
process AIRPLANE

 call TOWER giving GATE yielding RUNWAY

 work TAXI.TIME (GATE, RUNWAY) minutes

 request 1 RUNWAY

 work TAKEOFF.TIME (AIRPLANE) minutes

 relinquish 1 RUNWAY

end " process AIRPLANE

process AIRPLANE

 call TOWER giving GATE yielding RUNWAY

 work TAXI.TIME (GATE, RUNWAY) minutes

 request 1 RUNWAY

Since 1962S

UNIX

User�s Manual

Copyright  1997 CACI Products Co.
September 1997

All rights reserved. No part of this publication may be reproduced by any means without written permission from CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
Phone: (619) 824.5200 Surrey GU15 3YL UK
Fax: (619) 457.1184 Phone: +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume
the responsibility for any consequences resulting from the use thereof. The information contained herein is
subject to change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMGRAPHICS I, SIMGRAPHICS II and SIMSCRIPT II.5 are registered trademarks of CACI Products Company.

Windows is a registered trademark of Microsoft Corporation.

Table of Contents
Preface .. a
FREE TRIAL OFFER... a
TRAINING COURSES.. a

1. Simulation and SIMSCRIPT II.5 .. 1
2. Developing SIMSCRIPT II.5 Programs .. 3
2.1 PREPARING SOURCE FILES .. 3
2.2 COMPILING ..3
2.3 RECOMPILING .. 8
2.4 LINKING... 8
2.5 EXECUTING ... 10
2.6 PROFILING ... 11
2.7 MAKEFILES .. 14

2.7.1 Compilation Sequence .. 14
2.7.2 Make Description File Format ... 15
2.7.3 Transformation Rules ... 15
2.7.4 Special Notes .. 16
2.7.5 Sample Makefile ... 16

2.8 OBTAINING ONLINE HELP ... 18
2.9 EXAMPLE PROGRAM .. 18

3. SIMSCRIPT II.5 Language Considerations .. 25
3.1 INPUT AND OUTPUT ... 25
3.2 MODES AND PACKING CODES .. 27

3.2.1 Alignment of Values.. 28

3.3 NON-SIMSCRIPT ROUTINES... 28

3.3.1 Calling C Routines .. 28
3.3.2 Calling FORTRAN Routines ... 29

4. SimDebug Symbolic Debugger ... 31
4.1 COMPILING FOR DEBUG AND INVOKING SIMDEBUG ... 31

4.1.1 Compiling for Debug ... 31
4.1.2 Invoking SimDebug ... 32

4.2 A QUICK TOUR OF SIMDEBUG .. 33

4.2.1 Tour 1: Showing the Stack and Variables ... 33
4.2.2 Tour 2: Breakpoints and Single Stepping ... 36
4.2.3 Tour 3: Pointer Handling: Entity / Set Display ... 39

4.3 SIMDEBUG COMMAND REFERENCE .. 40
4.4 ADVANCED TOPICS .. 56

4.4.1 Batchtrace.v.. 56
4.4.2 Signal Handling / External Events .. 56
4.4.3 Reserved Names .. 56
4.4.4 Displaying Arrays... 56
4.4.5 Permanent Entities and System Owned Variables/Sets... 57
4.4.6 Conditional Breakpoints .. 57
4.4.7 Continuous Variables .. 57
4.4.8 Unsupported SIMSCRIPT Features ... 57
i

UNIX SIMSCRIPT II.5 User’s Guide
Appendices ...59

Appendix A. Compiler Warning and Error Messages 59
A.1 WARNING AND ERROR MESSAGES ... 59

Appendix B. Runtime Error Messages ...75
B.1 RUNTIME ERROR MESSAGES ... 75

Appendix C. Standard SIMSCRIPT II.5 Names .. 85
C.1 FUNCTIONS AND ROUTINES ... 85
C.2 GLOBAL VARIABLES ..101
C.3 ATTRIBUTES ..105
C.4 CONSTANTS ..106

Appendix D. ASCII Character Set ...109
Index ..111
ii

s for
ific to

guage

tion

ducts
f the

 com-

wing
Preface

This document contains information on the use of CACI's SIMSCRIPT II.5 compiler
systems using the UNIX operating system. The information contained here is spec
running SIMSCRIPT II.5 under UNIX.

CACI also publishes a series of texts that describe the standard SIMSCRIPT II.5 lan
available across all implementations:

• SIMSCRIPT II.5 Programming Language — A description of the programming
techniques used in SIMSCRIPT II.5.

• SIMSCRIPT II.5 Reference Handbook — A complete description of the
SIMSCRIPT II.5 programming language, without graphics constructs.

• SIMGRAPHICS II User’s Manual for SIMSCRIPT II.5 — Information about
SIMGRAPHICS II, the integrated graphics development and anima
environment for SIMSCRIPT II.5.

• SIMGRAPHICS II User’s Guide and Casebook — Supplementary information on
SIMGRAPHICS.

• Building Simulation Models with SIMSCRIPT II.5 — An introduction to building
simulation models with SIMSCRIPT II.5.

The SIMSCRIPT II.5 language and its implementations are proprietary program pro
of the CACI Products Company. Distribution, maintenance, and documentation o
SIMSCRIPT II.5 language and compilers are available exclusively from CACI.

1.1 Free Trial Offer

SIMSCRIPT II.5 is available on a free trial basis. We provide everything needed for a
plete evaluation on your computer. There is no risk to you.

1.2 Training Courses

Training courses in SIMSCRIPT II.5 are scheduled on a recurring basis in the follo
locations:

La Jolla, California
Washington, D.C.
London, United Kingdom

On-site instruction is available. Contact CACI for details.
a

UNIX SIMSCRIPT II.5 User’s Manual
For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In the UK and Europe:

CACI Products Company CACI Products Division
3333 N. Torrey Pines Court Coliseum Business Centre
La Jolla, CA 92037 Riverside Way
(619) 824.5200 Camberley
Fax: (619) 457.1184 Surrey

GU15 3YL UK
+44 (0) 1276.671.671
Fax: +44 (0) 1276.670.677
b

 at an
onally
cent-
l appli-

mmu-

ient
ing:

ain-
nted
l-pur-
site to

e-
, and
men-
ls do

T
guage
olved
e fea-
mpli-

 to
un is
es the
. This
ed in-

st
nd so

ber-

ay

.

1. Simulation and SIMSCRIPT II.5

As an aid to making important decisions, the use of computer simulation has grown
astonishing rate since its introduction in the 1950s. Simulation was first used occasi
in manufacturing, military, nuclear, and a few other pioneering applications. More re
ly, its use has expanded to many other areas of need. The growing list of successfu
cations includes models relating to urban growth, hydroelectric planning, transportation
systems, election redistricting, cancer and tuberculosis studies, hospital planning, co
nications, and multicomputer networks.

SIMSCRIPT II.5 is a language designed specifically for simulation. It is the most effic
and effective program development technique for simulation. This is due to the follow

• Portability . Since the SIMSCRIPT II.5 compilers are all developed and m
tained by CACI, essentially the same SIMSCRIPT II.5 language is impleme
on the various computer types. This facilitates the development of genera
pose models and simulation applications that can be moved easily from one
another and from one organization to another.

• Appropriate Constructs. SIMSCRIPT II.5 provides constructs designed esp
cially for simulation (e.g., processes, resources, events, attributes, entities
sets). These constructs make it easier to formulate a simulation model. Imple
tation of the simulation program is also quicker because these powerful too
not have to be invented anew.

• Self-Documenting Language. Applications developed using the SIMSCRIP
II.5 language are characteristically easy to read and understand. The lan
encourages this because it is oriented toward the kinds of problems being s
rather than the machines being used as tools. The very high level languag
tures of SIMSCRIPT II.5 were designed to make it possible to manage a co
cated simulation model.

• Error Detection. SIMSCRIPT II.5 performs a number of error checks that help
assure that a simulation model is running correctly. When an error in a r
detected, a complete snapshot of the program status is produced. This includ
names and values of variables, system status, and other valuable information
reduces the time spent in developing and testing programs. The recently add
line symbolic debugger speeds up run-time analysis of model behavior.

• Statistical Tools. Along with the mathematical and statistical functions mo
often used in simulation (exponential functions, random number generators, a
on), SIMSCRIPT II.5 includes the accumulate and tally statements that allow
the model builder to collect statistics on key variables in his model.

• Report Generator. A formatted report generator with headings and page num
ing, along with the print statement, is part of the SIMSCRIPT II.5 language.

• SIMGRAPHICS. SIMGRAPHICS brings interactive animated and displ
graphics to new and existing SIMSCRIPT II.5 models. Graphical entities can be eas-
ily tied to program entities, providing automatic animation and information display
1

UNIX SIMSCRIPT II.5 User’s Manual

el
imula-
ing

n,
IPT

vices
• Complete Methodology. The SIMSCRIPT II.5 approach to simulation mod
development provides the complete set of capabilities needed to develop a s
tion model. A simulation model developed in the SIMSCRIPT II.5 programm
language is readable by the analyst familiar with the system under study.

• Support. CACI provides SIMSCRIPT II.5 compiler software, documentatio
and training support to organizations using all major computer types. SIMSCR
II.5 language consulting, programming support, and model development ser
are available from CACI.
2

rors.

ile.

uld be
ctive
d the

e. If
ining

ram
es of

pro-
ediate
 com-

eral

med
2. Developing SIMSCRIPT II.5 Programs

Developing a SIMSCRIPT II.5 program typically involves the following steps:

1. Preparing one or more SIMSCRIPT II.5 source files using a text editor.

2. Compiling the program and checking for compilation errors.

3. Editing and re-compiling the program, as needed, until there are no compilation er

4. Linking the object files generated by the compiler to produce an executable f

5. Executing the program.

6. Debugging the program. In case of errors during execution, the program sho
compiled with the debugging option, linked and then executed with the intera
SIMSCRIPT symbolic debugger, to examine the state of the program and fin
cause of the error.

2.1 Preparing Source Files

A SIMSCRIPT II.5 program may be prepared using vi, emacs or any other text editor.
If the program is small, it is convenient to store the entire program within a single fil
the program is large, it is best to store each routine in a file of its own. Files conta
SIMSCRIPT II.5 source code must be given names that end with .sim or .SIM .

Although it is not a requirement, it is easier to compile and link a SIMSCRIPT II.5 prog
that is stored in a directory of its own; i.e., a directory containing all of the source fil
the program in question and none of the source files of other programs.

2.2 Compiling

The SIMSCRIPT II.5 compiler translates a program written in the SIMSCRIPT II.5
gramming language into one or more object files. The compiler uses C as an interm
language, but this is transparent to you, the SIMSCRIPT II.5 program developer. The
piler will write diagnostics — error messages and warning messages — to stderr . Errors
prevent the generation of object files; warnings do not. See Appendix A for a complete
list of error and warning messages that are issued by the compiler.

The simc command is used to invoke the SIMSCRIPT II.5 compiler and linker. Its gen
form is:

% simc [option] file.sim ...

For example, to compile and link a program consisting of a single source file na
abc.sim, enter:

% simc abc.sim

This command will compile the SIMSCRIPT source file abc.sim , reporting compilation
errors and warnings to the terminal. If the compilation is successful, the object module
abc.o will be linked producing an executable file named a.out .
3

UNIX SIMSCRIPT II.5 User’s Manual

pilers
peri-
used

ated
e as

trans-
 files
f the

the
me-
ou

ence.
 pro-
un-
fully
your
bled
The SIMSCRIPT compiler options follow the same general format as many C com
and other standard UNIX compilers. The options available should be familiar to ex
enced UNIX programmers. Below is a brief overview of a few of the most commonly
options:

-c Do not link any object files after compilation.

-d Enable SIMSCRIPT symbolic debugging.

-l Display a routine-by-routine program listing.

-o name When linking, create an executable with the name provided.

-v Compile the preamble as “VERY OLD”. See below for more details.

-w Do not report any compiler warnings.

-x Display a local cross-reference listing for each routine.

Below is a complete list of the options available in the SIMSCRIPT II.5 compiler:

-a For each routine the compiler will produce a file containing the gener
source code for the routine together with the SIMSCRIPT source cod
comments. Produces a .c file with “ALLSTARS” comments, which shows
the expansion of complex SIMSCRIPT statements into simpler ones.

-b N This compiler switch is seldom used. The SIMSCRIPT II.5 compiler gen-
erates C code as an intermediate step during the compilation. This is
parent to you. On some platforms C compilers cannot compile source
with a large number of C code lines, because of the static allocation o
symbol table. By default, the SIMSCRIPT II.5 compiler will generate
intermediate C code into one file. To enforce splitting of generated inter
diate C code into files with a defined (maximum) number of lines, y
should invoke the SIMSCRIPT II.5 compiler with the optional compiler
switch -b N " (break C code after N number of lines). For example:

simc -b 3000 big.sim

File big.sim will be transformed into big-1.c , big-2.c, etc.
Subsequently generated object modules will be big-1.o , big-2.o , etc.

-c The compiler's default behavior is to link using simld after compilation. If
you want to stop this from happening, use this option.

 -C The compiler will generate code to perform full runtime checking. This
code validates every array element reference and every attribute refer
Also, in the event of a runtime error, a more elaborate traceback will be
vided. This option allows SIMSCRIPT II.5 to detect a larger class of r
time errors and should be used when compiling a program that is not
debugged. Both the traceback and runtime error checking will make
programs run somewhat slower. Note that runtime checking is not ena
by default.
4

Developing SIMSCRIPT II.5 Programs

hen

tents
is

 by

tity

the

ws

IPT

ri-

atis-

om-

voked

he

 ex-
 was
s

As of release 1.8 this option has been enhanced in the following way: W
an entity is removed from a set, SIMSCRIPT now checks if this entity is
indeed part of the given set. This is accomplished by changing the con
of the M.setname attribute of the entity, which not only indicates that th
entity is a member of some set, but also indicates of which set.

When the list is owned by a permanent entity, the field M.setname now
contains the index (integer) to the head of the list. When the list is owned
a temporary entity, M.setname now contains a pointer to the owner entity.
This means that source code that checks M.setname for 1, should check for
<> 0 .

-C0 Provide runtime checking for array element reference only without en
class checking and set membership checking. Note this is C"zero", not
C"oh".

-d Selects 'compiling for debug'. The compiler is fully integrated with
SIMSCRIPT II.5 symbolic debugger. After linking, the program can be
activated with the command line switch -debug to provide interactive
dialog with the debugger. The SIMSCRIPT II.5 symbolic debugger allo
you to study and change the behavior of a model at runtime. Debugging
features include the following:

• Setting a break point in a given routine, or in an active SIMSCR
process instance

• Single stepping one source line at a time

• Viewing source code

• Displaying of local, global variables and temporary entities in va
ous formats and their modifications

• Displaying the status of the program: I/O and memory usage st
tics etc.

To use all the debugger functions, a SIMSCRIPT II.5 program must be c
piled with the -d compilation switch. To start a program in “'debugging
mode” where you can set breakpoints etc., the executable should be in
with the -debug option:

simc -d prog.sim -o prog
prog -debug

The -debug option is internal to SIMSCRIPT and will not be seen by t
user program.

A runtime error will automatically activate the debugger so that you can
amine the current stack and variables that led to the error. If the program
not compiled with the -d option, only a minimal set of debugging function
will be available. If the program was compiled with the -d option, all de-
bugger functions will be available.
5

UNIX SIMSCRIPT II.5 User’s Manual

s

e to
nec-
RIPT

un-

ut-
ed

ages,
e

the

n
 oc-
rrect
pti-
An on-line help command h will display a list of available debug command
and parameters. See chapter 4.

-F This compiler switch is seldom used. SIMSCRIPT II.5 provides an interface
to NON-SIMSCRIPT and FORTRAN routines. FORTRAN routines are in-
voked from SIMSCRIPT II.5 programs without appending an underscor
the FORTRAN routine name. In some computer environments this is
essary. To generate calls with the appended underscore, the SIMSC
II.5 compiler should be invoked with the optional compiler switch -F . For
example:

simc -F prog.sim

-g The compiler will provide a detailed traceback listing without enabling r
time checking. Routines compiled with -g will be shown with the 'current
line number' and all their local variables in a traceback.

-G Link a SIMGRAPHICS program using simgld .

-l The compiler will write a listing to standard output. Typically, standard o
put is redirected to a file. For example, to write a listing to a file nam
listfile , enter:

% simc -l *.sim > listfile

The listing shows the source statements together with diagnostic mess
if any. It may also include local and/or global cross-references (see th-x
and -X options).

-L n The compiler will produce output listings with n lines per page. The default
value is 55.

-o name When linking, the executable file created will be called name. If this option
is not specified, a.out is the default executable name. For example,
following command creates an executable called file after compiling all
the .sim source files in this directory.

simc *.sim -o file

-O The C compiler's optimizer will be involved when compiling. This optio
will increase compile time, but will reduce model runtime. On very rare
casions, some optimizers may produce incorrect code, resulting in inco
behavior of your program. If this is suspected, try compiling without o
mization.

The following command will create an optimized executable called prog
after compiling filename.sim .

simc -O -o prog filename.sim

-p Compile using profiling code. See prof(1) and cc(1) in the man pages
for details. This must be specified at link-time, either through simc or
6

Developing SIMSCRIPT II.5 Programs

t-

 the
se

 it

ng

ages

ou-
made

 en-
utine

ckly
ating
simld . See paragraph 2.6. This option may not be provided on all compu
er platforms.

-S Create only a .c file. Do not produce .o or link.

-temp=dir

Specify the location of compiler temporary files. The default is /tmp . This
does not affect where the C compiler places its own temporary files.

-v This option means a VERY OLD PREAMBLE. It is used during re-compilation
of some SIMSCRIPT routines when there are no changes to
Preamble.sim . It will speed-up the re-compilation process becau
Preamble.o will not be generated. Also, the PREAMBLE will not appear in
the listing.

For example, enter the following command to re-compile file1.sim into
an object file (which will be called file1.o). The name of the file which
contains the PREAMBLE, Preamble.sim, must always be given because
contains definitions for SIMSCRIPT data structures. The -c option pre-
vents linking.

simc -cv Preamble.sim file1.sim

Enter the following command to create an executable called a.out (the de-
fault name) from the object files in this directory after re-compili
rout1.sim .

simc -v Preamble.sim rout1.sim *.o

-w The compiler will suppress warning messages, i.e., no warning mess
will be displayed.

-x The compiler will write to the listing a local cross-reference for each r
tine. A local cross-reference shows the line number of every reference
to each name in the routine.

-X The compiler will append to the listing a global cross-reference for the
tire program. A global cross-reference shows the name of every ro
which references each globally-defined name.

-1 The compiler will not generate code. It is sometimes desirable to qui
check the syntax of a program and/or produce a listing without gener
any object files. Note, this is a “one” not an “ell”.

The following command compiles a program consisting of three source files: abc.sim,
def.sim and ghi.sim . Warning messages will be suppressed (-w option) and runtime
checking code will be generated (-C option).

% simc -w -C abc.sim def.sim ghi.sim
7

UNIX SIMSCRIPT II.5 User’s Manual

st file
 be lo-

 files

me.
-
 in

ile
utines

ire
m-

n the

 need

layed.
The compiler expects to find the preamble of the program at the beginning of the fir
specified. Thus, if the program in the above examples contains a preamble, it must
cated at the beginning of file abc.sim or compilation errors will result.

The following is a convenient way to compile a program consisting of many source
within a single directory:

% simc *.sim

In this example, *.sim is automatically expanded into a list of source files sorted by na
Since the compiler expects to find the PREAMBLE in the first file it encounters, it is neces
sary that the file containing the PREAMBLE be given a name which precedes all others
sorted order. Since upper-case names precede lower-case names, one convention which
may be followed is to store the PREAMBLE in a file named PREAMBLE.sim and to name the
rest of the files using all lower-case characters.

2.3 Recompiling

Whenever a change is made to the PREAMBLE of a program, it is necessary to re-comp
the entire program. If a change is made only to routines of the program, only those ro
that have been modified need be re-compiled, and not the entire program.

Suppose that the routine in file xyz.sim has been modified. If this routine does not requ
anything declared in the PREAMBLE, then the following command can be used to re-co
pile it:

% simc -c xyz.sim

If this routine does reference something declared in the PREAMBLE, it is necessary to re-
compile the PREAMBLE along with it:

% simc -cv PREAMBLE.sim xyz.sim

The -v option is specified to avoid regenerating the scripted routines contained i
PREAMBLE.o.

2.4 Linking

If the -c option is used to suppress linking, the compiler generates object files which
to be linked. Each of these files has a name that ends with .o . The simld command is
used to link a SIMSCRIPT II.5 non-graphical program. Its general form is:

% simld file.o ...

If there are any undefined references, the name of each missing routine will be disp
If there are no undefined references, an executable file named a.out will be produced.

Suppose a program consists of only three routines: main.sim, sub1.sim and
sub2.sim . Then the object files generated by the compiler are main.o, sub1.o and
sub2.o . The following command will link this program:
8

Developing SIMSCRIPT II.5 Programs

ithin

en if
 entire

ame

lity,
g

ds:

 II.5

 it is

 or

piler,

ICS
PT
% simld main.o sub1.o sub2.o

The following is a convenient way to link a program consisting of many object files w
a single directory:

% simld *.o

Note that it is necessary to link all of the object files generated by the compiler. Ev
just a single routine has been modified and re-compiled, it is necessary to re-link the
set of object files.

simld is a shell script which invokes the UNIX C compiler, cc , to link object files. Any
option which may be specified to cc may also be specified to simld . The most useful of
these is the -o option. It is used to name the executable file something other than a.out .
For example, to create an executable file named compute , enter:

% simld -o compute *.o

simgld is another shell script which invokes cc . It must be used instead of simld to link
SIMGRAPHICS programs. For example, to link a SIMGRAPHICS II program and n
the executable file animate , enter

% simgld -o animate *.o

It is possible to create a library of SIMSCRIPT II.5 routines using the UNIX archive uti
ar . To create a library named xyz from the object files in a directory, enter the followin
command:

% ar r libxyz.a *.o

To make the library accessible to all users, enter the following sequence of comman

% mv libxyz.a $SIMHOME/lib
% ranlib $SIMHOME/lib/libxyz.a
% chmod 644 $SIMHOME/lib/libxyz.a

SIMHOME is the environment variable which contains the full path where SIMSCRIPT
is installed. For more details of the SIMHOME, see the Installation Notes for the current
SIMSCRIPT II.5 release.

Note that ranlib is not available on all systems. On systems where it is not available
not needed.

To link the object files in a directory with this library, enter:

% simld *.o -lxyz

A SIMSCRIPT II.5 program can call routines written in other languages, such as C
FORTRAN. To link such a program, specify to simld (or simgld if the program makes
use of SIMGRAPHICS features) the name of each object file created by the other com
along with the name of each object file created by the SIMSCRIPT II.5 compiler.

SIMSCRIPT II.5 supports two graphics systems SIMGRAPHICS I and SIMGRAPH
II. As of Release 1.9, SIMGRAPHICS II is the default SIMGRAPHICS in SIMSCRI
9

UNIX SIMSCRIPT II.5 User’s Manual

d in

object
called

e run-
g link

 same
odel
”. In

ink-

 II

. For

gram
II.5 systems. Compiler switch -G will link graphical models with SIMGRAPHICS II librar-
ies.

simc -G *.sim

Also simgld will automatically link with SIMGRAPHICS II libraries.

If you want to use SIMGRAPHICS I, you must compile your model with the -c option and
use simgld1 as follows:

simc -c *.sim
simgld1 *.o

SIMSCRIPT II.5 runtime libraries as well as SIMGRAPHICS libraries are distribute
two versions: dynamic link libraries and archive libraries. This facilitates dynamic and
static linking. By default programs will be linked dynamically.

When a model is linked dynamically, the executable image does not include all the
modules it needs for execution. It contains pointers to the dynamic link libraries also
“shareable libraries”. The benefits of dynamic linking are twofold: first linking time is
shorter, second all SIMSCRIPT models in the same computer platform share the sam
time libraries which results in substantial savings of disk space. When you use existin
commands: simld, simgld, simgld1 and simgld2 your model will be linked dy-
namically.

If you want to execute your model on some other platform which does not have the
release of SIMSCRIPT II.5, or does not have SIMSCRIPT II.5 installed at all, your m
must be linked statically. This means that you have to perform static link or “total link
other words, your executable has to include all object modules in itself.

SIMSCRIPT II.5 provides commands for platform independent static linking or “total l
ing” for both non-graphical and graphical SIMSCRIPT models:

tsimld - static link of non-graphical models

tsimgld - static link of graphical models by default with SIMGRAPHICS

tsimgld1 - static link of graphical models with SIMGRAPHICS I

tsimgld2 - static link of graphical models with SIMGRAPHICS II

2.5 Executing

A SIMSCRIPT II.5 program is executed by entering the name of the executable file
example:

% a.out

Parameters specified on the command line are available to the SIMSCRIPT II.5 pro
in the global text array, parm.v . For example, consider the following command:

% a.out -i 10 WXYZ.dat
10

Developing SIMSCRIPT II.5 Programs

 can
g to
y be

ill be

port

r-
pila-

rs.
other

 aborts

rned

y ex-

rmine
cution
te on

will
Upon entry to this program, parm.v will be set up as follows:

DIM.F(PARM.V(*)) = 3
PARM.V(1) = -i
PARM.V(2) = 10
PARM.V(3) = WXYZ.dat

A SIMSCRIPT II.5 program can read from standard input by reading from UNIT 5. It
write to standard output by writing to UNIT 6 and can write to standard error by writin
UNIT 98. Any redirection of these units which is allowed by the operating system ma
specified on the command line.

Internal command line switches used for debugging, like -debug and -batchtrace, will
not be seen by the program in parm.v .

If a runtime error is detected by SIMSCRIPT II.5, the program will be stopped and:

1. A runtime error message will be written to standard error (see Appendix B for a
complete list of runtime error messages) and the interactive debugger dialog w
entered allowing you to examine the state of the program;

2. If the program was invoked with the command line switch -batchtrace , a run-
time error message, a traceback, a simulation status report, a memory status re
and an I/O status report will be written to a file simerr.trc and the user-supplied
snapshot routine, snap.r , will be called, if it exists. The level of debugging info
mation included in a traceback depends on the compiler switches used for com
tion: -d and -g will provide routine names with local variables and line numbe
If none of these switches are used, only routine names will be written, without
debugging information.

In the event that a runtime error goes undetected by SIMSCRIPT II.5 and a program
with a core dump, it is possible to analyze the core file using the UNIX debugger, adb .

Any SIMSCRIPT II.5 program may be invoked from a shell script. The exit status retu
by the program will be zero if the program was terminated by a stop or end statement, and
will be non-zero if the program was aborted due to a runtime error. However, you ma
plicitly call exit.r to terminate your program and return a particular exit status.

2.6 Profiling

Profiling is useful when analyzing the performance of a program. Profiling helps dete
where most of the execution time in a program is spent. In the typical program, exe
time is confined to a relatively few sections of code. It may be profitable to concentra
improving coding efficiency in only those sections.

Profiling is platform specific, and may not be available on all UNIX platforms. We
describe a common approach, using the prof command for profiling a SIMSCRIPT II.5
model.
11

UNIX SIMSCRIPT II.5 User’s Manual

taken

ling
t

 rou-

 and

.

sing
tine

ad
The prof command produces an execution profile of a program. The profile data is
from the profile file which is created by programs compiled with the -p option. That option
also links in versions of the library routines which are compiled for profiling.

When a program is profiled, the results appear in a file called mon.out (default filename)
at the end of the run. Every time the program is run, a new mon.out file is created over-
writing the old version. The profiled program must exit or return normally for the profi
information to be saved in the mon.out file. The prof command is then used to interpre
the results of the profile.

prof displays the following information for each routine:

%time Percentage of the total time of the program, that was consumed by this
tine.

cumsecs A running sum of the number of seconds accounted for by this function
those listed above it.

#call The number of times this routine was called.

ms/call How many milliseconds this routine consumed each time it was called

name The name of the routine.

To obtain a profile of a SIMSCRIPT II.5 program, it is necessary to link the program u
the -p option. To tally the number of calls to a routine, the file that contains the rou
must be compiled with the -p option.

Compile the modules you want profiled with the -p flag:

% simc -c -p file1.sim file2.sim
% simc -c file3.sim

To link the program, type:

% simld -p file1.o file2.o file3.o

Or simply:

% simc -p file1.o file2.o file3.o

Run your program:

% a.out

Now use prof to write an execution profile to standard output:

% prof a.out

The following is some sample profile data created by prof . Routines that begin with _H
are SIMSCRIPT library routines. Routines that begin with _R were generated by the
SIMSCRIPT compiler or are user routines. Routines that begin with _Q are SIMSCRIPT
or user left routines. Other routines are C library routines.

Note: The symbol mcount is a side effect of profiling, and indicates the overhe
incurred by profiling.
12

Developing SIMSCRIPT II.5 Programs
 %time cumsecs #call ms/call name

 21.4 25.66 _HP_SUSPEND_R

 18.6 47.91 _HP_RESUME_R

 11.9 62.12 mcount

 6.9 70.34 220716 0.04 _HTIM0_R

 3.9 75.01 11755 0.40 _RJOB

 3.5 79.16 165643 0.03 _HT_EV_S

 2.3 81.93 110445 0.03 _HRANDOM_F

 2.2 84.62 110419 0.02 _QS_N_X_TRANSPORTER

 2.0 87.00 208985 0.01 _HPRQ_R

 1.7 89.08 86922 0.02 _QS_N_X_WORK_STATION

 1.6 91.00 130610 0.01 _calloc

 1.5 92.84 86922 0.02 _QS_WS_NUM_MACH_WORKING

 1.4 94.51 56318 0.03 _QS_N_Q_WORK_STATION

 1.3 96.11 208959 0.01 _HPSU_R

 1.3 97.68 98664 0.02 _HRNQ_R

 1.2 99.12 55303 0.03 _log

 1.2 100.52 28165 0.05 _RT_Q_WORK_STATION

 1.1 101.84 1 1320.00 _HTIME_R

 1.1 103.12 98689 0.01 _HREQ_R

 0.9 104.22 220716 0.00 _HPCALL_R

 0.9 105.28 208985 0.01 _HPSUSP_R

 0.8 106.29 220716 0.00 _HTIM1_R

 0.8 107.21 130716 0.01 _malloc

 0.7 108.08 241264 0.00 .mul

 0.7 108.90 429904 0.00 _HDIM_F

 0.7 109.71 55210 0.01 _RT_X_TRANSPORTER

 0.6 110.46 43467 0.02 _QS_WS_DELAY_IN_QUEUE

 0.6 111.19 43467 0.02 _HERLANG_F

 0.6 111.86 55209 0.01 _RZ_X_TRANSPORTER

See the man page for prof(1) for more information.
13

UNIX SIMSCRIPT II.5 User’s Manual

e used

ation.

t, with

 re-

s fol-

lt the
 the

piled,
uring
source
ing the
ct file
. Link-

 only
the
nking
2.7 Makefiles

The file naming scheme that this compiler uses is compatible with the naming schem
by the C language compiler. Because of this, it is possible to use the UNIX “make” utility.
This utility only recompiles the source files that have changed since the last compil
This is an easy and reliable way to manage models of medium to large size. Make is not
very good at handling models whose sources are spread over many directories bu
care, it is possible.

The make utility relies on a special file, called a “make file”, to describe the rules for
building your particular model. By default, the “make file” is named either makefile or
Makefile . Other file names may be specified with the -f option of make. See the man
page for make(1) for more information.

2.7.1 Compilation Sequence

The compiler knows about the following kinds of file extensions, and treats them a
lows:

.sim: Compile as SIMSCRIPT source files.

.SIM: Alternate suffix for SIMSCRIPT source files.

.o: Object files.

.c: C source files, produced in intermediate stage.

.a: Archive libraries to include in linking.

Files must be named using this convention. For other kinds of file extensions, consu
manual for your C compiler. Files are named after the SIMSCRIPT source using
following convention

myfile .sim -> myfile .o

This allows the use of makefiles.

The easiest way to use the compiler is to simply specify all the sources you want com
and let the compiler compile and link them into an executable program. However, d
development of a large program, much time can be saved by only recompiling those
files that have changed since the previous compilation. This is accomplished by sav
object file for each source file. Then, when a source file is recompiled, the new obje
replaces the old, and all of the object files can be relinked to create a new executable
ing all of the object files is much faster than compiling all of the source files.

Make takes this one step further. It checks the modify time of each source file, and
recompiles it if it is newer that its object file or the target executable. This way, only
source files that need compiling are actually compiled. The actual compilation and li
commands are specified in the makefile.
14

Developing SIMSCRIPT II.5 Programs

 for-

-
e.

mand
, an

l
e this:
, so

ated as

ent

rget.

ted.

or
t into
les

e

 are
2.7.2 Make Description File Format

The descriptions in this section are simplified. For a complete description of the file
mat, see the documentation that came with your system.

Entries in a makefile are of the following form:

target1 [target2 ...] : [dependent1 ...]
<tab> command [# comments ...]

Items in square brackets are optional. The <tab> must be a “tab” character. Shell meta
characters such as '*' and '?' are expanded. The entry is concluded with a blank lin

Makefiles can also contain simple macros. Macros can be defined in the make com
line, or more commonly, in the makefile. The definition is simple: a macro name
“equal” sign, and the macro value. An example is PREAMBLE = Preamble.sim . A
macro is invoked by preceding the name with a dollar sign ($$ is used to represent a rea
dollar sign). Macro names longer than one character must be parenthesized lik
“$(PREAMBLE)” . When the macro is invoked, its text is replaced with its current value
in our example, “$(PREAMBLE)” would be replaced with Preamble.sim . Make also has
four predefined macros specific to the job it performs. These special macros are $*, $@,
$?, and $<. These macros are re-evaluated before each command. They are evalu
follows:

• The $* macro is the root file name of the current file. For example, if the curr
file were frequency.sim , $* would equal frequency .

• The $@ macro represents the current “target” file name.

• The $? macro is the string of file names found to be newer than the current ta

• The $< macro is the name of the file which caused this command to be execu

2.7.3 Transformation Rules

A transformation rule is what make uses to “transform” a source file into an object file,
several object files into an executable. Many useful transformation rules are buil
make, such as rules to compile C, FORTRAN, or even assembler. Unfortunately, the ru
for SIMSCRIPT are not built in.

To provide make with this information, make must first be informed of the new sourc
suffix, .sim . This is done using a fake target called .SUFFIXES . For our purposes,
.SUFFIXES: .sim .o is sufficient. Next, make needs to know how to transform .sim
files into .o files. We do this using a transformation rule called .sim.o . See the sample
makefile in paragraph 2.7.5 for an example. In transformation rules, the special macros
set as follows: $* is set to the file name without the suffix, $< is the name of the file to be
transformed, and $@ is the name of the file to be created (or updated).
15

UNIX SIMSCRIPT II.5 User’s Manual

ke

d by

, if

 file

rces
2.7.4 Special Notes

Each line in a makefile is executed by a new invocation of the shell, so commands licd
for example, must be combined into one line using the shell command separator, “; ” .

By default, make displays each command before executing it. This can be prevente
preceding the command with an at sign (@).

If a macro is defined on the make command line, it supersedes the makefile's definition
any is present. A typical use of this is to use make SFLAGS=-O to use optimization on any
compiles that need to be performed.

There are several ways to force recompilation:

1. Use touch(1) to update the source file's modify time. Make will then consider the
source file “changed”. This will also force relinking if the corresponding object
is a dependent of the executable.

2. Delete the corresponding object file. This has the same effect as the above.

3. Delete the executable. This will force relinking, but will not recompile any sou
unless they are out of date.

2.7.5 Sample Makefile

#
Generic makefile for SIMSCRIPT programs
#
MAKE ARGUMENTS:
<no arg> : Make executable with the name in the "PRG" parameter.
clean : Remove all non-source files, i.e. object files and
the executable and all intermediate files.
cleanexe : Remove the executable.
#---

#===
FILL IN THE PARAMETERS BELOW UNTIL THE LINE
">>> END OF PARAMETERS <<<"
#===
#
<<< PARAMETERS >>>

PRG: The name of the executable.
PRG = bounce

PREAMBLE: SIMSCRIPT source file containing the preamble.
SIMFILES: All other SIMSCRIPT source files. A "\" followed
immediately by a carriage return must be put at the
end of the line to continue to the next.
PREAMBLE = Preamble.sim
16

Developing SIMSCRIPT II.5 Programs
SIMFILES = ball.sim bounce.sim done.sim init.sim main.sim menu.sim \
 menuctl.sim output.sim

SFLAGS: SIMSCRIPT compile flags.
SFLAGS = -d

SIMLINK: Specify link command with SIMGRAPHICS I, SIMGRAPHICS II,
or no graphics; dynamic or static link.
#
<<< DYNAMIC LINK >>>
SIMGRAPHICS I - simgld1
SIMGRAPHICS II - simgld2 or simgld
NO GRAPHICS - simld
#
<<< STATIC LINK >>>
SIMGRAPHICS I - tsimgld1
SIMGRAPHICS II - tsimgld2
NO GRAPHICS - tsimld
SIMLINK = simgld

>>> END OF PARAMETERS <<<
#
#===
#=========== BELOW HERE NO CHANGES SHOULD BE NECESSARY ===============
#===

SIMC: SIMSCRIPT compile command.
SIMC = simc

OBJS: List of .o files.
OBJS = $(PREAMBLE:.sim=.o) $(SIMFILES:.sim=.o)

The first (empty) .SUFFIXES clears the SUFFIXES list. The second
acknowledges only the .sim and .o suffixes. This avoids problems
with extraneous .c files and others.
.SUFFIXES:
.SUFFIXES: .o .sim .c

$(PRG) : $(OBJS)
 @echo "-- Linking ..."
 $(SIMLINK) -o $(PRG) $(OBJS)
 @echo "-- $(PRG) was successfully built!"

clean :
 @echo "-- Removing all intermediate files and the executable."
 rm -f *.o *.c *.i *.s *~ core a.out $(PRG)

cleanexe :
 @echo "--- Removing executables."
 rm -f core a.out $(PRG)
17

UNIX SIMSCRIPT II.5 User’s Manual

ained
#-------------------------- RULES -----------------------------------
#

If preamble was changed, we need to recompile everything. Since
after that all *.o will be current, just the link is left in the
target above.

$(PREAMBLE:.sim=.o): $(PREAMBLE)
 @echo "-- $(PREAMBLE:.sim=.o) outdated or missing!"
 @echo "-- Recompiling everything ..."
 $(SIMC) -c $(SFLAGS) $(PREAMBLE) $(SIMFILES)

How to make an individual object file from a simcript source file.

.sim.o:
 $(SIMC) -cv $(SFLAGS) $(PREAMBLE) $*.sim

2.8 Obtaining Online Help

Online documentation regarding the use of the SIMSCRIPT II.5 compiler can be obt
by using the simhelp command, e.g.

% simhelp simc

Simhelp by itself lists all topics for which help is available.

2.9 Example Program

The following is an example of a complete program and compilation.

% ls
Preamble.sim generator.sim main.sim
SIMU01 job.sim stop.sim
% simc -l *.sim > listing
% ls
Preamble.o a.out* job.o main.o stop.sim
Preamble.sim generator.o job.sim main.sim
SIMU01 generator.sim listing stop.o
% cat listing
18

Developing SIMSCRIPT II.5 Programs
 PAGE 1
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

 1 PREAMBLE
 2
 3 RESOURCES INCLUDE CPU AND MEMORY
 4 PROCESSES INCLUDE GENERATOR AND STOP.SIM
 5 EVERY JOB HAS A JB.PRIORITY
 6 AND A JB.MEMORY.REQUIREMENT
 7 DEFINE JB.PRIORITY AND JB.MEMORY.REQUIREMENT
 8 AS INTEGER VARIABLES
 9 DEFINE JOB.DELAY.TIME AS A REAL VARIABLE
 10 EXTERNAL PROCESS IS JOB
 11 EXTERNAL PROCESS UNIT IS 1
 12 DEFINE SMALL.JOB.INTERARRIVAL.TIME,
 13 MEAN.SMALL.JOB.PROCESSING.TIME, RUN.LENGTH
 14 AND STOP.TIME AS REAL VARIABLES
 15 DEFINE NO.CPU AND MAX.MEMORY AS INTEGER VARIABLES
 16 DEFINE MAX.MEMORY.QUEUE TO MEAN 1MAX.MEMORY.QUEUE
 17
 18 ACCUMULATE CPU.UTILIZATION AS THE AVG OF N.X.CPU
 19 ACCUMULATE MEMORY.UTILIZATION AS THE AVERAGE
 20 OF N.X.MEMORY
 21 ACCUMULATE AVG.CPU.QUEUE AS THE AVG AND
 22 MAX.CPU.QUEUE AS THE MAXIMUM OF N.Q.CPU
 23 ACCUMULATE AVG.MEMORY.QUEUE AS THE AVG
 24 AND MAX.MEMORY.QUEUE AS THE MAXIMUM OF N.Q.MEMORY
 25 TALLY AVG.JOB.TIME AS THE AVERAGE AND NO.JOBS.PROCESSED
AS
 26 THE NUMBER OF JOB.DELAY.TIME
 27
 28 DEFINE HOURS TO MEAN UNITS
 29
 30 END ''PREAMBLE
19

UNIX SIMSCRIPT II.5 User’s Manual
 PAGE 2
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

 1 PROCESS GENERATOR
 2
 3 UNTIL TIME.V >= STOP.TIME
 4 DO
 5 ACTIVATE A JOB NOW
 6 LET JB.PRIORITY.. = RANDI.F(1,10,1)
 7 LET JB.MEMORY.REQUIREMENT.. = RANDI.F(1,MAX.MEMORY,2)
 8 WAIT EXPONENTIAL.F(SMALL.JOB.INTERARRIVAL.TIME,3) MINUTES
 9 LOOP
 10
 11 END
20

Developing SIMSCRIPT II.5 Programs
 PAGE 3
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

 1 PROCESS JOB
 2
 3 DEFINE ARRIVAL.TIME AND PROCESSING.TIME
 4 AS REAL VARIABLES
 5 IF PROCESS IS EXTERNAL
 6 READ JB.PRIORITY..,JB.MEMORY.REQUIREMENT.. AND
 7 PROCESSING.TIME
 8 ELSE
 9 LET PROCESSING.TIME = MIN.F(EXPONENTIAL.F
 10 (MEAN.SMALL.JOB.PROCESSING.TIME,4),2 *
 11 MEAN.SMALL.JOB.PROCESSING.TIME)
 12 ALWAYS
 13 LET ARRIVAL.TIME = TIME.V
 14 REQUEST JB.MEMORY.REQUIREMENT.. UNITS OF MEMORY(1)
 15 WITH PRIORITY JB.PRIORITY..
 16 REQUEST 1 CPU(1) WITH PRIORITY JB.PRIORITY..
 17 WORK PROCESSING.TIME MINUTES
 18 RELINQUISH JB.MEMORY.REQUIREMENT.. UNITS OF MEMORY(1)
 19 RELINQUISH 1 CPU(1)
 20 LET JOB.DELAY.TIME = TIME.V - ARRIVAL.TIME
 21
 22 END
21

UNIX SIMSCRIPT II.5 User’s Manual
 PAGE 4
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

 1 MAIN
 2
 3 WRITE AS /, "A COMPUTER CENTER STUDY", /, /
 4
 5 Open unit 1 for input
 6
 7 LET HOURS.V = 1
 8 CREATE EVERY CPU(1) AND MEMORY(1)
 9 Let U.CPU(1) = 1
 10 Let U.MEMORY(1) = 6
 11 LET NO.CPU = U.CPU(1)
 12 LET MAX.MEMORY = U.MEMORY(1)
 13
 14 Let SMALL.JOB.INTERARRIVAL.TIME = 2.0
 15 Let MEAN.SMALL.JOB.PROCESSING.TIME = 0.8
 16 Let RUN.LENGTH = 12.0
 17 LET STOP.TIME = RUN.LENGTH / HOURS.V
 18
 19 PRINT 6 LINES WITH U.CPU(1), U.MEMORY(1),
 20 60/SMALL.JOB.INTERARRIVAL.TIME,
 21 MEAN.SMALL.JOB.PROCESSING.TIME AND RUN.LENGTH THUS
 A C O M P U T E R C E N T E R S T U D Y
 NO. OF CPU'S ** STORAGE AVAILABLE ****
 SMALL JOBS ARRIVE AT THE RATE OF *** / HOUR
 AND HAVE A MEAN PROCESSING TIME OF ***.*** SECONDS
 LARGE JOBS ARE SUPPLIED AS EXTERNAL DATA
 THE SIMULATION PERIOD IS **.** HOURS
 28
 29 ACTIVATE A GENERATOR NOW
 30 ACTIVATE A STOP.SIM IN STOP.TIME HOURS
 31 START SIMULATION
 32
 33 END ''MAIN
22

Developing SIMSCRIPT II.5 Programs
 PAGE 5
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

 1 PROCESS STOP.SIM
 2
 3 SKIP 6 LINES
 4 PRINT 9 LINES WITH TIME.V, CPU.UTILIZATION(1)*100/NO.CPU,
 5 MEMORY.UTILIZATION(1)*100/MAX.MEMORY,
 6 AVG.MEMORY.QUEUE(1), MAX.MEMORY.QUEUE(1),
 7 AVG.CPU.QUEUE(1), MAX.CPU.QUEUE(1),
 8 NO.JOBS.PROCESSED AND AVG.JOB.TIME * MINUTES.V
 9 THUS
A F T E R **.** HOURS
THE CPU UTILIZATION WAS *.** %
THE MEMORY UTILIZATION WAS *.** %
THE AVG QUEUE FOR MEMORY WAS *.** JOBS
THE MAX QUEUE FOR MEMORY WAS *.** JOBS
THE AVG QUEUE FOR A CPU WAS *.** JOBS
THE MAX QUEUE FOR A CPU WAS *.** JOBS
THE TOTAL NUMBER OF JOBS COMPLETED WAS ***
WITH AN AVERAGE PROCESSING TIME OF *.*** MINUTES
 19
 20 STOP
 21
 22 END
23

UNIX SIMSCRIPT II.5 User’s Manual
% cat SIMU01
JOB 1.00 3 1 5.00 *
JOB 2.46 1 2 7.00 *
JOB 3.78 3 3 10.00 *
JOB 9.28 2 2 30.00 *
JOB 10.48 1 4 40.00 *
JOB 24.22 1 5 60.00 *

% a.out

A COMPUTER CENTER STUDY

 A C O M P U T E R C E N T E R S T U D Y
 NO. OF CPU'S 1 STORAGE AVAILABLE 6
 SMALL JOBS ARRIVE AT THE RATE OF 30 / HOUR
 AND HAVE A MEAN PROCESSING TIME OF .800 SECONDS
 LARGE JOBS ARE SUPPLIED AS EXTERNAL DATA
 THE SIMULATION PERIOD IS 12.00 HOURS

A F T E R 12.00 HOURS
THE CPU UTILIZATION WAS 47.74 %
THE MEMORY UTILIZATION WAS 10.39 %
THE AVG QUEUE FOR MEMORY WAS 1.16 JOBS
THE MAX QUEUE FOR MEMORY WAS 19.00 JOBS
THE AVG QUEUE FOR A CPU WAS .15 JOBS
THE MAX QUEUE FOR A CPU WAS 2.00 JOBS
THE TOTAL NUMBER OF JOBS COMPLETED WAS 364
WITH AN AVERAGE PROCESSING TIME OF 3.527 MINUTES
%
24

one

ry
put

it

e

of each
 Note
re:
3. SIMSCRIPT II.5 Language Considerations

Some features of the SIMSCRIPT II.5 programming language vary from
implementation to another. This chapter describes implementation-specific features of
UNIX SIMSCRIPT II.5.

3.1 Input and Output

The open statement associates a SIMSCRIPT I/O unit with a file. Its general form is

open [unit] EXPRESSION1
[for] { input | output } < comma >
[[file] name is TEXT1 |

binary |
recordsize is EXPRESSION2 |
noerror |
append |
scratch |
fixed

] < comma >

EXPRESSION1 specifies the unit number. If input is specified, the unit may appear in
use for input statements. If output is specified, the unit may appear in use for
output statements. If both input and output are specified, the unit may appear in both
use for input statements and use for output statements. However, it is necessa
to execute a rewind statement before reading from an output file or writing to an in
file since the intermingling of I/O operations is not allowed.

TEXT1 specifies the name of the file associated with the unit. If the name phrase is omit-
ted, the filename SIMUnn is assumed, where nn is the unit number. For example, for un
3, the default filename is SIMU03.

The default file type is an ASCII file containing variable-length records. If binary is spec-
ified, the file is treated as a binary file containing fixed-length records. If fixed is speci-
fied, the file is treated as an ASCII file with fixed length records. The free-form read ,
formatted read, print, write and list statements are used with ASCII files. Th
read as binary and write as binary statements are used with binary files.

Expression2 specifies the size of records in bytes. If the recordsize phrase is omit-
ted, the size of records is assumed to be 80. For binary files, this is the actual length
record. For files with variable length records, this is the maximum length of a record.
that the “newline” character is not counted as part of the record length. Examples a

open unit 1 for input, recordsize is 132
open 7 for output, binary, name is "datafile"
25

UNIX SIMSCRIPT II.5 User’s Manual

 or the

 a

-

ay not

ins

ach

e. Unit

 is:

utput

clud-

ut-
ble
es
Normally, if a file cannot be opened for some reason, such as the file does not exist
filename is invalid, the program will be aborted with a runtime error. If noerror is spec-
ified, however, the program will not be aborted. Instead, a global variable, ropenerr.v
for the current input unit, or wopenerr.v for the current output unit, will be assigned
non-zero value which may be tested by the program. For example:

open unit 12 for input,
file name is INPUT.FILENAME, noerror

use unit 12 for input
if ropenerr.v <> 0

write INPUT.FILENAME as "Unable to open ", T *, /
close unit 12

always

Note: Ropenerr.v and wopenerr.v will be set after the use unit statement, not after
the open statement .

If a unit which has not been opened appears in a use statement, it will be opened auto
matically by the following statement:

open UNIT-NUMBER for input and output

The standard units — 5, 6 and 98 — are opened automatically by the system and m
appear in an open statement. The record size of each is 132. Unit 5 is stdin , the standard
input unit. It is opened for input and is the current input unit when a program beg
execution. Unit 6 is stdout , the standard output unit. It is opened for output and is
the current output unit when a program begins execution. Unit 98 is stderr , the standard
error unit. It is opened for output and is used for writing system error messages. E
of the standard units is associated with the terminal unless it has been redirected.

The units 1-4 and 7-97 have no predefined meaning and are available for general us
99 is the buffer . This unit may also appear in an open statement, but the name phrase
is ignored and no physical file is associated with it. The recordsize phrase is also ig-
nored. The record size for the buffer is obtained from the global variable, buffer.v ,
with a default value of 132.

The close statement dissociates a SIMSCRIPT I/O unit from a file. Its general form

close [unit] EXPRESSION1

where EXPRESSION1 specifies the unit number.

If the current input unit is closed, unit 5 becomes the current input unit. If the current o
unit is closed, unit 6 becomes the current output unit.

A unit which is open when a program terminates is closed automatically. All units, in
ing unit 99, may be closed, except for the standard units which must remain open at all
times.

The global variable, lines.v , indicates whether pagination is enabled for the current o
put unit. By default, lines.v = 0 which indicates that pagination is disabled. To ena
pagination, initialize lines.v to a non-zero value indicating the desired number of lin
26

SIMSCRIPT II.5 Language Considerations

, spec-

anks
rmore,
owing
lobal

 unit

ode

) is al-

alent
per page. For example, to produce paginated output on unit 1, with 60 lines per page
ify:

use unit 1 for output
let lines.v = 60

A record read from a file containing variable-length records will automatically have bl
appended to it so that it is as long as the record size specified for the unit. Furthe
each tab character found in the record will be expanded into one or more blanks foll
UNIX convention, i.e. tab stops are set every 8 columns, starting with column 1. The g
variable rreclen.v contains the length of the record last read from the current input
before blanks are appended but after tabs have been expanded.

3.2 Modes and Packing Codes

The following modes are supported:

Alpha An 8-bit unsigned integer used to store an ASCII character c
(0 to 255)

Integer2 A 16-bit unsigned integer (0 to 65535)

Signed integer2 A 16-bit signed integer (-32768 to +32767)

Integer A signed integer of at least 32 bits

Real A floating-point number of at least 32 bits

Double A floating-point number of at least 64 bits

Pointer An address

Subprogram An address of a routine

Text An address of a character string

Bit packing is supported. For example, on 32 bit machines, any packing code (a-b
lowed provided that:

1 ≤ a ≤ b ≤ 32

Examples: (1-4), (12-12), (21-22)

The following shows each of the available field-packing codes together with its equiv
bit-packing code:

(1/2) (1-16)

(2/2) (17-32)

(1/4) (1-8)

(2/4) (9-16)

(3/4) (17-24)

(4/4) (25-32)

Intrapacking codes, (*/2) and (*/4), are also supported.
27

UNIX SIMSCRIPT II.5 User’s Manual

 dou-
anent

efini-

C or

-

t. The

t

-

3.2.1 Alignment of Values

Some machines require strict alignment of double-precision floating point values on a
ble word boundary. For maximum portability to these systems, variables and perm
attributes of mode double should be assigned to odd array numbers. Similarly, double
temporary attributes should be assigned to odd word numbers or left for automatic d
tion.

3.3 Non-SIMSCRIPT Routines

This section illustrates how a SIMSCRIPT II.5 program can call a routine written in
FORTRAN.

3.3.1 Calling C Routines

Suppose we wish to call a subroutine named sub which is written in C and has two argu
ments:

sub(inarg,outarg)
long inarg;
long *outarg;

The first argument is an input to the subroutine, and the second argument is an outpu
subroutine must be declared in the preamble:

define SUB as a nonsimscript routine

When calling this subroutine, the first argument should evaluate to integer since this is
the SIMSCRIPT II.5 mode which corresponds to the C type long . The second argumen
must be a pointer to an integer . This can be accomplished by passing a pointer to an in-
teger array. For example:

define IN.ARG as an integer variable
define OUT.ARG as a 1-dim integer array
write as "Enter the input value:", /
read IN.ARG
reserve OUT.ARG(*) as 1
call sub(IN.ARG, OUT.ARG(*))
write OUT.ARG(1) as "The output value is ", I 10, /

Suppose we wish to call a function named FUNC which is written in C and has one argu
ment:

long func(inarg)
double inarg;

The declaration of the function in the preamble specifies the mode of the function:

define FUNC as an integer nonsimscript function
28

SIMSCRIPT II.5 Language Considerations

tches

t. The

dress
mpiler
Here is an example of a call to this function:

define IN.ARG as a double variable
define RESULT as an integer variable

write as "Enter the input value:", /
read IN.ARG
let RESULT = FUNC(IN.ARG)
write RESULT as "The function result is ", I 10, /

It is very important that the SIMSCRIPT II.5 mode of each argument and function ma
its C type. Here is a list of C types and the corresponding SIMSCRIPT II.5 modes:

unsigned char alpha

unsigned short integer2

shortsigned integer2

long integer

float real

double double

If an argument is a pointer to a null-terminated character string, pass a text value.

3.3.2 Calling FORTRAN Routines

Suppose we wish to call a subroutine named SUB which is written in FORTRAN and has
two arguments:

subroutine SUB(inarg,outarg)
integer inarg
integer outarg

The first argument is an input to the subroutine, and the second argument is an outpu
subroutine must be declared in the preamble:

define SUB as a fortran routine

Unlike SIMSCRIPT II.5 and C, FORTRAN passes arguments by reference, i.e., the ad
of the argument is passed rather than its value. This is done automatically by the co
for all routines declared as FORTRAN routines.

write as "Enter the input value:", /
read IN.ARG
call SUB(IN.ARG, OUT.ARG)
write OUT.ARG as "The output value is ", I 10, /

Suppose we wish to call a function named FUNC which is written in FORTRAN and has
one argument:

integer function func(inarg)
double precision inarg
29

UNIX SIMSCRIPT II.5 User’s Manual

tches
IPT

s

The declaration of the function in the preamble specifies the mode of the function:

define FUNC as an integer fortran function

Here is an example of a call to this function:

write as "Enter the input value:", /
read IN.ARG
let RESULT = FUNC(IN.ARG)
write RESULT as "The function result is ", I 10, /

It is very important that the SIMSCRIPT II.5 mode of each argument and function ma
its FORTRAN type. Here is a list of FORTRAN types and the corresponding SIMSCR
II.5 modes:

integer*2 signed integer2
integer integer
logical integer
real real
double precision double

Calling a FORTRAN routine that returns a real or uses real arguments results in a
special case. Unlike SIMSCRIPT II.5 and C which interpret real/float function results
and assignments as 64-bit values, FORTRAN uses a 32-bit value. To obtain this value
within a SIMSCRIPT II.5 program, it is necessary to declare the function not as real but
as integer and then “equivalence” an integer and real array to interpret the value a
real . For example, suppose we wish to call a function named RFUNC which is written in
FORTRAN and has one argument:

real function rfunc(inarg)
real inarg

Declare the function in the preamble as follows:

define RFUNC as an integer fortran function

To call the function:

define IRESULT as a 1-dim integer array
define RRESULT as a 1-dim real array

write as "Enter the input value:", /
read IN.ARG
reserve IRESULT(*) as 1
let IRESULT(1) = RFUNC(IN.ARG)
let RRESULT(*) = IRESULT(*)
write RRESULT(1) as "The function result is", D(10,3),/
30

 that
odules
e ar-

ince
g di-

nd run
atures
 the
to

he de-

lies to

ile the
4. SimDebug Symbolic Debugger

SimDebug is the SIMSCRIPT II.5 Symbolic Debugger. In contrast to other debuggers
are separate programs, this debugger is built into the language. Simply compile the m
you want to debug with debugging and then run your program with the command lin
gument -debug . This will bring up the SimDebug dialog before the program starts. S
the debugger is “always there,” any runtime error will also put you into the SimDebu
alog, where you can examine the stack, local and global variables, etc.

SimDebug’s features include:

• single stepping

• setting breakpoints

• viewing stack and global variables

• displaying temporary and permanent entities

• displaying sets and arrays

• displaying system variables, I/O and memory statistics

• displaying the I/O buffer

• displaying simulation status

• changing variables and attribute values

• stopping at a certain simulation time

• command/dialog logging

• and a lot more.

This chapter describes how to use SimDebug. We first describe how to compile for a
SimDebug. Then we will give you a quick tour that introduces the usage and major fe
of SimDebug in the style of a tutorial. A detailed alphabetical description of all
SimDebug commands is given in paragraph 4.3. Some advanced topics related
SimDebug are given in paragraph 4.4.

4.1 Compiling for Debug and Invoking SimDebug

4.1.1 Compiling for Debug

This paragraph describes how to compile for debugging using the SIMSCRIPT II.5.

There are three levels of debugging support that can be selected for compilation. T
bugging level is controlled through a command line option to simc . The three levels of de-
bugging are none, traceback only, and full debug. The selected debugging level app
all routines in the modules supplied to that invocation of simc . The options are -g for tra-
ceback, and -d for full debug.

To be able to look at entities, system variables and global variables you must comp
PREAMBLE with debugging or traceback, i.e. with the -d or -g option.
31

UNIX SIMSCRIPT II.5 User’s Manual

-
ug.

our

.
you do
ce

.

r
the
-
 seg-

an set
n
f the
put de-

m

ur

error,
You should not mix the debug and optimization flags in the simc call. That is, do not spec
ify -d and -O at the same time, since this can lead to erroneous output from SimDeb

4.1.2 Invoking SimDebug

To invoke SimDebug simply invoke your program with the command line option -debug .
This option will only be recognized by SimDebug and will not be visible to y
SIMSCRIPT II.5 program as a command line argument. The position of the -debug option
on the command line is irrelevant.

SimDebug Dialog

When you invoke your program with -debug you will be put into the SimDebug dialog
Here you can examine the source, set breakpoints, and start your program. When
not specify the -debug option, your program will run as usual without any interferen
from SimDebug.

At the beginning of the SimDebug dialog (whether you invoked it with -debug or entered
the dialog through a runtime error) SimDebug looks for a file simdebug.ini in the cur-
rent directory. If this file exists, it is loaded as a SimDebug command file (see READCMDS).
This way you can easily customize the setup and initialization of SimDebug.

SimDebug will always show a SimDebug> prompt when it is ready for a new command

Runtime Errors

Even when you do not compile your program with the -d option and you do not call you
program with -debug, when SIMSCRIPT detects a run-time error, you are put into
SimDebug dialog. You can then perform all SimDebug commands to inspect your pro
gram, with one exception: You cannot continue execution from floating point errors,
ment violations and bus errors!

When you do not want to enter the SimDebug dialog in case of a runtime error, you c
the global system variable batchtrace.v = 1 . This results in the traceback being writte
to simerr.trc , after which the program exits. This is a change from the behavior o
previous release 1.9 where the traceback would always be output on the current out
vice (according to write.v). However, using the trace statement in your program will
still write the traceback to the current output unit (write.v).

Instead of setting batchtrace.v = 1 in your program, you can also call your progra
with the command l ine argument -ba tch trace . Th is automatical ly sets
batchtrace.v=1 . As with -debug , this command line argument will not be seen by yo
SIMSCRIPT program.

If you want your program to exhibit the old traceback behavior and have a runtime
just write a traceback and then exit. Compile your program with -g and then execute with
the option -batchtrace . The traceback will be written to simerr.trc.

For further information see paragraph 4.4.1.
32

SimDebug Symbolic Debugger

 the
s. See

pro-
will be

ffect

u to
rfer-

user

-

e error
ne

he rou-
Interrupting Running Programs

You can interrupt a running program by pressing Ctrl-C (or the INTERRUPT key
combination defined for your system). This will put you in the SimDebug dialog where
program is currently executing. This is very useful to detect endless loops or recursion
the Ctrl-C command in the command reference paragraph for more details.

Text Input/Output

On UNIX platforms, the SimDebug dialog runs in the terminal window from which the
gram was started. This means that the program's input/output using units 5,6, or 98
intermixed with the SimDebug dialog, as you would expect.

However, when you redirect input or output when calling your program, this will not a
the dialog of SimDebug. Thus, even if you type prog -debug < infile > outfile
the SimDebug dialog will still be connected to your terminal (window). This allows yo
debug programs that read a lot of input from unit 5 (standard-in) without the input inte
ing with the SimDebug dialog.

4.2 A Quick Tour of SimDebug

In this paragraph we will introduce SimDebug by example. In the following tutorial
input is shown in bold face Courier , and SimDebug output and example program
source are shown in the r egular Courier font . The SimDebug dialog is indent
ed, our comments appear in between the dialog segments in italic.

We assume that we have recompiled all of our program using the -d compiler option (in-
cluding the PREAMBLE so that we can see the attributes of entities).

4.2.1 Tour 1: Showing the Stack and Variables

Our program contains a runtime error. When the error occurs, SimDebug shows th
message, floating point error. The meaning of the minor error code is machi
specific; here it means division by zero.

OS-prompt$ tst -debug

ERROR: Floating point error. Minor error code = 200

----- R1 (sample.sim) ------------------------------------- Line = 39

. 39> write B/A as I 4,/

SimDebug shows that the error occurred in routine R1, source file sample.sim , at line 39.
The actual source code at that line is shown on the next line. To see a traceback of t
tine call hierarchy, type t .

SimDebug> t
===================== call stack ======================

----- R1 (sample.sim) ------------------------------------- Line = 39
33

UNIX SIMSCRIPT II.5 User’s Manual

 in the
, and
 they
bles)

format:

ws
lso

ame
Given Arguments:
 A = 0 (Integer) [00000000]
 B = 2 (Integer) [00000002]
Local Variables:
 I = 5 (Integer) [00000005]
 J = 1 (Integer) [00000001]

----- R1 (sample.sim) ------------------------------------- Line = 36
Given Arguments:
 A = 1 (Integer) [00000001]
 B = 2 (Integer) [00000002]
Local Variables:
 I = 5 (Integer) [00000005]
 J = 1 (Integer) [00000001]

----- MAIN (sample.sim) ----------------------------------- Line = 62
Local Variables:
#1 AARR = (null) (Pointer)
 I = 6 (Integer) [00000006]
#2 IARR = 00060548 (1-dim Integer array)
#3 IARR2 = 0005C268 (2-dim Pointer array)
#4 LE = 0005C3E8 (Ptr--> class LISTELEM)

We now see that R1 is recursive and that A is 0. Obviously we tried to divide by zero.

A few more comments on the traceback output: The types of variables distinguished
output for each routine are: Given Arguments, Yielded Arguments, Local Variables
Saved Local Variables. Given and yielded arguments appear in the order in which
were defined in the routine source code. All other variables (including the global varia
appear in alphabetical order. Each line that shows a variable has basically the same

VarName Variable name

Value The value. Pointers are shown as 8 hex digits.

Mode Mode information for that variable. For pointers SimDebug sho
where it points to (which kind of entity, array etc.). For integers we a
show the value again as hex in [].

To see the global variables, type glob . They are ordered by name and appear in the s
format as the variables in the traceback.

SimDebug> glob
#1 DSPLY.E = (null) (Pointer)
#2 F.LISTSET = 0005C368 (Ptr--> class LISTELEM)
 GLOBALD = 0. (Double)
 GLOBALI = 0 (Integer) [00000000]
#3 LISTELEM = (null) (Pointer)
#4 L.LISTSET = 0005C3E8 (Ptr--> class LISTELEM)
 N.LISTSET = 5 (Integer2) [00000005]
34

SimDebug Symbolic Debugger

nt

eback

ttom
nd

alue
g the
a
.

ng. To
tters.
en-

iables
 a
Again, we want to see where we are. The w command shows us the context of the curre
line (default ± 5 lines) with a "=>" in front of the current line.

SimDebug> w
----- R1 (sample.sim) ------------------------------------- Line = 39
. 34 J = A-B
. 35 if A > 0
. 36 call R1(A-1, B)
. 37 else
. 38 write as "B/A = "
=> 39 write B/A as I 4,/
. 40 endif
. 41 end

All these commands still apply to the current routine or the current frame in the trac
(called hierarchy). If we want to see where we are in the routine that called this R1, we must
move the current frame one level down (“Top of stack” is the last routine called, “Bo
of stack” is MAIN). The dn command moves the current frame one level down a
SimDebug shows us the current line on that level. Then we use tc to get a traceback of
only the current routine frame which is now R1 at stack level 2. Note that in this frame,
A=1. With pv we can ask for only one variable. When it is in the current routine, that v
is printed. Otherwise, SimDebug looks at the global variables. Before actually printin
line with the variable name, value and type, pv first prints whether the found variable is
given or yielded argument, and whether it is a local, local saved, or a global variable

SimDebug> dn
----- R1 (sample.sim) ------------------------------------- Line = 36
 36>. call R1(A-1, B)
SimDebug> tc
----- R1 (sample.sim) ------------------------------------- Line =
36
Given Arguments:
 A = 1 (Integer) [00000001]
 B = 2 (Integer) [00000002]
Local Variables:
 I = 5 (Integer) [00000005]
 J = 1 (Integer) [00000001]
SimDebug> pv A
Given Argument:
 A = 1 (Integer) [00000001]

In large programs, variable names as well as routine names are generally quite lo
avoid having to type in the whole variable name, you can enter just the first few le
SimDebug matches your input with the defined variables. When your input uniquely id
tifies a certain variable, it will be printed as usual. When you enter pv G* and there are
several variables (locals or globals) that begin with G, you will be offered a list of matches
from which you can select by number. In the same way, you can select from all var
that end with a certain suffix by using pv *suffix . When we want to use the input as
35

UNIX SIMSCRIPT II.5 User’s Manual

bal

ingle
s a few
o
m
rds at

e
tep,

 there.
prefix the "* " is optional. pv always looks in the current frame first, and then at glo
variables to find variables with a certain name/pattern.

SimDebug> pv g*
---- Matching GLOBAL variable names ----
 1 GLOBALD
 2 GLOBALI
---> Select variable by number (0=none) > 2
Global Variable:
 GLOBALI = 0 (Integer) [00000000]
SimDebug> pv li
#1 LISTELEM = (null) (Pointer)
SimDebug> pv *set
---- Matching GLOBAL variable names ----
 1 F.LISTSET
 2 L.LISTSET
 3 N.LISTSET
---> Select variable by number (0=none) > 3
Global Variable:
 N.LISTSET = 5 (Integer2)
[00000005]

In the same way you can restrict the output from the GLOB command with a prefix* or a
*suffix argument. The following example ends our first tour:

SimDebug> glob g
 GLOBALD = 0. (Double)
 GLOBALI = 0 (Integer) [00000000]
SimDebug> glob *set
#1 F.LISTSET = 0005C368 (Ptr--> class LISTELEM)
#2 L.LISTSET = 0005C3E8 (Ptr--> class LISTELEM)
 N.LISTSET = 5 (Integer2) [00000005]
SimDebug> quit
Leaving SSDB ...
OS-prompt$

4.2.2 Tour 2: Breakpoints and Single Stepping

We are now going to a different program that will illustrate the use of breakpoints, s
stepping and SimDebug's advanced pointer handling features. This program create
entities and arrays. We call our program with -debug so that we are immediately put int
the SimDebug dialog. With the lr command we get a list of the routines in the progra
that were compiled with debugging and their line number range. You can use wildca
the beginning and end of a routine name argument in lr in the same way as with variabl
names. Note how R2, a left routine, gets displayed. In these routines we can single s
set breakpoints, etc. With ls we can look at the source of the routine main . A “. ” in front
of a source line means that this line is executable and that you can set a breakpoint
36

SimDebug Symbolic Debugger

e

ill be

kpoint

r-
OS-prompt$ tst -debug
SimDebug (SIMSCRIPT Symbolic Debugger) Version 1.0

SimDebug> lr { lists all routines compiled with debug or trace }
 MAIN (sample.sim : 44- 64)
 R1 (sample.sim : 29- 41)
 R2-L (rtns.sim : 1- 32)
SimDebug> lr r { lists all routines that begin with an "R" }
 R1 (sample.sim : 29- 41)
 R2-L (rtns.sim : 1- 32)
SimDebug> ls m { lists the (only) routine that begins with "M" }
---- MAIN -------------------------------------- (main.sim: 44-64)
. 44 main
 45 define LE as pointer variable
 46 define IARR as 1-dim integer array
 47 define AARR as 1-dim alpha array
 48 define IARR2 as 2-dim integer array
 49 define I as integer variable
 50
. 51 reserve IARR as 10
. 52 reserve IARR2 as 5 by 5
 53
. 54 for I = 1 to 5
 55 do
. 56 create a LISTELEM called LE
. 57 ATTRI(LE) = I
. 58 ATTRP(LE) = IARR2(I,*)
. 59 file LE in LISTSET
. 60 loop
 61
. 62 call R1(3,2)
 63
. 64 end

We can start our program simply by invoking the s command (single step). But instead w
will set a breakpoint on the line where a new entity gets created and where R1 gets called.
With lb we get a list of the currently set breakpoints. With r we start the program which
runs until it hits the first breakpoint. A message is printed and the source line that w
executed next is shown.

Note: The current line in SimDebug is the line that gets executed next. Thus, a brea
at a certain line stops execution before that line.

We also set a breakpoint at the beginning of R2. Note that SimDebug asks for missing a
gument information.

SimDebug> sb main 56
SimDebug> sb m* 62 { "M" uniquely identifies MAIN, the "*" is optional}
SimDebug> sb r*
----- List of matching routines -----
 1 R1
37

UNIX SIMSCRIPT II.5 User’s Manual

ach
ce an
 2 R2-L
Enter routine by number > 1
Enter line number > 1
*** No executable source code at that line. Used line 4 instead.
SimDebug> lb
------- List of Breakpoints --------
 1 MAIN @ line 56
 2 MAIN @ line 62
SimDebug> r
BREAK: User breakpoint

----- MAIN (sample.sim) -----------------------------------
Line = 56
 56># create a LISTELEM called LE

After reaching the breakpoint, we single step through the program for awhile. After es
command, SimDebug shows the new 'current line' (that will be executed next). Sin
empty command repeats the last command we can simply press Return to repeat the single-
step. If a line contains a routine call, s will step into the routine, whereas n will step over
the routine. After we have stepped enough, we use the c command to continue the program
until the next breakpoint.

SimDebug> s
 57 ATTRI(LE) = I
SimDebug> { no input = repeat last command }
 58 ATTRP(LE) = IARR2(I,*)
SimDebug>
 59 file LE in LISTSET
SimDebug>
 60 loop
SimDebug> c { continue execution }
BREAK: User breakpoint

----- MAIN (sample.sim) -----------------------------------
Line = 62
#> 62 call R1(3,2)
SimDebug> ls { lists source of 'current routine' }
. 44 main
 45 define LE as pointer variable
 46 define IARR as 1-dim integer array
 47 define AARR as 1-dim alpha array
 48 define IARR2 as 2-dim integer array
 49 define I as integer variable
 50
. 51 reserve IARR as 10
. 52 reserve IARR2 as 5 by 5
 53
. 54 for I = 1 to 5
 55 do
56 create a LISTELEM called LE
38

SimDebug Symbolic Debugger

ar-

 set
e

rve
s

. 57 ATTRI(LE) = I

. 58 ATTRP(LE) = IARR2(I,*)

. 59 file LE in LISTSET

. 60 loop
 61
#> 62 call R1(3,2)
 63
. 64 end

Conditional Breakpoints: You can programatically set conditional breakpoints on
bitrarily complex conditions by calling SimDebug itself! See paragraph 4.4.6.

4.2.3 Tour 3: Pointer Handling: Entity / Set Display

Now the set is created and we are ready to look at the set and the entities. The set LISTSET
was declared in the PREAMBLE as 'owned by the system'. This is why the fields for the
F.LISTSET, L.LISTSET and N.LISTSET are global variables. We first display th
global variables to see the variable F.LISTSET , which holds the pointer to the first
element in the set. Once we are in the set, we follow the pointers using fp (follow pointer
debugger command) along S.LISTSET (successor) to get to the next elements. Obse
that the attribute ATTRI is 1,2,3... and that the ATTRP points to the different arrays a
assigned in the loop.

SimDebug> glob
#1 DSPLY.E = (null) (Pointer)
#2 F.LISTSET = 0005C368 (Ptr--> class LISTELEM)
 GLOBALD = 0. (Double)
 GLOBALI = 0 (Integer) [00000000]
#3 LISTELEM = (null) (Pointer)
#4 L.LISTSET = 0005C3E8 (Ptr--> class LISTELEM)
 N.LISTSET = 5 (Integer2) [00000005]

SimDebug> fp #2
------- Entity #2: 0005C368 (class LISTELEM) ----------
 ATTRI = 1 (Integer) [00000001]
 ATTRA = 00 (hex) (Alpha)
#1 ATTRP = 0005C2C8 (Ptr--> Array (5) of Integer)
#2 S.LISTSET = 0005C388 (Ptr--> class LISTELEM)
#3 P.LISTSET = (null) (Pointer)
 M.LISTSET = 1 (Integer2) [00000001]
SimDebug> fp #2
------- Entity #2: 0005C388 (class LISTELEM) ----------
 ATTRI = 2 (Integer) [00000002]
 ATTRA = 00 (hex) (Alpha)
#1 ATTRP = 0005C2E8 (Ptr--> Array (5) of Integer)
#2 S.LISTSET = 0005C3A8 (Ptr--> class LISTELEM)
#3 P.LISTSET = 0005C368 (Ptr--> class LISTELEM)
 M.LISTSET = 1 (Integer2) [00000001]
SimDebug> {Pressing Return repeats last FP command. Step through set }
39

UNIX SIMSCRIPT II.5 User’s Manual

para-

When
 com-
 em-

ts are

ts,
ASE,

here are
s are

gu-

-

m
ck,
------- Entity #2: 0005C3A8 (class LISTELEM) ----------
 ATTRI = 3 (Integer) [00000003]
 ATTRA = 00 (hex) (Alpha)
#1 ATTRP = 0005C308 (Ptr--> Array (5) of Integer)
#2 S.LISTSET = 0005C3C8 (Ptr--> class LISTELEM)
#3 P.LISTSET = 0005C388 (Ptr--> class LISTELEM)
 M.LISTSET = 1 (Integer2) [00000001]
SimDebug> fp #1 { "FP" knows how to interpret pointers ; this is IARR(3,*) }
 #1(1) = 0 [00000000]
 #1(2) = 0 [00000000]
 #1(3) = 0 [00000000]
 #1(4) = 0 [00000000]
 #1(5) = 0 [00000000]

This concludes our quick tour of SimDebug. All commands are fully documented in
graph 4.3.

4.3 SimDebug Command Reference

The SimDebug commands and their options are listed below in alphabetical order.
commands have abbreviations, the abbreviations are given on the next lines below the
mand. To list each command with its optional arguments the following notation is
ployed:

CMD arg: Command names and keywords are shown in UPPER CASE, argumen
shown in lower case.

[...] Optional arguments are enclosed in square brackets.

a | b Alternatives are separated by the vertical slash.

For example, LOG [CMDS|DIALOG|START|STOP|CLOSE] means that the LOG command
can have no argument, or can have one of the listed arguments. The notation T [from
[to]] means that the command T (traceback) can have one or two optional argumen
from and to . Command names and keyword arguments are shown in UPPER C
arguments of commands are shown in lower case (e.g. READCMDS cmdfile).

Basic Syntax: Each SimDebug command consists of the command name followed by
one or more arguments, each seperated from each other by one or more spaces. T
no parentheses and there is no nesting of expressions needed. SimDebug commandnot
case sensitive. Except for file names, upper/lower case is irrelevant.

Missing Arguments: Whenever possible, SimDebug will ask you for a missing ar
ment instead of issuing an error message.

Repeat Last Command: When you press Return (no command entered), the last com
mand will be repeated. This is particularly useful for the S, N and FP commands.

Scrolling Output: The output of SimDebug will appear in the 'terminal window' fro
which you invoked your program. If your 'terminal window' does not allow scrolling ba
40

SimDebug Symbolic Debugger

. You

r

never
 the

les.

ert-

en

bug
you can set a parameter SET SCROLLINES n so that the output will pause after everyn
lines (press Return to continue).

Routine Names: Several SimDebug commands take routine names as arguments
can type the routine name just as you use it in your program (e.g. STACK.ORDER.QUEUE) .
Upper/ lower case in routine names is irrelevant.

Variable Names: You may use wildcards, i.e. the "* ", when entering variable names, o
may enter just the first few letters of the desired name. When the input matches several
names you will be offered a list from which you can select the desired variable. Whe
SimDebug looks for a variable, it looks in the 'current frame' first (local variables on
stack), and when the specified variable is not found there, in the set of global variab

List of SimDebug Commands:

#

Comment: The remainder of this line is discarded. This is useful for ins
ing comments in command files (see READCMDS).

?

Help: See HELP command.

BOT

Bottom: Set the 'current frame' to the bottom of the stack, i.e. to MAIN. See
note on 'current frame' in the DN command.

BPDIS n

Breakpoint disable: Disables breakpoint n (n comes from the LB com-
mand).

BPEN n

Breakpoint enable: Enables breakpoint n. The LB command shows each
defined breakpoint with a number that can be used for BPEN, BPDIS and
DB.

BR rtnname

Break in Routine: Sets breakpoint on the first executable line of the giv
routine. Execution stops when the routine is entered.

BUF n

Show Buffer: Show the contents of the buffer of unit n. This can also be
used to show the contents of the buffer , i.e. unit 99.

Ctrl-C (INTERRUPT key)

This command interrupts your running program and enters SimDe
so you can see where you are in the program's execution. The 'current
routine' is the currently executing routine.
41

UNIX SIMSCRIPT II.5 User’s Manual

-
e of
rou-
m-
iled

line

nt. A
-

 'ex-
 oc-

m-

h), as
ers (1

e

i-

e).

ble
INTERRUPT in no-debug routine: When you do not compile the cur
rent routine with debug, you will not be able to see the current lin
execution or the local variables/ arguments. You will only see the
tine name. An s (single step) command in a routine that was not co
piled with debug will take you to the next line of code that was comp
with debug (this may be several levels up in the calling hierarchy).

INTERRUPT during simulation: When you press the INTERRUPT
key while a simulation is running, SimDebug may report the current
as the line that contains the start simulation statement. This means
that your program is in between the last and the next process/eve
single-step command s will take you into the next line of the next pro
cess when you compiled that process routine with debug.

C

Continue: Continues execution. When there is no breakpoint set in the
ecution path' the program runs until completion, until a runtime error
curs, or until you press Ctrl-C to interrupt the running program.

DB n

Delete Breakpoint: Deletes breakpoint n (n is defined from the LB com-
mand).

DM [addr [type [count]]]

Display Memory: For the rare cases where you might want to look at me
ory in an unstructured way (e.g. for non-SIMSCRIPT data), the DM com-
mand allows you to view areas of memory as Hex values (4 bytes eac
Integers (4 bytes), Reals (4 bytes), 4 Doubles (8 bytes) or 40 charact
byte each). To display contiguous areas of memory, you can use DM in two
ways: First with DM addr type count , you set the starting point, the typ
and the count of your memory display. Then, subsequent DM commands
(with NO ARGUMENTS) will continue memory display where the prev
ous display left off. The arguments are:

addr Starting address (in hex)

type Type of display of item: H, P : 4 bytes as hex, I : integer, R:
real, D: double, A : alpha. Default is H = hex.

count Number of items to display per command (always 4 per lin
For Alpha mode non-printable characters are shown as ". ".

DN [n]

Down: Move 'current frame' n levels down (towards MAIN) in the stack. De-
fault: n = 1 .

Note: The current frame is the routine being looked at in the call stack
shown by the T traceback command. When you look at a certain varia
42

SimDebug Symbolic Debugger

bal

utine

et,
 pro-
e last

e

tes

ob-
ase

ents

)

i-

m
pe
ely
d

d

with the PV command, you look first at the current frame, and then at glo
variables to find this variable. Thus, with UP and DN you can move the cur-
rent frame to allow inspection (e.g. a certain instance of a recursive ro
call).

ECHO arg1 arg2 ...

Echo: Echoes the words arg1, arg2, ... to the output. This is useful to
output messages from within a command file.

EV

Event set: Prints information about the simulation, including the event s
the current simulation time, the current and next process etc. For each
cess/event the time of the next scheduled process/event and of th
scheduled process/event of that class is shown with pointer numbers [#n]
in brackets behind the times. Using these pointer numbers you can step
through the event sets for each process/event type using the FP command.
The event/process that is scheduled next is marked with a “*” behind the
class number.

When only one process is scheduled in a class, only the time.a (First) is
printed (so you can easily tell that there is just one).

Entity in process.v : Process.v is a pointer to the process/event notic
of the currently active process/event. For a process 'CUSTOMER' the entity
class will be 'CUSTOMER'. This entity contains any user declared attribu
as well as some internal attributes. Never change any of the internal at-
tributes!

FP ptrvariable

FP ptrvalue

FP #n

Follow Pointer: With this command you can display the contents of an
ject that a pointer points to. This will generally be an entity, in which c
the entity attributes are shown, or an array, in which case the array elem
are shown. There are three varieties of the command:

FP ptrvariable : Ptrvariable is the name of a (local or global
pointer variable.

FP ptrvalue : Ptrvalue is a pointer value (in hex) taken from prev
ous output.

FP #n : n is a pointer index. Whenever a pointer is shown as output fro
the T, FP or other commands, it is displayed with a prefix of the ty
#n where n is a running index. This way each pointer can be uniqu
identified by #n. The running index n is 'restarted' by each comman
that displays a pointer value. Thus #n applies to the last displayed #n .
Thus, with the FP #n command you can follow a previously displaye
43

UNIX SIMSCRIPT II.5 User’s Manual

ers,

t,
ts

e
 is

ty,
troy'
able

ven
 the
ess

u
d by
d of

y are

xt

s

 This
-
e

ical
pointer. This is very useful for all data structures that employ point
such as lists, sets, your own graph structures etc.

Example: Walking through a set: To step through all elements of a se
simply type FP #n where n is the index of the pointer that represen
F.setname (pointer to first in set). The first displayed element will
have a pointer field S.setname (to successor), say with index #3. Re-
peated commands FP #3 will display one set member after another.

Temporary Entity Display: For temporary entities SimDebug shows th
whole entity with all attributes. Packing (*/2, */4, bit packing, overlap)
fully supported. To see just one field of an entity, type FP entname
attrname .

Note on Destroyed Entities: Remember that when you destroy an enti
the pointer to that entity is still there. But the storage freed by the 'des
command will generally be reused immediately. Thus, a pointer vari
that points to an entity might suddenly display "Ptr --> Text ! Error
!! " in its mode field, or appear to point to a different entity class e
though you did not touch that variable. This is especially noticeable for
global process entities that are deallocated when the corresponding proc
is suspended or terminated.

Note on Global System Variables: When global variables are listed yo
will also see several internal/ system variables that are implicitly define
SIMSCRIPT II.5 (such as resources, temporary entities etc). Instea
hiding these values, SimDebug shows these internals since the
documented, (such as fields of resources, etc). However, you should never
change a variable that you did not create/define yourself.

Printing Text Values: SimDebug shows only a few characters of the te
in the normal PV output. To see the whole text, use FP textvar . See notes
on the text display at the FP command.

Note on Integers Used as Pointers: Since many SIMSCRIPT program
use integer variables to store pointer s as well, SimDebug allows you to
'follow integers' as if they were pointers.

FPN ...

Like FP, but this command does not reset the pointer number counter.
allows you to keep the 'access handle' #n to the entity after you have dis
played it. This is needed for the SEV command (set entity values). See th
notes for the SEV command.

GL [pattern]

GLOB [pattern]

Globals: Prints a list of all global variables and their values (in alphabet
order). See the T command for a description of the output.
44

SimDebug Symbolic Debugger

n
h

ds.
the
 a
es are

m,
d (if

k-

 file.
e is
 list-

 the

t

Pattern can be prefix or prefix* which shows all variables that begi
with the given prefix, or *suffix which shows all variables that end wit
the given suffix.

H

HELP [name]

HELP: Gives an overview (just the names) of all SimDebug comman
When name is given, SimDebug gives a more detailed description of
topic/command with that name. Name can be either a command name, or
topic name (such as 'breakpoints'). Both the command and topic nam
given in the help overview.

IO

I/O Information: Shows information about the I/O status of your progra
i.e. for each unit used whether it is input or output, which file is attache
any), how many records were read/written etc. Use the BUF command to
look at buffer contents for units.

LB

List Breakpoints: Lists all currently defined breakpoints. Disabled brea
points (see BPEN, BPDIS) appear in parentheses.

LOG [CMDS|DIALOG|STOP|START|CLOSE] [logfilename]

Command and Dialog Logging: You can have SimDebug write all com-
mands or all of the dialog (commands and SimDebug output) to a log
Command and dialog logging cannot be active at the same time (ther
only one log file). The variants of the command are the only arguments
ed:

(without argument) Show status of logging.

CMDS [logfilename] Start command logging. Default file:
 cmdlog.log

DIALOG [logfilename]

Start dialog logging. Default file:
 dialog.log

STOP Stop current logging.

START Resume logging

CLOSE Close current log file. Allows you to start a
new log (command or dialog).

When command logging is turned on, only the actual commands and not
SimDebug> prompts are put into the log file. As a special case, LOG com-
mands are not put into the command log since you generally do not wan
45

UNIX SIMSCRIPT II.5 User’s Manual

ialog

me

ol-
r.

you

 to

e

ere)

 out-
them when repeating the command sequence. They are written to the d
log, however.

When you press Return to repeat the last command, the full command na
will still be written to the command/dialog log.

LR [rntname|prefix*|*suffix|ALL|NODEBUG]

List Routines: Lists the names of the routines in your program in the f
lowing order: PREAMBLE, MAIN, and then all others in alphabetical orde

LR List all user routines compiled with debug or trace.

LR ALL List all user routines (nodebug routines prefixed with N;
routines compiled with -g are prefixed with T).

LR TRACE List all routines compiled with traceback (-g).

LR NODEBUGList all user routines that were not compiled with debug.

LR prefix*

List user routines that begin with prefix ("* " is optional).

LR prefix*-L

Append -L after the “*” to see only left routines.

LR *suffix

List routines that end with a suffix (e.g. LR *.CTRL)

Note: Continuous variables will display as right and left routines. When
have a routine with the name ALL, TRACE or NODEBUG , you must use
ALL*, TRACE*, or NODEBUG* to get the routine individually.

LS [rtnname [from [to]]]

List Source: Lists the source lines of the given routine. The default is
show the whole routine. Line numbers (for from and to) are given relative
to the file (not relative to the routine beginning or the like).

When the program is active the rtnname can be omitted in which case th
'current routine' (the source of the current frame) is shown.

Source Listing Format: Each output line consists of four fields:

1. A " . " for executable source lines (you can set breakpoints th
or a "#" when a breakpoint is set on that line

2. A ">" when this is the current line (of execution)

3. The source line number of the line (in the source file), and

4. The first 72 characters of the source line itself.

Note: Only the first 72 characters of a source line are printed so that all
put fits on one line.
46

SimDebug Symbolic Debugger

nti-
rrays

 use
em-

igher
s a
 be-

ram

n
d
 the

ere in

 a

ele-

di-
MEM

Memory Information: Shows memory statistics, such as how many e
ties of each type are currently created, and how many strings and a
there are.

Note: Since string and array counters are for both SIMSCRIPT internal
and for user data, the numbers do not directly reflect your program's m
ory usage. Also, since SimDebug uses strings, the numbers will be h
when compiling with debug. A good way to find out if your program ha
'memory leak' is to write down the number of strings, arrays etc. at the
ginning of the program, and then let it run for awhile. Interrupt the prog
with Ctrl-C and look again.

N [n]

Next: Execute the next n (default: 1) SIMSCRIPT source lines and the
return to the SimDebug dialog. N steps over a routine call. This routine an
all routines called from this command execute until you are returned to
SimDebug dialog. Unless, of course, there is a breakpoint set somewh
the called routines.

Also, see comment on "Specifying Repeat index n" in the S command.

Context Switch: When a context switch occurs during a N or S or SR com-
mand, a message is printed accordingly.

PAV arrvarname [selvec]

Print array variable: With this command you can display all or part of
multi-dimensional array or parts thereof. Arrvarname must be an array
variable name and the whole array is printed by default. Selvec is the 'se-
lection vector' that allows you to limit the output. It consists of several
ments with the following meanings:

n Show only this element from the current dimension

* Show all elements of this dimension

+ Stop display at this dimension.

A few examples will clarify this command. Assume ARR3I is a 3-dimen-
sional integer array, reserved as (5,5,5). Then:

PAV ARR3I 1 Prints all elements of ARR3I(1,*,*) (25 integers)

PAV ARR3I 2 3 Prints ARR3I(2,3,*) (5 integers)

PAV ARR3I * 4 5

Prints ARR3I(1,4,5), (2,4,5), (3,4,5) ,
... (5 integers)

PAV ARR3I 3 + Prints 5 pointers to the integer arrays of the last
mension, ie. (3,1,*), (3,2,*), (3,3,*),
...
47

UNIX SIMSCRIPT II.5 User’s Manual

ger

d
rray

ri-
e
e is

n see

of
ibute
.

le

 the

,
ing

ce,
ing
Equivalencing: An array may be defined and reserved as a 5-by-5 inte
array. But if you assign this pointer to an array variable of mode "2-dim
alpha array " you can look at the data as alphas. The PAV command uses
the mode of the given array variable (arrvarname) to determine how to in-
terpret the data.

PDV arrvarname [selvec]

PDV ptrvariable [selvec]

PDV ptrvalue [selvec]

Print descriptor variable: Same as PAV except that the array is printe
from the information contained in the array descriptors. That is, the a
will be printed with the mode it was first reserved as.

PT textvar|textptr

Print text values in full: This command prints the whole text of a text va
able or a pointer pointing to a text value. This command is needed sincPV
only prints the first few characters of a text string. The whole text valu
printed with string quotes around it and a "- " at the end of each line when
the text continues on the next line. Thus, on an 80 character line you ca
77 characters of text (with two string quotes around it, and a "- " at the end).

Text attributes: If the text you want to see in full length is an attribute
an entity, you can use the address of the text that is given with the attr
output as an argument for FP. The same holds for arrays of text pointers

PV varname

Print Variable: Prints the value and type information for the variab
varname . SimDebug first searches the current frame, and if varname is
not defined there, then the global variables for varname . As described at
the beginning of this paragraph, you can use wildcards to specify
variable name (prefix, prefix*, *suffix). When several variables
match, a selection list is shown.

Format of output: Before printing the line with the actual variable
SimDebug prints the type of variable it found: Given Argument, Yield
Argument, Local Variable, Local Saved Variable, or Global Variable.

Then each line follows basically the same format:

 ptrnum varname = value (mode information)

where the fields contain:

ptrnum For pointers: The #n entries for the FP (follow pointer) com-
mand.

varname The variable name.

value The value. Text is shown to the extent that it fits in the spa
where internal string quotes are not doubled (i.e. a str
48

SimDebug Symbolic Debugger

rs
on-

m

p-
.g.

 that
ro-

n

y

ead.
ers)
ary
ay

our

of
ped
containing a single string quote is printed as """). Intege
and alpha characters are printed as usual, where n
printable alpha values are also printed in hex. For real s
and double s you can define the output format with SET
OREALF (see SET command). Pointers and subprogra
variables are shown in hex.

mode info

Mode information. For integers, the value in "[]" in hex is a
pended. For pointers, pointer destination information (e
entity class, array type) is shown. *** Bad pointer ***
means that this is an illegal address, i.e. an address
would cause a segment violation if it were used. For subp
gram variables the subprogram name is shown. Use SET
EXTINFO 0 when you do not want this extended informatio
for pointers.

Array mode info

Normally, arrays mode information is shown as the arra
was declared in the program, e.g. "2-dim integer
array ". With the SET parameter SHOWARRAYPTRS you can
choose to see the internal structure of the arrays, inst
That is, you can see the pointer structure (arrays of point
that make up multi-dimensional arrays. This is necess
when dealing with ragged arrays or assigning arr
fragments.

Printing Text Variables: The normal output of PV and T shows just the
first 10 characters of the text. If you want to see the whole text, usePT
textvar .

QUIT

Quit: Quit/exit from SimDebug. All open log files will be closed. Syn-
onyms are: Q, EXIT, END, BYE .

R

Run: Run/start your program from the beginning. You cannot start y
program 'in the middle', or restart the program with the R command. To re-
start for debugging you must call your program again with -debug .

READCMDS cmdfilename

Read Commands from File: With this command you can put a series
commands into a file and read them in just as if you had interactively ty
them at SimDebug. This is useful in conjunction with command logging
49

UNIX SIMSCRIPT II.5 User’s Manual

ands

en

g
-
ebug
 set-

mp-
com-
en

tion

ill
t will

.
s (

e is
(see LOG) when you want to store and then replay a sequence of comm
that got you to a certain place.

Normally commands read from a file are not echoed by SimDebug, ev
though output from these commands (e.g. LR) is, of course, visible. When
you want to see the commands read from a command file you canSET
OREADCMDS 1.

Init Command File: At the beginning of the SimDebug dialog, SimDebu
looks for a file simdebug.ini in the current directory. When this file ex
ists, it is read as a SimDebug command file before you enter the SimD
dialog. In this file you can store your preferred SimDebug parameter
tings (see SET command).

Empty lines in a command file are ignored. Commands from a command
file are not remembered in the "last command" buffer. However, since 'e
ty commands' that re-execute the last command are still written to the
mand log file in full, you will still get exactly the same behavior wh
reading a command file previously written as a command log.

S [n]

Step: Single step. It executes the next n (default: 1) SIMSCRIPT source
lines and then returns to the SimDebug dialog. S steps in to routines when
the next instruction is a routine call. That is, it stops on the first instruc
in the called routine.

Specifying Repeat Index n: After a single step command, SimDebug w
show you the next executable source line. This is the source line tha
be executed by the next S command. When you specify a repeat index n
you generally do not want to see the output of the n source lines executed
However, if you do, you can enable the output for repeatable commandS,
N, UP, DN) with SET OREPCMDS 1.

Context Switch: When a context switch occurs during a N or S or SR com-
mand, a message is printed accordingly and the current simulation tim
printed.

SET [[parname] [newvalue]]

Set SimDebug Parameter: Several aspects of SimDebug commands are
controlled by parameters that you can change. SET without arguments lists
the values of all SimDebug parameters. When a paremeter name (parname)
is given, you can change its value. For example, SET OREPCMDS 1. You
only have to type the first few letters of a SET parameter that make it unique.

SimDebug "SET parameters" and their meanings (n: integer > 0; m: 0 or
1; defaults are given in []):

SET WW n [5] (WhereWidth) Show ± n lines with W command.
[5]
50

SimDebug Symbolic Debugger

s.

d.

ee.

t

]

lly
SET OREALF de a b

(OutRealFormat): Output format for Reals/ Double
 They are output as de(a,b) , e.g. " E(14,4)" [D
17 6]

SET OREPCMDS m

Show output from repeated commands (n=1) or not.
[0]

SET OREADCMDS m

Show output from read commands (n=1) or not. [0]

SET EXTINFO m

Show extended information for pointer in mode fiel
[1]

SET GLOBWTRACE m

Show global variables (GLOB) with trace command
(T). [0]

SET SHOWINTGL m

m=1: Show internal global variables with GL. [0] In-
ternal global variables (A.*, I.*, G.*) are created
by SIMSCRIPT and are, in general, not useful to s

SET SCROLLINES n

n>0: Output pauses after n lines. Press Return to
continue. [0]

SET SHOWARRAYPTRS m

m=1: Show array mode information not as '2-dim
integer array ' but as the internal pointers tha
implement this array. [0]

SET SHOWSTACKLEVELS m

m=1: Show SL=.. , (the stack level in traceback). [0

SET SHOWLIBRTNS m

m=1: Show library routines in traceback [0].

SET NAMECOMPLETION m

m=1: Variable and routine names are automatica
completed by SimDebug. That is, FP CU will follow
the pointer that begins with CU. In case of multiple
matches, you are offered a choice.
51

UNIX SIMSCRIPT II.5 User’s Manual

r
 that
ded'.

ry

er

nti-
ntity

 the

splay
your

ect-

he

rent
e

le to
Note on OREPCMDS and OREADCMDS: Even when output from read o
repeated commands is turned off, the output from the last command
was read or repeated will be shown so that you can see 'where you lan

SEV entname attrname value

Set Entity Values: Allows you to change the attribute value of a tempora
entity. For quoting rules to set text values see the SV command. For
entname you can enter the same values as for FP: an entity pointer name,
an entity pointer value (in hex) or a #n (pointer number).

Using #n for entname : When you get to an entity using FP (follow pointer)
commands, the display of the pointer attributes in the entity will 'overwrite'
the pointer number n you used to display this entity (with FP #n). Thus,
there is no longer a valid #n to use for entname . You should 'go back out-
side' of the entity (e.g. back one element in a list) and then use FPN #n to
display the entity. FPN works like FP except that it does not reset the point
numbers. This way you will keep all pointers along the way for use by SEV.

Limitations: It is currently impossible to change values of permanent e
ties (i.e. arrays). Also, you cannot set the values of packed temporary e
attributes.

SB rtnname lineno

Set Breakpoint: Sets a breakpoint in routine rtnname at line lineno . You
can use ". " for the routine name to denote the current routine (routine in
current frame).

SNAP

Snap: Calls your specified 'snap routine' SNAP.R. This is useful for debug-
ging complicated data structures that require special (user) code to di
relevant information. You can use normal write statements to output
data.

Note that the output from this ‘snap routine’ will NOT appear in the log file
(see LOG) but in the normal program’s output. Thus, when output is redir
ed, the ‘snap routine’ will write into your output file.

SRCDIRS [src_dir_list]

Allows you to specify alternate directories where SimDebug can find t
SIMSCRIPT source files (for LS, W etc.). src_dir_list is a list of di-
rectories seperated by spaces. When no src_dir_list is given, the cur-
rent source directory list is shown.

In searching for source files, SimDebug always starts at the cur
directory. If the source file is not found there, SimDebug looks into th
directories in the order they were given in the src_dir_list . When your
executable runs in a directory other than where it was built, it is advisab
specify the source directories as absolute paths.
52

SimDebug Symbolic Debugger

l
. A
 only

vari-

 the

h as

es
rs

 deep
d for

art

s

ne
ber.

own
only
tions:
Example:

 SRCDIRS /src/d1 /src/d2 /src/d3

STOPTIME [stoptime]

Stop at Simulation Time: Allows you to stop execution (and cal
SimDebug) when the simulation time reaches the given stoptime
stoptime of 0.0 means that there 'is no stoptime active'. The stoptime is
valid for 'one stop'. It is then reset to zero (set inactive again).

SV varname value

Set Value: Allows you to the change values in your program! Use SV to
change values of simple variables of any type. You can change local
ables, arguments and global variables.

For text values: Enter the text enclosed in string (double) quotes. When
string you want to enter should contain a string quote itself, it must be dou-
bled, i.e. a single string quote is denoted by """".

Use SEV to set attributes of entities.

SYSVARS

System Variables: Shows the values of several system variables suc
read.v, write.v, buffer.v, prompt.v , and hours.v .

T [from [to]]

Traceback: Prints a traceback of the current call stack (the hierarchy of
called routines) starting at the last called routine down to MAIN. The argu-
ments from and to can be given to limit the traceback to a range of routin
(useful for deep recursions). From and to are specified as the level numbe
given in the traceback for each routine (MAIN is at level 1), where ". " as a
level number means the 'current frame'.

By default, the level numbers ([SL=...] in the routine header in
traceback) are not given in the traceback. However, they are useful for
tracebacks (when you want to see only part of the traceback) an
recursion. You can enable the display of these stack levels with SET
SHOWSTACKLEVELS 1. See SET command.

Global variables: Generally the global variables are not considered a p
of the traceback and hence are not shown with the T command. If you SET
GLOBWTRACE 1 (see SET command) you will also get the global variable
at the end of each traceback (implicit GLOB command).

Output: For each routine, SimDebug first prints a line with the routi
name, the file name, possibly the stack level and the current line num
When a routine is compiled with debug, all its local variables are sh
with its values and modes. When a routine is not compiled with debug,
the routine name is shown. The variables are given in a sequence of sec
53

UNIX SIMSCRIPT II.5 User’s Manual

nts

bug
ri-

 of a

ode)
ari-
hen
ands
st

ser
e

ee

ows

is

 file
Given Arguments (ordered as in routine definition), Yielding Argume
(ordered as in routine definition), Local Variables (ordered alphabetically)
and Local Saved Variables (also ordered alphabetically).

The extent of the output for each variable is controlled by several SimDe
parameters. See the SET command. The format of the output for each va
able is described by the PV command.

The 'current frame' and 'current routine': The T command shows you
the whole traceback, i.e. all routines in the call stack. Each invocation
routine that is on the stack is called a (stack) frame. Initially, after a T com-
mand, the top routine on the stack (farthest away from MAIN) is called the
current routine , which is in the current frame. Since a routine can be
called recursively we must destinguish between 'routine' (the source c
and the 'frame' (invocation of the routine [its arguments and local v
ables]). When PV looks up a variable, it starts at the current frame and w
the variable is not found there, it looks at global variables. The comm
up. dn. top. bot move the 'current frame' up, down, to the top (la
routine called), or bottom (MAIN).

TC

Traceback Current: Write trace of current frame.

TOP

Top Frame: Set 'current frame' to the top of the stack which is the last u
routine called (farthest away from MAIN). See note on 'current frame' in th
DN command.

UP [n]

Up Frame: Set 'current frame' n levels up (away from MAIN) in the stack.
Default: n = 1 . [SL=...] in the header line shows the stack level. S
note on 'current frame' in the DN command.

W [n]

Where: Shows where you are in the source in the current frame. It sh
n source lines around the current line. The default n is taken from the
SimDebug parameter WW (see SET command). The 'current source line'
shown with a ">" in front of it. Breakpoints appear with "#" in front of the
line.

WT [filename [from [to]]]

Write traceback (output of T) and the output from the IO , MEM, and EV
commands to a file. The default filename is trace.out . By specifying
from and to you can limit the traceback to those levels. When the trace
exists it is overwritten.
54

SimDebug Symbolic Debugger

he
WTA [filename [from [to]]]

Write Trace Append: Same as WT except that the output is appended to t
trace file.
55

UNIX SIMSCRIPT II.5 User’s Manual

alled
es you
ntime

iable
ory

d
o-

user

ts like
s own
se

ot ap-

tine in
e

ground
ext or
d how
 array

rray
4.4 Advanced Topics

4.4.1 Batchtrace.v

Normally, when a SIMSCRIPT program runs into a runtime error, SimDebug will be c
so you can examine the stack and variables to find out what went wrong. Sometim
may want to just get a traceback into a file and want the program to terminate on a ru
error, e.g. when you run i t in batch mode. When you set the system var
batchtrace.v = 1 , a runtime error will cause the traceback. The I/O, event and mem
information will be written to a fixed file simerr.trc .

Another way of setting batchtrace.v to 1 is to call your executable with the comman
line option -batchtrace . As with -debug this option is not seen by your application pr
gram.

Setting batchtrace.v = 2 causes an immediate exit in case of a runtime error or a
interrupt (e.g. Ctrl-C). No traceback is written.

4.4.2 Signal Handling / External Events

SimDebug uses the signal handling facilities of the operating system to catch even
floating point errors, segment violations etc. If your program uses C code that sets it
signal() handling routines, you must comment out that code as long as you want to u
SimDebug on that program. Any mix will not work.

4.4.3 Reserved Names

In SIMSCRIPT all names that begin with "<letter> . " or end with ".<letter> ", where
"<letter> " is any letter, are reserved for the system's usage. This is why they do n
pear in SimDebug.

If you use such an illegal name, e.g., for a routine, it will not appear as a user rou
SimDebug. You can not see it with the LR command. Thus, even if such a routine nam
does not clash with a system routine, you should not use these kind of names.

4.4.4 Displaying Arrays

Before discussing SimDebug's array display capabilities we must discuss some back
information. Each SIMSCRIPT object that a pointer can point to, such as arrays, t
dynamic entities, has a descriptor that contains information on what this 'object' is an
to interpret the data. For instance, an entity descriptor contains the entity ID and, an
contains the size of the array and the type of its elements. This means that the FP (follow
pointer) command can always follow a pointer to anything and display what it finds.

Apart from that, SIMSCRIPT supports array equivalencing. You can define an a
IA(*) for instance as a 1-dim integer array, and then assign the pointer IA(*) to a variable
of type 1-dim alpha array AA(*) and look at the data as characters.
56

SimDebug Symbolic Debugger

ata
mple

tity

exam-
he de-
ll to

ebug
,

ion of
The command PAV (Print Array Variable) looks at the array 'through the eyes of the array
variable', i.e. in the above example AA(*) as alpha .

The command PDV (Print from Descriptor Variable) always looks at the array with the d
given in the descriptor. It looks at how the array was first created, and, in the exa
above, looks at the array as integer .

4.4.5 Permanent Entities and System Owned Variables/Sets

Permanent entities are implemented as a set of 1-dimensional arrays that will appear as glo-
bal arrays. Use the GLOB command. At this point the different fields of a permanent en
are not shown together (e.g. with the entity name), but appear seperately in the alpha bet-
ical listing of all global variables.

'The system owns' ... variables and sets show up as global variables, in alpha betical
order.

4.4.6 Conditional Breakpoints

Certain problems only appear after a large amount of data has been processed. For
ple, after 10000 iterations in a loop. To allow you to break the process and go into t
bugger upon any arbitrarily complex condition, SimDebug offers you a direct ca
SIMDEBUG.R.

When you call this routine from your application program you are put into the SimD
dialog just as if you had set a breakpoint. You can examine the stack, global variables
entities, and single step through the program in the usual manner.

Example:

for i = 1 to 10000
do
 do something
 if i>10000 and A+B-C > DATTR(ENTPTR)
 call SIMDEBUG.R
 endif
loop

4.4.7 Continuous Variables

Continuous variables (for continuous simulation) are implemented as right and left func-
tions. Therefore, they will show as right and left routines in the LR command, but not as
variables.

4.4.8 Unsupported SIMSCRIPT Features

All SIMSCRIPT features are supported by SimDebug Release 1.0, with the except
packed permanent entities. However, packed temporary entities are supported.
57

UNIX SIMSCRIPT II.5 User’s Manual
 WARNING

Simdebug Recursion: SimDebug protects itself from errors
that normally cause a program to fail, such as attempting to
use a bad pointer, or having unaligned accesses. However,
in some rare cases it can happen that SimDebug does not
catch an error condition that then causes another error 'with-
in' SimDebug. Since SimDebug is a program that is called
when an error occurs, SimDebug will be called from within
SimDebug! You will get a warning message.

You can look at some more variables, but you cannot contin-
ue the execution. Exit from SimDebug with QUIT and restart
your program to find the error.
58

 text of

f the
sumes

 mis-

e be-
 sep-
ast

ly, or
A. Compiler Warning and Error Messages

A.1 Warning and Error Messages

During compilation, warning messages and error messages may be produced. The
each message appears below:

1001 Invalid syntax

A word found in the input stream did not conform to the syntax requirements o
SIMSCRIPT II.5 language. The unrecognized word is ignored and the error scan re
with the next statement keyword in the input stream.

1002 Missing ')'

An arithmetic expression or subscript is missing a right parenthesis. A (possibly
placed) right parenthesis is assumed.

1003 Missing terminal " in ALPHA literal

An ALPHAnumeric string must be contained on one line.

1004 More format specifications than variables

In formatted read and write statements, there must be a one-to-one correspondenc
tween variables and format descriptors. The format descriptors, including “/,” must be
arated by commas. In a print statement, fields are defined by “*” or a sequence of at le
8 contiguous periods.

1005 More variables than format specifications

See message 1004.

1006 Conflicting or redundant properties in define

More than one MODE, DIMENSION or TYPE specification appears in the same define
statement. The indicated statement is ignored.

1007 Number of subscripts different from definition or previous use

A subscripted variable is redefined with a different number of subscripts than original
a set name in a file or remove statement is improperly subscripted.

1008 else or always without matching if

The indicated statement is misplaced in the program.

1009 if not terminated by always

This error is detected at the end of a routine.
59

UNIX SIMSCRIPT II.5 User’s Manual

ssage

 been

ut the

tly.

on

am

uilt-

he

 per-
se of

 name.
1010 Use conflicts with definition

The previous definition or use of this name precludes its use in this context. This me
can apply in a number of cases. The most common are described below.

• A belong clause in an every statement does not refer to a set name.

• Common membership in sets is limited to temporary entities.

• An every statement attempts to define an entity but the name has already
defined differently.

• A define statement attempts to define a variable, a procedure or a set, b
name has already been defined differently.

• The variable in an external unit statement has already been defined differen

• The attribute of a has clause has already been defined differently or a comm
attribute is defined with a different word assignment or packing code.

• Attempt to read or write a variable defined as a set.

• Attempt to release a quantity which is not an array, a routine or a subprogr
variable.

• Attempt to store in a random variable.

1011 Illegal assignment target

This error is caused by an illegal attempt to store information in a built-in function. B
in functions include abs.f, div.f, int.f, real.f, mod.f, max.f, min.f and
all text -related functions. Except for substr.f , these functions cannot be used on t
left-hand side of assignment statements or as yielded arguments.

1012 Array number out of range

Application has more than 8000 variables and/or permanent entities. The maximum
missible array or word number for global variables or permanent attributes is 8000. U
an array number larger than this is not permitted in this implementation.

1013 Context requires routine name

A routine statement uses an incorrect name or the name appearing is not a routine

1014 return with not allowed here

Event routines and left-handed routines cannot return any values.

1015 loop without a matching do

The loop statement is ignored by the compiler.

1016 Implied subscripting attempted on a common attribute

Common attributes must be explicitly subscripted.
60

Compiler Warning and Error Messages

d for

r

.

. The

pro-

s the
1017 Number of given arguments inconsistent with definition

A call or function reference uses a number of arguments different than that define
the subject routine.

1018 Multiple definition of label

The label has been defined elsewhere in the routine.

1019 Subscript required on label

The label name was previously encountered with a subscript.

1020 Name repeated in parameter list

The names in the given arguments list or in the yielded arguments list may each appea
only once in the list.

1021 Undefined label

This error is detected at the end of a routine.

1022 do without a matching loop

This error is detected at the end of a routine.

1023 MAIN routine should use stop

The MAIN routine should not use a return statement. The compiler substitutes a stop
statement.

1024 Missing end

The compiler supplies the end statement and completes the processing for the routine

1025 define to mean or substitute incomplete

An end-of-file was encountered during the processing of a substitute statement or no
substitutable text was found. Blanks and comments ('') are invalid substitutable text
statement is ignored.

1026 Inappropriate mode or dimension for implicit subscript

Due to local redefinition, the mode or dimensionality for this implied subscript is inap
priate. The compiler ignores the dimensionality but uses the new mode.

1027 Attribute in first 5 words of event notice is illegal

The first five words of an event notice contain the time.a, m.ev.s, p.ev.s, s.ev.s
and eunit.a attributes. These attributes cannot be redefined. The compiler ignore
specification.
61

UNIX SIMSCRIPT II.5 User’s Manual

 indirect

ever

gh

nd at
nition.
1028 Context requires an unsubscripted subprogram variable

An indirect call to a function using the $ name feature requires that the subprogram vari-
able name be unsubscripted, as the subscripts are treated as given arguments for the
call.

1029 Attribute in first 8 words of process notice is illegal

See message 1027. In addition, a process notice contains the ipc.a, rsa.a,
sta.a and f.rs.s attributes.

1030 Temporary attribute word number out of range

The maximum permissible entity length is 1023 words. Entities of this size should n
be required.

1031 Subscripts not permitted for this variable

A variable defined as unsubscripted is used with a subscript.

1032 Non-integer subscript on a temporary attribute

Temporary attribute subscripts must be pointers.

1033 Negative constant used as a subscript

This illegal condition cannot be compiled.

1034 Subscript not permitted on label

A label is used with a subscript in a go to statement or is defined as subscripted althou
it has already appeared without a subscript.

1035 then if statement appears outside if

The then keyword can only be used within an if block. The compiler ignores the then
word.

1036 Missing ')' in logical expression

A (possibly misplaced) right parenthesis is assumed.

1037 div.f valid only with integer values

A floating-point division is performed.

1038 Number of yielding arguments inconsistent with definition

See message 1017.

1039 Attribute of mixed compound entity must be a function

Attributes of mixed compound entities (compound of at least one permanent entity a
least one temporary entity) must be functions. The compiler assumes a function defi
62

Compiler Warning and Error Messages

ced.

ntities

r
.

ed by
1040 Attempt to equivalence function attributes

Function attributes are not assigned any storage and therefore cannot be equivalen

1041 Missing ')' in equivalence attribute group

A (possibly misplaced) right parenthesis is assumed.

1042 Attempt to pack function attribute

Function attributes are not assigned any storage and therefore cannot be packed.

1043 Attempt to pack unsubscripted system attribute

The packing definition cannot be honored.

1044 Illegal packing code

For bit packing, the bit numbers should satisfy the inequality 1 ≤ n ≤ m ≤ 32. For field
packing and intra-packing, the denominator must be 2 or 4.

1045 Packing code (*/n) illegal for temporary attribute

The */N packing codes can only be used for arrays (such as attributes of permanent e
or subscripted attributes of the system). A field packing of 1/N is assumed.

1046 Compound entity may not belong to a set

The compiler ignores the belong clause.

1047 Attempt to define non-local variable as saved or recursive

This is an attempt to define a local variable in the PREAMBLE. The definition is not pro-
cessed.

1048 Incorrect mode specified for packed variable

Packing applies only to INTEGER quantities.

1049 Defining set not previously declared in every statement

Set definitions must be placed after the owns and belongs clauses defining their owne
and members. The definition of the set is ignored. This may cause follow-on errors

1050 Statement should be preceded by a control phrase

A compute statement, find statement, when statement or a controlled read or write
statement must be within a for , while or until block.

1051 write format used in read statement

A character string appears in the as clause of a read statement.

1052 Illegal or out of place '* '

Either an attribute of a temporary entity or an argument to a function call is subscript
an * , or an array reference has an * before the last subscript.
63

UNIX SIMSCRIPT II.5 User’s Manual

t.

.

d.

f
1053 Attempt to perform set operation on a non-set

A file statement, a remove statement, a for each of set statement, an if set
is empty or a before or after statement references a quantity not defined as a se

1054 Statement requires attributes not defined for named set

A file statement, a remove statement, an if set is empty or a for each of set
phrase is used, but the necessary set attributes were deleted by a without phrase.

1055 Name of a permanent entity required in this context

A create each statement or a for each statement must refer to a permanent entity

1056 also statement outside do ... loop

An also statement appeared outside of a do block. The compiler assumes a do statement
after the also block.

1057 Name of a temporary entity required in this context

A create statement, destroy statement or before or after statement must refer to a
temporary entity.

1058 group used without column repetition

An in groups of phrase must be controlled by a for phrase. The statement is ignore

1059 Name of an event required in this context

The event, process, activate, cause, cancel, break ties and priority
statements must refer to an event or process name. In the case of an event or process
statement, a routine named R0 is assumed.

1060 Misuse of suppression amid column repetition group

The suppression phrase is misplaced.

1061 Context requires a for phrase to follow the word printing

The printing phrase is not properly programmed.

1062 Column repetition context requires in groups of phrase

The column repetition clause must include an in groups of phrase.

1063 Column repetition group size is illegal

The in groups of phrase specifies a 0 group size. The compiler assumes a value o1
in its subsequent error scan.

1064 end statement required to terminate report heading

An end statement is assumed at this point by the compiler.
64

Compiler Warning and Error Messages

ications.

.

ly

 the

ition

per-

i-

.

t

1065 end statement required to terminate report

An end statement is assumed at this point by the compiler.

1066 print 0 lines statement is ignored

Subsequent error messages may refer to form lines.

1067 Too few formats or too many expressions in print

There must be a one-to-one correspondence between expressions and format specif

1068 Set owner or member not defined

A set name must appear in both an owns clause and a belongs clause to be defined. Both
the owns and the belongs clauses must precede the set definition.

1069 Attributes of common set must be declared in an every statement

The set pointers must appear in an every statement. No attribute definition takes place

1070 Mode of quantity conflicts with automatic definition

The M or N attribute for a set, or the N.entity name for a permanent entity were explicit
defined with real mode. They must be integer .

1071 Number of subscripts conflicts with automatic definition

The attributes of a set were explicitly defined with an incorrect dimension, or
N.entity name for a permanent entity was defined as a subscripted variable.

1072 Explicit definition conflicts with automatic definition

One of several conditions has appeared:

• The owner or member attributes of a set were explicitly defined and their defin
conflicts with the owns or belongs clause for the set.

• The N.entity name for a permanent entity is neither a global variable nor a
manent attribute of the system .

• The F.name or S.name of a random variable should be left for automatic defin
tion.

1073 Ranking attribute must be declared in an every statement

The ranking attribute in the define set statement is not an attribute of the member entity

1074 Illegal file statement for ranked set

The file first, file last, file before , and file after statements are no
permitted on ranked sets.

1075 Number of given arguments exceeds the maximum allowed

The combined number of given and yielding arguments cannot exceed 127 .
65

UNIX SIMSCRIPT II.5 User’s Manual

a-
bscripts

me of

 The

 num-

he ex-
1076 Number of yielding arguments exceeds the maximum allowed

See message 1075.

1077 Number of subscripts exceeds the maximum allowed

The maximum number of subscripts allowed is 254 .

1078 Label subscript must be between 1 and 3000

The maximum subscript allowed on a label is 3000 . Since subscripted labels require a t
ble as large as the maximum subscript value, smallest program size suggests that su
should normally range from 1 to n in increments of 1.

1079 Number of recursive local variables exceeds available space.

Each routine has 1024 words of storage available for recursive local variables. So
this total is used by variables which the compiler generates internally.

1080 Context requires subscripted label

A subscripted label is required at this point.

1081 Yielding arguments illegal in left-function

Yielding arguments are not allowed in monitoring routines or left-handed functions.
routine is scanned by ignoring the yielding argument list.

1082 enter statement permitted only in left-functions

This statement should be the first executable statement in a left-handed routine.

1083 Global properties specified in local define

Local variables cannot be monitored, packed, or defined as stream variables.

1084 Incorrect number of given arguments in left-function

A routine monitoring a variable must be given the same number of arguments as the
ber of subscripts originally defined for the variable.

1085 move statement not allowed here

A move to statement can only appear in a right-handed routine. A move from can only
appear in a left-handed routine. The statement is out of place.

1086 before creating and after destroying options not allowed

After creating and before destroying can be used to collect usage statistics.

1087 More arguments than defined attributes in process or event

It is necessary to define an attribute to hold each argument received by the event. T
cess arguments supplied can receive no values.
66

Compiler Warning and Error Messages

he ex-

ari-

of

.

s of
mpound
ributes
1088 More arguments than defined attributes in activate

It is necessary to define an attribute to hold each argument received by the event. T
cess arguments supplied cannot be stored anywhere.

1089 Context requires name of an entity

A list attributes of statement does not refer to a temporary entity.

1090 Illegal attempt to break ties on an external event

External events cannot appear in break ties statements.

1091 Illegal attempt to equivalence random attributes

Random attributes cannot be equivalenced with other variables of any type.

1092 Illegal mode for a random variable

A random variable cannot be of alpha or text mode.

1093 stream phrase ignored - variable not defined as random

The define name as stream statement should be placed after the definition of the v
able as a random variable.

1095 cycle or leave ignored - no loop in effect

Either cycle or leave must appear within a do ... loop block.

1096 Missing here for a jump back

A here statement must exist prior to the occurrence of a matching jump back statement.

1097 Missing here for a jump ahead

A here statement must appear after a jump ahead . This error is detected at the end
the routine.

1098 Both accumulate and tally illegal on the same variable

The mixing of statistics type is not allowed for a given variable. See message 1099

1099 accumulate/tally illegal for monitored/random variables

These operations are in fact implemented by constructing monitoring routines.

1100 Statistic requested twice for the same variable

One statistical keyword appeared more than once for a given variable.

1101 Improper type of variable for accumulate or tally

Accumulate or tally can be requested for unsubscripted global variables, attribute
permanent entities, temporary entities, event notices, processes, resources and co
entities. They cannot be requested for subscripted global variables, subscripted att
of the system , or common attributes of temporary entities.
67

UNIX SIMSCRIPT II.5 User’s Manual

matic

of per-

uble-
s that

le with

ate
1102 Attribute for accumulate or tally improperly pre-defined

The variables containing the accumulated or tallied statistics should be left for auto
definition by the compiler. They should not appear in define statements.

1103 Accumulate or tally on an undefined variable

The name of the variable is probably spelled wrong.

1104 Histogram of attribute of a temporary entity is forbidden

Histogram s may be requested for global variables, system attributes, and attributes
manent entities.

1105 Improper word boundary for a variable of mode double

Certain systems — the Gould and IBM mainframes among them — require that all do
precision floating point numbers be aligned on a double-word boundary. This require
unsubscripted double permanent attributes be assigned to odd-numbered in array num-
bers, and that double temporary attributes be assigned to odd in word numbers. Other
systems — such as the VAX — do not require such assignments, but are compatib
them.

1106 Multiple else statements not allowed on a if

The language allows only one else statement. Other diagnostic messages may indic
the prior if statement was not processed.

1107 Then if statement after else - obscure structure

The then if construction is not permitted on a structured if . Correct by explicitly using
else and always statements as appropriate instead of using then if .

1108 Else statement after then if - obscure structure

See message 1107.

1109 A statement above this point is unreachable

An unlabeled statement or group of statements follows a return or an unconditional
transfer. This may be due to a missing label, else, or case statement.

1110 Process not declared - routine assumed

The process routine has not been declared in the PREAMBLE.

1111 This statement may appear only in a process

1115 Illegal implied conversion between text and other modes

Use ttoa.f or atot.f or access conversion routines by write and read using the
buffer .
68

Compiler Warning and Error Messages

uments

e

f these

. The

le
1116 Improper argument mode for intrinsic function

An argument of mode text was expected and not found, or a text argument was given
where a numeric argument was expected.

1119 Packed variable cannot be passed in this context

Array rows of variables that are bit packed, or packed (n/m), cannot be passed as arg
to NONSIMSCRIPT routines. Individual elements or arrays packed (*/m) are valid argu-
ments.

1120 Improper first argument to left substr.f

The first argument to substr.f must be an unmonitored text variable.

1121 Attempt to equivalence text variable

Text variables cannot be equivalenced with other variables.

1124 Conflicting parameters in open or close

The open or close statement was used improperly.

1126 open does not specify either input or output

Either input or output (or both) must be specified as an open statement option.

1127 text function illegal in store statement

The store statement should generally not be used with text data. In this instance, its us
would result in permanent loss of a block of memory.

1128 double variable overlap caused by equivalencing

A double variable occupies two successive array number locations. The second o
should not be assigned to any other use.

1129 always is preferred usage in this context

The else (otherwise) statement should be changed to an always .

1130 Number of labels exceeds allowed maximum

Implementation constraints impose a limit on the allowed number of statement labels
routine should be subdivided into two or more routines.

1131 Subprogram variable used out of context

A subprogram variable may not be used within a computation.

1132 Implicit conversion of subprogram variable

Only subprogram variables or subprogram literal values may be assigned to a variab
declared as mode subprogram .
69

UNIX SIMSCRIPT II.5 User’s Manual

ed by
A di-

r-

een

a

 typo-

 value
1133 Dimensioning of attributes not permitted

Attributes of temporary and permanent entities are implicitly 1-dimensional, subscript
an entity pointer value. The explicit dimensioning of these may cause ambiguity.
mension of 1 is substituted.

1134 Illegal use of store with quantities of differing mode

This usage of store may have undesirable side-effects and is no longer permitted.

1135 Use of store with text quantities may have undesired effect

The use of the store statement between text quantities is allowed, but strongly discou
aged, because it disables the automatic actions that assure the integrity of text values.

1136 Variable is undefined or not fully defined

This message appears when the background mode has been explicitly set to undefined
using a normally statement.

1137 Parameter in open statement not supported

Differences in operating systems do not allow complete compatibility betw
SIMSCRIPT II.5 implementations of the open statement. Unsupported parameters are
ignored.

1138 Release routine statement no longer supported

The statement is ignored.

1139 Reset references variable not accumulate d or tally ed

Totals do not exist for a variable which has not been the object of an accumulate or
tally statement.

1140 Reset uses qualifier not declared as such

Only a qualifier defined for an accumulated or tally ed statistic may be specified in
reset statement.

1141 This statement not supported or no longer required

1142 Local variable used only once

The indicated local variable appears only once in the routine. This could be due to a
graphical error.

1143 Local variable never modified

The indicated local variable has not been modified by the routine. This means that its
is always zero (or "" , if a text variable). This could be due to a typographical error.
70

Compiler Warning and Error Messages

 over-

th
e

an ear-
1144 Bad Block structure - overlapping do and if

The statement violates SIMSCRIPT II.5's structured programming nesting rules, by
lapping one of the following three control structures:

• do ... loop
• if ... else ... endif
• select ... case ... default ... endselect

For example, if the statement in error is a loop statement, then an if block was not ter-
minated by an endif , or a select was not terminated by an endselect . The error will
also be seen when one block overlaps a portion of another block, as in if ... do ...
else ... loop ... endif .

1145 Variable or function name required

A non-numeric quantity — such as a set — cannot be the object of a read, print , or
list statement. A statement such as list attributes of each entity in set
may have been intended.

1146 Assignment between incompatible data types

Check the modes on both sides of the equal sign in an assignment (let) statement.

1147 Implicit conversion of pointer variable

The indicated variable must be either mode pointer or mode integer .

1148 Name of a resource required

The request and relinquish statements apply to resources only.

1150 Multiple MAIN routines encountered

Only one MAIN routine may be included in any compilation.

1151 case control outside select...endselect

A case or default statement can be used only between a corresponding select ...
endselect pair.

1152 Mode of case term does not match select

The mode of the term is incompatible with the mode of the select expression. Some
mode conversion is performed. A real expression may include integer terms, and bo
text and alpha expressions require string literal case terms. If necessary, assign th
expression to a variable of the appropriate mode.

1153 case term duplicates previous term(s)

This term is unreachable because it is completely blocked by corresponding terms in
lier case statement. This message will not be given for select expressions with a mode
of real, double , or text .
71

UNIX SIMSCRIPT II.5 User’s Manual

le, if

 often

se a

e
ving

. In
he vari-
1154 Statement not allowed after default

The case or default statement is not valid within a select block after the use of the
default statement.

1155 No case statements appear within select

Each select ... endselect block must include at least one case statement.

1156 Select case without matching endselect

Each select case block must be terminated by a matching endselect statement.

1158 Symbol redefinition

A local define to mean is redefining a global define to mean , without an intervening
suppress substitution . This may have unexpected consequences. For examp
the PREAMBLE contains the statement define .NUMBER to mean 10 , and a routine
contains the statement define .NUMBER to mean 20 , the compiler will first substitute
10 for .NUMBER in the routine, making the statement read define 10 to mean 20 ,
and will then substitute 10 for 20 throughout the remainder of the routine.

1161 Changing PROCESS pointer may affect implicit subscripting

Changing the pointer to a PROCESS within its PROCESS routine will prevent the routine
from later accessing the attributes of the current process. Such attributes are
referenced through implied subscripts. This warning may be the result of an activate ,
create or remove statement intended to point to a different process notice. U
different pointer name to avoid this problem.

1162 Storage may not be deallocated on destroy of a process

When a PROCESS terminates normally, SIMSCRIPT II.5 automatically performs some
memory management functions. By explicitly destroy ing the PROCESS pointer, these
functions are disabled. In general, if a PROCESS may be terminated prematurely, th
PROCESS itself should check for the conditions requiring termination, rather than ha
the PROCESS pointer destroyed by a separate routine.

1163 Context requires the name of a HISTOGRAM

A statement of the form accumulate HISTOGRAM.NAME (LO to HI by INCREMENT)
as the histogram of VARIABLE.NAME must appear in the PREAMBLE. Also see mes-
sage 1104.

1164 Name of routine is not a monitored variable

SIMSCRIPT II.5 monitors global variables by defining routines with the same name
this case, you have provided a routine with the same name as a global variable, but t
able is not being monitored. Rename the variable or the routine.
72

Compiler Warning and Error Messages

 word
tream.

-

ases
ess im-

cripts
 if
1165 Statement out of place

A PREAMBLE type statement appeared in a routine, or vice versa. The unrecognized
is ignored and the error scan resumes with the next statement keyword in the input s

1166 Invalid literal value

The value of the literal provided is too large to hold in a variable location.

1167 Returned Function mode undefined

The mode of the value returned by a function must be declared in the PREAMBLE (define
FN as a FN.MODE function). If the mode is not explicitly included in the define
statement, the background (i.e., normally mode is...) mode currently in effect is as
sumed.

1168 Function should return a value

1169 Statement incomplete

1170 Pointers can test for equality only

1171 Used as imlicit subscript

SIMSCRIPT II.5 is free format and allows for usage of implicit subscripts. This incre
the expressive power of the language but sometimes is error prone. You can suppr
plicit subscripts by using the SIMSCRIPT II.5 language statement:

suppress implicit subscripts

The compiler will generate warning message 1171 whenever it detects implicit subs
usage. The scope of the suppress statement is global if used in a PREAMBLE or local
used in a routine. Usage of implicit subscripts can be resumed by the statement:

resume implicit subscripts

Any number of suppress/resume statements are allowed in a routine.

1172 Subscript should be pointer mode
73

UNIX SIMSCRIPT II.5 User’s Manual
74

r. The

random

ystem
B. Runtime Error Messages

B.1 Runtime Error Messages

When a runtime error is detected, a runtime error message is written to standard erro
text of each message appears below:

2001 zero raised to a negative power

2003 negative number raised to a real power

2004 invalid I/O unit

The unit number is less than 1 or greater than 99.

2005 negative expression in SKIP INPUT statement

2006 attempt to file an entity in a set it is already in

The M.set attribute of an entity being FILE d in a set is not equal to zero.

2007 attempt to file before or after an entity that is not in the set

The M.set attribute of the entity in the before or after phrase is equal to zero.

2009 attempt to remove from an empty set

The F.set attribute is equal to zero when a remove operation is attempted.

2010 attempt to remove an entity that is not in a set

The M.set attribute is equal to zero when a remove specific operation is attempted.

2011 invalid random number stream

The absolute value of the stream number is less than 1 or greater than the number of
number streams (normally 10).

2013 attempt to schedule an event/process already scheduled

The m.ev.s attribute of the event/process is not equal to zero when a schedule operation
is attempted.

2014 attempt to cancel an event/process not scheduled

The m.ev.s attribute of the event/process is equal to zero when a cancel operation is at-
tempted.

2016 no memory space available

The program is attempting to dynamically allocate more memory than the operating s
will allow.
75

UNIX SIMSCRIPT II.5 User’s Manual

.

.

m-

rsa.
2017 negative argument in itoa.f

2018 argument > 9 in itoa.f

2019 attempt to use a write-only I/O unit for input

An I/O unit opened for output only appears in a use for input statement.

2020 attempt to use a read-only I/O unit for output

An I/O unit opened for input only appears in a use for output statement.

2021 attempt to use a unit for input that is in the output state

An I/O unit last used for output appears in a use for input statement without an
intervening rewind .

2022 attempt to use a unit for output that is in the input state

An I/O unit last used for input appears in a use for output statement without an
intervening rewind .

2023 unable to open existing file

See the UNIX error message on the line following this message for more information

2024 unable to create new file

See the UNIX error message on the line following this message for more information

2025 subscript out-of-range

An array subscript is less than 1 or greater than the number of array elements.

2027 range error on computed go to

The index value used in a computed go to statement is less than 1 or greater than the nu
ber of labels.

2028 formatted read goes beyond the end of input record

An attempt is made to read characters beyond the record size specified for the unit.

2030 formatted write goes beyond the end of output record

An attempt is made to write characters beyond the record size specified for the unit.

2032 negative field width in input format

2036 negative field width in output format

2040 mixed binary and character I/O

An I/O operation allowed only on an ASCII file is attempted on a binary file, or vice ve
76

Runtime Error Messages

estroy-

failure.

pos-
was de-

porary

 entity
2041 invalid character while reading 'C' format

A character is read which is not one of the following: blank, 0-9, A-F, or a-f.

2044 output format field width greater than record size

2048 input format field width greater than record size

2051 zero entity pointer

The pointer used to identify a temporary entity is equal to zero.

2052 reference to destroyed entity

This error can be caused by keeping copies of an entity pointer in several variables, d
ing one copy, and referencing attributes of another copy.

This error is detected by the runtime checking option. If the option (-C) is omitted, a “bus
error” may occur instead, or bad values may enter a computation, causing a delayed

This is actually a special case of error “2053: invalid entity pointer.” It is not always
sible to detect a destroyed entity, since the memory may have been reused since it
stroyed. If this is the case, you will get error 2053 instead.

2053 invalid entity pointer

The pointer used to identify a temporary entity does not contain the address of a tem
entity.

2054 wrong temporary entity class

The pointer used to identify a temporary entity contains the address of a temporary
which belongs to an entity class different from the one that was expected.

2058 reference to unreserved array

The pointer used to identify an array is equal to zero.

2060 zero or negative subscript specification in reserve statement

The number of array elements specified in a reserve statement is less than 1.

2061 dim.f for array is > 65535

The number of array elements specified in a reserve statement is greater than 65535 .

2062 attempt to create invalid entity class

The entity class is not recognized when attempting to create an entity, which is usually
caused by failing to link the compiler-generated routine setup.r .

2066 invalid array pointer

The pointer used to identify an array does not contain the address of an array.
77

UNIX SIMSCRIPT II.5 User’s Manual

een de-
 apply

.

.

cified

nit.

e unit.
2067 reference to a released array.

This error also appears for references to attributes of a permanent entity that has b
stroyed. The error is detected by the runtime checking option. The comments that
to destroyed entities apply here as well.

2068 end of file encountered during read operation while eof.v =0

2069 fatal I/O error during read

See the UNIX error message on the line following this message for more information

2070 fatal I/O error during write

See the UNIX error message on the line following this message for more information

2071 record length exceeds specified recordsize

A record is read from the current input unit which is longer than the record size spe
for the unit.

2072 'B' format input column is not within record

The column number is less than 1 or greater than the record size specified for the u

2076 'B' format output column is not within record

See error 2072.

2077 incomplete record on a fixed format file

The last record read from a binary file is shorter than the record size specified for th

2084 invalid character in 'I' format during input

A character is read which is not one of the following: blank, +, -, or 0-9.

2088 integer number too large for input

A value is read which falls outside the range of integer values: -2147483648 to
+2147483647 .

2093 attempt to create text string > 32,000 characters

2094 attempt to erase non-text entity

A value which is not text is encountered in a situation where a text value is required.

2095 position zero or negative in substr.f

2096 length negative in substr.f

2097 offset negative in match.f
78

Runtime Error Messages

ny of

-

ed

.

2101 transfer to missing case in select

In a select statement, the expression is not equal to any of the values specified in a
the case statements and no default statement has been specified.

2103 wild transfer in subprogram variable CALL

The value of the subprogram variable is not equal to the address of a routine.

2104 wild transfer in subscripted go to statement

An attempt is made to go to an undefined subscripted label.

2106 attempt to suspend when no process is active

A wait, work, suspend, request or relinquish statement is executed by a rou
tine which is neither a process nor a routine called from a process.

2107 attempt to relinquish more resources than request ed

An attempt is made to relinquish units of a resource that were not previously obtain
by a request .

2112 parameter 2 negative in 'D' or 'E' format

A negative number of decimal places is specified.

2116 parameter 2 > parameter 1 in 'D' or 'E' output format

The number of decimal places exceeds the total width of the field.

2122 parameter 2 > parameter 1 in 'D' or 'E' input format

See error 2116.

2124 real number too large for input

A value is read which falls outside the range of double values.

2128 invalid character in 'D' or 'E' format during input

A character is read which is not one of the following: blank, period, +, -, E, e, or 0-9

2130 negative argument to skip fields — cannot skip backwards

2132 mean in exponential.f call ≤ 0

2133 mean in erlang.f call ≤ 0

2134 number of stages in erlang.f call ≤ 0

2135 mean in log.normal.f call ≤ 0

2136 standard deviation in log.normal.f call ≤ 0

2137 standard deviation in normal.f call ≤ 0
79

UNIX SIMSCRIPT II.5 User’s Manual
2138 mean in poisson.f call ≤ 0

2139 second parameter less than first in randi.f call

2140 second parameter less than first in uniform.f call

2141 number of trials in binomial.f call ≤ 0

2142 probability in binomial.f call ≤ 0

2143 shape parameter <= 0 in weibull.f call

2144 scale parameter ≤ 0 in weibull.f call

2145 mean in gamma.f ≤ 0

2146 shape parameter in gamma.f ≤ 0

2147 first parameter in beta.f call ≤ 0

2148 second parameter in beta.f call ≤ 0

2152 value of log.e.f or log.10.f argument ≤ 0

2153 absolute value of arcsin.f or arccos.f argument > 1

2154 values of arctan.f arguments = (0,0)

2155 value of sqrt.f argument < 0

2159 negative time expression in call of nday.f

2160 negative time expression in call of weekday.f

2161 negative time expression in call of hour.f

2162 negative time expression in call of minute.f

2169 (minimum ≤ mean ≤ maximum) is false in triang.f

2171 attempt to open a unit already open

2173 invalid recordsize in open statement

The record size is less than 1 or greater than 65534.

2176 attempt to close a file already closed

An attempt is made to close or rewind a unit that is not open.

2177 attempt to close a standard SIMSCRIPT unit

An attempt is made to close or rewind unit 5, 6 or 98.
80

Runtime Error Messages

.

IPT

fied for

ot been
2178 unable to close file

See the UNIX error message on the line following this message for more information

2185 unable to record memory

2186 unable to restore memory

2188 unable to reopen or reposition a file during restore memory

2193 system service error

For VMS systems only - unexpected error condition from VMS received by SIMSCR
library procedure.

2213 Origin.r must be called before calendar functions

2217 negative argument to out.f

An attempt is made to reference a column position less than 1.

2218 argument to out.f exceeds buffer length

An attempt is made to reference a column position greater than the record size speci
the unit.

2220 simulation time decrease attempted

The value of time.v has decreased since the last event occurred.

2221 no event/process to match name in external event data

The external event data contains the name of an external event/process which has n
defined in the preamble.

2222 invalid external event name

2224 error in use of calendar time format

2225 attempt to destroy an entity owning a non-empty set

An F.set attribute of the entity is not equal to zero when a destroy operation is attempted.

2226 attempt to destroy an entity that is in a set

An M.set attribute of the entity is not equal to zero when a destroy operation is attempted.

2227 attempt to use a random variable that has not been read

2228 Alpha probability encountered in random variable data

2229 probability not between 0.0 and 1.0 in random variable data

2230 end of file while reading value field in random variable data

2231 Alpha value encountered in random variable data
81

UNIX SIMSCRIPT II.5 User’s Manual

in

t/

e fol-

llow-
2232 Real value where integer expected in random variable data

2233 first cumulative probability not zero in data for random linear variable

2234 cumulative probability values not in increasing order

2235 individual probability values not allowed for random linear variables

2236 sum of probability values more than 1 plus rounding margin

2237 Jump to missing Here statement

See compilation warning.

2238 Time.v decreased since last reset

2239 month origin error

A month is specified which is less than 1 or greater than 12.

2240 day origin error

A day of the month is specified which is less than 1 or greater than the number of days
the month.

2241 invalid event/process class

An event/process class is specified which is less than 1 or greater than the number of even
process classes.

2300 graphics system error

See the error message on the line preceding this message for more information.

2301 value of vxform.v is invalid

The number of the current viewing transformation is less than 1 or greater than 15 when an
attempt is made to define a window or viewport.

2302 invalid viewport dimensions

An attempt is made to define a viewport having dimensions which do not satisfy th
lowing requirement:

0 ≤ xlo ≤ xhi ≤ 32767 and 0 ≤ ylo < yhi ≤ 32767

2303 invalid window dimensions

An attempt is made to define a window having dimensions which do not satisfy the fo
ing requirement:

xlo ≠ xhi and ylo ≠ yhi

2304 attempt to delete the open segment
82

Runtime Error Messages
2305 segment already open

An attempt is made to open a segment when there already is an open segment.

2306 segment already closed

An attempt is made to close a segment when there is no open segment.

2307 segment does not exist

2308 invalid segment priority

The segment priority is less than zero or greater than 255 .

2309 invalid POINTS argument

The points array is unreserved or does not contain enough points.

2310 form/graph/icon not found
83

UNIX SIMSCRIPT II.5 User’s Manual
84

C. Standard SIMSCRIPT II.5 Names

C.1 Functions and Routines

Function abs.f (arg)

Arguments:

arg An integer or double value

Description: Returns the absolute value of arg .

Mode: The mode of arg .

Function and.f (arg1, arg2)

Arguments:

arg1 An integer value.

arg2 An integer value.

Description: Returns the logical product of arg1 and arg2.

Mode: Integer

Function arccos.f (arg)

Arguments:

arg A double value between -1 and +1.

Description: Returns the arc cosine of arg .

Mode: Double

Function arcsin.f (arg)

Arguments:

arg A double value between -1 and +1.

Description: Returns the arc sine of arg .

Mode: Double
85

UNIX SIMSCRIPT II.5 User’s Manual
Function arctan.f (arg1, arg2)

Arguments:

arg1 A double value

arg2 A double value

Description: Returns the arc tangent of arg1/arg2.

Mode: Double

Function atot.f (arg)

Arguments:

arg An alpha value.

Description: Returns a text value of length 1 containing arg .

Mode: Text

Function beta.f (k1, k2, stream)

Arguments:

k1 A double value greater than zero specifying the power of X.

k2 A double value greater than zero specifying the power of (1-X).

stream An integer value specifying the random number stream.

Description: Returns a random sample from a beta distribution.

Mode: Double

Function binomial.f (n, p, stream)

Arguments:

n An integer value specifying the number of trials.

P A double value specifying the probability of success.

stream An integer value specifying the random number stream.

Description: Returns a random sample from a binomial distribution.

Mode: Integer
86

Standard SIMSCRIPT II.5 Names

d on

 val-
Function concat.f (arg1, arg2, ...)

Arguments:

arg1,

arg2, ... Two or more text values.

Description: Returns the concatenation of arg1, arg2, ...

Mode: Text

Function cos.f (arg)

Arguments:

arg A double value specifying an angle in radians.

Description: Returns the cosine of arg .

Mode: Double

Function date.f (month, day, year)

Arguments:

month An integer value specifying the month.

day An integer value specifying the day within the month.

year An integer value specifying the year.

Description: Returns the cumulative simulation time for the given calendar date base
values given to origin.r.

Mode: Integer

Routine date.r yielding date, time

Arguments:

date A text value containing the current date in the form MM/DD/YYYY.

time A text value containing the current time in the form HH:MM:SS.

Description: Returns the current date and time.

Function day.f (time)

Arguments:

time A double value specifying a cumulative simulation time.

Description: Returns the day portion corresponding to the simulation time based on
ues given to origin.r .
87

UNIX SIMSCRIPT II.5 User’s Manual

crip-

form
Mode: Integer

Function descr.f (string)

Arguments:

string A text value, text variable or expression.

Description: Indicates an argument to a NONSIMSCRIPT routine is passed by des
tor. Used for VMS, ignored by UNIX systems.

Mode: n.a.

Function dim.f (array(*))

Arguments:

array(*) An array pointer.

Description: Returns the number of elements in the array.

Mode: Integer

Function div.f (arg1, arg2)

Arguments:

arg1 An integer value.

arg2 An integer value not equal to zero.

Description: Returns the truncated value of arg1/arg2 .

Mode: Integer

Function efield.f

Arguments: None

Description: Returns the ending column of the next data field to be read by a free-
read statement. Returns zero if there are no more data fields.

Mode: Integer

Function erlang.f (mu, k, stream)

Arguments:

mu A double value greater than zero specifying the mean.

k An integer value greater than zero specifying the number of stages.

stream An integer value specifying the random number stream.
88

Standard SIMSCRIPT II.5 Names

level.

t its
Description: Returns a random sample from an Erlang distribution.

Mode: Double

Routine exit.r (status)

Arguments:

status An integer value specifying an exit status.

Description: Terminates program execution passing the exit status to the command

Function exp.f (arg)

Arguments:

arg A double value.

Description: Returns “e to the arg ”.

Mode: Double

Function exponential.f (mu, stream)

Arguments:

mu A double value greater than zero specifying the mean.

stream An integer value specifying the random number stream.

Description: Returns a random sample from an exponential distribution.

Mode: Double

Function fixed.f (txt, len)

Arguments:

txt A text value.

len A non-negative integer value.

Description: Returns a copy of txt which is either space-padded or truncated so tha
length is len .

Mode: Text

Function frac.f (arg)

Arguments:

arg A double value.

Description: Returns the fractional part of arg .

Mode: Double
89

UNIX SIMSCRIPT II.5 User’s Manual

en

.

Function gamma.f (mu, k, stream)

Arguments:

mu A double value greater than zero specifying the mean.

k A double value greater than zero specifying the shape.

stream An integer value specifying the random number stream.

Description: Returns a random sample from a gamma distribution.

Mode: Double

Function hour.f (time)

Arguments:

time A double value specifying a cumulative event time.

Description: Returns the hour portion corresponding to the event time.

Mode: Integer

Function int.f (arg)

Arguments:

arg A double value.

Description: Returns arg rounded to the nearest integer.

Mode: Integer

Function itoa.f (arg)

Arguments:

arg An integer value in the range 0 to 9.

Description: Returns an alpha value containing the ASCII representation of the giv
digit.

Mode: alpha

Function itot.f (arg)

Arguments:

arg An integer value.

Description: Returns a text value containing the ASCII representation of the given value

Mode: Text
90

Standard SIMSCRIPT II.5 Names

er-
Function length.f (arg)

Arguments:

arg A text value.

Description: Returns the number of characters in arg .

Mode: Integer

Function log.e.f (arg)

Arguments:

arg A double value greater than zero.

Description: Returns the natural logarithm of arg .

Mode: Double

Function log.normal.f (mu, sigma, stream)

Arguments:

mu A double value greater than zero specifying the mean.

sigma A double value greater than zero specifying the standard deviation.

stream An integer value specifying the random number stream.

Description: Returns a random sample from a log normal distribution.

Mode: Double

Function log.10.f (arg)

Arguments:

arg A double value greater than zero.

Description: Returns the base 10 logarithm of arg .

Mode: Double

Function lower.f (arg)

Arguments:

arg A text value.

Description: Returns a copy of arg with each upper-case character converted to low
case.

Mode: Text
91

UNIX SIMSCRIPT II.5 User’s Manual

g the
Function match.f (string, pattern, offset)

Arguments:

string A text value.

pattern A text value.

offset A non-negative integer value.

Description: Returns the position within string of the first occurrence of pattern , or
zero if there is no such occurrence. The search begins after skippin
first offset characters of string .

Mode: Integer

Function max.f (arg1, arg2, ...)

Arguments:

arg1,

arg2, ... Any combination of two or more integer or double values.

Description: Returns the maximum of arg1, arg2,

Mode: Integer if each of the arguments is integer . Otherwise, double .

Function min.f (arg1, arg2, ...)

Arguments:

arg1,

arg2, ... Any combination of two or more integer or double values.

Description: Returns the minimum of arg1, arg2,

Mode: Integer if each of the arguments is integer . Otherwise, double .

Function minute.f (time)

Arguments:

time A double value specifying a cumulative event time.

Description: Returns the minute portion corresponding to the event time.

Mode: Integer
92

Standard SIMSCRIPT II.5 Names

d on
Function mod.f (arg1, arg2)

Arguments:

arg1 An integer or double value.

arg2 An integer or double value not equal to zero.

Description: Returns a remainder computed as:

arg1 - (trunc.f(arg1/arg2) * arg2)

Mode: Integer if both arguments are integer . Otherwise, double .

Function month.f (time)

Arguments:

time A double value specifying a cumulative simulation time.

Description: Returns the month portion corresponding to the simulation time base
values given to origin.r .

Mode: Integer

Function nday.f (time)

Arguments:

time A double value specifying a cumulative event time.

Description: Returns the day portion corresponding to the event time.

Mode: Integer

Function normal.f (mu, sigma, stream)

Arguments:

mu A double value specifying the mean.

sigma A double value greater than zero specifying the standard deviation.

stream An integer value specifying the random number stream.

Description: Returns a random sample from a normal distribution.

Mode: Double

Function or.f (arg1, arg2)

Arguments:

arg1 An integer value.

arg2 An integer value.
93

UNIX SIMSCRIPT II.5 User’s Manual

f the

ecord
Description: Returns the logical sum of arg1 and arg2.

Mode: Integer

Routine origin.r (month, day, year)

Arguments:

month An integer value specifying the month.

day An integer value specifying the day within the month.

year An integer value specifying the year.

Description: Defines the calendar date of the start of simulation.

Right function out.f (column)

Arguments:

column An integer value specifying a column position.

Description: Returns the character in the specified column of the current record o
current output unit.

Mode: Alpha

Left function out.f (column)

Arguments:

column An integer value specifying a column position.

Enter with: An alpha value.

Description: Stores the assigned character in the specified column of the current r
of the current output unit.

Function poisson.f (mu, stream)

Arguments:

mu A double value greater than zero specifying the mean.

stream An integer value specifying the random number stream.

Description: Returns a random sample from a Poisson distribution.

Mode: Integer
94

Standard SIMSCRIPT II.5 Names

ence.
Function randi.f (low, high, stream)

Arguments:

low An integer value specifying the beginning value.

high An integer value specifying the ending value.

stream An integer value specifying the random number stream.

Description: Returns a random sample uniformly-distributed between low and high in-
clusive.

Mode: Integer

Function random.f (stream)

Arguments:

stream An integer value specifying the random number stream.

Description: Returns a pseudo-random number between 0 and 1.

Mode: Double

Function real.f (arg)

Arguments:

arg An integer value.

Description: Returns arg as a double value.

Mode: Double

Function ref.f (any)

Arguments:

Description: Indicates an argument to a NONSIMSCRIPT routine is passed by refer

Mode: n.a

Function repeat.f (txt, count)

Arguments:

txt A text value.

count A non-negative integer value.

Description: Returns a text value which is the concatenation of count copies of txt .

Mode: Text
95

UNIX SIMSCRIPT II.5 User’s Manual

form
Function sfield.f

Arguments: None

Description: Returns the starting column of the next data field to be read by a free-
read statement. Returns zero if there are no more data fields.

Mode: Integer

Function shl.f (arg1, arg2)

Arguments:

arg1 An integer value.

arg2 An integer value.

Description: Returns the value of arg1 shifted left arg2 bit positions.

Mode: Integer

Function shr.f (arg1, arg2)

Arguments:

arg1 An integer value.

arg2 An integer value.

Description: Returns the value of arg1 shifted right arg2 bit positions.

Mode: Integer

Function sign.f (arg)

Arguments:

arg A double value.

Description: Returns +1 if arg is positive, -1 if arg is negative, and 0 if arg is zero.

Mode: Integer

Function sin.f (arg)

Arguments:

arg A double value specifying an angle in radians.

Description: Returns the sine of arg .

Mode: Double
96

Standard SIMSCRIPT II.5 Names

ed.
Routine sleep.r (time)

Arguments:

time A double value specifying time in seconds.

Description: Suspends execution of your program for a specified time period. Imple-
mented on VMS platforms only.

Routine snap.r

Arguments: None

Description: User-supplied snapshot routine that is called when a runtime error is detect

Function sqrt.f (arg)

Arguments:

arg A non-negative double value.

Description: Returns the square root of arg .

Mode: Double

Right function substr.f (txt, pos, len)

Arguments:

txt A text value.

pos An integer value greater than zero.

len A non-negative integer value.

Description: Returns the substring of txt of length len starting at position pos .

Mode: Text

Left function substr.f (txt, pos, len)

Arguments:

txt A text value.

pos An integer value greater than zero.

LEN A non-negative integer value.

Enter with: A text value.

Description: Replaces the substring of txt of length len starting at position pos with
the assigned text value.
97

UNIX SIMSCRIPT II.5 User’s Manual

 If
Routine system.r (command, status)

Arguments:

command A text value specifying command string.

status An integer value specifying VMS return status.

Description: Implemented on VMS platforms only. Executes VMS DCL command.

Function tan.f (arg)

Arguments:

arg A double value specifying an angle in radians.

Description: Returns the tangent of arg .

Mode: Double

Function triang.f (min, mu, max, stream)

Arguments:

min A double value specifying the minimum.

mu A double value specifying the mean.

max A double value specifying the maximum.

stream An integer value specifying the random number stream.

Description: Returns a random sample from a triangular distribution.

Mode: Double

Function trim.f (txt, flag)

Arguments:

txt A text value.

flag An integer value.

Description: Returns a copy of txt which has leading and/or trailing blanks removed.
flag ≤ 0, leading blanks are removed; if flag ≥ 0, trailing blanks are re-
moved.

Mode: Text
98

Standard SIMSCRIPT II.5 Names

er-
Function trunc.f (arg)

Arguments:

arg A double value.

Description: Returns the truncated value of arg .

Mode: Integer

Function ttoa.f (arg)

Arguments:

arg A text value.

Description: Returns the first character of arg .

Mode: Alpha

Function uniform.f (low, high, stream)

Arguments:

low A double value specifying the beginning value.

high A double value specifying the ending value.

stream An integer value specifying the random number stream.

Description: Returns a random sample uniformly-distributed between low and high .

Mode: Double

Function upper.f (arg)

Arguments:

arg A text value.

Description: Returns a copy of arg with each lower-case character converted to upp
case.

Mode: Text

Function val.f (any)

Arguments:

Description: Indicates an argument to a FORTRAN routine is passed by value.

Mode: n.a.
99

UNIX SIMSCRIPT II.5 User’s Manual

 val-
Function weekday.f (time)

Arguments:

time A double value specifying a cumulative event time.

Description: Returns the weekday portion corresponding to the event time.

Mode: Integer

Function weibull.f (shape, scale, stream)

Arguments:

shape A double value greater than zero specifying the shape.

scale A double value greater than zero specifying the scale .

stream An integer value specifying the random number stream.

Description: Returns a random sample from a Weibull distribution.

Mode: Double

Function xor.f (arg1, arg2)

Arguments:

arg1 An integer value.

arg2 An integer value.

Description: Returns the logical difference of arg1 and arg2 .

Mode: Integer

Function year.f (time)

Arguments:

time A double value specifying a cumulative simulation time.

Description: Returns the year portion corresponding to the simulation time based on
ues given to origin.r .

Mode: Integer
100

Standard SIMSCRIPT II.5 Names

cess

le is
 a

t.
C.2 Global Variables

between.v

Description: If non-zero, specifies a routine which is called before each event or pro
is executed. The default is zero.

Mode: subprogram

buffer.v

Description: Specifies the length of the buffer . The default is 132.

Mode: Integer

dir.name.v

Description: Contains the directory the program was run from.

Mode: Text

eof.v

Description: For the current input unit, specifies, the action to take when end-of-fi
encountered. If eof.v = 0 (the default), the program is aborted with
runtime error. If eof.v = 1 , the program is not aborted and eof.v is set
to 2.

Mode: Integer

event.v

Description: Contains the event/process class of the event or process to occur nex

Mode: Integer

events.v

Description: Contains the number of event/process classes.

Mode: Integer

f.ev.s(i)

Description: Contains the first-in-set pointer of the event set, ev.s , for event/process
class “i ”.

Mode: Pointer
101

UNIX SIMSCRIPT II.5 User’s Manual

tine

. If

 vari-
heading.v

Description: If non-zero, specifies for the current output unit a page-heading rou
which is called for each new page. The default is zero.

Mode: Subprogram

hours.v

Description: Specifies the number of hours per simulated day. The default is 24.0.

Mode: Double

l.ev.s(i)

Description: Contains the last-in-set pointer of the event set, ev.s , for event/process
class “i ”.

Mode: Pointer

line.v

Description: Contains, for the current output unit, the line number of the current line
within the current page.

Mode: Integer

lines.v

Description: Specifies whether pagination is enabled for the current output unit
lines.v =0 (the default), pagination is disabled. If lines.v >0, pagina-
tion is enabled and lines.v specifies the number of lines per page.

Mode: Integer

mark.v

Description: Specifies the termination character for external event data and random
able data. The default is “* ”.

Mode: Alpha

minutes.v

Description: Specifies the number of minutes per simulated hour. The default is 60.0.

Mode: Double
102

Standard SIMSCRIPT II.5 Names

ge.

age
If

ecut-

inal.
n.ev.s(i)

Description: Contains the number of events or processes of event/process class “i ” in the
event set, ev.s .

Mode: Integer

page.v

Description: For the current output unit, contains the page number of the current pa

Mode: Integer

pagecol.v

Description: Specifies for the current output unit whether a line containing the p
number should be written automatically as the first line of each page.
pagecol.v > 0 , this feature is enabled and pagecol.v specifies the
starting column of the phrase, “PAGE nnnn ”. If pagecol.v = 0 (the
default), this feature is disabled.

Mode: Integer

parm.v(i)

Description: Contains the “i ”th command-line parameter.

Mode: Text

process.v

Description: If non-zero, contains a pointer to the process notice of the currently-ex
ing process. If zero, no process is executing.

Mode: Pointer

prog.name.v

Description: Contains program name. Any directory information is removed.

Mode: Text

prompt.v

Description: The string of characters to be output when reading an input from term
Default is “”.

Mode: Text
103

UNIX SIMSCRIPT II.5 User’s Manual

acter
m the

nit.

m “
rcolumn.v

Description: For the current input unit, contains the column number of the last char
read from the current record, or zero if no character has been read fro
current record.

Mode: Integer

read.v

Description: Contains the unit number of the current input unit.

Mode: Integer

record.v(i)

Description: Contains the number of records read from or written to unit number “i ”.

Mode: Integer

ropenerr.v

Description: If non-zero, indicates that an error occurred opening the current input u

Mode: Integer

rreclen.v

Description: For the current input unit, contains the length of the current record.

Mode: Integer

rrecord.v

Description: Contains the number of records read from the current input unit.

Mode: Integer

seed.v(i)

Description: Contains the seed value used to generate a random number from streai ”.

Mode: Integer

time.v

Description: Contains the current simulated time.

Mode: Double
104

Standard SIMSCRIPT II.5 Names

acter
o the

unit.

n ex-
wcolumn.v

Description: For the current output unit, contains the column number of the last char
written to the current record, or zero if no character has been written t
current record.

Mode: Integer

wopenerr.v

Description: If non-zero, indicates that an error occurred opening the current output

Mode: Integer

wrecord.v

Description: Contains the number of records written to the current output unit.

Mode: Integer

write.v

Description: Contains the unit number of the current output unit.

Mode: Integer

C.3 Attributes

The following attributes are automatically declared for an event or process notice:

eunit.a

Description: Contains zero for an endogenous event. Contains the unit number for a
ogenous event.

Mode: Integer

m.ev.s

Description: Contains 1 if the notice is in the event set, ev.s . Contains 0 if it is not in
the event set.

Mode: Integer

p.ev.s

Description: Contains a pointer to the event set predecessor.

Mode: Pointer
105

UNIX SIMSCRIPT II.5 User’s Manual

or for

ss.

ss.
s.ev.s

Description: Contains a pointer to the event set successor.

Mode: Pointer

time.a

Description: Contains the simulated time at which the event or process is to occur,
an interrupt ed process, the amount of time left to work or wait .

Mode: Double

The following attributes are automatically declared for a process notice only:

f.rs.s

Description: Contains the first-in-set pointer for the set of resources owned by the proce

Mode: Pointer

ipc.a

Description: Contains the process class corresponding to “I.process ”.

Mode: Integer

rsa.a

Description: Contains a pointer to the recursive storage save area for a suspended proce

Mode: Pointer

sta.a

Description: Contains the state of the process - 0 if passive (wait ing), 1 if active (work-
ing), 2 if suspend ed, or 3 if interrupt ed.

Mode: Integer

C.4 Constants

exp.c

Description: The value of “e”, 2.718281828459045.

Mode: Double
106

Standard SIMSCRIPT II.5 Names
inf.c

Description: The largest representable integer value.

Mode: Integer

pi.c

Description: The value of pi, 3.141592653589793.

Mode: Double

radian.c

Description: The number of degrees per radian, 57.29577951308232.

Mode: Double

rinf.c

Description: The largest representable real value.

Mode: Double
107

UNIX SIMSCRIPT II.5 User’s Manual
108

D. ASCII Character Set

 0 NULL 32 Space 64 @ 96 `

 1 SOH 33 ! 65 A 97 a

 2 STX 34 " 66 B 98 b

 3 ETX 35 # 67 C 99 c

 4 EOT 36 $ 68 D 100 d

 5 ENQ 37 % 69 E 101 e

 6 ACK 38 & 70 F 102 f

 7 BEL 39 ' 71 G 103 g

 8 BS 40 (72 H 104 h

 9 HT 41) 73 I 105 i

10 LF 42 * 74 J 106 j

11 VT 43 + 75 K 107 k

12 FF 44 , 76 L 108 l

13 CR 45 - 77 M 109 m

14 SO 46 . 78 N 110 n

15 SI 47 / 79 O 111 o

16 DLE 48 0 80 P 112 p

17 DC1 49 1 81 Q 113 q

18 DC2 50 2 82 R 114 r

19 DC3 51 3 83 S 115 s

20 DC4 52 4 84 T 116 t

21 NAK 53 5 85 U 117 u

22 SYN 54 6 86 V 118 v

23 ETB 55 7 87 W 119 w

24 CAN 56 8 88 X 120 x

25 EM 57 9 89 Y 121 y

26 SUB 58 : 90 Z 122 z

27 ESC 59 ; 91 [123 {

28 FS 60 < 92 \ 124 ú

29 GS 61 = 93] 125 }

30 RS 62 > 94 ^ 126 ~

31 US 63 ? 95 _ 127 DEL
109

UNIX SIMSCRIPT II.5 User’s Manual
110

Index

A

a.out ..3, 10
abc.sim ..3
abs.f... 60, 85
accumulate statement.. 1
alpha.. 27, 29, 67
and.f.. 85
append ...6, 25
arccos.f.. 85
arcsin.f.. 85
arctan.f.. 86
arrays ...36, 47, 49, 56, 63
ASCII ..109
atot.f.. 86

B

beta.f... 86
between.v ..101
binary ..25
binomial.f ..86
bit packing ..27
BOT...41
bot ...54
BR ...41
break in routine..41
BUF .. 41
buffer.v ..101

C

C ..42
call stack ...42, 53
close statement ..26, 69
command and dialog logging45
compilation sequence.. 14
compiler options... 4
concat.f ..87
Continue.. 42
core dump ...11
cos.f ...87
cross-reference.. 4, 6
Ctrl-C.. 47
current frame35, 41, 46, 53

D

date.f... 87
date.r ...87
day.f.. 87
DB... 42
-debug ...5, 11, 31, 32, 56
delete breakpoint ...42
descr.f ..88
descriptor.. 48, 56, 88
dim.f.. 88
dir.name.v... 101
display memory ..42

div.f ... 88
DM.. 42
DN ..42
Double ..27, 29
down... 42

E

ECHO ...43
efield.f... 88
end statement.. 11
eof.v.. 101
equivalencing.. 48
erlang.f.. 88
eunit.a... 105
EV... 43
event set ..43
event.v... 101
events.v... 101
executable file ...3, 6, 9
exit ..49
exit status.. 11
exit.r.. 11, 89
exp.c.. 106
exp.f.. 89
exponential.f... 89

F

f.ev.s(i).. 101
f.rs.s ..106
field-packing... 27
fixed.. 25
fixed.f ..89
follow pointer... 43
FORTRAN6, 9, 28, 29, 99
FP.. 43
frac.f.. 89

G

gamma.f.. 90
global variables... 53, 57
GLOBWTRACE.. 51, 53

H

heading.v... 102
hour.f... 90
hours.v ..102

I

inf.c 107
int.f.. 90
Integer... 27
Integer2 ...27, 29
INTERRUPT.. 42
Intrapacking ..27
ipc.a... 106
itoa.f.. 90
111

UNIX SIMSCRIPT II.5 User’s Manual
itot.f .. 90

L

l.ev.s... 102
length.f ...91
library ...9, 51
line.v... 102
lines.v... 102
linking ..3, 4, 8, 14
list routines ...46
list source ...46
LOG ...45
log file ..45
log.10.f... 91
log.e.f ... 91
log.normal.f.. 91
logging ...45
lower.f ..91
LR ...46
LS ...46

M

m.ev.s ...105
Make ...14
makefile ..14, 16
mark.v.. 102
match.f ..92
max.f ..92
MEM ..47
memory information...47
min.f ...92
minute.f.. 92
minutes.v ..102
mod.f ..93
modes ...27
month.f ...93

N

n.ev.s.. 103
nday.f ..93
NOERROR ...25
noerror.. 25
normal.f.. 93

O

object files ..3, 7, 14
open statement.. 25, 69
or.f .. 93
OREADCMDS... 50
OREALF.. 51
OREPCMDS ..50
origin.r ..94
out.f .. 94
output format ..49

P

p.ev.s ...105
page.v ..103
pagecol.v ...103
pagination ...26, 102
parm.v... 103
permanent entities ...31, 52
pi.c .. 107
Pointer..27
pointer index ...43
pointer number.. 43, 44, 52
poisson.f ..94
PREAMBLE..................................... 46, 63, 68, 72
print array variable.. 47
print descriptor variable...................................... 48
print text values in full.. 48
print variable ...48
printing text variables... 49
process.v ...103
profiling ..11
prog.name.v.. 103
prompt.v ..103
ptrvalue... 43
ptrvariable... 43

Q

QUIT... 49

R

radian.c... 107
randi.f.. 95
random.f ..95
rcolumn.v.. 104
read.v.. 104
READCMDS.. 49
Real... 27, 29
real.f.. 95
record.v..104
ref.f ... 95
repeat.f.. 95
report generator... 1
rinf.c ..107
ropenerr.v.. 104
rreclen.v ..104
rrecord.v.. 104
rsa.a... 106
run ...49
runtime error... 4, 56, 75

S

s.ev.s ...106
scratch ...25
scripted routines ..8
SCROLLINES ..41, 51
seed.v ..104
112

Index
SET ...50
set breakpoint ..52
set entity values... 52
set SimDebug parameter..................................... 50
set value.. 53
sfield.f... 96
shell script ...9
shl.f ...96
show buffer... 41
shr.f ...96
sign.f ...96
signed integer2.. 27
simc ...3
simdebug.ini ...32, 50
SIMDEBUG.R ..57
simerr.trc ...11, 32, 56
simgld ...6, 9
simld ...7, 8, 9, 12
sin.f ... 96
sleep.r ..97
SNAP.. 52
snap.r ...97
source directories.. 52
source files ..3
sqrt.f ..97
SRCDIRS...52
sta.a ...106
standard error ..11, 26
standard input ..11, 26
standard output.. 26
statistical tools ..1
step ..50
stop at simulation time ..53
stop statement... 11
Subprogram ...27
substr.f.. 97
system owns ..57
system variables ..53
system.r... 98
SYSVARS.. 53

T

T ..53
tally statement ...1, 70
tan.f ...98
TC ...54
Text ...27
Text Input/Output... 33
time.a ..106
time.v ..104
TOP ...54
top frame ...54
traceback ...53
traceback current... 54

triang.f... 98
trim.f ... 98
trunc.f.. 99
ttoa.. 99

U

uniform.f... 99
UP ...54
up frame.. 54
upper.f ...99

V

VERY OLD PREAMBLE7

W
W ..54
warning messages... 7
warnings.. 3
wcolumn.v ..105
weekday.f.. 100
weibull.f ..100
where ..54
wopenerr.v ..105
wrecord.v ..105
write trace append... 55
write traceback.. 54
write.v ...105
WT ..54
WTA ... 55

X

xor.f... 100

Y

year.f... 100
113

UNIX SIMSCRIPT II.5 User’s Manual
114

	Table of Contents
	Preface
	1.1 Free Trial Offer
	1.2 Training Courses

	1. Simulation and SIMSCRIPT II.5
	2. Developing SIMSCRIPT II.5 Programs
	2.1 Preparing Source Files
	2.2 Compiling
	2.3 Recompiling
	2.4 Linking
	2.5 Executing
	2.6 Profiling
	2.7 Makefiles
	2.7.1 Compilation Sequence
	2.7.2 Make Description File Format
	2.7.3 Transformation Rules
	2.7.4 Special Notes
	2.7.5 Sample Makefile

	2.8 Obtaining Online Help
	2.9 Example Program

	3. SIMSCRIPT II.5 Language Considerations
	3.1 Input and Output
	3.2 Modes and Packing Codes
	3.2.1 Alignment of Values

	3.3 Non-SIMSCRIPT Routines
	3.3.1 Calling C Routines
	3.3.2 Calling FORTRAN Routines

	4. SimDebug Symbolic Debugger
	4.1 Compiling for Debug and Invoking SimDebug
	4.1.1 Compiling for Debug
	4.1.2 Invoking SimDebug

	4.2 A Quick Tour of SimDebug
	4.2.1 Tour 1: Showing the Stack and Variables
	4.2.2 Tour 2: Breakpoints and Single Stepping
	4.2.3 Tour 3: Pointer Handling: Entity / Set Displ...

	4.3 SimDebug Command Reference
	4.4 Advanced Topics
	4.4.1 Batchtrace.v
	4.4.2 Signal Handling / External Events
	4.4.3 Reserved Names
	4.4.4 Displaying Arrays
	4.4.5 Permanent Entities and System Owned Variable...
	4.4.6 Conditional Breakpoints
	4.4.7 Continuous Variables
	4.4.8 Unsupported SIMSCRIPT Features

	A. Compiler Warning and Error Messages
	A.1 Warning and Error Messages

	B. Runtime Error Messages
	B.1 Runtime Error Messages

	C. Standard SIMSCRIPT II.5 Names
	C.1 Functions and Routines
	C.2 Global Variables
	C.3 Attributes
	C.4 Constants

	D. ASCII Character Set
	Index

