY.A (DSPLYENT)
Mode: Integer. Display priority.

162

Chapter Appendix A. SIMGRAPHICS Il Variables and Routines

Subscript: Pointer to éGRAPHIC entity or to eDYNAMIC GRAPHI(entity.

Description: The priority of displays of graphic entities is supplied through this attribute.
Segments with a higher priority are displayed in front of lower-priority seg-
ments. The order of displaying segments of equal priority is not defined.

Priority O is treated specially by SIMGRAPHICS Il. Segments of this pri-
ority are not automatically redisplayed by the system. This feature can be
used to make animation faster.

Routine SET.ACTIVATION.R (FORM.PTR, ACTIVATE)

Arguments:
FORM.PTR Pointer to any form or form field.
ACTIVATE Integer:
0 = Deactivate or "grey out" the field.
1 = Activate the field; make it selectable.
Function: Set activation state of a form or field.

Description: Sets the activation state of a field on a form. A deactivated field will appear
“greyed out,” i.e., it is visible but cannot be interacted with. Setting the ac-
tivation state of a dialog box or menu bar will apply that state to all fields
contained therein. Fields are initially activated.

Routine SETCURSOR.R(CURSORSTATUS)
Arguments:

CURSORSTATUSInteger:

0 = Set the cursor to the normal (arrow) cursor.
1 = Set the cursor to the busy (watch) cursor.

Function: Sets the cursor status to busy or normal and changes its iconic representation
to a watch (hourglass) or arrow.

Routine SET.LISTBOX.TOP.R(LISTBOX.PTR, TOP.INDEX)

Arguments:
LISTBOX.PTR Pointer. Pointer to list box field obtained frOFIELD.F .
TOPINDEX Integer. Index of the list item to appear in the top of the list window.

Description: Will force the identified list box item to appear at the top of the list box win-
dow by appropriately scrolling the list box.

163

SIMGRAPHICS Il User’s Guide

Routine SETVIEW.R (V.XLO, V.XHI, V.YLO, V.YHI)

Arguments:
V.XLO Integer, in Normalized Device Coordinates.
V. XHI Integer, in Normalized Device Coordinates, whe0 <V.XLO <
V.XHI <32767).
V.YLO Integer, in Normalized Device Coordinates.
V.YHI Integer, in Normalized Device Coordinates, whe) <V.YLO <
V.YHI <32767).
On the standard SIMGRAPHICS Il configuration, the visible view-
ing surface includes all poin(x,y) where0 <x <32767 and
0 <y <32767. The parameters given SETVIEW.R should
define a rectangle within the visible viewing surface.
Function: Set viewport on the display surface.

Description: This function defines a rectangular viewport region on the display surface.
Areas, lines, and points outside this region are clipped.

Routine SET.WINCONTROL.R given WINDOW.PTR, CONTROL.ROUTINE
Arguments:

WINDOW.PTR Pointer to the window display entity.

CONTROL.ROUTINE
Name of the routine invoked on a window event.

Function: Invoke the giverCONTROL.ROUTIN on any of the following
asynchronous window eveniCLOSI, RESIZE, VSCROL, HSCROL,.
MOUSECLIC, MOUSEMO/E

Routine SETWINDOW. (WINDOW.PTR)
Arguments:

WINDOWPTR Identifier for a SIMGRAPHICS Il window returned by
OPENWINDOW.R

Description: Associates the current viewing transforvXFORM.\) to the window with
the given id. This means the all subsequent drawing to the viewing
transform will appear in this window. This allows the programmer to use
VXFORM.\ to specify which window will receive subsequent graphic input.
Note that a single viewing transform cannot be drawn in two separate
windows. Therefore, this call must be used if graphics are to be drawn in
more than one window.

164

Appendix A. SIMGRAPHICS Il Variables and Routines

Routine SETWORLD.R(W.XLO, W.XHI, W.YLO, W.YHI)

Arguments:
W.XLO Real. In real world coordinates.
W.XHI Real. In real world coordinates, wheW.XLO ne W.XHI).
W.YLO Real. In real world coordinates.
W.YHI Real. In real world coordinates, wheW.YLO ne W.YHI).

Note: UsuallyW.XLO<W.XHI andW.YLO<W.YHI. However SETWORLD. can be
used to invert or mirror-image a transformation.

Function: Defines a square or rectangle in world space. The argument values define
the areato be displayed. Points outside this area are clipped, and are not dis-
played.

Description: Sets the mapping of problem-oriented coordinates, given in real world co-
ordinates. These coordinates are converted into device-oriented coordi-
nates, given in NDC units, through parameters giv¢<SETVIEW.R.

This operation is applied to all points after the modeling transformation is
specified by callin(MXRESET.R, MXLATE.R, or MZROTATE.R

SETWORLD. allows the entire coordinate system to be upside down or re-
versed.

Routine SYSTIME.R YIELDING CURRENT.TICK

Arguments:

CURRENT.TICK Integer. The value represents the elapsed time, since midnight, in
1/100 second on most systems.

Description: This routine returns the current time of day in the indicated units.

Routine TEXTALIGN.R (HORIZ, VERT)

Arguments:
HORIZ Integer. Value =0, 1, or 2.
VERT Integer. Value =0, 1, 2, 3, or 4.
Function: Set portion of character that is aligned upon the graphic text position.

Description: The standard configuration supports the following values:

0 = left or bottom justified (the default)
1 = center justified

2 =right or top justified

3 = bottom of character cell

165

SIMGRAPHICS Il User’s Guide

4 = top of character cell

The character cell extends both above and below the actual charac-
ter.

Routine TEXTANGLE.R (ANGLE)
Arguments:

ANGLE Integer. Selects an angle in tenths of degrees, 0 to 3600.
Function: Set display baseline for subsequent characters.

Description: This operation allows displaying characters at angles.

Routine TEXTCOLOR.R (COLOR.INDEX)
Arguments:
COLOR.INDEX Integer. COLOR.INDE) is an integer with values from O to 255.

Function: Set color of subsequent characters.

Routine TEXTFONT.R (FONT)

0—SIMGRAPHICS Il system font
1—Simple

2—Roman

3—Bold Roman

4—Italic

5—Script

6—Greek

7—Gothic

Arguments:
FONT Integer. Indicates which font to use.

Function: Set text font of subsequent characters.

Routine TEXTSIZE.R routine (SIZE)
Arguments:

SIZE Integer. The character height in NDC units, with a range of 0 to 32767.
Function: Set size of subsequent characters.

Description: Each operating environment may support different sizes for text. The actual
size of the displeed characters will be the size closest to the requested value.

166

Appendix A. SIMGRAPHICS Il Variables and Routines

Routine TEXTSYSFONT.R given FAMILY.NAME, POINT.SIZE,
ITALIC DEGREE, BOLDFACE.DEGREE

Arguments:

FAMILY.NAME String. FAMILY.NAME is a string known to the toolkit which identi-
fies the font.

POINT.SIZE Integer. The size of the font in points.

BOLDFACE.DEGREE
Integer. An integer that denotes the darkness of the font. Range is
0 to 1000.

ITALIC.DEGREE
Integer. An integer that denotes the slant of the font. Range is O to
1000.

Description: Used to set the system font. Hlled, the font set USINTEXTFONT.F is
temporarily ignored.

System Global VariableTIMESCALE.V
Mode: Integer.

Description: Scales Real time (1/100 second) per simulated time unit.

System Global VariableTIMESYNC.V
Mode: Subprogram variable.

Description: When non-zero, this subprogram variable will point to a user exit routine,
called with the following parameters:

TIME.PROPOSED

GIVEN argument; mode DOUBLI. The value will be greater than
TIME.V .

TIME.COUNTERED

YIELDING quantity; mode iDOUBLI. The user must set this to a
value betweeTIME.V andTIME.PROPOSEI)

The YIELDING parameter will be taken as the next simulated time.

When events or processes are scheduled or canceled by the user time
exit routine, the value returned TIME.COUNTERE| must be less

thar TIME.PROPOSEL. This causes a rescan of the time file, pre-
venting potential difficulties.

167

SIMGRAPHICS Il User’s Guide

The user exit routine reached through TIMESYNC.V variable is
called whenever the simulated clock is to be updated, but before any
animation is performed.

Left Monitoring Routine VELOCITY.A (DSPLYENT)

Arguments:

DSPLYENT Pointer to eDYNAMIC GRAPHI(entity.

Function input valueA pointer to eVELOCITY.E entity . This value indicates the velocity
of the object, in real world coordinate units per simulated time units.

Assigning a value cO to VELOCITY.A causes the object's position
updates to cease. This stops the object from moving.

Except for the special value 0, the value oVELOCITY.A can only
be set to the function value producby VELOCITY.F (speed,
theta).

Function: Associate a constant velocity with a dynamic graphic entity.

Description: Set or change the velocity of a moving object. Draw or redraw the object if
necessary.

Function VELOCITY.F (V, THETA)

Arguments:

\% Real. Velocity in real world coordinate units per simulated time units.

THETA Real. Angle of motion, in radians.

Function value: Pointer to ¢VELOCITY.E entity. This entity is constructed from the

velocity and angle values to represent a vector location.
Function: Set a present velocity given absolute velocity and angle.
Description: Returns the indicated function value.

Function VELOCITY.X (DSPLYENT)

Arguments:
DSPLYENT Pointer to eDYNAMIC GRAPHI(entity.
Function value: Real. This function returns the x-coordinate of the current velocity
of the object, in real world coordinate units per simulated time units.
This is a read-only value.
Function: Inquire the present velocity, in the X direction.

168

Appendix A. SIMGRAPHICS Il Variables and Routines

Function VELOCITY.Y (DSPLYENT)

Arguments:
DSPLYENT Pointer to eDYNAMIC GRAPHI(entity.
Function value: Real. This function returns the y-coordinate of the current velocity
of the object, in real world coordinate units per simulated time units.
This is a read-only value.
Function: Inquire the present velocity, in the Y direction.

Variable VXFORM.V

Mode: Integer. Value between 0 and 15, inclusive.
Subscript: None.

Function: Indicates which viewing transformation is in effect.

Description: The default transformation is provided VXFORM.V = 0, a one-for-one
mapping of real world coordinates into Normalized Device Coordinates.

A mapping is indicated by the value of the system varVXFORM.\. This
variable indicates which transformation is to be defined, redefined, or used.

Multiple mappings between real-world spaces and areas on the display
screen are supported by SIMGRAPHICS Il. Such user-defined mappings
are specified withvVXFORM.\ and are defined through parameters given to
subroutinesSETWORLD. andSETVIEW.R. (Used in conjunction with
SETWINDOW. to define which window receives subsequent graphic input
and output.)

Routine WGTEXT.R (STRING, X, Y)

Arguments:
STRING Text.
X Real, in real world coordinates.
Y Real, in real world coordinates.

Function: Write a text string.

Description: The text string is written starting at the indicated point. The string is written
in the current text alignment, text angle, text color, text size, and text font,
using values provided through the routines that set these properties.

169

SIMGRAPHICS Il User’s Guide

170

Appendix B. Conversion to SIMGRAPHICS Il

B.1 Whatis SIMGRAPHICS I1?

SIMGRAPHICS Il is the next generation in graphics support for SIMSCRIPT II.5. Itin-
herits all of the capabilities of SIMGRAPHICS | but provides more features, functions, and
performance than its predecessor.

The user interface capabilities of SIMGRAPHICS | have been greatly improved upon in
SIMGRAPHICS II. Dialog boxes are no longer composed of output primitives drawn in
the canvas of a window, but are shown with the standard toolkit dialogs available on the
particular machine. For example, Microsoft Windows SIMSCRIPT applications will bring

up Windows menus and dialog boxes as well. Therefore, features that come with these
toolkits (such as editable text boxes, pinup menus, and movable dialog boxes) can now be
employed by SIMSCRIPT applications.

A new graphics editor has been written for SIMGRAPHICS II: SIMDRAW. This editor
lets you to see your icons, graphs and forms displayed in the same window. The new editor
makes selecting, guping, and changing styles, colors, and modes much easier than in
SIMGRAPHICS I. And since this editor is written in SIMGRAPHICS I, it also takes ad-
vantage of the toolkit support on a given computer, giving it the look and feel of the envi-
ronment under which it is running.

All icons, graphs, and forms created in the SIMGRAPHICS Il editor are contained in one
file (graphics.sg2). This means that directories will no longer be clogged up with
icn , .grf , and .frm files. A conversion utility §imcvt) is provided with
SIMGRAPHICS 1l that can convert existing icon, graph and form files to the
SIMGRAPHICS Il format.

Some additional graph types are available in SIMGRAPHICS Idighkal clocktype of

graph is available which is used in the same manner as the existing SIMGRAPHICS | an-
alog clock. A new type of graph used for displaying scalar values @kighal display

which shows a single scalar value surrounded by a titled baextAnetergraph is also
available for SIMGRAPHICS Il which can be used show display text variables. Charts and
trace plots have added capabilities. Multiple data sets within a chart can be displayed with
their bars shown side-by-side, as well as stacked or on top of each other. Trace plots can
now have data compressed in the X direction, rather than being lost when time exceeds the
maximum X value. A discrete flag can be checked in the editor to cause consecutive points
in a trace plot to be connected by a discrete line rather than by linear interpolation.

B.2 Differences Between SIMGRAPHICS | and Il

Converting your program to run under SIMGRAPHICS Il may require some source code
changes. Since SIMGRAPHICS Il uses the vendor toolkit to display dialog boxes and
menu bars, some of the SIMGRAPHICS | capabilities are not supported due to vendor tool-
kit restrictions. In addition to the possible source code changes, you must convert your

171

SIMGRAPHICS Il User’s Guide

icon, graph, and form files to the SIMGRAPHICS Il format. This is done tsimcvt .
The specific differences between SIMGRAPHICS | and Il are outlined below.

B.2.1 Icons

Under SIMGRAPHICS II, the priority of an icon is always with respect to other icons
drawn under the same viewing transformation. All icons drawn under aVXFORM.V
value will overlap icons drawn under a higlVXFORM.V, regardless of priority. This
prevents viewports from becoming intertwined. In addition, caSETWORLD. and
SETVIEW.R causes everything already drawn under the cuVXFORM.\ value to be
redisplayed under the new viewing transformation, i.e. pan and zoom are now automatic.

B.2.2 Graphs

Some minor repositioning may be needed in the conversion due to differences in the imple-
mentation.

B.2.3 Forms

In SIMGRAPHICS |, a form may consist of an arbitrary collection of icons, menu bars,
check boxes, etc. A form in SIMGRAPHICS Il must consist of one of the following three
objects:

1. A dialog box coraining checkboxes, push buttons, text boxes, value boxes, list
boxes, radio buttons, and text labels.

2. A menu bar containing menus which in turn contain menu items.
3. A palette (not supported in SIMGRAPHICS).
These are the only type of display entities that can be passe ACCEPT.F function.

SIMGRAPHICS | supports four independent options which can be applied to every form
and field: terminating, non-pickable, hidden, and user-defined. In SIMGRAPHICS II, only
push buttons can be terminating. Every form/field is pickable or activated by default. Any
form or field (i.e menu items, menu bars, dialog boxes, check boxes) can be activated or
deactivated at runtime using the rou SET.ACTIVATION.R . This routine takes the dis-

play entity and an integer specifying activation status as arguments. If a O is passed, the
form or field will be grayed-out by the toolkit. If 1 is passed the form/field will be redis-
played normally. The hidden and user-defined attributes are no longer supported.

B.2.4 Menu Bars

TheDIVAL.A attribute of a menu bar should not be set in SIMGRAPHICS Il. Menus will
always go away when the user is done with the interaction.

172

Appendix B. Conversion to SIMGRAPHICS I

B.2.5 Dialog Boxes

In SIMGRAPHICS Il adialog bo« cannotcontain icons. Unlike menu kers, there can be
morethan one dadog box dsplayed asynchronosly at a given time.

B.2.6 Push Buttons

Push buttons can be terminating a norterminating. In addition, apush button can bea
“verify” atribute, which means that every value boc withinthesame daog bo is werified
when this buton is pwshed. Thecontrol routinewill not be called when a \erify button is
pushed uress every value box las been successfully verified.

B.2.7 Radio Buttons

A new type of olject called aradio bo» isnow the container of agroup of edio butons that
are logicaly associated with each ather. (i.e. the radio boxisafidd of the fom, and the
radio buttons are fields d the ladio box) Radio butonsmust always be positioned in a
column.

B.3 Using the Conversion Utility

SIMCVT is aconversion piogram that converts your SSIMGRAPHICS | (SG1) formg/
graphs/ icons to SIMGRAPHICS Il (SG2) format and puts them into the file
gr aphi cs. sg2. The gr aphi cs. sg2 file will contain the SIMGRAPHICS Il objects
corresponding to the fom/graph/icon files. The SIMGRAPHICS Il object receves the
name ofthe SIMGRAPHICS | file.

The fil esto be converted can bespedfied onthe command|line, in aspecia conversion file
list, orinteradively. While SIMCVT is conwverting, it writes messagesto the text window,
aswdl to aconversonlogfilesi ncvt.l og. All error and warning messages from thecon-
versionwill appea in thisfile.

Note that SIMCVT cannot be considered a ‘hands-off” conversion utility. Because
SIMGRAPHICS Il must comply with the underlying window system'’s phil osophy, notall
things that were possible in SIMGRAPHICS | will be portable to SIMGRAPHICSIII.
Therefore, some hand-editing ofthe converted forms/graphs/icons may be recessary.

B.3.1 Calling SIMCVT — Command Line Arguments

SIMCVT can be called in three different ways: With command line arguments, with a
conversion file list argument and without any arguments, in which case you will be
prompted for the files to be converted. On Windows, SIMCVT is generdly called from
within SimLab throughthe Tools menu. Canmand line arguments can be gven in adialog
box.

In all cases, theresultsare writtento afilegra phics . sg2 inthecurrent drectory (where
SIMCVT runs), and any error orwarning messages will bewrittento a flesimcvtl og.
The dfferent waysto call SIMCVT are:

173

SIMGRAPHICS Il User’s Guide

1. Files specified as mmmand line arguments: The givenfiles ae mnverted.
Wildcards are not supported on Windows! When the conwversion is complete,
SIMCVT will ask youto press Return (to gve youtime to look at any messages)
andexit. For example:

simovt input.frmresults. frm

On Windows: Specify the arguments in put.frm and results.f rm in the
Arguments dialog box when you cdl SIMCVT from the SimLab Tools menu
(Convert SG1to SG2).

2. Filesspedfiedinaconversion list file When you tave alist of filesto beconwvert-
ed, youmay passthislist file as acommand lineargument to SIMCVT with an @
prefix. All fileswhose ramesare listed in this conversionlist file wil | beconverted.
Thisisespedally useful on Windows, which does not supportwild cards on com-
mand lines(youcannotsimply enter simcvt*. f rm). For example: InaDOSwin-
dow, crede and edit the conversionlist file. Then call SSIMCVT with thisfile. For
example, at the DOS command line, type:

dir *frm/w > cnvfiles.|st

Thiscreatesafilecnvf i les.] st with the names of dl the fileswith a.frm ex-
tenson. Theneditcnvfil es.lst sothat ony thewanted names are left.

Then when caling SIMCVT, specify the command line agument
@cnv iles . Ist .

3. Nocommand linearguments gven: When no command line arguments aregiven
a dl, youwill be pranpted to enter the file rames interactively. Again, wildcards
are notdlowed here. Enter “end” to exit SIMCVT.

B.3.2 Possible Problems with Forms

Graphs and icons will convert one-to-one from SIMGRAPHICS | (SG1) to
SIMGRAPHICS 1l (SG2). Only forms can cause some confusion, since the urderlying
window systems do nd suppot some of the features used by fomsin SG1. The features
that can no longer be suppoted under SG2 are li sted later in this appendix. Here we will
just discuss afew issues rdated to form conversion:

Controls not contained within a dialog box: When a fom (*. f rm file) isconverted
that containscontrols that are not contained by a dialog box,a dialog boxwil | beautomat-
icaly created forthem. In SG2, acontrol must always ke within a dialog box.

B.3.3 A Menu Bar Within a Form

SIMCV T will convert only menu hbersthat are bythemselvesin a fom file. Whenyou have
amenu bar within aform (didog box) SIMCVT will ignarethemenu bar and dl controls
behind it and give youan appropriate warning message (Conversion for that form stops
when themenu bar isfound).You shoud use SimEdit to save the menu bar into aseparate
form file by itself and then conwvert it separately.

174

Appendix B. Conversion to SIMGRAPHICS I

Any other icons contained in a form cannotbe converted dredly to SG2. Again, the un-
derlyingwindow systems do naot allow mixingicons and controlsin a dalog box. There-
fore, these icons are converted and then stored in aSG2 olject named after the fom, but
with a. i cn extension. Thus, the icons contained in gr ound. f rm would be stored in
grou nd.icn

Spedal command line optionsfor form conversion: SIMCVT has two specid command
line ofionsthat control the conversion of foms:

-i causesicons found in aform to be ignored rather than being put into a
*icn SQ&2 object.

-v button_id
causes all buttonswith thefield ID equal tothegiven butt on_id to be set
verifying. Thisoption can be sed any number of times.

Getting aSG1 DUMP: If you are getting surprising resultsfrom SIMCV T, youshoud use
SimEdit to create adump of the form youwant to convert. This dump will list all theitems
contained in the formand gve youmoreinformation to interpret the output.

B.3.4 Conversion of Files from PC DOS SIMSCRIPT

Problems can arise when trying to use orconvert forms/graphs/icons created urder PC
DOS SIMSCRIPT. Thisis because PC DOS SIMSCRIPT used an dd hinary format that is
incompatible with the newer SIMSCRIPT releases (all other platforms). Before using
SIMCVT to convert your forms/graphs/iconsto SIMGRAPHICS I, convert your forms/
graphsficons to ASCII form using the PC DOS SIMS®IPT Graphics editor. This ASCII
format can be ead withou prodems.

B.3.5 Miscellaneous Notes

Upper/lower case d file names: The converted forms/graphs/icons are stored in the fle
gr aphi cs. sg2 undcer the fle name they had under SIMGRAPHICS I. All given file
names are stored in lower case in gra phics. sg2. The SHOV command wsed to show a
SIMGRAPHICS form/icor/graph again maps all given file arguments to lower case. This
way, the upr/lower case spelling of fomer file names dees nd maiter.

B.3.6 Features No Longer Supported in SIMGRAPHICS I

The following guidelinesshould help you to write code that is fully portable between
SIMGRAPHICS | and SIMGRAPHICS II. All restrictions are due to the fact hat the
underlyingwindowing systemstake control over display, use and appearance ofmenusand
dialog boes. If you follow these gudelines your applicationsshoud beable to run uner
SIMGRAPHICS | and SIMGRAPHICS Il without change.

1. Do not rely on being able to change the color of controls in daog boxes, i.e. do
not make the color of butons, and boxes significant.

175

SIMGRAPHICS Il User’s Guide

176

In SIMGRAPHICS Il,activation and deactivation of menu items (indicated by
color change in SIMGRAPHICS 1) will be provided by a call to a routine
SETACTIVATION.R.

. Do not rely on being able tdirectly select menu, i.e. the top menu bar. In

SIMGRAPHICS | the control routine is called when you click on the top menu bar
and when you select a menu item, the control routine is called again.

In SIMGRAPHICS I, you can only select meitems, i.e. you will only return from
anACCEPT.F call after you have selectedeal of the menu tree.

. Do not rely on being able tattach icons to dialog boxe. In SIMGRAPHICS I,

you can, of course, have any number of icons on the screeng@actda clicks
there). They just cannot be part of a dialog box.

. Do not rely onGCOLOR.I to change the color of icons that have already been

drawn. SIMGRAPHICS I manipulated the color index table of the graphic display
it was running on directly. Thus, changing the RGB values of a particular color in-
dex immediately changed all the icons drawn with that color index.

In the supported windowing systems, colors are consideresourctthat must be

allocated ancsed afterward (this is done by SIMGRAPHICS Il). Thus,
GCOLOR.Rcan affect only the icons dravafter its call. The only exception is the
backgroun color. Changes of color inde0 (background) take immediate effect.

. Do notrely on being able to control the particular menu that is displayed, i.e. do not

use the attributDIVAL.A .

In SIMGRAPHICS II, menus are under the control of the windowing system (see
guideline number 2).

Index

Numerics
2-D PlOLS . 45
A
ACCEPT.F .. 80-86, 145
ACCUMULATE gatement........ccccveeevivveeeennn, 71
addng an oPect............oooiiiimeeee 33
addng an opectto thelibrarycccvvvee. 33
align and dktribute, shape......coeveeeiiiiiiiinnnn 42
ANMALTION ..ooiiiiiiee e 101
AICS. e e e e e e e e et e e nnen 39
ATBAS. .. 132
B
bar graph ..., 45, 48
DITMAPS ... eeee e 40
o)1) o TS 26, 40, 95
DUEON.....oeeeeecccce e, 54
buttonfieldoeviiiiiei, 31, 86, 95
C
caxadeale menus..........ccccveeieiiiii, 26
CAMEN POANT ...eiiiiiiiiii et e 42
changingthename d an olject........................ 33
Chart . 45
CheCK DOX ...vvviiiiiccecce e, 55
CIRCLE.RTOULINE.......cevveeiimriieeeeiiiiieenn, 133, 145
(ol £ 1=t 11, 38
CLEAR.SCREEN.RTOUINEcovevvviiieeeiinen, 145
Clipboadcooiviiieiiiii e 36, 54
CLOCK.A attribute.........ccccmrvrireeiiiiieeeenee, 140
ClOCKS. .ttt 50
CLOSE.SEG.Rroutingccccuvvveerinnnnnnn, 138, 146
CLOSEWINDOW.RIOUWINEcceevvevvieeeeiennen, 146
(o0 o] SHUR PR 44
color paletteooovviviieeiiimieee e 35,45
€combo DOXoevveeieiiiiieiiiiiiee 31, 52,57, 80, 90
commandlineargumentscccoecveeeenninnens, 34
COMiNUOLBSUIaCE.......eeiiiiiieeeieeee e, 48
COMIOIS ...uviiiiiiiieee e 52,54, 61
coadinae space handalies...............occuvvvneen, 43
COPY OMlON ..ceeiiiiiiieeiiitiiee e et 36
CrEEE .o 49, 52, 60, 71, 80
CUL OION oeiiiiiiiiie it 36
D
DARY.A attribute.......c..covevimeeeiiiiiiiieiiiinenn, 146
AASEL ..vvveeieiiieie e 48
DDVAL.A ot 86
DDVAL.A atribute.........oovvmeeeeeiiiiiiieiiiinnnn. 146
deete Optioncccvviiiiiiir e 36
DELETE.FEG.RIOUINE......ccceveeviiiieeeiiiinnn. 146
DESTROY cOmMmMand.........ccceeevvvvireeniiineneennn, 87
DESTROY stalement.........coceeevvivveeeeeiiinennnn, 110

DFIELD.Ffunction..........cccceeeennnee. 124, 147, 163
dial oo 51..
dialog bOX......ccvvviiiiiiieiiiiieeee, 11, 39, 53, 59
dialog box,tabbet.........cccoooiiiii 61
Dialog EditOr......cevveeeeiiiiiiee e, 31, 52
IAlS. v 51.
digital dsplay........ccoeeeeriiiiieieiiiiiieee e 52
AiIMENSON ... 43..
discrete suface........coovveeiiiiiiiice 48
DISALAY commanc...........cccceeeeeeveeennnnnnne 72,86
DISFLAY routinecceevvuvveeennn, 106, 131, 156
DISALAY gtatement.........cccoocveeeeerinenenen. 72,107
DRTN.A atributeccccceevvvviieeeiininnn, 131, 147
DTVAL.A atributecccovevvivvveeeevciieenn, 19, 147
DYNAMIC GRAPHIC entities 102, 108, 140, 145
E
edt graphicimagesccccvveeeeeeeee e, 11
edting oheds........ccccvveeeeiie e, 32
edtor, pdette...........oeccciiiiiieee e 66
ERASE.......cciiveviieee e 1,72, 86,110
F
field atribUeScovveeeeiiieeee e 81, 84
fieldidertifier........coooveeeniii 80, 85
File SéedionDialog......cccvvveeeviiiinnrnnnnnn. 93, 147
FILEBOX.RroUting........cccvvviiiiiiriee e 147
fill StYI€.uuveeeeiiieee e, 46, 49, 161
FILLAREA.RTOWINE ..., 148
FILLCOLOR.Rrouwine...........ccccvvvvvveenneeennn. 148
FILLINDEX.Rroutin€.......ccvvvveeeeeiiiienvinnnnnn, 148
FILLSTYLE.Rrouwin€.......cccvvveeeveiiiienrrinnnnn, 149
flipand rotae toolS.ccvvveeeeiiiiieeeiiiiieeee e 42
FONTBOX.RIOUINE......ccceeviiviiiiiiieeeeaeeen, 149
form panter.......cccovieiiiin 83
{0101 41T 88, 123, 141, 171
G
GCOLOR.R FOULINE.ccevieeeeeaiiiiiiiiiieeeeaennnn 149
GDEFERRAL.R rOUtiNE........cccovvviireeiiinnnnn, 150
GDETECT.RIOUINE.cccoviiiiieeiiiiiieeenins, 150
GHLIGHT.Rroutine.........coccouvveeriiieeeenins, 150
GOOlINK .o 60.
GPRIORITY.R rOULINE.......uvveeeeieeeeeeiiiiiiieeen, 151
GraphEditorccooveeviiiiieiiiieen, 12,31, 44
graphtypescceveeeviiieeeiiiieeeen, 12,31, 71,171
graphicssg2occvveeeeviiieeeeein, 1,5,71,95, 173
OraPRS..ccoiiie 11
O 1,43, 61
[0 01U | I 11..
GUPDATE.RIOULINEccoveeeeeiiiiiiiiiieeeeenn 151
GVISIBLE.RTOULINE.........uuvviiieiiaaaeeeniiiiiiens 151

177

SIMGRAPHICS Il User’s Guide

H @)
HANDLE.EVENTS.Rroutineccooeeeeeeeee. 151 OPEN.SEG.RTOULINE........ovvveiiiiiiiiiiieieeeeenee, 157
histograms..........ccoovieiieiiiiiiie e, 45,49,117 OPENWINDOW.RTIOUWINE.......ccovviriereeiinen. 157

| ORIENTATION.A routingccoceeeeeeeeeeeeeennnn. 157
icoNs............ 1,5,6,62, 71, 79,101, 110, 131, 172 P
IMageEditorcccveeeeiiiiieeeeeee e 31-36 paette bUtoN ... 609.
IMAGES ...iveieieeeee e e s e e e e e e 40 Palette EitOr.........cccvvviieiieee e, 31

K paette Sepaatorsccccvvvieeieeeee e 69

paette, CAOr ...coovvieiiiiiiie e 35, 45
keybaard acceeratorscooviimeniins 3L paette, MOUE.......coceeeeeeeeeeeeeeeeeeeeeeen 35, 66
L paette, Style ..ooevveeeeiii 35,44
PaN e 43.
label e 57 DASE OLON 1rvvveooeeeeeeeeeeeeee oo 36.
LayOU BAILOT ..o..oooies 12,31,33 PICKMENU.R FOUINEvveooeereeeererreeenn 157
Layow/Group OiON ..o 40 PIE ChALvveiiciie e 49,
level meter Ity 51 POYGONS .o 11, 38
LINEAR.R routlne_ .. 152 POLYLINER rOWiNe oo 158
ITINECOLOR' FOULME. ..ocvvieiiiinninssmneninaes 152 POYINES ...covieiiice e 37.
lines....ccovvvvieeeennnn, IS 11 POLYMARK .Rrowine ... 158
LINESTYLE.RTOUING ..o 152 PORSOHPE covoeeeeeeeeeeeeeeeeeeeeeeeeee e 23, 94
LINEWIDTH.Rroutine.........cccccvvvvvvimmneeennnn. 152 POSTSCRPT.RIOWING oo 159
Ilst bOX. 56 POSTSCHPTCTRL.RrOlJtIne 158
LISTBOX.SELECTED.Rroutine 153 resertation gaphics............... 121 31 71, 113
liSing OREASooovriviii 33 DHIMILIVES coveoeeeeeeeeee e 37
LOAD.FONTS.RIOUINE......oovvvviii 153 PRINT.SEG.R rOUNEcoorreveeeerere 159
LOCATI ON A rOthlne 153 PRI NT.WI NDOW.R routlne 159
LOCATION.Ffundionccccuveeevemmeeenennnn. 154 PHOMY v 41, 113, 138, 139
LOCATION.X fUN@ionoovvrnresimeenee 154 UG BUELOMS oveoeeeeeee e 172
LOCATION.Y fundionccceevvvvvimmeeeeennn, 154
R
M
) . . rado DOX ...ooovvvviiiiiiiccccc e 56.
making a duficae ofan ofjedcoooeev. 33 rado butons.................... 56, 80, 88, 96, 172, 17
MARKCOLORRTOUINEooovne 154 ragter file, IMPOMiNG ...veoeeeeeeeeeeee e 40
MARKSIZE.Rrouting......ccccceeeeeeviiiiieeneeennn, 154 READ.GLIB.RIOUINE oo 159
MARKTYPE.RTOUINEooooviim 155 READLOCRIOUINGvveoeeeeeeereeeeeree 160
menu ba...... s 62 FEITESENAION .v...veeoeeee e 48
MG’]U-Bar [0 [(0] S 31 (€SIZ€ oo 8, 12, 21, 33, 36, 53, 588, 125
MENUITEM. ... e 65 RGTEXT.Ffundion ... 161
MEMUS....ci s Ll OMAE oo 42.
MESSAGEBOX.RTOUINE.......ooovorvivnenns 155 L OUNANG e 38
mode_pehette s 36 RUNMNG SMDRAW. ..., 31
modding transformation..............c.ccoecmeeeeennn. 105
MOTION.A FOUINE ..., 155 S
MSCALE.Rroutingccccccvvveeeeiiiiiiceeeeeen, 155 SAVE oo 11, 15, 24, 31, 32, 71, 174
multi-linetext bOX......cccovvvveieeiiiiiiiemmeeeeeees, 56 SCOU oo 43, 56, 62, 79, 89, 123, 127
MXLATE.RToWine........ccoovveeereeeeee e, 156 SEARCH.GLIB.R FOUtNE. oo 161
MXRESET.R FOUINE......ccccoeecececrccrmirrrcrrn 156 SECHOF oo 38.
MZROTATE.RTOUINE.......cooviiiiiiiimeiiins 156 SECTOR.RTOUNGoovvevviieeeeceeeeeeen, 161
N SEGID.A TOUINE...........covviveeeeeieiiinieiiiien, 162
. . . SEGID.V globd variadeccooeivininenenn. 162
normalized deice COOdiNALScccvvevee.oe 43 SEGPTY.A @tfibUeovvveeeeeeeeereeeeeee. 162
sdeding, moving, andreSizingccveeeeenes 36
SETACTIVATION.Rroutineccoeeee, 163

178

SETLISTBOX.TOP.RIOUtiNgccvvveeennnns 163
SET.WINCONTROL.Rroutinecc.ueue... 164
SETCURSOR.RIOWINEcccveveeeiiiiiiiiiiieeenn, 163
SETVIEW.R rOULINE ...ceevvviianieieeiiiiiieeeen, 164
SETWINDOW.R routingccccevevvvvveeeeinnnn, 164
SETWORLD.Rroutine.......ccccceeeeviiiiiiiiiennn, 165
SN e 1,43
StACkNg @del......coovvveeeiiiiiciieeee e 41, 42
Style pHEtte ..o 35,44
System font BrowSer.........cvvivieie e, 93
SYySEMtEXL....vvviiiiiiiiiei e, 39, 135
SYSTIME.RTIOUINE........uvvimeeieeeeeiieiiiie 165
T
Tab REd .o, 60
TabbedDialogccccvvvvvevicmmriiiieeeeeeeeeen 60, 87
tAHES oo 58
TALLY Staement......cooocvveviieeeeeiniieenenns 1,71
terminaing fieldsoooeiiiiii) 98
text box .17-18, 31, 5657, 69, 8688, 96, 147, 171
TEXE MELEN .. 52
teXt [IMITIVES. v 39
TEXTALIGN.Rroutingccccccvvveeviivienennnne, 165
TEXTANGLE.Rrouting......cc.ccccveeviivienennne, 166
TEXTCOLOR.R rOUINE.ccmvvvereeniiieieennnnne 166
TEXTFONT.RIOULINEeeveiviiiiiiee e, 166
TEXTSIZE.RIOWINE.ceeeivimiiiee e 166
TEXTSYSFONT.Rroutine.........c.covvvveeennnee 167
timetrace POt .., 49
TIMESCALE.V system dobal vaiale.......... 167
TIMESYNC.V system dobal vaiabe............ 167
trace PotSuvveveeeeeeiiiiiiieereee 31,71,76,171
transferring amenu ormenuitemn..................... 64
\%
value atribUtes........ccvveveieiiiimm e 84, 145
VaAlUE DO 55
VECLOI tEXL .ot etem e 39
VELOCITY . A TOULINE......cceemiiiiinieriieeeeeenns 168
VELOCITY.Ffundion........cceoeeecvvvvvinennennnn. 168
VELOCITY . X fundionccccccvvvvinvineeeennnn, 168
VELOCITY.Y fundioncccceevvvvviivineneennnn, 169
verify button.........ccccceeeeenn. 54, 85, 89, 173, 175
vertices déningaprimitivecccoocveeeeniinns 41
viewing transformations............ccccceevviiveeeenne 103
VXFORM.V variadecccceovicviiiiiiiineeennnn, 169
W
WGTEXT.RIOULINEcevveviiameiiiiiiiiieeeeeen, 169
WINAON EVEMSooeeiiiiieecemieieeeeeee e, 126, 127
WITH clause.........cccuiiiiiiiiciiiiieeeeeeeeee, 72

Index

X

KBS, ceiiiiee ettt 46

XWA o 23, 26, 40, 95
Y

Y -BXIS. tveeeeiiutiieee e ittt e ettt e et e e 47,
Z

4010 1 0 E PP RPN 43, 62

179

SIMGRAPHICS Il User’s Guide

180

	Table of Contents
	List of Figures
	Preface
	Why Use Graphics?
	Organization of This Manual

	1. Overview of SIMGRAPHICS II
	1.1 Effective Use of Graphics and the User Interfa...
	1.1.1 Selecting Colors
	1.1.2 Scale and Size
	1.1.3 Designing a Background
	1.1.4 Representing Changes in System State
	1.1.5 How Many Objects Should Be Displayed?

	2. Tutorial
	2.1 How to Open a SIMGRAPHICS II Window with a Tit...
	2.2 Display Icons in the Default Window
	2.3 Use of Multiple Graphics Libraries
	2.4 Example "Window"
	Figure 2-1. Example Window

	2.5 How to Open Multiple SIMGRAPHICS II Windows
	Figure 2-2. Multiple Window Example

	2.6 SIMDRAW — the Graphics Editor
	2.7 Creating an Icon
	Figure 2-4. Creating a Cart Icon

	2.8 Adding Animation
	Figure 2-5. Output of the Image-1 Routine

	2.9 Creating a Dialog Box
	Figure 2-6. Dialog Box Editor Window

	2.10 Adding Graphical User Interaction Using Dialo...
	Figure 2-7. Dialog Box for Example IMAGE 2

	2.11 Creating a Graph
	2.12 Adding Presentation Graphics
	Figure 2-8. Example IMAGE-3

	2.13 Creating a PostScript File
	2.14 Using a Bitmap as a Background
	Figure 2-9. Example “San Diego” Showing Imported B...
	Figure 2-10. Example of a Bitmap Used as a Backgro...

	2.15 Creating Cascadeable Menus
	2.16 Using Cascadeable Menus
	Figure 2-11. Cascadeable Menu
	2.16.1 Cascadeable Menus in Simulation Programs

	3. SIMDRAW
	3.1 SIMDRAW Overview
	3.2 Running SIMDRAW
	Figure 3-1. Main Window
	3.3 Loading and Saving SIMGRAPHICS II Files
	3.4 Editing an Existing Object
	3.5 Adding an Object to the Library
	3.6 Removing an Object from the Library
	3.7 Making a Duplicate of an Object
	3.8 Changing the Name of an Object
	3.9 Adding an Object from Another Library
	3.10 Editing Images and Graphs in Same Window
	3.11 User Preferences
	3.12 Command Line Arguments
	3.13 Using the Image Editor
	3.13.1 Mode, Style, and Color Palettes
	Figure 3-2. Image Editor

	3.13.2 Selecting, Moving, and Resizing
	3.13.3 Using the Clipboard (Cut, Copy, Paste Comma...
	3.13.4 Importing / Exporting to Other Graphical Fo...
	3.13.5 Creating Primitives
	3.13.6 Creating Images
	3.13.7 Editing the Root Image
	3.13.8 Editing Points on a Primitive
	3.13.9 Defining Stacking Order or Priority
	3.13.10 Defining the Center Point of a Shape
	3.13.11 Using the Flip and Rotate Tools
	3.13.12 Align and Distribute
	3.13.13 Using Grid Lines
	3.13.14 Changing Views (Panning and Zooming)
	3.13.15 Changing Dimension (Coordinate Space Bound...
	3.13.16 Changing the Layout Size and Color
	3.13.17 Program Access

	3.14 Using the Graph Editor
	3.14.1 Style, and Color Palettes
	3.14.2 Selecting, Moving, and Resizing
	3.14.3 Charts (2-D Plots)
	3.14.4 Pie Charts
	3.14.5 Clocks
	3.14.6 Dials
	3.14.7 Level Meters
	3.14.8 Digital Displays
	3.14.9 Text Meters

	3.15 Using the Dialog Editor
	Figure 3-3. Dialog Editor
	3.15.1 Selecting, Moving, and Resizing
	3.15.2 Dialog Box Coordinate System
	3.15.3 Using the Clipboard (Cut, Copy, Paste Comma...
	3.15.4 Controls

	3.16 Using the Menu Bar Editor
	Figure 3-4. Menu Bar Editor
	3.16.1 Selecting and Moving (Transferring)
	3.16.2 Using the Clipboard (Cut, Copy and Paste Co...
	3.16.3 Editing the Menu Bar
	3.16.4 Editing a Menu
	3.16.5 Editing a Menu Item

	3.17 Using the Palette Editor
	Figure 3-5. Palette Editor
	3.17.1 Selecting and Moving (Rearrangement of) But...
	3.17.2 Using the Clipboard (Cut, Copy and Paste)
	3.17.3 Editing the Palette
	3.17.4 Editing a Palette Button
	3.17.5 Editing Palette Separators

	4. Creating Presentation Graphics
	4.1 Variable Declaration
	4.2 Displaying Presentation Graphics
	4.3 Examples
	4.3.1 Example 1: A Simple Tallied Histogram
	Figure 4-1. Example 1

	4.3.2 Example 2: A Time-Weighted Accumulated Dynam...
	Figure 4-2. Example 2

	4.3.3 Example 3: Displaying Simple Scalar Values
	Figure 4-3. Example 3

	4.3.4 Example 4: Using a Trace to Plot X-Y Curves
	Figure 4.4 Example 4

	4.3.5 Example 5: The Bank Model
	Figure 4-5. The Bank Model

	5. Forms and Graphical Interaction
	5.1 Introduction
	5.2 Creating a Form
	5.2.1 Reference Names and Field Attributes

	5.3 Using the Form in a Program
	5.3.1 Using ACCEPT.F
	5.3.2 Interaction Modes

	5.4 Field Attributes
	5.4.1 Value Attributes
	5.4.2 Terminating Buttons
	5.4.3 Verifying Buttons

	5.5 Form Control Routines
	5.6 Details of Field Operations
	5.6.1 The DISPLAY Command
	5.6.2 The ACCEPT.F Function
	5.6.3 The ERASE Command
	5.6.4 The DESTROY Command
	5.6.5 The SET.ACTIVATION.R Routine

	5.7 Dialog Boxes and Their Fields
	5.7.1 Dialog Box

	5.8 Predefined Dialog Boxes
	5.8.1 Standard Message Dialog
	5.8.2 Custom Message Dialogs (Alert, Stop, Informa...
	5.8.3 File Selection Dialog
	5.8.4 System Font Browser
	5.8.5 Printing the Contents of a Graphics Window (...

	5.9 Menu Bars and Palettes
	5.9.1 Menu Bar
	5.9.2 Palettes

	5.10 Examples
	Figure 5-1. Form for the ATM Example
	Figure 5-2. Form for List1 Example

	6. Creating Animated Graphics
	Figure 6-1. Animated Icons
	6.1 Graphic Entity Declaration
	6.2 Coordinate Systems
	Figure 6-2. Coordinate Transformations
	6.2.1 Normalized Device Coordinates
	6.2.2 Setting a Viewing Transformation
	6.2.3 Defining The World: SETWORLD.R
	6.2.4 Defining a Viewport: Routine SETVIEW.R
	6.2.5 Modelling Transformations

	Figure 6-3. Object Origin
	6.3 Animating Dynamic Graphic Entities
	6.4 Displaying Icons
	6.5 An Example
	6.5.1 Preamble
	6.5.2 Main Program
	6.5.3 Process Shape

	Figure 6-4. Output of the Shape Routine
	6.5.2 Main Program
	6.5.3 Process Shape

	6.6 Destroying and Erasing Icons
	6.7 Synchronizing Simulation Time and Real Time

	7. Example Programs
	7.1 The Gold Mine Program
	Figure 7-1. The Gold Mine
	7.1.1 Menu Bar Process
	7.1.2 Form Control Routine

	7.2 The DYNHIST Model
	Figure 7-2. Output of the DYNHIST Model
	7.3 The Port Model
	Figure 7-3. The Port Model
	7.4 The CALSHIP Model
	Figure 7-4. The CALSHIP Model
	7.5 The Spring Model
	Figure 7-5. The Spring Model
	7.6 The Pilot Ejection Model
	Figure 7-6. The EJECT Model

	8. Managing Multiple Windows
	8.1 Multiple Window Support
	8.2 Setting and Getting the Attributes and Events ...
	8.2.1 Window Attributes or “Fields”

	8.3 Window Events
	8.4 Scrollable Windows
	8.5 Status Bars

	9. Advanced Topics
	9.1 Drawing Icons Without SIMDRAW
	9.2 Writing a Display Routine
	9.2.1 Color
	9.2.2 Drawing Areas
	9.2.3 Drawing Lines
	9.2.4 Drawing Points (Markers)
	9.2.5 Direct Character Output
	9.2.6 Character Output Using System Text
	9.2.7 System Font Browser
	9.2.8 Loading a Font Re-definition File
	9.2.9 The Shape Example Revisited

	9.3 Using Segments
	9.3.1 Segment Priority
	9.3.2 Using Priority Zero
	9.3.3 Other Segment Operations
	9.3.4 Drawing Backgrounds

	9.4 Additional Attributes of [Dynamic] Graphic Ent...
	9.5 Low-Level Input Constructs
	9.5.1 Selecting a Segment

	9.6 Programmatically Definable System Cursor
	9.7 Time Unit Conversion for Simulation Graphics

	Appendix A. SIMGRAPHICS II Variables and Routines
	Appendix B. Conversion to SIMGRAPHICS II
	B.1 What is SIMGRAPHICS II?
	B.2 Differences Between SIMGRAPHICS I and II
	B.2.1 Icons
	B.2.2 Graphs
	B.2.3 Forms
	B.2.4 Menu Bars
	B.2.5 Dialog Boxes
	B.2.6 Push Buttons
	B.2.7 Radio Buttons

	B.3 Using the Conversion Utility
	B.3.1 Calling SIMCVT — Command Line Arguments
	B.3.2 Possible Problems with Forms
	B.3.3 A Menu Bar Within a Form
	B.3.4 Conversion of Files from PC DOS SIMSCRIPT
	B.3.5 Miscellaneous Notes
	B.3.6 Features No Longer Supported in SIMGRAPHICS ...

	Index

