
process AIRPLANE

 call TOWER giving GATE yielding RUNWAY

 work TAXI.TIME (GATE, RUNWAY) minutes

 request 1 RUNWAY

 work TAKEOFF.TIME (AIRPLANE) minutes

 relinquish 1 RUNWAY

end " process AIRPLANE

process AIRPLANE

 call TOWER giving GATE yielding RUNWAY

 work TAXI.TIME (GATE, RUNWAY) minutes

 request 1 RUNWAY

Since 1962S

SIMGRAPHICS II

User�s Manual

 CACI.

ssume
rein is
change.

y.
Copyright  1997 CACI Products Co.
September 1997

All rights reserved. No part of this publication may be reproduced by any means without written permission from

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
Phone: (619) 824.5200 Surrey GU15 3YL UK
Fax: (619) 457.1184 Phone: +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677

The information in this publication is believed to be accurate in all respects. However, CACI cannot a
the responsibility for any consequences resulting from the use thereof. The information contained he
subject to change. Revisions to this publication or new editions of it may be issued to incorporate such

SIMGRAPHICS I, SIMGRAPHICS II and SIMSCRIPT II.5 are registered trademarks of CACI Products Compan

Windows is a registered trademark of Microsoft Corporation.

Contents

Preface .. a
WHY USE GRAPHICS? .. b
ORGANIZATION OF THIS MANUAL... b

1. Overview of SIMGRAPHICS II .. 1
1.1 EFFECTIVE USE OF GRAPHICS AND THE USER INTERFACE ... 1

1.1.1 Selecting Colors.. 2
1.1.2 Scale and Size .. 2
1.1.3 Designing a Background... 2
1.1.4 Representing Changes in System State ... 3
1.1.5 How Many Objects Should Be Displayed? ... 3

2. Tutorial .. 5
2.1 HOW TO OPEN A SIMGRAPHICS II WINDOW WITH A TITLE .. 5
2.2 DISPLAY ICONS IN THE DEFAULT WINDOW ... 6
2.3 USE OF MULTIPLE GRAPHICS LIBRARIES.. 7
2.4 EXAMPLE "WINDOW"... 7
2.5 HOW TO OPEN MULTIPLE SIMGRAPHICS II WINDOWS .. 9
2.6 SIMDRAW — THE GRAPHICS EDITOR .. 11
2.7 CREATING AN ICON... 14
2.8 ADDING ANIMATION .. 15
2.9 CREATING A DIALOG BOX ... 17
2.10 ADDING GRAPHICAL USER INTERACTION USING DIALOG BOXES ... 19
2.11 CREATING A GRAPH.. 21
2.12 ADDING PRESENTATION GRAPHICS.. 21
2.13 CREATING A POSTSCRIPT FILE ... 23
2.14 USING A BITMAP AS A BACKGROUND ... 23
2.15 CREATING CASCADEABLE MENUS ... 26
2.16 USING CASCADEABLE MENUS ... 27

2.16.1 Cascadeable Menus in Simulation Programs... 27

3. SIMDRAW.. 31
3.1 SIMDRAW OVERVIEW ... 31
3.2 RUNNING SIMDRAW ... 31
3.3 LOADING AND SAVING SIMGRAPHICS II FILES .. 32
3.4 EDITING AN EXISTING OBJECT... 32
3.5 ADDING AN OBJECT TO THE LIBRARY... 33
3.6 REMOVING AN OBJECT FROM THE LIBRARY.. 33
3.7 MAKING A DUPLICATE OF AN OBJECT .. 33
3.8 CHANGING THE NAME OF AN OBJECT .. 33
3.9 ADDING AN OBJECT FROM ANOTHER LIBRARY ... 33
3.10 EDITING IMAGES AND GRAPHS IN SAME WINDOW .. 33
3.11 USER PREFERENCES .. 33
3.12 COMMAND LINE ARGUMENTS .. 34
3.13 USING THE IMAGE EDITOR .. 35

3.13.1 Mode, Style, and Color Palettes .. 35
3.13.2 Selecting, Moving, and Resizing .. 36
3.13.3 Using the Clipboard (Cut, Copy, Paste Commands) ... 36
3.13.4 Importing / Exporting to Other Graphical Formats ... 36
3.13.5 Creating Primitives ... 37
3.13.6 Creating Images .. 40
i

SIMGRAPHICS II User’s Guide
3.13.7 Editing the Root Image .. 41
3.13.8 Editing Points on a Primitive .. 41
3.13.9 Defining Stacking Order or Priority .. 41
3.13.10 Defining the Center Point of a Shape .. 42
3.13.11 Using the Flip and Rotate Tools .. 42
3.13.12 Align and Distribute.. 42
3.13.13 Using Grid Lines .. 43
3.13.14 Changing Views (Panning and Zooming) .. 43
3.13.15 Changing Dimension (Coordinate Space Boundaries) .. 43
3.13.16 Changing the Layout Size and Color ... 44
3.13.17 Program Access .. 44

3.14 USING THE GRAPH EDITOR ... 44

3.14.1 Style, and Color Palettes ... 44
3.14.2 Selecting, Moving, and Resizing.. 45
3.14.3 Charts (2-D Plots) .. 45
3.14.4 Pie Charts.. 49
3.14.5 Clocks .. 50
3.14.6 Dials ... 51
3.14.7 Level Meters .. 51
3.14.8 Digital Displays .. 52
3.14.9 Text Meters.. 52

3.15 USING THE DIALOG EDITOR .. 52

3.15.1 Selecting, Moving, and Resizing .. 53
3.15.2 Dialog Box Coordinate System .. 53
3.15.3 Using the Clipboard (Cut, Copy, Paste Commands) ... 54
3.15.4 Controls ... 54

3.16 USING THE MENU BAR EDITOR ... 62

3.16.1 Selecting and Moving (Transferring).. 64
3.16.2 Using the Clipboard (Cut, Copy and Paste Commands) ... 64
3.16.3 Editing the Menu Bar ... 64
3.16.4 Editing a Menu ... 65
3.16.5 Editing a Menu Item ... 65

3.17 USING THE PALETTE EDITOR... 66

3.17.1 Selecting and Moving (Rearrangement of) Buttons... 67
3.17.2 Using the Clipboard (Cut, Copy and Paste) ... 68
3.17.3 Editing the Palette .. 68
3.17.4 Editing a Palette Button ... 69
3.17.5 Editing Palette Separators ... 69

4. Creating Presentation Graphics .. 71
4.1 VARIABLE DECLARATION ... 71
4.2 DISPLAYING PRESENTATION GRAPHICS ... 72
4.3 EXAMPLES.. 73

4.3.1 Example 1: A Simple Tallied Histogram ... 73
4.3.2 Example 2: A Time-Weighted Accumulated Dynamic Histogram 74
4.3.3 Example 3: Displaying Simple Scalar Values ... 75
4.3.4 Example 4: Using a Trace to Plot X-Y Curves.. 76
4.3.5 Example 5: The Bank Model... 77

5. Forms and Graphical Interaction .. 79
5.1 INTRODUCTION ... 79
ii

Contents
5.2 CREATING A FORM ... 80

5.2.1 Reference Names and Field Attributes ... 81

5.3 USING THE FORM IN A PROGRAM .. 82

5.3.1 Using ACCEPT.F.. 82
5.3.2 Interaction Modes ... 83

5.4 FIELD ATTRIBUTES.. 84

5.4.1 Value Attributes .. 84
5.4.2 Terminating Buttons... 85
5.4.3 Verifying Buttons ... 85

5.5 FORM CONTROL ROUTINES... 85
5.6 DETAILS OF FIELD OPERATIONS .. 86

5.6.1 The DISPLAY Command.. 86
5.6.2 The ACCEPT.F Function ... 86
5.6.3 The ERASE Command ... 86
5.6.4 The DESTROY Command... 87
5.6.5 The SET.ACTIVATION.R Routine.. 87

5.7 DIALOG BOXES AND THEIR FIELDS .. 87

5.7.1 Dialog Box .. 87

5.8 PREDEFINED DIALOG BOXES ... 92

5.8.1 Standard Message Dialog .. 92
5.8.2 Custom Message Dialogs (Alert, Stop, Information and Question) 92
5.8.3 File Selection Dialog ... 93
5.8.4 System Font Browser ... 93
5.8.5 Printing the Contents of a Graphics Window (or Individual Segment) 94

5.9 MENU BARS AND PALETTES .. 94

5.9.1 Menu Bar .. 94
5.9.2 Palettes ... 95

5.10 EXAMPLES.. 96

6. Creating Animated Graphics .. 101
6.1 GRAPHIC ENTITY DECLARATION .. 102
6.2 COORDINATE SYSTEMS... 102

6.2.1 Normalized Device Coordinates ... 103
6.2.2 Setting a Viewing Transformation... 103
6.2.3 Defining The World: SETWORLD.R ...104
6.2.4 Defining a Viewport: Routine SETVIEW.R ..105
6.2.5 Modelling Transformations ...105

6.3 ANIMATING DYNAMIC GRAPHIC ENTITIES ... 107
6.4 DISPLAYING ICONS.. 107
6.5 AN EXAMPLE .. 108

6.5.1 Preamble ..108
6.5.2 Main Program ...108
6.5.3 Process Shape ... 109

6.6 DESTROYING AND ERASING ICONS .. 110
6.7 SYNCHRONIZING SIMULATION TIME AND REAL TIME ... 110

7. Example Programs .. 113
7.1 THE GOLD MINE PROGRAM.. 113
iii

SIMGRAPHICS II User’s Guide
7.1.1 Menu Bar Process ..114
7.1.2 Form Control Routine ...114

7.2 THE DYNHIST MODEL... 117
7.3 THE PORT MODEL .. 118
7.4 THE CALSHIP MODEL ... 119
7.5 THE SPRING MODEL ... 120
7.6 THE PILOT EJECTION MODEL .. 121

8. Managing Multiple Windows ... 123
8.1 MULTIPLE WINDOW SUPPORT .. 123
8.2 SETTING AND GETTING THE ATTRIBUTES AND EVENTS OF A WINDOW...................................... 124

8.2.1 Window Attributes or “Fields” ..124

8.3 WINDOW EVENTS .. 126
8.4 SCROLLABLE WINDOWS ... 127
8.5 STATUS BARS ... 128

9. Advanced Topics ... 131
9.1 DRAWING ICONS WITHOUT SIMDRAW ... 131
9.2 WRITING A DISPLAY ROUTINE ... 131

9.2.1 Color ...132
9.2.2 Drawing Areas .. 132
9.2.3 Drawing Lines ...133
9.2.4 Drawing Points (Markers) ...134
9.2.5 Direct Character Output ..134
9.2.6 Character Output Using System Text ...135
9.2.7 System Font Browser ..135
9.2.8 Loading a Font Re-definition File.. 136
9.2.9 The Shape Example Revisited ... 136

9.3 USING SEGMENTS .. 138

9.3.1 Segment Priority ...139
9.3.2 Using Priority Zero ..139
9.3.3 Other Segment Operations... 139
9.3.4 Drawing Backgrounds ...140

9.4 ADDITIONAL ATTRIBUTES OF [DYNAMIC] GRAPHIC ENTITIES.. 140
9.5 LOW-LEVEL INPUT CONSTRUCTS... 141

9.5.1 Selecting a Segment ...142

9.6 PROGRAMMATICALLY DEFINABLE SYSTEM CURSOR ... 142
9.7 TIME UNIT CONVERSION FOR SIMULATION GRAPHICS .. 142

Appendix A. SIMGRAPHICS II Variables and Routines 145
Appendix B. Conversion to SIMGRAPHICS II ... 171
B.1 WHAT IS SIMGRAPHICS II? ... 171
B.2 DIFFERENCES BETWEEN SIMGRAPHICS I AND II .. 171

B.2.1 Icons ...172
B.2.2 Graphs ..172
B.2.3 Forms ... 172
B.2.4 Menu Bars ..172
B.2.5 Dialog Boxes ..173
B.2.6 Push Buttons ..173
B.2.7 Radio Buttons ...173
iv

Contents
B.3 USING THE CONVERSION UTILITY... 173

B.3.1 Calling SIMCVT — Command Line Arguments ... 173
B.3.2 Possible Problems with Forms ... 174
B.3.3 A Menu Bar Within a Form ...174
B.3.4 Conversion of Files from PC DOS SIMSCRIPT ...175
B.3.5 Miscellaneous Notes ..175
B.3.6 Features No Longer Supported in SIMGRAPHICS II... 175

Index ... 177
v

SIMGRAPHICS II User’s Guide
vi

List of Figu res

Figure 2-1. Example Window ..8
Figure 2-2. Multiple Window Example ...10
Figure 2-3. SIMDRAW Main Window ...11
Figure 2-4. Creating a Cart Icon ..15
Figure 2-5. Output of the Image-1 Routine ..16
Figure 2-6. Dialog Box Editor Window ...18
Figure 2-7. Dialog Box for Example IMAGE 2 ...19
Figure 2-8. Example IMAGE-3 ..21
Figure 2-9. Example “San Diego” Showing Imported Bitmap ..24
Figure 2-10. Example of a Bitmap Used as a Background.. 26
Figure 2-11. Cascadeable Menu ... 28
Figure 3-1. Main Window ...32
Figure 3-2. Image Editor .. 35
Figure 3-3. Dialog Editor ..53
Figure 3-4. Menu Bar Editor ..63
Figure 3-5. Palette Editor ...67
Figure 4-1. Example 1 ...73
Figure 4-2. Example 2 ...74
Figure 4-3. Example 3 ...75
Figure 4-4. Example 4 ...76
Figure 4-5. The Bank Model ..77
Figure 5-1. Form for the ATM Example ...97
Figure 5-2. Form for List1 Example ... 97
Figure 6-1. Animated Icons ...102
Figure 6-2. Coordinate Transformations ..103
Figure 6-3. Object Origin ...106
Figure 6-4. Output of the Shape Routine ...108
Figure 7-1. The Gold Mine ...114
Figure 7-2. Output of the DYNHIST Model ..117
Figure 7-3. The Port Model ..118
Figure 7-4. The CALSHIP Model ...119
Figure 7-5. The Spring Model ..120
Figure 7-6. The EJECT Model ...121
vii

SIMGRAPHICS II User’s Guide
viii

ve be-
ms are

aces.
e Win-
urce
asy to
main-

ering
d

rede-

 run
ICS II
tical-
od-

igned
and

 struc-
cal in-
isting

aps,
and im-

visual
Preface

Over the past few years interactive colored graphics based on windows systems ha
come standard on every personal computer and workstation. These graphical syste
provided by computer system vendors and all have different programming interf
There is no standard, so graphical programs developed on a PC platform using th
dows toolkit cannot easily be ported to a UNIX workstation without changes in so
code, and vice versa. In addition, vendor’s toolkits change constantly and are not e
use. Graphical programs which use them directly are not portable and are difficult to
tain.

Following our tradition of developing easy-to-use, stable and reliable products, pione
new concepts and exploiting proven state-of-the-art technologies, CACI has develope
SIMGRAPHICS II©, the second generation of CACI’s SIMGRAPHICS.

SIMGRAPHICS II© preserves all the best, well tested, and proven concepts from its p
cessor: the same programming interface, high expressive power, simplicity, ease of use and
portability across various platforms.

Programs written in SIMSCRIPT II.5 with SIMGRAPHICS II are portable. They can
on another platform without any source code changes. And, because SIMGRAPH
uses underlying system vendor toolkits, graphical SIMSCRIPT II.5 programs automa
ly acquire the look-and-feel of the platform they are running on without any program m
ifications.

To preserve your investments in program development, SIMGRAPHICS II was des
with forward and backward compatibility in mind. It is superset of SIMGRAPHICS I
graphical programs written in SIMGRAPHICS I will run using SIMGRAPHICS II with
only minor changes.

SIMGRAPHICS II is a self-contained, state-of-the-art graphical package interfaced with
SIMSCRIPT II.5. It provides all the necessary tools, language statements and data
tures for creating new interactive graphical programs, or adding an interactive graphi
terface, static or dynamic presentation graphics and animation graphics to ex
SIMSCRIPT II.5 models.

It also provides automatic generation of encapsulated PostScript output from the running
models for hard copy documentation.

SIMGRAPHICS II provides support for bitmaps, allowing geographic maps, street m
airport layouts, etc., to be used as a background, to create realistic presentations
prove the accuracy of simulated environments.

Synchronous presentation in multiple windows allows the modeler to better structure
information and graphical interactions.
a

SIMGRAPHICS II User’s Guide

a com-
nly as
lexity
 fully

, or hid-
iated.

clearly
. Sys-
e sim-

re ap-

ible
a
 self-
 from
isting

RIPT
I are

c-

te most
mula-
 given

ages,

to

ined

r

Why Use Graphics?

The goal of a system simulation is to increase the understanding of the operation of
plex system. Unfortunately, the results of simulation studies are often presented o
pages of numbers, which fail to communicate the understanding gained. The comp
of the system and the simulation can make it difficult for users and decision makers to
appreciate the interactions between system elements. Results are often not wellunder-
stood. Premature action may be taken based on invalid assumptions, incorrect data
den modeling errors. Conversely, valid simulation results may not be quickly apprec

Often the best way to represent a dynamic system is graphically. Animated graphics
show the operation of the simulated system and graphic results are easily evaluated
tem operation is better understood, and decision makers have more confidence in th
ulation results.

Graphical representation facilitates debugging. Coding, data and modeling errors a
parent, thus avoiding the need for tedious error tracking.

SIMSCRIPT II.5 has a wide range of applications, and SIMGRAPHICS II is flex
enough to represent entities ranging from aircraft on runways to messages in
communications network. It is easy to use. All graphics features are part of a
documenting SIMSCRIPT II.5 model program. Control of the simulation is separated
the running of the animation. Animated graphical output can easily be added to ex
models.

Organization of This Manual

This manual is organized to let you add interactive colored graphics to your SIMSC
II.5 applications almost immediately. The fundamental concepts of SIMGRAPHICS I
covered in Chapter 1. A brief tutorial on SIMGRAPHICS II is presented in Chapter 2.
SIMDRAW is described in detail in Chapter 3. Presentation graphics, graphical intera
tions through forms, and animated graphics are described in Chapters 4, 5, and 6. These
chapters use a cookbook approach and include all the information necessary to crea
kinds of animated displays. All three types of graphics can be included in a single si
tion simultaneously, and examples of simulations including each kind of graphics are
in Chapter 7. Managing multiple windows is described in Chapter 8. Chapter 9 covers ad-
vanced topics such as the programmatic approach for the manipulation of graphic im
real-time synchronization, etc. Appendix A is a reference to all of SIMGRAPHICS II's
variables and routines. Appendix B is a guide to converting SIMGRAPHICS I programs
SIMGRAPHICS II.

Additional information regarding the behavior of a specific computer system is conta
in the SIMSCRIPT II.5 User's Manual for that system.

For information on the free trial of SIMSCRIPT II.5 with SIMGRAPHICS II, o
SIMSCRIPT II.5 documentation or books, contact:
b

Preface
In the U.S. & Pacific Rim: In Europe:
CACI Products Company CACI Products Division
3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, CA 92037 Riverside Way, Camberley
(619) 824-5200 Surrey GU15 3YL
Fax (619) 457-1184 United Kingdom

+44 (0) 1276 671 671
Fax +44 (0) 1276.670.677
c

SIMGRAPHICS II User’s Guide
d

phics
 ven-
e run-

nce of
m the
 at any

 for the
ented
phics

ous.
for the
terac-
alue

 easy
phic
f an ad-
,

 called
ram
odifi-

ntain

all pro-
umbers
utput
1. Overview of SIMGRAPHICS II

SIMGRAPHICS II lets you easily incorporate presentation graphics, interactive gra
and animation in your SIMSCRIPT II.5 programs. SIMGRAPHICS II uses the system
dors' toolkits so your programs acquire the look and feel of whatever system they ar
ning on.

SIMGRAPHICS II's ease of use comes from a design which separates the appeara
icons from the programming of the entities they represent. You do not blindly progra
way your graphics look. You see them as you design them. You can change them
time without recompiling your program.

Presentation graphics include histograms, pie charts, 2-D graphs and other graphics
visual display of data. Data accumulated in a SIMSCRIPT II.5 program can be pres
by adding just a few statements to the program. Most of the work of formatting the gra
is easily done within SIMDRAW.

Interactive programs require input from the user. SIMGRAPHICS II allows you to design
input forms using SIMDRAW. Programming for user interaction is usually very tedi
You must watch for mouse clicks, check the range of data entered on forms, check
opening and closing menus, etc. SIMGRAPHICS II lets you design these types of in
tions painlessly using SIMDRAW. You can design forms that include dialog boxes, v
boxes, check boxes, list boxes, buttons and menu bars.

Animation requires the design and implementation of icons. Designing icons is very
in SIMGRAPHICS II. You simply construct the ones you need from a few basic gra
objects: lines, circles, boxes, areas, sectors and polylines. You have the features o
vanced drawing program at your disposal including the ability to cut and paste objects
group objects, snap to a grid, and so on.

These three types of graphics generated by the editor are stored in a single ASCII file
graphics.sg2 . This file is normally stored in the same subdirectory as their prog
code. It can be moved between different machines and operating systems without m
cation.

This graphics file can be easily utilized in an application. The program need only co
concepts familiar to the SIMSCRIPT programmer, such as the TALLY or ACCUMULATE
commands, and simple SIMGRAPHICS II constructs such as SHOW, DISPLAY, ERASE,
or ACCEPT.F.

1.1 Effective Use of Graphics and the User Interface

Over the past few years there has been a revolution in computing. It used to be that
grams were text-based and the results were pages of numbers. Since printouts of n
are not the most effective method of communicating the results of a program, visual o
has become more prevalent.
1

SIMGRAPHICS II User’s Guide

s com-
isplays

r in-
 easier
ctive

and be
which
roved

mula-
t.

a sim-
 mean-
tation.

tion.

e used
jects.

n help

nt in
ercep-

creen,
d, and

ortant
exag-
s. Im-

duces
walls,
At first programs were used to drive hard copy output devices such as a plotters, but a
puter displays have become more sophisticated (and prices have fallen) graphical d
on the computer screen have become commonplace.

Now, not only is the output from a program displayed graphically, but the whole use
terface is becoming graphical. Graphical user interfaces can be more intuitive and
to use than the command line interface. Input can be greatly simplified with intera
graphics. The user can leave some information as its default, alter other data,
prompted in each step. SIMGRAPHICS II can even use asynchronous input: input
alters the simulation on the fly. Straight text interactions can almost always be imp
upon with graphics.

Animated or graphical output is often the most easily absorbed information. The si
tion state and results are usually not conveyed as clearly by plain text or value outpu

1.1.1 Selecting Colors

Often, the purpose of animated color graphics is to explain or present the results of
ulation study. To this end, select a color scheme that is harmonious, attractive, and
ingful. Remember that color can be over used. This detracts from the entire presen

The background color should provide contrast, drawing attention to important informa
Effective background colors complement the main color.

Bright colors such as red, orange, and yellow attract attention. These colors can b
for important objects in a display. Subdued colors can be used for less important ob

Borders around areas help define them. Either a black border or a white border ca
set the area off from the background and enhance the entire picture.

Colored objects will look different when surroundings or background fields are differe
color. Remember that the appearance of color is a relative feature of the viewer's p
tion, not an absolute property of color itself.

1.1.2 Scale and Size

Big displays have more visual impact, so whenever possible, use the full area of the s
even if objects touch or overlap the edge. Objects that overlap the edge will be clippe
usually look fine.

Scale drawings tend to make objects look insignificant. Using exact scale, while imp
with CAD systems, is often inappropriate with animation. The better technique is to
gerate, cartooning the information. Use size, intensity, color, and motion for emphasi
portant objects should be large, and in bright colors.

1.1.3 Designing a Background

A well-designed background makes an animated display more attractive. It also intro
a viewer to the problem, and can provide information about the display. Static items (
2

Chapter 1. Overview of SIMGRAPHICS II

e real
ns. A
 so on.
mean-

 color,
dle one
 by one
 could
ample,

ant ob-

action
ted by
 num-
 when
rkings
stairs, a factory floor layout, an airfield) help associate the simulation results with th
system they represent. A legend can indicate the meaning of different colors or ico
plain background can change color to indicate a change from day to night shift, and
The purpose of animated graphics is often to give simulation results more concrete
ing, and adding a realistic background can be a great help.

1.1.4 Representing Changes in System State

Graphical objects can convey information about changes in system state by changing
shape, or through motion. For example, a busy machine could be shown in red, an i
in green, and a broken one in black. Similarly, a busy machine could be represented
icon and an idle machine by another. An icon representing a machine under repair
include a maintenance person. Labels can also be added to icons, indicating, for ex
the type of machine, the type of part being processed, or position in a queue.

1.1.5 How Many Objects Should Be Displayed?

Overall simplicity helps visual presentation. Too many details make it difficult for the
viewer to get the message, or may call attention to the wrong features. Less import
jects should be simplified or made smaller.

In simulations which contain many objects, it may be desirable to represent only a fr
of them and to label the icon accordingly. A queue of 1000 parts could be represen
10 icons, each of which stands for 100 parts. Similarly, a numeral could stand for the
ber of parts being transported, waiting in line, and so on. Also consider your audience
determining the level of detail to depict. Some users are interested in the minute wo
of the simulation, while others will only want to see the general pattern of results.
3

SIMGRAPHICS II User’s Guide
4

 how

ts or
ce

 on

ical en-
n, to

r time
 values

ntly of
re the
ry is
 with

ming,
using
gain.

IPT
hich
S
ing

rams

pen a

 pro-

raph-
or,
2. Tutorial

SIMGRAPHICS II is part of SIMSCRIPT II.5. It is simple and easy-to-use. Let us see
to create SIMSCRIPT II.5 graphical programs which use SIMGRAPHICS II.

You simply write your SIMSCRIPT II.5 program using additional graphical statemen
routine calls, compile it and link with the SIMGRAPHICS II graphical library. Existen
of this library or set of libraries is transparent to you. To link with SIMGRAPHICS II
a PC Windows platform, just declare your application as a SIMGRAPHICS II Applica-
tion in your project options. On UNIX you have only to use the script simgld for linking.

Graphical statements and calls to graphical library routines are used to declare graph
tities, to open one or more graphical windows, to show a graphical entity with an ico
animate its motion or to dynamically display variables which change their values ove
using smart icons like: graphs, dynamic bar charts, pie charts, clocks etc. or to accept
through dialog boxes.

Icons, graphs and dialog boxes are graphical elements which you create independe
your program. To create them you use the graphical editor SIMDRAW and then sto
elements in a library of graphical elements. The default name for this libra
graphics.sg2 , but you can create and use different libraries of graphical elements
arbitrary names as long as they all have the extension .sg2 .

To change the appearance of your program you do not have to do any program
recompiling or relinking. You change the graphical elements used in your program
SIMDRAW. You then store the elements in your library, and execute your program a

To follow the examples in this tutorial, we assume that you know how to write SIMSCR
II.5 programs and how to compile, link and execute them on the specific platform w
you are using. SIMSCRIPT II.5 User Manuals for PC Windows, UNIX or VAX/VM
explain in detail each development environment: compiling, linking and runn
SIMSCRIPT II.5 models.

In this chapter we will show the basics of creating and using SIMGRAPHICS II prog
using simple examples.

All graphics elements appear in the graphics window, so first, we will learn how to o
SIMGRAPHICS II window on the screen, write a title in it and display a few icons.

2.1 How to Open a SIMGRAPHICS II Window with a Title

You do not have to open a graphics window. When you create your SIMSCRIPT II.5
gram as a SIMGRAPHICS II application, a default window without any title will be
opened automatically every time the program is executed.

If you want to open a window with a specific title, size and position you can use the g
ics library call OPENWINDOW.R with given arguments: position, title and mapping fact
to get WINDOW.ID and pass it to the graphical system using the SETWINDOW.R routine.
5

SIMGRAPHICS II User’s Guide

or of

nts in

editor
icons:
d
l
ment.
fault
 the

orld
By default, the background of the window will be black. If you want to change the col
the background you can use the GCOLOR.R routine, and set COLOR.INDEX = 0 to a desired
RGB combination. Here is an example:

Main

''Open graphics window with specified coordinates and a title,
''and background color

 Define WINDOW.ID as integer variable

'' Set background color
 call GCOLOR.R(0,0,500,0) ''dark green

 call OPENWINDOW.R given 4096, 28672, 0 , 32767,
 " My Title - For Simgraphics Window",
 0
 yielding WINDOW.ID
 call SETWINDOW.R given WINDOW.ID

'' This message will keep your window opened until you click “OK”
 call MESSAGEBOX.R (“Exit”, “End of the program”)
end

You can find a detailed explanation of the graphics routines used and their argume
Appenidx A.

Now we will learn how to display icons in the graphics window.

2.2 Display Icons in the Default Window

To display a few icons in the window, first you have to create them using graphics
SIMDRAW and store them in a library of graphics elements. We have created three
car.icn, plane.icn and image.icn and preserved them in the library calle
graphics.sg2 . This library is the default SIMGRAPHICS II library of graphica
elements. It is searched first whenever you want to display a certain graphics ele
Here is an example of how you display three icons from the default library in the de
graphics window. You must declare graphical entities in the preamble using
SIMSCRIPT II.5 statement: Dynamic graphic entities include... and associate
their graphical representation with an icon using display entity_name with
icon_name in the program. As part of the initialization of the graphics system, the w
view and view port have to be set before you draw in the window. Routine SETWORLD.R
and variable VXFORM.V are provided for this purpose.

Preamble
'' Example "Show Icons"
 Dynamic graphic entities include IMAGE1, IMAGE2, IMAGE3
End ''Preamble

Main
''Set world view and view port
 Let VXFORM.V =1
6

Chapter 2. Tutorial

 sup-
ames

e cat-
ension

eeded
AW.

cause
 the
hould
ent li-

.

on,
indow

isplay

h

 call SETWORLD.R(-1000.0, 1000.0, -1000.0, 1000.0)

'' Display icons from the default graphics.sg2 library
 display IMAGE1 with "car.icn" at (0.0 , 0.0)
 display IMAGE2 with "plane.icn" at (-500.0 , 500.0)
 display IMAGE3 with "image.icn" at (500.0, -500.0)

'' This message will keep the window open until you click “OK”
 call MESSAGEBOX.R ("Exit", "End of the program")
end

We did not have to mention the name of the library graphics.sg2 , and we did not have
to open a graphics window. This was done for us by the SIMGRAPHICS II run-time
port. But, you can also create multiple libraries of graphical elements with arbitrary n
and read icons from them as explained in the following paragraph.

2.3 Use of Multiple Graphics Libraries

SIMGRAPHICS II provides you with the possibility of organizing graphics elements of
your application in one or multiple libraries. Graphical elements are classified in thre
egories: icons, graphs and forms. There is a naming convention: all icons have ext
.icn, all graphs .grf and all forms have extention .frm . The library graphics.sg2
will always be searched automatically, so graphical elements which are always n
should be placed in this library. Additional libraries can also be created with SIMDR
They must be explicitly read/searched during execution time using the READ.GLIB.R rou-
tine.

You can keep graphical elements from multiple applications in the common library be
only elements which you want to show in your application will actually be loaded in
memory. Names of graphical elements from the same category in multiple libraries s
be unique. Generally you can have two or more icons with the same name in differ
braries, but the one from the last read library will take precedence.

See the following example “Window” as an illustration of the use of multiple libraries

2.4 Example "Window"

The “Window” example given below is included with every SIMSCRIPT II.5 distributi
and summarizes what we have learned so far. It shows how to open a graphics w
with a default position and size on the screen, write a title in it and shows how to d
graphic entities with associated icons. In this example, library graphics.sg2 , which is
always loaded during the initialization phase of SIMGRAPHICS II, contains: car.icn,
plane.icn and image.icn . Additional library cart.sg2 contains cart.icn . It was
read-in using library call READ.GLIB.R to display one of the graphical entities wit
cart.icn .

Preamble
'' Example "Graphics window"
 Normally mode is undefined
 Dynamic graphic entities include IMAGE1, IMAGE2, IMAGE3, IMAGE4
7

SIMGRAPHICS II User’s Guide

 repo-
le in

End ''Preamble

Main
'' Open graphics window with specified coordinates and a title
 Define WINDOW.ID as integer variable

 call OPENWINDOW.R given 4096, 28672, 0 , 32767,
 " My Title - For Simgraphics Window",
 0
 yielding WINDOW.ID
 call SETWINDOW.R given WINDOW.ID

'' Set world view and view port
 Let VXFORM.V =1
 call SETWORLD.R (-1000.0, 1000.0, -1000.0, 1000.0)

'' Display icons from default graphics.sg2 library
 display IMAGE1 with "car.icn" at (0.0 , 0.0)
 display IMAGE2 with "plane.icn" at (-500.0 , 500.0)
 display IMAGE3 with "image.icn" at (500.0, -500.0)

'' Display icon from additional cart.sg2 library
 call READ.GLIB.R ("cart.sg2")
 display IMAGE4 with ("cart.icn") at (-500.0, -500.0)

'' This message will keep window open until you click on ”OK”
 call MESSAGEBOX.R ("Exit", "End of the program")
end

 Figure 2-1. Example Window

Compile, link and execute this example. As you see, during execution time you can
sition, resize, and iconize this window. The images displayed in the window will resca
accordance with the window dimensions.
8

Chapter 2. Tutorial

your
screen

ach
illus-
e icon
You can experiment by changing the title, initial position, and size of the window from
program. You can also open multiple non-square windows and position them on the
in an arbitrary way, as shown in the following example.

2.5 How to Open Multiple SIMGRAPHICS II Windows

In SIMGRAPHICS II you can programmatically open multiple non-square windows. E
window has its own title, position and world space to present. Example “nwindows”
trates how to open three windows and display two icons in the upper window and on
in each of the lower windows:

Preamble ''Example "Multiple Graphics Windows"
 Normally mode is undefined
 Dynamic graphic entities include IMAGE1, IMAGE2, IMAGE3, IMAGE4

 Define .window1 to mean 1
 Define .window2 to mean 2
 Define .window3 to mean 3

End ''Preamble

Main
'' Open graphics windows with specified coordinates,
'' and a title

 Define WINDOW1.ID as integer variable
 Define WINDOW2.ID as integer variable
 Define WINDOW3.ID as integer variable

 call OPENWINDOW.R given 4096, 28672, 16383, 32767,
 " Simgraphics Upper Window ",
 0
 yielding WINDOW1.ID

 call OPENWINDOW.R given 4096, 16383, 0, 16383,
 " Simgraphics Lower Window1 ",
 0
 yielding WINDOW2.ID

 call OPENWINDOW.R given 16383, 28672, 0, 16383,
 " Simgraphics Lower Window2 ",
 0
 yielding WINDOW3.ID

 let VXFORM.V = .window1
 call SETWINDOW.R given WINDOW1.ID
 call SETWORLD.R (-1000.0, 1000.0, 0.0, 1000.0)

 let VXFORM.V = .window2
 call SETWINDOW.R given WINDOW2.ID
 call SETWORLD.R (-1000.0, 0.0, -1000.0, 0.0)
9

SIMGRAPHICS II User’s Guide

ized.
T II.5

g
 ex-
s,
 let VXFORM.V = .window3
 call SETWINDOW.R given WINDOW3.ID
 call SETWORLD.R (0.0, 1000.0, -1000.0, 0.0)

 let VXFORM.V = .window1
 show IMAGE1 with "car.icn" at (500.0 , 500.0)
 show IMAGE2 with "plane.icn" at (-500.0 , 500.0)

 let VXFORM.V = .window2
 call read.glib.r ("cart.sg2")
 show IMAGE4 with ("cart.icn") at (-500.0, -500.0)

 let VXFORM.V = .window3
 show IMAGE3 with "image.icn" at (500.0, -500.0)

'' This message will keep windows open until you click "OK"
 call MESSAGEBOX.R ("Exit", "End of the program")
end

 Figure 2-2. Multiple Window Example

Every window is independent and can be individually repositioned, resized and icon
A more elaborate example, “calship,” can be found in the examples of the SIMSCRIP
distribution.

Icons in the libraries graphics.sg2 and cart.sg2 are created without any programmin
using SIMDRAW. Learn how to use SIMDRAW by experimenting. First, look at the
isting libraries and then draw your own graphics elements: icons, graphs, dialog boxe
menus, and palettes.
10

Chapter 2. Tutorial

ons
, dialog
 III is

these
n have
re in a

cts
 edit
alettes.
 parts
 add
dow.
ting.
2.6 SIMDRAW — the Graphics Editor

SIMDRAW is the editor provided by the SIMGRAPHICS II system to create and edit ic
or graphic images, charts and graphs and user interface items such as menu bars
boxes and palettes. The editor is portable across all systems on which MODSIM
available. It produces graphics files which are also portable.

Graphic items are built from primitives such as lines, circles, polygons, etc. Typically
parts are grouped together for convenience in handling. Each group and primitive ca
a field name. This is used as a “handle” to identify the graphic objects when they a
graphics library or when they are part of another graphics object.

Any graphics item can be saved in a graphics library.

SIMDRAW's main window is shown below. This window categorically lists all obje
contained in the currently loaded library file. From this window you can create and
images, icons, graphs (2-D charts, level meters, etc.), dialog boxes, menu bars, and p
A separate window is created for each object being edited. This allows you to copy
of an object into the clipboard and paste them into another object of the same type. To
an object to the library, select one of the palette buttons on the left side of the win
Editing an existing object can be accomplished by double clicking on its name in the lis

Figure 2-3. SIMDRAW Main Window
11

SIMGRAPHICS II User’s Guide

 sec-
cting a

 color

d,

ithin

ters.

splay”
ed in
Double clicking on an image in the listing will invoke a separate window called the Image
Editor which will contain only that image. Images are composed of circles, polygons,
tors, arcs, polylines, text, and bitmaps. Primitives are added to the image by sele
primitive type from the Mode palette on the left. Bitmaps are added using the File/Import
option. Primitives can be repositioned, resized, flipped, and rotated. The style and
of a selected primitive can be changed using the Color palette on the bottom and the Style
palette on the right side of the Editor . Points defining a polygon or polyline can be adde
removed and repositioned.

A Layout Editor allows you to position and resize any number of images and graphs w
the same window.

The Graph Editor allows you to edit a variety of 2-D charts, pie charts, clocks and me
Clicking on the Bar Chart palette button on the left side of the List window will present the
following dialog:

The above graph types can be used to graphically display values of monitored or “di
variables. The 2d Chart is used to represent SIMSCRIPT histograms. These are defin
the preamble as follows:

...

Define < monitored_variable> as a real variable

Tally <histogram_name> (<lo_bound> to <hi_bound> by <delta>) as the
dynamic histogram of

<monitored_variable>

...

In your program, the histogram is loaded as follows:

...

Display histogram <monitored_variable> with “chart_name.grf”

...

where “chart_name.grf ” is the library name given to the object in SIMDRAW.
12

Chapter 2. Tutorial

ay

ol-

is as
The Level meter, Dial, and Digital display are used to represent display variables. A displ
varible can be defined in your preamble as:

...

Define < monitored_variable> as a real variable

Display variables include <monitored_variable>

...

and loaded into your program with a statement of the form:

...

Display <monitored_variable> with “meter_name.grf”

...

where “meter_name.grf ” is the library name given to the object from within
SIMDRAW.

The Analog clock and Digital clock objects display time. The preamble definition is as f
lows:

...

Define < time_variable> as a real variable

Display variables include <time_variable>

...

and loaded into your program with a statement of the form:

...

Display <time_variable> with “clock_name.grf”

...

where “clock_name.grf ” is the library name given to the object from within
SIMDRAW.

The Pie chart can be used to monitor an array of variables. The preamble definition
follows:

...

Define < monitored_array > as a 1-dim integer array

Display variables include <monitored_array>

...

and loaded into your program with a statement of the form:
...

Display <monitored_array> with “pie_name.grf”

...

where “pie_name.grf ” is the library name given to the object from within SIMDRAW.

The Text meter monitors a variable of type “text”.
13

SIMGRAPHICS II User’s Guide

 pro-
rather
r, feel
just a

eated

enter
n-

imple
 body

 editor

itives.
.

-
e

is
...

Define < monitored_text> as a text variable

Display variables include < monitored_text>

...

Display < monitored_text> with “text_display.grf”

...

2.7 Creating an Icon

One of the nice things about SIMGRAPHICS II is that changing the graphical display
duced by an application program can be accomplished simply by using the editor,
than by modifying source code. So if you would rather animate a rocket or a race ca
free to draw one of those instead. We only picked a cart because its easy to draw—
box with two circles for wheels!

To create the icon, you should first enter the image editor by clicking on the upper-left pal-
ette button on the main window. The Image Editor window will appear allowing you to
draw lines, polygons, circles, arcs, sectors and text. You can also import bitmaps cr
by another drawing tool such as “MS Paint”.

To create a wheel for the cart, first click on the “circle” tool on the left side palette to
“circle drawing” mode. Now click and drag an outline of a circle in the canvas of the wi
dow. You can now resize the circle by dragging one of the small green “resize handles” of
the selected circle. Moving the circle is even easier; just click and drag!

You can make the second circle by copying the first one. Use the Edit/Copy option to copy
the selected circle into the clipboard. Now select the Edit/Paste option and drag the outline
of the copied circle to where you want it. The body of the cart can be made with a s
rectangle. Click on the “rectangle” tool on the left palette and drag an outline for the
of your cart. You can set the color and style of these primitives by selecting them and click-
ing on buttons in color and style palettes on the bottom and right-hand sides of the
window.

If you want the wheels to appear on top of the body, hold down the <Shift> key and click
on each (unselected) circle. Both wheels should now be selected. Use the Layout/Bring to
front option to re-stack the objects.

If you want to resize the whole image, a “group” should be made containing both wheels
and the body. Click in the canvas and drag a selection rectangle over all the prim
With both circles and the box selected, use the Layout/Group option to make a grouping
The resulting group can now be resized. The group can be destroyed without deleting your
objects using the Layout/Ungroup option.

Before saving this object to the graphics.sg2 file, you should define the image’s prop
erties using the Edit/Image... option. After the Image Detail dialog box appears, set the nam
of the object shown in the Lib. Name text box to cart.icn . This is the same name that
used in your program in statements of the form

...
14

Chapter 2. Tutorial

-
(The
e

-4.

ical
-5)

II.5

h the
.5

ith a
is
Display IMAGE with “cart.icn” at (X,Y).

...

Next, the cart should be re-centered. Click on the Select.. button to select a new center
point. You will then be asked to click inside the window to define the center-point.
center point would correspond to (X,Y) in the above SIMSCRIPT code). Click on thOK
button to return to the editor. Save the image and library file using the File/Save option.
The edit session can be terminated by closing the editor’s window. Refer to figure 2

 Figure 2-4. Creating a Cart Icon

2.8 Adding Animation

SIMGRAPHICS II has high expressive power. With a very few powerful graph
statements you can add animation to a graphical entity. Example “Image-1” (figure 2
shows a graphical entity, IMAGE, displayed with icon cart.icn in the default graphical
window. Motion of the graphical entity, IMAGE, is described with the SIMSCRIPT
process IMAGE.MOTION which is written using ORIENTATION.A and VELOCITY.A
attributes of the graphical entity. Synchronization with real-time is achieved throug
TIMESCALE.V variable. This example is included with every SIMSCRIPT II
distribution. It will run successfully if you added icon cart.icn to graphics.sg2 using
SIMDRAW in the previous paragraph. When you want to show a graphical entity w
certain icon, graphics library graphics.sg2 is searched first. You can also change th
example to use the library cart.sg2 which contains cart.icn , or you can show
15

SIMGRAPHICS II User’s Guide
graphical entity IMAGE with some other icon like: car.icn , plane.icn or image.icn ,
which are in the library graphics.sg2 , as shown in the example “Window,” figure 2-1.

 Figure 2-5. Output of the Image-1 Routine

Preamble ''Example "IMAGE-1"
 Normally mode is undefined

 Define NUM.ROTATIONS and SPEED as double variables
 '' Animation declarations:
 Dynamic graphic entities include IMAGE
 Processes include IMAGE.MOTION

End ''Preamble

Main
'' Set up the world view and view port
 Let VXFORM.V = 1
 Call SETWORLD.R (-1000.0, 1000.0,-1000.0, 1000.0)

'' Set real-time synchronization and motion parameters
 Let TIMESCALE.V = 100
 Let SPEED = 300
 Let NUM.ROTATIONS = 2

'' Set graphical representation for graphics entity IMAGE,
'' Icon cart.icn is in the default library graphics.sg2.
'' Activate 'image.motion' process.
 Show IMAGE with "cart.icn"
 Activate an IMAGE.MOTION now
 Start simulation

End ''Main

Process IMAGE.MOTION
'' Describes the motion of graphical entity IMAGE
'' by setting the orientation and velocity of the IMAGE
16

Chapter 2. Tutorial

 by the
 these

an pro-
t form
raphs
.

o this
ox

o-
al that

g a

palette

shown
 Define CURRENT.COURSE, NUM.SIDES, ANGLE as real variables
 Define I, J, CURRENT.TICK as integer variables

 For I = 1 to NUM.ROTATIONS
 Do
 let NUM.SIDES = 4
 Let ANGLE = (2 * PI.C * (1 - 2 * RANDI.F(0,1,2))) / NUM.SIDES

 For J = 1 to NUM.SIDES
 Do
 Let ORIENTATION.A(IMAGE) = CURRENT.COURSE
 Let VELOCITY.A(IMAGE) = velocity.f(SPEED, CURRENT.COURSE)

 Work (1000 * PI.C) / (NUM.SIDES * SPEED) units
 Add ANGLE * min.f(NUM.SIDES - J,1) to CURRENT.COURSE
 Loop
 Loop
End '' process IMAGE.MOTION

When declared as graphical, an entity gets a few internal attributes that are stored
graphical system: its position, velocity, orientation, and a pointer to an icon. Some of
attributes can be accessed programmatically, either directly like ORIENTATION.A or
through an attached routine/function like VELOCITY.A , which is accessed through the
function velocity.f .

This example has hard coded values for icon name, and motion parameters. You c
vide the user of your program with the possibility of entering these parameters in tex
or with using a more convenient graphical user interface. In the following two parag
we will show how to create a dialog box and use it in your SIMSCRIPT II.5 program

2.9 Creating a Dialog Box

The user of your program needs some way to influence what the program will do. T
end, SIMGRAPHICS II provides forms. For your simulation you can create a dialog b
which allows the user to choose an icon name to represent the image entity: car.icn ,
plane.icn, image.icn or cart.icn . Or you could create a dialog box to define m
tion parameters: speed, number of rotations and time scale, and then either to sign
those values are correct by pressing an Ok button, or else to end the program by pressin
Cancel button.

To create the dialog box click on the appropriate palette button on the left-hand side
of the main window. This action will bring up the Dialog Box Editor window. See figure
2-6. You can add buttons, check boxes, text boxes, etc. to a “template” dialog box
in the Editor window. The template will already contain an OK and a Cancel button. You
can move these buttons around by clicking and dragging them with the mouse.
17

SIMGRAPHICS II User’s Guide

 and
ake

ted
gging

perties
UM
 and

ties to
up its
d

Figure 2-6. Dialog Box Editor Window

Double click on the OK button and a Properties dialog will be brought up allowing you to
set its attributes. Enter OK in the Field Name text box. Bring up the Properties dialog for
the Cancel buttons and enter CANCEL in the text box labeled Field Name .

Now add a text box to the dialog. Click on the “text box” button on the left palette
move an outline of the text box to your dialog. Double click on this new text box to m
its Properties dialog appear. Enter the text “ICON NAME” into the Field name box. Enter
the text “Name of Image” into the Label box. The small green boxes shown on the selec
text box are called “resize handles”. You can resize the text box by clicking and dra
one of these handles.

Now add three value boxes to your dialog in the same manner as above. Edit the pro
of each value box and change their field names to “TIMESCALE”, “SPEED”, and “N
ROTATIONS”, respectively. Set the labels to “Timescale value”, “Speed of image”,
“Number of rotations”, respectively.

This dialog is now almost completed. Before you save it, you need to assign proper
the dialog box itself. Double click on the header bar of the sample dialog to bring
properties. Enter the text "image.frm" into the Lib. Name box. This same text string is use
to load the dialog box into your program! Enter “Image Demo” into the Title box to set the
18

Chapter 2. Tutorial

 box
e figure

dialog
s like:
title displayed in its header bar and then return to the editor by clicking on OK.
If you want to see what the “real” dialog will look like, use the Layout/Show dialog option.
Use its “go away” button in the header bar to erase it. Use the File/Save option to save both
the dialog and “graphics.sg2 ”.

2.10 Adding Graphical User Interaction Using Dialog Boxes

Example IMAGE-2 is the same as IMAGE-1 with only one addition. It uses a dialog
to accept user choice for icon name, speed, time scale and number of rotations. Se
2-7. All added lines for GUI are in main and are highlighted.

To add a graphical user interface to example IMAGE-1, you only need to create a
box and to use it in your program through appropriate graphical routines and attribute
accept.f, dfield.f, DTVAL.A and DDVAL.A.

Figure 2-7. Dialog Box for Example IMAGE 2

Preamble ''Example "IMAGE 2"
 Normally mode is undefind
 Define NUM.ROTATIONS, SPEED as double variables

 '' Animation declarations:
 Processes include IMAGE.MOTION
 Dynamic graphic entities include IMAGE

End ''Preamble

Main
 '' Forms definitions:
19

SIMGRAPHICS II User’s Guide
 Define FORM.PTR as a pointer variable

 '' Set up the view port and world view
 Let VXFORM.V = 1
 Call SETWORLD.R (-1000.0, 1000.0,-1000.0, 1000.0)

 '' Display the form and accept model parameters
 Show FORM.PTR with "image.frm"
 If accept.f(FORM.PTR, 0) eq "OK"
 '' Set timescale and speed:
 '' timescale is the number of 1/100ths seconds
 '' that will pass for every simulation time unit.
 '' The speed is in real world units / second.

 Let TIMESCALE.V = DDVAL.A(dfield.f("TIMESCALE", FORM.PTR))
 Let SPEED = DDVAL.A(dfield.f("SPEED", FORM.PTR))

Let NUM.ROTATIONS = DDVAL.A(dfield.f("NUM ROTATIONS", FORM.PTR))

 '' Accept icon name for graphics entity IMAGE,
 '' show it with that name and
 '' activate an 'image.motion' process.

 Show IMAGE with DTVAL.A(dfield.f("ICON NAME", FORM.PTR)
 Activate an IMAGE.MOTION now

 Start simulation
 Always
End ''Main

Process IMAGE.MOTION
 Define CURRENT.COURSE, NUM.SIDES, ANGLE as real variables
 Define I, J, CURRENT.TICK as integer variables

 For I = 1 to NUM.ROTATIONS
 Do
 let NUM.SIDES = 4
 Let ANGLE = (2 * PI.C * (1 - 2 * RANDI.F(0,1,2)))

/ NUM.SIDES

 For J = 1 to NUM.SIDES
 Do
 Let ORIENTATION.A(IMAGE) = CURRENT.COURSE
 Let VELOCITY.A(IMAGE) = velocity.f(SPEED,

CURRENT.COURSE)

 Work (1000 * PI.C) / (NUM.SIDES * SPEED) units
 Add ANGLE * min.f(NUM.SIDES - J,1) to CURRENT.COURSE
 Loop
 Loop
End '' process IMAGE
20

Chapter 2. Tutorial

ciate it
First,

utton

y part
d color

n box
n

n of

y
le
To show simulation time changes is easy. We create a smart icon clock, and asso
with a display variable which will be updated every time simulation time changes.
though, learn how to create a smart icon graph with SIMDRAW.

2.11 Creating a Graph

Run SIMDRAW, load the library and create a graph clock by clicking on the palette b
on the left hand side of the main window. Choose Analog clock and click OK to bring up
the Graph Editor and a “clock” template. Its easy to change the styles and colors of an
of the clock. Just select the part of the clock you wish to change, and use the style an
palettes.

To move the clock just click and drag with the mouse. To resize it, drag a selectio
over the entire graph. This will select the whole clock and not just a part of it. You ca
now resize it using the small green resize handles on the selection box.

You can change properties of the clock by double clicking on it to bring up the Clock Detail
dialog. Enter image.grf into the Lib. Name box and “Simulation time” into the Title box,
and then click OK. You can now save this clock and graphics.sg2 with the File/Save
option.

2.12 Adding Presentation Graphics

Example IMAGE-3, figure 2-8, is the same as IMAGE-2, except for the additio
presentation graphics. It defines a display variable CLOCK.TIME and uses image.grf for
representing simulation time. User written routine CLOCK is supplied to update the displa
variable CLOCK.TIME and to synchronize with real-time through the variab
TIMESYNC.V.

Figure 2-8. Example IMAGE-3
21

SIMGRAPHICS II User’s Guide
Preamble ''Example "IMAGE-3"
 Normally mode is undefined
 Define NUM.ROTATIONS, SPEED as double variables

'' Animation declarations:
 Processes include IMAGE.MOTION
 Dynamic graphic entities include IMAGE

'' Presentation graphics declarations:
 Define CLOCK.TIME as double variables
 Display variables include CLOCK.TIME

End ''Preamble
Main
'' Forms definitions:
 Define FORM.PTR as a pointer variable

'' Set up the world view and view port
 Let VXFORM.V = 1
 Call SETWORLD.R (-1000.0, 1000.0,-1000.0, 1000.0)

'' Presentation graphics:
 Let TIMESYNC.V = 'CLOCK'
 Show CLOCK.TIME with "image.grf"

'' Display the form and get model parameter
 Show FORM.PTR with "image.frm"
 If accept.f(FORM.PTR, 0) eq "OK"

 '' Set timescale and speed:
 '' timescale is the number of 1/100ths seconds
 '' that will pass for every simulation time unit.
 '' The speed is in real world units / second.

 Let TIMESCALE.V = DDVAL.A(dfield.f("TIMESCALE", FORM.PTR))
 Let SPEED = DDVAL.A(dfield.f("SPEED", FORM.PTR))
 Let NUM.ROTATIONS = DDVAL.A(DFIELD.F("NUM ROTATIONS",

FORM.PTR))

 '' Accept icon name for graphics entity IMAGE,
 '' show it with that name and
 '' activate an 'image.motion' process.

 Activate an IMAGE.MOTION now
 Show IMAGE with DTVAL.A(dfield.f("ICON NAME", FORM.PTR))

 Start simulation
 Always
End ''Main

Process IMAGE.MOTION
 Define CURRENT.COURSE, NUM.SIDES, ANGLE as real variables
22

Chapter 2. Tutorial

ents

ocu-
tical-
torial

-right

ported
lation

uts as
ps or
anner.
 Define I, J as integer variables

 For I = 1 to NUM.ROTATIONS
 Do
 Let NUM.SIDES = 4
 Let ANGLE = (2 * PI.C * (1 - 2 * RANDI.F(0,1,2))) / NUM.SIDES

 For J = 1 to NUM.SIDES
 Do
 Let ORIENTATION.A(IMAGE) = CURRENT.COURSE
 Let VELOCITY.A(IMAGE) = velocity.f(SPEED,

CURRENT.COURSE)

 Wait (1000 * PI.C) / (NUM.SIDES * SPEED) units
 Add ANGLE * min.f(NUM.SIDES - J,1) to CURRENT.COURSE
 Loop
 Loop
End '' process IMAGE

Routine CLOCK given TIME yielding NEWTIME
 Define TIME, NEWTIME as double variables

 Let CLOCK.TIME = TIME / (24*60*60)
 Let NEWTIME = TIME
return
end

This is a simple, yet complete, example with all three types of SIMGRAPHICS elem
represented: animation graphics, input forms and presentation graphics.

2.13 Creating a PostScript File

SIMGRAPHICS II provides an automatic way of creating PostScript files for better d
mentation of a simulation process. Without additional programming, you can automa
ly create snap shots in PostScript form during a simulation run. Execute any of the tu
examples and click on the PostScript icon (the small “PS” inside a circle) in the upper
corner of the SIMGRAPHICS II window. A PostScript file print1.ps will be created.
Subsequent clicks on the icon will create a snapshot named print2.ps , etc. These encap-
sulated PostScript files can be printed on a PostScript compatible laser printer or im
into a text processor for improved documentation of the simulation progress and simu
results.

2.14 Using a Bitmap as a Background

Many simulation models require use of geographical maps, road maps or airport layo
a background, with airplanes, vehicles or other icons moving in the foreground. Ma
other color images can be transformed to raster files or bitmap files using a color sc
Acceptable file formats for bitmaps are Windows Bitmap (.BMP) on PCs and X-Windows
format (.xwd) on UNIX platforms.
23

SIMGRAPHICS II User’s Guide

ing su-

m soft-
st be
hics
e

w.

,
icons.
ound

map
ng the
Bitmaps can be used as icons, as static objects in a background, or as dynamic mov
per-imposed objects.

First, create raster/bitmap images using any color scanner, or using some of the syste
ware tools like Paintbrush on the PC Windows platform. The bitmap file you create mu
in the same directory as your graphics library file. Invoke SIMDRAW, load your grap
library, and then invoke the Image Editor by clicking on its palette button in the top left sid
of the main window. From within the Image Editor , use the File/Import option and enter the
name of your bitmap file. After a few seconds the bitmap should appear in your windo
This bitmap can now be saved into your image object. Remember to use the Edit/Image...
option before saving and assign the library name and a center point to your image.

In your SIMSCRIPT II.5 program, after the initialization phase of the graphics system
show your background map and then display and animate your superimposed
SIMGRAPHICS II will take care of the redrawing of the necessary parts of the backgr
icon as the icons move across the screen.

Figure 2-9. Example “San Diego” Showing Imported Bitmap

Example: “sandiego” in the SIMSCRIPT II.5 distribution, shows a San Diego road
saved as a bitmap and used as a background, with a vehicle token icon moving alo
freeway.

Preamble ''Example "San Diego"
 Normally mode is undefined
 Dynamic graphic entities include CITY.MAP,

COMPANY.LOCATION,VEHICLE1
 Processes include vehicle.motion
End ''Preamble

main
'' Open graphics window with specified coordinates and a title
 Define WINDOW.ID as integer variable
 call OPENWINDOW.R given 4096, 28672, 0 , 32767,
24

Chapter 2. Tutorial
 " San Diego roads", 0
 yielding WINDOW.ID
 call SETWINDOW.R given WINDOW.ID

'' Set world view and view port
 Let VXFORM.V =1
 call SETWORLD.R (-32767.0, 32767.0, -32767.0, 32767.0)

'' Display icons from default graphics.sg2 library
 show CITY.MAP with "sandiego.icn" at (0.0, 0.0)
 show COMPANY.LOCATION with "caci.icn" at (-27000.00, 11000.00)
 show VEHICLE1 with "token.icn" at (-4500.0, 0.0)

 Let TIMESCALE.V = 100
 Activate a VEHICLE.MOTION now
 Start Simulation

 call MESSAGEBOX.R ("Exit", "End of the program")
end

Process VEHICLE.MOTION
 Let MOTION.A(VEHICLE1) = 'LINEAR.R'
 Let VELOCITY.A(VEHICLE1) = VELOCITY.F(700.0, PI.C/2.4)
 Work 12 units

 Let VELOCITY.A(VEHICLE1) = VELOCITY.F(700.0,(PI.C/2.4+PI.C/4.0))
 Work 14 units

 Let VELOCITY.A(VEHICLE1) = VELOCITY.F(700.0,
 PI.C*(1.0/2.4+1.0/4.0+1.0/3.0))
 Work 8 units

 Let VELOCITY.A(VEHICLE1) = 0
 Work 5 units
end
25

SIMGRAPHICS II User’s Guide

ws

n

 menu
a

SA,
to
The following example, “eagle,” included with the SIMSCRIPT II.5 distribution, sho
how you can use a bitmap to create a realistic background for your simulation.

Figure 2-10. Example of a Bitmap Used as a Background

Note: Bitmap files are not copied into the library of graphical elements. Library .sg2 only
contains the names of the .bmp files, so if you transfer your SIMGRAPHICS II applicatio
to another directory or another system, you must transfer corresponding .sg2 libraries and
.bmp or .xwd files.

2.15 Creating Cascadeable Menus

A cascadeable menu bar is a menu bar with nested menus. In other words, it is a
which contains other menus. An example of a simple non-nested menu bar would be
menu bar with two menus, QUIT and SHOW, where QUIT has two menu items CANCEL and
OK, while SHOW has a list of countries created as menu items, for instance: U
CANADA, JAPAN, ENGLAND and ITALY. This list can be very long, and in order
provide faster access and more structured organization we would like to introduce three
menus for continents and restructure the SHOW menu in the following way:

 QUIT> SHOW>

 CANCEL AMERICA>

 OK CANADA

 USA

 ASIA>

 JAPAN

 EUROPE>

 ENGLAND

 ITALY
26

Chapter 2. Tutorial

asy. You

le-
rm.

 bar
ulled

lace to

em.

 to the

CRIPT

 of

e

he
ed.

ul-

lation
e menu

con-
tion-
e last
This is an example of cascadeable menus. To create a cascadeable menu bar is e
use SIMDRAW as with any other graphical element and store it in a library .sg2 . Example
menus included with every SIMSCRIPT II.5 distribution has a library of graphical e
ments menu.sg2 with showmenu.frm which represent a cascacadeable menu as a fo

If you want to see this form, start SIMDRAW, load menu.sg2 , and then double click on
the object showmenu.frm . This will invoke the Menu Bar Editor . A template of the
showmenu.frm menu bar is displayed in the window. You can interact with this menu
by clicking on its component menus. Unlike a “real” menu bar, many menus can be p
down at once. This allows you to transfer submenus and menu items from one p
another on the menu bar.

Double-clicking on any menu or menu item label will invoke its Properties dialog. This
allows you to see the Field name used by your program to reference the sub-menu or it
You can add sub-menus and menu items with the sub-menu and menu item palette buttons
on the left hand side of the window. Just drag a new menu or item from the palette
appropriate place on the template. Use the Layout/Show menu bar option to see the “real”
menu bar.

Before saving a menu bar, remember to double-click on the bar itself and set its Lib. Name
field to showmenu.frm .

2.16 Using Cascadeable Menus

In this section we will show how to use the created cascadeable menu bar in a SIMS
II.5 program.

From SIMDRAW you can define one of the following three actions for accept.f to take
when displaying your menu bar:

Asynchronous If a simulation is running, suspend the active process. Reactivate
this process when the control routine returns a STATUS value
"1".

Synchronous Wait in accept.f until the control routine returns a STATUS valu
of "1". Useful for programs not involving simulation.

Don’t Wait accept.f will display the menu bar and return immediately. T
control routine will be called whenever a menu item is select
Useful if other dialog boxes and palettes are to be displayed sim
taneously.

2.16.1 Cascadeable Menus in Simulation Programs

We will first concentrate on the asynchronous technique which facilitates asynchronous
user interaction during a simulation run. It automatically suspends the current simu
process and transfers control to the menu bar process whenever the user clicks on th
bar. Graphical function accept.f is used to detect and accept user input and transfer
trol to the control routine for the menu bar. The menu bar control routine is applica
specific and must be written by the program implementor. The reference name of th
27

SIMGRAPHICS II User’s Guide

tains a
en a re-
d back

with the
w
 using
 are
te
through
ort.

her
rom
indow

 bring
selected menu item is passed to the provided menu bar control routine, which con
case statement with the defined actions for each menu item’s reference name. Wh
quired action is finished, the menu bar process is suspended and control is transferre
to the suspended simulation process.

In figure 2-11, we have used an asynchronous cascadeable menu bar represented
showmenu.frm from the library menu.sg2 . The basic action in this example is to sho
the map of a country selected from the cascadeable menus and to exit the program
QUIT or OK from the menu. Actions for every menu item in cascadeable menus
specified in the routine MENU.CTRL. You do not have to provide actions for intermedia
menus because they are not selected. Only menu items are selected. Navigation
menu structures is automatically performed by SIMGRAPHICS II run-time supp
Routine MENU.CTRL is passed as argument to accept .f in the process
DISPLAY.MENUBAR activated from main, before the start of the simulation. Anot
process COUNTER is created here only to illustrate asynchronous transfer of control f
the menu bar to simulation processes and vice versa. This process will open a text w
and count and print numbers whenever it is active. Click on the graphics window to
it up-front and use the cascadeable menu bar.

Figure 2-11. Cascadeable Menu
28

Chapter 2. Tutorial
Preamble
''**
''* Example: Asynchronous cascadeable menubar *
''* Show the map of a country *
''* *
''* Structure of the menubar represented with showmenu.frm is: *
''* *
''* QUIT> SHOW> *
''* OK AMERICA> *
''* CANCEL CANADA *
''* USA *
''* EUROPE> *
''* ENGLAND *
''* ITALY *
''* ASIA> *
''* JAPAN *
''* *
''**
 Normally mode is undefined
 Processes include DISPLAY.MENUBAR, COUNTER
 Dynamic graphic entities include USA.MAP, ITALY.MAP, ENGLAND.MAP,
 CANADA.MAP, JAPAN.MAP
 Define QUIT.OK as integer variable
End

Main
 Call INIT.GRAPHICS
 Activate a DISPLAY.MENUBAR now
 Activate a counter now
 Start simulation
 Call MESSAGEBOX.R("Exit", "End of this demo")
End

Routine INIT.GRAPHICS
 Define WINDOW.ID as integer variable '' non-square window
 Define .XLO to mean 4096 '' o-----o xhi,yhi
 Define .XHI to mean 32786-4096 '' | |
 Define .YLO to mean 4096 '' o-----o
 Define .YHI to mean 32786 '' xlo,ylo

 Call OPENWINDOW.R (.XLO, .XHI, .YLO, .YHI, "Show some county map", 0)
 yielding WINDOW.ID
 Call SETWINDOW.R(WINDOW.ID)
 Call READ.GLIB.R("menu.sg2")
End

Process DISPLAY.MENUBAR
''This process will always be activated whenever we click on menu bar
''It will be distroyed and menubar will disappear when MENU.CTRL
''routine returns Status = 1,in our example when we click on QUIT-OK

 Define FIELD.NAME as text variables
 Define MENU.PTR as pointer variables
29

SIMGRAPHICS II User’s Guide
 Display MENU.PTR with "showmenu.frm"
 FIELD.NAME = accept.f(MENU.PTR,'MENU.CTRL')
End

Routine MENU.CTRL given FIELD.ID, FORM yielding STATUS
 Define FIELD.ID as text variables
 Define FORM as pointer variables
 Define STATUS as integer variables

 Select case FIELD.ID
 case "OK”
 let QUIT.OK = 1
 STATUS = 1 '' exit from accept.f
 case "CANCEL"
 case "ENGLAND"
 erase USA.MAP, ITALY.MAP, CANADA.MAP, JAPAN.MAP
 show ENGLAND.MAP with "england.icn" at (4096.0, 26000.0)
 case "ITALY"
 erase USA.MAP, ENGLAND.MAP, CANADA.MAP, JAPAN.MAP
 show ITALY.MAP with "italy.icn" at (4096.0, 4096.0)
 case "USA"
 erase ENGLAND.MAP, ITALY.MAP,CANADA.MAP, JAPAN.MAP
 show USA.MAP with "usa.icn" at (4096.0, 4096.0)
 case "CANADA"
 erase USA.MAP, ENGLAND.MAP,ITALY.MAP, JAPAN.MAP
 show CANADA.MAP with "canada.icn" at (10000.0, 16000.0)
 case "JAPAN"
 erase USA.MAP, ENGLAND.MAP,ITALY.MAP, CANADA.MAP
 show JAPAN.MAP with "japan.icn" at (16000.0, 16000.0)
 case "INITIALIZE"
 case "BACKGROUND"
 default
 Endselect
End

Process COUNTER
''This process is here only to ilustrate asynchronous menus
'' It will be suspended whenever we click on menu bar
 While QUIT.OK <> 1
 do
 COUNT = COUNT + 1.0
 Wait 5 units
 Print 1 line with COUNT thus
 count = **********
 Loop
End
30

ICS
ractive

ICS II

rs,
mages
mages

, maxi-
eters,
s are

thin

l or
 combo
mpli-

t.
 option

e
lette

pon

tte
3. SIMDRAW

3.1 SIMDRAW Overview

SIMDRAW is an interactive menu based program for creating and editing SIMGRAPH
II objects. These objects can be used for animation, presentation graphics, and inte
graphical input. Types of objects include images, dialog boxes, menu bars, palettes, and
various charts and graphs. These objects are saved to and loaded from SIMGRAPH
.sg2 files that can be accessed by a SIMSCRIPT II.5 program.

Animation graphics or images are built by drawing lines, circles, polygons, arcs, secto
bitmaps, and text. These primitives can be grouped together to form more complex i
containing parts that can be manipulated independently by the application program. I
are built by the Image Editor .

Presentation graphs are constructed by setting attributes such as titles, minimums
mums, etc. Several different graph types can be built. They include 2-D plots, level m
pie charts, trace plots, clocks, dials, text displays, and digital displays. All graph type
built with the Graph Editor .

A Layout Editor is available for sizing and positioning multiple graphs and images wi
the same window.

Using the Dialog Editor , dialog boxes can be constructed for receiving interactive moda
modeless data input. The dialog box can contain buttons, check boxes, text boxes,
boxes, list boxes, and radio button fields. A dialog box can also contain the more co
cated multi-line text boxes and 2-D tables. Tabbed dialog boxes can be created.

Menu bars can be built with the Menu Bar Editor for receiving modeless command inpu
Menus can be attached to other menus producing any desired level of depth. Menu
keyboard accelerators and mnemonic keys can be defined.

Palettes are built with the Palette Editor for receiving simple command input. They can b
(initially) docked on any edge of the window or can be floating. A palette contains pa
buttons and separators.

3.2 Running SIMDRAW

SIMDRAW can be started from within SIMSCRIPT II.5, or from the command line. U
execution a main window containing a palette and toolbar is displayed (figure 3-1). The
window will contain a listing of the currently loaded SIMGRAPHICS II library. The pale
on the left is used to add new objects to the library.
31

SIMGRAPHICS II User’s Guide

w

d-
ging

b-
in-
Figure 3-1. Main Window

3.3 Loading and Saving SIMGRAPHICS II Files

The File/Open... menu option will load an existing SIMGRAPHICS II library file and sho
its objects in the list window. Use the File/Save or File/Save As menu option to save all
objects shown in the list window, including objects being edited. Use the Options/Binary
File menu option to toggle between saving the file in ASCII or binary format.

3.4 Editing an Existing Object
To edit one of these objects, select its name in the listing, and then use the Edit/Properties
menu option or the Properties toolbar option. A new window containing the appropriate e
itor will appear showing its graphical representation. After moving, resizing, or chan
attributes of the object and its sub-components, select the File/Save or File/Save As menu
option to write this object to its SIMGRAPHICS II library file. To end editing of this o
ject, close its editor's window using the "go away" button in the top left corner of the w
dow's header bar.
32

Chapter 3. SIMDRAW

n the

e list-

in list

-

jects
rary.

ects.

get their
n one
e
 and

library
ds
3.5 Adding an Object to the Library

Objects can be added to this library file by clicking on one of the "create" buttons o
left palette, or by using the File/Insert menu option. Creating an object will automatically
invoke the editor for that object.

3.6 Removing an Object from the Library

To remove an unwanted object from the current library, select the object's name in th
ing, and then use the Edit/Clear menu option. The library must be saved using File/Save be-
fore this change is permanent.

3.7 Making a Duplicate of an Object

Any graphical object in the library can be duplicated by selecting its name in the ma
and then using the Edit/Duplicate menu option. The library must be saved using File/Save
before this change is permanent.

3.8 Changing the Name of an Object

To change the name of an object shown in the main list, select it and use the Edit/Properties
menu option to bring up its editor. Use the Edit/Properties menu option of this editor to ob
tain a dialog box showing the object's attributes. Change the Library Name text field to the
new name, and then save the object with the File/Save menu option.

3.9 Adding an Object from Another Library

If you want to add object(s) contained in a different SIMGRAPHICS II file, use the File/
Merge... menu option. Once a file is selected, a list box containing the names of all ob
in this source library will be displayed. Choose the objects you wish to copy to your lib
The Shift and Ctrl keys can be used in conjunction with the mouse to select multiple obj

3.10 Editing Images and Graphs in Same Window

Sometimes a set of images and/or graphs must be displayed in the same context to
size and position correct. Multiple objects can be positioned and resized from withi
window using the Layout Editor . Select the Layout button on the far right-hand side of th
toolbar. Using the Shift and Ctrl keys, select the set of images and graphs to be resized
positioned from the list box. After editing the objects, use the File/Save menu option to save
all edited objects to the SIMGRAPHICS II file.

3.11 User Preferences

You can set preferences regarding the order in which objects in the currently loaded
are listed using the Options/Preferences menu option. One of the following three metho
can be used to list your objects:
33

SIMGRAPHICS II User’s Guide

jects

th
 (
, click

up.
ich

y

• Time of creation — Objects are ordered based on time of creation. The last ob
added to the library are show at the bottom of the list.

• Alphabetical — Alphabetical order based on name

• Categorical — Objects are listed categorically. The categories are: Image, Graph,
Dialog Box, Menu Bar , and Palette . A "heading" is created for each category, wi
the objects listed alphabetically under the appropriate heading. Chick on the-) to
the left of the heading to expose the names of the objects. To collapse the list
on the (+).

The Preferences dialog also has options for specifying how SIMDRAW is started
SIMDRAW can be configured to “remember” its previous window position, and wh
library file was loaded. Objects being edited in either the Layout Editor , or a Single Editor
can optionally be reloaded at startup.

3.12 Command Line Arguments

SYNOPSIS:
simdraw [-l file_name] [-S sys_path_name]
 [-B sys_path_name] [-sim] [-e] [-dim xlo ylo xhi yhi]
 [-nodialog] [-noimage] [-nograph] [-nomenu] [-nopalette]
 [-W path_name] [object names]

The following command line arguments are recognized by SIMDRAW:

-l file_name Specifies the name of the SIMGRAPHICS II graphics file
to edit.

-e, -single Specifies "single edit" mode. The specified objects will be
edited with no control window containing library informa-
tion.

-nodialog

-nograph

-noimage

-nomenu

-nopalette

Eliminates editing of the specified object types.

-dim xlo ylo
 xhi ylo

Specifies the default real world coordinate space used b
the Image Editor .

-B path_name Specifies the path to bitmap files used by SIMDRAW.

-S path_name Specifies the path to system files needed to run
SIMDRAW (trailing delimiter '/' or '\' must be included).

-W path_name Specifies path to user SIMGRAPHICS II files.
34

Chapter 3. SIMDRAW

-

ts that
ap-
3.13 Using the Image Editor

The Image Editor is used to create and edit primitives such as lines, polygons, circular ob
jects, and bitmaps. Primitives can be grouped hierarchically into images. The editor win-
dow contains three palettes: Mode, Style, and Color . The Mode palette on the left side of the
window is used for adding primitives.

Figure 3-2. Image Editor

3.13.1 Mode, Style, and Color Palettes

The Style palette contains the set of dash styles, hatch styles, line widths, and text fon
can be applied to the primitives. The Color palette contains 64 colors that can also be
plied to the primitives. When a primitive is selected, the Style and Color palettes will be up-
dated to reflect the style and color of that primitive. At this time, Style and Color palette
changes will also be applied to the selected primitive.
35

SIMGRAPHICS II User’s Guide

xample,
box.
s.
 and

equent
an be

 this box
n and

n on

eleted

age.

s

is ac-
The Mode palette is shown on the left-hand side of the Image Editor window. Use it to add
primitives to your drawing. Refer to paragraph 3.13.4.

3.13.2 Selecting, Moving, and Resizing

Shapes are selected by clicking the mouse button over the desired shape. For e
polylines must be selected by clicking on the line itself, NOT in the line's bounding
Multiple shapes are selected by holding down the Shift key and clicking on several shape
Multiple shapes may also be selected by clicking in the background of the window
dragging the mouse over the shapes you want to select.

A grouping of shapes is selected by clicking on one of the objects in the group. Subs
clicks over the group will select shapes within that group. Primitives inside a group c
selected directly by holding down the Ctrl key and clicking on the shape. Using the Ctrl key,
subsequent clicks will select the groups containing the currently selected shape.

Selected shapes are marked by a bordering green or cyan box. Sides and corners of
contain eight small square resize handles. Resizing is performed by clicking dow
dragging a resize handle.

Click and drag a shape to move it to the desired position. Be careful not to click dow
the resize or point handles.

3.13.3 Using the Clipboard (Cut, Copy, Paste Commands)

The Image Editor supports the standard cut, copy, and paste operations found under the Edit
menu. The Cut option deletes selected shapes and places them in the clipboard. The d
item remains on the clipboard until the next time a Cut or Copy is performed. You can use
the Paste option to paste as many copies as you want from the clipboard into the im
Shapes can be deleted without changing the clipboard by using the Delete option.

The clipboard is shared among all active Image Editor sessions. You can copy graphic
from one image into another by activating the source edit window, using the Copy option,
activating the destination editor and using the Paste option.

3.13.4 Importing / Exporting to Other Graphical Formats

Using SIMDRAW, you can import graphics created by other graphics editors. This
complished by invoking the Image Editor and using the File/Import option. Graphics files
in any of the following formats can be loaded into the editor:
36

Chapter 3. SIMDRAW

st

e

e-

e

for-

he
s. The
e

imi-

re you
 until
d re-

nd six
• MS Windows Bitmaps (.bmp) (MS Windows only). Note that the bitmap file mu
reside in the same folder as your .sg2 file.

• X Window Dump (.xwd) (X-Windows only). The raster file must reside in th
same directory as your .sg2 file.

• AutoCAD files (.dxf). Simple 2d AutoCAD files can be imported. The vector d
scription will be maintained.

• Windows Metafile (.wmf) (MS Windows only). The vector description will b
maintained.

You can also convert an existing SIMGRAPHICS II drawing into one of the following
mats through the File/Export option:

• MS Windows Bitmaps (.bmp) (MS Windows only).

• X Window Dump (.xwd) (X-Windows only)

• EPS Color PostScript (.eps, .ps)

When exporting to .bmp or .xwd files, a mask bitmap will automatically be created. T
mask file is needed to maintain transparency when rendering non-rectangular bitmap
mask file will be named after the export file but will have an “m” character appended to th
file-name. (Exporting to the file test.bmp will automatically create testm.bmp .)
SIMGRAPHICS II will automatically try to load the mask file whenever the original bitmap
is loaded. The mask can be deleted if it is not needed.

3.13.5 Creating Primitives

The Image Editor supports creating and editing seven different primitive types. The pr
tives are polygons, polylines, circles, arcs, sectors, text, and bitmaps.

Polylines

Polylines are created by clicking either the freehand or polyline buttons on the Mode pal-
ette. To create a polyline, select the polyline button on the mode palette. Point to whe
want to start the line and drag to draw a line segment. Continue pointing and clicking
all but the last line segment has been defined. Double click to create the last vertex an
turn to Select mode.

To create a freehand polyline press the freehand line button on the Mode palette. Drag the
mouse around the canvas area to draw the line. Releasing the mouse button will return you
to Select mode.

Use the Style palette to define dash style and line width. There are eight dash styles a
line widths to choose from.
37

SIMGRAPHICS II User’s Guide

ts

t to
t to the
,

rn to

ret

the de-

m.

radius.

hoose

 center
 start-

ouse.
Another attribute of the polyline is rounding. Corners defined by intersecting line segmen
can be given a rounded edge by selecting the polyline, and using the Edit/Properties... menu
option. The Round Corners By value box contains the length of the segment adjacen
each vertex to be replaced by a rounded corner. This value is specified with respec
real world coordinate space or dimension of the editor (the default dimension is [0, 0
32767, 32767]). A value of 1000.0 is reasonable for rounding corners.

Polygons

Polygons are created by clicking either the freehand, polygon, or rectangle buttons on the
Mode palette. To create a polygon, press the Polygon button on the Mode palette. Point and
click in the window to define vertices. Double click to create the last vertex and retu
Select mode.

To create a freehand polygon press the Freehand fill button on the Mode palette. Drag the
mouse around the canvas area to draw the shape. Release the mouse button to urn to
Select mode.

To create a simple rectangle press the Rectangle button on the Mode palette. Point to where
you want the lower left-hand corner of the rectangle to start, and drag the mouse to
sired top right corner. Release the mouse button to return to Select mode.

Use the Style palette to define a hatch pattern. There are eight patterns to choose fro

Circles

Circles are added by pressing the Circle button on the Mode palette. In Circle mode, point
to where you want the center of the circle to go and drag the mouse to define the
Release the mouse button to draw the circle and return to the Select mode.

Use the Style palette to give the circle a hatch pattern. There are eight patterns to c
from.

Sectors

A sector is a filled semicircular shape similar to a pie slice. Sectors are composed of a
point, a starting point and an ending point, and are drawn counterclockwise from the
ing point to the ending point. To draw a sector, first press the Sector button on the Mode
palette. Point to where you want the center point of the sector to go, and drag the m
38

Chapter 3. SIMDRAW

 mouse

hoose

d by a
m the

elease
re you

nd six

 primi-
he

 plat-

ined
system
ldface
press

 font
pplied

anted
ed, its
Release the mouse over where you want the starting point of the arc to go. Drag the
to where you want the sector to end and release to return to Select mode.

Use the Style palette to give the sector a hatch pattern. There are eight patterns to c
from.

Arcs

An arc is a curved line contained on the circumference of a circle. Arcs are compose
center point, a starting point and an ending point, and are drawn counterclockwise fro
starting point to the ending point. To draw an arc, first press the Arc button on the Mode
palette. Point to where you want the center point of the arc, and drag the mouse. R
the mouse over where you want the starting point of the arc. Drag the mouse to whe
want the arc to end and release to return to Select mode.

Use the Style palette to define dash style and line width. There are eight dash styles a
line widths to choose from.

Text

Single line text primitives can be created and added to your image. To create a text
tive, press the Text button on the Mode palette. Point to where you want the center of t
text to go and click the mouse button. Use the Edit/Properties... menu option to define the
text string to be displayed. The text string can contain more than one line.

There are two different types of text, vector text and system text. Vector text fonts are fully
scaleable in any dimension and are portable between MS Windows and X Windows
forms. A vector text font can be assigned to a primitive by pressing any of the eightStyle
palette buttons showing Ab.

System text fonts are "built-in" to the tool kit on which your server is running. Text def
using a system font is non-scaleable and can only be resized by changing the font. A
font is defined by font name, point size, and whether or not its uses italic and/or bo
calligraphy. To assign a system font to a text primitive select the primitive, and then
the Dialog Box button on the lower right-hand corner of the Style palette. The resulting Font
box will display all fonts, point sizes, and calligraphy styles loaded on your server. The
you select will be applied to the selected text primitive. This same font can now be a
to other primitives using the ST button at the lower left corner of the Style palette.

Text alignment with respect to the image can also be defined. For example, if you w
a text primitive defined with a system font to remain centered as an image is scal
alignment should be centered horizontally and vertically using the Edit/Properties... menu
option.
39

SIMGRAPHICS II User’s Guide

pro-
e
e’s

in-

 scal-
-
torial

anted
ould be

in oth-
d using

e

ns of
hem

g first
Through the Properties dialog box, you can define whether the text can be defined
grammatically through the DTVAL.A attribute of its display entity field. Text color can b
defined through DCOLOR.A. For example, if this option is chosen and the text primitiv
reference name is “MY.TEXT” , you can include it into your program code:

Let DTVAL.A(DFIELD.F(“MY.SHAPE”, ICON.PTR)) = “Hello World”

Bitmaps

Bitmaps (or "snap shots") are not created directly by the Image Editor , but can be created
using another drawing tool and can then be imported. On MS Windows systems, "Windows
bitmap" files with the .bmp extension can be imported and added to your image. On X W
dows systems, X Windows dump file formats ending in .xwd can be imported.

To add a raster file to your image use the File/Import... menu option. Select a .bmp or .xwd
file from the dialog box and press the OK button to import the bitmap.

Once in the Image Editor, bitmaps can be resizeable or non-resizeable. To change the
ability, select the bitmap and use the Edit/Properties... menu option. Remember that resiz
ing bitmaps may take longer to render the first time, and can loose meaningful pic
information if made smaller.

Alignment can be applied to bitmaps as well as text primitives. For example, if you w
a non-scaleable bitmap to remain centered as an image is scaled, its alignment sh
centered horizontally and vertically from the Properties dialog.

3.13.6 Creating Images

An image represents a grouping of primitives and/or other images. Images can conta
er images forming a hierarchy. To create an image, select the shapes to be groupe
the Shift key, and then select the Layout/Group menu option. The resulting group will b
shown bounded by the green selection box. Use the Layout/Ungroup menu option to destroy
an image.

An image is selected by clicking on one of the primitives within it. Repeated selectio
an image will select the shapes within it. Select primitives directly by clicking on t
while holding down the Ctrl key.

Shapes can be removed from an image by selecting the shape and using the Layout/Remove
from Group menu option. You can also add shapes to an existing image by selectin
the shapes, then an image, and then using the Layout/Add to Group menu option.
40

Chapter 3. SIMDRAW

s the

nt the
in the

age
e

on box

 in
 vertex
 a

lect its

se but-
3.13.7 Editing the Root Image

The editor's window shows all objects contained by the image being edited or show
root image. To change properties of this image (such as its name), use the Edit/Image menu
option to display the Image Detail dialog.

To reset the center point of the root image, first click on the Select button in the Properties
dialog. Next, position the mouse in the canvas of the edit window over where you wa
center point and click. The center can also be defined by editing the fields directly
Properties dialog.

The Image Detail dialog can be used to specify the size and angle of rotation of the im
by editing the Width, Height and Rotate by fields. Another way to resize the root imag
would be to use the Edit/Select All menu option to select all of its shapes, and then use Lay-
out/Group to make a group. Dragging the square resize handles on the green selecti
will resize this group. When the root image is appropriately sized, use Layout/Ungroup to
eliminate the grouping.

3.13.8 Editing Points on a Primitive

The vertices defining a primitive can be moved, added and deleted using Image Editor .
Clicking on a selected primitive will enable point editing for that primitive. A primitive
point edit contains a green skeleton which connects its vertices. Representing each
point is a hollow green square or point handle. The currently selected point is shown by
blue point handle.

To move a point, select and drag the appropriate point handle. To delete a point, se
point handle and use the Edit/Delete menu option (or press the Delete key). To add a new
point to the primitive, click on the green skeleton and drag the mouse. When the mou
ton is released, a new point is inserted between the indicated vertices.

To leave Point Edit mode , click on the background or another shape.

3.13.9 Defining Stacking Order or Priority

You can specify how shapes are stacked when they overlap (stacking order). To move
shapes in front of or behind other shapes, use the Bring to Front or Send to Back options
from the Layout menu.
41

SIMGRAPHICS II User’s Guide

 other
her

en us-
cur-
ck. To

, select

f

fined

ction
espect
ith re-
 using
m

tion
en

apes can
Stacking order is with respect only to other shapes in the same group or image. In
words, the Bring to Front menu option will bring the selected shape to the front of all ot
shapes in that group, but not necessarily to the front of all shapes in the window.

3.13.10 Defining the Center Point of a Shape

The center point of any image or primitive can be changed by selecting the shape, th
ing the Edit/Recenter menu option. A set of green cross-hairs will appear showing the
rent center point. Point to where you want the center point of the object to be, and cli
leave the Recenter mode, press either the OK or Cancel buttons on the dialog box.

You can reset the center point of the entire drawing (root image) by using the Edit/Image
menu option.

3.13.11 Using the Flip and Rotate Tools

Any selected shape can be rotated about its center point by any amount. To do this
the shape(s) and then use the Edit/Rotate/Clockwise or the Edit/Rotate/CounterClockwise
menu options. If you want to set the angle by which an object is rotated, use the Edit/Rotate/
Set Angle menu option.

To flip an object about its x-axis use the Edit/Flip/Horizontal menu option. To flip an object
about the y-axis use the Edit/Flip/Vertical menu option. Remember that the intersection o
the x-axis and y-axis of a shape is its center point (defined using the Edit/Recenter menu
option). Before flipping or rotating a shape, first make sure that its center point is de
appropriately.

3.13.12 Align and Distribute

Multiple shapes can be aligned either vertically or horizontally to the primary sele
(shown enclosed by green selection handles). They can be aligned vertically with r
to either their left edge, right edge or center. Shapes can be aligned horizontally w
spect to their top edge, bottom edge, or center. To align, first select multiple objects
the Shift key, and then use the Layout/Align menu option. Select an alignment scheme fro
the resulting dialog box.

The Layout/Distribute menu option allows you to distribute three or more shapes in rela
to each other. Shapes can be distributed horizontally so that the same space exists betwe
left and right edges of adjacent shapes. Distributing vertically will reposition the shapes so
that the same space exists between the bottom and top edges of adjacent shapes. Sh
be distributed uniformly along the circumference of a circle.
42

Chapter 3. SIMDRAW

he ed-

ing

um-
 lines.

h
ition-

lued

n of

 button
indow.

ertical

,
pace,

ght

e-

 when
 within
3.13.13 Using Grid Lines

A grid can be used to perform precise positioning and sizing of shapes, by breaking t
itor window up into divisions. You can show (or hide) grid lines by toggling the View/Grid
menu option.

You can change the color of the grid by selecting a color from the Color palette and then
using the View/Grid Color menu option. The granularity of the grid can be adjusted us
the View/Grid Spacing menu option. By toggling the View/Snap menu option, you can re-
strain positioning and resizing of shapes to the intersections of the grid. Using the View/
Grid Spacing option you can define the grid line interval by specifying either the total n
ber of grid lines, or the distance (in real world coordinates) between successive grid

If the Snap mode is active, the View/Snap From menu option allows you to specify whic
corner of a shape's bounding box will be aligned to the grid intersections during repos
ing. If View/Snap from/Center is selected, a repositioned shape's center point will be g
to the grid intersections.

3.13.14 Changing Views (Panning and Zooming)

If working on a highly detailed portion of the image, you may want to magnify a portio
the window. To zoom in to some area of the window, first select the View/Zoom In menu
option. Drag out a rectangle with the mouse over the area of detail. When the mouse
is released, the area inside the rectangle will be expanded to encompass the entire w
To zoom back out, use the View/Zoom Out menu option.

When zoomed in, you can pan to other areas of the window using the horizontal and v
scroll bars.

Return to the default view by using the View/View [1:1] option. Unless the window is square
the top or bottom portion of the view may not be visible. To see the entire coordinate s
use the View/Fit in Window option. This viewing mode will leave dead space off to the ri
of the window, but guarantee the entire coordinate space will be seen.

3.13.15 Changing Dimension (Coordinate Space Boundaries)

Coordinate space boundaries (or dimension) can be assigned to the editor window. The d
fault coordinate space is the common Normalized device coordinates or (xlo=0, ylo=0,
xhi=32767, yhi=32767). These dimensions determine an object's coordinate system
it is saved. The dimension should be set to match the world coordinate system used
the program. This ensures that the positions of shapes defined from the Image Editor will
43

SIMGRAPHICS II User’s Guide

led
ically
am. If
ed to.

le the
tus

daries

 to the
e right

ication

h the
e”
or to

rpose
, level
 Graphs
h

 hatch
ts. The
remain the same when they are displayed within that program. Use the Layout/Dimension
menu option to change the dimension in the Image Editor .

The Allow Icons to Scale... check box specifies the rule defining how the image is sca
when used in the application program. If this item is checked, the image will automat
be scaled according to the world coordinate system defined by the application progr
this item is not set, the shape will stay the same size no matter what world it is attach

To see the current location of the pointer with respect to the editor's dimension, togg
View/Coordinates menu option. The pointer's (x,y) location will be displayed in the sta
bar at the lower right-hand corner of the editor window.

3.13.16 Changing the Layout Size and Color

To change the editor window's background color, select the desired color from theColor
palette and then use the Layout/Layout Color menu option.

If you want to increase the size of the editing area beyond what is defined by the boun
of the world coordinate system, use the Layout/Layout Size menu option. A dialog will be
displayed allowing you to increase the number of "screens," thereby adding space
right and bottom sides of the editing area. This new space can be scrolled to using th
and bottom scroll bars attached to the editor window.

3.13.17 Program Access
Any image or primitive added to the root image can be accessed from inside an appl
by specifying a Reference or Field name through the Properties dialog box.

You can define whether a primitive’s color can be defined programmatically throug
DCOLOR.A attribute of its display entity field. For example, if a primitive is “definabl
and the display entity pointer is ICON.PTR, your program can set the primitive’s col
“15” as follows:

Let DCOLOR.A(ICON.PTR) = 15

3.14 Using the Graph Editor

The Graph Editor can be used to create and edit a variety of graphical objects whose pu
is to depict a single value or set of numerical values. 2-D plots, pie charts, clocks
meters, dials, and digital displays are some of the graph objects that can be created.
are not built by the user as in the Image Editor . Instead you start off with a template whic
can be modified as necessary.

3.14.1 Style, and Color Palettes

The Style palette on the right hand side of the window contains the set of dash styles,
styles, line widths, and text fonts that can be applied to the selected graph componen
44

Chapter 3. SIMDRAW

 com-
-

d parts
ted by
om-
 parts

n box
n and

ired lo-

ms, bar
r two y

Then

.

on
rawn

t.
e is
Color palette on the bottom of the window contains 64 colors that can be applied to a
ponent. When a component is selected, the Style and Color palettes will be updated to re
flect the style and color of that graph part. At this time, Style and Color palette changes will
be applied to the selected part.

3.14.2 Selecting, Moving, and Resizing

Graph parts are selected by clicking the mouse button over a visible portion. Selecte
are marked by a bordering green or cyan box. Multiple components can be selec
holding down the Shift key and clicking on several parts. You can also select multiple c
ponents by clicking in the background of the window and dragging the mouse over the
you want to select.

For resizing, it is necessary to select the entire graph. Use the Edit/Select All menu option
or drag the Select rectangle over the whole graph. Sides and corners of the selectio
contain eight small, square resize handles. Resizing is performed by clicking on dow
dragging the appropriate resize handle.

To move the graph, select the graph or any of its components and drag it to the des
cation.

3.14.3 Charts (2-D Plots)

A chart is a 2-D plot used to display one or more data sets represented as histogra
graphs, surface charts, or simple plots of 2-D data. Charts have one x-axis, one o
axes, data sets, a title, and an optional legend.

3.14.3.1 Modifying Chart Attributes

To modify the title, legend display, or any attribute of the chart itself, select the title.
use the Edit/Properties menu option. The Chart Detail dialog box will be displayed. It con-
tains the following information:

• Library Name – The name used to load the chart into your application program

• Title – The title shown on the top of the chart.

• Axes on Edges – If checked, numbering and tic marks will be forced to appear
the edges of the plot area. For better visual reference, two extra axes will be d
on both the top and right sides of the plot area.

• Time Trace Plot – Setting this item implies that the chart is a time trace plo
Whenever a variable being monitored by the chart is modified, its new valu
plotted along the Y-axis and the current simulation time is plotted along the X-ax-
is.
45

SIMGRAPHICS II User’s Guide

d

er-

d
d as

-axis,
e axis

e

en

 dis-
at re-
n a
ints

nter,

o-
 a re-

l be

n-

ive
• Show Legend – Chart will show a legend below the plot area. The fill style an
color of each data set is shown preceding its name.

• Show Border – A chart can be defined to draw a rectangular background und
neath.

• Data Sets – A data set can be added using the Add button, or removed by selecting
its name in the list box and then pressing the Remove button. To change the name
of a data set, select its current name in the list box and then press the Edit button.
(see “Attributes of a Data Set”)

• Handling of Multiple Data Sets – If “stacked," all discrete data sets will be stacke
on top of each other. In other words, the value plotted in a data cell is reflecte
the height of the bar, not its top. Therefore, stacking means that the bottom of a
cell in data set n is equal to the top of the same cell in data set n-1. I.e. higher num-
bered data sets are stacked onto the lower numbered ones.

3.14.3.2 Modifying the X-Axis

To change the range, numbering interval, or any other property associated with the X
first choose the axis (or one of its components), double click on the axis or choose th
(or one of its components), and use the Edit/Properties menu option. The X-axis has th
following properties:

• Title – Label for X-axis displayed below numbering.

• Rescaleable – Specifies whether the X-axis will be re-numbered (scaled) wh
one of the data points extends beyond its limit. In this case, the Compress Data
item determines whether a scrolling window is used, and whether old data is
carded, or the range of the graph is to be expanded showing all data. Note th
scaling may modify the tic mark, numbering, and grid line intervals to maintai
similar visual representation of the chart. If this item is not checked, data po
falling beyond the limits of the X-axis will be discarded.

• Show Grid Lines – If the this item is on, grid lines will be shown crossing the X- axis.

• Tics Centered, Tics Inside, Tics Outside – Defines the tic mark alignment with re-
spect to the X-axis line. Tics marks can be attached to the X-axis from their ce
left or right sides.

• Compress Data – When this item is set, re-scaling the X-axis will increase the c
ordinate area of the chart enough to encompass the offending data point. As
sult, existing data will shrink in size. Clearing this item will have data scrolled
along the X-axis during axis rescale. In this case, data scrolled out of view wil
discarded.

• Minimum, Maximum – Defines the initial X-axis data range of the chart.

• Tic Interval (Major & Minor) – Defines the distance along the X-axis between co
secutive tic marks. If an interval is zero, tic marks will not be displayed.

• Numbering Interval – Defines the distance along the X-axis between consecut
number labels on the axis.
46

Chapter 3. SIMDRAW

rid

is

is

a

-axis,
e

en
odify
re-
 the

ter,

n-

ive

ive

is

a

second
se the
• Grid line Interval – Defines the distance along the X-axis between consecutive g
lines.

• Y Intersection Point – Defines the point (in x-axis coordinates) along the X-ax
where the Y-axis intercepts.

• Y2 Intersection Point – Defines the point (in x-axis coordinates) along the X-ax
where the second Y-axis intercepts.

• Data Scaling Factor – Defines the factor multiplied to the X component of all dat
plotted to the chart at runtime.

3.14.3.3 Modifying the Y-Axis

To change the range, numbering interval, or any other property associated with the Y
double click on the axis or choose the axis (or one of its components), and use thEdit/
Properties menu option. The Y-axis has the following properties:

• Title – Label for Y-axis displayed to the left of its numbering.

• Rescaleable – Specifies whether the Y-axis will be re-numbered (scaled) wh
one of the data points extends beyond its range. Note that re-scaling may m
the tic mark, numbering, and grid line intervals to maintain a similar visual rep
sentation of the chart. If this item is not checked, data points falling beyond
limits of the Y-axis will be clipped.

• Show Grid Lines – If this item is on, grid lines will be shown crossing the Y-axis.

• Tics Centered, Tics Inside, Tics Outside – Defines the tic mark alignment with re-
spect to the Y- axis line. Tic marks can be attached to the Y- axis from their cen
left or right sides.

• Minimum, Maximum – Defines the initial Y-axis data range of the chart.

• Tic Interval (Major & Minor) – Defines the distance along the Y-axis between co
secutive tic marks. If an interval is zero, tic marks will not be displayed.

• Numbering Interval – Defines the distance along the Y-axis between consecut
number labels on the axis.

• Grid Line Interval – Defines the distance along the Y-axis between consecut
grid lines.

• X Intersection Point – Defines the point (in y-axis coordinates) along the Y-ax
where the X-axis intercepts.

• Data Scaling Factor – Defines the factor multiplied to the Y component of all dat
plotted to the chart at runtime.

3.14.3.4 Modifying the Second Y-Axis

To change the range, numbering interval, or any other property associated with the
Y-axis, double click on the axis or choose the axis (or one of its components), and u
Edit/Properties menu option. The second Y-axis has the following properties:

• Title – Label for Y-axis displayed to the left of its numbering.
47

SIMGRAPHICS II User’s Guide

en
odify
re-
 the

rom

e-
ed.

on-

ec-

a

e de-

ose

s the
gins

ver

ang-
. The
e first

ver
earest
 -

the
ring
• Rescaleable – Specifies whether the Y-axis will be re-numbered (scaled) wh
one of the data points extends beyond its range. Note that re-scaling may m
the tic mark, numbering, and grid line intervals to maintain a similar visual rep
sentation of the chart. If this item is not checked, data points falling beyond
limits of the second Y-axis will be highlighted.

• Show Grid Lines – If the this item is on, grid lines will be shown crossing the sec-
ond Y-axis.

• Tics Centered, Tics inside, Tics Outside – Defines the tic mark alignment with re-
spect to the second Y-axis line. Tics marks can be attached to the Y-axis f
their center, left or right sides.

• Minimum, Maximum – Defines the initial data range of the second Y-axis.

• Tic Interval (Major & Minor) –– Defines the distance along the second Y-axis b
tween consecutive tic marks. If an interval is zero, tic marks will not be display

• Numbering Interval – Defines the distance along the second Y-axis between c
secutive number labels on the axis.

• Grid Line Interval – Defines the distance along the second Y-axis between cons
utive grid lines.

• Data Scaling Factor – Defines the factor multiplied to the Y component of all dat
plotted to the chart at runtime.

3.14.3.5 Attributes of a Data Set

You can edit individual attributes of a data set by selecting the bars or plot line of th
sired data set and using the Edit/Properties menu option. Its Detail Dialog detail includes:

• Representation – Defines how the overall data set is structured. You can cho
one of the following data set types:

1. Bar Graph – Contains a fixed number of cells. Each new data point change
nearest cell's plot. Neighboring cells are NOT connected. The first cell be
at (X_Minimum - Cell_Width / 2) units. The individual bar is centered o
the cell, and there is a small gap between bars.

2. Histogram – Also contains a fixed number of cells. Each new data point ch
es the nearest cell’s bar. There is no connection between neighboring cells
bar is set at the left edge of the cell, and there is no gap between bars. Th
data cell begins at the X-axis minimum.

3. Discrete Surface – Neighboring cells are connected to form a surface, howe
there are still a fixed number of cells. Each new data point changes the n
“peak or valley” on the surface. The first cell begins at (X_Minimum
Cell_Width / 2) units.

4. Continuous Surface – Variable number of cells, i.e. a new cell is added to
graph each time a data point is plotted at the given (x,y) location. Neighbo
cells are connected.
48

Chapter 3. SIMDRAW

ing

rker

e of
um.
 2)

 in
 is

s.

w
own
r the

 the
 (or

me,
the

r. By
es
 and
lecting
• Plot Type – A data set can be shown using a filled region or a simple surface line
with or without markers:

1. Fill – Plot a data cell using a filled polygon. The fill style can be reset us
the Style palette .

2. Line – Plot data cell using a polyline. Use the Style palette to reset the line
width or dash style.

3. Marker – Use a small marker to represent the data point. The specific ma
used for the data point is determined from the Edit/Mark Style menu option
menu. Markers are only valid for the “continuous surface” representation.

• Cell Width – For bar, histogram and discrete surface data sets, this is the siz
each data cell. For histograms, the first data cell begins at the X-axis minim
For bar and surface graphs, the first cell begins at (X_Minimum - Cell_Width /
units.

• Interpolate – This check box determines whether there is linear interpolation
forming the connecting surface between consecutive data points. If this item
NOT checked, the surface will be shown with only horizontal and vertical line

• Use Left Axis / Use Right Axis – Your chart can be defined to simultaneously sho
two sets of independently scaled data by using a second Y-axis (generally sh
to the right of the plot area). Each data set in your chart can belong to eithe
left or right (second) Y-axis.

• Static – This item is used to enhance performance whenever you do not intend
plot to be modified once it has been displayed. In this case, a single polygon
polyline) will be used to display all cells in the data set.

3.14.3.6 Creating a Time Trace Plot

If you want the chart to be used to plot the value of a single variable over simulation ti
a time trace plot should be used. To create a trace plot, select the graph and use Edit/
Properties option. Set the Time Trace Plot checkbox in the Chart Detail Dialog .

3.14.4 Pie Charts

A pie chart can depict a fixed sized array of scalar values in relation to one anothe
selecting the Pie Chart and using the Edit/Properties menu option you can change the nam
and initial values shown by each pie slice. The color and fill style of individual slices
other components (including legend text, title, and borders) can be changed by se
them and using the Style or Color palettes. The Detail Dialog for a pie chart contains the
following:

• Library Name – The name of the object within the current graphics library.
49

SIMGRAPHICS II User’s Guide

nd

 and

l va-

ell as
idual
 using

he
ed-

ck.

d.

nd
• Title – Text of title displayed on top.

• Show borders – Determines whether to put borders around the legend, title, a
plot of a pie chart.

• Slice List Box – This list box contains the names of all slices in the chart.

1. To add a slice, set the new slice’s name and value in the Slice Name and Slice
Value text boxes below, and press the Add button.

2. To remove a slice, select its name in the list box and press the Remove button.

3. To change the name or value of a slice, first select its name in the list box,
then update the Slice Name and Slice Value text boxes and press the Update
button.

3.14.5 Clocks

Clocks are used to display simulation time within a program. Both analog and digita
rieties of clocks are available. By selecting the clock and using the Edit/Properties menu
option you can change its various attributes including axis scaling parameters as w
whether or not to display hours, minutes and seconds. The color and fill style of indiv
components (including face, title, and border) can be changed by selecting them and
the Style or Color palettes. The Detail dialog for a clock contains the following:

• Library Name – The name of the object within the current graphics library.

• Title – Text of title displayed on bottom.

• Interval – (Analog clock only) Distance between tic marks around the face.

• Num Interval – (Analog clock only) Distance between numbers around the face.

• Max Hours – The maximum number of hours the clock (shown at the top of t
face) that the clock is capable of showing (generally 12). As this value is exce
ed, the time display will start over from 0:00:00.

• Show Hours, Show Minutes, Show Seconds – You can control displaying the hour,
minute and second hands with these items.

• Hours Per Day – Currently, this parameter has no effect on the layout of the clo
It is only used within the application program.

• Minutes Per Hour – Defines the time interval before the “hours” are incremented by one.

• Seconds Per Minute – Defines the time interval before “minutes” are incremente

• Show Borders – (Analog clock only) Determines whether to put borders arou
the legend, title, and plot of a pie chart.
50

Chapter 3. SIMDRAW

 of
e

dial

dial

e.

f a bar
nitude

be
3.14.6 Dials

A dial can be created in the Graph Editor for displaying a single scalar value. The hand
the dial rotates clockwise as its value gets larger. By selecting the dial and using thEdit/
Properties menu option you can change the various attributes shown below:

• Library Name – The name of the object within the current graphics library.

• Title – Text of title displayed on bottom.

• Minimum, Maximum – Defines the range of values shown by the dial.

• Interval – Distance between tic marks around the face.

• Num Interval – Distance between numbers around the face.

• Min Theta – Angle in degrees where the minimum value is placed around the
circumference.

• Max Theta – Angle in degrees where the maximum value is placed around the
circumference.

• Scale Factor – Factor multiplied by value before being displayed in the dial.

• Show Border – A square background can be shown under the dial face and titl

3.14.7 Level Meters

A level meter shows a single scalar numerical value. The level meter is composed o
which grows and shrinks along a vertical axis. The height of the bar reflects the mag
of the value being plotted. By selecting the meter and using the Edit/Properties menu op-
tion you can change the attributes shown below:

• Library Name – The name of the object within the current graphics library.

• Title – Text of title displayed on bottom.

• Minimum, Maximum – Defines the range of values shown by the meter.

• Interval – Distance between tic marks along the axis.

• Num Interval – Distance between numbers along the axis.

• Show Grid Llines – Horizontal grid lines extending across the plot area can
shown.

• Scale Factor – Factor multiplied by value before being displayed in the meter.
51

SIMGRAPHICS II User’s Guide

xplic-
e

al

er

 cre-
t var-
xes,

 tables.
log box

ss the
3.14.8 Digital Displays

A digital display is for showing a single scalar numerical value. The value is shown e
itly as numerical text and is enclosed by a box. By selecting the display and using thEdit/
Properties menu option you can change its various attributes shown below:

• Library Name – The name of the object within the current graphics library.

• Title – Text of title displayed on bottom.

• Minimum, Maximum – Defines the range of values shown by the meter.

• Field Width – Number of places allotted for the entire value (including decim
point).

• Precision – Number of places to the right of the decimal point. If zero, an integ
value is shown.

• Scale Factor – Factor multiplied by value before being displayed in the meter.

3.14.9 Text Meters

This is a titled text value enclosed by a box. The following attributes can be set:

• Library Name – The name of the object within the current graphics library.

• Title – Text of title displayed on bottom.

• Width – Number of places allotted for the text value.

3.15 Using the Dialog Editor

The Dialog Editor (figure 3-3) provides a fast and easy to use drag and drop facility for
ating and editing dialog boxes. A dialog box is a container for controls which accep
ious types of input. A dialog box can contain buttons, single and multi-line text bo
combo boxes, value boxes, list boxes, radio boxes, check boxes, text labels, and
Tabbed dialog boxes can also be created. Items contained by a dialog box or a dia
tab are called controls.

Controls are created and added to the dialog box via the Mode palette on the left-hand side
of the window. To create a control, first select the control type from the Mode palette. Po-
sition the pointer over where you want the control to go into the dialog box and pre
52

Chapter 3. SIMDRAW

t con-
r.

ar.

 of this
ension
 and

 a
and
d cor-
mouse button. The dialog box will automatically resize as needed to fit the controls i
tains. It is OK to drop a control outside of the dialog box in order to make the box bigge

The actual dialog box you are working on can be displayed using the Layout/Show Dialog
menu. Double click on the “-“ in the header bar of the dialog window to make it disappe

Figure 3-3. Dialog Editor

3.15.1 Selecting, Moving, and Resizing

Selected controls are marked by a bordering green or cyan box. Sides and corners
box may contain small square resize handles. A resize handle is present for each dim
that the control can logically be resized in. Resizing is performed by clicking down
dragging a resize handle.

To move a control, click down on it and drag to the desired location.

3.15.2 Dialog Box Coordinate System

Controls are positioned in font units. The width of a font unit is the width occupied by
single digit within a dialog box. The height of a font unit is the maximum of button
text box heights. The origin of a dialog box’s coordinate system is at its top left-han
ner with Y-values increasing downward.
53

SIMGRAPHICS II User’s Guide

ard.

lip-
ng the

s

cted

l from
con-

log

 in-

n

 in

ox
3.15.3 Using the Clipboard (Cut, Copy, Paste Commands)

The Dialog Editor supports the standard Cut, Copy, and Paste operations found under the
Edit menu option. The Cut option deletes selected controls and places them in the clipbo
The deleted item remains on the clipboard until the next time you use the Edit/Cut or Edit/
Copy option. Use the Edit/Paste option to paste as many copies as you want from the c
board into the image. Controls can be deleted without changing the clipboard by usi
Edit/Delete option.

The clipboard is shared among all active Dialog Editor sessions. You can copy graphic
from one image into another by activating the source edit window, using the Copy option,
and activating the destination editor and using the Paste option.

Note: The dialog box itself can never be “cut” or “deleted”. It can, however, be sele
for the purpose of changing its properties.

3.15.4 Controls

To create a control (check box, button, text box, etc.) select the appropriate contro
the Mode pallette and drag its outline to where you want it to go on the dialog box. All
trols have the following attributes:

• X, Y Position – Position in font units from the upper left-hand corner of the dia
box.

• Reference (Field) name – Any control added to the dialog can be accessed from
side an application by specifying a Reference or Field name.

Buttons

A button receives simple input and contains no data from the user. Using theEdit/
Properties menu option you can set the following attributes of a button:

• Label – This is the text shown on the face of the button.

• Default – Setting this item will make this button the “default” button. This butto
will be pressed when you press the Enter key.

• Verifying – This will cause the button to check the contents of all value boxes
the same dialog when it is pressed.

• Terminating – Setting this check box will make the button erase its dialog b
when pressed.
54

Chapter 3. SIMDRAW

ed

e

ser.

 out

um-
.01,

ien-

ed
Text Boxes

Text boxes are used to receive single line text string input. Using the Edit/Properties menu
option you can set the following attributes of a text box:

• Label – The text appearing on the left-hand side of the box.

• Width – The number of characters that the text box can show.

• Text – The text string initially shown in the box.

• Selectable Using Return – Defines whether the application program will be notifi
when you press the Return key while this text box has input focus.

Value Boxes

A value box is used to receive or show a single numerical value to the user. Using thEdit/
Properties menu option you can set the following attributes of a value box:

• Label – The text on the left-hand side of the box identifying value type to the u

• Min – The minimum value the box can contain. If a value typed into the box is
of range, the user will be informed whenever a verifying button is pressed.

• Max – The maximum value the box can contain.

• Precision – Precision is used to format output and round input. It defines the n
ber of digits to the right of the decimal point. (0 = integer value, 1 = 0.1, 2 = 0
-1 = rounded to 10’s, -2 = rounded to 100’s etc.)

• Value – The initial value displayed in the value box.

• Use Scientific Notation – Indicates whether output should be formatted using sc
tific notation. (i.e. 71 = 7.1e+1).

• Selectable Using Return – Defines whether the application program will be notifi
when the user presses the Return key while this text box has input focus.

Check Boxes

A check box is used to receive and show yes/no input. Using the Edit/Properties menu op-
tion you can set the following attributes:

• Label – The text on the right-hand side of the box identifying it to the user.

• Checked – Initial state of the check box.
55

SIMGRAPHICS II User’s Guide

e pre-
s from

abel,

 and
tions,

ing

tical
mouse.

ed
 long
Radio Boxes

The radio box accepts input from a fixed list of alternatives. It contains a set of radio but-
tons. You can only select one radio button at a time; when you select a new button, th
viously selected button pops up automatically. You can add and remove radio button
the radio box using the Edit/Properties menu option:

• To add a button, enter its label, and reference name in the Radio Buttons area of the
Properties dialog, and then press the Add button.

• To remove a button, select its label in the list box and then press the Remove button.

• To change the attributes of a button, select its label in the list box, modify its l
or reference name, and then press the Update button.

List Boxes

A list box is used to accept input from a list of text values. The list may vary in length
will be scrollable, if needed. You can define the list to accept only single item selec
or accept multiple item selections using the Shift and/or Ctrl keys. Using the Edit/Properties
menu option you can set the following attributes:

• Width – The width in font units of the list (including scroll bars).

• Height – The height in font units of the list.

• Allow Multiple Selections – Allows the user to select several items in the list us
the Shift and Ctrl keys.

Multi-line Text Box

A multi-line text box can receive and show unlimited lines of text. Horizontal and ver
scroll bars are attached, if needed. You can easily edit the text it contains using the
Using the Edit/Properties menu option you can set the following attributes:

• Width – The width in font units of the box (including scroll bar).

• Height – The height in font units of the box (including scroll bar) .

• Text – The text initially displayed in the box.

• Allow Horizontal Scrolling – If checked, a horizontal scroll bar will be attach
whenever a line of text is too long to be viewed in the text box. If not checked,
text lines will be truncated.
56

Chapter 3. SIMDRAW

-
lose a

ati-
g

ally

hen
ombo
 fully

g

Labels & Group Boxes

A label is used to place explanatory text or titles in a dialog box. It can be positioned any
where within the dialog. A group box can be attached to the label and sized to enc
set of controls with some common property. Using the Edit/Properties menu option you can
set the following attributes:

• Label – The text of the label.

• Show Group Box – Defines whether a group box will be shown.

• Width – The width in font units of the group box.

• Height – The height in font units of the group box.

Through the Properties dialog, you can define whether the label is defined programm
cally through the DTVAL.A or DDVAL.A attributes of its field pointer. One of the followin
three access modes can be defined:

a. Use the DTVAL.A attribute to define the text.

b. Use the DTVAL.A attribute to define the text. Truncate the text to Field width places.

c. Use the DDVAL.A attribute to define a real value displayed by the label. The Field
width text box specifies the total number of places, while the Precision box defines
the number of places after the decimal point.

For example, if the label’s reference name is “MY.LABEL”, you could programmatic
set the label as follows:

Let DTVAL.A(DFIELD.F(“MY.LABEL”, FORM.PTR)) = “Hello World”

or

Let DDVAL.A(DFIELD.F(“MY.LABEL”, FORM.PTR)) = 12.5

Combo Boxes

A combo (combination) box is a text box containing a small “drop down” button. W
that button is pressed, a scrollable list of choices for the text field is displayed. The c
box can be defined to allow only those alternatives shown in the list entered, or to be
editable like a text box. Using the Edit/Properties menu option you can set the followin
attributes:

• Label – The text on the left-hand side of the box identifying the box.

• Width – The width in font units of the text box plus the drop down button.
57

SIMGRAPHICS II User’s Guide

, to

l-

te the
o it by
g

 hor-
, but

n on
t of
table.

 The

ttom
se the

ble

able
• Height – The number of visible items in the drop down list.

• Editable – Defines whether or not you can edit the text field, or, if it is restricted
contain only one of the items shown in the drop down list.

• Sorted Alphabetically – If checked, items in the drop down list will be shown in a
phabetical order.

Progress Bar

A progress bar is a programmatically adjustable horizontal bar usually used to indica
completion status of a task. The length of the bar is proportional to the value given t
the program. The bar cannot be adjusted by the user, only by the program. UsinEdit/
Properties menu option you can set the following attributes of the bar:

• Label – The text on the left hand side of the bar identifying it to the user.

• Width – The maximum visible size of the bar in font units.

• Min – The bar will have zero length when set to this value.

• Max – The bar will have maximum length when set to this value.

• Value – The initial value displayed by the bar.

Tables

A table is a two dimensional array of selectable text fields or “cells”. The table can be
izontally and vertically scrollable. All cells in the same column have the same width
you can define the width of this column.

A table can have both column and row headers. A row of “column headers” is show
top of the array of cells. This special row of cells will scroll horizontally with the res
the table, but not vertically. “Row headers” are shown in a column to the left of the
This column scrolls with the table only in the vertical direction.

You can navigate through a table using the left-, right-, up- and down-arrow keys.
program will be informed of cell selection whenever an arrow key is used to move to a
different cell. You can tell the table to automatically add a new row of cells to its bo
row whenever the you attempt to move past the last row using the down-arrow key. U
Edit/Properties menu option to set the following attributes:

• Viewed Width – The total width in font units of space occupied by the entire ta
(including row headers, and scroll bar).

• Viewed Height – The total height in font units of space occupied by the entire t
(including column headers and scroll bar).
58

Chapter 3. SIMDRAW

ad-

ders

at-

lar
t to

,

of all

by se-
ith

tion.

n a
nent
e in-

et

t-
 This
 com-
• Number Columns – Number of columns of cells (not including headers).

• Number Rows – Number of rows of cells (not including headers).

• Column Headers – If checked, the table will contain a separate row of column he
ers at the top of the cells.

• Row Headers – If checked, the table will contain a separate column of row hea
on the left of the cells.

• Automatic Grow – If checked, the table will automatically add a row, if the you
tempt to move past the last row with the “down-arrow” key.

The attributes of all columns in the table are shown within a separate Column Detail table
invoked by clicking on the Columns button:

• Column (1,2,...) Width – The number of characters shown in the cells of a particu
column. Select the cell in the column corresponding to the one you wan
change, and type in a new width.

• Column (1,2,...) Alignment – Text in a table cell can be justified to the left or right
or can be centered. Within the Column Detail table (l=Left justified, c=Centered,
and r=Right justified).

You can also set the initial contents of the cells in the table by clicking on the Contents …
button. A duplicate table of the one you are working on will show the initial contents
cells. To change the initial contents of a cell, select the corresponding cell in the Cell Detail
table, and then type in the new text and press Return .

Dialog Box

Although the dialog box annotation cannot be moved or resized, it can still be edited
lecting it and using the Edit/Properties menu option. The dialog box can be defined w
the following attributes:

• Library Name – The name used to access the dialog box from inside the applica

• Title – The text shown on the header bar of the dialog.

• Modal Interaction – Defines whether the dialog is “modal” or “modeless”. Whe
modal dialog box is displayed, the user cannot interact with any other compo
of the application but the contents of that dialog box. Modeless dialogs can b
teracted with asynchronously.

• Position with Respect to Screen – Specifies which corner of the dialog will be offs
from the lower left-hand corner of the screen. For example, if Bottom Right posi-
tioning is selected, the X Offset and Y Offset fields define the distance from the bo
tom left-hand corner of the screen to the bottom right corner of the dialog box.
distance is specified in “screen coordinates” where the width and height of the
puter screen each are each 100 units.
59

SIMGRAPHICS II User’s Guide

r in
shows
items

ls.

ph

dden
g
d

here
ly cut
x.
sized

s

t-

n on
• Tab Ordering of Members – If you wish to use the Tab key to transfer input focus
from one control to the next while interacting with the dialog box, the orde
which this traversal takes place can be established ahead of time. A list box
the labels of all controls in the dialog that can have input focus. The order of
in this list is the order in which input focus will proceed when the Tab key is
pressed. Use the up- and down-arrow keys to shift the tab ordering of contro

You can also define how ACCEPT.F will behave when displaying the form. See paragra
5.3.2.

Tabbed Dialogs

The Dialog editor can be used to create Tabbed Dialogs or to convert existing dialogs to be
tabbed. Using a Tabbed Dialog you can attach sets of controls to overlapping Tab Fields .
Only the top Tab Field can be seen; all other tab fields and attached controls remain hi
underneath. The only visible portion of a Tab Field is a small rectangular area containin
its name, or a tab. Clicking on the tab will bring the Tab Field to the top of the tab area an
show all controls attached to it.

To create a Tabbed Dialog , you must first make sure that the area on the dialog box w
the Tab Field is to be placed is cleared of controls (they should be moved or temporari
to the clipboard.) Create a Tab Field by dragging it from the palette onto the dialog bo
Any number of Tab Field s can be dropped onto the dialog box. The tab area can be re
by resizing the top Tab Field , but cannot be moved.

Dropping a control onto the top Tab Field will automatically attach it to that tab. Control
can be dragged from the Mode palette, pasted from the clipboard, or moved onto the top Tab
Field .

The tab area is not automatically resized when controls are dropped onto the Tab Field . It
should be sized manually prior to adding controls.

To remove a Tab Field , first remove all controls it contains and then use the Edit/Cut or Edit/
Delete menu options. Using the Edit/Properties menu option you can set the following a
tributes of the selected Tab Field :

• Label – The text label shown on the “tab” part of the Tab Field .

• Icon Name – The resource or file name (without extension) of the bitmap show
the front of the tab.
60

Chapter 3. SIMDRAW

n or

-

tion
espect
th re-
 using
m

la-
e-

controls.

g the

ing
3.15.4.1 Converting Conventional Dialog Boxes to be Tabbed

Perform the following steps to add tabs to an existing (untabbed) dialog box.

1. Create space for the tab area by selecting all controls using the Edit/Select All menu
option and moving them into a saved area on the dialog box (move them dow
to the right by a liberal amount.)

2. Drag a Tab onto the dialog box from the Mode palette. Resize the Tab according
to how much space it needs.

3. Move each control which must go onto this Tab Field from the saved area.

4. Repeat steps two and three until all Tabs have been created and filled with con
trols.

5. Select each Tab and use the Edit/Properties menu option to set the label on the Tab,
its icon, etc.

3.15.4.2 Align and Distribute

Multiple controls can be aligned either vertically or horizontally to the primary selec
(shown enclosed by green selection handles). They can be aligned vertically with r
to either their left edge, right edge or center. Controls can be aligned horizontally wi
spect to their top edge, bottom edge, or center. To align, first select multiple objects
the Shift key, and then use the Layout/Align menu option. Select an alignment scheme fro
the resulting dialog box.

The Layout/Distribute menu option allows you to distribute three or more controls in re
tion to each other. Controls can be distributed horizontally so that the same space exists b
tween left and right edges of adjacent controls. Distributing vertically will reposition the
controls so that the same space exists between the bottom and top edges of adjacent

3.15.4.3 Using Grid Lines

A grid can be used to perform precise positioning and sizing of controls by breakin
editor window up into divisions. You can show (or hide) grid lines by toggling the View/
Grid menu option.

You can change the color of the grid by selecting a color from the Color palette and then
using the View/Grid Color menu option. The granularity of the grid can be adjusted us
the View/Grid Spacing menu option. Granularity can be Fine, Medium , or Coarse :

• Fine – 1 font unit wide, 0.25 font units high.

• Medium – 2 Font units wide, 0.5 font units high.

• Coarse – 3 Font units wide, 1 font unit high.
61

SIMGRAPHICS II User’s Guide

pes

dow,
r the
expand-

ertical

 entire

ce will

a to
 you
ides of
ll bars

ller or

The
ing
By toggling the View/Snap menu option, you can restrain positioning and resizing of sha
to the intersections of the grid.

3.15.4.4 Changing Views (Panning and Zooming)

You may want to magnify a portion of the dialog. To zoom in to some area of the win
first use the View/Zoom In menu option. Then drag out a rectangle with the mouse ove
area of detail. When the mouse button is released, the area inside the rectangle will be
ed to encompass the entire window. To zoom back out, use the View/Zoom Out menu option.

When zoomed in, you can pan to other areas of the window using the horizontal and v
scroll bars.

You can return to the default view by using the View/View [1:1] menu option. Unless the
window is square, the top or bottom portion of the view may not be visible. To see the
coordinate space, use the View/Fit In Window menu option. This viewing mode will leave
dead space off to the right of the window, but guarantees the entire coordinate spa
be seen.

3.15.4.5 Changing the Layout Size, Color and Font

To change the editor window's background color, use the Layout/Set Color... menu option.
Select the RGB values of the background color.

Use the Layout/Set size... menu option if you want to increase the size of the editing are
allow you to create or edit very large dialog boxes. A dialog will be displayed allowing
to increase the number of "screens," thereby adding space to the right and bottom s
the editing area. This new space can be "scrolled" to using the right and bottom scro
attached to the editor window.

The font used to depict labels and other text shown in a dialog can be reset with the Layout/
Set Font... menu option. To have the icons representing your controls appear sma
larger, simply select a smaller or bigger font.

3.16 Using the Menu Bar Editor

A menu bar contains menus which can contain either menu items, or other menus.
Menu Bar Editor (figure 3-4) allows you to construct a menu bar by interactively dragg
and dropping icons representing menus and menu items onto a menu bar icon.
62

Chapter 3. SIMDRAW

nu bar
 bar.

enu
ansfer
enu by

 the
Menus and menu items items are created and added to the menu bar via the Mode palette
on the left-hand side of the window. To create a menu, first press the Menu button on the
Mode palette. Position the pointer over where you want the menu to go onto the me
and press the mouse button. The menu will automatically be inserted into the menu

Figure 3-4. Menu Bar Editor

Menu panes can be displayed by simply clicking on the menu label. Unlike a “real” m
bar, multiple menu panes can be dropped down at the same time allowing you to tr
their menu items from one menu to another. A new menu item can be added to a m
first dropping down the menu pane, and then dragging a menu item from the Mode palette
to the position in the pane where you want it to go.

A usable menu bar can be interacted with using the Layout/Show Menu Bar menu option.
A temporary window will be displayed containing a “test” menu bar. Double click on
"-" in the header bar of the temporary window to make it disappear.
63

SIMGRAPHICS II User’s Guide

lected
nu will
ed by

 to

d. You
en new

e de-

the
board

s

elected

ph
3.16.1 Selecting and Moving (Transferring)
A menu or menu item can be selected by clicking the mouse button over its label. Se
menus are marked by a bordering green or cyan box. Selecting the label of a me
drop down its pane, showing all the items it contains. Multiple items can be select
holding down the Shift key and then clicking on several items. To add a menu or item
another menu, drop it onto the menu’s open pane.

You can also select the menu bar and edit its properties, but the bar cannot be move
are not allowed to resize menus or the menu bar; they are resized automatically wh
items are added to them.

3.16.2 Using the Clipboard (Cut, Copy and Paste Commands)

The Menu Bar Editor supports the standard cut, copy, and paste operations found under the
Edit menu. The Cut option deletes selected items and places them in the clipboard. Th
leted item remains on the clipboard until the next time you use the Edit/Cut or Edit/Copy
options. You can use the Edit/Paste option to paste as many copies as you want from
clipboard onto any open menu pane. Items can be deleted without changing the clip
by using the Edit/Delete option.

The clipboard is shared among all active Menu Bar Editor sessions. You can copy graphic
from one menu bar into another by activating the source edit window, using the Copy op-
tion, and then activating the destination editor and using the Paste option.

Note: The menu bar itself can never be cut, copied, or deleted. It can, however, be s
for the purpose of changing its properties.

3.16.3 Editing the Menu Bar

The menu bar is not movable or resizeable, but using the Edit/Properties menu option you
can modify the Library Name of the menu bar.

You can also define how ACCEPT.F will behave when displaying the form. See paragra
5.3.2.
64

Chapter 3. SIMDRAW

menu’s
enu

 be

n.

nu

rd
ic

. Your
menu
nu

tion
ck

enu.

hile
ear

d to
s own
enu

mbols
ming
3.16.4 Editing a Menu

You can add menus to the menu bar or other menus by dragging and dropping. The
pane can be displayed or hidden by clicking on its text label within its container. A m
is defined by the following parameters:

• Reference (Field) name – Any menu added to the menu bar or another menu can
accessed from inside an application by specifying a Reference or Field name. The
field name is passed to the callback routine whenever a menu item is clicked o

• Label – The name identifying the menu which appears within the container me
bar or menu.

• Mnemonic – A letter in the menu’s label that can be typed from the keyboa
(while holding down the Alt key) to bring down the menu pane. The mnemon
character will appear underscored in your application.

3.16.5 Editing a Menu Item

A menu item can only be contained on a menu pane, and cannot contain other items
application program is only informed of selections of a menu option, not of a menu or
bar. Double click or use the Edit/Properties menu option to change the attributes of a me
option:

• Reference (Field) name – Any menu item can be accessed from inside an applica
by specifying its Reference or Field name. The field name is passed to the callba
routine whenever a menu item is clicked on.

• Label – The name identifying the menu item appearing within the container m

• Mnemonic – A letter in the item’s label that can be typed from the keyboard (w
holding down the Alt key) to activate the item. The mnemonic character will app
underscored in your application.

• Accelerator Key Name – While running the application, you can use the keyboar
activate menu options instead of using the mouse. Any menu item can have it
accelerator key. This attribute determines which key will be mapped to this m
item. To use enable keys such as [a-z], [0-9], and other punctuation and sy
keys to activate the menu item, just type the key character directly. The na
convention for keys performing functions are defined below:

• “escape” – Names the Esc or Escape key.

• “delete” – Names the Del or Delete key.

• “return” – Names the Enter or Return key.

• “backspace” – Names the ← or the Backspace key.
65

SIMGRAPHICS II User’s Guide

in

d to

help
never

 next

, but

 cre-
f your
e face
 added

tes at-
f col-
ottom

ttons
uttons

w

• “ tab ”– Names the Tab key.

• “f1”, “f2”, ..., “fn ”– Names the function keys “F1”, “F2”, ..., “Fn” at the top of the
keyboard.

• Use Alt, Use Ctrl, Use Shift – Specifies which modifier key must be held down
conjunction with the accelerator key described above.

• Accelerator Key Label – This is the name appended to the menu item label use
describe how to invoke the keyboard accelerator. For example, the string “(Ctrl+C)”
could describe an accelerator activated by holding down the Ctrl key and pressing
“c”.

• Status Message – If the window containing this menu bar has a status bar, this
message will appear in the first status bar pane. The text will be displayed whe
this menu item is highlighted by the pointer (not necessarily activated).

• Checked – Menu items can have an “off/on” state shown by a small check mark
to the label. The initial state is defined by the Checked attribute.

Note: This state is NOT changed automatically when the item is clicked on
must be updated by the application program.

3.17 Using the Palette Editor

The Palette Editor (figure 3-5) provides a fast and easy to use drag and drop facility for
ating and editing palettes, toolbars etc. A palette is usually attached to the side o
window (but is sometimes a separate window) and contains an array of buttons. Th
of each button can contain a bitmap icon or show a color. Separator objects can be
to the palettes to produce space between groups of buttons.

You can define the number of columns or rows that the palette contains. For palet
tached to the left and right sides of the window, or for floating palettes, the number o
umns is specified. The number of rows is used for palettes glued to the top or b
window edges.

Palette buttons and separators are created and added to the palette via the Mode palette on
the left-hand side of the edit window. To create a palette button, first select the Button icon
from the Mode palette. Position the pointer over where in the palette you want the bu
to go, and click the mouse. The palette will automatically resize as needed to fit the b
it contains. It is OK to drop a button outside of the palette in order to make it larger.

The actual palette you are working on can be displayed and tested using the Layout/Show
Palette menu option. Double click on the “-“ in the header bar of the palette test windo
to make it go away.
66

Chapter 3. SIMDRAW

the top
an be
tte
 want

ed.

 sized
 This

djusting
drag the
Figure 3-5. Palette Editor

3.17.1 Selecting and Moving (Rearrangement of) Buttons

A palette button or separator item can be selected by clicking the mouse button over
of it. Selected buttons are marked by a bordering green or cyan box. Multiple items c
selected by holding down the Shift key and clicking on several items. To move a pale
button from one place to another, drop it over the top of the button whose position you
it to occupy. You can select the palette and edit its properties, but it cannot be mov

You are not allowed to resize palette buttons or the palette. All palette buttons are
equally based on the size of the “first” button (at top left hand corner of the palette).
“first” palette button is automatically made big enough to contain its bitmap icon.

However, palette separators can be resized. Resizing a separator has the effect of a
the space between palette buttons. To resize the separator, first select it and then
green resize handle shown on a side of the selection rectangle.
67

SIMGRAPHICS II User’s Guide

e de-

the
board

s

lected

 to any
n MS
 of
ey are
 fol-

ra-
or the

ors

tors

ra-
3.17.2 Using the Clipboard (Cut, Copy and Paste)

The Palette Editor supports the standard cut, copy, and paste operations found under the
Edit menu. The Cut option deletes selected items and places them in the clipboard. Th
leted item remains on the clipboard until the next time you use the Edit/Cut or Edit/Copy
options. You can use the Edit/Paste option to paste as many copies as you want from
clipboard onto any open menu pane. Items can be deleted without changing the clip
by using the Edit/Delete option.

The clipboard is shared among all active Palette Editor sessions. You can copy graphic
from one palette into another by activating the source edit window, using the Copy option,
and then activating the destination editor and using the Paste option.

Note: The palette itself can never be cut, copied, or deleted. It can, however, be se
for the purpose of changing its properties.

3.17.3 Editing the Palette

A palette contains an array of selectable palette buttons. Palettes can be attached
edge of the application window, or be floating (not unlike a modeless dialog box.) O
Windows systems, palettes can be dockable meaning they can be moved from one edge
the window to another while running the application. Palettes cannot be resized; th
automatically sized to fit their contents. Double clicking on a palette will display the
lowing detail:

• Library Name – The name of this palette in the graphics library.

• Title – Title text displayed in the header bar of a floating palette.

• # Columns for Left/Right Dock – Number of columns of palette buttons and sepa
tors whenever the palette is docked on the left or right edges of the window,
palette is floating.

• # Rows for Top/Bottom Dock – Number of rows of palette buttons and separat
whenever the palette is docked on the top or bottom edges of the window.

• # Columns for Floating – Number of columns of palette buttons and separa
whenever the palette is not docked on a window edge, but floating free.

You can also define how ACCEPT.F will behave when displaying the palette. See pa
graph 5.3.2.
68

Chapter 3. SIMDRAW

ing at-

m

is-

file

(if

 lo-

cti-

d

ed

, and

hey only
ragging
3.17.4 Editing a Palette Button

Palettes are occupied by an array of palette buttons. A palette button has the follow
tributes which are adjustable via the Edit/Properties menu option:

• Reference (Field) Name – Any button added to the palette can be accessed fro
inside an application by specifying a Reference or Field name. The field name is
passed to the callback routine whenever the button is clicked on.

• Icon Name – The name of the bitmap resource or file (without extension) icon d
played on the front of the palette button. Pressing the small browse “..” button
next to this text box will allow you to browse the file system to select a bitmap
name. Remember that the bitmap file MUST be in the same directory as your li-
brary (.sg2) file.

• Status Message – Text displayed in pane 0 of the parent window’s status bar
present) whenever the pointer passes over this button.

• Tool Tip – Identifies the tool tip pop up message shown at the pointer’s current
cation when it passes over this button.

• Momentary/Draggable/Toggle – Determines the variety of input interaction. One
of three button types can be selected:

1. Momentary – Button will automatically pop back up after it is pressed.

2. Toggle – Two state button. The state (up or down) alternates with each a
vation.

3. Draggable – Like Toggle but allows you to hold the mouse button down an
drag an outline of the palette button bitmap onto the window.

• Icon Button/Color Button – If the Icon Button item is activated, the face of the
palette button will show the bitmap defined by the Icon Name field above. For
Color Buttons the button will be colored using the R,G,B parameters defin
below.

• Button Face Color (Red,Green,Blue) – You can set the color of the Color Button s
through these value boxes. Color is defined by the percentage of Red, Green
Blue (range [0-100]).

3.17.5 Editing Palette Separators

Palette separators receive no user input and cannot be seen on the test palette. T
serve to provide a gap between buttons. This separation can be changed either by d
the resize tag on a selected separator, or by using the Edit/Properties menu option. Separa-
tion is defined by percentage of button width (or height), and ranges from 0 to 100.
69

SIMGRAPHICS II User’s Guide
70

th the
d the
e:

al, data

present
tically

The di-
ple, a
rt is re-
are se-

e icon

e de-

pa-
4. Creating Presentation Graphics

This chapter describes features of the SIMSCRIPT II.5 language which support bo
display of numerical information in a variety of static and dynamic chart formats, an
representation of changing values using dynamic “smart icons.” Graph types includ

• Histograms,

• Grouped histograms,

• Dynamic bar charts,

• Pie charts,

• X-Y plots, and

• Trace plots exhibiting variables traced over time.

These features are supported by SIMSCRIPT II.5 language enhancements. In gener
are collected with versions of the TALLY statement and ACCUMULATE statements. Data
are then displayed with several forms of the DISPLAY statement.

Both static and dynamic graphs are supported. Data structures can be defined to re
either the immediate state of variables or to generate dynamic displays that automa
change over simulated time, as the program modifies the variables being observed.
mensionality of structured data must match the dimensionality of the icon—for exam
scalar value can be shown on a dial or level gauge, but a bar-chart, graph, or piecha
quired to represent an array of values. In general the type and format of the icons
lectable at run time without the need to recompile any code.

To create presentation graphics:

1. Declare the relevant globally-defined variables as DISPLAY in the program pream-
ble;

2. Format the display icons using SIMDRAW and save them in graphics.sg2 ;

3. Add statements to the executable code to associate display variables with th
description stored in graphics.sg2 .

Each of these steps is described below.

4.1 Variable Declaration

Any globally defined numeric variables, either scalars, arrays, or attributes, may b
clared as DISPLAY variables in the preamble with the statement:

DISPLAY VARIABLES INCLUDE statement name1 , name2....

This declaration is made in addition to normal variable declarations.

Histograms are a special case. Histogram names should not be included in a DISPLAY
VARIABLES INCLUDE... statement. Histograms automatically acquire display ca
71

SIMGRAPHICS II User’s Guide

lly

 using

ke the
yed in

e-
ng

e made

rence is
 in the

grams
isplay

auto-
an be
g the
bility. Including the special qualifier DYNAMIC creates histograms that are automatica
updated as the data change, without the necessity of issuing repeated DISPLAY commands:

TALLY histname(low TO high BY interval) AS THE DYNAMIC HISTOGRAM OF name

(where name is already defined as an attribute or global variable).

4.2 Displaying Presentation Graphics

Once the icons are defined, a display variable is associated with an icon descriptor file
the statement:

DISPLAY [HISTOGRAM] name1,name2,.. WITH "iconname"

[AT (posx, posy)]

or

SHOW name1, name2,... WITH "iconname" [AT (posx,posy)]

DISPLAY causes the icon to become immediately visible. SHOW merely associates the
variable with the icon. A statement:

DISPLAY name

or assignment to the variable, in the case of dynamic icons, is then required to ma
icon visible at some later point in execution. If more than one data set is to be displa
a single chart, all should be named in a single SHOW/DISPLAY statement. The clause
"[AT(posx,posy)]" is optional. Any positioning should be in NDC units (Normalized D
vice Coordinates, see paragraph 6.2) and overrides the icon position determined duri
icon editing. Subsequent DISPLAY statements for this variable should not include the
WITH clause.

Histograms are again a special case. For histogram data, the icon association must b
by executing the statement:

SHOW <HISTOGRAM> histname WITH "iconname"

before any values are assigned to the monitored variable (and before any other refe
made to the histogram name). This is because the stored information is maintained
histogram structure. The first assignment to the monitored variable for dynamic histo
will cause the histogram to be displayed, and any further references will cause the d
to be updated. Thus, for a dynamic histogram, DISPLAY statements are redundant.

If variable names are used for the histogram limits (low, high, interval) these will be
matically initialized from the X-axis graduations specified on the graph icon. These c
edited in SIMDRAW. Should the displayed bounds on the Y-axis be exceeded durin
simulation, the histogram will rescale automatically.

Icons may be erased by specifying their display variables in an ERASE statement .

ERASE name1, ...

Dynamic histograms may be destroyed by specifying their names in an ERASE
HISTOGRAM statement:
72

Chapter 4. Creating Presentation Graphics

nted

. The

e

ERASE HISTOGRAM name1, ...

4.3 Examples

4.3.1 Example 1: A Simple Tallied Histogram

Figure 4-1. Example 1

Preamble
define RANDVAR as a double variable
tally HISTO(0 to 10 by 1) as the histogram of RANDVAR

end
main

define COUNT, NSAMPLES as integer variables
show HISTO with "hist.grf" '' *
let NSAMPLES = 50
for COUNT = 1 to NSAMPLES

let RANDVAR = exponential.f(5.0,1)
display HISTO '' *
read as /

end

This program is conventional SIMSCRIPT with the exception of the two lines comme
with '' * .

Be sure that the show. . . statement precedes the first assignment to RANDVAR. This
assignment triggers data collection, and the icon structure must be known by then
display. . . statement makes the icon visible. The final read as / is just waiting
for an Enter key (carriage return) before terminating the program, and thus erasing th
graphics display.
73

SIMGRAPHICS II User’s Guide

value
rate the

ir val-

ord
 the
4.3.2 Example 2: A Time-Weighted Accumulated Dynamic Histogram

Figure 4-2. Example 2

Preamble
 define RANDVAR, LO, HI, INTERVAL as double variables
 accumulate HIST(LO to HI by INTERVAL) as the dynamic histogram of
RANDVAR
 processes include SAMPLE
end
main
 show HIST with "hist.grf"
 activate a SAMPLE now
 start simulation
 read as /
end
process SAMPLE
 until TIME.V gt 100
 do
 wait exponential.f(5.0, 1) units
 let RANDVAR = uniform.f(0, 10, 2)
 loop
end

Accumulated statistics are weighted by the duration of simulated time for which the
remains unchanged. For this reason the example is written to use a process to gene
sample data, waiting for simulation time to elapse between each sample.

Note: Histogram limits are declared in terms of variables. These variables obtain the
ues from the X-axis specification of the graph icon.

Because the histogram is specified as dynamic, it redisplays any time the variable RANDVAR
is assigned a value. A DISPLAY statement would be redundant. Substituting the w
display for show would cause the graph to display immediately upon loading, before
simulation has started.
74

Chapter 4. Creating Presentation Graphics

the use
 icon

ocess
ariable
4.3.3 Example 3: Displaying Simple Scalar Values

Figure 4-3. Example 3

Preamble
define RANDVAR as a double variable
display variables include RANDVAR
processes include SAMPLE

end
main

show RANDVAR with "trace.grf"
activate a SAMPLE now
let TIMESCALE.V = 10
start simulation
read as /

end
process SAMPLE

until TIME.V gt 100
do

let RANDVAR = uniform.f(0, 10, 2)
wait exponential.f(5.0, 1) units

loop
end

This example is also constructed as a simulation so that it can be used to illustrate
of a trace plot. A dial or level meter could be substituted merely by editing a suitable
and naming it trace.grf .

This example is more interesting if simulation time is scaled to real time so that the pr
actually waits some noticeable time between samples. Use the global system v
TIMESCALE.V to achieve this. TIMESCALE.V specifies the number of hundredths of a
realtime second that should correspond to one unit of simulated time.
75

SIMGRAPHICS II User’s Guide

s,

store
4.3.4 Example 4: Using a Trace to Plot X-Y Curves

Figure 4.4 Example 4

Preamble
define X, Y as a 1-dim double array
define YPLOT as a double variable
display variables include YPLOT

end
main

define SAVTIME as a double variable
reserve X(*), Y(*) as 10
for I = 1 to 9

let X(I+1) = X(I) + uniform.f(0, 0.2, 1)
for I = 1 to 10
 let Y(I) = 1 - EXP.C ** (-X(I))
show YPLOT with "trace.grf"
let SAVTIME = TIME.V
for I = 1 to DIM.F(X(*))

do
 let TIME.V = X(I)
 let YPLOT = Y(I)
loop

let TIME.V = SAVTIME
read as /

end

This example shows how a trace plot can be “tricked” into plotting one set of valueY,
against another set, X.

YPLOT is a display variable used solely to generate the trace plot.

Trace plots expect to derive the X-axis coordinate from the current value of TIME.V , the
simulation time. If using this trick in the context of a simulation, be sure to save and re
TIME.V .
76

Chapter 4. Creating Presentation Graphics

le sin-
e sim-

time of
 the il-
nd the
n files
rt of

are
tines,

ns of
4.3.5 Example 5: The Bank Model

As an example of the use of presentation graphics in a simulation model, a very simp
gle-queue, multiple-server bank model has been augmented to include displays of th
ulated time on an analog clock, the queue length as a level meter, and the waiting
customers as a dynamic bar chart (or histogram). All code which is not essential to
lustration of graphical concepts (i.e., the menu-driven selection of input parameters a
gathering and reporting of numerical statistics) has been omitted. The code and ico
for the complete model are included on the distribution kit for SIMSCRIPT II.5. Pa
the output is shown in figure 4.5.

The simulation model is described in the Preamble, Main , the INITIALIZE routine,
and in the GENERATOR and CUSTOMER processes. The presentation graphics
described in lines 12 to 17 of the preamble, line 3 of the main routine, and in two rou
CLOCK.UPDATE and INITIALIZE.GRAPHICS .

In addition to the model enhancements, SIMDRAW was used to produce descriptio
three icons to be used for display purposes. These are: clock.grf, queue.grf , and
wait.grf .

Figure 4-5. The Bank Model

preamble '' BANK - Modernizing a Bank
 normally, mode is undefined

 processes include GENERATOR and CUSTOMER

 resources include TELLER

 define NO.OF.TELLERS as an integer variable
 define MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, DAY.LENGTH
 and WAITING.TIME as real variables

 Define WLO, WHI and WDELTA as integer variables
 Define CLOCKTIME as a double variable
77

SIMGRAPHICS II User’s Guide

 Display variables include CLOCKTIME, N.Q.TELLER

 Graphic entities include SHAPE

 Tally WAITING.TIME.HISTOGRAM (WLO to WHI by WDELTA)
 as the dynamic histogram of WAITING.TIME

 end ''preamble

 main
 call INITIALIZE
 call INITIALIZE.GRAPHICS
 start simulation
 read as /
 end ''main

 routine INITIALIZE
 let NO.OF.TELLERS = 4
 let MEAN.INTERARRIVAL.TIME = 2.0
 let MEAN.SERVICE.TIME = 7.0
 let DAY.LENGTH = 4 / hours.v '' days
 create every TELLER(1)
 let u.TELLER(1) = NO.OF.TELLERS
 activate a GENERATOR now
 end '' routine INITIALIZE

 routine INITIALIZE.GRAPHICS

 Define DEVICE.ID and TITLE as pointer variables

 Let timescale.v = 1000 '' clock ticks (1/100 sec) per unit
 Let timesync.v = 'CLOCK.UPDATE'

 Display CLOCKTIME with "clock.grf"
 create a SHAPE called TITLE
 display TITLE with "title" at (15000.0, 21000.0)

 Display N.Q.TELLER(1) with "queue.grf"
 Display histogram WAITING.TIME.HISTOGRAM with "wait.grf"

 end ''INITIALIZE.GRAPHICS

 routine CLOCK.UPDATE given TIME yielding NEWTIME
 Define TIME, NEWTIME as double variables
 Let NEWTIME = TIME
 Let CLOCKTIME = TIME
 End ''CLOCK.UPDATE

 process GENERATOR
 until time.v >= DAY.LENGTH
 do
 activate a CUSTOMER now
 wait exponential.f(MEAN.INTERARRIVAL.TIME, 1) minutes
 loop
 end ''GENERATOR

 process CUSTOMER
 define ARRIVAL.TIME as a real variable
 let ARRIVAL.TIME = time.v
 request 1 TELLER(1)
 let WAITING.TIME = (time.v - ARRIVAL.TIME) * minutes.v * hours.v
 work exponential.f(MEAN.SERVICE.TIME, 2) minutes
 relinquish 1 TELLER(1)
 end ''CUSTOMER
78

er con-
cor-
hem to

tive
ation

asic

S

should

ctive
, the
anics

s that a

hese
ccept
 appli-
n
e ap-

pull-
t boxes

 forms
ed de-
 and

he in-
e dis-
lishing
5. Forms and Graphical Interaction

5.1 Introduction

A graphical user-interface is made up of menu bars, buttons, pickable icons and oth
structs, each with its own behavior and function in the program. SIMGRAPHICS II in
porates a form-based approach for easily creating these interfaces and adding t
programs. This chapter is organized into three loose parts:

• After reading paragraphs 5.2 through 5.4 you should be able to easily use interac
graphics to improve your programs. These paragraphs give all the inform
needed for simple input using powerful SIMGRAPHICS II entities.

• Paragraphs 5.5 and 5.6 are meant as a more complete description of the b
SIMGRAPHICS II forms-based concepts and commands.

• Refer to paragraphs 5.7 through 5.9 for complete details of each SIMGRAPHIC
II entity (Button, Menu bar, …) as they are needed. Paragraph 5.10 contains several
simple example programs, with relevant concepts listed before each. These
be referred to if the use of any concept seems unclear.

Constructing an application interface involves designing the layouts of the intera
graphics and writing the code to manage their behavior. Without SIMGRAPHICS II
application developer is often burdened with controlling, at a detailed level, the mech
of the particular interaction environment: Has the mouse button been pressed?; Wa
backspace key?; Should I echo it?; etc.

SIMGRAPHICS II offers tools to help design the layout of the interaction screens. T
may be composed by combining a number of interaction primitives to display lists, a
numeric values, check options, etc. These layouts are then filed for later use by an
cation program. At execution time, SIMGRAPHICS II takes over most of the interactio
management—tracking the mouse, toggling highlights, scrolling lists. This leaves th
plication developer free to concentrate on the mechanics of his or her program.

A form is composed of a group of fields. There are three principle types of forms:
down menus, dialog boxes and palettes that may contain values boxes, text boxes, lis
and buttons.

Forms are generated and modified by SIMDRAW. This editor was created using the
concepts, so it is an excellent example of its own capabilities. The editor saves cod
scriptions of these structures to files. The application program can retrieve any form
rebuild its structure, with a single statement. A function call initiates and manages t
teractive behavior of a form. The run-time support library knows how to generate th
play screens and manage the details of the user interaction. The steps for accomp
the simplest interactions are summarized as:

1. Design a form with SIMDRAW.
79

SIMGRAPHICS II User’s Guide

ieve

plica-
cture.
n and

rol at-
inter-

havior
This
 field
.

del
ctory.

 text
Refer to

, giv-
2. Save the form.

3. Use the command SHOW and the function ACCEPT.F in your program to display
and input information with your form.

4. Use the built-in SIMSCRIPT functions and attributes to identify fields and retr
data.

During forms editing, each field is tagged with an arbitrary reference name. The ap
tion program uses this reference name to refer to a particular field within a form stru
This is how the program can retrieve data values and selections from the interactio
even alter the values or other internals in some of the fields. Each field has cont
tributes, specified during forms editing, which help determine its behavior during the
action.

The application program has the option of selectively using code to manage the be
of specific fields in a form. This is done by supplying a control routine for a form.
control routine is invoked each time any field in the form is selected. Based on the
Identifier, the control routine can supply any behavior, analysis, or validation desired

5.2 Creating a Form

You create a form with SIMDRAW. Typically, this is run in the subdirectory of the mo
for which the form is being created, because, by default, files are saved in this subdire

Types of fields available in SIMDRAW include buttons, radio buttons, check boxes,
boxes, value boxes, list boxes, combo boxes, tables, tree lists and a progress bar.
table 5-1.

Different field types may have different associated data types. The attributes DDVAL.A,

DTVAL.A, and DARY.A are used to access numeric, string, or array values respectively
en the pointer to the relevant field.
80

Chapter 5. Forms and Graphical Interaction

nique
. The
a spe-

ontrol,
. The

 in

t by the

 par-
r

s
ire-
5.2.1 Reference Names and Field Attributes

Each field within a form, to be accessible to an application, must be tagged with a u
reference name. This name is a text string specified for the field during forms editing
name is used when invoking a SIMSCRIPT run-time library function which accesses
cific field in the form data structure.

The attributes of any field are categorized as graphic, controlling its appearance, or c
determining its behavior. Values for these attributes may be chosen at editing time
most important ones for now are:

• The Reference Name. This is the name you give a field when you create it
SIMDRAW. It is needed to refer to the field later.

• Value Attributes. These include DDVAL.A, DTVAL.A , and DARY.A, for numeric,
text, and array values, respectively. These can be used for input or can be se
program for use as output.

Table 5-1. Simple Behaviors and Field Types

In the first two columns of the table below are the requirements you may have for a
ticular field in a dialog box. The third column lists which attributes of the field pointe
(obtained by DFIELD.F) should be specified in your program. The fourth column list
all of the objects available from SIMDRAW that could be used to implement the requ
ment. These objects are described in greater detail later.

REQUIREMENTS USER
 ACCESS

ENTITY
 ATTRIBUTES

CONTROLS TO USE

One numerical value RW DDVAL.A Value box

One numerical value R DDVAL.A Label
Progress bar

One text value RW DTVAL.A Text box

One text value R DTVAL.A Label

One boolean value
(0 or 1)

RW DDVAL.A Check box
Radio button
Menu item

Many text values RW DARY.A Multi-line text box

Select from an array
of text

R DARY.A
DTVAL.A
DDVAL.A

List box
Combo box
Tree list
Table
81

SIMGRAPHICS II User’s Guide

n in

and
ut is

ction
d as
ine.

tcome
 fields
pro-

t func-
rms
All of these can be set (or left to the default) in SIMDRAW. They will be elaborated o
later sections.

5.3 Using the Form in a Program

An application program refers to a form by either a local or a global pointer variable:

 define FORM.PTR as pointer variable

Then, a SHOW statement,

 show FORM.PTR with "formname"

rebuilds the internal data structure for the form from the specified form file. FORM.PTR
now points to the form.

Note that the SHOW statement does not display the form. It loads it from the form file
assigns it to the pointer variable. The form will be automatically displayed when inp
needed.

5.3.1 Using ACCEPT.F

The display interaction is initiated by invoking a run-time support function ACCEPT.F,
which takes as parameters the pointer to the form and, optionally, an associated control
routine. This function displays the form and manages the interaction dialog. The fun
call will not be completed until either a terminating button (i.e. a button marke
"Terminating" in SIMDRAW) is selected, or until forced to do so by the control rout
When completed, the reference name of the last selected field is returned.

define FIELD.NAME as a text variable
 . . .
let FIELD.NAME =ACCEPT.F(FORM.PTR, control.routine)

 [or ACCEPT.F(FORM.PTR, 0)]

By examining the returned value, the application can make a decision about the ou
of the interaction. For example, a very simple form might present only two selectable
with Identifiers GO and STOP. The returned value indicates whether the user wants to
ceed past this point in execution.

if ACCEPT.F(FORM.PTR, 0) eq "STOP"
 stop
endif

Typically, a form will include two terminating buttons, (labelled, for example, Ok and
Cancel) which are used to indicate that the user wishes to terminate the input. Ok tells the
program to accept the data or instructions gained in the interaction. Cancel instructs the
program to back up a step, causing the interaction to have no effect.

If data is to be retrieved, selected fields may be examined, using a run-time suppor
tion, DFIELD.F . This function takes as input the field Identifier tag assigned during fo
construction, and the pointer to the form.
82

Chapter 5. Forms and Graphical Interaction

tes in-
ly.

e

o sim-

ed.
let ELEVATION.PTR = DFIELD.F("elevation", FORM.PTR)

Data is retrieved using an attribute which depends on the field type. These attribu
clude DDVAL.A, DTVAL.A , and DARY.A., for numeric, text, and array values respective
For instance:

let ELEVATION.VARIABLE = DDVAL.A(ELEVATION.PTR)

5.3.2 Interaction Modes

With regard to execution control, the behavior of ACCEPT.F can be defined using the Edit/
Properties.. option on the dialog box, menu bar, or palette from within SIMDRAW. Th
ACCEPT.F function will behave according to one of three interaction modes:

1. Asynchronous : If this interaction mode is used, ACCEPT.F will suspend the active
process when called. Whenever a status value of “1” is returned from the control
routine or a terminating button is pushed, this process is resumed. If there is n
ulation running and hence no active process, the Synchronous interaction mode is
used.

2. Synchronous : Regardless of the simulation, ACCEPT.F will not return until a status
value of "1" is returned from the control routine or a terminating button is push

Table 5-2. Some Graphics Interaction Constructs

SHOW: Loads the form and sets a pointer to it.
SHOW FORM.PTR with "Filename"

ACCEPT.F: Initiates a graphics interaction.
let EXIT.STATUS = ACCEPT.F(FORM.PTR, CONTROL.ROUTINE)

CONTROL.ROUTINE may be 0

DFIELD.F: Returns the pointer to a field given its name and the form pointer.

let ELEVFIELD.PTR = DFIELD.F("elevation", FORM.PTR)

DDVAL.A: Accesses a numeric value associated with a field.
let ELEV.VARIABLE = DDVAL.A(ELEVFIELD.PTR)

DTVAL.A: Accesses a text value associated with a field. See DDVAL.A.
let PILOT.NAME = DTVAL.A(NAMEFIELD.PTR)

DARY.A: Accesses an array pointer associated with a field. See DDVAL.A

let ENGINE.THRUSTS(*) = DARY.A(THRUSTFIELD.PTR)
83

SIMGRAPHICS II User’s Guide

-

as sev-

urn a

ith

when

r text
loading

fied
tifier
3. Don’t wait : ACCEPT.F will not wait for any action by the user but will return im
mediately. Subsequent action on the form will invoke the control routine.

5.4 Field Attributes

All attributes, including value attributes, can be set within SIMDRAW.

5.4.1 Value Attributes

Each field is represented by a SIMSCRIPT structure. Each of these field structures h
eral value attributes that are accessible from application code.

Having the reference name and the form pointer, a run-time support function will ret
pointer to the field structure:

define FIELD.ptr as pointer variable
let FIELD.PTR = DFIELD.F(FIELD.NAME, FORM.PTR)

Field attributes accessible to the application code are defined as:

define DDVAL.A as double variable

define DTVAL.A as text variable
define DARY.A as pointer variable

All numeric values are held in DDVAL.A. This includes the values 0 and 1 associated w
binary selection of options.

Text data values are held in DTVAL.A.

DARY.A is commonly used as a pointer to a one dimensional array of text variables
dealing with selections from lists.

These can be accessed by a program as in the following examples:

let I = DDVAL.A(FIELD.PTR)
let DTVAL.A(DFIELD.F(FIELD.NAME, FORM.PTR)) = TEXT.VARIABLE
let TEXT.ARRAY(*) = DARY.A(FIELD.PTR)

Field attributes are initialized to zero for numbers and pointers and to null string fo
variables. A program can get and set the values of these attributes at any time after
the form and before destroying it.

If DFIELD.F cannot find a field with a reference name matching the speci
FIELD.NAME, it returns a null pointer, i.e. zero. So, if there is a chance that the Iden
will not be matched, program as follows:

let FIELD.PTR = DFIELD.F(FIELD NAME, FORM.PTR)
if FIELD.PTR ne 0
 let PART.NUMBER = DDVAL.A(FIELD.PTR)
else
 '' error processing
endif
84

Chapter 5. Forms and Graphical Interaction

 order,
, how-
elled
ns to

field,
for-

value

cond
essing

ill take

 name

atic

alida-

ames
e
ield
5.4.2 Terminating Buttons

Typically, a form has more than one interactive field. These may be selected in any
and may be selected repeatedly during a single form interaction. At least one button
ever, should be designated from within SIMDRAW as a termination button, often lab
OK, ACCEPT, or RETURN. This terminates the display management phase and retur
the application, which can then interrogate the form structure to retrieve the data values
from each field. As previously noted, a form may have more than one terminating
e.g. OK and CANCEL. Thus, selection of the terminating field may also convey some in
mation in addition to ending the dialog.

5.4.3 Verifying Buttons

From within SIMDRAW, you can mark a button as "Verifying". Typically, the Ok button
is marked as a verifying button. Clicking on a verifying button causes all ranges on
boxes to be checked.

5.5 Form Control Routines

By default, ACCEPT.F calls no control routine. This is specified by passing 0 as the se
argument. In this case, only the standard processing is called. The automatic proc
can accept or reject any user input (for instance if a number is out of bounds), and w
care of terminating the dialog interaction, when a terminating field is clicked.

Additional processing can be specified by declaring a control routine and passing its
as the second argument to ACCEPT.F. A control routine is declared as:

routine DIALOG.ROUTINE
 given FIELD.NAME, FORM.PTR
 yielding FIELD.STATUS

define FIELD.NAME as text variable
define FORM.PTR as pointer variable
define FIELD.STATUS as integer variable

This control routine is called after user input to any field on the form, after the autom
processing is completed.

The control routine is passed the field identifier. Based on this it can select suitable v
tion or cross-checking to perform. The return value of FIELD.STATUS will communicate
the following to ACCEPT.F:

-1 Reject the input (and retry)
0 Accept the input
1 Terminate the interaction.

Setting the return value of FIELD.STATUS affects the continuing interaction.

Control routines, if present, are also called with the predefined reference n
INITIALIZE and BACKGROUND. The control routine is called with the field nam
INITIALIZE only once, before the dialog box is displayed. It is called with the f
85

SIMGRAPHICS II User’s Guide

 You

. The
ing on

termi-

r
re
name BACKGROUND whenever the user clicks on the canvas of the graphics window.
can retrieve the location of this mouse click through the LOCATION.A attribute of the
display entity pointer DINPUT.V (if nonzero).

5.6 Details of Field Operations

The following operations can be applied to individual fields or to an entire form.

5.6.1 The DISPLAY Command

To redisplay a form:

display FORM.PTR

If some initially displayed fields were erased, they will be redisplayed.

To redisplay a field in its current position:

display FIELD.PTR

Once the form has been displayed, individual fields can displayed and redisplayed
values displayed in the fields are taken from the appropriate field attributes, depend
the field type.

Displaying a radio button has a side effect when DDVAL.A = 1 . If another radio button in
the same group has DDVAL.A = 1 , it is set to zero and that button is redisplayed.

5.6.2 The ACCEPT.F Function

let FIELD.ID = ACCEPT.F(FORM.PTR, 0)

let FIELD.ID = ACCEPT.F(FORM.PTR, 'DIALOG.ROUTINE')

We have already described the use of ACCEPT.F for initiating a form-driven dialog.

let FIELD.ID = ACCEPT.F(FIELD.PTR, 0)

ACCEPT.F called on a form returns the reference name of the field that caused the
nation of the dialog. ACCEPT.F should not be called on a single field.

5.6.3 The ERASE Command

erase FORM.PTR

This causes the form to disappear from the screen. A DISPLAY statement, or anothe
ACCEPT.F, specifying FORM.PTR will bring it back. Note that any values in the form a
unchanged.

erase FIELD.PTR

This erases a single field from the screen.
86

Chapter 5. Forms and Graphical Interaction

y allo-

a field

 to

ion of
sing
 the
aps

 Use
that
the

n

mmon

.

boxes

l di-

anage-

hen
ts no
5.6.4 The DESTROY Command

The destroy command not only erases a form from the screen, but clears all memor
cated to it, reversing the effect of the SHOW command. The syntax is:

destroy FORM.PTR

5.6.5 The SET.ACTIVATION.R Routine

This routine can be called to either deactivate (gray out) or activate (make usable)
on the form. The syntax is:

call SET.ACTIVATION.R given FIELD.PTR, ACTIVATION.STATUS

The FIELD.PTR parameter is the fie ld pointer obtained from DFIELD.F .
ACTIVATION.STATUS is a flag where “0” means to gray out the field and “1” means
make it active. You can deactivate an entire form with SET.ACTIVATION.R if you pass
the form pointer as its first parameter.

5.7 Dialog Boxes and Their Fields

5.7.1 Dialog Box

This is a container for all the other control types. You can set the initial screen posit
the dialog box from within SIMDRAW by selecting the dialog box’s background and u
the Edit/Properties... option. The position can also be set programmatically using
LOCATION.A attribute of the form pointer. (The lower left-hand corner of the screen m
to coordinate (0,0) while the upper right-hand corner maps to (32767,32767).
SIMDRAW to define which of the four corners of the dialog box is positioned. Note
the value of LOCATION.A is updated automatically whenever the user repositions
dialog.

A dialog box can be either tabbed or non-tabbed. A tabbed dialog box contains a sectio

of overlapping pages of fields. Generally, fields in the same page should have a co

functionality. A page is made visible when the user clicks on its tab at the top of the page

A tab is composed of a text label and optionally a small bitmap icon. Tabbed dialog

are created within SIMDRAW and require no additional programming over traditiona

alog boxes. The control routine is NOT called when the user selects a tab page. M

ment of these pages is done automatically.

Button

A Button is a box with an explanatory text string in it. It is the simplest input field. W
a button is clicked on, the control routine gets only the field name of the field. It ge
other data. Remember that buttons can be "terminating" or "verifying".
87

SIMGRAPHICS II User’s Guide

 check
 deter-

ld is

o box.
rmined
, the
 value

of the
outine

 for

otal
ed in
Check Box

A Check Box toggles between the values zero and one. When the form is loaded,
boxes have the default value set during forms editing. The state of a check box is
mined by setting or examining the attribute DDVAL.A of that check box.

When a check box is selected, ACCEPT.F toggles the value of DDVAL.A, redisplays the
check box to reflect the new value, and calls the control routine, if provided. The fie
not redisplayed after returning from the user's control routine.

Radio Buttons

Radio Buttons are differentiated from check boxes in that they are contained in a radi
Only one radio button in the box can be turned on. The state of a radio button is dete
by the attribute DDVAL.A. It assumes values zero and one. When the form is loaded
radio buttons have the values set during forms editing. The radio box itself has no
attributes.

When a radio button is selected, ACCEPT.F sets the value of DDVAL.A to one, redisplays
the field to reflect the new value, and calls the control routine, if one is provided.

Text Box (Editable)

The value associated with a Text Box is a text string in DTVAL.A. The initial value can be
specified when creating the field by using SIMDRAW. If the field is marked as Selectable
using Return in SIMDRAW, the control routine will be called if the user presses Return af-
ter entering the data.

Text Label (Non-editable)

A label is used to place explanatory text, values or titles in a dialog box. The text
label can be reset programmatically but cannot be modified by the user. The control r
is not called when the user clicks on a label. From within SIMDRAW you can define
whether the text is specified by the DTVAL.A or the DDVAL.A attribute of its field pointer.
SIMDRAW can define one of the following behaviors for a text label:

a. Use the DTVAL.A attribute to define the text. There is no limit to string length.

b. Use the DTVAL.A attribute to define the text. Allocate a fixed number of places
the string.

c. Use the DDVAL.A attribute to define a real value displayed by the label. The t
number of places, and number of places after the decimal point can be defin
SIMDRAW.

For example, if the label’s reference name is “MY.LABEL ”, you can programmatically set
the label as follows:

Let DTVAL.A(DFIELD.F(“MY.LABEL”, FORM.PTR)) = “Hello World”

or

Let DDVAL.A(DFIELD.F(“MY.LABEL”, FORM.PTR)) = 12.5
88

Chapter 5. Forms and Graphical Interaction

 Hor-
s not
r by

hen
r-
n any

 input.

ximum
. The
. The

 per-
agni-
s are
 the
h the

layed
d over
ected.
. The
inter
-

ill be
r, the
 The

revi-

tine
Multi-line Text Box

A multi-line text box allows the user to type in as many lines of text as he wants to.
izontal and vertical scroll bars are shown if the visible area of the text edit window i
large enough to enclose the text. The initial text can be set from within SIMDRAW o
program code. The current contents of the text box are held by the DARY.A attribute which
points to a SIMSCRIPT II.5 array of text. Note that the control routine is NOT called w
the Return key is pressed. The DARY.A attribute is automatically updated to reflect the cu
rent text box contents before the control routine is called in response to an action o
other field in the form.

Value Box

The Value Box is used to read a number. When it is selected the box prompts for
The value of the number is in DDVAL.A and is initially zero. In SIMDRAW this field can
be associated with a range of acceptable values by specifying the minimum and ma
value. The number read from the field is not accepted if it falls outside of this range
maximum and minimum values can only be set or examined during dialog box editing
value box's contents is checked when a verifying button is clicked on.

Progress Bar

A Progress Bar is useful for indicating the “time to completion” of some task being
formed by your program. It is composed of a horizontal bar whose size indicates a m
tude relative to some lower and upper bound. The minimum and maximum value
defined in SIMDRAW while the length of the bar is defined programmatically, using
DDVAL.A attribute. The user cannot interactively change the position of the bar wit
mouse.

List Box

A List Box is associated with an array of text variables. Each array element is disp
on a separate line of the list box. To select an item from the list, the mouse is clicke
that line. New items can not be typed into a list box. Only existing items can be sel
To add new items to the list box, a program must add them to the list box text array
array pointer DARY.A points to the array of text variables that represent the list. This po
is initially zero. The index of the selected element is in DDVAL.A. The selected array ele
ment is copied into DTVAL.A.

If the array has more elements than the list box can display, a vertical scroll bar w
shown on the right-hand side. By clicking over the up- or down-arrow in the scroll ba
additional list items can be brought into view. This scrolling is done automatically.
control routine is called only when a selection is made.

When an item from the list box is selected, ACCEPT.F updates DDVAL.A and DTVAL.A.
The selected item is highlighted and highlighting is removed from the item that was p
ously selected.

List boxes can be defined in SIMDRAW to allow multiple selections. The callback rou
will be called each time an item is selected. The DDVAL.A attribute of the list box field will
89

SIMGRAPHICS II User’s Guide

lected
e-
ist

yed
e

, it is
ithin
king
in the

ition,
he list

-
 and
contain the index of the item last selected. To synchronously poll a list box for its se
contents the LISTBOX.SELECTED.R routine is used. This routine can also be used to d
termine if the user has double-clicked on an item in the listbox. Given a pointer to the l
box field and item number, this routine yields 2 if the item has been double-clicked on, 1
if this item is selected, and 0 otherwise.

 ''-- Synchronous polling of multiple selection list
 ''-- boxes. First get input from the form
let FIELD.ID = ACCEPT.F(FORM.PTR, 0)
let LIST.ITEMS(*) = DARY.A(DFIELD.F("LISTBOX", FORM.PTR))

 ''-- use a loop to show which items were selected
for I = 1 to DIM.F(LIST.ITEMS(*))
do
 call LISTBOX.SELECTED.R
 given DFIELD.F("LISTBOX", FORM.PTR), I
 yielding ITEM.SELECTED.FLAG

 select case ITEM.SELECTED.FLAG
 case 0
 write LIST.ITEMS(I) as “ITEM “, T *, “ not selected.”, /
 case 1
 write LIST.ITEMS(I) as “ITEM “, T *, “ was selected!”, /
 case 2
 write LIST.ITEMS(I) as “ITEM “, T *, “ was double-clicked!”, /

endselect
loop

Note: To deselect all items in a multiple selection list box, set its DDVAL.A attribute to 0
and redisplay the field.

''-- deselecting all selected items in a multiple selection list box
let DDVAL.A(DFIELD.F("LISTBOX", FORM.PTR)) = 0
display DFIELD.F("LISTBOX", FORM.PTR)

Combo Box

A combo box is made up of a text box and an initially hidden list box which is displa
when the dropdown button is pushed. DARY.A contains a selectable list of choices for th
text displayed in the text box. When the user picks one of these text strings
automatically displayed in the box. If a combo box is defined to be “Editable” from w
SIMDRAW, the user is allowed to type his own choice into the text box (instead of pic
from the list). The control routine will be invoked whenever the user selects an item
list. If the combo box is defined as Selectable using Return in SIMDRAW, then the control
routine is invoked when the user presses the Return key.

Tree View List

Lists of items can be viewed hierarchically with items containing other items. In add
items in the list can be denoted with a small bitmap icon. Items can be added to t
either from within SIMDRAW or from your program.

The items contained in the list are defined through the DARY.A attribute. The name speci
fication uses the "/ " character to separate the container name from the item name
works much the same way as a path name for the file system, i.e.
90

Chapter 5. Forms and Graphical Interaction

ithout

e "

ing

ted

ing

array

in the

ts of
<top_container_name>/.../bottom_container_name>/<item_name>

For example, if you wanted to show following items:

a. "San Fransisco" contained in "California" which is in "Usa States"

b. "San Diego" contained in "California" which is in "Usa States"

c. "Las Vegas" contained in "Nevada" which is in "Usa States"

d. "Berlin" contained in "Germany" which is in "Europe ".

The DARY.A attributes should contain the following text strings:

"Usa States/California/San Fransisco"

"Usa States/California/San Diego"

"Usa States/Nevada/Las Vegas"

"Europe/Germany/Berlin"

To define the bitmap icon to place next to the item name, use the "| " character after the
name specification to separate the path name from bitmap file (or resource) name (w
extension). For example, to use bitmap ZOOM_L for item "Zoom Tool " in category
"Tools ", the array item would be:

"Tools/Zoom Tool|ZOOM_L"

To define an icon for a category, list the category by itself on a separate line with th| "
character and the bitmap names, i.e.

"Tools|SELTOOL_L"

If you need to use the "| " or "/ " characters in your item name, you can literalize them us
a preceeding backslash "\ " character.

The DDVAL.A attribute of a tree list field pointer will contain the index of the last selec
item. In the above example, if the user clicked on the "Las Vegas " item, the field's
DDVAL.A attribute would be "3". You can set the selected item in the tree by sett
DDVAL.A and redisplaying the field. From above, set the selected item to "San Diego ":

...
let DDVAL.A(DFIELD.F("MY_TREE", DIALOG.PTR)) = 2
display DFIELD.F("MY_TREE", DIALOG.PTR)
...

Table

A table contains a matrix of selectable rectangular text cells. A 1-dimensional text
containing labels displayed in cells is accessible through DARY.A. This array can be set up
programmatically, but it must contain the same number of text strings as total cells
table. DARY.A is organized in row-major order. DDVAL.A contains the index of the item
last selected, while DTVAL.A has the text for this item.

Setting the text for some row and column programmatically would involve statemen
the form :
91

SIMGRAPHICS II User’s Guide

utine

ftmost

shown
 of the

ond to

 line

nd re-
let ITEMS = DARY.A(TABLE.PTR)
let ITEMS((ROW-1) * NUMBER.COLUMNS + COLUMN) = TEXT.VALUE
display TABLE.PTR

Getting which column and row were selected can be done from within the control ro
as follows:

let SELECTED.ROW = DIV.F(DDVAL.A(TABLE.PTR)-1, NUM.COLUMNS) + 1
let SELECTED.COLUMN = MOD.F(DDVAL.A(TABLE.PTR)-1, NUM.COLUMNS) + 1

where row number one (1) is the top row in the table and column number one is the le
column.

In SIMDRAW, you can add row and column headers to your table. Row headers are
in a column on the left-hand side, while column headers are laid out as the top row
table. If headings are added to the table, the row headers become column number one, and
the column headers become row number one.

5.8 Predefined Dialog Boxes

5.8.1 Standard Message Dialog

If you wish to display a simple, one line message to the user and force him to resp
this message before execution of the program can resume, you can use the MESSAGEBOX.R
routine. This routine will instruct the toolkit to display a dialog box containing the one
message, and one button labeled OK or Continue . MESSAGEBOX.R will not return until the
user presses this button.

let TITLE = “Completion Status...”
let MESSAGE = “Your task has been completed!”
call MESSAGEBOX.R given MESSAGE, TITLE

5.8.2 Custom Message Dialogs (Alert, Stop, Information and Question)

You can define more customized dialogs to deliver simple information to the user a
ceive a response. Your program can display Alert, Question, Information and Stop dialog
boxes. These forms are built using SIMDRAW (using the Message Dialog button on the
left-hand Mode palette shown with SIMDRAW's main window.)

A custom message dialog can be one of the following five styles:

a. Plain

b. Stop Sign

c. Question mark

d. Alert (Exclamation point)

e. Information.

It will contain one of the following sets of response buttons:
92

Chapter 5. Forms and Graphical Interaction

alogs.

e text.

ns-

 not
rac-

 file
ing the

e.

elect
lling
a. OK button only

b. OK and Cancel buttons

c. Yes and No buttons

d. Yes, No and Cancel buttons

e. Retry and Cancel buttons

f. Abort, Retry and Ignore buttons.

Custom message dialogs are displayed using the SHOW statement and then the ACCEPT.F
routine (like a conventional dialog). Control routines are not used with message di
The text of the message can be set from SIMDRAW or by your program. The DARY.A at-
tribute of the message dialog form points to a text array containing the lines of messag

The field name returned by ACCEPT.F describes which button was pressed. Valid respo
es returned by ACCEPT.F are "OK", "CANCEL", "YES", "NO", "ABORT", "RETRY" and
"IGNORE." (Note: there is no display entity corresponding to these field names. Do
use DFIELD.F on a message dialog box). The following example shows a typical inte
tion with a message dialog:

show MESSAGE.PTR with "retry_cancel.frm"
let TEXT.LINES(1) = "D:\ is not accessible"
let TEXT.LINES(2) = "The device is not ready."
let DARY.A(MESSAGE.PTR) = TEXT.LINES(*)

select case ACCEPT.F(MESSAGE.PTR, 0)
 case "RETRY" ...
 case "CANCEL" ...
endselect

5.8.3 File Selection Dialog

Toolkits provide standard dialogs for browsing through the directory structure of the
system. These dialogs can now be accessed from within a SIMSCRIPT program us
FILEBOX.R routine as:

let FILTER = “*.dat”
let TITLE = “Select a data file...”
call FILEBOX.R given FILTER, TITLE yielding PATH.NAME, FILE.NAME

The FILTER variable can either be a wild card, or a fully or partially qualified file nam
The selected file and its path are returned in the FILE.NAME and PATH.NAME variables.
The TITLE parameter is the text shown in the title bar of the dialog.

5.8.4 System Font Browser

A predefined dialog box can be brought up programmatically allowing the user to s
system font attributes from those available on the server. This is done by ca
FONTBOX.R as follows:

let TITLE = “Select a font”
call FONTBOX.R given TITLE yielding
93

SIMGRAPHICS II User’s Guide

n

 win-
th the

wing

 screen.
causes

t 1.

ssible
 name

 of

isplay
 FAMILY.NAME, POINT.SIZE, ITALIC.DEGREE, BOLDFACE.DEGREE

The yielded arguments are identical to those described above for TEXTSYSFONT.R.
FONTBOX.R will not return until a font has been selected, or cancel has been pressed. I
this case the result of FAMILY.NAME will be "" .

5.8.5 Printing the Contents of a Graphics Window (or Individual Segment)

Microsoft Windows users can programmatically have the contents of either an entire
dow or an individual segment sent to a printer through the system print dialog box wi
following routines:

call PRINTWINDOW.R given WINDOW.PTR, USE.DIALOG
yielding SUCCESS

call PRINT.SEG.R given SEGMENT.ID, USE.DIALOG yielding SUCCESS

where WINDOW.PTR is the display entity returned from OPENWINDOW.R. I f the
USE.DIALOG integer parameter is non-zero, the system print dialog is displayed allo
the user to set print options. SEGMENT.ID is either obtained from the SEGID.A icon
attribute or from SEGID.V . The integer SUCCESS is non-zero if printing was completed
successfully. On UNIX systems, the graphics are written to an EPS PostScript file.

5.9 Menu Bars and Palettes

5.9.1 Menu Bar

A menu bar is composed of several menus arranged in a row on a bar across the
Clicking on one causes its menu to be displayed. Clicking on an item inside a menu
it to be selected. In addition to being returned by ACCEPT.F, the index number of the item
selected is accessible through the DDVAL.A of the particular menu, as in:

let ITEM.NUM = DDVAL.A(DFIELD.F(MENU.TXT, FORM.PTR))

where the menu name (here a variable) must be all capitals. The indexing begins a

From SIMDRAW, the constructed menu bar can be cascadeable (i.e. menus can contain
other menus). This hierarchy is preserved in your program with respect to fields acce
by DFIELD.F . To access a menu contained within another menu, pass the reference
of the desired sub-menu along with a pointer to the parent menu. DFIELD.F will then re-
turn a pointer to the sub-menu. Since DFIELD.F is recursive, it can be used regardless
how many layers of menus are between the form and the desired field.

You can have check marks displayed programatically next to any menu item. To d
the check mark, set the DDVAL.A attribute of the menu item field pointer to “1”, and then
re-display the field. For example:

let DDVAL.A(DFIELD.F("MENUITEM_TO_CHECK", MENUBAR.PTR)) = 1
let DDVAL.A(DFIELD.F("MENUITEM_TO_UNCHECK", MENUBAR.PTR)) = 0
display DFIELD.F("MENUITEM_TO_CHECK", MENUBAR.PTR)
display DFIELD.F("MENUITEM_TO_UNCHECK", MENUBAR.PTR)
94

Chapter 5. Forms and Graphical Interaction

palette
utton is

calling
 The
luded
button,

ties:
er
s, the

r-

g its
lette's

eved
Remember that a menu item can be grayed out or can be deactivated with the
SET.ACTIVATION.R routine.

call SET.ACTIVATION.R(DFIELD.F(“MENUITEM_TO_GRAY”,MENUBAR.PTR), 0)

5.9.2 Palettes

SIMSCRIPT applications can have palettes attached to the sides of the windows. A
contains rows and columns of square palette buttons. On the face of each palette b
a bitmap icon. This bitmap comes from a .bmp file on MS Windows machines and a .xwd
file on XWindows machines which must be in the same directory as your graphics.sg2
library file. Palettes are created only by SIMDRAW.

Palettes are used inside your program the same way that menu bars are; by
ACCEPT.F given pointers to both the palettes display entity and the control routine.
ACCEPT.F call must be made from within a process and, a control routine must be inc
to allow the palette to behave asyncronously. Whenever the user clicks on a palette
the control routine is called given the button's field name.

From within SIMDRAW you can define your palette buttons to be one of three varie
momentary, toggle or dragable. “Momentary” buttons pop back up automatically aft
being pressed, while “toggle” buttons stay down. Like dialog boxes and menu bar
buttons in a palette are represented by fields of the palette form. The DDVAL.A attribute of
the “toggle” button field (obtained using DFIELD.F) indicates whether the button is cu
rently “down” or “up”.

“Dragable” buttons allow the user to click down on a palette button, and then dra
outline to the canvas of the window. When the mouse button is released, the pa
control routine is called. From within the control routine, the drop point can be retri
through the LOCATION.A attributes of DINPUT.V . The DIVAL.A attribute of DINPUT.V
will contain the viewing transform number corresponding to that drop location.

Displaying the palette can be done as follows:

process PALETTE
...
show FORM.PTR with "mypalette.frm"
let FIELD.ID = ACCEPT.F(FORM.PTR, ‘PALETTE.CTRL’)
 '' (will suspend this process)
...

This is a typical palette control routine:

routine PALETTE.CTL given FIELD.NAME, FORM.PTR yielding STATUS

select case FIELD.NAME
 case "INITIALIZE" '' called once just after ACCEPT.F call

 case "BACKGROUND" '' called when clicked on window canvas background

 case “MOMENTARY BUTTON”
 write as “A palette button has been pushed...”, /
95

SIMGRAPHICS II User’s Guide

auto-
 where
 check-
 trans-

t is not
trol
 case “TOGGLE BUTTON”
 write DDVAL.A(DFIELD.F(FIELD.NAME, FORM.PTR)) as
 “State of toggle button is “, I 3, /

 case "MY_DRAGGABLE_BUTTON"
 let VXFORM.V = DIVAL.A(DINPUT.V)
 display NEW.ICON at with "temp.icn" at
 (LOCACION.X(DINPUT.V), LOCATION.Y(DINPUT.V))
endselect
end

5.10 Examples

The first example is a form that might be used for a deposit in the simulation of an
mated teller machine. The form has a text box where you enter a name, a value box
you can enter the amount of the deposit, radio buttons that let you choose either the
ing or savings account, and a check box that lets you optionally print a record of the
action.

This example relies on standard field processing to validate that the deposit amoun
negative and to terminate when Ok or Cancel is selected. It does not need to use a con
routine.

Main
 Define FORM as a pointer variable ''Form Pointer
 Define CHECKBOX as a pointer variable ''Field Pointer

 Show FORM with "atm.frm" '' Build the form

 If ACCEPT.F(FORM, 0) eq "OK" '' OK Button was clicked
 Let CHECKBOX = DFIELD.F("STATEMENT", FORM)
 If DDVAL.A(CHECKBOX) ne 0
 Write DDVAL.A(DFIELD.F("AMOUNT", FORM)) as d (6, 2)
 If DDVAL.A(DFIELD.F("SAVINGS", FORM)) ne 0
 Write as " Deposited to savings account "
 Else
 Write as " Deposited to checking account "
 Endif
 Write DTVAL.A(DFIELD.F("ACCOUNT NAME", FORM)) as t *, /
 Endif
 Endif

End
96

Chapter 5. Forms and Graphical Interaction

gram
 the
deter-
uttons

.

 name
 the
Figure 5-1. Form for the ATM Example

Following convention, only the two button fields, OK and CANCEL, can terminate the in-
teraction. These button attributes are set in the editor. Action is taken only if the pro
detects that OK was clicked. The fields may be clicked and edited in any order until
user is satisfied with the settings. On completion, the checkbox field is queried to
mine whether a transaction record is to be printed. The prototype form used radio b
to select between two alternatives: savings or checking account. Since only SAVINGS is
queried, another check box could be substituted without changing the program code

The next example, List1, creates a form that lets you pick a name from a list. The
will be highlighted when picked. Scroll bars let you scroll through the names to find
one you want. Again, Ok or Cancel will terminate the selection.

Figure 5-2. Form for List1 Example
97

SIMGRAPHICS II User’s Guide

f the

if the

that a
n-

tine

ess-
Main
 Define FORM as a pointer variable ''Form Pointer
 Define FIELD as a pointer variable ''Field Pointer
 Define FIELD.ID as a text variable ''Field ID
 Define NUMBER.OF.NAMES, I as integer VARIABLES
 Define NAMES as a 1-dimensional text array

 Open 1 for input, name is "names.dat"
 Read NUMBER.OF.NAMES using 1
 Reserve NAMES(*) as NUMBER.OF.NAMES '' Create an array of names
 For I = 1 to NUMBER.OF.NAMES
 Read NAMES(I) using 1

 Show FORM with "list1.frm" '' Build the form

 Let FIELD = DFIELD.F("MYLIST",FORM) '' Identify List Box field
 Let DARY.A(FIELD) = NAMES(*) '' Initialize with names

 Let FIELD.ID = ACCEPT.F(FORM, 0) '' Request user input

 If FIELD.ID ne "CANCEL" '' OK Button was clicked
 Let I = DDVAL.A(FIELD)
 If I ne 0
 Write NAMES(I) as "The selected name is ", t *, /
 Endif
 Else '' CANCEL was clicked
 Write as "No selection was made", /
 Endif

End

Note the check for a zero value of DDVAL.A. The user could have clicked on OK without
making any selection in the list box! Be aware that the list box field is given a copy o
array pointer, NAMES(*) . If a program releases such an array, the DARY.A attribute of the
list box should be reset to zero, or reinitialized with a new array. Correspondingly,
list box is destroyed by any means, any array pointed to by DARY.A will be released. Any
subsequent reference in the program would be invalid.

The next example, List2, is similar to List1, but uses a control routine. By checking
valid selection has been made when OK is clicked, it removes the need to check for a no
zero selection from the MAIN program. This example also shows how the control rou
can provide pre-processing of the form data by acting on the INITIALIZE call. No auto-
matic TERMINATE call is required. Any appropriate action can be provided when proc
ing the terminating fields.

Main
 Define FORM as a pointer variable ''Form Pointer
 Define FIELD as a pointer variable ''Field Pointer
 Define FIELD.ID as a text variable ''Field ID
 Define NUMBER.OF.NAMES, I as integer VARIABLES
 Define NAMES as a 1-dimensional text array

 Open 1 for input, name is "names.dat", noerror
 Use 1 for input
 If ROPENERR.V eq 0
 Read NUMBER.OF.NAMES
 Reserve NAMES(*) as NUMBER.OF.NAMES '' Create an array of names
 For I = 1 to NUMBER.OF.NAMES
98

Chapter 5. Forms and Graphical Interaction
 Read NAMES(I)
 Endif
 Close 1

 Show FORM with "list1.frm" '' Build the form

 Let FIELD = DFIELD.F("MYLIST",FORM) '' Identify List Box field
 Let DARY.A(FIELD) = NAMES(*) '' Initialize with names

 Let FIELD.ID = ACCEPT.F(FORM, 'MYLIST.CTRL') '' Request input

 If FIELD.ID ne "CANCEL" '' OK Button was clicked
 Let I = DDVAL.A(FIELD)
 Write NAMES(I) as "The selected name is ", t *, /
 Endif
End
Routine MYLIST.CTRL Given FIELD.ID and FORM Yielding STATUS

 Define FIELD.ID as a text variable
 Define FORM as a pointer variable
 Define STATUS as an integer variable ''Accept/Reject Data
 Define .BEEP to mean 7 ''ASCII <bel> character value

 Select case FIELD.ID

 Case "INITIALIZE" '' Default to select 1st entry
 If DARY.A(DFIELD.F("MYLIST",FORM)) ne 0
 Let DDVAL.A(DFIELD.F("MYLIST",FORM)) = 1
 Endif

 Case "OK"
 If DDVAL.A(DFIELD.F("MYLIST",FORM)) eq 0
 ''No item is selected; beep and do not terminate
 Write .BEEP as a 1, + using 6
 Let STATUS = -1
 Endif

 Default
 Endselect

End ''MYLIST.CTRL
99

SIMGRAPHICS II User’s Guide
100

hese
sition
arts can

 for a

atus: an
hine in
r could
l back-

ing the
ints

n

6. Creating Animated Graphics

Both static and dynamic (moving) icons can be created using SIMGRAPHICS II. T
icons are screen images of SIMSCRIPT II.5 program entities, and changes in their po
or appearance correspond to changes in the system being simulated. For example, p
accumulate in a manufacturing queue, and partially-completed products can move from
station to station in a production line model; ships can arrive at a dock or wait at sea
tugboat to escort them; and so on.

Further, static or dynamic icons can change color or shape to indicate a change in st
idle machine could be shown in blue, a busy machine in green, and a broken mac
red. Similarly, icons can change shape to indicate status: the icon for a busy conveyo
include its cargo, for example. These effects can be combined to produce meaningfu
grounds and displays that bring the results of simulation to life.

There are two ways to create icons, by drawing them on the screen with a mouse us
Icon environment within SIMDRAW, or by specifying the coordinates as a set of po
which are then connected, filled and colored by library routines such as FILLAREA.R and
LINECOLOR.R (Appendix A). SIMDRAW is the preferred means of icon manipulatio
and is described below. The connect-the-dots method is described in Chapter 9.

The basic steps in adding animation to a SIMSCRIPT II.5 simulation are:

1. Decide what to animate and define those entities as GRAPHIC in the pro-
gram preamble;

2. Define visual icons to represent the program entities on the screen, using
SIMDRAW;

3. Translate the model's world into a screen world by defining a coordinate
system; (Define this same coordinate system in SIMDRAW)

4. Add DISPLAY and animation control statements to your code.

Each step is described, in turn, below.
101

SIMGRAPHICS II User’s Guide

s and
ages

laring
s

r own
 the rel-
o rep-
me other
Figure 6-1. Animated Icons

6.1 Graphic Entity Declaration

The principal elementary objects in any SIMSCRIPT simulation program are processe
temporary entities. SIMGRAPHICS II provides an easy way to associate graphical im
with the entities in a model.

SIMGRAPHICS II supports both GRAPHIC entities and DYNAMIC GRAPHIC entities.
DYNAMIC GRAPHIC entities can move across the screen. GRAPHIC entities are motion-
less. Any temporary entity, including processes, may be declared to be GRAPHIC by add-
ing the following statement to the program preamble:

[DYNAMIC] GRAPHIC ENTITIES INCLUDE name1 [, name2] ...

This statement may be placed anywhere after the entity definition in the preamble. Dec
an entity as GRAPHIC or DYNAMIC GRAPHIC automatically provides additional attribute
that are used by SIMGRAPHICS II to maintain the graphical image.

6.2 Coordinate Systems

SIMGRAPHICS II has no inherent measurement units. Many applications have thei
geometry and are easier to design and understand if all measurements are given in
evant units (miles or meters, for example). Other applications may use the Y-axis t
resent some measured value, such as queue length, and the X-axis to represent so
unit, such as time.
102

Chapter 6. Creating Animated Graphics

orld
isplay

 drawn
pping
 both
res and
is lo-
 coor-

ng of
re par-
isplay

wever,
el. In
 or the
d on a

 por-
lcu-

n, the
Spaces in SIMGRAPHICS II are thus defined in a model-oriented manner, in real-w
coordinate units. These are transformed into coordinates suitable for graphics d
through the viewing transformations (figure 6-2) described below.

Figure 6-2. Coordinate Transformations

6.2.1 Normalized Device Coordinates

Because the resolution of display screens vary, the coordinate points of shapes to be
are specified in Normalized Device Coordinates (NDC units), which represent a ma
of an arbitrary space onto available pixels. NDC units range from 0 to 32767 along
the X- and Y-axes. Scaling in both directions is assumed to be the same, so that squa
circles can be easily specified. In the NDC system of notation, the origin point (0,0)
cated in the lower-left corner of the display surface. The lower-right corner has the
dinates (32767,0), and the upper-left corner is (0,32767).

The default space, or viewport, provided by SIMGRAPHICS II is a one-to-one mappi
real-world coordinates into NDC units. Objects that overlap the edge of the screen a
tially displayed (clipped). The units thus conform to the aspect ratios used by many d
devices.

6.2.2 Setting a Viewing Transformation

The NDC system provides a default space in which a display may be designed. Ho
the world space in which the simulated system operates differs from model to mod
one case, the action may take place on a factory floor; in others, an entire continent
bus lines on a printed circuit board may be involved. All these displays are presente
standard screen, so some variable scaling is obviously desired.

It is convenient for the program to specify a region in its world space which is to be
trayed on the display as a window onto world space. The graphics system can then ca
late the scaling required and apply it to each graphic primitive, in order to represent the
region of world space on the display. By altering the parameters of this transformatio

0 32767NDC Space

22755

Modelling
Transformation

Viewing
Transformation

World Space

0

{

0
0 10

10

{

CALL SETVIEW.R(1000, 8000, 14000, 21000)

CALL SETWORLD.R(0, 10, 0, 10)

CALL MZROTATE.R(PI.C * 0.75)

CALL MXLATE.R(5, 5)
103

SIMGRAPHICS II User’s Guide

ferent

 defin-
ings,
ult
 can-

y with
is dif-
can be

ines

 and
 view-

n at
ich is

 at col-

nits.
meters
at
. This

its
ng

r exam-
ine
under-
display can appear to zoom in or out, or to pan up, down, or sideways, displaying dif
regions of world-space.

Users may create Cartesian Coordinate systems scaled to their own applications by
ing viewing transformations. SIMGRAPHICS II permits up to 15 user-defined mapp
indicated by setting the variable VXFORM.V to a value between 1 and 15. (The defa
transformation, VXFORM.V = 0 , represents the entire NDC space described above and
not be changed.)

Thus, for example, a representation of some physical layout may coexist on the displa
a menu of choices. Clearly the transformation appropriate for objects in the layout
ferent from that applied to the wording on the menu. Further, the shape of an icon
specified in NDC units while its position is given in terms of a transformation. This makes
it possible to zoom in or out on the display without the icon changing size.

Each VXFORM.V transformation is defined or redefined with calls on the system rout
SETWORLD.R and SETVIEW.R (described below). The program must set VXFORM.V be-
fore calling these routines. Multiple transformations may operate in different units,
they may overlap. For instance, a factory floor, measured in meters, can map into a
port on part of the display screen, while a menu is displayed on another part.

A particularly convenient transform is one which is 80 wide by 24 high with its origi
the top left. This transformation can be used to map text to the screen in a way wh
analogous to standard text screens. Thus, the following statement prepares to write
umn 65 of row 18:

LET VXFORM.V = 1
CALL SETWORLD (0, 79, -23, 0)
CALL MXLATE.R (65, 18)

6.2.3 Defining The World: SETWORLD.R

Routine SETWORLD.R establishes the coordinates of a space, given in real-world u
These coordinates are converted into device coordinates (NDC units) through para
given to the routine SETVIEW.R. SETWORLD.R defines a rectangle in real world space th
is to be mapped into the NDC space. Areas and points outside the area are clipped
routine is called with the statement:

CALL SETWORLD.R (w.xlo, w.xhi, w.ylo, w.yhi)

where w.xlo and w.xhi are real numbers, in real world coordinates, defining the lim
of the x-axis, and w.ylo and w.yhi are real numbers, in real world coordinates, defini
the limits of the y-axis; w.xlo ≤ w.xhi and w.ylo ≤ w.yhi .

The argument values establish the area to be mapped onto the display surface. Fo
ple, in the Gold Mine problem (Chapter 7), the display is centered around the top of a m
shaft and extends 50 feet to the left of the shaft and 200 feet to the right, 220 feet
ground and 20 feet above ground. Thus, the statements:

LET VXFORM.V = 1
CALL SETWORLD.R(-50.0,200.0,-200.0,20.0)

would appear in the main routine.
104

Chapter 6. Creating Animated Graphics

nits.
m:

i-
It

 the
ke sure
-
ent can

ct ra-
of the

.
fine a
pera-

e
 both

r may
an ob-
sfor-
sy to
aster
tion

ling
6.2.4 Defining a Viewport: Routine SETVIEW.R

Routine SETVIEW.R defines a viewport rectangle on the display surface, using NDC u
The area defined by SETWORLD.R is uniformly mapped into this area. Calls take the for

CALL SETVIEW.R (v.xlo, v.xhi, v.ylo, v.yhi)

where v.xlo and v.xhi are integers in Normalized Device Coordinate units, 0 ≤v.xlo
< v.xhi (32767 ; and v.ylo and v.yhi are integers in Normalized Device Coord
nate units, 0≤ v.ylo < v.yhi ≤ 32767. This routine defaults to full window display.
needs be called directly only if a smaller display is desired.

SETVIEW.R and SETWORLD.R operate with rectangular areas. In many applications,
X- and Y-axes are scaled in the same units. To avoid distorting square objects, ma
that the parameters given to SETWORLD.R and SETVIEW.R map squares in real world co
ordinates into squares in Normalized Device Coordinates. The squareness requirem
be mathematically stated as:

abs.f((w.xhi - w.xlo)/(v.xhi - v.xlo))
 = abs.f((w.yhi - w.ylo)/(v.yhi - v.ylo))

This relationship uses the fact that NDC units in SIMGRAPHICS II preserve the aspe
tio. An easier way is just to use a square worldview with a square viewport on part
screen. This also frees part of the screen for other uses.

Although the two calls interact, SETWORLD.R and SETVIEW.R may be called in any order
Subsequent calls on either or both routines can be used to partially or totally rede
viewing transform. This property can be used very effectively to perform a zoom o
tion.

Note that whenever SETWORLD.R and SETVIEW.R are called, all objects drawn under th
current viewing transformation are automatically redisplayed. If you wish to change
the world coordinate system and the viewport, then bracket the calls to SETWORLD.R and
SETVIEW.R by calls to GDEFERRAL.R as follows:

call GDEFERRAL.R(1)
call SETWORLD.R(w.xlo, w.xhi, w.ylo, w.yhi)
call SETVIEW.R(v.xlo, v.xhi, v.ylo, v.yhi)
call GDEFERRAL.R(0)

6.2.5 Modelling Transformations

In addition to the viewing transformation described above, the ambitious programme
use a modelling transformation to specify or change an object's location or to rotate
ject around its origin (figure 6-3). The SIMGRAPHICS II system uses modeling tran
mations to produce animated effects. Modeling transformations also make it ea
display copies of static objects in various positions in world space by specifying a m
pattern for the image with its “virtual position” at the origin. The modeling transforma
then produces a copy of the object in the desired position and orientation.

Every graphic entity is automatically provided with attributes to control its mode
transformation. These attributes are:
105

SIMGRAPHICS II User’s Guide

age

ith-

be.

The ef-

 by
ing
ORIENTATION.A (entity) Orientation (in radians), counterclockwise from
3 o'clock.

LOCATION.A (entity) Location of the object with respect to its origin.

Values may be assigned directly to ORIENTATION.A. LOCATION.A must be set using the
value produced by the system function LOCATION.F (xpos, ypos) as follows:

LET LOCATION.A (entity) = LOCATION.F (xpos , ypos)

where xpos and ypos are real world coordinates. Changing the location causes the im
to be redrawn automatically, so change orientation before changing location.

You can specify the origin of your icon with respect to the points which define it from w
in SIMDRAW. When in the Image Editor use the Edit/Image... option. Click on the Select...
button inside the Image Attributes dialog, and then point to where you want the origin to
The object will be rotated about this point if the ORIENTATION.A attribute is assigned in
your program.

Figure 6-3. Object Origin

The modelling transformation is supported by the library routines:

MXRESET.R (entity) Set modeling transform from an entity.
MZROTATE.R (radians) Rotate counterclockwise around origin.
MXLATE.R (xval , yval) Translate (move) in X and Y.

(System attributes, functions, and routines are completely described in Appendix A).
These are called as a standard part of the DISPLAY routine . Their explicit use may be
necessary in certain advanced situations. Rotation is performed before translation.
fects of successive calls on both MZROTATE.R and MXLATE.R are cumulative.

The modelling transformation is applied before the viewing transformation specified
VXFORM.V. The modelling transformation is logically separate from the view
transformation.

-10

-20

+10

+20

+20+10-10-20
106

Chapter 6. Creating Animated Graphics

dition-
amic
ress-
 entity

n, the
ion
e
r
at

.
 can be
tion.

t's

ol.

 from

 object
t:
6.3 Animating Dynamic Graphic Entities

Dynamic graphic entities follow the same rules as static graphic entities, but have ad
al display features which manipulate their location, orientation, and velocity. The dyn
nature of such entities is controlled by giving them a velocity. As simulation time prog
es, the location is automatically updated as determined by the velocity, causing the
to be redrawn on the display surface.

Control of animation is provided by the system function VELOCITY.A (entity) , a left
function that sets velocity. Except for the special value of 0, which stops linear motio
value of VELOCITY.A must be set to a value produced by the system funct
VELOCITY.F (speed, theta) , where speed is a real value in Real World Coordinat
Units per Simulated Time Units, and theta is the direction of motion in radians. Fo
example, in the Gold Mine problem (Chapter 7), the mine elevator travels straight down
a speed of 33.33 feet/minute. Thus, the statement:

LET VELOCITY.A(lift) = VELOCITY.F(100/3,-PI.C/2)

appears in the code.

Note that motion continues until an entity is explicitly stopped with the statement:

LET VELOCITY.A(entity) = 0

Assigning a value of VELOCITY.F(0., 0.) to VELOCITY.A makes an object mark time
Its image is refreshed as simulated time passes, but the position is not updated. This
useful for objects whose animation consists of something other than simple linear mo

VELOCITY.A changes the value of LOCATION.A as simulated time changes. An objec
starting position is obtained by setting LOCATION.A.

6.4 Displaying Icons

In order to display an object, execute the DISPLAY statement:

DISPLAY name1 [WITH "iconname"] [AT (posx, posy)]

where name1 is a graphics entity pointer. Or use the SHOW statement:

SHOW name1 [WITH "iconname"] [AT (posx, posy)]

These statements may be placed anywhere in the executable flow of program contr

If the DISPLAY statement is executed, any previous image of the object is removed
the display surface, and the new image appears at the screen location set by (posx,
posy) above or a LOCATION.F statement.

The SHOW statement by itself does not make an icon visible, but rather associates the
with an icon. To make the icon visible after a SHOW statement, either the explicit statemen

DISPLAY name

or assignment to LOCATION.A must be executed.
107

SIMGRAPHICS II User’s Guide

simu-
atten-

st be
 in that
 para-
.

6.5 An Example

The animated graphical features will now be illustrated in the context of a complete
lation example. The simulation aspects of this model have been simplified to focus
tion on the graphical interactions.

6.5.1 Preamble

This preamble defines one process (called shape) and declares it to be a DYNAMIC
GRAPHIC entity. The icon for shape was prepared using the Icon Editor , and can be any
shape whatsoever. For this example, it was drawn as an arrow.

Preamble ''Case Study "NEWSHAPE"

'' A simple dynamic graphics output using SIMGRAPHICS II.
'' It draws a shape and moves it around the screen.

 Normally mode is undefined

 Processes include SHAPE

 Dynamic graphic entities include SHAPE

End ''Preamble

Figure 6-4. Output of the Shape Routine

6.5.2 Main Program

Prior to starting the animated simulation, there are some initial conditions which mu
established. Lines 3 and 4 set up the viewport and dimension the world to be seen
viewport. Line 7 determines how simulated time should be scaled to real time (see
graph 6.7). Finally, to begin the simulation, one shape is activated and assigned its icon
108

Chapter 6. Creating Animated Graphics

tain
urces,
hanges
o

utput
 as
r of
ple,

apter
rough
Main
'' Set up the world view and view port
 Let vxform.v = 1 '' View port number
 Call setworld.r(0.0, 2000.0,0.0, 2000.0)

'' 1 second of real time per second of simulated time
 Let TIMESCALE.V = 100

'' Create a shape and specify the icon for it
 Activate a SHAPE now
 Show SHAPE with "shape"

 Start simulation
End ''Main

6.5.3 Process Shape

The shape process describes the life of the object. Normally, this module would con
much more complex logic to describe its interaction with other objects, use of reso
etc. In this example, it merely experiences a series of time delays interspersed with c
in direction of motion. The setting of the VELOCITY.A attribute causes the animation t
appear.

This program is complete and will execute as is. The only thing not listed here is the o
from SIMDRAW. The program is included on the distribution disks for SIMSCRIPT
NEWSHAPE and may be run from there. We recommend that a new use
SIMGRAPHICS II run this model as is and then modify it to do other things. (For exam
you might draw a different shape or change the path the object follows.)

A version of this same model which does not use SIMDRAW output is included in Ch
9. It is instructive to compare the two models to see how much code is eliminated th
use of the editor.

Process SHAPE
 Define I as an integer variable

'' Set up the parameters for controlling motion
 Let velocity.a(SHAPE) = velocity.f(200.0, pi.c/4)
 Let location.a(SHAPE) = location.f(0.0, 0.0)

'' Make the first move
 Wait 10 units

'' Change the direction of motion to straight down
 Let velocity.a(SHAPE) = velocity.f(200.0, -pi.c / 2)
 Wait 5 units

'' Change the direction of motion again
 Let velocity.a(SHAPE) = velocity.f(200.0, 0.8*pi.c)
'' Make the shape rotate
 For I = 1 to 60 do
 Add PI.C / 60 to orientation.a(SHAPE)''make it tumble
 Wait 0.1 units
 Loop
109

SIMGRAPHICS II User’s Guide

i-
phics

ted

le, the

—if the

imu-
, the
cessing

er,
ational
, addi-

cess,
,
tine is
mmi-
'' Stop the movement and pause to admire the results
 Let velocity.a(SHAPE) = 0
 Wait 5.0 units

End '' process SHAPE

6.6 Destroying and Erasing Icons

The image of a graphic entity is placed on the display surface when the first DISPLAY
statement is executed. Subsequent execution of a DESTROY statement causes the assoc
ated image to be removed from the display surface. All extra memory utilized for gra
data is reclaimed when the DESTROY statement is executed. The ERASE statement merely
removes an image from the screen.

6.7 Synchronizing Simulation Time and Real Time

Synchronization between real time and simulation time in SIMGRAPHICS II is facilita
with the real global variable TIMESCALE.V. The value of TIMESCALE.V establishes a
scaling between real-time (in units of 1/100 second) and simulation time. For examp
statement:

LET TIMESCALE.V = 100

establishes a one-to-one mapping of simulation time units and real elapsed seconds
computer can work that fast.

Examples are:

Simulated Real
TIMESCALE.V Time Units Time

1 1 0.01 second
1 100 1 second
100 1 1 second
6000 1 60 seconds

SIMGRAPHICS II updates the display of all dynamic graphic entities whenever the s
lation time clock is updated. If simulation time is passing faster than wall clock time
displays are updated at more frequent intervals. If the desired rate is faster than pro
speed allows, SIMGRAPHICS II will be unable to catch up.

Decreasing the value of TIMESCALE.V has the effect of making the simulation run fast
in less elapsed time, provided there is enough computer power to do both the comput
simulation and the animated graphics. When there is not enough computer power
tional elapsed real time will be taken.

The timing process of SIMGRAPHICS II also supports user intervention in the pro
through the global variable TIMESYNC.V. TIMESYNC.V is a subprogram variable which
when non-zero, points to a user-supplied time synchronization exit routine. This rou
called from the event scanning mechanism offering the simulation time of the most i
nent event.
110

Chapter 6. Creating Animated Graphics

 and
ing of
 of
ange
-

 a con-

before
ovid-
ent,

he first

 time
d,
n as

avy
r-
e cur-
The TIMESYNC routine has the option of consulting the computer's real time clock
substituting a lower value to be used to update simulation time. This forces re-scann
the event list until the TIMESYNC routine is prepared to accept the tendered value
TIME.V . Re-scanning the event list allows the possibility that the future event may ch
either as a result of some action in the TIMESYNC routine, or completion of an asynchro
nous read request. During this activity, of course, the routine can choose to provide
tinually updated display of simulation time, in any appropriate format.

The user's exit routine is called whenever the simulated clock is to be updated, but
any animation is performed. This routine may perform several functions, including pr
ing a graphical display of simulated time, fine-detail time synchronization or adjustm
scheduling or canceling events or processes, or collision avoidance computations. T
is the most common use.

The TIMESYNC.V exit can serve as a convenient means for adjusting the flow of real
and simulated time, to improve Real Time control. When lockstep operation is desire
TIMESYNC.V can reschedule heavy computation or adjust the detail of the simulatio
appropriate.

The value of TIMESCALE.V could also be adjusted to smoothly catch up after he
computation. By using the library routine SYSTIME.R, the program can compare the cu
rent simulation time to the simulation time which should have been advanced to at th
rent real time. The program can then adjust TIMESCALE.V, accordingly.
111

SIMGRAPHICS II User’s Guide
112

re ac-
dded.

 the
r level

 is in-
along
nchro-
 using

s but
play

ayed as
e user
ueue
ourse,

is-
th.
7. Example Programs

This chapter describes the programs included in the SimLab distribution kit. They a
tual SIMSCRIPT II.5 simulations in which graphic effects of various kinds have been a

7.1 The Gold Mine Program

The Gold Mine model simulates the operation of a two level mine. Ore moves from
shafts to the surface in a single elevator that serves both levels. Loads from the lowe
have priority over loads from the upper level.

Only a few routines from the model are presented here. The rest of the application
cluded in the distribution kit. It includes animated graphics on a static background,
with a variety of presentation graphics. Note that the menu bar in the example is asy
nous—the simulation parameters may be altered on the fly. All graphics were created
SIMDRAW. Figure 7-1 shows the Gold Mine simulation running.

In this model, the lift is the only dynamic graphic entity. The loads are graphic entitie
their motion is controlled by the lift. Consequently, the lift must have a user-written dis
routine (Chapter 9) to control the movement of the loads onto and off of the lift.

The asynchronous menu bar allows the user to alter the presentation graphics displ
the model runs (a clock, and two plots of the queues at the two levels). It also lets th
terminate the simulation or alter the rate of ore arrival and the lift capacity. The q
length on each level is displayed as either a trace plot or a dial or level meter. Of c
these presentation graphics could be further modified by use of the Graph Editor .

The clock is updated through the TIMESYNC.V mechanism, and time is allowed to take d
crete jumps since the events are occurring rapidly enough to appear relatively smoo
113

SIMGRAPHICS II User’s Guide

tion
odel.

ey are
gram is
Figure 7-1. The Gold Mine

The motion of the lift is controlled entirely from within the lift process. Since the direc
is either up or down, no computations of coordinate geometry are required in this m

Listed below are the process, control routine, and form dump of the menu bar. Th
included here because of the asynchronous nature of the input. The complete pro
included in all distributions.

7.1.1 Menu Bar Process

Process MENUPROC

 Define FIELD.ID as text variable
 Define MENU as pointer variable
 Define MENUCURSOR as pointer variable

 Show MENU with "goldmenu.frm"
 Let FIELD.ID = ACCEPT.F(MENU,'MENUBAR.CTRL')
 Let FIELD.ID = FIELD.ID

 Activate a FINAL.REPORT now

End ''MENUPROC

7.1.2 Form Control Routine

Routine MENUBAR.CTRL Given FIELD.ID and FORM Yielding STATUS

 Define DIALOG as a pointer variable
114

Chapter 7. Example Programs
 Define FIELD.ID as text variable
 Define FORM as pointer variable
 Define ICONS as a 1-dim text array
 Define STATUS as integer variable

 ''If the menubar was selected, then find out which button on the bar
 ''or a pulldown was pressed.
 If FIELD.ID eq "MENU"
 Let FIELD.ID = DTVAL.A(DFIELD.F("MENU",FORM))
 Endif

 Select case FIELD.ID
 Case "INITIALIZE"

 Case "QUIT"
 Let STATUS = 1

 Case "OPTIONS"

 Case "ICONS"

 Case "LIFT CAP"
 Show DIALOG with "liftcap.frm"
 Let DDVAL.A(DFIELD.F("CAPACITY",DIALOG)) = LIFT.CAPACITY

 Let FIELD.ID = ACCEPT.F(DIALOG,0)

 If FIELD.ID ne "CANCEL"
 Let LIFT.CAPACITY = DDVAL.A(DFIELD.F("CAPACITY",DIALOG))
 Endif

 Case "ARRIVAL 1"
 Show DIALOG with "arrive.frm"
 Let DDVAL.A(DFIELD.F("ARRIVE",DIALOG)) = MEAN.RATE(1)

 Let FIELD.ID = ACCEPT.F(DIALOG,0)

 If FIELD.ID ne "CANCEL"
 Let MEAN.RATE(1) = DDVAL.A(DFIELD.F("ARRIVE",DIALOG))
 Endif

 Case "ARRIVAL 2"
 Show DIALOG with "arrive.frm"
 Let DDVAL.A(DFIELD.F("ARRIVE",DIALOG)) = MEAN.RATE(2)

 Let FIELD.ID = ACCEPT.F(DIALOG,0)

 If FIELD.ID ne "CANCEL"
 Let MEAN.RATE(2) = DDVAL.A(DFIELD.F("ARRIVE",DIALOG))
 Endif

 Case "TIME"
 Show DIALOG with "time.frm"
 Let DDVAL.A(DFIELD.F("SCALE",DIALOG)) = SCALER
 let DDVAL.A(DFIELD.F("LENGTH",DIALOG)) = STOP.TIME

 Let FIELD.ID = ACCEPT.F(DIALOG,0)

 If FIELD.ID ne "CANCEL"
 Let SCALER = DDVAL.A(DFIELD.F("SCALE",DIALOG))
115

SIMGRAPHICS II User’s Guide
''clock ticks (1/100 sec) / unit

 Let TIMESCALE.V = SCALER*100/60.0
 let STOP.TIME = DDVAL.A(DFIELD.F("LENGTH",DIALOG)) ''hours

 Endif

 Case "QUEUE 1"
 Show DIALOG with "icon.frm"
 Reserve ICONS as 3
 Let ICONS(1) = "trace1.grf"
 Let ICONS(2) = "level1.grf"
 Let ICONS(3) = "dial1.grf"
 Let DARY.A(DFIELD.F("PICK",DIALOG)) = ICONS(*)

 Let FIELD.ID = ACCEPT.F(DIALOG,0)

 If FIELD.ID ne "CANCEL" and DDVAL.A(DFIELD.F("PICK",DIALOG)) ne 0
 Let ICONS(*) = DARY.A(DFIELD.F("PICK",DIALOG))
 Let QUEUE.ICON(1) = ICONS(DDVAL.A(DFIELD.F("PICK",DIALOG)))

 ''Load the new graph
 Display N.LOAD.QUEUE(1) with QUEUE.ICON(1)
 Endif

 Case "QUEUE 2"
 Show DIALOG with "icon.frm"
 Reserve ICONS as 3
 Let ICONS(1) = "trace2.grf"
 Let ICONS(2) = "level2.grf"
 Let ICONS(3) = "dial2.grf"
 Let DARY.A(DFIELD.F("PICK",DIALOG)) = ICONS(*)

 Let FIELD.ID = ACCEPT.F(DIALOG,0)

 If FIELD.ID ne "CANCEL" and DDVAL.A(DFIELD.F("PICK",DIALOG)) ne 0
 Let ICONS(*) = DARY.A(DFIELD.F("PICK",DIALOG))
 Let QUEUE.ICON(2) = ICONS(DDVAL.A(DFIELD.F("PICK",DIALOG)))

 ''Load the new graph
 Display N.LOAD.QUEUE(2) with QUEUE.ICON(2)
 Endif

 Default
 Endselect

End ''MENUBAR.CTRL
116

Chapter 7. Example Programs

tion
 level

e used
tput is
7.2 The DYNHIST Model

DYNHIST illustrates the use of dynamic histograms. Samples from a uniform distribu
and samples from a normal distribution are displayed as histograms. In addition, a
meter is used to display the number of samples taken. This type of display can b
alone or can be included in the margins of an animated display. A sample of its ou
shown in figure 7-2.

Figure 7-2. Output of the DYNHIST Model
117

SIMGRAPHICS II User’s Guide

. This
s are
 used
 Out-

es an
resent
7.3 The Port Model

The African Port has been modelled in many languages in many simulation textbooks
is the SIMSCRIPT II.5 version with animation. Several important animation concept
illustrated in it. In particular, segmentation is used to prioritize passing ships. Color is
to differentiate different classes of ships and to highlight ships which need attention.
put is shown in figure 7-3.

The animation reveals a logic flow error in this model. On occasion, the tug mak
unnecessary dead-heading trip when it could just as well have served a ship in its p
location. The reader may find it an instructive exercise to find the error.

Figure 7-3. The Port Model
118

Chapter 7. Example Programs

ase of
le port
ia) be-
astline
om-
7.4 The CALSHIP Model

This model is an expansion of the PORT model above. It illustrates the relative e
extending a simple model to include more of the entire system. In this case, the simp
model is duplicated to represent two ports (Valdez, Alaska and San Pedro, Californ
tween which tankers travel. Each port is shown in a separate window. The entire co
is shown in another window. This window also shows tanker traffic from Indonesia c
ing to San Pedro. Output is illustrated in figure 7-4.

Figure 7-4. The CALSHIP Model
119

SIMGRAPHICS II User’s Guide

ation
re 7-
7.5 The Spring Model

This model introduces the use of animation in conjunction with the continuous simul
constructs of SIMSCRIPT II.5. Plots of displacement, velocity, and acceleration (figu
5) are produced simultaneously.

Figure 7-5. The Spring Model
120

Chapter 7. Example Programs

om a
 time
e de-

5 are
bject.
7.6 The Pilot Ejection Model

EJECT is derived from a classic example of continuous simulation. A pilot ejects fr
plane at low altitude. Dials display the pilot's speed in the X and Y directions and the
since ejection. Animation is used to display the position of the plane, the pilot, and th
ployment of his parachute. The continuous simulation constructs of SIMSCRIPT II.
used to implement the set of differential equations describing the motion of each o
Output is shown in figure 7-6.

Figure 7-6. The EJECT Model
121

SIMGRAPHICS II User’s Guide
122

ar-
 hori-

 passed
ent of

h

nd
ica-

d
ate

en the

he
ode

 it is

y as-

raph-
bjects
8. Managing Multiple Windows

8.1 Multiple Window Support

SIMGRAPHICS II can now give the SIMSCRIPT programmer multiple windows with v
ious sizes, positions, titles, and mapping styles. Each window can optionally have a
zontal and vertical scroll bar, and a multi-pane status bar. In addition, messages are
from the window manager to your program whenever the user manipulates a compon
the window, (i.e. resizing, closing, moving the thumb on a scroll bar, etc.).

A window is created with the OPENWINDOW.R call described below:

routine OPENWINDOW.R given XLO, XHI, YLO, YHI, TITLE,
 MAPPING.MODE yielding WINDOW.PTR

The parameters XLO, XHI , YLO, and YHI specify the size and position of the window wit
respect to the computer screen. These coordinates are INTEGERS in the range
0..32767 . The point (0,0) defines the lower left-hand corner of the screen, a
(32767,32767) is the upper right-hand corner. Window size and position specif
tions include title bar, border and menu bar, (a window whose YHI is 16383 will NOT
overlap a window whose YLO is 16383). The TITLE parameter is of mode TEXT and
specifies the window title.

The MAPPING.MODE parameter defines how the window contents will appear inside the
visible portion of the window. The following modes are available:

MAPPING.MODE = 0:

Contents mapped to largest centered square within window.

MAPPING.MODE = 1:

WORLD.XLO (of world coordinate system set by SETWORLD.R) is mapped to the left
border of the window, WORLD.YLO is mapped to the bottom border, an
WORLD.XHI is mapped to the right border. The top portion of the world coordin
space may not be visible depending on window size. This mode is useful wh
background you want to display is significantly wider than it is tall.

MAPPING.MODE = 2:

WORLD.XLO is mapped to the left border of window, WORLD.YLO is mapped to bot-
tom border, and WORLD.YHI is mapped to the top border. The right portion of t
world coordinate space may not be visible depending on window size. This m
is useful when the background you want to display is significantly taller than
wide.

Selecting which window will display your icons, graphs, and forms is accomplished b
sociating the window with one or more viewing transforms. In this way the VXFORM.V
variable not only specifies which viewing transform will be used to draw subsequent g
ics, but also in which window the graphics appear. It should therefore be noted that o
123

SIMGRAPHICS II User’s Guide

e:

ndow
e win-

“RW”
de to a
 a
drawn under the same VXFORM.V value cannot appear in two different windows. Viewing
transforms are "attached" to a window through the SETWINDOW.R call. Set VXFORM.V to
the desired transformation number, and then call SETWINDOW.R given the WINDOW.ID of
the window that should contain the objects drawn under this transform. For exampl

 ''-- create two windows, one directly above the other
call OPENWINDOW.R given 8192, 24576, 16383, 32767,

 "Top Window", 1 yielding WINDOW1.PTR
call OPENWINDOW.R given 8192, 24576, 0, 16383,

 "Bottom Window", 1 yielding WINDOW2.PTR

 ''-- attach viewing transform 1 and 2 to the top
 ''-- window, and 3 to the bottom

let VXFORM.V = 1
call SETWINDOW.R given WINDOW1.PTR
let VXFORM.V = 2
call SETWINDOW.R given WINDOW1.PTR
let VXFORM.V = 3
call SETWINDOW.R given WINDOW2.PTR

 ''-- show icon1 in top window and icon2
 ''-- in bottom window
let VXFORM.V = 2
display ICON1 with "icon1.icn" at (16383, 16383)
let VXFORM.V = 3

display ICON2 with "icon2.icn" at (16383,16383)

8.2 Setting and Getting the Attributes and Events of a Window

Calling OPENWINDOW.R yields a display entity pointer. The DFIELD.F routine can then
be used to access window fields. In addition, a window control routine can be defined by
the programmer. As with dialog box, menu bar, and palette control routines, the wi
control routine is called automatically whenever a user performs some action upon th
dow with the mouse.

8.2.1 Window Attributes or “Fields”

A window display entity has several predefined field names. See table 8-1. The DFIELD.F
routine is used to get a pointer to the field, while attributes DDVAL.A, DARY.A, and DTVAL.A
can be read or written to the field by your program. Fields with the access code
represent modifiable components of your window. To see the result of a change ma
DDVAL.A, DARY.A or DTVAL.A attribute you must redisplay the modified field using
DISPLAY statement.
124

Chapter 8. Managing Multiple Windows
For example, to dynamically reset the title on a window, use:

let DTVAL.A(DFIELD.F(“TITLE”, WINDOW.PTR)) = “My New Title”
display DFIELD.F(“TITLE”,. WINDOW.PTR)

To determine the top of the window canvas after the window has been resized, use:

Table 8-1. Window Display Field Names

Field Name Attribute Access Description

WIDTH DDVAL.A RW Current window width in screen space

HEIGHT DDVAL.A RW Current window height in screen space

VIEWWIDTH DDVAL.A R Width of visible portion of NDC space

VIEWHEIGHT DDVAL.A R Height of visible portion of NDC space

TITLE DTVAL.A RW Title displayed at top of window

HSCROLLABLE DDVAL.A RW > 0 if window should have a horizontal scroll
bar

VSCROLLABLE DDVAL.A RW > 0 if window should have a vertical scroll bar

HTHUMBSIZE DDVAL.A RW Width of horizontal scroll bar thumb
range (0.0 - 1.0)

VTHUMBSIZE DDVAL.A RW Height of vertical scroll bar thumb
range (0.0 - 1.0)

HTHUMBPOS DDVAL.A RW Current position of the horizontal scroll bar
from left edge, range (0-HTHUMBSIZE)

VTHUMBPOS DDVAL.A RW Current position of the vertical scroll bar from
top edge, range (0-VTHUMBSIZE)

PANEWIDTH DARY.A RW Array of integers describing width (in charac-
ters) of each pane of the status bar.

STATUSTEXT DARY.A RW Array of text values shown in each status bar
pane

XCLICK DDVAL.A R X location of last mouse click (in NDC units)

YCLICK DDVAL.A R Y location of last mouse click (in NDC units)

XMOVE DDVAL.A R Current X location of mouse (in NDC units)

YMOVE DDVAL.A R Current X location of mouse (in NDC units)

BUTTONDOWN DDVAL.A R If nonzero, the mouse button is currently
being held down

BUTTON DDVAL.A R Identifies which of the mouse buttons was
last pressed

DOUBLECLICK DDVAL.A R If nonzero, the last click was a double click.
125

SIMGRAPHICS II User’s Guide

 close,
tine

 in
let TOP = DDVAL.A(DFIELD.F(“VIEWHEIGHT”, WINDOW.PTR))

8.3 Window Events

To receive asynchronous notification of window events such as scrolling, resize and
the programmer must set up a control routine for the window using the rou
SET.WINCONTROL.R as follows:

call SET.WINCONTROL.R given WINDOW.PTR, CONTROL.ROUTINE

where the control routine is formatted as follows:

routine CONTROL.ROUTINE given EVENT.NAME, WINDOW.PTR
 yielding BLOCK.DEFAULT
...
Define EVENT.NAME as a text variable
Define WINDOW.PTR as a pointer variable
Define BLOCK.DEFAULT as an integer variable

The control routine code should set BLOCK.DEFAULT to “1” if the default action is NOT to
be performed. The text variable EVENT.NAME contains one of the event names shown
table 8-2.

Table 8-2. Event Names

Event
Name

Default
Action

Affected
Fields

Description

CLOSE Terminate
 application

None Sent when user selects window go
away icon.

RESIZE Redraw window
contents

WIDTH
HEIGHT
VIEWWIDTH
VIEWHEIGHT

Sent when the user resizes or maxi-
mizes the window.

VSCROLL None VTHUMBPOS Sent whenever the user moves the
vertical scrollbar thumb.

HSCROLL None HTHUMBPOS Sent whenever the user moves the
horizontal scrollbar thumb.

MOUSE-
CLICK

None XCLICK
YCLICK
BUTTONDOWN
BUTTON
DOUBLECLICK

Sent whenever any mouse button is
pressed down, or lifted up.

MOUSE-
MOVE

None XMOVE
YMOVE

Sent whenever mouse movement oc-
curs.
126

Chapter 8. Managing Multiple Windows

nts:

e to fit

 at the

 been

ar area

is

dow.

tal

s the
For example, the following control routine can be used to receive some window eve
routine WINDOW.CONTROL given EVENT.NAME, WINDOW.PTR

yielding BLOCK.DEFAULT
...
select case EVENT.NAME
 case “CLOSE”
 write as “Attempt to close window...”, /
 let BLOCK.DEFAULT = 1‘’ dont terminate application

 case “VSCROLL”
 write DDVAL.A(DFIELD.F(“VTHUMBPOS”, WINDOW.PTR)) *32768 as
 “Window vertically scrolled to “, D(7,2), /
 ...
 default
endselect
end

8.4 Scrollable Windows

Scroll bars provide a more natural mechanism for panning across a scene too larg
inside the boundaries of your window. This is a common condition after zooming into a
rectangular section of your graphics area. Scroll bars should be added to the window
time it is created through the HSCROLLABLE and VSCROLLABLE fields. The following code
creates a scrollable window:

call OPENWINDOW.R (4096, 28672, 0, 32768, “Scrollable Window”, 0)
 yielding WINDOW.PTR
let DDVAL.A(DFIELD.F(“HSCROLLABLE”, WINDOW.PTR)) = 1
let DDVAL.A(DFIELD.F(“VSCROLLABLE”, WINDOW.PTR)) = 1
call SET.WINCONTROL.R(WINDOW.PTR, ‘CONTROL.ROUTINE’)
call SETWINDOW.R(WINDOW.PTR)

You can set the width of the scroll bar thumb either before or after the window has
displayed. The DDVAL.A attribute of the HTHUMBSIZE and VTHUMBSIZE fields contains a
real number between 0.0 and 1.0. Set this attribute to the percentage of the scroll b
you wish the thumb to occupy. The size of a scroll bar thumb should represent the ratio of
viewable area to total area. For example, if the boundaries defined by SETWORLD.R are
(w.xlo, w.xhi, w.ylo, w.yhi), but the larger total area occupied by graphics
(t.xlo, t.xhi, t.ylo, t.yhi) you should set up the thumb sizes as follows:

let DDVAL.A(DFIELD.F(“HTHUMBSIZE”, WINDOW.PTR)) =
(w.xhi - w.xlo) / (t.xhi - t.xlo)
let DDVAL.A(DFIELD.F(“VTHUMBSIZE”, WINDOW.PTR)) =
(w.yhi - w.ylo) / (t.yhi - t.ylo)
display DFIELD.F(“HTHUMBSIZE”, WINDOW.PTR))
display DFIELD.F(“VTHUMBSIZE”, WINDOW.PTR))

Manipulation of the scroll bars by the user will not automatically pan the scene in the win
This action will only send a HSCROLL or VSCROLL event to the window’s control routine
informing of the change to the scroll bar thumb position. At this time, the DDVAL.A attribute
of the HSCROLLPOS field will specify the distance from the left-hand side of the horizon
scroll thumb to the left-hand side of the window. DDVAL.A of VSCROLLPOS is the distance
from the top of the window to the top of the vertical scroll thumb. In each case “1.0” i
127

SIMGRAPHICS II User’s Guide

tine:

h con-
layed,

 pane.
e win-

a high-
h

total length of the scroll bar. Therefore, these attribute values are in the range [0.0, 1.0-
HTHUMBSIZE] and [0.0, 1.0-VTHUMBSIZE], respectfully. To implement “panning”
in the above example you would need the following code in your window control rou

routine WINDOW.CONTROL given EVENT.NAME, WINDOW.PTR
yielding BLOCK.DEFAULT

...
select case FIELD.NAME
 case “VSCROLL”, “HSCROLL”
 let w.xlo = t.xlo + (t.xhi-t.xlo) *
 DDVAL.A(DFIELD.F(“HSCROLLPOS”, WINDOW.PTR))
 let w.xhi = w.xlo + (t.xhi-t.xlo) *
 DDVAL.A(DFIELD.F(“HSCROLLSIZE”, WINDOW.PTR))
 let w.ylo = t.ylo + (t.yhi-t.ylo) *
 DDVAL.A(DFIELD.F(“VSCROLLPOS”, WINDOW.PTR))
 let w.yhi = w.ylo + (t.yhi-t.ylo) *
 DDVAL.A(DFIELD.F(“VSCROLLSIZE”, WINDOW.PTR))

 call SETWORLD.R(w.xlo, w.xhi, w.ylo, w.yhi)
...

8.5 Status Bars

All windows can display a status area at the bottom of the frame called a status bar. The
status bar is composed of several individual rectangles (panes) of varying width; eac
taining a line of text. You can define the size of each pane before the window is disp
and set the text displayed in a pane after the window has been rendered.

Each element of the array pointed to by the DARY.A attribute of the PANEWIDTH field spec-
ifies the maximum number of characters that can be shown by the corresponding
Note that the width of the first status pane is automatically set based on the size of th
dow. The width specification for the first status pane is always ignored.

Each element of the DARY.A attribute of the STATUSTEXT field defines the text to display
in the corresponding pane. The first pane is also used to show the status text for
lighted menu item, or palette button (See chapter 3). A window containing a status bar wit
three panes could be initialized as follows:

‘’ create the window
call OPENWINDOW.R given 16383, 32768, 8192, 24576,
 "Example Window...", 0 yielding WIN.PTR

‘’ add a status bar to the window
reserve PANE.WIDTHS(*) as 3
let PANE.WIDTHS(1) = 0 ‘’ not used by SIMGRAPHICS II
let PANE.WIDTHS(2) = 10
let PANE.WIDTHS(3) = 20
let DARY.A(DFIELD.F("PANEWIDTH", WIN.PTR)) = PANE.WIDTHS(*)

‘’ associate this window with the current viewing transformation.
‘’ This operation will display the window
call SETWINDOW.R(WIN.PTR)

‘’ Set the status bar text
128

Chapter 8. Managing Multiple Windows
reserve STATUS.TEXT(*) as 3
let STATUS.TEXT(1) = “Pane One”
let STATUS.TEXT(2) = “Pane Two”
let STATUS.TEXT(3) = “Pane Three”
let DARY.A(DFIELD.F("STATUSTEXT", WIN.PTR)) = STATUS.TEXT(*)

‘’ Update display of the status bar text only
display DFIELD.F(“STATUSTEXT”, WIN.PTR)
129

SIMGRAPHICS II User’s Guide
130

h pair
 these
script
 = 2);

f

n line.
rate ar-

 sepa-

 This
lay a
ratch
ated

up-
 The
,
cters.

 pat-
9. Advanced Topics

9.1 Drawing Icons Without SIMDRAW

Icons are specified in SIMGRAPHICS II as arrays of pairs of coordinate values. Eac
of coordinates gives the location of a point in Cartesian space. SIMDRAW produces
arrays automatically. However, they may also be generated manually. The first sub
in a coordinate pair selects either x-coordinates (index = 1) or y-coordinates (index
the second subscript determines a point. For example, the statements:

LET SHAPE.ARRAY(1,1) = 40.
LET SHAPE.ARRAY(2,1) = -100.
LET SHAPE.ARRAY(1,2) = 40.
LET SHAPE.ARRAY(2,2) = 0.

specify points at (40,-100) and at (40,0).

The coordinate arrays are stored in REAL (not DOUBLE) mode. This allows a range o
model-oriented coordinates and provides sufficient precision for a display device.

Obviously, each coordinate array can only specify an area drawable by an unbroke
However, complex images can easily be built up using separate arrays for each sepa
ea. These arrays can be referenced in individual subroutines (which include calls to the
graphics control routines described in the next section) which are called from the DISPLAY
routine for the complete icon. Thus, only a single DISPLAY routine is required for each
icon, however complex; and the individual components of an icon can be controlled
rately (e.g., they can change color or size, as required by the application).

9.2 Writing a Display Routine

A display routine is an attribute of a display entity which can be set programmatically.
routine is called automatically by SIMGRAPHICS II whenever it is necessary to disp
graphical entity. This routine can contain code to either draw a display entity from sc
using calls to create output primitives, or to modify the display of a display entity cre
in SIMDRAW. The attribute is called DRTN.A and is set as follows:

Let DRTN.A = 'V.<routine_name>'

The heading of the actual routine is defined like this:

Display routine <name> given ICON.PTR
define ICON.PTR as a pointer variable

The SIMSCRIPT II.5 run-time library routines (described below and in Appendix A) s
port a number of graphic primitives directly. These routines are called by SIMDRAW.
programmer can also call them directly from a DISPLAY routine to draw lines, polygons
circles and arcs, fill delineated areas with color patterns, and write strings of chara
Other primitives allow selection of line style, text sizing, and a variety of colors and fill
terns.
131

SIMGRAPHICS II User’s Guide

cified
le, and

routine
the at-

elow.
 remain

. The
f the

 as

ram.
 you

ow or
as are
The DISPLAY routine generates a screen image of an icon. It connects the points spe
in the coordinate arrays described above, and then adds color, a fillstyle, a line sty
so on, to the image. SIMGRAPHICS II provides a default DISPLAY routine, DICON.R.
When icons are generated using SIMDRAW, either this default or a user-written DISPLAY
routine may be used. When icons are generated without the editor, a user-written
must be provided. Use of a non-default routine is indicated by assigning a value to
tribute DRTN.A:

LET DRTN.A(entity) = 'name'

DISPLAY routines consist largely of calls on the graphic style routines described b
Other statements may be included to pass values to these routines. All style values
set until they are changed.

9.2.1 Color

In SIMGRAPHICS II color is specified using an integer value ranging from 0 to 255. This
value is an index into a color table whose entries must be initialized programmatically
routine GCOLOR.R defines a color index given the red, green and blue components o
color (color component values range from 0 to 1000). For example, to define index 15
“green”:

let RED = 0
let GREEN = 1000
let BLUE = 0
call GCOLOR.R(15, RED, GREEN, BLUE)

Color index number 0 refers to the background color of the window selected through
VXFORM.V. To set a window’s background color to “blue”:

call GCOLOR.R(0, 0, 0, 1000)

If your icon has been created by SIMDRAW, you can still reset its color in your prog
To enable this feature, from SIMDRAW you must select the primitive whose color
want to be programmatically definable and use the Edit/Properties option. From the
Properties dialog, check the Define color using DCOLOR.A check box. The following code
will set the color of appropriately defined primitives to “green”:

let DCOLOR.A(ICON.PTR) = 15

9.2.2 Drawing Areas

The primitive operations in this section generate a closed polygon that may be holl
filled with a solid color, a hatch style, or a pattern. The graphic style routines for are
called first, and set the appearance of the area.

CALL FILLSTYLE.R(style)
Set fillstyle, as follows:

0 = hollow
132

Chapter 9. Advanced Topics

atch

sent

 the
er

 style

pro-
1 = solid
2 = pattern
3 = hatch

CALL FILLINDEX.R (index)
Set pattern or hatch fill selection. Six distinct styles of hatch are available. H
styles are as follows:

1 = Narrow spaced diagonal lines
2 = Medium spaced diagonal lines
3 = Wide spaced diagonal lines
4 = Narrow spaced cross hatch
5 = Medium spaced cross hatch
6 = Wide spaced cross hatch

CALL FILLCOLOR.R (color)
Set color of solid or hatched area.

CALL FILLAREA.R (n, points(*))
Fill the area, joining the last point to the first point, if necessary, using the pre
fillstyle and fillcolor.

CALL CIRCLE.R (points(*))
Draw a circle, where points (..,1) indicates the center, and points (..,2) is
any point on the perimeter.

CALL SECTOR.R (points(*), rad)

Draw an arc, where points (..,1) indicate the center, and points (..,2) and
points (..,3) are the end points. The sector is drawn counterclockwise from
second to the third points specified. If rad is not zero, join ends of arc to the cent
point, and fill.

9.2.3 Drawing Lines

The primitive operations in this section generate solid and dotted lines. The graphic
routines are called first, and set the appearance of the line.

CALL LINESTYLE.R(style)
SIMGRAPHICS II supports a number of line styles. The following styles are
vided on most implementations:

1 = (solid)
2 = (long dash)
3 = (dotted)
4 = (dash dotted)
5 = (medium dashed)
6 = (dash with two dots)

CALL LINECOLOR.R (color)

Color (as described in Chapter 4).
133

SIMGRAPHICS II User’s Guide

 array

ace.

e and
uently

he dis-

es of

nt.

rance
CALL LINEWIDTH.R (width)

Width, given in NDC units.

CALL POLYLINE.R (n, points(*))

Joins n points whose x and y coordinates are given in the 2-dimensional real
points(*) .

9.2.4 Drawing Points (Markers)

SIMGRAPHICS II supports a primitive operation to mark points on the display surf
The graphic style routines that control appearance are called first.

CALL MARKTYPE.R (type)
Where type is a polymarker type, and where:

1 = dot
2 = cross
3 = asterisk
4 = square
5 = X
6 = diamond

CALL MARKCOLOR.R (color)
Polymarker color.

CALL MARKSIZE.R (size)
Polymarker size, in NDC units.

CALL POLYMARK.R (n, points(*))
Writes n markers using the current marker type, color, and height.

9.2.5 Direct Character Output

Text can be written directly onto the graphics screen. It is displayed using the text siz
color attributes. The output is centered around coordinate points (0, 0), and conseq
a modeling transformation can be used to place the information where desired on t
play surface.

For example:

LET VXFORM.V = 5
CALL SETWORLD.R(0, 79, 0, 23)

It may be useful to define a transform to an 80 by 24 coordinate system for writing lin
text, as above. If a text string is to be written, the following call may be used:

CALL WGTEXT.R (string, x, y)
Writes string at (x,y) using current text font, color, height, angle, and alignme

The following graphics routines may be used in display routines to control the appea
of text output:
134

Chapter 9. Advanced Topics

e de-

ation

xt

nt
 de-
 fonts

elect
lling
CALL TEXTFONT.R(font)
Sets font to use. The following fonts are available:

0—SIMGRAPHICS II system font 1—Simple

2—Roman 3—Bold Roman
4—Italic 5—Script
6—Greek 7—Gothic

CALL TEXTCOLOR.R (color)
Set color index to use for drawing text.

CALL TEXTSIZE.R (size)
Size given in NDC units. Five sizes are available. Exact details depend on th
vice driver.

CALL TEXTALIGN.R (horiz, vert)
Set text alignment, in tenths of degrees from 0 to 360°. The PC implement
only supports 0, 90, 180 and 270°.

CALL TEXTANGLE.R (degrees*10)
Set text rotation angles in tenths of a degree.

9.2.6 Character Output Using System Text

Subsequent text primitives created by calls to WGTEXT.R can be defined to use a raster te
font with a call to TEXTSYSFONT.R. i.e.

let FAMILY.NAME = "Times Roman"
let POINT.SIZE = 12
let ITALIC.DEGREE = 100 ‘’ range is 0-100
let BOLDFACE.DEGREE = 0 ‘’ range is 0-100

call TEXTSYSFONT.R given
 FAMILY.NAME, POINT.SIZE, ITALIC.DEGREE, BOLDFACE.DEGREE
call WGTEXT.R(“Hello World” X, Y)

From above, FAMILY.NAME is a string known to the toolkit which identifies the font. Fo
sizes are in points, the size of which is determined by the toolkit. An integer is used to
fine both the amount of “slant” in the italic, and the darkness of the boldface (for most
only two degrees are provided.). Calling TEXTFONT.R will re-enable vector fonts.

9.2.7 System Font Browser

A predefined dialog box can be brought up programmatically allowing the user to s
system font attributes from those availible on the server. This is done by ca
FONTBOX.R as follows:

let TITLE = “Select a font”

call FONTBOX.R given TITLE yielding
 FAMILY.NAME, POINT.SIZE, ITALIC.DEGREE, BOLDFACE.DEGREE
135

SIMGRAPHICS II User’s Guide

n

 a font
e or

 the
 used

E dis-
 in a
sary.
 there
e de-

already
The yielded arguments are identical to those described above for TEXTSYSFONT.R.
FONTBOX.R will not return until a font has been selected, or cancel has been pressed. I
this case the result of FAMILY.NAME will be “”.

9.2.8 Loading a Font Re-definition File

Since the family names for fonts vary from system to system, it is desireable to have
re-definition file. This file equates a generic family name given in the program to on
more possible system specific names for that font. The format is as follows:

“generic_name1“ “ system_name11” “ system_name12” “ system_name13” ...

“generic_name2“ “ system_name21” “ system_name22” “ system_name23” ...

... :

“generic_namen“ “ system_namen1” “ system_namen2” “ system_namen3” ...

A typical re-definition file could look like this:

"times roman" "Times Roman" "Times New Roman" "Times"

where times roman is the name used within the program. The first font name out of
subsequent re-definition which corresponds to a font available on the system will be
in place of times roman . A font file is loaded using the routine LOAD.FONTS.R given
FILE.NAME .

9.2.9 The Shape Example Revisited

This program accomplishes exactly the same function as the program NEWSHAP
cussed in Chapter 6. It is repeated here to illustrate the code which must be included
model if SIMDRAW is not used. There are situations in which this might be neces
For example, if some aspect of the icon changes dynamically during the simulation,
is no way to describe that to SIMDRAW. The appearance of the icon could be mad
pendent on attribute values which change as the simulation proceeds. (We have
seen an example of this in the Gold Mine of Chapter 7.)

Preamble ''Case Study "OLDSHAPE"
'' This shows a simple dynamic graphics output using SIMGRAPHICS II.
'' It draws a shape and moves it around the screen.

''This version does not use the Icon Editor.
''It shows the details for generating an icon without the Icon Editor.

 Normally mode is undefined
 Processes
 Every SHAPE has
 a SHAPE.ICON
 Define SHAPE.ICON as a pointer variable
 Dynamic graphic entities include SHAPE
 Define .X to mean 1
 Define .Y to mean 2
'' Change SIMGRAPHICS II indices from numbers to words
 Define .RED to mean 2
 Define .GREEN to mean 3
 Define .SOLID.FILL to mean 1
136

Chapter 9. Advanced Topics
End ''Preamble

Main
'' Set up the world view and view port
 Let VXFORM.V = 7 '' View port number
 Call setworld.r(0.0, 2000.0, 0.0, 2000.0) '' World view
 Call setview.r(0, 32767, 0, 22755) '' Screen view
'' Reserve the array that describes the ICON and fill it.
 Define ICON.ARRAY as a 2-dim real array
 Reserve ICON.ARRAY as 2 by 7
 Let ICON.ARRAY(.X,1) = 40. Let ICON.ARRAY(.Y,1) = -100.
 Let ICON.ARRAY(.X,2) = 40. Let ICON.ARRAY(.Y,2) = 0.
 Let ICON.ARRAY(.X,3) = 100. Let ICON.ARRAY(.Y,3) = 0.
 Let ICON.ARRAY(.X,4) = 0. Let ICON.ARRAY(.Y,4) = 100.
 Let ICON.ARRAY(.X,5) = -100. Let ICON.ARRAY(.Y,5) = 0.
 Let ICON.ARRAY(.X,6) = -40. Let ICON.ARRAY(.Y,6) = 0.
 Let ICON.ARRAY(.X,7) = -40. Let ICON.ARRAY(.Y,7) = -100.
'' Make 1 second of real time pass for every second of simulated time
 Let TIMESCALE.V = 100
'' Put the process notice for this shape on the event list
'' and associate the icon with it.
 Activate a SHAPE now
 let SHAPE.ICON(SHAPE) = ICON.ARRAY(*,*)
 Start simulation
 Release ICON.ARRAY(*,*)
End ''Main

Process SHAPE
 Define I as an integer variable
'' Set up the parameters for controlling motion
 Let DRTN.A(SHAPE) = 'V.SHAPE'
 Let MOTION.A(SHAPE) = 'LINEAR.R'
 Let VELOCITY.A(SHAPE) = VELOCITY.F(200.0, PI.C/4)
 Let LOCATION.A(SHAPE) = LOCATION.F(0.0, 0.0)
'' Make the first move
 Work 10 units
'' Change the direction of motion to straight down
 Let VELOCITY.A(SHAPE) = VELOCITY.F(200.0, - PI.C / 2)
 Work 5 units
'' Change the direction of motion again
 Let VELOCITY.A(SHAPE) = VELOCITY.F(200.0, 0.8 * PI.C)
'' Make the shape rotate
 For I = 1 to 60
 Do
 Add PI.C / 60 to ORIENTATION.A(SHAPE)
 Work 0.1 units
 Loop
'' Stop the movement and pause to admire the results
 Let VELOCITY.A(SHAPE) = 0
 Work 5.0 units
End '' SHAPE

Display routine SHAPE Given SHAPE
 Define SHAPE as a pointer variable ''The particular SHAPE to be drawn
 Define .NUMBER.OF.POINTS as an integer variable
 Define ICON.ARRAY as a 2-dim real array
 Let ICON.ARRAY(*,*) = SHAPE.ICON(SHAPE)
 Let .NUMBER.OF.POINTS = dim.f(ICON.ARRAY(1,*))
 Call fillstyle.r(.SOLID.FILL)
 Call fillcolor.r(.RED)
 Call fillarea.r(.NUMBER.OF.POINTS, ICON.ARRAY(*,*))
 Call linecolor.r(.GREEN)
 Call polyline.r(.NUMBER.OF.POINTS, ICON.ARRAY(*,*))
End ''SHAPE
137

SIMGRAPHICS II User’s Guide

te re-
arts of
 a few

object
s done
 of re-
isible

ent,
ons in-

gener-
. The
 is cre-

m the

 edited.

e.

ollow-

-

,

9.3 Using Segments

Effective generation of moving or changing display images requires either the comple
drawing of the display at each change or the ability to selectively erase and redraw p
the display. The first approach requires redundant work in the common case where
objects are required to move against a static background.

An alternative is to structure the display, identify the grouped components of each
representation, and then provide facilities for manipulating these components. This i
using "segment." Each segment has an identifier and comprises a logical grouping
lated graphic primitives. SIMGRAPHICS II provides operations to make a segment v
or invisible or to delete it entirely. Further, by attaching a priority level to each segm
the graphics support can consistently resolve the ambiguity when object representati
tersect on the display, i.e. "priority" determines which segment is displayed on top.

A segment provides a means of grouping a related sequence of display primitives (
ated by calls to the graphics library routines) and attaching an identifier to the group
identifier is an integer number returned to the application program when the segment
ated, and is usable as a handle to change segment properties (such as visibility).

A program can build segments using one of the following routines:

CALL OPEN.SEG.R
Opens a segment. A segment identifier is set in the global variable, SEGID.V .

CALL CLOSE.SEG.R
Closing a segment makes it visible. SEGID.V is zeroed.

CALL DELETE.SEG.R (segid)

Deletes the indicated segment. All primitives in the segment are erased fro
display surface.

Only one segment may be open at any time. A segment may not be re-opened and
While a segment is open, its ID is available in the global variable SEGID.V . This value is
copied to the SEGID.A attribute of the display entity upon exit from a DISPLAY routine.
Note that OPEN.SEG and CLOSE.SEG should never be called from within a display routin

Once a segment is closed, its attributes may be modified using this identifier and the f
ing library routines:

CALL GPRIORITY.R (segid , pri)
Explicitly set or change the priority of a segment. pri is an integer in the range 0
to 255.

CALL GVISIBLE.R (segid , vis)
Make a segment visible or invisible, where vis is an integer; 0 = invisible, 1 = vis
ible.

CALL GDETECT.R (segid , det)
Make a segment detectable to the locator, where det is an integer; 1 = detectable
0 = not detectable.
138

Chapter 9. Advanced Topics

f a
mber

pping
 pri-
 image
re

n un-

jects.

uses

oving
 over-

ct may
tatic

 zero.

cross-
s

mage.

dat-
dified at
CALL GHLIGHT.R (segid , hi)
where hi is an integer; 0 = off, 1 = highlight on. Set the highlighting status o
segment. When highlighted, the entire segment is drawn using color index nu
15.

9.3.1 Segment Priority

A segment may have a priority. This priority determines the precedence of any overla
or intersecting images. A high priority segment is drawn on top of an underlying low
ority segment. Priorities are also used to maintain the accuracy of the screen. One
will emerge from behind another unscathed. Segments of zero priority, however, anot
preserved in this way.

Note that the relationship between differing priorities only exists with segments draw
der the same vxform.v value. All segments drawn under one vxform.v value will over-
lap segments drawn under any higher vxform.v value, regardless of priority.

When objects overlap, segment priorities determine the order of redrawing moving ob
When priorities are equal, the item drawn last covers anything under it.

When a display routine exits, the value of SEGPTY.A (display entity) is given to
GPRIORITY.R to set the priority of the segment. A value of zero for this attribute ca
the default priority, zero.

9.3.2 Using Priority Zero

Objects in priority zero are not redrawn when their bounding box is overlapped by m
objects. This makes animation faster. Objects in priority zero will be eaten if they are
lapped by moving objects.

Static objects that will never be crossed or otherwise overdrawn by an animated obje
be drawn with priority zero. This is particularly important if the bounding box of the s
object is much larger than the object itself and is crossed by animated objects.

Unimportant items crossed by moving objects can often be represented in priority
This could leave their image in a temporarily damaged state, but might provide a visual
trace of the path of moving objects. For instance, if the entire display surface is
hatched in priority zero (using FILLSTYLE.R), moving objects will appear to wear path
in the image. A model could then periodically refresh its background to repair the da

9.3.3 Other Segment Operations

Library routine GDEFERRAL.R determines whether or not the screen is immediately up
ed as segment status changes. When several overlapping segments are being mo
once, faster operation may result from the following sequence of statements:

CALL GDEFERRAL.R(1)
(modify the segments)
CALL GDEFERRAL.R(0)
139

SIMGRAPHICS II User’s Guide

urface.
, blue
factory

ample,
e from

t ones.
tity de-

 of the
al-

en

 event

d-

is
gh

-

9.3.4 Drawing Backgrounds

Color number zero is the background color and often makes a good background s
Routine GCOLOR.R can be used to make it appropriate to the application. For instance
could represent water, green could be grass, and grey or brown could serve for a
floor.

GCOLOR.R can also be used to change the current representation of a color. For ex
the background color could be changed from dark to light to represent the time chang
night to day.

9.4 Additional Attributes of [Dynamic] Graphic Entities

Graphical properties can be given only to temporary entities, and not to permanen
In addition to the attributes described above and any user-defined attributes, an en
fined as GRAPHIC has the following system-defined attributes:

SEGID.A (entity) Integer, segment identifier
SEGPTY.A (entity) Integer variable. Display priority.
ORIENTATION.A (entity) Angle in radians.
LOCATION.A (entity) Location in world coordinates.

The following constructs can be queried directly to access the X and Y coordinates
location represented by LOCATION.A (actually, functions are invoked to access the v
ues.):

LOCATION.X (entity) X-coordinate of entity location.
LOCATION.Y (entity) Y-coordinate of entity location.

Both LOCATION.X and LOCATION.Y return values in real world coordinate units. Wh
working with DYNAMIC GRAPHIC entities, the values of LOCATION.X and LOCATION.Y
will change as simulated time advances. They are always up-to-date in SIMSCRIPT
and process routines.

DYNAMIC GRAPHIC entities have the following additional system-defined attributes:

VELOCITY.A (entity) Velocity of the object.
MOTION.A (entity) Subroutine pointer to a subroutine called perio

ically to animate the object.
CLOCK.A attribute (entity) Double variable; time of last position update. Th

value is maintained by the routine called throu
MOTION.A.

The following functions are provided to access the X and Y components of the velocity vec
tor represented by VELOCITY.A :

VELOCITY.X (entity) X-component of velocity.
VELOCITY.Y (entity) Y-component of velocity.
140

Chapter 9. Advanced Topics

on
pdated
The
e as

 para-
 fol-

n

ified
e at
he

r-

or

-

 button

lding

o-
LOCATION.A and VELOCITY.A are left-monitored attributes. Any change in the locati
of a graphic entity must cause it to be redisplayed. That is why the location must be u
using the LOCATION.F function, not by updating the X and Y coordinates separately.
function LOCATION.F takes the coordinates and generates a value of the same typ
LOCATION.A. You must set the values of location and velocity as follows:

let LOCATION.A(entity) = LOCATION.F(X_coord,Y_coord)
let VELOCITY.A(entity) = VELOCITY.F(speed, angle)

VELOCITY.F works in a similar way for velocity attributes.

9.5 Low-Level Input Constructs

This paragraph covers more elementary interactive input than was covered by the
graphs on SIMGRAPHICS II forms. Graphical input is provided by the mouse. The
lowing routines apply.

Routine READLOC.R, described in Appendix A, returns the location of a mouse click, i
real world coordinates. The calling routine gives the following input parameters:

POSX X-coordinate of a position in the window, in real world coordinates.
POSY Y-coordinate of the position.

This point is transformed onto the window surface with a viewing transformation spec
by the current value of VXFORM.V. The graphical cursor is placed on the display surfac
the indicated point. The value of the next argument indicates the representation of t
graphical cursor, as follows:

STYLE Style of graphical cursor:

0 = Cross-hair. Moves as the mouse is moved.

1 = Rubber Band. Draw a straight line from the initial point to the cu
sor position, following the moving cursor.

2 = Rubber Box. Draw a rectangle. One corner is at the initial curs
position, and the other corner follows the cursor.

3,4 = If the global variable DINPUT.V points to another icon, that icon fol
lows the cursor on the screen, at the location of the mouse.

16= Read locator asynchronously from within a process routine.

The graphical cursor is under control of the mouse, and remains so until the mouse
signals completion of the graphical input operation.

When the operation is completed, the final cursor position is returned in the three yie
parameters:

NEWX X-coordinate of a position on the display surface, in Real World C
ordinates.

NEWY Y-coordinate of the position.
141

SIMGRAPHICS II User’s Guide

ocess
ng

lls.

ed.

d on

e seg-

le

tion.

anged

related
these

ures to
 that
VXFORM.V Viewing transformation in effect at new cursor position.

READLOC.R, called with one of the styles listed above, can be called either from a pr
or outside of simulation, e.g. from MAIN. If called from a process, it stops the scheduli
of all processes. This effectively stops the animation. With a value of STYLE equal to 16 ,
you must call READLOC.R from a process, either directly or through a chain of routine ca
Such a call suspends only the process that called READLOC.R, while the other processes
continue to be scheduled. Otherwise, STYLE=16 behaves like STYLE=3. The suspended
process is reactivated when a mouse button is pressed. If the variable DINPUT.V is set to
point to some icon, its LOCATION.A attribute is updated automatically as the locator is mov
DINPUT.V is always displayed under viewing transformation number 0.

9.5.1 Selecting a Segment

SIMGRAPHICS II allows the operator to select a specific object from those displaye
the screen. This is done by calling two routines, as follows:

GDETECT.R Marks segments as detectable. Selection applies only to detectabl
ments.

READLOC.R A side effect of READLOC.R is that the identity of the nearest detectab
segment is returned in global variable G.4 . Appendix A describes the
rules that determine which segment is nearest.

A special routine is provided to simplify handling of the most common case of selec
Routine PICKMENU.R, described in Appendix A, is the simplified menu selector.

9.6 Programmatically Definable System Cursor

The system cursor is usually shown by a small arrow. The default cursor can be ch
in your SIMGRAPHICS program as follows:

call SETCURSOR.R(1) ‘’ set to busy (watch) cursor
...
call SETCURSOR.R(0) ‘’ reset to the normal (arrow) cursor

9.7 Time Unit Conversion for Simulation Graphics

Many users of graphics have similar needs regarding time and distance units, and
unit conversions. This section contains information to help centralize solutions to
needs.

The SIMSCRIPT II.5 language provides standard time units of DAYS, with built-in conver-
sion procedures to handle weeks, months, and years, and other conversion proced
handle HOURS and MINUTES. The words in the language operate under the assumption
TIME.V = 1.0 UNITS means that one day has elapsed in the simulation.
142

Chapter 9. Advanced Topics

 units.

uming
:

very

 the
 de-

e mi-

ress at
se the
SIMGRAPHICS II provides time synchronization through the variable TIMESCALE.V.
This variable converts elapsed time (in hundredths of a second) into simulated time
The operation:

LET TIMESCALE.V = 100

will cause 1 unit (1 day) of simulation time to operate in every elapsed second, ass
only that the computer can process the model fast enough. Likewise, the operation

LET TIMESCALE.V = HOURS.V * MINUTES.V * 60 * 100

will cause exact real time synchronization, with 1 unit of simulation time to operate in e
elapsed day.

Many problems work better in different units. For these, SIMSCRIPT provides
undimensioned syntax UNITS, which is scaled by the user. The language syntax that
scribes MINUTES, HOURS, DAYS, WEEKS, MONTHS, and YEARS is not used in problems
worked in UNITS.

For example, consider a problem in which it is decided that the basic time unit is th
crosecond. It is better to use statements like:

WAIT 7 UNITS ''units in microseconds

which allows 7 microseconds of simulated time to pass. To observe simulation prog
the rate of 1 microsecond of simulated time every 1 second of elapsed time, u
initialization operation:

LET TIMESCALE.V = 100
143

SIMGRAPHICS II User’s Guide
144

tations

 ob-

 in-
no
ing

 Any
sible
 the

ond
the

ies are
Appendix A. SIMGRAPHICS II Variables and
Routines

This appendix describes the routines and variables that are common to all implemen
of SIMSCRIPT II.5 SIMGRAPHICS II.

Function ACCEPT.F (FORM.PTR, CNTRL.RTN)

Arguments:

FORM.PTR A pointer to the graphic input form to be used. This pointer was
tained in the SHOW statement.

CNTRL.RTN This is either the name of a control routine to control the graphic
teraction, or simply 0 to specify no control routine. If there is
control routine, then it is left entirely up to the automatic process
to manage the interaction.

Function: Accept graphic input from the screen.

Description: Returns the reference name of the last selected field in a form.
data which may have been entered by the user is then acces
through the value attributes and names of the various fields in
form.

Routine CIRCLE.R (POINTS(*))

Arguments:

POINTS(*) Real, 2-dimensional array, reserved as 2 by N, where N ≥ 2. Values
are in real world coordinates. POINTS(1, ...) are the x-coordi-
nates. POINTS(2, ...) are the corresponding y-coordinates.

Function: Draw a circle.

Description: A circle is drawn, with the center at the first given point. The sec
given point is any point on the circumference. Any points after
second are ignored.

The circle is drawn with attributes set through FILLCOLOR.R,
FILLSTYLE.R , and FILLINDEX.R .

Routine CLEAR.SCREEN.R

Description: Erases all graphics in the current screen. No segments or entit
destroyed.

Attribute CLOCK.A (DSPLENT)

Mode: Double.

Subscript: Pointer to a GRAPHIC entity or to a DYNAMIC GRAPHIC entity.
145

SIMGRAPHICS II User’s Guide

tine

 rep-

cal

 list

 in-
 was
Description: Time of last position update. This value is maintained by the rou
called through MOTION.A.

Routine CLOSE.SEG.R

Side effects: The value of SEGID.V is set to zero.

Function: Close a segment.

Description: The segment is closed. No additional primitives may be added to it. Its
resentation is made up-to-date on the display surface. No drawing occurs
until the segment is closed.

Routine CLOSEWINDOW.R (WINDOW.ID)

Arguments:

WINDOW.PTR Pointer. Identifier returned by OPENWINDOW.R

Description: Closes a SIMGRAPHICS II window given its pointer. Note that graphi
entities contained in this window are NOT destroyed.

Attribute DARY.A (FIELD.PTR)

Arguments:

FIELD.PTR A pointer to a field in a graphic input form.

Description: An array of text variables from a field on an input form. For instance, in
boxes it is a pointer to the array of text variables in the list.

Attribute DDVAL.A (FIELD.PTR)

Arguments:

FIELD.PTR A pointer to a field in a graphic input form.

Function: Access the numeric value attribute of a field.

Description: This is used to accept or alter information in one field of a form. For
stance, in value boxes it is the value which the user entered or which
pre-set.

Routine DELETE.SEG.R (SEG.ID)

Arguments:

SEG.ID Integer. Identifier of a segment, as produced by OPEN.SEG.R.

Function: Delete a segment.
146

Appendix A. SIMGRAPHICS II Variables and Routines

y sur-

 input

f the
m-

ance,

ile
Description: The segment is deleted. Its representation is removed from the displa
face. Space occupied by its data structures is recycled.

Function DFIELD.F (FIELD.NAME, FORM.PTR)

Arguments:

FIELD.NAME The text string name of a graphic field.

FORM.PTR A pointer to a graphic input form.

Function: Returns a pointer to the specified field.

Description: The acquired field pointer is used to access the attributes of the graphic
field, for examining input, altering values, or setting control attributes.

Attribute DRTN.A (DSPLYENT)

Mode: Subprogram variable. The subprogram does not return a value.

Subscript: Pointer to a GRAPHIC entity or to a DYNAMIC GRAPHIC entity.

Function: Associates a display routine with an instance of an entity.

Description: The use of a particular display routine is indicated through the value o
DRTN.A attribute. The display routine is normally generated by the co
piler and has a name of the form ' V.routine_name ' .

Attribute DTVAL.A (FIELD.PTR)

Arguments:

FIELD.PTR A pointer to a graphic input field.

Function: Access a text value associated with the field.

Description: DTVAL.A is used to access a text value associated with a field. For inst
in text boxes, DTVAL.A has the value of the input or pre-set text.

Routine FILEBOX.R(FILTER, TITLE) yielding PATH.NAME, FILE.NAME

Arguments

FILTER String. This variable can either be a wild card, or a full or partial f
name that uses wildcards.

TITLE String. The title of the file selection dialog box.

PATH.NAME String. The path to the file selected by the user.

FILE.NAME String. The name of the file selected from the dialog box.
147

SIMGRAPHICS II User’s Guide

area

filled

 to

tion.
Function: Displays the standard dialog box for browsing through the directory structure.

Routine FILLAREA.R (COUNT, POINTS(*))

Arguments:

COUNT Integer. Number of points to process.

POINTS(*) Real, 2-dim array, reserved as 2 by N, where N ≥ COUNT. Values
are in real world coordinates. POINTS(1, ...) are the x-coordi-
nates. POINTS(2, ...) are the corresponding y-coordinates.

Function: Draw a line or a polygon.

Description: A filled area (polygon) is drawn connecting the indicated points. The
is drawn in the current fillcolor, fillindex, and fillstyle specified through
routines FILLCOLOR.R, FILLINDEX.R , and FILLSTYLE.R . If the last
point is not the same as the first, they will be connected to close the
area.

Routine FILLCOLOR.R (COLOR.INDEX)

Arguments:

COLOR.INDEX Integer. Color index number. May have values from 0
255.

Function: Set color of subsequent fill areas.

Description: See the discussion of colors elsewhere in this report for further informa

Routine FILLINDEX.R (INDEX)

Arguments:

INDEX Integer. Identifies a style of fill hatch:

1 = narrow diagonals

2 = medium diagonals

3 = wide diagonals

4 = narrow crosshatch

5 = medium crosshatch

6 = wide crosshatch

Function: Set style of subsequent fill hatch areas.

Description: The standard configuration offers six fill hatch styles.
148

Appendix A. SIMGRAPHICS II Variables and Routines

ed.

e is

ught

lor in-
 ef-
Routine FILLSTYLE.R (STYLE)

Arguments:

STYLE Integer. Identifies a style of fill:

0 = Hollow area

1 = Solid color

2 = Pattern (appearance is device-dependent)

3 = Use hatch fill. Pattern is set by FILLINDEX.R .

Function: Set style of subsequent fill areas.

Description: The standard configuration offers the indicated styles.

Routine FONTBOX.R(TITLE) yielding FAMILY.NAME,
POINT.SIZE,BOLDFACE.DEGREE ITALIC.DEGREE

Arguments:

TITLE String. The label for the font dialog box.

FAMILY.NAME String. The return of the font name selected in the dialog box.

POINT.SIZE Integer. The size of the font selected in points.

ITALIC.DEGREE Integer. Return value of the font slant selected by the user. The
range is from 0 to 100. For most fonts only two values are allow

BOLDFACE.DEGREE
Integer. Return value of the “boldness” of the font. The rang
from 0 to 100. For most fonts only two values are allowed.

Function: Provides a predefined dialog box for font specification that can be bro
up programatically to allow the user to select system font attributes.

Routine GCOLOR.R (COLOR.INDEX, RR, GG, BB)

Arguments:

COLOR.INDEX COLOR.INDEX is an integer with values from 0 to 255.

RR Integer. Amount of red to use, 0 to 1000.
GG Integer. Amount of green to use, 0 to 1000.
BB Integer. Amount of blue to use, 0 to 1000.

Function: Set a color representation for subsequent use under the indicated co
dex. RR,GG, and BB are the portions of red, green, and blue to use. The
fect is seen as objects are redrawn.
149

SIMGRAPHICS II User’s Guide

e dis-
tely.

leted,
rned

s at-

ent
Routine GDEFERRAL.R (DEFER)

Arguments:

DEFER Integer.

1 = set deferral on
0 = set deferral off

Function: Set deferral status of entire system.

Description: When deferral is on, system changes may be made without updating th
play. When deferral is off, changes to the display will be seen immedia

For example, when a number of possibly overlapping segments are de
response may be faster if deferral is on before deletion, and is then tu
off afterwards.

Routine GDETECT.R (SEG.ID, DETECT)

Arguments:

SEG.ID Integer or integer. A segment ID value as returned by OPEN.SEG.R.

DETECT Integer.

0 = set undetectable status
1 = set detectable status

Function: Make a segment detectable or not.

Description: A detectable segment can be detected using READLOC.R or PICKMENU.R.

Routine GHLIGHT.R (SEG.ID, HIGHLIGHT)

Arguments:

SEG.ID Integer. A segment ID value as returned by OPEN.SEG.R.

HIGHLIGHT Integer.

0 = normal display
1 = highlighted

Function: Set the highlighting status of a segment. A highlighted segment draw
tention to itself on the display surface.

SIMGRAPHICS II implements highlighting by drawing the entire segm
using the color index number.
150

Appendix A. SIMGRAPHICS II Variables and Routines

osed
ri-
ith

or
 De-
ding
t not

ces-
Routine GPRIORITY.R (SEG.ID, PRIORITY)

Arguments:

SEG.ID Integer. A segment ID value as returned by OPEN.SEG.R.

PRIORITY Integer. Range is 0 to 255. The entire graphical display is comp
by drawing segments in the order of their priority, starting with p
ority zero. This implies that, if segments overlap, the segment w
the higher priority overwrites the segment with lower priority. F
segments of the same priority, the drawing order is undefined.
leting a segment automatically redraws all segments with boun
boxes intersecting the bounding box of the deleted segment, bu
segments with priority zero.

Function: Set or change the priority of a segment.

Routine GUPDATE.R

Description: Draws all unsegmented primitives.

Routine GVISIBLE.R (SEG.ID, VISIBLE)

Arguments:

SEG.ID Integer. A segment ID value as returned by OPEN.SEG.R.

VISIBLE Integer.

0 = Set invisible status
1 = Set visible status

Function: Make a segment visible or invisible.

Routine HANDLE.EVENTS.R(WAIT.FOR.EVENT)

Arguments:

WAIT.FOR.EVENT

Integer.

0—Return immediately
1—Wait for a mouse event to occur.

Description: Routine to handle low-level toolkit events such as window resizing. Ne
sary for tight loop constructs occupying a large amount of time.
151

SIMGRAPHICS II User’s Guide

t call
f a

tion.
Routine LINEAR.R (DSPLYENT)

Arguments:

DSPLYENT Pointer to a DYNAMIC GRAPHIC entity.

Function: Manage one object with linear motion.

Description: The values of LOCATION.A (present location) and CLOCK.A (time of last
change) are updated, and the entity displays itself. The user does no
this routine. It is automatically assigned as the motion attribute o
DYNAMIC GRAPHIC entity.

Routine LINECOLOR.R (COLOR.INDEX)

Arguments:

COLOR.INDEX Integer. COLOR.INDEX is an integer with values from 0 to 255.

Function: Set color of subsequent lines.

Description: See the discussion of colors elsewhere in this report for further informa

Routine LINESTYLE.R (STYLE)

Arguments:

STYLE Integer. The following style values are supported:

1 = solid
2 = long dash
3 = dotted
4 = dash dotted
5 = medium dashed
6 = dash with two dots
7 = short dash

 Function: Set style of subsequent lines.

Routine LINEWIDTH.R (WIDTH)

Arguments:

WIDTH Integer. In NDC units. The typical range is 00 to 32767 NDCs.

Function: Set width of subsequent lines.
152

Appendix A. SIMGRAPHICS II Variables and Routines

tine
ed.

 use
 font
 the

es are

d
f

ct if
f the
Routine LISTBOX.SELECTED.R (LISTBOX.PTR, INDEX) Yielding SELECTED

Arguments:

LISTBOX.PTR Pointer to a listbox FIELD within a form.

INDEX Integer. Index into array of list items

SELECTED Return value. 1 if item has been selected, 2 if it has been double-
clicked on, 0 otherwise.

Description: Given a listbox field pointer and an index into the array of items, this rou
returns whether this item is currently selected or has been double-click

Routine LOAD.FONTS.R(FILE.NAME)

Arguments:

FILE.NAME String. The name of the file to be loaded.

Description: Loads the font re-definition file FILE.NAME . A font re-definition file der-
fines equivalent names for font families. For example, a program may
the font name Times, when on Windows systems the equivalent system
is Times New Roman and on Unix systems it is Times Roman. Then
font re-definition file would consist of the line:

"Times""Times New Roman""Times Roman"

The first entry is the generic (program) name and the subsequent entri
the equivalent system fonts.

Left Monitoring Routine LOCATION.A (DSPLYENT)

Arguments:

DSPLYENT Pointer to a graphic entity, dynamic or static.

Function input value:A pointer to a LOCATION.E entity. The value must be obtaine
from LOCATION.F (x, y) . This value indicates the location o
the origin of the object, in real world coordinates.

Function: Provide location for modeling transformation.

Description: Set or change the location of a moving object. Draw or redraw the obje
and as necessary. Assignment to this attribute triggers redisplaying o
graphic entity. If you also want to change ORIENTATION.A, do it before
assignment to this attribute. If only ORIENTATION.A is to be changed, the
object should be explicitly redisplayed.
153

SIMGRAPHICS II User’s Guide

e
ly be

tion.
Function LOCATION.F (X, Y)

Arguments:

X Real, in real world coordinates.

Y Real, in real world coordinates.

Function value: Pointer to a LOCATION.E entity. This entity is constructed from th
x and y values to represent a coordinate position, and should on
used in an assignment to LOCATION.A.

Function: Set a present location given x and y.

Function LOCATION.X (DSPLYENT)

Arguments:

DSPLYENT Pointer to a graphic entity, dynamic or static.

Function value: Real, in real world coordinates. This is a read-only value.

Function: Inquire the present X position.

Function LOCATION.Y (DSPLYENT)

Arguments:

DSPLYENT Pointer to a graphic entity, dynamic or static.

Function value: Real. In real world coordinates. This is a read-only value.

Function: Inquire the present Y position.

Routine MARKCOLOR.R (COLOR.INDEX)

Arguments:

COLOR.INDEX Integer. COLOR.INDEX is an integer with values from 0 to 255.

Function: Set color of subsequent markers.

Description: See the discussion of colors elsewhere in this report for further informa

Routine MARKSIZE.R (SIZE)

Arguments:

SIZE Integer. The value is 0 to 32767, in NDC units.

Function: Set size of subsequent markers.
154

Appendix A. SIMGRAPHICS II Variables and Routines

ll

ated
d

Routine MARKTYPE.R (TYPE)

Arguments:

TYPE Integer. Identifies a marker type. Permitted values include:

1 = dot
2 = cross
3 = star
4 = square
5 = X
6 = diamond

Function: Set type of subsequent markers.

Routine MESSAGEBOX.R (MESSAGE.TEXT, TITLE.TEXT)

Arguments:

MESSAGE.TEXTText. Identifies a one line message.

TITLE.TEXT Text. Title displayed in title bar of message.

Function: Display a one-line message to the user.

Description: A modal dialog box containing one OK button and a one line message wi
be displayed. The user must click on the OK button before execution can
resume.

Attribute MOTION.A (DSPLYENT)

Mode: Subprogram variable. The subprogram does not return a value.

Subscript: Pointer to a DYNAMIC GRAPHIC entity.

Function: Provides an animation velocity management routine.

Description: The use of a particular animation velocity management routine is indic
through the value of the MOTION.A attribute. The default routine is name
' LINEAR.R ' .

Routine MSCALE.R (FACTOR)

Arguments:

FACTOR Scale factor, DOUBLE.

Function: Set the scaling component of the system modelling transformation.
155

SIMGRAPHICS II User’s Guide

scal-
e-

e-

tion.
eci-

po-

wise

calls
rota-

all
Description: The effect of this routine is reset upon entry to a DISPLAY routine, or with
an explicit call of MXRESET.R with argument zero, a call to this routine
with the argument equal to zero, or before the display of an icon. The
ing factor will take effect only if called from within a display routine or b
fore a call to CLOSE.SEG.R.

Routine MXLATE.R (POSX, POSY)

Arguments:

POSX Real. Distance to move.

POSY Real. Distance to move.

Function: Modelling transformation, translation from within a display routine or b
fore a call to CLOSE.SEG.R.

Description: Specifies translation (movement) component of a modeling transforma
The translation is cumulative with previous translations. All rotation sp
fied through MZROTATE.R is performed before translation.

Will only take effect if called.

Routine MXRESET.R (DSPLYENT)

Arguments:

DSPLYENT Pointer to a graphic entity. An argument of 0 resets all the com
nents of the system's modeling transformation to null.

Function: Reset the modelling transformation to that of the given object.

Description: The rotation is set from ORIENTATION.A(OBJECT) . The translation is set
from the LOCATION.A attribute of the given graphic entity.

Routine MZROTATE.R (THETA)

Arguments:

THETA Real value of rotation, in radians. Positive values indicate counterclock
rotation.

Function: Modeling transformation, rotation.

Description: Specify rotation component of a modeling transformation. Successive
on this routine are cumulative. The given rotation is added to previous
tions.

Will only take effect if called from within a display routine or before a c
to CLOSE.SEG.R.
156

Appendix A. SIMGRAPHICS II Variables and Routines

itive

n)

en)

t to

n)

e

w.

hen

tity
Routine OPEN.SEG.R

Side effects: Changes the value of global variable SEGID.V .

SEGID.V Integer. Identifier of a new segment.

Function: Open a new segment.

Description: A new graphic segment is opened and made able to accept graphic prim
operations.

Routine OPENWINDOW.R (XLO, XHI, YLO, YHI, TITLE, MAPPING yielding
WINDOW.PTR

Arguments:

XLO Integer. NDC coordinate for left edge of window (with respect to scree

XHI Integer. NDC coordinate for right edge of window (with respect to scre

YLO Integer. NDC coordinate for bottom edge of window (with respec
screen)

YHI Integer. NDC coordinate for top edge of window (with respect to scree

TITLE Text. Title of window
MAPPING Integer. Mapping mode of window (0=LCS, 1=X major , 2=Y major)

WINDOW.PTR Pointer to a window display entity.

Description: Opens up a SIMGRAPHICS II window of the prescribed dimensions on th
screen and returns a display entity for it. SETWINDOW.R can then be used
to associate a viewing transformation to this window. The MAPPING flag
defines how NDC space is mapped to the four boundaries of the windo

Attribute ORIENTATION.A (DSPLYENT)

Mode: Real, in radians. Positive values specify counterclockwise rotation.

Subscript: Pointer to a GRAPHIC entity or to a DYNAMIC GRAPHIC entity.

Description: Sets orientation of a graphic entity, for the modelling transformation. W
ORIENTATION.A is used, it should be set before a value of LOCATION.A is
set.

Routine PICKMENU.R GIVEN ARRAY(*) YIELDING INDEX

Arguments:

ARRAY(*) 1-dim POINTER array. Each element of the array is a graphic en
pointer.

INDEX Integer. Subscript to array produced by PICKMENU.R.
157

SIMGRAPHICS II User’s Guide

sition
tside

rwise,
on-

-

 the
ng

-

n the
ines

l be
Function: Selection from a menu using the mouse.

Description: Waits for the user to make a selection using the mouse. Reads the po
of the cursor when the user completes the selection. If the cursor is ou
the bounding box of any of the passed entities, sets index to zero. Othe
returns the index of the highest priority object with the bounding box c
taining the point where the mouse was clicked.

Routine POLYLINE.R (COUNT, POINTS(*))

Arguments:

COUNT Integer. Number of points to process.

POINTS(*) Real, 2-dimensional array, reserved as 2 by N, where N ≥ COUNT.
Values are in real world coordinates. POINTS(1, ...) are the x-
coordinates. POINTS(2, ...) are the corresponding y-coordi
nates.

Function: Draw a line or a polygon.

Description: A line is drawn connecting the indicated points. The line is drawn with
current line color, l ine s tyle, and line width, as set by cal li
LINECOLOR.R, LINESTYLE.R and LINEWIDTH.R . If the last point is the
same as the first, this line will close to form a polygon.

Routine POLYMARK.R (COUNT, POINTS(*))

Arguments:

COUNT Integer. Number of points to process.

POINTS(*) Real, 2-dimensional array, reserved as 2 by N, where N ≥ COUNT.
Values are in real world coordinates. POINTS(1, ...) are the x-
coordinates. POINTS(2, ...) are the corresponding y-coordi
nates.

Function: Draw a series of markers.

Description: Markers are drawn at the indicated points. The markers are drawn i
current markcolor, marksize, and marktype, provided through rout
MARKCOLOR.R, MARKSIZE.R, and MARKTYPE.R.

Routine POSTSCRIPTCTRL.R(ENABLE, SHOWICON)

Arguments:

ENABLE Integer. Enable conversion of window to PostScript.

SHOWICON Integer. If the value is greater than 0 the conversion button wil
displayed in the top-right corner of the window.
158

Appendix A. SIMGRAPHICS II Variables and Routines

 to

s-

s-
Description: Enables and configures PostScript output.

Routine POSTSCRIPT.R(PSFILE, PSSIZE, PSBORDER, PSMONO,
PSINVERT,PSHATCH, PSDIALOG)

Arguments:

PSFILE Text. The name of the output file.

PSSIZE Real. Height and width of the output in inches.

PSBORDER Integer. Show a window border in the output.

PSMONO Integer. Not yet implemented.

PSINVERT Integer. Not yet implemented.

PSHATCH Integer. Not yet implemented.

PSDIALOG Integer. Bring up a dialog box to get options for the conversion
PostScript.

Description: Converts all graphics in the current window to PostScript.

Routine PRINT.SEG.R given SEGMENT.ID, USE.DIALOG yielding SUCCESS

Arguments:

SEGMENT.ID Integer. Segment identifier.

USE.DIALOG Integer. If USE.DIALOG is nonzero the system print dialog is di
played allowing the user to set print options.

SUCCESS Integer. Nonzero if printing was completed.

Description: Prints a portion of a window.

Routine PRINT.WINDOW.R given WINDOW.PTR, USE.DIALOG yielding SUCCESS

Arguments:

WINDOW.PTR Pointer to a window display entity. Returned from OPENWINDOW.R.

USE.DIALOG Integer. If USE.DIALOG is nonzero the system print dialog is di
played allowing the user to set print options.

SUCCESS Integer. Nonzero if printing was completed.

Description: Prints a window.

Routine READ.GLIB.R (FILE.NAME)

Arguments:

FILE.NAME Text. File name of the graphics library.
159

SIMGRAPHICS II User’s Guide

to
d in

a
t-
il

ich
d

ive
ated

into

r soft-
ical
. If

ber,
iew-
global
Function: Read a graphics library file from disk.

Description: This routine will read a graphics library file created by SIMDRAW in
SIMGRAPHICS II. Subsequently, all icons, forms and graphs containe
the library can be accessed through the SHOW and DISPLAY statements.
Note that the file graphics.sg2 is automatically read in during
SIMGRAPHICS II initialization (if it exists).

Routine READLOC.R (POSX, POSY, STYLE) YIELDING NEWX, NEWY, XFORM.V

Arguments:

POSX Real, in real world coordinates: X anchor point of the cursor.

POSY Real, in real world coordinates: Y anchor point of the cursor.

STYLE Integer:

0 = Draw only cursor while reading
1 = Draw rubber band while reading
2 = Draw box while reading
3,4 = allows a global variable DINPUT.V to be assigned a pointer to

SIMGRAPHICS II graphic entity which will be repeatedly upda
ed with a new LOCATION.A value, thus tracking the locator unt
the locator read is terminated.

16 = may be used within a SIMSCRIPT process routine (wh
READLOC.R will suspend). The locator position will be sample
from the timing mechanism, allowing the locator to be act
while a simulation is running. A suspended process is reactiv
after the mouse is clicked.

NEWX Final X position of the mouse in real world coordinates.

NEWY Final Y position of the mouse in real world coordinates.

XFORM.V Value of the viewing transformation used to map NDC locator position
real world coordinates.

Function: Location function, using the mouse.

Description: The graphic cursor is started at the given (POSX,POSY). The operator
moves the cursor as desired, and the cursor is tracked by hardware o
ware. READLOC.R scans the viewing transformations in reverse numer
order - from 15 to 0 - until the NDC position can be reverse-transformed
the locator is within a viewport specified by some transformation num
this number is returned. In this way, movement of the mouse between v
ports or menus may be detected and acted upon. As a side effect, the
integer G.4 will be set to the ID of the selected segment.
160

Appendix A. SIMGRAPHICS II Variables and Routines

 any

cs li-

.

oint
nter-
Function RGTEXT.F (X, Y, MAXLEN)

Arguments:

X (ignored)

Y (ignored)
MAXLEN (ignored)

Function: Read graphic text.

Description: A text string is read in from a popup dialog box and returned.

Routine SEARCH.GLIB.R yielding ARRAY.OF.ITEMS

Arguments:

ARRAY.OF.ITEMS
1 dimensional text array. An array containing the names of objects in
loaded graphic library.

Description: Returns an array containing names of all objects in any loaded graphi
braries. The array should NOT be released.

Routine SECTOR.R (POINTS, FILL)

Arguments:

POINTS(*)

Real, 2-dimensional array, reserved as 2 by N, where N ≥ 3. Values are in
real world coordinates. POINTS(1, ...) are the x-coordinates
POINTS(2, ...) are the corresponding y-coordinates.

FILL Integer. Identifies filling procedure:

0 = Draw an arc of a circle using current line style and color

1 = Draw a sector of a circle, fill with current fill style and fill color

Function: Draw an arc or a sector of a circle.

Description: The first point identifies the center of a circle. The second point, any p
on the circumference, is the beginning of the arc. An arc is drawn cou
clockwise to the third point. Any points after the third are ignored.

Routine SEG.BOUNDARIES.R (SEGMENT.ID)

yielding SEG.XLO, SEG.XHI, SEG.YLO, SEG.YHI

Arguments:

SEGMENT.ID Integer. Identifies a segment.
161

SIMGRAPHICS II User’s Guide

e of
-

ge to

 ex-
n of

f an

r of
ling
SEG.XLO Integer. Left side of bounding box in NDC units.

SEG.XHI Integer. Right side of bounding box in NDC units.

SEG.YLO Integer. Bottom side of bounding box in NDC units.

SEG.YHI Integer. Top side of bounding box in NDC units.

Function: Compute the bounding box of any existing segment.

Description: Computes the NDC coordinates defining the bounding rectangl
the segment given by SEGMENT.ID. Can be called before the seg
ment has been made visible.

Left Monitoring Routine SEGID.A (DSPLYENT)

Arguments:

DSPLYENT Pointer to a graphic entity.

Function input value:Integer. A segment identifier as produced by OPEN.SEG.R.

Function: Utility operation. Removes image of a segment and causes a new ima
be drawn.

Description: An assignment to this attribute will delete the previous segment, if one
ists. Assigning the value 0 to this attribute will erase the representatio
an object.

Assignment to this attribute has the following side-effects:

1. If the old value is not zero it is taken to be a segment identifier o
existing segment. That segment is deleted.

2. If the new value is not zero, it is taken to be a segment identifie
an existing segment. That segment is displayed with mode
transformation determined by LOCATION.A and ORIENTATION.A.

Global Variable SEGID.V

Mode: Integer. Segment identifier.

Description: While a segment is open, its ID is available in the global variable SEGID.V .
This value is copied to SEGID.A upon exit from a DISPLAY routine.

When a segment is closed, the value of SEGID.V becomes zero.

Attribute SEGPTY.A (DSPLYENT)

Mode: Integer. Display priority.
162

Chapter Appendix A. SIMGRAPHICS II Variables and Routines

ute.
eg-
d.

ri-
n be

ear
 ac-
lds

tation

w.

in-
Subscript: Pointer to a GRAPHIC entity or to a DYNAMIC GRAPHIC entity.

Description: The priority of displays of graphic entities is supplied through this attrib
Segments with a higher priority are displayed in front of lower-priority s
ments. The order of displaying segments of equal priority is not define

Priority 0 is treated specially by SIMGRAPHICS II. Segments of this p
ority are not automatically redisplayed by the system. This feature ca
used to make animation faster.

Routine SET.ACTIVATION.R (FORM.PTR, ACTIVATE)

Arguments:

FORM.PTR Pointer to any form or form field.

ACTIVATE Integer:

0 = Deactivate or "grey out" the field.

1 = Activate the field; make it selectable.

Function: Set activation state of a form or field.

Description: Sets the activation state of a field on a form. A deactivated field will app
“greyed out,” i.e., it is visible but cannot be interacted with. Setting the
tivation state of a dialog box or menu bar will apply that state to all fie
contained therein. Fields are initially activated.

Routine SETCURSOR.R(CURSORSTATUS)

Arguments:

CURSORSTATUSInteger:

0 = Set the cursor to the normal (arrow) cursor.

1 = Set the cursor to the busy (watch) cursor.

Function: Sets the cursor status to busy or normal and changes its iconic represen
to a watch (hourglass) or arrow.

Routine SET.LISTBOX.TOP.R(LISTBOX.PTR, TOP.INDEX)

Arguments:

LISTBOX.PTR Pointer. Pointer to list box field obtained from DFIELD.F .

TOPINDEX Integer. Index of the list item to appear in the top of the list windo

Description: Will force the identified list box item to appear at the top of the list box w
dow by appropriately scrolling the list box.
163

SIMGRAPHICS II User’s Guide

w-

ace.

ing
use
ut.
rate
n in
Routine SETVIEW.R (V.XLO, V.XHI, V.YLO, V.YHI)

Arguments:

V.XLO Integer, in Normalized Device Coordinates.

V.XHI Integer, in Normalized Device Coordinates, where (0 ≤V.XLO <
V.XHI ≤32767).

V.YLO Integer, in Normalized Device Coordinates.

V.YHI Integer, in Normalized Device Coordinates, where (0 ≤ V.YLO <
V.YHI ≤32767).

On the standard SIMGRAPHICS II configuration, the visible vie
ing surface includes all points (x, y) where 0 ≤ x ≤ 32767 and
0 ≤ y ≤ 32767. The parameters given to SETVIEW.R should
define a rectangle within the visible viewing surface.

Function: Set viewport on the display surface.

Description: This function defines a rectangular viewport region on the display surf
Areas, lines, and points outside this region are clipped.

Routine SET.WINCONTROL.R given WINDOW.PTR, CONTROL.ROUTINE

Arguments:

WINDOW.PTR Pointer to the window display entity.

CONTROL.ROUTINE

Name of the routine invoked on a window event.

Function: Invoke the given CONTROL.ROUTINE on any of the fol lowing
asynchronous window events: CLOSE, RESIZE, VSCROLL, HSCROLL,
MOUSECLICK, MOUSEMOVE.

Routine SETWINDOW.R (WINDOW.PTR)

Arguments:

WINDOW.PTR Ident i f ier for a SIMGRAPHICS II window returned by
OPENWINDOW.R

Description: Associates the current viewing transform (VXFORM.V) to the window with
the given id. This means the all subsequent drawing to the view
transform will appear in this window. This allows the programmer to
VXFORM.V to specify which window will receive subsequent graphic inp
Note that a single viewing transform cannot be drawn in two sepa
windows. Therefore, this call must be used if graphics are to be draw
more than one window.
164

Appendix A. SIMGRAPHICS II Variables and Routines

efine
ot dis-

 co-
ordi-

n is

r re-

, in
Routine SETWORLD.R(W.XLO, W.XHI, W.YLO, W.YHI)

Arguments:

W.XLO Real. In real world coordinates.
W.XHI Real. In real world coordinates, where (W.XLO ne W.XHI).
W.YLO Real. In real world coordinates.
W.YHI Real. In real world coordinates, where (W.YLO ne W.YHI).

Note: Usually W.XLO<W.XHI and W.YLO<W.YHI. However, SETWORLD.R can be
used to invert or mirror-image a transformation.

Function: Defines a square or rectangle in world space. The argument values d
the area to be displayed. Points outside this area are clipped, and are n
played.

Description: Sets the mapping of problem-oriented coordinates, given in real world
ordinates. These coordinates are converted into device-oriented co
nates, given in NDC units, through parameters given to SETVIEW.R.

This operation is applied to all points after the modeling transformatio
specified by calling MXRESET.R, MXLATE.R, or MZROTATE.R.

SETWORLD.R allows the entire coordinate system to be upside down o
versed.

Routine SYSTIME.R YIELDING CURRENT.TICK

Arguments:

CURRENT.TICK Integer. The value represents the elapsed time, since midnight
1/100 second on most systems.

Description: This routine returns the current time of day in the indicated units.

Routine TEXTALIGN.R (HORIZ, VERT)

Arguments:

HORIZ Integer. Value = 0, 1, or 2.

VERT Integer. Value = 0, 1, 2, 3, or 4.

Function: Set portion of character that is aligned upon the graphic text position.

Description: The standard configuration supports the following values:

0 = left or bottom justified (the default)
1 = center justified
2 = right or top justified
3 = bottom of character cell
165

SIMGRAPHICS II User’s Guide

arac-

.

ctual
alue.
4 = top of character cell

The character cell extends both above and below the actual ch
ter.

Routine TEXTANGLE.R (ANGLE)

Arguments:

ANGLE Integer. Selects an angle in tenths of degrees, 0 to 3600.

Function: Set display baseline for subsequent characters.

Description: This operation allows displaying characters at angles.

Routine TEXTCOLOR.R (COLOR.INDEX)

Arguments:

COLOR.INDEX Integer. COLOR.INDEX is an integer with values from 0 to 255.

Function: Set color of subsequent characters.

Routine TEXTFONT.R (FONT)

0—SIMGRAPHICS II system font
1—Simple
2—Roman
3—Bold Roman
4—Italic
5—Script
6—Greek
7—Gothic

Arguments:

FONT Integer. Indicates which font to use.

Function: Set text font of subsequent characters.

Routine TEXTSIZE.R routine (SIZE)

Arguments:

SIZE Integer. The character height in NDC units, with a range of 0 to 32767

Function: Set size of subsequent characters.

Description: Each operating environment may support different sizes for text. The a
size of the displayed characters will be the size closest to the requested v
166

Appendix A. SIMGRAPHICS II Variables and Routines

-

ge is

 0 to

ine,

a

e.

r time

e-
Routine TEXTSYSFONT.R given FAMILY.NAME, POINT.SIZE,
ITALIC DEGREE, BOLDFACE.DEGREE

Arguments:

FAMILY.NAME String. FAMILY.NAME is a string known to the toolkit which identi
fies the font.

POINT.SIZE Integer. The size of the font in points.

BOLDFACE.DEGREE
Integer. An integer that denotes the darkness of the font. Ran
0 to 1000.

ITALIC.DEGREE
Integer. An integer that denotes the slant of the font. Range is
1000.

Description: Used to set the system font. If called, the font set using TEXTFONT.R is
temporarily ignored.

System Global Variable TIMESCALE.V

Mode: Integer.

Description: Scales Real time (1/100 second) per simulated time unit.

System Global Variable TIMESYNC.V

Mode: Subprogram variable.

Description: When non-zero, this subprogram variable will point to a user exit rout
called with the following parameters:

TIME.PROPOSED

GIVEN argument; mode is DOUBLE. The value will be greater than
TIME.V .

TIME.COUNTERED

YIELDING quantity; mode is DOUBLE. The user must set this to
value between TIME.V and TIME.PROPOSED.

The YIELDING parameter will be taken as the next simulated tim

When events or processes are scheduled or canceled by the use
exit routine, the value returned for TIME.COUNTERED must be less
than TIME.PROPOSED. This causes a rescan of the time file, pr
venting potential difficulties.
167

SIMGRAPHICS II User’s Guide

 any

y
its.

n

ct if

e

city
its.
The user exit routine reached through the TIMESYNC.V variable is
called whenever the simulated clock is to be updated, but before
animation is performed.

Left Monitoring Routine VELOCITY.A (DSPLYENT)

Arguments:

DSPLYENT Pointer to a DYNAMIC GRAPHIC entity.

Function input value:A pointer to a VELOCITY.E entity . This value indicates the velocit
of the object, in real world coordinate units per simulated time un

Assigning a value of 0 to VELOCITY.A causes the object's positio
updates to cease. This stops the object from moving.

Except for the special value of 0, the value of VELOCITY.A can only
be set to the function value produced by VELOCITY.F (speed,
theta).

Function: Associate a constant velocity with a dynamic graphic entity.

Description: Set or change the velocity of a moving object. Draw or redraw the obje
necessary.

Function VELOCITY.F (V, THETA)

Arguments:

V Real. Velocity in real world coordinate units per simulated time units.

THETA Real. Angle of motion, in radians.

Function value: Pointer to a VELOCITY.E entity. This entity is constructed from th
velocity and angle values to represent a vector location.

Function: Set a present velocity given absolute velocity and angle.

Description: Returns the indicated function value.

Function VELOCITY.X (DSPLYENT)

Arguments:

DSPLYENT Pointer to a DYNAMIC GRAPHIC entity.

Function value: Real. This function returns the x-coordinate of the current velo
of the object, in real world coordinate units per simulated time un
This is a read-only value.

Function: Inquire the present velocity, in the X direction.
168

Appendix A. SIMGRAPHICS II Variables and Routines

city
its.

.

sed.

play
ings
 to

put

tten
font,
Function VELOCITY.Y (DSPLYENT)

Arguments:

DSPLYENT Pointer to a DYNAMIC GRAPHIC entity.

Function value: Real. This function returns the y-coordinate of the current velo
of the object, in real world coordinate units per simulated time un
This is a read-only value.

Function: Inquire the present velocity, in the Y direction.

Variable VXFORM.V

Mode: Integer. Value between 0 and 15, inclusive.

Subscript: None.

Function: Indicates which viewing transformation is in effect.

Description: The default transformation is provided by VXFORM.V = 0 , a one-for-one
mapping of real world coordinates into Normalized Device Coordinates

A mapping is indicated by the value of the system variable VXFORM.V. This
variable indicates which transformation is to be defined, redefined, or u

Multiple mappings between real-world spaces and areas on the dis
screen are supported by SIMGRAPHICS II. Such user-defined mapp
are specified with VXFORM.V and are defined through parameters given
subroutines SETWORLD.R and SETVIEW.R. (Used in conjunction with
SETWINDOW.R to define which window receives subsequent graphic in
and output.)

Routine WGTEXT.R (STRING, X, Y)

Arguments:

STRING Text.

X Real, in real world coordinates.
Y Real, in real world coordinates.

Function: Write a text string.

Description: The text string is written starting at the indicated point. The string is wri
in the current text alignment, text angle, text color, text size, and text
using values provided through the routines that set these properties.
169

SIMGRAPHICS II User’s Guide
170

 in-
, and

on in
n in
n the

ring
 these
ow be

itor
 editor
an in
ad-
envi-

 one
ith

the

 I an-

s and
d with
ots can
eds the
 points

code
 and
r tool-
t your
Appendix B. Conversion to SIMGRAPHICS II

B.1 What is SIMGRAPHICS II?

SIMGRAPHICS II is the next generation in graphics support for SIMSCRIPT II.5. It
herits all of the capabilities of SIMGRAPHICS I but provides more features, functions
performance than its predecessor.

The user interface capabilities of SIMGRAPHICS I have been greatly improved up
SIMGRAPHICS II. Dialog boxes are no longer composed of output primitives draw
the canvas of a window, but are shown with the standard toolkit dialogs available o
particular machine. For example, Microsoft Windows SIMSCRIPT applications will b
up Windows menus and dialog boxes as well. Therefore, features that come with
toolkits (such as editable text boxes, pinup menus, and movable dialog boxes) can n
employed by SIMSCRIPT applications.

A new graphics editor has been written for SIMGRAPHICS II: SIMDRAW. This ed
lets you to see your icons, graphs and forms displayed in the same window. The new
makes selecting, grouping, and changing styles, colors, and modes much easier th
SIMGRAPHICS I. And since this editor is written in SIMGRAPHICS II, it also takes
vantage of the toolkit support on a given computer, giving it the look and feel of the
ronment under which it is running.

All icons, graphs, and forms created in the SIMGRAPHICS II editor are contained in
file (graphics.sg2). This means that directories will no longer be clogged up w
.icn , .grf , and .frm files. A conversion utility (simcvt) is provided with
SIMGRAPHICS II that can convert existing icon, graph and form files to
SIMGRAPHICS II format.

Some additional graph types are available in SIMGRAPHICS II. A digital clock type of
graph is available which is used in the same manner as the existing SIMGRAPHICS
alog clock. A new type of graph used for displaying scalar values is the digital display
which shows a single scalar value surrounded by a titled box. A text meter graph is also
available for SIMGRAPHICS II which can be used show display text variables. Chart
trace plots have added capabilities. Multiple data sets within a chart can be displaye
their bars shown side-by-side, as well as stacked or on top of each other. Trace pl
now have data compressed in the X direction, rather than being lost when time exce
maximum X value. A discrete flag can be checked in the editor to cause consecutive
in a trace plot to be connected by a discrete line rather than by linear interpolation.

B.2 Differences Between SIMGRAPHICS I and II

Converting your program to run under SIMGRAPHICS II may require some source
changes. Since SIMGRAPHICS II uses the vendor toolkit to display dialog boxes
menu bars, some of the SIMGRAPHICS I capabilities are not supported due to vendo
kit restrictions. In addition to the possible source code changes, you must conver
171

SIMGRAPHICS II User’s Guide

ons

atic.

imple-

ars,
ree

list

form
only
 Any
ted or

-
ed, the
is-

will
icon, graph, and form files to the SIMGRAPHICS II format. This is done using simcvt .
The specific differences between SIMGRAPHICS I and II are outlined below.

B.2.1 Icons

Under SIMGRAPHICS II, the priority of an icon is always with respect to other ic
drawn under the same viewing transformation. All icons drawn under a lower VXFORM.V
value will overlap icons drawn under a higher VXFORM.V, regardless of priority. This
prevents viewports from becoming intertwined. In addition, calling SETWORLD.R and
SETVIEW.R causes everything already drawn under the current VXFORM.V value to be
redisplayed under the new viewing transformation, i.e. pan and zoom are now autom

B.2.2 Graphs

Some minor repositioning may be needed in the conversion due to differences in the
mentation.

B.2.3 Forms

In SIMGRAPHICS I, a form may consist of an arbitrary collection of icons, menu b
check boxes, etc. A form in SIMGRAPHICS II must consist of one of the following th
objects:

1. A dialog box containing check boxes, push buttons, text boxes, value boxes,
boxes, radio buttons, and text labels.

2. A menu bar containing menus which in turn contain menu items.

3. A palette (not supported in SIMGRAPHICS I).

These are the only type of display entities that can be passed to an ACCEPT.F function.

SIMGRAPHICS I supports four independent options which can be applied to every
and field: terminating, non-pickable, hidden, and user-defined. In SIMGRAPHICS II,
push buttons can be terminating. Every form/field is pickable or activated by default.
form or field (i.e menu items, menu bars, dialog boxes, check boxes) can be activa
deactivated at runtime using the routine SET.ACTIVATION.R . This routine takes the dis
play entity and an integer specifying activation status as arguments. If a 0 is pass
form or field will be grayed-out by the toolkit. If 1 is passed the form/field will be red
played normally. The hidden and user-defined attributes are no longer supported.

B.2.4 Menu Bars

The DIVAL.A attribute of a menu bar should not be set in SIMGRAPHICS II. Menus
always go away when the user is done with the interaction.
172

Appendix B. Conversion to SIMGRAPHICS II
B.2.5 Dialog Boxes

In SIMGRAPHICS II a dialog box cannot contain icons. Unlike menu bars, there can be
more than one dialog box displayed asynchronously at a given time.

B.2.6 Push B uttons

Push buttons can be terminating or nonterminating. In addition, a push button can be a
“verify” attribute, which means that every value box within the same dialog box is verified
when this button is pushed. The control routine wil l not be called when a verify button is
pushed unless every value box has been successfully verified.

B.2.7 Radio Buttons

A new type of object called a radio box is now the container of a group of radio buttons that
are logicall y associated with each other. (i.e. the radio box is a field of the form, and the
radio buttons are fields of the radio box). Radio buttons must always be positioned in a
column.

B.3 Using t he Conversion Ut il ity

SIMCVT is a conversion program that converts your SIMGRAPHICS I (SG1) forms/
graphs/ icons to SI MGRAPHI CS I I (SG2) format and puts them into the f il e
gr aphi cs . sg2 . The gr aphi cs . sg2 file wil l contain the SIMGRAPHICS I I objects
corresponding to the form/graph/icon files. The SIMGRAPHICS II object receives the
name of the SIMGRAPHICS I fil e.

The fil es to be converted can be specified on the command li ne, in a special conversion file
list, or interactively. While SIMCVT is converting, it writes messages to the text window,
as well to a conversion log fil e si mcvt.l og. All error and warning messages from the con-
version will appear in this file.

Note that SIMCVT cannot be considered a “hands-off” conversion util ity. Because
SIMGRAPHICS II must comply with the underlying window system's philosophy, not all
things that were possible in SIMGRAPHICS I will be portable to SIMGRAPHICS II .
Therefore, some hand-editing of the converted forms/graphs/icons may be necessary.

B.3.1 Calling SIMCVT — Command Line Arguments

SIMCVT can be called in three different ways: With command line arguments, with a
conversion fi le list argument and wi thout any arguments, in which case you wil l be
prompted for the fil es to be converted. On Windows, SIMCVT is generall y called from
within SimLab through the Tools menu. Command li ne arguments can be given in a dialog
box.

In all cases, the results are written to a fil e gra phics . sg2 in the current directory (where
SIMCVT runs), and any error or warning messages wil l be written to a file sim cvt.l og.
The different ways to call SIMCVT are:
173

SIMGRAPHICS II User’s Guide
 1. Files specif ied as command line arguments: The given fi les are converted.
Wildcards are not supported on Windows! When the conversion is complete,
SIMCVT will ask you to press Return (to give you time to look at any messages)
and exit. For example:

si mcv t i nput . f r m r esul t s. frm

On Windows: Specify the arguments in put.frm and results.f r m in the
Argu ments dialog box when you cal l SIMCVT from the SimLab Tools menu
(Convert SG1 to SG2).

2. Files specified in a conversion list fil e: When you have a list of files to be convert-
ed, you may pass this li st fil e as a command line argument to SIMCVT with an @
prefix. All f iles whose names are listed in this conversion li st file wil l be converted.
This is especially useful on Windows, which does not support wild cards on com-
mand lines (you cannot simply enter sim cvt *. f rm). For example: In a DOS win-
dow, create and edit the conversion list file. Then call SIMCVT with this fil e. For
example, at the DOS command line, type:

di r * .f r m / w > cnv f i le s . l st

This creates a file cnvf i les.l s t with the names of all the files with a .frm ex-
tension. Then edit cnvfil es.lst so that only the wanted names are left.

Then when call i ng SI MCV T, speci f y the command l i ne argument
@cnvf iles . lst .

3. No command line arguments given: When no command li ne arguments are given
at all , you will be prompted to enter the file names interactively. Again, wildcards
are not all owed here. Enter “end” to exit SIMCVT.

B.3.2 Possible Problems with Forms

Graphs and icons wi l l convert one-to-one from SI MGRAPHICS I (SG1) to
SIMGRAPHICS II (SG2). Only forms can cause some confusion, since the underlying
window systems do not support some of the features used by forms in SG1. The features
that can no longer be supported under SG2 are li sted later in this appendix. Here we will
just discuss a few issues related to form conversion:

Controls not contained within a dialog box: When a form (*. f rm file) is converted
that contains controls that are not contained by a dialog box, a dialog box wil l be automat-
ically created for them. In SG2, a control must always be within a dialog box.

B.3.3 A Menu Bar Within a Form

SIMCVT will convert only menu bars that are by themselves in a form fil e. When you have
a menu bar within a form (dialog box), SIMCVT will ignore the menu bar and all controls
behind it and give you an appropriate warning message (conversion for that form stops
when the menu bar is found). You should use SimEdit to save the menu bar into a separate
form fil e by itself and then convert it separately.
174

Appendix B. Conversion to SIMGRAPHICS II
Any other icons contained in a form cannot be converted directly to SG2. Again, the un-
derlying window systems do not allow mixing icons and controls in a dialog box. There-
fore, these icons are converted and then stored in a SG2 object named after the form, but
with a . i cn extension. Thus, the icons contained in gr ound. f rm would be stored in
grou nd.icn .

Special command line options for form conversion: SIMCVT has two special command
line options that control the conversion of forms:

-i causes icons found in a form to be ignored rather than being put into a
*.icn SG2 object.

-v button_id
causes all buttons with the field ID equal to the given butt on_id to be set
verifying. This option can be used any number of times.

Gett ing a SG1 DUMP: If you are getting surprising results from SIMCVT, you should use
SimEdit to create a dump of the form you want to convert. This dump will li st all the items
contained in the form and give you more information to interpret the output.

B.3.4 Conversion of Files from PC DOS SIMSCRIPT

Problems can arise when trying to use or convert forms/graphs/icons created under PC
DOS SIMSCRIPT. This is because PC DOS SIMSCRIPT used an old binary format that is
incompatible with the newer SIMSCRIPT releases (all other platforms). Before using
SIMCVT to convert your forms/graphs/icons to SIMGRAPHICS II, convert your forms/
graphs/icons to ASCII form using the PC DOS SIMSCRIPT Graphics editor. This ASCII
format can be read without problems.

B.3.5 Miscellaneous Notes

Upper/ lower case of fil e names: The converted forms/graphs/icons are stored in the file
gr aphi cs. sg2 under the file name they had under SIMGRAPHICS I. All given file
names are stored in lower case in gra phics. sg2. The SHOW command used to show a
SIMGRAPHICS form/icon/graph again maps all given file arguments to lower case. This
way, the upper/lower case spell ing of former fil e names does not matter.

B.3.6 Features No Longer Supported in SIMGRAPHICS II

The foll owing guidelines should help you to write code that is full y portable between
SIMGRAPHICS I and SIMGRAPHICS II . All restrictions are due to the fact that the
underlying windowing systems take control over display, use and appearance of menus and
dialog boxes. If you follow these guidelines your appli cations should be able to run under
SIMGRAPHICS I and SIMGRAPHICS II without change.

1. Do not rely on being able to change the color of controls in dialog boxes, i.e. do
not make the color of buttons, and boxes significant.
175

SIMGRAPHICS II User’s Guide

by
ne

 bar

lay
r in-

,

.

o not

(see
In SIMGRAPHICS II, activation and deactivation of menu items (indicated
color change in SIMGRAPHICS I) will be provided by a call to a routi
SETACTIVATION.R.

2. Do not rely on being able to directly select menus, i.e. the top menu bar. In
SIMGRAPHICS I the control routine is called when you click on the top menu
and when you select a menu item, the control routine is called again.

In SIMGRAPHICS II, you can only select menu items, i.e. you will only return from
an ACCEPT.F call after you have selected a leaf of the menu tree.

3. Do not rely on being able to attach icons to dialog boxes. In SIMGRAPHICS II,
you can, of course, have any number of icons on the screen (and react to clicks
there). They just cannot be part of a dialog box.

4. Do not rely on GCOLOR.R to change the color of icons that have already been
drawn. SIMGRAPHICS I manipulated the color index table of the graphic disp
it was running on directly. Thus, changing the RGB values of a particular colo
dex immediately changed all the icons drawn with that color index.

In the supported windowing systems, colors are considered a resource that must be
allocated and used afterwards (this is done by SIMGRAPHICS II). Thus
GCOLOR.R can affect only the icons drawn after its call. The only exception is the
background color. Changes of color index 0 (background) take immediate effect

5. Do not rely on being able to control the particular menu that is displayed, i.e. d
use the attribute DIVAL.A .

In SIMGRAPHICS II, menus are under the control of the windowing system
guideline number 2).
176

Index
Numerics
2-D plots... 45

A
ACCEPT.F ...80-86, 145
ACCUMULATE statement................................ 71
adding an object...33
adding an object to the library 33
align and distribute, shape42
animation ..101
arcs.. 39
Areas... 132

B
bar graph ...45, 48
bitmaps ..40
bmp ...26, 40, 95
button.. 54
button field ..31, 86, 95

C
cascadeable menus.. 26
center point ... 42
changing the name of an object.......................... 33
chart ..45
check box ..55
CIRCLE.R routine.................................... 133, 145
circles.. 11, 38
CLEAR.SCREEN.R routine145
clipboard ...36, 54
CLOCK.A attribute... 140
clocks.. 50
CLOSE.SEG.R routine138, 146
CLOSEWINDOW.R routine146
color .. 44
color palette .. 35, 45
combo box31, 52, 57, 80, 90
command line arguments34
continuous surface.. 48
controls ... 52, 54, 61
coordinate space boundaries............................... 43
copy option... 36
create ...49, 52, 60, 71, 80
cut option ..36

D
DARY.A attribute... 146
data set ..48
DDVAL.A .. 86
DDVAL.A attribute.. 146
delete option ..36
DELETE.SEG.R routine................................... 146
DESTROY command... 87
DESTROY statement ..110

DFIELD.F function.......................... 124, 147, 163
dial ..51
dialog box... 11, 39, 53, 59
dialog box, tabbed... 61
Dialog Editor .. 31, 52
dials... 51
digital display... 52
dimension ..43
discrete surface... 48
DISPLAY command..................................... 72, 86
DISPLAY routine106, 131, 156
DISPLAY statement....................................72, 107
DRTN.A attribute131, 147
DTVAL.A attribute19, 147
DYNAMIC GRAPHIC entit ies 102, 108, 140, 145

E
edit graphic images ...11
editing objects... 32
editor, palette.. 66
ERASE.. 1, 72, 86, 110

F
field attributes ...81, 84
field identifier... 80, 85
File Selection Dialog.................................. 93, 147
FILEBOX.R routine... 147
fil l style... 46, 49, 161
FILLAREA.R routine148
FILLCOLOR.R routine.................................... 148
FILLINDEX.R routine..................................... 148
FILLSTYLE.R routine..................................... 149
fli p and rotate tools... 42
FONTBOX.R routine....................................... 149
form pointer.. 83
forms... 88, 123, 141, 171

G
GCOLOR.R routine.. 149
GDEFERRAL.R routine................................... 150
GDETECT.R routine.. 150
GHLIGHT.R routine.. 150
gotolink f... 60
GPRIORITY.R routine......................................151
Graph Editor ...12, 31, 44
graph types12, 31, 71, 171
graphics.sg21, 5, 71, 95, 173
graphs ..11
grid.. 1, 43, 61
group ...11
GUPDATE.R routine ..151
GVISIBLE.R routine.. 151
177

SIMGRAPHICS II User’s Guide
H
HANDLE.EVENTS.R routine151
histograms.. 45, 49, 117

I
icons1, 5, 6, 62, 71, 79, 101, 110, 131, 172
Image Editor ..31-36
images ..40

K
keyboard accelerators ...31

L
label ..57
Layout Editor ... 12, 31, 33
Layout/Group option ..40
level meter ..51
LINEAR.R routine... 152
LINECOLOR. routine...................................... 152
lines.. 11
LINESTYLE.R routine152
LINEWIDTH.R routine................................... 152
list box ..56
LISTBOX.SELECTED.R routine153
listing objects... 33
LOAD.FONTS.R routine................................. 153
LOCATION.A routine..................................... 153
LOCATION.F function154
LOCATION.X function154
LOCATION.Y function154

M
making a duplicate of an object33
MARKCOLOR.R routine154
MARKSIZE.R routine..................................... 154
MARKTYPE.R routine155
menu bar... 62
Menu Bar Editor... 31
menu item... 65
menus... 11
MESSAGEBOX.R routine............................... 155
mode palette... 36
modeling transformation.................................. 105
MOTION.A routine ...155
MSCALE.R routine ...155
multi-line text box ..56
MXLATE.R routine... 156
MXRESET.R routine....................................... 156
MZROTATE.R routine.................................... 156

N
normalized device coordinates43

O
OPEN.SEG.R routine..157
OPENWINDOW.R routine157
ORIENTATION.A routine157

P
palette button ..69
Palette Editor.. 31
palette separators ..69
palette, color ...35, 45
palette, mode.. 35, 66
palette, style ...35, 44
pan ..43
paste option ..36
PICKMENU.R routine157
pie chart ..49
polygons ...11, 38
POLYLINE.R routine158
polylines ...37
POLYMARK.R routine158
PostScript ...23, 94
POSTSCRIPT.R routine159
POSTSCRIPTCTRL.R routine158
presentation graphics1, 21, 31, 71, 113
primitives... 37
PRINT.SEG.R routine159
PRINT.WINDOW.R routine............................ 159
priority ..41, 113, 138, 139
push buttons ...172

R
radio box ..56
radio buttons56, 80, 88, 96, 172, 173
raster file, importing ...40
READ.GLIB.R routine.................................... 159
READLOC.R routine160
representation ...48
resize8, 12, 21, 33, 36, 53, 59-68, 125
RGTEXT.F function ..161
rotate ...42
rounding... 38
Running SIMDRAW.. 31

S
save11, 15, 24, 31, 32, 71, 174
scroll43, 56, 62, 79, 89, 123, 127
SEARCH.GLIB.R routine................................ 161
sector ..38
SECTOR.R routine ..161
SEGID.A routine.. 162
SEGID.V global variable162
SEGPTY.A attribute ..162
selecting, moving, and resizing36
SET.ACTIVATION.R routine163
178

Index
SET.LISTBOX.TOP.R routine163
SET.WINCONTROL.R routine164
SETCURSOR.R routine163
SETVIEW.R routine ...164
SETWINDOW.R routine164
SETWORLD.R routine165
snap... 1, 43
stacking order.. 41, 42
style palette ...35, 44
system font browser.. 93
system text.. 39, 135
SYSTIME.R routine... 165

T
Tab Field ...60
Tabbed Dialog ..60, 87
tables ...58
TALLY statement... 1, 71
terminating fields ..98
text box .17-18, 31, 50-57, 69, 80-88, 96, 147, 171
text meter .. 52
text primitives..39
TEXTALIGN.R routine165
TEXTANGLE.R routine166
TEXTCOLOR.R routine................................... 166
TEXTFONT.R routine166
TEXTSIZE.R routine.. 166
TEXTSYSFONT.R routine.............................. 167
time trace plot ... 49
TIMESCALE.V system global variable........... 167
TIMESYNC.V system global variable............. 167
trace plots ..31, 71, 76, 171
transferring a menu or menu item....................... 64

V
value attributes.. 84, 145
value box... 55
vector text ... 39
VELOCITY.A routine.......................................168
VELOCITY.F function..................................... 168
VELOCITY.X function168
VELOCITY.Y function169
verify button............................ 54, 85, 89, 173, 175
vertices defining a primitive41
viewing transformations................................... 103
VXFORM.V variable169

W
WGTEXT.R routine ... 169
window events ..126, 127
WITH clause ...72

X
X-axis.. 46
xwd ... 23, 26, 40, 95

Y
Y-axis.. 47

Z
zoom ...43, 62
179

SIMGRAPHICS II User’s Guide
180

	Table of Contents
	List of Figures
	Preface
	Why Use Graphics?
	Organization of This Manual

	1. Overview of SIMGRAPHICS II
	1.1 Effective Use of Graphics and the User Interfa...
	1.1.1 Selecting Colors
	1.1.2 Scale and Size
	1.1.3 Designing a Background
	1.1.4 Representing Changes in System State
	1.1.5 How Many Objects Should Be Displayed?

	2. Tutorial
	2.1 How to Open a SIMGRAPHICS II Window with a Tit...
	2.2 Display Icons in the Default Window
	2.3 Use of Multiple Graphics Libraries
	2.4 Example "Window"
	Figure 2-1. Example Window

	2.5 How to Open Multiple SIMGRAPHICS II Windows
	Figure 2-2. Multiple Window Example

	2.6 SIMDRAW — the Graphics Editor
	2.7 Creating an Icon
	Figure 2-4. Creating a Cart Icon

	2.8 Adding Animation
	Figure 2-5. Output of the Image-1 Routine

	2.9 Creating a Dialog Box
	Figure 2-6. Dialog Box Editor Window

	2.10 Adding Graphical User Interaction Using Dialo...
	Figure 2-7. Dialog Box for Example IMAGE 2

	2.11 Creating a Graph
	2.12 Adding Presentation Graphics
	Figure 2-8. Example IMAGE-3

	2.13 Creating a PostScript File
	2.14 Using a Bitmap as a Background
	Figure 2-9. Example “San Diego” Showing Imported B...
	Figure 2-10. Example of a Bitmap Used as a Backgro...

	2.15 Creating Cascadeable Menus
	2.16 Using Cascadeable Menus
	Figure 2-11. Cascadeable Menu
	2.16.1 Cascadeable Menus in Simulation Programs

	3. SIMDRAW
	3.1 SIMDRAW Overview
	3.2 Running SIMDRAW
	Figure 3-1. Main Window
	3.3 Loading and Saving SIMGRAPHICS II Files
	3.4 Editing an Existing Object
	3.5 Adding an Object to the Library
	3.6 Removing an Object from the Library
	3.7 Making a Duplicate of an Object
	3.8 Changing the Name of an Object
	3.9 Adding an Object from Another Library
	3.10 Editing Images and Graphs in Same Window
	3.11 User Preferences
	3.12 Command Line Arguments
	3.13 Using the Image Editor
	3.13.1 Mode, Style, and Color Palettes
	Figure 3-2. Image Editor

	3.13.2 Selecting, Moving, and Resizing
	3.13.3 Using the Clipboard (Cut, Copy, Paste Comma...
	3.13.4 Importing / Exporting to Other Graphical Fo...
	3.13.5 Creating Primitives
	3.13.6 Creating Images
	3.13.7 Editing the Root Image
	3.13.8 Editing Points on a Primitive
	3.13.9 Defining Stacking Order or Priority
	3.13.10 Defining the Center Point of a Shape
	3.13.11 Using the Flip and Rotate Tools
	3.13.12 Align and Distribute
	3.13.13 Using Grid Lines
	3.13.14 Changing Views (Panning and Zooming)
	3.13.15 Changing Dimension (Coordinate Space Bound...
	3.13.16 Changing the Layout Size and Color
	3.13.17 Program Access

	3.14 Using the Graph Editor
	3.14.1 Style, and Color Palettes
	3.14.2 Selecting, Moving, and Resizing
	3.14.3 Charts (2-D Plots)
	3.14.4 Pie Charts
	3.14.5 Clocks
	3.14.6 Dials
	3.14.7 Level Meters
	3.14.8 Digital Displays
	3.14.9 Text Meters

	3.15 Using the Dialog Editor
	Figure 3-3. Dialog Editor
	3.15.1 Selecting, Moving, and Resizing
	3.15.2 Dialog Box Coordinate System
	3.15.3 Using the Clipboard (Cut, Copy, Paste Comma...
	3.15.4 Controls

	3.16 Using the Menu Bar Editor
	Figure 3-4. Menu Bar Editor
	3.16.1 Selecting and Moving (Transferring)
	3.16.2 Using the Clipboard (Cut, Copy and Paste Co...
	3.16.3 Editing the Menu Bar
	3.16.4 Editing a Menu
	3.16.5 Editing a Menu Item

	3.17 Using the Palette Editor
	Figure 3-5. Palette Editor
	3.17.1 Selecting and Moving (Rearrangement of) But...
	3.17.2 Using the Clipboard (Cut, Copy and Paste)
	3.17.3 Editing the Palette
	3.17.4 Editing a Palette Button
	3.17.5 Editing Palette Separators

	4. Creating Presentation Graphics
	4.1 Variable Declaration
	4.2 Displaying Presentation Graphics
	4.3 Examples
	4.3.1 Example 1: A Simple Tallied Histogram
	Figure 4-1. Example 1

	4.3.2 Example 2: A Time-Weighted Accumulated Dynam...
	Figure 4-2. Example 2

	4.3.3 Example 3: Displaying Simple Scalar Values
	Figure 4-3. Example 3

	4.3.4 Example 4: Using a Trace to Plot X-Y Curves
	Figure 4.4 Example 4

	4.3.5 Example 5: The Bank Model
	Figure 4-5. The Bank Model

	5. Forms and Graphical Interaction
	5.1 Introduction
	5.2 Creating a Form
	5.2.1 Reference Names and Field Attributes

	5.3 Using the Form in a Program
	5.3.1 Using ACCEPT.F
	5.3.2 Interaction Modes

	5.4 Field Attributes
	5.4.1 Value Attributes
	5.4.2 Terminating Buttons
	5.4.3 Verifying Buttons

	5.5 Form Control Routines
	5.6 Details of Field Operations
	5.6.1 The DISPLAY Command
	5.6.2 The ACCEPT.F Function
	5.6.3 The ERASE Command
	5.6.4 The DESTROY Command
	5.6.5 The SET.ACTIVATION.R Routine

	5.7 Dialog Boxes and Their Fields
	5.7.1 Dialog Box

	5.8 Predefined Dialog Boxes
	5.8.1 Standard Message Dialog
	5.8.2 Custom Message Dialogs (Alert, Stop, Informa...
	5.8.3 File Selection Dialog
	5.8.4 System Font Browser
	5.8.5 Printing the Contents of a Graphics Window (...

	5.9 Menu Bars and Palettes
	5.9.1 Menu Bar
	5.9.2 Palettes

	5.10 Examples
	Figure 5-1. Form for the ATM Example
	Figure 5-2. Form for List1 Example

	6. Creating Animated Graphics
	Figure 6-1. Animated Icons
	6.1 Graphic Entity Declaration
	6.2 Coordinate Systems
	Figure 6-2. Coordinate Transformations
	6.2.1 Normalized Device Coordinates
	6.2.2 Setting a Viewing Transformation
	6.2.3 Defining The World: SETWORLD.R
	6.2.4 Defining a Viewport: Routine SETVIEW.R
	6.2.5 Modelling Transformations

	Figure 6-3. Object Origin
	6.3 Animating Dynamic Graphic Entities
	6.4 Displaying Icons
	6.5 An Example
	6.5.1 Preamble
	6.5.2 Main Program
	6.5.3 Process Shape

	Figure 6-4. Output of the Shape Routine
	6.5.2 Main Program
	6.5.3 Process Shape

	6.6 Destroying and Erasing Icons
	6.7 Synchronizing Simulation Time and Real Time

	7. Example Programs
	7.1 The Gold Mine Program
	Figure 7-1. The Gold Mine
	7.1.1 Menu Bar Process
	7.1.2 Form Control Routine

	7.2 The DYNHIST Model
	Figure 7-2. Output of the DYNHIST Model
	7.3 The Port Model
	Figure 7-3. The Port Model
	7.4 The CALSHIP Model
	Figure 7-4. The CALSHIP Model
	7.5 The Spring Model
	Figure 7-5. The Spring Model
	7.6 The Pilot Ejection Model
	Figure 7-6. The EJECT Model

	8. Managing Multiple Windows
	8.1 Multiple Window Support
	8.2 Setting and Getting the Attributes and Events ...
	8.2.1 Window Attributes or “Fields”

	8.3 Window Events
	8.4 Scrollable Windows
	8.5 Status Bars

	9. Advanced Topics
	9.1 Drawing Icons Without SIMDRAW
	9.2 Writing a Display Routine
	9.2.1 Color
	9.2.2 Drawing Areas
	9.2.3 Drawing Lines
	9.2.4 Drawing Points (Markers)
	9.2.5 Direct Character Output
	9.2.6 Character Output Using System Text
	9.2.7 System Font Browser
	9.2.8 Loading a Font Re-definition File
	9.2.9 The Shape Example Revisited

	9.3 Using Segments
	9.3.1 Segment Priority
	9.3.2 Using Priority Zero
	9.3.3 Other Segment Operations
	9.3.4 Drawing Backgrounds

	9.4 Additional Attributes of [Dynamic] Graphic Ent...
	9.5 Low-Level Input Constructs
	9.5.1 Selecting a Segment

	9.6 Programmatically Definable System Cursor
	9.7 Time Unit Conversion for Simulation Graphics

	Appendix A. SIMGRAPHICS II Variables and Routines
	Appendix B. Conversion to SIMGRAPHICS II
	B.1 What is SIMGRAPHICS II?
	B.2 Differences Between SIMGRAPHICS I and II
	B.2.1 Icons
	B.2.2 Graphs
	B.2.3 Forms
	B.2.4 Menu Bars
	B.2.5 Dialog Boxes
	B.2.6 Push Buttons
	B.2.7 Radio Buttons

	B.3 Using the Conversion Utility
	B.3.1 Calling SIMCVT — Command Line Arguments
	B.3.2 Possible Problems with Forms
	B.3.3 A Menu Bar Within a Form
	B.3.4 Conversion of Files from PC DOS SIMSCRIPT
	B.3.5 Miscellaneous Notes
	B.3.6 Features No Longer Supported in SIMGRAPHICS ...

	Index

