

Getting Started with MULTI® 2000
for MCore

Copyright © 1999 by Green Hills Software, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission from Green Hills Software, Inc.

DISCLAIMER
GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software, Inc.
reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation
of Green Hills Software, Inc. to notify any person of such revision or changes.
Green Hills Software and the Green Hills logo are trademarks, and MULTI is a registered trademark, of Green Hills
Software, Inc.
All other trademarks or registered trademarks are property of their respective companies.

PubID: Q56U-I1299-20NG
December 20, 1999 1:15 pm

ULTI!
Welcome to M
e

ast

es

,
%HIRUH�\RX�JHW�VWDUWHG�

Notice the graphic insert on pages G-1 through G-4.
(Right in the middle of the book.) Grab this insert and
pull it out. This insert is a graphic version of this
tutorial. Use it to help you through the steps on the
following pages.

&KDSWHU ���´8S�DQG�5XQQLQJ�LQ����4XLFN�6WHSVµ �

So you want to start using MULTI! We’ve got just th
thing. This introduction gives you all the info you
need to get up and running with MULTI in just 10
quick steps. This introduction quickly guides you
through creating the quintessential introductory
program, "Hello World!".

&KDSWHU ���´*HW�WKH�GHWDLOVµ �

So, now you have some time and you want to get p
the surface level on MULTI. This chapter takes you
through the same steps as the Up and Running...
chapter but this time gives you the meat and potato
of what’s going on.

&KDSWHU ���´1RWHV�IRU�WKH�3URµ ��

OK, you’ve completed the tutorials and now you’re
hungry for more. Or you are already familiar with
MULTI and want to learn a bit more. This chapter is
for you. It goes just beyond the stuff in the tutorials
including information on inheritance, processor
selection and link files.

 Getting Started with MULTI 2000

Chapter
1

Up and Running in
10 Quick Steps
1.Create and cd to a new directory

2.Start MULTI

3.Add a [program] object to default.bld

4.Navigate into hello.bld

5.Add a C source file and link file to hello.bld

6.Create the hello.c source file

7.Compile hello.c

8.Connect to a Board

9.Start the Debugger

10.Run some code

1. Up and Running in 10 Quick Steps

 depth

 store

the
The following 10 steps guide you through building and debugging a Hello World program
using MULTI. These steps give you a feel for how to use MULTI and put into context the
information in the Building and Editing with MULTI 2000 manual and the Debugging with
MULTI 2000 manual. Attached is a graphical representation of these 10 steps. You may refer
to this chart as you go through each step. “Get the details” on page 5 provides a more in
version of these steps. “Notes for the Pro” on page 15 addresses additional issues and
suggestions.

1. Create and cd to a new directory

Creating a new directory simply provides a convenient place to create and
your program. Create a temporary directory called hello and cd to it.

% mkdir hello
% cd hello

2. Start MULTI

You can start MULTI by entering multi default.bld if the Green Hills tool
directory is in your PATH environment variable. If not, then specify the full
path name (e.g.: /usr/green/multi). MULTI starts in the current working
directory and, without any command-line parameters, will attempt to open
last build file that was open. Adding default.bld to MULTI will override this
behavior. If default.bld is not found, MULTI will create it.

% multi default.bld

3. Add a [program] object to default.bld

To add a [program] object, click the Add button () and enter hello.bld.

4. Navigate into hello.bld

To navigate into hello.bld, double-click hello.bld in the Project pane.

5. Add a C source file and link file to hello.bld

To add a C source file to hello.bld, click the Add button () and enter hello.c.
2 Getting Started with MULTI 2000

Create the hello.c source file

s
rce

on
)
6. Create the hello.c source file

1) Double-click hello.c in the Project pane.

2) Enter the following text into the MULTI Editor:

#include <stdio.h>
int main (int argc, char **argv) {
 printf ("Hello World!\n");
 return 0;
}

3) Click the Save and Close button () to save the file and exit the Editor.

7. Compile hello.c

Click the Build button () in the Builder.

The Progress Window shows compilation results for each module. You can
close this window after successful compilation.

8. Connect to a Board

Click the Connect button () and enter pbugserv -mmc2001 com1 into the
remote field. Or, enter simmcore. Two small windows (the Target and I/O
window) will appear when the connection is established. If you are connecting
to a hardware board, see “Connect to a Board” on page 10.

9. Start the Debugger

To start the Debugger, click the Debug button () in the Builder. This load
the hello program executable into the MULTI Debugger and the program sou
code is displayed.

10. Run some code

Run some code by clicking the Next button () in the Debugger. This butt
executes one line of source code at a time. After clicking the Next button (
button a few times, you’ll see Hello World! appear in the I/O window
described in Step 8.
Green Hills Software, Inc. 3

1. Up and Running in 10 Quick Steps
With these 10 simple steps, you have created a MULTI project, written,
compiled, and run a program, and produced program output on the host.
Progressing to larger applications with multiple program elements is easy. Each
element is built and run the same way. Consult the Building and Editing with
MULTI 2000 manual and the Debugging with MULTI 2000 manual for more
information on MULTI’s many capabilities.
4 Getting Started with MULTI 2000

Getting Started with MULTI® 2000 for MCore

Introduction to MULTI® 2000
Graphic Insert

This insert contains a graphic representation of the steps pre-
sented in Chapters 1 and 2.

To remove insert, grasp pages G-1 through G-4 firmly and pull out.

1. Create A Temporary Directory

2. Enter “multi”

4. Double-click

5. Click Add and

6a. Double-click

6b. Enter program code

6c. Click Save&Quit

enter "hello.bld".
3. Click Add and

Enter “hello.c”.
G-2 Getting Started with MULTI 2000

Getting Started with MULTI® 2000 for MCore
7. Click Build

8. Click Connect and

10. Click Next

9. Click Debug

Enter “simmcore”
Green Hills Software, Inc. G-3

G-4 Getting Started with MULTI 2000

Chapter
2

Get the details
This Chapter Contains:

• An in depth review of 10 steps for using MULTI

2. Get the details
The following reviews the 10 steps introduced in Chapter 1. These discussions include hints,
suggestions, warnings, caveats, pitfalls, and frequently asked questions. Please refer to the
Building and Editing with MULTI 2000 manual for more information.

1. Create and cd to a new directory

Creating a new directory simply provides a convenient place to create and store
your program. Create a temporary directory called hello and cd to it.

% mkdir hello
% cd hello

When you create a temporary directory, you provide yourself a clean working
directory for this exercise.

2. Start MULTI

You can start MULTI by entering multi if the Green Hills tool directory is in
your PATH environment variable. If not, then specify the full path name (i.e.:
/usr/green/multi). MULTI starts in the current working directory and looks for
default.bld. If default.bld is not found, MULTI will create this file.

% multi

• If you are on a command line, you can use either of the following methods:

1. Enter multi if multi is in your PATH environment variable.

2. Specify an absolute path like /usr/green/multi. In this case, MULTI will find
all of its necessary sub-components in the directory in which MULTI
resides.

• Generally, it is not a good idea to start MULTI from the green directory.
Since MULTI does not write to any files in the green directory (with the
exception of a .cfg file used for preferences), you can keep the green
directory clean and stable.
6 Getting Started with MULTI 2000

Add a [program] object to default.bld

e
e
3. Add a [program] object to default.bld

To add a [program] object, click the Add button () and enter hello.bld.

• You may refer to The MULTI Builder on page 16 for information about the
Builder.

• In this step, you’re basically creating one program called hello in your
project, default.bld.

4. Navigate into hello.bld

To navigate to hello.bld, double-click hello.bld in the Project pane.

When you navigate to a .bld file, you are essentially opening that .bld file like
an Editor opens a text file. The .bld file currently open appears at the top of th
Project pane. When a build/compile option is set, that option is stored in th
open .bld file.

5. Add a C source file to hello.bld

To add a C source file to hello.bld, click the Add button () and enter hello.c.
Green Hills Software, Inc. 7

2. Get the details
If you enter the name of a file that does not exist, MULTI adds the name to the
Project pane. The file does not actually exist on disk until you edit it.

• If you enter the name of a file that currently exists, MULTI adds it to the
Project pane.

• To add multiple files to a project choose Edit > Add Files to Project. The
following window will appear. Select multiple files using Shift or Control

6. Create the hello.c source file

a) Double-click hello.c in the Project pane.

b) Enter the following text into the MULTI Editor:

#include <stdio.h>
int main (int argc, char **argv) {
 printf ("Hello World!\n");
 return 0;
}

c) Click the Save and Close button () to save the file and exit the Editor.

Refer to Building and Editing with MULTI 2000 for further information on
launching an alternate editor and advanced forms of control over your alternate
editor, such as opening files to a specific line number.

7. Compile by clicking the Build button in the Builder

Click the Build button () in the Builder.
8 Getting Started with MULTI 2000

Compile by clicking the Build button in the Builder
The Progress Window shows compilation results for each module. You can
close this window after successful compilation.

• When you click the Build button (), the MULTI Builder will invoke
several tools (such as C/C++/EC++/FORTRAN/Pascal/Ada95 compilers,
librarian, linker, etc.) to build the project/program you have open in the
Builder.

• The MULTI Builder does dependency checking. For example, if you change
one item such as the header file, only those affected source files are
recompiled, executables are relinked, libraries are re-archived, etc. Changes
to the .bld files themselves (i.e. setting of build/compile options) are also
considered during dependency checking.

• The Build button () is equivalent to Build > Build current_file in the
Builder’s menu bar. Build > Cleanup Intermediate Files and Rebuild All
are used just like make clean and make all are when using makefiles.
Green Hills Software, Inc. 9

2. Get the details
• A Builder Progress window displays the build progress.

When the compiler encounters a syntax error you can double-click that error
and an Editor window takes you to the line where the error occurred.

• If the Builder Progress window is no longer needed, close it by clicking the
Exit button ().

8. Connect to a Board

Click the Connect button () and enter pbugserv -mmc2001 com1 into the
remote field. Or, enter simmcore. Two small windows (the Target and I/O
10 Getting Started with MULTI 2000

Connect to a Board

l port
erv

arget’s
ves
target

For

and
rk
ills

vides
window) will appear when the connection is established. If you are using a
different target board, see the following.

• MULTI uses a debug server to connect to a target. A debug server is the
software module that provides an interface between MULTI and a specific
target hardware environment. Green Hills supports a large variety of debug
servers that allow connection to many different targets in many different
ways. For example, the OCDserv debug server drives your PC’s paralle
to connect to a board with on-chip debugging using a Wiggler, while HPs
talks across an ethernet to a HP Processor Probe that connects to the t
JTAG port, and so on. In short, the MULTI environment looks and beha
the same, while the debug server takes care of the uniqueness of your
connection.

• Pre-build demos for use with several boards are provided with your
distribution. These demos are complete with setup files and link files.
more information on these demos look at the readme.txt file located in
/usr/green/examples.

• In order to use many of the commands below you will need to copy the
appropriate setup.ocd or setup.dbs file from /usr/green/examples/boardname
into your project directory. You should also copy the link file
(boardname.lnk) and add it to your project to ensure that your program is
appropriately linked.

• If you have a hardware board, follow the instructions included with the
board’s documentation for properly installing the board. Connect to the
board by clicking the Connect button and entering the remote comm
from the following table. These commands are generic and may not wo
with all configurations. For specific server options, consult the Green H
documentation for your board.

• When a debug server establishes connection to a target, two windows
appear:

1. The Target Window provides an interface to the debug server. In many
cases, you do not use this window. Under special circumstances, it pro

Interface
Supported
Board

Command

MCore Simulator simmcore

PBUG Monitor MMC2001 pbugserv -mmc2001 com1
Green Hills Software, Inc. 11

2. Get the details
a handy interface for lower-level functions. For example, when using the
HPserv debug server, the Target window provides a Telnet interface to the
Emulator. You can then interface with the emulator directly.

2. The I/O Window provides stdin/stdout to the target. For example, when
printf is called from the target, the output is displayed in this window. This
window works with the standard ANSI IO libraries provided by GHS. If you
have your own IO routines, the debug server IO window is ignored.

• For this example, you used an instruction set simulator. The GHS instruction
set simulators are intended to provide instruction set valid simulation. Some
of them provide limited forms of cycle accurate and cache simulation.
However, extensive hardware simulation (including on-chip and on-board
peripherals) is not the intention of the simulators. For true (and accurate)
co-simulation, refer to third party co-verification tools integrated with
MULTI.

9. Start the Debugger

To start the Debugger, click the Debug button in the Builder. This loads the
hello program executable into the MULTI Debugger and the program source
code is displayed.
12 Getting Started with MULTI 2000

Run some code

bly
e
10. Run some code

Run some code by clicking the Next button in the Debugger. This button
executes one line of source code at a time. After clicking the Next button
button a few times, you’ll see Hello World! appear in the I/O window
described in Step 8.

• Using all of the MULTI Debugger features is beyond the scope of this
tutorial. Please see the Debugging with MULTI 2000 manual for a complete
list of capabilities.

• Some interesting capabilities in MULTI are:

1. MULTI uses the concept of “single-click something to see it, and dou-
ble-click to bring it up in a separate Data Explorer window”. It is worth try-
ing this with each of the following:

• variables

• functions

• procedures

• methods

• types

• instances

• classes

• constants

• expressions

• pointers (within a data explorer window)

• nested data structures (within a data explorer window)

• parent classes (within a data explorer window)

• method list (within a data explorer window)

• functions (within the call stack, static and dynamic calls graphs)

• classes (within the class browser)

2. The Assembly button is useful for displaying source code and assem
interlaced. The Step button and the Next button are relative to th
assembly code when in interlaced mode.
Green Hills Software, Inc. 13

2. Get the details

of
 what
top

This
int

e
3. You’ll notice green dots , known as breakdots, to the left of each line
executable code. These breakdots show you what is an executable and
is not. You can set breakpoints by simply clicking the breakdot. A red “S
Sign” icon appears in place of the green breakdot. You can clear the
breakpoint by clicking the breakpoint icon.

4. A double-right click on a line of code executes a run-to-here command.
is an easy way to run to a desired point without having to set a breakpo
and then use the Go button .

5. The e command (short for examine), is useful for arbitrarily navigating
through code. Enter e in the command pane, followed by an address or th
name of a function or file. You can also use wildcards.
14 Getting Started with MULTI 2000

Chapter
3

Notes for the Pro
This Chapter Contains:

• The MULTI Builder

• Inheritance and Setting Options in the Builder

• Start MULTI with Top-Level .bld Files Only

• Specific Processor Selection

• Show Progress

• Link Control Files

• Link Maps

3. Notes for the Pro
This Chapter provides information for people that are familiar with the basics of using
MULTI.

The MULTI Builder

A graphical project hierarchy is a very powerful and intuitive concept. The
MULTI project hierarchy is created by nesting .bld files. Each .bld file can
contain zero or more references to other .bld files. In other words, you can start
with one .bld file (typically default.bld) and add .bld files, and then .bld files
to those, and so on in order to build a hierarchy. The .bld files are files on your
disk.

The .bld files store the build/compile options that you may set for your
programs/files. The MULTI Builder provides you with a graphical interface for
setting and changing these build/compile options.

The .bld files are not makefiles. The MULTI Builder and its .bld files provide
you with a graphical alternative to using makefiles. If you want or need to use
makefiles, do not use the MULTI Builder. Since you can call the GHS
compilers from the command line and consequently a makefile, you have all of
the capabilities of any traditional compiler and a graphical build environment.

Building can be accomplished from the command line just like Make. Use
build.exe to begin a build. For example, you can enter:

% build default.bld

Build is useful when you want to use a graphical interface to intuitively
construct your program, but you want to initiate the actual build from the
command line.

Each .bld file will be of some type, like [nobuild], [program],
[library], etc. You can set the .bld file’s type by highlighting it and then
setting in the Builder’s menu bar: Project > Options for current file.
16 Getting Started with MULTI 2000

Inheritance and Setting Options in the Builder

.
.

e
By doing this, you’re telling MULTI what you want to build. For example, if
you have source files contained within a hello.bld [program], you’re telling
MULTI to compile the contained source files and to link them into a program
with the name hello. If you change hello.bld to be type [library], then
MULTI compiles the contained source files and then combines them into a
library with the name hello.a (the extension varies with the target processor)
default.bld is normally left as type [nobuild] which is considered a project

Inheritance and Setting Options in the Builder

You can set various build and/or compile-time options from the Project menu.
When you set an option, that option is set (see below for the three settings
available) for the file that you highlighted in the Builder’s Project pane. If th
highlighted file happens to be a .bld file that contains other files within it, the
option you set is inherited by the files contained within that .bld file.
Green Hills Software, Inc. 17

3. Notes for the Pro

er

t edit

.
Many build/compile-time options appear as a check box and have three possible
settings. You can set an option to ON, OFF, or INHERIT.

ON Forces the option to ON, regardless of the setting for any higher-level
(parent) .bld file containing the current file.

OFF Forces the option to OFF, regardless of the setting of any parent .bld file.

INHERITSets the option the same as it is set in the parent .bld file.

1. To set a build/compile-time option ON for a file, highlight the file of inter-
est, then click Project > xxxxx Options for current file in the Builder’s
menu bar. Click the desired field until it shows a plus sign (+).

2. To set a build/compile-time option OFF for a file, highlight that file and
click Project > xxxxx Options for current file in the Builder’s menu bar.
Click the desired field until it shows a minus sign (-).

3. To set a build/compile-time option to INHERIT, highlight that file and click
Project > xxxxx Options for current file in the Builder’s menu bar. Click
the desired field until the field is blank.

When an option shows Blank/Default, then you may wonder, “just what is
inherited for that specific file?” By clicking the Merge button in the Build
window, the Options window shows what options are actually going to be
applied to a specific file. Notice that the fields are grayed out so you canno
them. When you click the Unmerge button , the fields become editable
again.

For example, if you set in the Builder’s menu bar Project> Options for current
file > No Optimization on your top-level project default.bld, all programs and
their source files contained in your default.bld project is compiled with No
Optimization. Alternately, you could have set this option on just one file (i.e
hello.c) and left all other programs and/or source files alone.
18 Getting Started with MULTI 2000

Start MULTI with Top-Level .bld Files Only

hat

t to
l
Start MULTI with Top-Level .bld Files Only

If you understand MULTI .bld files, the hierarchy, and the inheritance model,
you’ll notice that options set at a particular level are stored at that level.

Having separate .bld files not only lends itself to a clean and concise model t
follows a natural hierarchy that often exists, but it allows flexibility.

Sometimes your situation will call for two projects (A and B) that share a
common subproject (C). One pitfall exists here: You must not start MULTI
directly on the shared subproject (i.e. multi c.bld). If you do, MULTI has no
way of knowing where to find the inherited options (A or B?).

You may not have shared subprojects, but this points out that it is importan
consistently start MULTI with a top-level project as opposed to a lower-leve
Green Hills Software, Inc. 19

3. Notes for the Pro

h a

hrough

 an
ion
fault
ssor

t.

 this

ow is
project. “Jumping into the middle of a hierarchy” occurs if you don’t start wit
top-level project.

Specific Processor Selection

During this introduction to MULTI, you may have wondered exactly which
target processor was used. The specific processor selection can be made t
the Builder’s menu bar (Project > CPU Options for current file) and is
typically done at your top level project (i.e. default.bld).

Processor selection is important. If it is incorrect or left to some unknown
default, your code may not run correctly on your particular target.

Processor selection not only affects compiler/code generation, but running
Instruction Set Simulator also needs to be taken into account. The Instruct
Set Simulators require a parameter (omitting this parameter selects the de
processor for that particular architecture) that specifies exactly which proce
to simulate. The syntax is:

simulator_name [cpu]

For example, simarm -arm9e instructs the MCore Instruction Set Simulator
specifically to simulate the ARM9E. For the processors available for your
product, please consult the Green Hill’s Development Guide for your targe

Show Progress

When you start a build, MULTI provides a separate Progress window. From
window, you can do many things like launch an Editor by double-clicking a
syntax error message, or save the results to a file (since the Progress wind
an Editor after all). In default mode, the Progress window displays simple
messages showing its progress (i.e. Compiling…).

If you want a more verbose progress listing, you can either:
20 Getting Started with MULTI 2000

Show Progress

he
1. Choose from the Builder’s menu bar, Build > Advanced Build Controls... .
This control is per MULTI session.

2. In the Builder’s menu bar, set Project > Options for current file > Show >
Progress. This option, like any other build/compile-time option, is set on t
currently highlighted file (and is inherited of course)

.

Green Hills Software, Inc. 21

3. Notes for the Pro

hich

 a

Showing a verbose progress listing is helpful when you’re curious about w
libraries and directories the Builder is using during compilation.

Link Control Files

To specify how your program is linked and located in memory, you can use
link control file. These files typically have a .lnk extension. From within the
Builder, you can add this file to your [program], and it is used during link. If
you do not specify a .lnk file, the linker uses the default.lnk link control file
from the appropriate library directory.

Link Maps

You can view a link map with the Green Hills compiler/tool chain using the
-map option. You can use Project>Options for current file>DriverOptions
field in the Builder’s menu bar to specify certain options like -map.
22 Getting Started with MULTI 2000

Link Maps
Warning: The Driver Options field is a catch-all field that is used only when a
graphical check box or field does not currently exist. Using switches that
duplicate or conflict with existing graphical settings will result in indeterminate
behavior. The Driver Options field requires that entries be separated by a
comma with no spaces between them.

Handy note: You can add a program.map entry to your project. This does not
necessarily tell MULTI to create a link map, but provides an easy way to launch
an Editor on it (i.e. double-click it).
Green Hills Software, Inc. 23

3. Notes for the Pro
24 Getting Started with MULTI 2000

	Getting Started with MULTI® 2000 for MCore
	Welcome to MULTI!
	Before you get started:
	Chapter�1, “Up and Running in 10 Quick Steps” 1
	Chapter�2, “Get the details” 5
	Chapter�3, “Notes for the Pro” 15

	1 Up and Running in 10 Quick Steps
	1. Create and cd to a new directory
	2. Start MULTI
	3. Add a [program] object to default.bld
	4. Navigate into hello.bld
	5. Add a C source file and link file to hello.bld
	6. Create the hello.c source file
	7. Compile hello.c
	8. Connect to a Board
	9. Start the Debugger
	10. Run some code
	Getting Started with MULTI® 2000 for MCore

	Introduction to MULTI® 2000 Graphic Insert
	2 Get the details
	1. Create and cd to a new directory
	2. Start MULTI
	3. Add a [program] object to default.bld
	4. Navigate into hello.bld
	5. Add a C source file to hello.bld
	6. Create the hello.c source file
	7. Compile by clicking the Build button in the Builder
	8. Connect to a Board
	9. Start the Debugger
	10. Run some code

	3 Notes for the Pro
	The MULTI Builder
	Inheritance and Setting Options in the Builder
	Start MULTI with Top-Level .bld Files Only
	Specific Processor Selection
	Show Progress
	Link Control Files
	Link Maps

