

Debugging with MULTI® 2000

Copyright © 1983-1999 by Green Hills Software, Inc. All ri ghts reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission from Green Hills Software, Inc.

DISCLAIMER
GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software, Inc.
reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation
of Green Hills Software, Inc. to notify any person of such revision or changes.

Green Hills Software and the Green Hills logo are trademarks, and MULTI is a registered trademark, of Green Hills
Software, Inc.
System V is a trademark of AT&T.
Sun is a trademark of Sun Microsystems, Inc.
UNIX and Open Look are registered trademarks of UNIX System Laboratories.
ColdFire is a registered trademark of Motorola, Inc.
DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.
4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.
X and X Window System are trademarks of the Massachusetts Institute of Technology.
Motif is a trademark of Open Software Foundation, Inc.
VelOSity and Integrity are trademarks of Green Hills Software, Inc.
Microsoft is a registered trademark, and Windows, Windows 95, Windows 98, and Windows NT are trademarks of
Microsoft Corporation.
All other trademarks or registered trademarks are property of their respective companies.

PubID: M32U20NG

Time Stamp: Fri Oct 22, 1999

CONTENTSContents
Preface P-1
About the MULTI manuals P-2

Conventions P-2

1 Introduction to MULTI 1
Features 2

Embedded programming in MULTI 4

Running MULTI from the command line 5

Resources 9

2 Debugger GUI 11
Main debugger window 12

Debugger menus 22

Debugger toolbar 34

Pop-up menus 36

Generic debugger window features 39

Other window topics 42

3 Expressions, variables, and procedures 45
Evaluating expressions 46

Viewing variables 48

Viewing memory addresses 49

Variable lifetime 50

Special variables 51

Examining data 52

Wildcards 57

Procedure calls 58

System variables 60

Syntax checking 63
Green Hills Software Inc. i

CONTENTS
4 Debugger commands 65
Debugger notations 66

Command groups 71

Debugger commands 75

5 The data explorer 147
The data explorer 148

Data explorer basics 148

View command 150

Related commands 152

Data explorer autosizing 155

Data explorer messages 155

Working with data explorers 156

Data explorer format menu 160

Data explorers with an infinite view 164

Updating data explorer windows 164

6 Run-time error checking 167
Run-time error checking 168

Run-time Error tab check boxes 168

Memory checking drop-down list 170

Finding memory leaks 171

7 The Profiler 173
Introduction to the profiler 174

Using the profiler 175

Profiling targets 182

The profdump command 183

The protrans utility 183
ii Debugging with MULTI 2000

CONTENTS
8 Browse window 187
Browse window 188

Dialog box for procedures 197

9 Memory view window 199
Opening a memory view window 200

Configuring a memory view window 201

Changing the address in a memory view window 202

Editing memory in a memory view window 203

10 Call stack window 205
Call stack window 206

11 Breakpoints window 209
Opening the Breakpoints window 210

Breakpoint types 210

Using the Breakpoints window 211

12 Tree browser 215
Opening a tree browser 216

Using a tree browser 218

Configuring tree browser colors 222

Index I-1
Green Hills Software Inc. iii

CONTENTS
iv Debugging with MULTI 2000

Preface
This chapter contains:

• About the MULTI manuals

• Conventions

The

About the MULTI manuals

This manual systematically documents all the features and commands of the
MULTI debugger (“the debugger”) which are host and target independent.
comprehensive index will help you locate the information you need.

For information about other components of MULTI, such as the Builder and
Editor, and information about configuring and customizing MULTI, refer to
Building and Editing with MULTI 2000.

For specific target systems, refer to the Development Guide for your target.

Conventions

Typographical conventions

For example, in the command description:

gcc [-processor] filename

the command gcc should be entered as given, the word processor may
optionally be substituted with an appropriate option, and the word filename
must be replaced with an appropriate file name.

Convention Example Description

italic text in a command line -o filename place-holder for mandatory user-supplied
arguments

square brackets, [] .macro name [list] encloses optional commands, terms, or
arguments

square brackets [] around
boldface word “default”

Specifies char as
signed. [default]

command or option is the default

menu > item > sub-item... File > Open... menu bar, menu items, sub-menu items...

Enter something Enter cc800 -S hi.c Type something AND press the Enter key.
Compare with “Type something” below.

Type something Type foo.c and press
Edit

Type something WITHOUT pressing the Enter
key. Compare with “Enter something” above.
P-2 Debugging with MULTI 2000

Conventions

it) or
ile
GUI mode conventions
The main MULTI windows in the Builder, Editor, and Debugger contain some
or all of the following regions:

GUI conventions

MULTI documentation assumes you have a working knowledge of your
operating system and its conventions, including its command-line and GUI
interfaces—for example, how to use a mouse and standard menus and
commands, and how to open, save, and close files, etc.

Check box conventions
There are two types of check boxes: two-way and three-way.

A two-way check box has two states: either enabled (with a check mark in
not (when it’s empty). For example, Config > Options > Colors tab > Build F
Coloring.

Convention Description

source pane The portion of the window in which the source code is displayed.

status bar Displays information, such as the process state and the name of
the file being debugged.

command pane Area to enter commands and display results.

toolbar Contains buttons for commonly used commands.

Convention Meaning

First mouse button Mouse buttons are numbered from the left. The first mouse
button is the left-most mouse button.

Shift+Click Hold down the Shift key while clicking a mouse button.

Ctrl+Click Hold down the Ctrl key while clicking a mouse button.
Green Hills Software, Inc. P-3

A three-way check box has three states (for example, Builder > Project >
Options > General tab > Automatically use MVC):

• The first state is On. The box has a plus sign (+), indicating that the option is
turned on, overriding any previous or inherited settings.

• The second state is Off. The box contains a minus sign (-), indicating that
the option is turned off, overriding any previous or inherited settings.

• The third state is Default. The box is empty, indicating that the inherited
state, if any, is used.
P-4 Debugging with MULTI 2000

Chapter
1

Introduction to
MULTI
This chapter contains:

• Features

• Embedded programming in MULTI

• Running MULTI from the command line

• Resources

1. Introduction to MULTI

all

e to

nds.

ct.

 171.

MULTI is a complete interactive software development environment for programs written in
Ada, C, C++, FORTRAN, and Pascal, as well as in assembly language for each supported
target. Source code from these languages can be compiled and linked into a single executable
in virtually any combination.

NOTE: If you are upgrading from a previous version (1.8.9 or older) to 2.0,
DO NOT install your 2.0 release in the same location as your previous
(1.8.9 or older) release.

Features

Some of MULTI’s powerful features include:

Debugging

• A Source Level Debugger that supports mixed language debugging and
C++ and Ada language constructs.

• A Profiler that collects data, provides reports, annotates the source cod
find hot spots in your program, and provides mechanisms to feed
information back into the development process. See Chapter 7, “The
Profiler”.

• Run-Time Error Checking for different classes of errors, implemented
with a combination of compiler checks, libraries, and debugger comma
See Chapter 6, “Run-time error checking”.

• Expression Evaluation to determine whether your expressions are corre
See “Evaluating expressions” on page 46.

• A Data Explorer to monitor variables and evaluate expressions during
debugging. See Chapter 5, “The data explorer”.

• Memory Leak Detection to find chunks of memory that have been
allocated but are no longer used. See “Finding memory leaks” on page

• Conditional Breakpoints that cause a breakpoint to be active under
conditions you specify. See “To make a breakpoint conditional” on page
211.

• A graphical Ada 95 Type Inheritance and C++ Class Browser to delineate
the structure of your classes and of classes you inherit. See Chapter 8,
“Browse window”.

For more information on the following MULTI features, consult your Building
and Editing with MULTI 2000 manual.
2 Debugging with MULTI 2000

Features
Project Management

• A Program Builder for creating, assembling, and controlling your
programming projects.

• A Progress Window to keep you informed at all times as you construct your
project.

Version Control

• An automatic Version Control System with features for managing revision
levels and program branches, and for tracking the origins of suspicious code.

• The capability to Merge Two or Three Versions of a file.

• Highlighted Diff Windows to see the difference between two files.

Editing

• A built-in Editor that is fully configurable, enhanced with special features
to support some of the advanced capabilities of MULTI.
Green Hills Software, Inc. 3

1. Introduction to MULTI
Embedded programming in MULTI

MULTI supports embedded development for the 32- and 64-bit microprocessor
families listed in the following table:

Embedded programming is the programming of microprocessors which are
incorporated into an embedded product. PCs and Workstations are used as host
computers on which programs are edited and compiled. The programs are then
downloaded into a target system to be debugged and executed.

MULTI interfaces to embedded targets by connecting to a debug server. The
debug server may reside on the same host as MULTI, or on any other host on
your network. The debug server communicates with the target under
development. Green Hills supplies servers for many common target systems
and real time operating systems:

• Instruction set simulators: Simulators can test programs before target
hardware is ready and are available for most processor models. Instruction
set simulators incorporate an integrated debug server as a front end.

• ROM Monitors: Monserv and the ROM monitor specific to your target
support basic debug features, host I/O, a command window, and profiling.

Processor families supported by MULTI

680x0/683xx

ARM / Thumb

ColdFire

i960

MCore

MIPS

PowerPC

RH32

SPARC

SH

TriCore

V800

x86 / Pentium
4 Debugging with MULTI 2000

Running MULTI from the command line

d
es and

dded
n

age

s

ns to

.
e to
• Emulation Probes: Available for In-Circuit Emulators and On-Chip
Debugging Probes. Emulator servers communicate with the probe using a
serial port, parallel port, or your network.

• ROM Emulator: NetROM provides debugging capabilities with only a
single connection to the ROM socket.

• RTOS (real-time operating system) servers: Available for several real
time operating systems including INTEGRITY from Green Hills Software,
ThreadX from Express Logic, OSE from Enea Systems, and VxWorks from
Wind River. RTOS servers use ethernet and serial communication to
communicate with a debug process running under the RTOS. Commands
from MULTI’s various debug windows are combined into a single comman
stream by the RTOS server; the debug process interprets these messag
performs the proper action on the appropriate task.

MULTI allows you to use the same tools for both embedded and native
development. The same MULTI program can debug both native and embe
code; the only difference is that MULTI uses a different host processor whe
communicating with an embedded target.

Running MULTI from the command line

When you start MULTI, it attempts to use the host system windowing pack
by default. If you start MULTI on a color monitor, it defaults to color. If you
start MULTI from a non-windowing monitor or if MULTI encounters problem
with the window interface, it comes up in non-GUI mode. If MULTI is
incorrectly coming up in non-GUI mode, check that the DISPLAY environment
variable is set, or set it from the command line with the -display option.

If MULTI is in your path, then the command line syntax is:

multi [options] [filename]

If filename is an executable program file that has had some (or all) of its
component modules compiled for debugging (with Green Hills compiler’s -G
or -g options), then the Debugger starts up. For a list of command line optio
use when opening the Debugger, see “Command line options” on page 6.

If filename is a build file, then the Builder starts up with the build file loaded
Note that some options are specific to the Debugger and are not applicabl
the Builder. If you specify a build file, it can either be a main project or a
subproject. To open a subproject directly with the inherited options from a
Green Hills Software, Inc. 5

1. Introduction to MULTI

ile
s
LTI
particular main project, specify the main project name followed by the
subproject’s name in quotes. For example:

multi "main.bld sub.bld"

This opens the subproject, sub.bld, with the options inherited from main.bld.

See the following table of examples.

Command line options
When you start MULTI from the command line on an executable program f
(i.e. when you want to use the Debugger directly), then the following option
may be used. Some of these options should not be used when starting MU
on a build file, or when starting MULTI without a file.

-c file
Reads configuration information from file.

How to open MULTI

Example Description

multi The Builder is invoked on the last build file that was
open.

multi default.bld The Builder is invoked on default.bld. If default.bld
is not found, MULTI will create it.

multi foo.bld The Builder is invoked on the file foo.bld. The build file
may be a main project or a subproject.

multi "parent.bld child.bld" The Builder is invoked on the subproject child.bld
directly with the inherited options from the main project
parent.bld.

multi a.out The Debugger is invoked on the executable a.out

multi -remote simppc The Builder is invoked, and is connected to the
simulator simppc. In this syntax, it is a function of the
debug server whether the Builder window or the
Debugger window is invoked. See the example below
with multi -remote 5emon.

multi -remote simppc a.out The Debugger is invoked on the executable a.out and
the Debugger is connected to the simulator simppc.

multi -remote 5emon The Debugger is invoked and is connected to the
debug server 5emon. In this syntax, it is a function of
the debug server whether the Builder window or the
Debugger window is invoked. See the example above
with multi -remote simppc.

multi foo.c The Editor is invoked on the file foo.c.
6 Debugging with MULTI 2000

Running MULTI from the command line

8
-C corefile
Sets core file. corefile is assumed to be a core image of objectfile.

-D
Ignores all currently specified alternate directories.

-data offset
Offsets for all data addresses. This is for position independent data. The
offset is entered in decimal by default. A hexadecimal number may be
specified by preceding the number with 0x. For example, 0x10000.

-dotciscxx
Treats files ending in .c as C++ files instead of C files.

-e entry
Specifies entry label. The default is main. In C++ mode, the entry must
be specified in such a way that it may be demangled.

-E file
Tells MULTI to debug more than one file. Use this option for each file
you wish to debug at the same time. For example, if you want to debug
foo, bar, and rin, then type:

multi foo -E bar -E rin

-help
Runs MULTI and opens the on-line help system with the MULTI
manual.

-I directory
Names an alternate directory where files are searched for. Alternate
directories are searched in the order given. If a file is not found in an
alternate, the current directory is searched.

-L[cpfC]
Sets language type (C, Pascal, FORTRAN, or C++ respectively). By
default, MULTI uses the file name extension to determine the language.

-m file
Uses file as default specification file. See “Specification file” on page
for more information.

-nocfg

Does not read any of MULTI’s .cfg files on startup.

-norc
Does not run any .rc files on startup.
Green Hills Software, Inc. 7

1. Introduction to MULTI

r

ars.

 The
e

.
ion
am
mand
st

utable
-noshared
Does not debug shared libraries.

-nosplash
Does not open the About banner. See “About MULTI...” on page 41 fo
more information.

-p file
Startup with command playback from file.

-P pid

Attaches to process with process id pid. This option is currently for
Solaris only.

-r file
Startup with commands recording to file.

-R file
Startup with commands and output recording to file.

-rc file
Reads file as a command script when the first debugger window appe
The file is read after the global and user script files.

-remote target
Attaches to remote debug server with name target.

-text offset
Offsets for all text addresses. This is for position independent code.
offset is entered in decimal by default. A hexadecimal number may b
specified by preceding the number with 0x. For example, 0x10000.

-V

Prints debugger version information.

Specification file
The specification file allows you to set up a default set of command line
arguments that may be used with any given executable you want to debug
However, not all command line options are available for use in a specificat
file. If you want a set of default arguments for each program, put the progr
name at the beginning of a line followed by a space and then a set of com
line arguments. The arguments may be continued on the next line if the fir
character in that line is a tab. When MULTI runs with the -m option, the file
listed is checked and if there is an entry that matches the name of the exec
being debugged, then that list of command line arguments are used. For
example, a specification file named albatross might look like this:

foo -norc -I /usr/joebob -I /usr/foodir
8 Debugging with MULTI 2000

Resources
bar -text 10000 -data 10000

If you then type:

multi -m albatross foo

the file albatross is searched and the arguments found after foo are used. This is
equivalent to typing:

multi foo -norc -I /usr/joebob -I /usr/foodir

Resources

To install MULTI, see the MULTI 2000 Installation & Licensing Guide.

This manual describes the features of the MULTI debugger.

The Building and Editing with MULTI 2000 manual describes the features of
the MULTI Development Environment other than the debugger.

The Quick Reference Card summarizes the most common Debugger and Editor
commands.

For assistance or additional information about the use of Green Hills Software,
contact our Technical Support:

North America Mountain/Pacific time, Australia, and New Zealand:

Tel: (805) 965-6044, Fax: (805) 965-6343

email: support-west@ghs.com

North America Eastern/Central time, South America:

Tel: (781) 862-2002, Fax: (781) 863-2633

email: support-east@ghs.com

Europe, Africa, India:

email: support-nl@ghs.com

Japan, Taiwan, and South Korea:

Tel: +81-3-3576-6805, Fax: +81-3-3576-0106

email: support@adac.co.jp
Green Hills Software, Inc. 9

1. Introduction to MULTI
10 Debugging with MULTI 2000

Chapter
2

Debugger GUI
This chapter contains:

• Main debugger window

• Debugger menus

• Debugger toolbar

• Generic debugger window features

• Other window topics

2. Debugger GUI

ludes
t the
nt to

This chapter shows you how to run and use the MULTI debugger (“the debugger”). It inc
a description of all the debugger buttons and menus. It is implied in these Chapters tha
program you’re debugging has been built with Debugging Level set to MULTI (equivale
the -G compiler option).

Main debugger window

To open the debugger, do one of the following:

• From the Builder, click Debug ().

• From the command line of your host system, start MULTI on a program
(e.g. multi a.out)

• From the command line of your host system, start MULTI attaching to a
target where the program is already running.

12 Debugging with MULTI 2000

Main debugger window

ane
e red

ew
 pane
The following shows the main debugger window:

Figure 1 Main debugger window

Source pane
Below the menu bar is the debugger tool bar, and below that is the source pane.
The source pane shows the source code which can be in C, C++, FORTRAN,
Pascal, Ada, or assembly language. When you’re debugging, the source p
normally displays the code where the program has stopped, indicated by th
STOPPED arrow. There are several ways to change the source pane to vi
other locations. For instance, you can click a procedure name in the source

Source Pane

Current Line Pointer
(blue arrow)

Command Pane

Toolbar

Break Dot
(green)

Break Point
(red Stop sign)

Program Counter
(red arrow)

Menu Bar

Status Bar

File-relative Line
numbers (1st left
column)

Proc-relative Line
numbers (2nd left
column)
Green Hills Software, Inc. 13

2. Debugger GUI
to display source code for that procedure in the source pane. You can also use
the status bar (discussed below) to load a particular procedure or file into the
source pane.

When you right click anywhere in the source pane, a pop-up menu appears
which shows some information about the clicked object, and which shows a list
of operations you can perform. We will discuss the right-click pop-up menus in
a separate section later in this chapter.

In the debugger window, all key strokes go to the command pane (discussed
below), unless the focus is in the File or Procedure drop-down list boxes
(discussed below). Some key strokes affect the source pane; the following is a
list of the frequently used ones:

You can configure the functions for both the keystrokes and mouse clicks.

Breakdots
A breakdot () is a small green dot. Breakdots appear directly to the left of
certain source lines. These dots indicate lines of source code that correspond to
executable instructions; you can set breakpoints on these lines. Lines without
breakdots are source lines which do not correspond to executable instructions
(for example, source lines that did not generate any instructions).

To do this Press

Scroll the source pane up by one page. PageUp

Scroll the source pane down by one page. PageDown

Scroll the source pane up by one line. Shift+UpArrow

Scroll the source pane down by one line. Shift+DownArrow

Search forward in the source pane. Ctrl+f

Search backward in the source pane. Ctrl+b

Erase the current searched pattern if the debugger is in
incremental search mode.

Ctrl+u

Run the debugged program. F5

Step out of the current procedure. F9

Run to the next statement (skip over function call). F10

Run to the next statement (step into function call). F11

Go up one level on the stack call. Ctrl+ + (plus sign)

Go down one level on the stack call. Ctrl+ – (minus sign)
14 Debugging with MULTI 2000

Main debugger window

click

s the

nd

r
 the

ways
ne at
he
the

n of
gger
orts
y

 you

e
To set a breakpoint on a source line, click the breakdot. See Chapter 11,
“Breakpoints window” for additional methods to set breakpoints.

You can define the color of these dots. The default color is green.

Breakpoint markers
A breakpoint () is denoted by a small red stop sign. To set a breakpoint,
a breakdot; the breakpoint marker will replace the breakdot. To remove a
breakpoint, click it; the breakpoint marker will revert to a breakdot.

Current line pointer
The current line pointer () is a small blue arrow directly to the left of the
breakdots. The pointer is strictly a debugger tool, unrelated to the current
program counter (PC) of the program. Many debugger commands, such a
breakpoint command, use the pointer as the default and these commands
execute at that location in the program. For example, the breakpoint commab
with no specified line number sets the breakpoint at the current line pointe
location. When a running program halts, the pointer is set to the line where
program’s execution halts.

The current line pointer is always associated with source code; that is, it al
appears in the source pane whenever there is source code. If the source li
the current line pointer disappears from the source pane due to scrolling, t
debugger will relocate the pointer to either the top or bottow source line in
source pane.

Line numbers
Previous versions of the debugger (1.8.9 and earlier) only have one colum
line numbers on the left, and they are file-relative. This version of the debu
continues to support file-relative line numbers. In addition, it now also supp
procedure-relative line numbers. You can configure the debugger to displa
one, both, or none of them.

When both file-relative and procedure-relative line numbers are displayed,
can choose which to display left-most with one of the following methods:

• Choose Config > Options... > Debugger tab, and use the check box: Us
procedure relative line number (vs. file relative).

• Use the configure command with the option procRelativeLines. That is:

• configure procRelativeLines true

• configure procRelativeLines false.
Green Hills Software, Inc. 15

2. Debugger GUI

d
nter is
n to

s

he
e
l
 the

mand

it into
e the

ve or
e
 than
See “Procedure-relative vs file-relative line numbers” on page 67.

Note: configuration options are not case sensitive, thus procRelativeLines and
procrelativelines are the same option, but for clarity we use procRelativeLines
here. (System variables are also not case sensitive.)

PC pointer / Highlighted line
The PC (program counter) pointer () is a larger red arrow with the wor
STOPPED. When the program stops at some point in the code, the PC poi
directly over the breakdot for that line. The PC pointer indicates the positio
execute next if you perform a go () or single step (or) command.

C++ Templates and Ada Generics
When debugging C++ templates or Ada generics, the source pane contain
some lines of source code with and without breakdots. Ada generic
instantiations introduce another physical source file, that of the source of t
generic, into the symbol table at the point of the instantiation. C++ templat
instantiation may also introduce other physical source files into the symbo
table. That is, the symbol table for the current source file is fragmented by
instantiation. If you encounter this problem, use the e command to view
different procedures or tasks within a single piece of source. (See the com
e on page 101.)

dblink
The debugger only reads the symbolic debug information contained in .dnm
and .dla symbol files. dblink is a utility that generates such symbol files. It
extracts the symbol table from the host system object code and translates
an independent representation that the debugger uses. The output files ar
name of the executable file, with a .dnm extension and a .dla extension
respectively. For example, a.out will generate a.dnm and a.dla.

If the existing .dnm file is older than the executable, or if the .dnm file was
previously generated on a different host machine, the debugger will open a
dialog box to ask you to choose whether to regenerate the symbolic debug
information. If you choose Translate, dblink will be launched to generate the
new symbolic debug information.

If you move or copy the executable to another location, be sure to also mo
copy the associated .dnm and .dla files. Then, either preserve the original tim
stamps of the files, or make sure that the .dnm file has an earlier time stamp
the executable’s.
16 Debugging with MULTI 2000

Main debugger window

s at a
mbly
rce

ith

gh

. To
us bar

 list
Interlaced source view
The source pane may display either high level source code alone or source code
interlaced with disassembly instructions. The interlaced view shows you the
machine instructions that correspond to each source line.

To get an interlaced view, do one of the following:

• Click the Assembly button (). This toggles between high level source
code only and interlaced view.

• In the command pane, enter _DISPMODE:=1. To return to high level source
code only, enter _DISPMODE:=0. Here _DISPMODE is a debugger system
variable. See “Special variables” on page 51.

Assembly code view
When assembly code is displayed, the address, in hexadecimal, of each
assembly instruction is shown in the source pane. When the program stop
line in the high-level source code, the PC pointer is placed at the first asse
instruction associated with the high-level source line. Not all high-level sou
lines generate executable code.

To set a breakpoint on an assembly instruction, click the breakdot.

Assembly-only view
If no high-level source code is available or if the module was not compiled w
debugging information (the -G or -g option in the compiler), the debugger will
display assembly code only.

When viewing only assembly code in the source pane, you can scroll throu
all of memory in either direction. In this mode, you cannot drag the scroll
thumb. See “Infinite scrolling” on page 39 for more information.

Status bar
The status bar is between the source pane and the command pane:

It displays various state information about the currently debugged program
change the relative sizes of the source and command panes, drag the stat
up or down.

The status bar, from left to right, consists of the Status, the File drop-down
(“File:”), the Procedure drop-down list (“Proc:”), the Back button, and the
Forward button.
Green Hills Software, Inc. 17

2. Debugger GUI

ee

ed
aded
ose a
Status
Messages about the state of the debugger appear in the Status section on the far
left of the status bar. Different messages will appear based on the priority of the
messages. Program state messages have the lowest priority, error messages are
next, and informational messages have the highest priority.

File drop-down list
The File drop-down list displays the base name of the current file:

If the file name is only partially displayed or you want to see the full name of
the file, move the cursor over the drop-down list and the full name will appear
in a tooltip after a short period of time.

To browse all the source files in the program:

1. Open the File drop-down list (click the drop-down button).

2. Choose “Browse all source files in program...”

3. Choose from the “Source Files with Procedure” window that appears. S
also “Browse window for source files” on page 195.

The File drop-down list also contains up to ten of the most recently display
files in the source pane. They are sorted according to the time they were lo
into the source pane, with the latest one at the top of the list. When you cho

Program state message Description

NO PROCESS The program to debug has not started.

STOPPED The program being debugged is stopped.

RUNNING The program being debugged is currently executing.

DYING The program being debugged is hung up and killed

FORKING The debugged process is being forked (UNIX only).

EXEC’ING The debugged program performs an exec.

CONTINUING The program is preparing to begin execution.

Informational Message Description

SSrch: string The source pane is being searched with the incremental
search utility for the pattern string (see “Incremental
search” on page 40).
18 Debugging with MULTI 2000

Main debugger window

time
 list.

re

pane
ur
ic,
file from this list, the debugger will load the file into the source pane, with the
current line pointer at the position when the file was last in the source pane.

Procedure drop-down list
The Procedure drop-down list displays the name of the current procedure:

If the procedure name is only partially displayed, move the cursor over the
drop-down list and the full name will appear in a tooltip after a short period of
time.

To browse all the procedures in the program:

1. Open the Procedure drop-down list (click the drop-down button).

2. Choose “Browse procedures in program...”

3. Choose from the “Procedures” window that appears.

To browse all the procedures in the current file:

1. Open the Procedure drop-down list (click the drop-down button).

2. Choose “Browse procedures in current file...”

3. Choose from the “Procedures: current_file” window that appears, where
current_file is the name of the current file.

See also “Browse window for procedures” on page 191.

The Procedure drop-down list also contains up to ten of the most recently
browsed procedures in the source pane. They are sorted according to the
they were loaded into the source pane, with the latest one at the top of the
When you choose a file from this list, the debugger will load the file into the
source pane, with the current line pointer at the position when the procedu
was last in the source pane.

History navigation buttons
The debugger not only keeps a history of the objects shown in the source
according to time, but it also keeps a history of procedures according to yo
browsing logic. To navigate the procedures according to your browsing log
press the Back () and Forward () buttons on the status bar.
Green Hills Software, Inc. 19

2. Debugger GUI

sing

Let’s use an example to illustrate the two different orders, time versus brow
logic, using the following program segment:

You do the following:

1. You are viewing “current” in the source pane.

2. Click “son” to examine it.

3. Click “grandchild” to examine it.

Now, the top of the procedure drop-down list and the browsing logic history
look like this:

So far, the two orders are the same.

Now, you do the following:

1. Click the Back button () to go from “grandchild” to “son”.

2. Click the Back button again to go from “son” to “current”.

3. Click “daughter” to examine it.

file1.c file2.c file3.c

current()
{
 son();
 daughter();
}

son()
{
 grandchild();
}

grandchild()
{
 foo();
}

daughter()
{
 bar();
}

Top of Proc drop-down list Browsing Logic History

grandchild
son
current
etc.

grandchild
son
current
etc.
20 Debugging with MULTI 2000

Main debugger window

ing

the
op,
e

nds”.

ompt

nd
Now “daughter” is in the source pane. The two orders now look like this:

They are different; “son” and “grandchild” have been pruned from the brows
logic list.

See also indexnext on page 110 and indexprev on page 110.

Command pane
The command pane accepts debugger commands for the process being
debugged and displays the output of those commands. It is directly below
status bar. When the debugger window is the active window on your deskt
all key strokes go into the command pane, unless the focus is on one of th
menus or one of the drop-down list boxes on the status bar. For a detailed
description of the debugger commands, see Chapter 4, “Debugger comma

The default prompt in the command pane is: MULTI >

To change the prompt, do one of the following:

• Use the configure command with the option prompt.

• Choose Config > Options... > Debugger Tab. Set the Command pane pr
field.

The debugger keeps a history of all the debugger commands entered.

To execute a command from the history, do one of the following:

• Use the ! (exclamation point) command.

• Use the UpArrow and DownArrow keys to navigate through the history a
choose one to execute.

Top of Proc drop-down list Browsing Logic History

daughter
current
son
grandchild
etc.

daughter
current
etc.
Green Hills Software, Inc. 21

2. Debugger GUI
The following is a list of often used keys in the command pane:

The following is a list of often used mouse clicks in the command pane:

Functions for both keys and mouse clicks are configurable. See also the
Configuration chapters in the Building and Editing with MULTI 2000 manual.

Debugger menus

A menu item that is followed by an ellipsis (...) means additional information is
required before the debugger can execute the operation. When you choose such
a menu item, a dialog box will prompt you to supply or confirm the information.

Dimmed out menu items are those inapplicable in the current context. For
example, if the debugged program is running, the Go item in the Debug menu
will be dimmed out, because Go does not make sense in this context.

The following sections describe each of these menus.

File menu
NOTE: Spaces are not allowed in filenames. This restriction applies throughout
the entire MULTI development environment.

To do this Press

Bring the previous comand in history into the command buffer. UpArrow

Bring the next command in history into the command buffer. DownArrow

Scroll up the command pane. Ctrl+UpArrow

Scroll down the command pane. Ctrl+DownArrow

Clear the command buffer if the command pane has the focus. Ctrl+u

To do this Do this

Copy a string onto the clipboard. left-click and drag

Paste the string in clipboard to the command buffer. middle-click

Paste the string in clipboard to the command buffer. right-click
22 Debugging with MULTI 2000

Debugger menus

File menu (debugger)

Menu Item Description

Debug Program in
New Window...

Opens a dialog box which asks for the name of a program to
debug. A new debugger window will be brought up on that
program. The new debugged program’s resource file (if any) will
be executed and the final debugging environment will be shared
by the new debugger and the existing debugger window(s). See
dbnew on page 96.

Debug Program... Similar to Debug Program in New Window..., except the current
debugger window will be used to debug the new program, and the
old program will be terminated. The new debugged program’s
resource file (if any) will be executed to establish the final
debugging environment. Any configuration changes made while
debugging the previous program will remain in effect unless
overridden.

Print... Opens the Print dialog box to print the current source file. Only
ASCII text is printed. The entire source file is printed, including
interlaced assembly code if that is the current display mode. If no
source file is available (that is, there is only assembly code), then
only the content of the source pane is printed.

Print Window... Opens the Print dialog box to print only the visible, ASCII contents
of the source pane.

Print to File... Similar to the Print... menu item, except the output is directed into
a text file.

Attach to Process... Attaches to a running process. See attach on page 80. This
command works only with a multi-tasking target and is grayed out
otherwise. It opens a new debugger window to debug the
specified task.

Detach from
Process

Closes the debugger but leaves the debugged process running.
See detach on page 99.

1,2,3,4 List the most recently debugged programs. To debug any of them
in the current debugger window, click it.

Close Debugger Closes the debugger window. If this is the last MULTI window,
MULTI itself also exits.

Exit All Closes all of MULTI’s windows and exits.
Green Hills Software, Inc. 23

2. Debugger GUI
The Print dialog box contains the following items:

Debug menu

Print dialog box

Item Description

Print To: Choose between printing to the “Printer” or to a “File”.

Print Command You should enter the command for printing a file on your operating
system (such as lpr on Unix). You can set it with configure
command with the option printCommand. See configure on
page 92 and configurefile on page 93.

File Name If you choose “Print To File”, this is the output post-script file.

Browse If you choose “Print To File”, this button let you select the output
file.

Font Name From this drop-down list box, you choose from a list of available
fonts on your system matching the pattern “*-r-normal-*-m-*”. You
can also type a font name into this field if it is not on the list.

Font size Choose the font size used for printing.

Print/Cancel Button Let you perform/cancel the print request.

Others Let you define paper size, orientation, and the number of columns
to print.

Debug menu (debugger)

Menu Item Press Description

Set Program
Arguments

n/a Opens a dialog box to enter arguments for your program
when it runs. It allows you to control input and output
redirection to and from your program. See setargs on page
134 and r on page 127. See the table “Set Program
Arguments dialog box” below.

Go F5 Starts running a program which has not been started or
continues executing one which has stopped. This
command cannot be used to start tasks on VxWorks
systems. See runtask on page 130 for starting tasks on
these systems.

Restart Starts running or restarts the currently debugged program
with preset arguments, if any. See the command r on page
127.

Halt Halts the current program. See halt on page 107.

Kill Process n/a Kills the current program. See k on page 112.
24 Debugging with MULTI 2000

Debugger menus
The following table shows the components of the Set Program Arguments
dialog box:

Step F11 Executes single statements and steps into procedure calls.
See s on page 131.

Next F10 Executes single statements and steps over procedure calls.
See n on page 121.

Return F9 Continues to the end of the current subroutine and stops in
the calling routine after returning to it. See cu on page 94.

Send Signal n/a Opens a dialog box to let you specify the signal name and
then sends a signal to the current program. For signal
names, see the l command with the z option. See l on page
113 (lowercase L).

Add Assertion n/a Opens a dialog box to let you specify a logic expression.
When you click OK, the debugger creates an assertion so
that whenever the logic expression becomes true, it stops
the running process and prints a message to indicate that
the assertion is hit. See a on page 77 and assert on page
79.

Set Watchpoint n/a Opens a dialog box to let you create a watch point. See
watchpoint on page 141.

Remove All
Breakpoints

n/a Removes all software breakpoints from the current
program.

Set Program Arguments dialog box

Item Description

Input File This is a file on the host system which will be used as input to your
program.

Output File This is a file on the host system which will capture output from
your program.

Program arguments These are the arguments passed to the debugged program the
next time you run it without specifying any arguments. For
example, if you click the Go or Restart button, or if you execute
the r command, etc. If you specify any arguments in the next
execution, for example through the r command, then the existing
arguments will be replaced by the new ones.

Run Click this button to run your program with the given arguments.

Set Click this button to set the given arguments as the default for this
session. See r on page 127.
Green Hills Software, Inc. 25

2. Debugger GUI
View menu
 The following is the View > Nagivation sub-menu:

View menu (debugger)

Menu Item
Button and/or
command

Meaning

Navigation n/a The Navigation sub-menu. See “View >
Navigation sub-menu” below.

Interlaced
Assembly

 assem Toggles between source code only and
interlaced source with assembly code.

Breakpoints... breakpoints Opens the Breakpoints dialog box. See
Chapter 11, “Breakpoints window”.

Call Stack... callsview Opens a Call Stack window.

Local
Variables...

 view $locals$ Opens a Local Variables window.

Registers... regview Opens a Registers window.

Memory... memview Opens a dialog box for you to specify which
memory address to view, then brings up a
Memory View window for the address.

Find Memory
Leaks...

findleaks Opens a window displaying information
regarding memory allocations by the program
being debugged.

Profile... profile Opens the Profile window.

Tasks... taskwindow Opens the Task window.

Print
Expression...

n/a Opens a dialog box for you to specify an
expression to be printed.

View
Expression...

n/a Opens a dialog box for you to enter an
expression to evaluate.

List n/a The List sub-menu. See “View > List
sub-menu” below.

Source Path... n/a Opens the Source Path window. To change
the source path, make the edits and press OK.
To discard the changes, press Cancel.

Refresh Views update Refreshes all non-frozen data explorers,
including the Register windows, Memory View
windows, Call Stack windows, etc. (If a data
explorer is frozen, this command does not
update the window. See also “Title bar” on
page 148.)

Close All Views viewdel Closes all the data explorers, including the
Register windows, Memory View windows,
Call Stack windows, etc.
26 Debugging with MULTI 2000

Debugger menus
View > Nagivation sub-menu

Menu Item Press Description

UpStack
Ctrl+ +

Views the procedure one higher on the call stack.

DownStack
Ctrl+ –

Views the procedure one lower on the call stack.

Current PC Views the procedure where the program is currently
stopped.

Upstack To Source n/a Views the first procedure higher on the call stack which
has source code. For example, you can use this feature
if you are stopped inside a library function with no
source code (such as printf), and you wish to return to
viewing your program.

Goto Location... n/a Opens a dialog box for you to specify a procedure or an
address; view the program at the specified location.
Green Hills Software, Inc. 27

2. Debugger GUI
The following is the View > List sub-menu:

List sub-menu

Menu Item Description

Files Lists all the file names in the program.

Procedures Lists the basic information of all the procedures, such as their
names and addresses.

Mangled Procedures List the mangled names and other basic information of all the
procedures.

Globals Lists the basic information of all the global variables, such as
their names and addresses.

Statics Lists all static variables.

Locals Lists all local variables for the procedure you are viewing (i.e.,
the procedure at the current line pointer) if the procedure is on
the stack.

Local Addresses Lists the addresses of the local variables specified above.

Registers Lists all registers.

Register Synonyms Lists register synonyms.

Variables In
Procedure...

Lists all parameters and local variables of the specified
procedure if it is on the stack.

Defines Lists all defined macros.

MULTI Variables Lists MULTI’s internal variables.

Processes Lists processes currently being debugged.

Signals Lists signals.

Assertions Lists assertions.

Breakpoints Lists all breakpoints.

Dialog Boxes Lists all dialog boxes.

Source Paths Lists the directories where MULTI looks for source files and
scripts.
28 Debugging with MULTI 2000

Debugger menus
Browse menu

Browse menu (debugger)

Menu Item Description

Procedures... Opens a Browse window to show all procedures of the program.
See “Browse window for procedures” on page 191.

Globals... Opens a Browse window to show all globals of the program. See
“Browse window for globals” on page 193.

Files... Opens a Browse window to show all source files of the program.
See “Browse window for source files” on page 195.

Classes... Opens a Tree Browser to show the the class hierarchy of the
debugged program. See Chapter 12, “Tree browser”.

Static Calls... Opens a Tree Browser to show the static calling relationships of
the current procedure, that is, the procedure at the current line
pointer, if any. See Chapter 12, “Tree browser”.

Dynamic Calls... Opens a Tree Browser to show the dynamic calling relationships
of the current procedure, that is, the procedure at the current line
pointer, if any. See Chapter 12, “Tree browser”.

File Calls... Opens a Tree Browser to show the reference relationships of the
current file. See Chapter 12, “Tree browser”.

Procedures In
File...

Opens a dialog box to let you specify a file name, then bring up a
Browse window to show all procedures in the file. See “Browse
window for procedures” on page 191.

Type... Opens a dialog box to let you specify a type name, then bring up a
data explorer to show the structure of the type.
Green Hills Software, Inc. 29

2. Debugger GUI
Target menu

 The following is the Target > Load Program sub-menu:

Target menu (debugger)

Menu Item Meaning

Connect to Target... Opens a dialog box to let you specify the target to connect and the
corresponding parameters.

Disconnect from
Target...

Disconnects from the current remote target debug server.

Show Target
Windows

Displays remote target windows. These windows normaly appear
upon connecting to the debugger server. They may be closed
without disconnecting from the debug server, in which case this
option will make them reappear.

1,2,3,4 List the most recently connected debug servers. To connect to
any of them, click it.

Load Program The Load Program sub-menu. See “Target > Load Program
sub-menu” below. Loads the debugged program into the target
system’s memory.

Refresh Section... Reloads the specified section of the current program: text, data,
or all into the target system’s memory.

IO Buffering Toggles buffering for the remote I/O window.

Memory
Manipulation

The Memory Manipulation sub-menu. See “Memory Manipulation
sub-menu” below.

Load Program sub-menu

Menu Item Meaning

Load Program... Loads a program into the target systems’s memory.

1, 2, 3, 4
Lists the most recently loaded programs. To load any of these
programs into the target system’s memory, click it.
30 Debugging with MULTI 2000

Debugger menus
The following is the Target > Memory Manipulation sub-menu:

Tools menu

Memory Manipulation sub-menu

Menu Item Meaning

Copy... Copies memory. The copy continues for the specified number of
sections of memory chunks. You can copy memory backwards or
forwards.

Fill... Fills the given sections of memory with the given value.

Find... Finds a value in memory. The search continues for the specified
number of sections of memory. Each memory value is bitwise
AND’ed with the mask before compared.

Compare... Compares memory. Specify the two starting memory locations to
compare, and the number of sections and chunks of memory to
compare. You can also specify the comparison operation: ==, >,
>=, <, <=, !=.

Memory Load... Copies a section of memory from specified file.

Memory Dump... Dumps a section of memory to specified file.

Tools menu (debugger)

Menu Item Meaning

Builder... Opens the Builder window on the project for the current program.
If MULTI cannot find a project for the current program, it will bring
up a builder window on a new project.

Rebuild... Rebuilds the current program if the project for the program can be
located.

Editor... Opens an Edit File dialog box to let you select a file to open in an
Editor window.

Notes Opens an Editor window on a scratch file.

Search... Opens MULTI’s search window. See “Search dialog box for the
source pane” on page 41.

Grep... Launches the grep utility with the specified string. grep is a
program which searches files for a given string. The debugged
program’s source files and any other open files are searched.
Green Hills Software, Inc. 31

2. Debugger GUI
Config menu

Config menu (debugger)

Menu Item Meaning

Options... Displays the Options dialog box, which you use to change options
that affect the way the Debugger and other MULTI tools look and
behave. .

Save Configuration
as Default

Saves the current configuration into the default user configuration
file, so that it will be automatically executed when MULTI starts in
the next session.

Clear Default
Configuration...

Deletes the default user configuration file.

Save
Configuration...

Opens a file chooser dialog box to let you specify a file and then
save the current configuration in it.

Load
Configuration...

Opens a file chooser dialog box to let you choose a file and then
execute the configuration statements from it.

State The State sub-menu. See “State sub-menu” below.
32 Debugging with MULTI 2000

Debugger menus
The following is the Config > State sub-menu:

State sub-menu

Menu Item Description

Show Command
History

Prints command history. MULTI keeps a history of all the
debugger commands. You can use the ! command to execute a
command from the history. You can also use the UpArrow and
DownArrow keys to navigate through the history and choose one
to execute. You can use the h command to do the same thing.
See h on page 107.

Save State... Saves the state of the debugger to the specified file. The saved
information includes remote connection and status, breakpoints,
assertions, and the source directories list. You can use the save
command to finish the same task. See save on page 132.

Restore State... Restores the state of the debugger from the specified file. You can
use the restore command to achieve the same result. See
restore on page 129.

Record
Commands...

Records commands into the specified file. You can get the same
result with the > command.

Record
Commands+Output
...

Records commands and their output into the specified file. You
achieve the same result with the >> command.

Stop Recording
Commands...

Stops recording comands. It’s equivalent to the >c command. Use
this item to stop recording if it’s started by “Record Commands...”.

Stop Recording
Commands+Output
...

Stops recording comands and their output. It’s equivalent to the
>>c command. Use this item to stop recording if it’s started by
“Record Commands+Output...”.

Playback
Commands...

Plays back commands recorded in the selected file. You can do
the same thing with the < command.
Green Hills Software, Inc. 33

2. Debugger GUI

 any

 and
ick
the

fault
Help menu

Debugger toolbar

The toolbar appears just below menu bar in the main debugger window. By
default, all buttons are shown as icons. If you prefer to use text button as in
previous versions of the debugger, do the following:

1. Choose Config > Options... > General Tab.

2. Disable (uncheck) the option “Use icons for buttons”.

3. Press OK.

All these buttons are programmable, except for Quit. You can define each
button’s name, the corresponding icon (optional), and its command string in
of the following ways:

• Define them in a configuration file.

• Define them interactively during a debug session with the debugbutton
command. See debugbutton on page 97.

• Choose Config > Options... > Debugger Tab > Configure Debugger
Buttons.

When you program a button, its new name (or icon) appears in the button,
the command string goes to the command pane for execution when you cl
the button. If no icon is specified, a character icon for the first character of
button name will be used (if the buttons are displayed as icons).

By default, the debugger defines 20 buttons. You can change any of the de
buttons in a start up database or during run-time, except for Quit.

Help menu (debugger)

Menu Item Description

Debugger Help... Opens online help for the debugger.

Manuals Opens the “Manuals sub-menu”, which will display a list of
manuals appropriate to your version of MULTI. Choosing one of
these manuals will open the online help to the first page of that
manual.

About MULTI... Opens the About window. It contains the basic information about
MULTI, such as its version, and copyright materials. To dismiss it,
click in it.
34 Debugging with MULTI 2000

Debugger toolbar

their
If you prefer the toolbar to be at the bottom of the debugger window instead of
at the top, do the following:

1. Choose Config > Options... > Debugger Tab.

2. Choose “Position of buttons” > Bottom.

The following table shows the default debugger buttons, their ID numbers,
names, and their equivalent debugger commands (if any):

Debugger toolbar

Num. Button Command Description

1 Step s Executes one statement. If the statement is a procedure
call, it steps into the called procedure. When in interlaced
source/assembly mode, a machine instruction is executed
instead of a source statement.

2 Next n Executes until the next statement of the current function
(i.e. step over procedure calls). When in interlaced
source/assembly mode, a machine instruction is executed
instead of a source statement.

3 Return cU Continues to end of procedure, and stops in the calling
procedure after returning to it.

4 Go C Begins execution of the program. If the program is stopped,
it continues execution.

5 Halt halt Interrupts program execution.

6 Restart restart Restarts the program with the same arguments as before.

7 Reload debug Reloads the current executable.

8 Assem assem Toggles between displaying the source code only and
source interlaced source with assembly code.

9 PC E Shows the position at the current Program Counter.

10 Upstack E+ Views a procedure up one stack frame.

11 Downstk E– Views a procedure down one stack frame.

12 Calls callsview Opens a window displaying a stack trace. See also
callsview on page 89 and Chapter 10, “Call stack window”.

13 Stops breakpoints Opens the Breakpoints window to add and edit breakpoints.

14 Memory memview 0 Opens Memory View window displaying memory starting at
address 0x0.

15 Regs regview Opens Register window displaying machine registers.

16 Locals view $local$ Creates a data explorer displaying local variables.
Green Hills Software, Inc. 35

2. Debugger GUI

” to

ect.
Pop-up menus

When you right click in the source pane, a pop-up menu appears:

This is the default behavior. If you have configured the right-click to perform
other functions, the pop-up menu will not appear.

This menu is context-sensitive, and depends on the object you click. Different
objects in the source pane have different corresponding pop-up menus. Some of
the menu items may be grayed out which means they are unavailable given the
context.

When we discuss the pop-menus below, we use the term “right-clicked line
refer to the source line where you’ve just right-clicked.

The pop-up menu has a title to show some basic information about the obj

17 Viewdel viewdel Deletes all data explorers, Register windows, Call Stack
windows, Breakpoints windows, Memory View windows
and Browse windows.

18 Edit edit Opens an Editor window on the currently active procedure.

19 Builder builder Invokes the Builder window.

None Quit quit Quits MULTI, but if the debugged program is being
debugged, MULTI gives you the choices of “Quit and kill
Process” and “Detach from process”. You may not
re-configure this button to perform another function, but you
can configure whether this button appears or not.

Debugger toolbar

Num. Button Command Description
36 Debugging with MULTI 2000

Pop-up menus
 Pop-up menu for a procedure
When you right click a procedure, a pop-up menu appears with the following
items:

Pop-up menu for a variable
Even though the pop-up menu title shows different information for global
variables and local variables, they have the same pop-up menu options at
present.

Pop-up menu for a procedure

Menu Item Description

Run To This Line Runs the program to right-clicked line if there is executable code
there. Note: The debugger will set a special breakpoint there, but
there is no guarantee that the program will actually stop there,
because it is up to the program logic.

Change PC To This
Line

If the right-clicked line contains executable code and it is within
the same procedure in which the program is currently stopped,
changes the program counter to there.

Insert/Remove
Breakpoint

Toggles a breakpoint at the right-clicked line if there is executable
code there.

Enable/Disable
Breakpoint

If there is a breakpoint at the right-clicked line, toggles its status
(enabled or disabled).

Breakpoint Window Opens the Breakpoints window. See Chapter 11, “Breakpoints
window”.

Go To Definition If there is source code for the procedure, views the source code in
the source pane.

Browse Callers Opens a browse window to show the callers of the procedure.

Browse Callees Opens a browse window to show the callees of the procedure.

Tree Browser
(Procedures)

Opens a tree browser window to show the calling relationships of
the procedure.

Edit This Procedure Opens an editor window on the procedure’s source file, if it’s
available.

Edit File If the current file is a source file, brings up an editor window on it.

Properties Opens a dialog box to show the basic information about the
current file (e.g. its name, language type, the right click line
number, the current target), and the basic information about the
procedure (e.g. its size, address, and whether its scope is static or
global).
Green Hills Software, Inc. 37

2. Debugger GUI
When you right click a variable, a pop-up menu appears with the following
items:

Pop-up menu for a type
When you right click a type, a pop-up menu appears with the following items:

Pop-up menu for other objects
When you right click an object other than a procedure, a variable, or a type, a
pop-up menu appears with the following items:

Pop-up menu for a variable

Menu Item Description

View Value Opens a data explorer to show the value of the variable.

Properties Opens a dialog box to show the basic information about the
current file (e.g. its name, language type, the right click line
number, the current target), and the basic information about the
variable (e.g. its size, address, and whether its scope is static or
global).

(other options) See “Pop-up menu for a procedure” on page 37.

Pop-up menu for a type

Menu Item Description

View Struct Opens a data explorer to show the structure.

Properties Opens a dialog box to show the basic information about the
current file (e.g. its name, language type, the right click line
number, the current target), and the basic information about the
structure.

(other options) See “Pop-up menu for a procedure” on page 37.

Pop-up menu for other objects

Menu Item Description

Properties Opens a dialog box to show the basic information about the
current file (e.g. its name, language type, the right click line
number, the current target).

(other options) See “Pop-up menu for a procedure” on page 37.
38 Debugging with MULTI 2000

Generic debugger window features

on as

n

opy
e
Generic debugger window features

All debugger sub-windows support a base set of features and capabilities
including support to customize scroll bars. They include text selection for
copying text into the command pane as input to a button command, as well as
into other applications that support pasting, and incremental text searching
capabilities.

Scroll bars
To customize the mouse behavior in the scroll bar, do one of the following:

• In the command pane, use the mouse command.

• Use the configure command with the mouse option.

• In the configuration file, use the mouse command.

See also mouse on page 119 and configure on page 92.

Infinite scrolling
You can scroll through all of the target’s memory in a Memory View
window, or in the source pane when only assembly code is displayed. In
such cases, the scrollbar will be in infinite scrolling mode. See Chapter 9,
“Memory view window” and “Assembly code view” on page 17 for
more information.

When the scrollbar is in infinite scrolling mode, the thumb is replaced by
a diamond. The thumb is fixed in the center of the scroll bar and cannot
be dragged. To scroll through memory, you may use the scroll arrows to
scroll one line at a time, or click above or below the thumb to scroll one
page at a time.

Selecting text
In the source pane, left-click a word to select it. Drag your mouse over an
open or close parenthesis to select all the text in between, including the
close or open parenthesis.

You may find when selecting text, the debugger performs a command as so
you release the mouse button. To prevent the debugger from issuing the
command, hold down the Ctrl key while selecting text. Alternatively, you ca
configure the debugger key bindings to prevent issuing commands.

You can select or highlight the text in the debugger and Editor windows to c
to other windows. To select text in these windows, position the mouse at th
Green Hills Software, Inc. 39

2. Debugger GUI

e

w
ext

s the

beginning of the text, press the left button, and drag the mouse until the desired
text is highlighted. Click twice to select a word.

To deselect the current selection, click in an area without text.

You can also transfer your selection to other window applications that support
pasting, such as an xterm; however, different applications may behave
differently so consult their reference manuals. Generally, when you select text
in one window, any previously selected text is deselected.

Incremental search
The incremental search command searches a window for a string. In the source
pane, the search starts at the current line pointer while in other windows the
search starts at the beginning or the end of the text currently displayed. To place
the debugger in search mode, type Ctrl+f for forward search or Ctrl+b for
backward search. The message “ SSrch” (Source pane Search) appears on th
left side of the status bar:

While in search mode, as text is typed, the pattern is matched in the windo
searched, and the first occurrence of the match is highlighted. To find the n
or previous match, type Ctrl+f or Ctrl+b. The search wraps around the entire
buffer of displayed text. When it reaches the end or the beginning of the
window buffer, the debugger beeps to indicate it is about to wrap.

To end the search, press Enter or click the mouse. The string then become
current selection. You can control case sensitivity with the chgcase command.
See chgcase on page 91. The incremental search key strokes include:

Key presses for incremental search

To do this Press

Turn on incremental search, forward (After the initial search has
been performed, it will advance to the next matching pattern.)

Ctrl+f

Turn on incremental search, backward (After the initial search has
been performed, it will advance to back to a previous matching
pattern.)

Ctrl+b

Reset the search pattern Ctrl+u

End the search and make matched text the current selection Enter

Delete the last character in the search pattern Backspace

Place a character in the search pattern and discard control
characters

any character
40 Debugging with MULTI 2000

Generic debugger window features

 to

ction.

ne of

arch

se the

ose
rized
plays
Example:

Your text is:

Now, start a search through this string by typing Ctrl+f and the first character of
the search, say letter ‘i’. Result: the character ‘i’ in the word ‘this’ is
highlighted.

If you now type ‘s’, the two characters ‘i’ and ‘s’ in ‘ this’ are highlighted.

To jump to the next occurrence of the pattern ‘is’, press Ctrl+f again. This puts
the selection on ‘is’ in the string.

To search next for the pattern ‘in’, press Backspace to reset the search string
‘ i’. Now, type ‘n’. The ‘i’ and ‘n’ in ‘ string’ are highlighted.

To terminate the search, press Enter. This leaves you with the current sele

Search dialog box for the source pane
To control searches in the source pane, bring up the search dialog box in o
the following ways:

• Choose Tools > Search...

• In the command pane, enter: dialogsearch

For example, to search for a string such as tree:

1. Type tree in the search text field.

2. Click Find to search for the next occurrence of the string.

The toggle buttons in this window are the same as those in the Editor’s se
dialog box.

To initiate or repeat searches without the search dialog box, you can also u
Ctrl+f or Ctrl+b key sequences in the command pane.

Variable lifetime debugging
Registerized variables are those such as function parameters or locals wh
values are represented solely within registers. When you refer to a registe
variable outside of its scope (as defined by the compiler), the debugger dis
the message “Out Of Register Scope”, along with the value. Because the
variable is out of scope, this value is probably incorrect.

this is a string search.
Green Hills Software, Inc. 41

2. Debugger GUI
Multiple .text section debugging
The debugger contains full support for multiple .text section debugging. The
debugger seamlessly debugs both C source and assembly files which contains
procedures located in a different text section.

You can load additional symbol information for a module while debugging.

Other window topics

Mouse clicks
You can customize the mouse operation within the debugger. The debugger
supports programming of up to five mouse buttons, and you can assign
commands for up to five clicks for each button. Examples:

Note: if you configure the mouse operation for the right button, you may affect
the default behavior of the right-click pop-up menu.

For a 2-button mouse in source pane

Button One Click Two Clicks

Button 1 (left) Selects the word that the
mouse is on and, if applicable,
prints its value.

Opens a data explorer window
on the object represented by
the word that the mouse is on.
See view on page 140.

Button 3 (right) Opens a pop-up menu on the
clicked object.

No operation.

For a 3-button mouse in source pane

Button One Click Two Clicks

Button 1 (left) Selects the word that the
mouse is on and, if applicable,
prints its value.

Opens a data explorer window
on the object represented by
the word that the mouse is on.
See view on page 140.

Button 2 (middle) Sets a breakpoint at the line the
mouse is on.

Sets a temporary breakpoint on
the line where the cursor is and
continues the program.

Button 3 (right) Opens a pop-up menu on the
clicked object.

No operation.
42 Debugging with MULTI 2000

Other window topics
Kanji character support
MULTI fully supports the kanji character set.

To display Kanji characters appearing in source files, you must specify a Kanji
font such as k14, in your configure file.
Green Hills Software, Inc. 43

2. Debugger GUI
44 Debugging with MULTI 2000

Chapter
3

Expressions,
variables, and
procedures
This chapter contains:

• Evaluating expressions

• Viewing variables

• Viewing memory addresses

• Variable lifetime

• Special variables

• Examining data

• Wildcards

• Procedure calls

• System variables

• Syntax checking

3. Expressions, variables, and procedures

he
ane.

s you
lso

e

e

 one

ain

ts

cts,
ese
Evaluating expressions

It is often useful to calculate the value of an expression while debugging. To
evaluate an expression, simply enter it into the debugger’s command pane. T
debugger will print the calculated value of the expression in the command p
If you want to watch the value of an expression, and have it reevaluated a
step through your program, you should use a data explorer instead. See a
Chapter 5, “The data explorer”.

When you construct your expressions, beware that:

• If the expression begins the same way as a debugger command, put th
expression in parentheses () or explicitly use the print command to
distinguish it from that command. For example, to look at the value of th
variable c, enter (c) or print c. (See print on page 123.) If you just entered c,
the debugger would execute the c command.

• Do not press Enter in the middle of an expression. An expression is only
line with an Enter at the end.

• Comments begin with /* (forward slash + asterisk) and end with either a
new line or */ (asterisk + forward slash).

• If the program has not been started, then the expression may only cont
constants. After the program has started, the expression may contain
variables and procedure calls.

• If the program is running, then the expression may only contain constan
and, if the system allows, global variables.

• If the program has not been started and was linked against shared obje
then expressions refering to procedures and variables located within th
shared objects may not be allowed.

• In C++, the “.*” and “->*” operators are not supported.

• In C++, casts to reference types are not supported.

Expression Effect

(c) displays value of variable c

print c displays value of variable c

c executes the c command
46 Debugging with MULTI 2000

Evaluating expressions

s,
ger is

across
cause
s one

ge.

n
 the
o
d be
 may
• In C++, the debugger never calls destructors.

• In C++, there are restrictions on procedure calls and overloaded operator
calls. See “Procedure calls” on page 58 for more information.

• In Pascal, enclose set constructors in parentheses.

If you are debugging multi-language (e.g. mixed Ada and C++) application
use the syntax appropriate to the language of the source file that the debug
currently displaying.

Be careful when using expressions in the debugger that may be evaluated
multiple languages (such as in button definitions). Language changes can
confusion with the operators. For example, in C, the assignment operator i
equal sign (=), and the equality comparison is two equal signs (==). In Ada and
Pascal, colon equal (:=) is the assignment operator, and one equal sign (=) is the
equality comparison.

The debugger always follows the operator definitions for the current langua
This can make definition of language-independent expressions difficult. In
order to overcome this problem, the debugger always recognizes the “colo
equal” (:=) as the assignment operator (in addition to the correct operator in
current language), and two equal signs (==) as the comparison operator. T
ensure that expressions are language-independent, these operators shoul
used to implement features or capabilities (such as button definitions) that
remain in operation over several source languages.

Language keywords
When the debugger evaluates expressions, it understands the following
keywords for the current source language:

Language Keywords

C char const double enum float int long short signed sizeof struct
union unsigned void volatile
(The ‘sizeof’ operator behaves the same way as in the C
language.)

C++ As above, plus:
class namespace

Ada abs and boolean character false float in int integer mod not null
or xor package real rem true

Fortran .AND. .EQ. .FALSE. .GE. .GT. .LE. .LT. .NE. .NOT. .OR.
.TRUE. character complex int integer logical real
Green Hills Software, Inc. 47

3. Expressions, variables, and procedures

even

.

mes

r of
 be
Viewing variables

There are several different methods for viewing the value of variables,
including the following:

• Click the variable in the source pane.

• Double-click the variable in the source pane.

• Use the print or examine commands. (See print on page 123 and examine
on page 104.)

• Enter the variable name in the command pane.

MULTI’s expression evaluator accepts the following forms of variable
notations. You can use them to unambiguously refer to a specific variable
when there are other variables with the same name.

Note: Previous releases of MULTI did not support all of the following forms

The following list describes the different methods for specifying variable na
and memory addresses. Note that an arbitrary variable called fly is used in these
examples. Spaces before and after the ‘#’ symbol are optional, but the pai
double quotes (“ ”) around a file name is required. Local variables need to
either static or within a procedure on the stack.

Pascal and boolean char chr false fiv in int integer mod nil not or ord
real true

Jovial A B C F P S U V abs and bit boolean character eqv false int
integer mod not null or pointer real true xor

SL1 address bitoffset bitwidth byteoffset comment convert_to_int
convert_to_pptr convert_to_uptr int integer maxint nil no_op
offset ppoi ppointer pstructure size struct structure upoi
upointer ustructure wordoffset

Viewing variables

Expression Meaning

fly Performs a scope search for the variable fly, starting at the
“stop point” in the current procedure and proceeding outwards.
Locals, local statics, and parameters are checked, then file
statics, globals, and special variables.

$fly Searches the list of special variables for $fly. See “Special
variables” on page 51.

Language Keywords
48 Debugging with MULTI 2000

Viewing memory addresses
Viewing memory addresses

:fly Searches for a global named fly.

::fly Same as :fly.

num # fly Uses the num procedure on the call stack for the scope
search. Caution: if entered directly into the debugger, the
debugger will jump to line num instead of what you intended.
To avoid this, use parentheses to enclose the expression at the
beginning of the command line. This is useful if you are
debugging a recursive procedure and multiple instances are
on the stack. You can then pick the instance and display the
value of the variable for that instance. See e on page 101.

“foo.c” # proc ##
label # fly

Local variable fly in the lexical block at label label in
procedure proc in file foo.c .

proc ## label # fly Local variable fly for block at label label in procedure proc.

stack_depth ## label
fly

Local variable fly in the lexical block at label label in
procedure at stack depth stack_depth.

“foo.c” # proc # fly Local variable fly for procedure proc in file foo.c .

proc # fly Local variable fly for procedure proc.

stack_depth # fly Local variable fly for procedure at stack depth stack_depth.

stack_depth ## fly Local variable fly for procedure at stack depth stack_depth.

“foo.c” # fly Static variable fly in file foo.c .

. (period) The period is a symbol that represents the result of the latest
expression.

Expression Meaning

#line Address of the code at line number line in the current file.

“foo.c” # proc # line Address of line line for procedure proc in file foo.c .

proc # line Address of line line for procedure proc.

stack_depth # line Address of line line for procedure at stack depth stack_depth.

“foo.c” # proc ## label Address of label label for procedure proc in file foo.c .

proc ## label Address of label label for procedure proc.

Viewing variables

Expression Meaning
Green Hills Software, Inc. 49

3. Expressions, variables, and procedures
Printing results of a complex statement
The results of a complex statement are not automatically printed. For example:

foo
results in printing the value of the variable foo, whereas

{foo}
does not. In this latter case, you can use the print command to display the
value; that is

{print foo}
prints the value of foo.

Variable lifetime

The Green Hills compilers augment the location description (register number,
stack offset, memory location, etc.) for user variables with lifetime information
which indicates when the value at the given location is valid.

When you use debugger commands (e.g. print or view) or data explorers to
evaluate expressions, you may see the following messages next to the value of
the expression:

Examples:

Message Meaning

Uninitialized The value displayed may represent an uninitialized value.

Out of Register Scope The value displayed may be invalid because the location used
to store the value of this variable may have been reused by the
compiler to store the value of a temporary (or another)
variable.

Optimized Away The variable was optimized away by the compiler and does not
have any storage. No value will be displayed in conjunction
with this message.

MULTI> print /d my_variable
my_variable = 0 << Uninitialized >>

MULTI> print /d my_variable
my_variable = 66952 << Out of Register Scope >>

MULTI> print /d my_variable
my_variable was optimized away
50 Debugging with MULTI 2000

Special variables

ay

ich
 the

ging

Special variables

The debugger maintains a list of special variables which are not a part of your
program, but can be used in the debugger as if they were. For example, you
could use a special variable in an expression that you evaluate in the debugger.
These special variables include machine registers (such as $r1), debugger
internal variables (such as $_DISPMODE), and user defined variables (such as
$foo).

When the debugger is evaluating an expression and it finds a variable name
(such as result), it first performs a scope search in the program to see if the
variable exists. If the variable does not exist, then the list of special variables is
searched. Variable names beginning with a dollar-sign ‘$’ (such as $result) are
assumed to be special variables.

User-defined special variables are of the same type as the last expression
assigned. For example, entering:

creates the special variable $mumble, assigns it the value 12, and makes its
type integer. These variables are just like any other variables, except you m
not take the address meaningfully.

The processor’s registers are included as predefined variables. To find wh
register names are available on your system, you can list the registers with
l (lowercase ‘L’) command with the r option:

See l on page 113.

All registers act as integers of the correct size for the register. Special care
should be exercised when modifying the contents of registers while debug
high-level code, since the results of these modifications can often produce
unpredictable effects.

$mumble=3*4

l r
Green Hills Software, Inc. 51

3. Expressions, variables, and procedures

e

the

y”

of the
The following special predefined variable is also included:

To list all the other special variables, use the l (lowercase ‘L’) with the s option.

See l on page 113.

Examining data

The following commands examine data. You can examine most items in th
source pane by double clicking them. See Chapter 5, “The data explorer”.

Variables
Variable names are represented exactly the same way they are named in
program. The case sensitivity of the current source language is used when
evaluating expressions, but can be overridden with the “exprcasesensitivit
configuration option.

To display the value of a variable in the debugger command pane, do one
following:

• Click the variable name in the source pane.

• Enter the variable name in the command pane using either the print
command or parentheses if necessary. (See print on page 123.)

Expression formats
An expression format exp_format is of the form:

[count]style[size]

where count is the number of times to apply the format style style, and size
indicates the number of bytes to format. Both count and size are optional. For

Message Meaning

$result Checks the return value of a procedure. This variable is a
long-integer type and is an alias for the register on the
processor architecture used for returning integers. On most
systems, this is also the register to return pointers. It may be
written to as well as read from. Caveat: this value is not
guaranteed to be correct; it depends on the return type of the
function and the processor architecture. The actual return
variable may be located elsewhere. As with any register, you
must be careful when you change its value.

l s
52 Debugging with MULTI 2000

Examining data
example, print/4d2 fly prints, starting at fly, four 2-byte numbers in decimal.
count defaults to one, and size defaults to the size of the type printed.

In addition to a number, size can be specified as one of the following values:

These are appended to style. For example, print/xb fly prints a hex byte. The
formats which print numbers allow an uppercase version of the character to be
synonymous with appending the letter ‘ l’ to lowercase. For example, fly/O
prints a long octal, which is the same as typing print/ol fly.

The following values are available for style:

b One byte (byte-integer)

s Two bytes (short-integer)

l (lowercase L) Four bytes (long-integer)

Values for style

Format Meaning

a Prints a string using exp as the address of the first byte. This prints to the
first null character or 128 characters, whatever happens first. The size value
forces printing of a given number of bytes, regardless of the occurrence of
null characters. For example, if the string “hello” is at location 0x40a8, then
to see the string, enter:
print/a *0x40a8

b Prints exp in decimal as 1 byte.

c Prints exp as a character.

d Prints exp in decimal.

e Converts exp to the style [-]d.ddde+dd where there is one digit before the
radix character and the number after is equal to the precision specification
given for size. If size is not present, then the system default is used.

f Converts exp to the decimal notation in the style [-]ddd.ddd where the
number of d’s after the radix character is equal to the precision specification
given for size. If size is not present, then the system default is used. If size
is explicitly zero, then no digits or radix characters are printed.

g exp prints in style d, in style f, or in style e. The style depends on the
converted value. Style e is used only if the exponent resulting from the
conversion is less than -4 or greater than the precision given for size.
Trailing zeroes are removed from the result. A radix character appears only
if followed by a digit. This is the default for floats and doubles.

i Using the exp as an address, disassembles a machine instruction.
Green Hills Software, Inc. 53

3. Expressions, variables, and procedures
Viewing expressions
To view previous memory, enter:

^ [exp_format]

This causes the debugger to back up and display preceding memory location
based on the size and address of last item displayed. Uses a previous format if
exp_format is not supplied. This may not work if displaying instructions on a
machine with variable length instructions.

I (Uppercase ‘i’) Using the exp as an address, disassembles a machine
instruction. If the address maps evenly to a line number in the source, it
prints the source line first. This allows you to see what the compiler
generated for a line of source. Using the mixed source/assembly mode in
the source pane is an easier way to view the same information. However,
this command may be useful if you want to save the information to a file. For
example:

>> tempfile
print/200I myfunc
>> c
This sequence prints the first 200 instructions of the function, myfunc, and
saves the output to the file tempfile. See “Record and playback commands”
on page 73.

n Uses the “normal” format based on type. If no format is specified, this is the
default.

o Prints exp in octal.

p Prints the name of the procedure containing address exp, along with the
filename and the source line or instruction that addresses maps. If size is 1
(print/pb), only the procedure name will be printed. If size is 2 (print/ps),
only the filename and procedure name will be printed.

r Prints the bounds of a ranged type or variable of a ranged type such as a C
bitfield or an Ada subrange.

s Prints a string using exp as a pointer to the first byte of the string. Same as
print /a *exp.

S Creates a formatted dump of a structure. This is the default for items of type
struct.

t The debugger shows the “type” of variable or procedure.

u Prints exp in unsigned decimal.

x Prints exp in hexadecimal.

Values for style

Format Meaning
54 Debugging with MULTI 2000

Examining data
Eval
The eval command evaluates expressions, but does not display the results. This
is valuable when dealing with expressions which may refer to volatile memory
regions. For example, with the memory cache disabled (_CACHE = 0),

 print *(int *)address = value

will perform one write-memory and one read-memory access to the target and
will print the value of the expression, whereas

 eval *(int *)address = value
will perform in one write-memory and no read-memory accesses and will not
print the value of the expression.

Examine
examine[/exp_format] exp

If exp is a procedure name, then this is equivalent to the e exp command. See e
on page 101.

If exp is a number followed by a b, such as 3b, then the debugger moves to that
breakpoint.

In all other cases, this command is identical to the print command (see below).

Print
print[/exp_format] exp

Displays the value of expression exp exactly using exp_format.

Examining line numbers
Through command parsing, you can specify procedure-relative versus
file-relative line numbers for the following examine commands. Note that the
configuration variable procRelativeLines controls whether the interpretation of
line numbers defaults to being procedure-relative or file-relative.

Examining line numbers

Expression Meaning

e 10 Examine line number 10 in current procedure of file.

e +10 Examine 10 lines from current position.

e 0x1234 Examine address 0x1234.

e proc#4 Examine (procedure-relative) line 4 of procedure proc.
Green Hills Software, Inc. 55

3. Expressions, variables, and procedures
C Labels:

Procedure-relative mode:

File-relative (non-procedure-relative) mode:

e “foo.c”#4 Examine (file relative) line 4 of file foo.c.

e “foo.c”# proc#4 Examine (procedure relative) line 4 of procedure proc in file
foo.c .

e (expression) Examine the address which is the value of the expression.

e ($ret()) Examine the return address of the current procedure.

e * Examine procedure list.

e 2b Examine breakpoint #2.

e 2_ Examine call stack trace depth 2 (our caller’s caller).

C label

Expression Meaning

e “foo.c”# proc##label Examine C Label label in procedure proc in file foo.c .

e proc##label Examine C Label label in procedure proc.

e ##label Examine C Label label in current procedure.

Expression Meaning

e proc#4 Examine (procedure-relative) line 4 of procedure proc.

Expression Meaning

e proc#4 Examine (file-relative) line 4 of file containing procedure proc.

Examining line numbers

Expression Meaning
56 Debugging with MULTI 2000

Wildcards

atch
Language dependencies
In C++, when the debugger displays a class it also displays the fields in all the
parents of that class, including virtual parents, if that information is available.
Static fields associated with a class are also displayed.

In Pascal and Ada, the debugger examines variant tags and only displays the
fields of a record that are part of the current variant. If that information is not
available, all the fields are displayed.

Wildcards

A few commands specify wildcards for items such as procedure names. A
question-mark ‘?’ matches any single letter while an asterisk ‘*’ or an at-sign
‘@’ matches any number of letters so that, for example, “??*” matches all
names which are at least two characters long.

There are several different formats when referring to procedures in C++:

When using a syntax including class::, all base classes of class are also
searched. Aside from that, there is no other notion of inheritance and this m
is purely syntactic.

Expression Meaning

class::func(types) Wildcard characters may appear in both the class or the
func field, and the character ‘@’ may appear in the types
list to match an arbitrary number of arguments of arbitrary
types.

class::operator @(types) Matches all operators of the given class and types.

class::func Matches all members whose names match func of all
classes whose names match class, regardless of their
arguments.

class::operator op Matches all operators which match op, and are either class
members or their first operand is indicated class.

::func Matches all functions that are not class members whose
names match func. Argument types are supplied to restrict
the match.

func Matches all functions, whether class members or not,
whose names match func.
Green Hills Software, Inc. 57

3. Expressions, variables, and procedures
Procedure calls

From the command pane, you can call procedures in your program if the
program being debugged has been compiled with the Debugging Level set to
MULTI (which should result in the program being linked with libmulti.a).

When you set Debugging Level to MULTI, and then do a build, the builder
automatically links in a library called libmulti.a. This is necessary for doing
procedure calls. If you are not using the builder, then to achieve the same result
do one of the following:

• Use the build-time option -G

• Use the build-time option -lmulti

When MULTI detects that libmulti.a was not linked in to the executable, and
you try to do a procedure call, it will give an error message saying that the
-lmulti is necessary.

Normally, every program calling a library function has a copy of that function
included in its executable.

Procedures are handled from within the expression evaluator. Therefore they
are accessed in expressions. For example:

In C++, overloaded operators are called, provided they are not inlined, thus the
following expression:

is converted into the appropriate procedure calls. Constructors are called when
appropriate, again provided they are not inlined.

You can make a procedure call to any text label in the file being debugged. For
example, assume the procedure printf is referenced in the program and thus the
code for this is on the target. Enter:

On many systems, it is necessary to print a new line before any of the
information appears.

fly = AddArgs(1, 2) * 3;

complex(1,2) + complex(2,3)

printf("Hello, %s!\n", "world")
58 Debugging with MULTI 2000

Procedure calls
To find out what procedures are available to be called, do a list procedures
command:

See (lower case L) l on page 113. To gain access to library routines for
debugging purposes that are not referenced anywhere in the program code, and
thus are not linked into the program image, add a dummy reference to the
program and recompile.

Caveats for procedure calls
• Any breakpoints encountered during command window procedure

invocation are handled as usual.

• Return values from procedures are not guaranteed to be correct if a
breakpoint is encountered during a procedure call.

• If function prototype information is available, the debugger checks the
function prototype and converts each argument expression to the proper type
of the corresponding parameter. If it is not available, automatic promotion of
arguments and detection of invalid arguments is not supported and you
should ensure that function arguments specified are compatible with the
function called.

• When evaluating a C expression, the debugger invokes any compiled
function, with or without arguments, including both application and
operating system functions. However, an OS function on the target system is
only called if already linked into your program. You are responsible for
linking any system calls that are called from the command line into the
program.

• In C++, or any other language with inlined procedures, a procedure only
inlined (so there is no stand-alone version of the procedure) may not be
called.

• In C++, the expression evaluator is unable to disambiguate overloaded
procedure names. In this case, a dialogue will prompt you to identify which
function should be used.

• In C++, default arguments are not inserted.

• In C++, the class member operator(), the function call operator, and the
new and delete operators are not supported.

l p *
Green Hills Software, Inc. 59

3. Expressions, variables, and procedures
System variables

There are a number of system defined variables. Modifying their values
changes the way the debugger operates. The following list contains the
currently defined system variables. To display the value of a system variable,
prepend a dollar-sign to it (for example, $ANSICMODE) and enter it in the
command pane.

System variables

Name Meaning

ANSICMODE Default value is 1 if main() is defined with a prototype such as main(void) or
main(int argc, char **argv). Otherwise, the default is 0 (zero).
If 0 (zero), expressions are evaluated as they are in K&R C. If 1, then they are
evaluated as in ANSI C. Generally, this affects how unsigned shorts,
unsigned chars and unsigned bit fields are coerced. By default in K&R, they
are coerced to unsigned int, whereas in ANSI they are coerced to int, thus
((unsigned short) 3)/ -3 yields different results in ANSI and K&R. The type of
sizeof is different, as is the interpretation of the op= operators in certain
obscure cases.

ARRAYPRINTMAX Specifies the maximum number of array elements the debugger prints.

CONTINUECOUNT

If this is 0 or 1, the debugger will stop at the next breakpoint. If this is 2, the
debugger will stop at the second breakpoint reached by the program, and so
on. Use the c command to set its value. For example, to set it to 3, enter:
c @3

DEBUGSHARED Enables/disables debugging of shared objects. Only relevant with targets that
support shared libraries like certain native UNIX platforms or advanced
embedded real-time operating systems.

DEREFPOINTER Controls whether or not pointers are automatically dereferenced when
displayed by the print or examine commands.

DISNAMELEN Controls the length of symbols printed when associating program labels to
addresses in disassembly mode.

R_SIGNAL The signal number that caused the current program to stop.

SERVERTIMEOUT How long (in seconds) MULTI will wait for a debug server to respond before
concluding that the server has failed. MULTI will prompt the user to close the
connection or keep waiting. If set to zero, MULTI will never time out waiting for
a debug server.

SIGNAL The signal number which is passed back to the target. This is zero if masked by
the signal handling code.

TASKWIND If zero, the task window (for multi-tasking targets) will be disabled.

VERIFYRESTART Verifies attempts to restart the program by bringing up a confirmation dialog.

VERIFYHALT Verifies halting a program before setting a breakpoint by bringing up a
confirmation dialog.
60 Debugging with MULTI 2000

System variables

 the

System special variables beginning with an underscore ‘_’ are not normally
listed. They represent the internal state of the debugger. To see them, use
l command with the s option:

See (lower case ‘L’) l on page 113.

VIEWARRAYMAX Maximum number of array elements shown in a data explorer window by
default. More array elements can be viewed by changing the type of the array
in the data explorer type field.

l s _

System special variables

Name Meaning

_ASMCACHE When set to one (1) [default], the disassembly of program code in the
debugger window is done by reading data from the executable file, not from the
debugged program. This allows a faster disassembly print to the screen.
Setting _ASMCACHE to zero forces the debugger to read the text to be
disassembled from the debugged program, instead of the buffer or executable
file. If instruction memory is modified or destroyed, and _ASMCACHE is one,
then displays of disassembled instructions continue to show the original
unmodified instructions in the executable file. This is confusing since the
instructions actually executed are not those shown by the disassembly display.
Sometimes, when peculiar behavior occurs on the target system, such as the
program stops on an apparently valid instruction or it refuses to single step or
continue past a valid instruction, the instruction memory on the target system
has been corrupted. Try setting _ASMCACHE to zero and redisplaying the
assembly code. You may find invalid instructions at the point of failure. (You
may need to turn off assem mode and examine another part of the program,
turn assem mode back on, then return to the point of the entry to clear out the
debugger’s internal disassembly cache.)

_CACHE If non-zero, the debugger uses a cache for reading memory from the target.
The cache is invalidated every time the program state changes. This speeds up
remote debugging. See also eval on page 103.

_DATA Used for PID (position independent data) systems where the executable is
linked as if it were at one address while it runs at another. This variable is set to
the offset between the location at which the data segment resides and at which
it is linked. This is set on the command line with the -data option.

_DISPMODE Determines whether assembly code is interlaced with source code in the
source pane. See “Interlaced source view” on page 17.

System variables

Name Meaning
Green Hills Software, Inc. 61

3. Expressions, variables, and procedures
_ERRHALT When the target encounters an exception, then if _ERRHALT is false, the
debugger will list the registers, execute any associated exception breakpoint
commands, then resume the target process. If TRUE, only the associated
commands are executed, leaving the target process halted. This variable
defaults to TRUE. See be on page 82, de on page 96, l on page 113
(lowercase ‘L’) with the e and r options.

_INIT_SP Tells the debugger the value of the stack pointer at program start up in certain
remote environments where this information is not available.

_LANGUAGE Shows which expression evaluator is in use. 0 means C, 1 means Fortran, 2
means Pascal, 3 means C++, 4 means Ada, 5 means Jovial, 6 means SL1, 7
means Assembly, and 31 means auto-select based on the type of current file.

_LINES This shows the number of lines displayed by the printwindow command by
default. See printwindow on page 124.

_NOTIFY If this is non-zero, then you are notified when new children are forked, when
your program performs an exec, and when your program is stopped. This is off
by default.

_OPCODE If non-zero, then disassembly mode displays the hexadecimal value of the
instruction. This does not work for 68K.

_TEXT Used for PIC (position independent code) systems where the executable is
linked as if it were at one address, while it runs at another. This variable is set
to the offset between the location at which the text segment resides and links.
This is set on the command line with the -text option.

System special variables

Name Meaning
62 Debugging with MULTI 2000

Syntax checking
The following system special variables are read-only: .

Process state:

Syntax checking

The syntax checking mechanism checks the validity of a command without
actually executing it and thus without requiring target interactions and without
changing the system settings.

The debugger command sc performs syntax checking. It can be used in two
different ways.

To check the syntax of a single command, enter:

sc “ command”

Read-only system variables

Name Meaning

_BREAK The current breakpoint number.

_FILE The name of the current file.

_INTERLACE Indicates whether assembly code is displayed in the source window.
This is 1 (one) if there is assembly code currently displayed in the
source window, otherwise it is 0 (zero).

_LINE The current line number.

_MULTI_DIR The name of the directory that contains the MULTI executable..

_PID The process ID of the process, as reported by the debug server.

_PROCEDURE The name of the current procedure.

_PROCESS The MULTI defined program number of the current program.

_REMOTE Set to 1 (one) if the debugger is debugging a program on a remote
target. Otherwise, it is set to 0 (zero, for native debugging).

_SELECTION A string variable representing the current selection from the source
pane.

_STATE Process state. See “Process state” table below.

Process state

1 = no child 2 = stopped 3 = running 4 = dying

5 = just fork’ed 6 = just exec’ed 7 = about to resume n/a
Green Hills Software, Inc. 63

3. Expressions, variables, and procedures
To check the syntax of an entire script file and all nested files, enter:

sc < script_file_name

See sc on page 132.

Syntax checking is also automatically invoked whenever a breakpoint with an
associated command or condition is created. The bpsyntaxchecking
configuration option can be used to disable this automatic checking. The
validity of the commands associated with the breakpoint are checked in the
context that would exist if the breakpoint were hit. If a syntax error is found in
the breakpoint command, a warning message is issued.

For example, entering the command:

sc "print abcdef"

will echo the error message:

Syntax Checking: Unknown name "abcdef".

and entering the command:

b main { print abcdef; }

will echo the the error messages:

Syntax Checking: Unknown name "abcdef".
Failed to set breakpoint owing to syntax error.
64 Debugging with MULTI 2000

Chapter
4

Debugger
commands
This chapter contains:

• Debugger notations

• Command groups

• Debugger commands

4. Debugger commands

is
d in

ost of

nd
The MULTI debugger (“the debugger”) provides commands and features to debug your
program, ranging from window related commands to program execution commands. Th
chapter describes all these commands in detail. The commands in this chapter are liste
alphabetical order. You can execute them from the debugger command line window. M
these commands are also available from the debugger menus.

Debugger notations

Double quotes “ ”
This is a pair of double quotes.

Format: “ any_string”

Prints the string between the double quotes. The string can contain the standard
C language character escapes. For example, this can be used to print comments
in breakpoint commands.

%bp_label
This is a breakpoint label. It starts with the percent sign (%).

See “Breakpoint label” on page 68.

@bp_count
This is a breakpoint count. It starts with the at-sign (@).

See “Breakpoint commands” on page 71.

{ cmds }
This is a pair of curly braces that contain a list of commands. See “Comma
list” on page 69.

Address expressions
An address_expression is a flexible MULTI command language construct
which allows many ways of referring to a location within your program.
66 Debugging with MULTI 2000

Debugger notations

Examples of address_expression’s using the e command:

Procedure-relative vs file-relative line numbers
The configuration option procRelativeLines controls whether or not a line
number given in address expressions is to be interpreted as file-relative or
procedure-relative. The default is to use procedure-relative line numbers.

Procedure relative:

Displaying variables

Expression Meaning

e 10 Examine line number 10 in current procedure or file.

e +10 Examine 10 lines from current position.

e 0x1234 Examine address 0x1234.

e proc2#4 Examine (procedure-relative) line 4 of procedure proc2.

e “file3”#4 Examine (file-relative) line 4 of file file3.

e “file3”#proc2#4 Examine (procedure-relative) line 4 of procedure proc2 in file
file3.

e (expression) Examine the address which is the value of the expression.

e ($ret()) Examine the return address (exit point) of the current
procedure.

e 1b Examine breakpoint with id equal to 1.

e %bp_label Examine the location where breakpoint with label equal to
bp_label.

e 2_ Examine stack level 2.

e “file3”#proc2##label4 Examine C Label label4 in procedure proc2 in file file3.

e proc2##label4 Examine C Label label4 in procedure proc2.

e ##label4 Examine C Label label4 in current procedure.

e * Examine procedure list (wild card search).

Procedure-relative

Expression Meaning

e proc3#4 Examine (procedure-relative) line 4 of procedure proc3.

e 4 Examine source code at line number 4 in the current procedure.

e #4 Examine source code at line number 4 in the current file.
Green Hills Software, Inc. 67

4. Debugger commands
File-relative (Non-procedure relative):

See “Line numbers” on page 15.

Breakpoint label
The b commands for setting breakpoints (for example, b, br, bx) accept
%bp_label as an argument to specify a name for the breakpoint.

For example:

This command sets a breakpoint labeled foo on line 24 of procedure main.

The B, e, d, and tog commands can refer to breakpoint labels by using the
percent qualifier (%).

For example:

Breakpoint list and ranges
A breakpoint list is a comma separated list of % qualified breakpoints. A
breakpoint range consists of two colon separated breakpoints. The B and d
commands can refer to breakpoint ranges.

File-relative

Expression Meaning

e proc3#4 Examine (file-relative) line 4 of file containing procedure proc3.
(The line must exist within proc3).

e 4 Examine source code at line number 4 in the current file.

e #4 Examine source code at line number 4 in the current procedure.

 b %foo main#24

Expression Meaning

d %foo Remove breakpoint labeled foo.

d %3 Remove breakpoint with ID = 3.

d main#4 Remove breakpoint on line 4 of main.

d Remove breakpoint on current line.
68 Debugging with MULTI 2000

Debugger notations

e,
For example:

stacklevel_
A call stack trace level is a number followed immediately by an underscore; it
refers to the call stack level relative to the current procedure. For example, if the
procedure main() calls foo() which calls bar() which calls hum() and in the
debugger you are currently debugging hum(), then the following command:

will change the current viewing location to bar(), because bar() is one (1) level
up from the current procedure hum(). And this command:

will change the current viewing location to foo(), because foo() is two (2) levels
up from the current procedure hum().

Command list
Many debugger commands, assertions, breakpoint commands, and so forth, are
given with a list of other commands to perform at specific times. You can use
C-style comments:

These lists may span several lines if they are surrounded by curly braces { }. If a
list is not surrounded by curly braces, then it is read to the end of the line. Curly
braces can contain other pairs of curly braces as long as they are all paired
correctly. These lists may be any combination of debugger commands separated
by semicolons “;”. The syntax for expressions is the same as the C languag
with a few exceptions. See “Evaluating expressions” on page 46 for more

Expression Meaning

d %foo,%bar,%gamma Remove breakpoints labeled foo, bar, and gamma.

d %foo:%gamma Remove breakpoint foo through gamma.

d %1,%3:%5 Remove breakpoints with ID’s 1, 3, 4, and 5.

 e 1_

 e 2_

/* a C-style comment, between a forward_slash+asterisk and an asterisk+forward_slash. */
Green Hills Software, Inc. 69

4. Debugger commands
information. For example, the following command checks the value of some
global variables at a breakpoint:

This first prints “Global variable ” followed by “fly = ” with the value of the
variable fly in decimal. If the value of variable fly is less than nine it continues
to run. Otherwise, it prints “error”.

Executing a command after a continue ({c}) is not supported. For example, do
not do this:

default search path
MULTI maintains a search path that it uses when locating user specified
filenames on the file system. The search path will always contain the current
directory (.) as its last entry. To change this search path, do one of the following:

• Use the source command.

• Use the -I command line option to MULTI.

• From the main debugger menu, choose View > Source Path...

MULTI uses the default search path when locating the following types of files:

• source files

• script files

• object files

If a debugger command uses the default search path, it will be indicated in its
description.

See the -I command line option to MULTI in the Building and Editing with
MULTI 2000 manual.

Printing structs
In C and FORTRAN, the debugger uses a straightforward algorithm when
displaying a struct or a union. Since this may not be best for large or complex
structs, the debugger allows you to define your own display method. To do this,
include a routine in your source code with the same name as the struct or union,
preceded by an underscore. This routine should take two arguments, which are
passed by the debugger: the address of the struct and the size parameter. The

{ "Global variable "; print /d fly; if var<9 {c} else {"error"} }

{ if (var < 10) {c;} print var }
70 Debugging with MULTI 2000

Command groups

 also
r

ts

 list”

ich
default value is -1, and user passable values are 0 (zero) to intMax. For
example, if you have a type called struct FLY, then your own routine to dump
its contents must be named _FLY.

When you attempt to print the contents of a struct, the debugger checks to see if
a routine is defined for that struct. For example, if flyFirst is a struct of type
FLY and you enter print /n2 flyFirst, then the debugger first checks for a
routine named _FLY. If there is no such routine, then the debugger uses its own
algorithm. However if you define such a routine, then the debugger calls that
routine, passing a pointer to the struct and the size parameter.

If you define your own routine to print out a struct but prefer to use the
debugger’s own algorithm in a particular case, use the N format. This format
works exactly the same as the n format, except it overrides your custom
definition. See “Expression formats” on page 52 for more information. For
example, in the case mentioned above with FLY and flyFirst, if you want to
print flyFirst using the debugger’s algorithm instead of the one defined in _FLY,
enter print/N flyFirst

Command groups

Breakpoint commands
The debugger provides a number of commands for setting and removing
breakpoints. A breakpoint is associated with an address. A breakpoint may
have a count n. The program will stop when the breakpoint is encountered fo
the n-th time. To set breakpoints in GUI mode, see Chapter 11, “Breakpoin
window”. The count is set by adding an @ followed by the count number after
the breakpoint command, but before the command list. For example, the
following command sets a breakpoint with a count of four:

In all of the two letter breakpoint commands, if the second character is
uppercase (for example bU instead of bu), then the breakpoint is temporary
instead of permanent.

All of the commands containing an argument [{cmds}] may take an optional list
of commands that are executed when the breakpoint is hit. See “Command
on page 69.

Most of the breakpoint commands take an optional address expression wh
specifies the location of the breakpoint. If an address is not specified in a

b @4
Green Hills Software, Inc. 71

4. Debugger commands

page

t
ue
command it takes, the current line is used. See “Address expressions” on
66.

Continue commands
The continue commands (C, c, cb, cu, cU) all set a continue count. The
continue count is given by a number num following an @ sign. This count
causes the debugger to stop at the numth breakpoint that stops execution. It is
important to note that only breakpoints which stop program execution are
counted. A conditional breakpoint whose condition is false or a breakpoin
whose commands resume program execution are not counted. The contin
count may be viewed with the CONTINUECOUNT system variable. See
“CONTINUECOUNT” on page 60.

Breakpoint commands

B on page 80

b on page 81

bA on page 81

ba on page 82

be on page 82

bg on page 83

bI on page 83

bi on page 83

bif on page 83

bpload on page 84

bpsave on page 84

bpview on page 84

bR on page 84

br on page 84

bt on page 86

bU on page 86

bu on page 86

bX on page 87

bx on page 87
72 Debugging with MULTI 2000

Command groups

 2.0

 states
e
 GUI
These commands also take an optional line number. If given, a temporary
breakpoint is set at that line number. The breakpoint is removed as soon as it is
reached.

History commands
The debugger has a simple history mechanism that remembers the last 60
commands. This can re-examine long expressions. The history syntax has
changed from 1.8.9 MULTI. Where 1.8.9 used the ‘#’ character for history,
MULTI uses the ‘!’ character, similar to most UNIX shells. Some history
examples:

Record and playback commands
The debugger contains a record and playback feature to recreate program
for bugs requiring long setups. The files created are ASCII files, and can b
edited by hand later. Only debugger commands are recorded. However, if a

History commands

Expression Meaning

h Shows the existing history.

!! Re-executes the last command.

! number Re-executes command number number.

! string Re-executes the command starting with the given string.

~ Smart repeat of last command. This increments the last
command, if appropriate, before repeating it. For example,
if the last command displays a memory location, this
command increments the address displayed to show the
next location.
The following commands are repeated with a ~:

Any of the single step commands (s, si, S, Si).

Any command to display source lines.

The search commands / and ?.

The ^ command.

Any command to display memory.

= This command was used in 1.8.9 MULTI but has been
removed. Its behavior (smart repeating a command 10
times) can be accomplished by making an alias that uses ~
10 times in a row. See alias on page 78.

% Commands involving % were used in non-GUI mode in
1.8.9 MULTI. These are no longer supported.
Green Hills Software, Inc. 73

4. Debugger commands

y

t
action creates a debugger command, that command is recorded. This includes
pressing any button in the debugger window or clicking in the source pane. The
target window commands and output cannot be recorded.

The record and playback commands are:

Scripts may include other scripts, to a maximum script depth of 25.

Do not place any line beginning with > or < in the current record file. You can
override this by simply beginning the line with a space. Comments are
supported in command playback files, as in all debugger input, through the
standard C style comments (/* ... */). In addition, a comment is always
terminated at the end of a line. Hence a /* (forward slash+asterisk) with no
closing match comments out the remainder of the line, but does not carry over
to the next line as in standard C. You may not play back from a file currently
open for recording or vice versa, as the result is undefined.

See also the -p and -R command line options to MULTI, in the Building and
Editing with MULTI 2000 manual.

Note: if you use the command “> file” when the command recordfile is alread
set, the old recordfile will be closed and all subsequent commands will be
recorded to file. The command “>> file” works similarly when the screen outpu
recordfile is already set.

Record and playback commands

Expression Meaning

> file Sets command recordfile to the given file and turns on
command recording.

> (t | f | c) Turns command recording on (t), off (f), or closes command
recording file (c). If no argument is given, give current status.

>> file Sets screen output recordfile to the given file and turns on
screen output recording (recording commands and their
output).

>> (t | f | c) Turns screen output recording on (t), off (f), or closes screen
output recording file (c). If no argument exists, give current
status.

< file Starts command playback from the given file. The filename will
be searched for using the default search path. See “default
search path” on page 70.

<< file Starts command playback from the given file, using the single
stepping feature of playback. This command is not supported
in GUI mode. The filename will be searched for using the
default search path. See “default search path” on page 70.
74 Debugging with MULTI 2000

Debugger commands

d to
Search path for scripts
The source file search path (as specified by the source command) will be used
when searching for scripts for playback (the < command). See source on page
136.

Search commands
See fsearch on page 105, bsearch on page 86, and dialogsearch on page 100.

Searches wrap around the beginning and end of files and obey the current case
sensitivity setting. See chgcase on page 91. If a string is not given, the previous
one is used.

Stack trace commands
The debugger provides the calls command and the callsview command for
listing a stack trace. In GUI mode, callsview opens up a new window with the
call stack trace. See calls on page 89, callsview on page 89, and Chapter 10,
“Call stack window”.

Debugger commands

! command
This command is obsolete. It is the exclamation point (!).

Used with the history commands. In 1.8.9 MULTI, this command was use
invoke a shell. That use has been replaced by the shell command. See shell on
page 134 and “History commands” on page 73.

Command Example Meaning

/[string] /extern Searches forward through the current file, from the line
after the current line, for string. In the example, the
cursor will jump forward to the word extern. You can
then find more occurrences of this word by repeatedly
entering the forward slash (/). In GUI mode, the fsearch
command works similarly to /, but also highlights string
in the source pane.

?[string] ?extern Searches backwards for string from the line before the
current line. In the example, the cursor will jump
backward to the word “extern.” You can then find more
occurrences of this word, going backwards, by
repeatedly entering the question mark (?). In GUI mode,
the bsearch command acts similarly to ?, but also
highlights string in the source pane.
Green Hills Software, Inc. 75

4. Debugger commands

e
+ command
This command is the plus sign (+).

Format: + [num]

Moves your current viewing position in the source num lines (one(1) if num is
not specified) towards the end of the file.

– command
This command is the minus sign (–).

Format: – [num]

Moves your current viewing position in the source num lines (one(1) if num is
not specified) towards the beginning of the file.

/ command
This command is the forward slash (/).

Format: /[string]

Forward search for string (or the last string used if string is not specified). See
“Search commands” on page 75.

? command
This command is the questsion mark (?).

Format: ? [string]

Backwards search for string (or the last string used if string is not specified).
See “Search commands” on page 75.

-> command
Format: -> menu_name

Opens the menu menu_name. The menu command can be used to list all of th
available menu names, as well as to define new menus. See menu on page 119.
For example:

-> FileMenu

opens the File menu.

^ command
Format: ^ [num] [format]
76 Debugging with MULTI 2000

Debugger commands

h

xist,

t. This

r’s

e
cial
Back up num preceding memory location (based on size of last item displayed).
If num is not specified, one (1) is used. If format is specified, that format is
used, otherwise the previous format is used. Note that backing up for
displaying instructions doesn’t work very well if the code has variable lengt
instructions.

For example, given an integer array containing square numbers, called
squares, then the following two commands:

print squares[6]; ^ 3
might give the following output:

*0x21558: 36
*0x2114c: 9 16 25

A
Format: A [a | s]

Sets the overall state of the assertions mechanism. If a is specified, activates it.
If s is specified, suspends it (note that suspended assertions continue to e
but are not “in use”). If nothing is specified, then toggles the state.

a
Format: a { cmds }

(Also Format: a num modifier) See a on page 78.

Creates a new assertion with the given command list cmds.

Assertions are lists of commands that are executed before every statemen
means that if there is even one active assertion, the program will be
automatically single-stepped. This has a significant impact on the debugge
speed of execution.

This is an example of an assertion:

This command will create an assertion to report the changing value of som
global, foo, and stop if it ever exceeds some value. It uses a debugger spe
variable to keep track of the old value of foo.

Another example:

a { if { (foo!=$foo) { $foo=foo;print /d foo; if (foo>9) {x} } } }

a { if (foo > (bar–9)*10) {A;x 1;c} else {bar –= 10} }
Green Hills Software, Inc. 77

4. Debugger commands
This assertion checks the condition. If it is false, bar is decremented by 10. If it
is true, assertions are suspended, assertion mode is exited, and the program
continues at normal speed. Without the number 1 after the x command, the c
command would not have been reached. See x on page 143.

There are some restrictions on using this command. Using local variables is not
recommended since they will most likely go out of scope when a subroutine is
entered and can cause unspecified results. Assertions are also not recommended
when using shared libraries for similar reasons.

See also watchpoint on page 141.

a
Format: a num modifier

(Also Format: a { cmds }) See a on page 77.

Modifies assertion numbered num. modifier can be one of:

To list the current assertions, use the l command (lowercase L):

See also info on page 111 and l on page 113 (lowercase L).

about
Format: about

In GUI mode, opens the About dialog box with information such as the current
version of MULTI. In non-GUI mode, echoes the same information to the
screen.

alias
Format: alias [string1 [string2]]

Translates string1, when encountered in a command, into string2. string1 only
translates as a unit and not a part of a larger word. Substitution is only
performed once, so references to other aliases are ignored.

Modifier Meaning

a Activates it.

d Deletes it.

s Suspends it. Suspended assertions continue to exist, but are not “in use”.

l a
78 Debugging with MULTI 2000

Debugger commands
There are three forms of the alias command:

For example, entering:

allows you to type sh instead of showdef when using the showdef command.

apply
Note: This is a software-update command and may not be available on most
systems.

Format: apply dot_Q_archive_name [source_search_path]

Downloads the software update module and updates the debug information
symbol table with the information for the update. The update module will be
searched for using the default search path. When the debugger searches for
source files that contributed to the building of the update module, the
source_search_path, if specified, will be checked before the default search path.
See “default search path” on page 70.

dot_Q_archive_name is an update archive file ending with a “.Q” suffix.
source_search_path is a directory name. For example:

apply foo.Q /newsrc/foo/dir1

assem
Format: assem [on | off | tog]

Turns on/off the interlaced assembly display. assem on interlaces the
appropriate assembly instructions between the lines of source code. assem off
shows just the source code. assem or assem tog switches to the other display
mode.

assert
Format: assert logic_expression

Modifier Meaning

alias Lists all aliases.

alias string1 Lists alias, if any, for string.

alias string1 string2 Value of string2 becomes the alias string1.

alias sh showdef
Green Hills Software, Inc. 79

4. Debugger commands

If you

is
This command is a useful shortcut for the a command when a simple assertion
is desired. (See a on page 77) An assertion is set that will stop the program if
logic_expression evaluates to true, and print out that the program was stopped
by logic_expression. For example:

assert foo >= 0

is equivalent to:

a if (foo >= 0) {“Stopped by assertion: foo >= 0\n”; halt}

attach
Format: attach pid [pr=num]

This command is for attaching to a process running on an RTOS. This command
can also be used for native UNIX debugging (via unixserv). Note that unless
you are root, you can only debug your own native processes.

pid is the operating system’s process number of the process you attach to.
specify the optional pr=num, then the process is placed in the debugger’s
internal process slot number num. If no process slot is specified, the process
placed in the first empty slot.

The detach command detaches from a process. See detach on page 99.

B
 Lists all breakpoints. The output format is:

Arguments [address_expression | breakpoint_list]

address_expression See “Address expressions” on page 66.

breakpoint_list See “Breakpoint list and ranges” on page 68.

ID bp_label location: address count: flags commands
80 Debugging with MULTI 2000

Debugger commands

 the
 stop

For example:

See also l on page 113 with the b option.

b

Sets a breakpoint at the specified location.

If a procedure name is specified, for example, b Fly, the breakpoint is not set at
the first machine instruction of the procedure, but rather at the first machine
instruction after the procedure’s stack set up code if any. This ensures that
arguments and local variables of a procedure are read correctly when you
in that procedure. Use the bi command if you want to stop at the first machine
instruction. See bi on page 83.

b is the same as the br command.

bA
See ba on page 82.

MULTI> b main#5;
MULTI> b %my_bp_name main#6 { print "Here I am"; };
MULTI> b main #7 { print "main#7" };
MULTI> tog main#5

MULTI> B
0 main#5: 0x10204 count: 1 (inactive)
1 my_bp_name main#6: 0x01220 count: 1 <{ print "Here I am"; }>
2 main#8: 0x1022c count: 1 <{ print "main#7" }>

MULTI> B %my_bp_name:%2
1 my_pb_name main#6: 0x10220 count: 1 <{ print "Here I am"; }>
2 main#8: 0x1022c count: 1 <{ print "main#7" }>

Arguments [%bp_label] [@bp_count] [address_expression] [{cmds}]

%bp_label See “Breakpoint label” on page 68.

@bp_count See “@bp_count” on page 66.

address_expression See “Address expressions” on page 66.

{ cmds } See “Command list” on page 69.
Green Hills Software, Inc. 81

4. Debugger commands

ult

ba

Sets a (temporary for bA, permanent for ba) breakpoint with commands. In
GUI mode, this command opens a dialog box listing all procedures that match
the wild card pattern wild_card_proc. Either pick some, all, or none of the
procedures listed.

backhistory
Gives the previous command in the command pane history list or the target
window history list. This command is intended to be bound to a key. (See
keybind on page 112.) By default, the debugger binds the UpArrow key to this
command.

backout
Note: This is a software-update command and may not be available on most
systems.

Format: backout dot_Q_archive_name

This unloads the previously applied software update module and removes the
corresponding debug information from the debug information symbol table.
dot_Q_archive_name is an archive file ending with a “.Q” suffix. For example:

backout foo.Q
The filename will be searched for using the default search path. See “defa
search path” on page 70.

bat
This command is deprecated, use the sb command instead. See sb on page 132.

be
Format: be exception_number { cmds }

Adds a new breakpoint for the hardware exception exception_number. When
this exception is encountered, the command list cmds will be executed like
those for any other breakpoint. See also de on page 96, l on page 113 (lowercase
L) with the e option, and tog on page 138.

Arguments [@bp_count] wild_card_proc [{ cmds }]
@bp_count See “@bp_count” on page 66.

wild_card_proc wild-card procedure names

{ cmds } See “Command list” on page 69.
82 Debugging with MULTI 2000

Debugger commands

ss of
bg

Sets a global breakpoint at the specified location.

bI
This is lowercase b and uppercase i. This command has the same format and
arguments as the bi command. See bi on page 83.

bi
The bi and bI commands have the same formats and arguments:

Sets a (temporary for bI, permanent for bi) breakpoint on an instruction at the
location specified.

If a location is not specified, then the address of the last item looked at with the
“ /i” or “ /I” display mode is used. For example, printf+0x12;bi sets a breakpoint
12 bytes into procedure printf.

If a procedure name is specified, then the breakpoint is set on the first addre
the procedure.

bif

Set a conditional breakpoint that will stop if condition evaluates to true.

Arguments [%bp_label] [@bp_count] [address_expression] [{ cmds }]

%bp_label See “Breakpoint label” on page 68.

@bp_count See “@bp_count” on page 66.

address_expression See “Address expressions” on page 66.

{ cmds } See “Command list” on page 69.

Arguments [%bp_label] [@bp_count] [address_expression] [{ cmds }]

%bp_label See “Breakpoint label” on page 68.

@bp_count See “@bp_count” on page 66.

address_expression See “Address expressions” on page 66.

{ cmds } See “Command list” on page 69.

Arguments [%bp_label] [@bp_count] address_expression condition
%bp_label See “Breakpoint label” on page 68.

@bp_count See “@bp_count” on page 66.

address_expression See “Address expressions” on page 66.

condition expression in the current language
Green Hills Software, Inc. 83

4. Debugger commands

 the

ed in
ons.
he

ints,

bpload
Format: bpload filename

Loads breakpoints from the given file. You can also use the “load” button in
Breakpoints window to achieve the same results. See also bpsave on page 84.

bpsave
Format: bpsave filename [breakpoint_list]

Saves breakpoints to the given file. The breakpoints are generally preserv
the form file#proc#line, to provide maximal portability between debug sessi
You can also use the “save” button in the Breakpoints window to achieve t
same results.

For example, after a debug session, you issue the following command:

bpsave brkpts.lst

This saves the breakpoints to the file brkpts.lst.

Later, you restart the debugger, and you issue the following command:

bpload brkpts.lst

This restores the breakpoints from the previous debug session. See also bpload
on page 84.

bpview

Opens the breakpoints window which allows you to add, change, or delete
breakpoints. This window lists all software breakpoints, hardware breakpo
and signals. See Chapter 11, “Breakpoints window”.

bR
See br on page 84.

br
br is identical to the b command. bR is the same as the b command except that
it sets a temporary breakpoint. See b on page 81.

Arguments none

Button equivalent

Menu equivalent View > Breakpoints...
84 Debugging with MULTI 2000

Debugger commands
break
Format: break

Breaks out of loops created with the debugger while command. See while on
page 142.. For example:

In this case, if ($j>50) is true, then the while loop will terminate regardless of
the value of ($i).

See also error on page 103.

breakpoints
 This command is deprecated. See bpview on page 84.

browse
Format: browse objects

Allows you to browse through lists of objects. Below are the arguments that this
command accepts. If no arguments are given then proc is assumed.

For details on each of the browsers, see Chapter 8, “Browse window”.

while ($i<20) { $j+=$i; if ($j>50) {$j=50; break;}; $i++; }

browse command’s arguments

Argument Meaning

files | filelist A list of all the files in the program.

procs | procedures A list of all the procedures in the program.

global | globals A list of all the global variables in the program.

classlist A list of all the classes in the program.

classes Opens a browser for classes.

calls | scalls [proc] Opens a browser for static calls, optionally centered on the
procedure proc, otherwise centered on the current procedure.

dcalls [proc] Opens a browser for dynamic calls, optionally centered on the
procedure proc, otherwise centered on the current procedure.

fcalls [file] The Static File browser, optionally centered on the file file,
otherwise centered on the current file.

filename A list of all the procedures in the file filename.

classname A list of the data members and functions of class classname.

profile This use is deprecated. Use the profile command instead. See
profile on page 125.
Green Hills Software, Inc. 85

4. Debugger commands

d
r

ngle
bsearch
Format: bsearch string

Searches backward in the source pane for the previous occurrence of string and
highlights it. If string is omitted, then the string used in the last fsearch,
bsearch, or incremental search is used. If it reaches the beginning of the file, it
beeps and then resumes searching from the end. This is only available in GUI
mode. To search backward in non-GUI mode, use the ? command. See ?
command on page 76. See also dialogsearch on page 100. See “Search
commands” on page 75.

To search incrementally within the Target Window, press Ctrl+f for a forward
search, and use Ctrl+b for a backward search.

bt

Displays a message every time the specified procedure enters or exits, an
continues automatically. The message says whether the procedure exits o
enters. If it’s an exit, the message gives the return value.

bU
See bu on page 86.

bu

Sets a (temporary for bU, permanent for bu) up-level breakpoint. The
breakpoint is set immediately after the return to the level specified by
stacklevel. (Note that you specify a numeric value for stacklevel, without any
underscore. For example, 5.) See “Stack trace commands” on page 75. If
stacklevel is not specified, then the breakpoint is set one level up from the
current procedure. For example, a common sequence after accidentally si
stepping into a procedure is

bU Enter c

Arguments [@bp_count] proc_name [{cmds}]

@bp_count See “@bp_count” on page 66.

proc_name procedure name

{cmds} See “Command list” on page 69.

Arguments [@bp_count] [stacklevel] [{cmds}]

@bp_count See “@bp_count” on page 66.

stacklevel call stack trace level

{cmds} See “Command list” on page 69.
86 Debugging with MULTI 2000

Debugger commands

 If a
dure.

to set a temporary, up-level break and continue. The command cU accomplishes
the same idea.

bX
See bx on page 87.

bx

If no arguments are specified, sets a (temporary for bX, permanent for bx)
breakpoint at the exit point of the current function. This is at a point which ALL
returns of any kind will go through.

If a call stack trace level is specified, sets a breakpoint at the exit point of the
function at specified stack level. See “Stack trace commands” on page 75.
procedure name is specified, sets a breakpoint at the exit point of the proce
Note that both a stack level and a procedure are address expressions. See
“Address expressions” on page 66.

If cmds is specified, then the commands will be executed like those for any
other breakpoint.

For example:

bx foo

bx “foo.c”#a_routine

The first command sets a breakpoint at the exit point of procedure foo. The
second command sets a breakpoint at the exit point of the procedure a_routine,
which is located in file foo.c.

build
Format: build [project_name]

Invokes the MULTI build command to build project_name. If no project_name
is specified, the project that the current program is in is used.

builder
Format: builder

Arguments [%bp_label] [@bp_count] [address_expression] [{cmds}]

%bp_label See “Breakpoint label” on page 68.

@bp_count See “@bp_count” on page 66.

address_expression See “Address expressions” on page 66.

{cmds} See “Command list” on page 69.
Green Hills Software, Inc. 87

4. Debugger commands
Opens the MULTI Builder. See the chapter on the Builder in the Building and
Editing with MULTI 2000 manual. See also createcontrol on page 93.

button
This command is deprecated. Use debugbutton. See debugbutton on page 97.
1.8.9 MULTI users upgrading to 2.0 should note that the syntax for the
debugbutton command is different than it was for the button command.

C

This is the capital C.

Continues a suspended program after a breakpoint or an interrupt. If the
program stops because of a signal, this command continues without the signal.
If line is specified, set a temporary breakpoint on line line. See also cu on page
94.

c

Continues a suspended program after a breakpoint or an interrupt. If the
program stops because of a signal, this command continues with or without the
signal based on the current signal handling specified for that signal by the
zignal command. See zignal on page 144. If line is specified, set a temporary
breakpoint on line line. See also cu on page 94.

ca
Format: ca

Resumes a stopped actor. Actors are not supported by every target. Consult your
target’s Development Guide for details specific to your target.

cag
Format: cag

Arguments [%bp_count] [line]

%bp_count See “@bp_count” on page 66.

line line number

Button equivalent

Arguments [%bp_count] [line]

%bp_count See “@bp_count” on page 66.

line line number
88 Debugging with MULTI 2000

Debugger commands

ll
d

t to
Resumes a stopped actor set. Actor sets are not supported by every target.
Consult your Target Development Guide for details specific to your target.

calls

Lists the stack trace where maxdepth specifies the maximum depth of the stack
you want to display. maxdepth has a default value of 20 and a maximum value
of 500. Other options let you to choose whether or not to display the
corresponding procedure’s parameters (par), source position (pos), or local
variables (local). The default choices are display parameter, display source
position, and do not display local variables (par pos nolocal).

In GUI-mode, this information can be displayed in its own window with the
callsview command. See callsview on page 89.

callsview

This command lists all functions on the call stack. In GUI-mode, unless nowin
is specified, a window displaying the current stack trace is created (the “ca
stack window”). At the beginning of the user’s debug session, this comman
defaults to par pos win. However, subsequent calls to this command defaul

Arguments [maxdepth] [par | nopar] [pos | nopos] [local | nolocal]

%name Name for the window

maxdepth The maximum visible depth of the call stack. If this is not
specified, the previously defined value is used. The default value
is 20, and the maximum value is 500.

par | nopar Show parameters passed to functions.

pos | nopos Show source positions of functions.

local | nolocal Show local variables used in functions.

Button equivalent

Arguments [%name] [maxdepth] [par | nopar] [pos | nopos] [win | nowin]
[local | nolocal]

%name Name for the window

maxdepth The maximum visible depth of the call stack. If this is not
specified, the previously defined value is used. The default value
is 20, and the maximum value is 500.

par | nopar Show parameters passed to functions.

pos | nopos Show source positions of functions.

local | nolocal Show local variables used in functions (only applicable with
nowin).

win | nowin Where to display the callstack. See description below.

Button equivalent
Green Hills Software, Inc. 89

4. Debugger commands

.

urs
ds

pt

e of
e

ing
ithin

2 of
his
the previous configuration of the call stack window. Thus, if you change a
setting for the call stack window via the GUI, it will be remembered the next
time you open the call stack window. See Chapter 10, “Call stack window”

Cb
This is the capital ‘C’ with the lowercase ‘b’. See cb on page 90.

cb

Continues and blocks the command line input. Signals for cb and Cb are
handled as they are for c and C, respectively. See c on page 88. Use this
command in a playback file. No further processing of the playback file occ
while the program is running. The debugger does not accept new comman
until it reaches a breakpoint or the program exits. You can interrupt this
command with the Esc key.

This command is helpful in non-GUI mode when a program needs to acce
input from routines like gets() and scanf().

cf
Format: cf address_expression

Continues a halted process after changing the program counter to the valu
the specified address_expression. See “Address expressions” on page 66. Th
following example installs a breakpoint at label bar of procedure foo whose
action is to continue from the return point of the procedure, effectively skipp
the rest of the function and returning immediately. The address must be w
the current active procedure.

As another example, the following command installs a breakpoint on line 1
procedure foo whose action is to continue from line 14 of procedure foo. T
will effectively skip lines 12 and 13 of procedure foo.

Arguments [%bp_count] [line]

%bp_count See “@bp_count” on page 66.

line line number

b foo##bar { cf ($ret()) }

b foo#12 { cf foo#14; }
90 Debugging with MULTI 2000

Debugger commands

e
s any

t
ore
cfb
Format: cfb address_expression

Continues a halted process after changing the program counter to the value of
the specified address_expression. See “Address expressions” on page 66. Th
address must be within the current active procedure. This command block
command inputs. You can interrupt this command with the Esc key.

chgcase
Format: chgcase [0 | 1]

Set the case sensitivity of text searches. chgcase 0 sets searches to case
sensitive. chgcase 1 sets searches to case insensitive. chgcase toggles the
current case sensitivity.

clearconfig
Format: clearconfig

Clears the user’s default configuration for MULTI (not only the debugger bu
the entire development environment). See the Configuration Chapter for m
information.

comeback
Format: comeback

Used to bring back all of MULTI’s windows after the goaway command has
been used. See goaway on page 106. comeback and goaway are only useful
when MULTI is being controlled externally via something like a command
script.

compare
Format: compare [operation] src1 src2 length [size]

Compares two blocks of memory beginning at src1 and src2 and continuing for
length bytes. The compare operation is specified by operation and the size of
Green Hills Software, Inc. 91

4. Debugger commands
the value to compare is specified by size. size is the number of bytes and is
either 1, 2, or 4. The default is 4 if size is not specified. operation may be:

If operation is not specified, then == (equality) is used.

If the comparison succeeds, the addresses are printed and the values are
compared.

The following example compares two overlapping arrays of six 4-byte integers.
The first array starts at 0x1000 and the second at 0x1008. The compare
command displays only the results of comparisons that succeed:

compare >= 0x10000 0x10008 6 4

0x10000, 0x10008 : 2091264888, 2086935416

0x10004, 0x1000c : 2089100152, 945815572

0x10008, 0x10010 : 2086935416, 1279398274

0x10014, 0x1001c : 1207968893, 1099038740

completeselection
Format: completeselection

If the current selection is in the source pane, then this command extends the
selection so that it selects an entire word. For example, if the selection starts or
ends in the middle of a word, the entire word is selected. Also, it selects an
entire expression in parentheses. For instance, if the selection includes an
unmatched parenthesis, square bracket, or curly brace, then the selection
extends to the matching one.

configoptions
This command is only supported in GUI mode. Opens the Options dialog box.

configure
Format: configure config_item[=|:|]value

operation Meaning

<= Less than or equal to

< Less than

>= Greater than or equal to

> Greater than

== Equal to

!= Not equal to
92 Debugging with MULTI 2000

Debugger commands

n of
Format: configure ?

This command changes the value of a MULTI configuration option. configure
? displays a list of all items you can configure. The config_item can be
separated from value by either an equal sign (‘=’), a colon (‘:’), or a space (‘ ’).
For example, to change MULTI’s tab size to 9, enter:

configure tabsize=9

See the chapter on Configuration in the Building and Editing with MULTI 2000
manual.

configurefile
configurefile file

Configuration options are read and set out from the file. This file must be in a
special format.

See also saveconfigtofile on page 132.

connect
Same as the remote command. See remote on page 128.

copy
Format: copy src dest length [size] [direction]

Copies a block of memory of length units of size size from src to dest. Thus, the
total size of memory copied is (length x size). If a size is not specified, it
defaults to the size of an integer. The direction of the copy is specified by
direction with either a 1 (one) or forw for forward copying, or a -1 (negative
one) or backw for reverse copying. If no size is given, then forw or backw
should be used for the direction to avoid confusion.

Reverse copying is the same as forward copying except the starting locatio
the copy is src+(length x size) and is decremented down to src. The destination
of the copy is also started at dest+(length x size) and decremented down to dest.

createcontrol
Format: createcontrol

Same as the builder command. See builder on page 87.
Green Hills Software, Inc. 93

4. Debugger commands

ent

e

to a
other

”.

was
ipts
ory

ent,
e case
CU
This is uppercase ‘C’ and uppercase ‘U’. See cu on page 94.

Cu
This is uppercase ‘C’ and lowercase ‘u’. See cu on page 94.

cU
This is lowercase ‘c’ and uppercase ‘U’. See cu on page 94.

cu

This is all lowercase ‘cu’. If either continue command c or C is immediately
followed by either a ‘u’ or ‘U ’, it sets an up-level breakpoint. The cu and Cu
commands set a permanent breakpoint. The cU and CU commands set a
temporary breakpoint. The breakpoint is set at the address where the curr
procedure returns. The cu and cU commands handle signals like the c
command (see c on page 88); the Cu and CU commands handle signals like th
C command (see C on page 88).

For example, use this command if you have accidentally single-stepped in
procedure you meant to step over, or you want execution to proceed to an
place further up the stack.

cvconfig
Format: cvconfig [%name] key [key [...]]

Configures the call stack track window. See Chapter 10, “Call stack window
The %name option specifies the call stack view window to configure. If the
name is omitted, the command configures the call stack view window that
last created or configured. The cvconfig command is mainly useful for scr
and most of the functions it provides are accessible directly from the mem
view window.

key can be one of two forms: stand-alone keys that don’t have an assignm
and assignment keys with an assignment. Note that the keys and values ar
insensitive.

Arguments [%bp_count] [line]

%bp_count See “@bp_count” on page 66.

line line number
94 Debugging with MULTI 2000

Debugger commands

 by
The following are the stand-alone keys:

The following are the assignment keys and their valid values:

cx
Format: cx object

‘object’ is a required argument and can be one of t, a, g, or e.

Resumes a task, actor, or actor group. t resumes a task, a resumes an actor, g
resumes an actor group, and e resumes every actor. Actors are not supported
every target. Consult your target’s Development Guide for details specific to
your target.

D
Format: D

Deletes all breakpoints.

d *
Format: d *

Stand-alone keys

Key Meaning

stop Freezes the call stack window.

refresh Unfreezes the call stack window.

help Opens online help for the call stack window.

par Shows parameters passed to the functions.

nopar Hides parameters passed to the functions.

pos Shows source position of functions.

nopos Hides source position of functions.

edit Opens an editor on the function currently selected in the window.

local Opens a data explorer with all of the locals of the function
currently selected in the window.

print Prints the call stack window.

quit Closes the call stack window.

Key values

Key Meaning

name=newname Renames the window as newname.

mdepth=depth Sets the maximum depth of the call stack window to depth.

select=num Selects the stack level num within the call stack window.
Green Hills Software, Inc. 95

4. Debugger commands

See

oints
le a

nd

gger
Opens a dialog box listing all current breakpoints and deleting some, all, or
none of them.

d
Format: d [address_expression | breakpoint_list]

breakpoint_list breakpoint list. See “Breakpoint list and ranges” on page 68.
“Address expressions” on page 66.

Note: The syntax for the d command has changed from version 1.8.9 of
MULTI. It now accepts a command syntax very similar to that of the b
command. In particular, d my_number will no longer delete the breakpoint with
id=my_number, but will delete the breakpoint on line my_number.

The d command deletes the breakpoint at address_expression or the list of
breakpoints specified in breakpoint_list. If no arguments are given, the
breakpoint at the current line is removed. This command removes breakp
and all of their associated attributes; if you simply wish to temporarily disab
breakpoint, see the tog command. See tog on page 138.

dbnew
Format: dbnew [c | n]

Debug a different program. This command will bring up a file chooser to fi
the new program. If c is specified, the program is loaded into the current
debugger, replacing what is currently being debugged. If n is specified (and by
default), the program is loaded in a new debugger. See also the debug
command. See debug on page 97.

dbprint
Format: dbprint [w | f]

Print the source currently being viewed in the debugger. If f is specified, print
the entire source file. If w is specified (and by default), print only the source
that is presently visible in the debugger window.

de
Format: de exception_number

Removes the command associated with the specified exception. The debu
associates “action clauses” with any general target exceptions.

See also be on page 82 and tog on page 138..
96 Debugging with MULTI 2000

Debugger commands

am’s
dow.
ws
are

he

ault

use

debug
Format: debug [program_name] [core_file] [pr=num]

Replaces one of the debugger’s existing internal program slots, given by num,
with a new program to debug given by program_name. If no program slot is
given, the current slot is used. If no new program is given, the current progr
name is used. The program replaces what is currently in the debugger win
The program to be replaced must halt first. All monitors and monitor windo
in GUI mode are deleted, and any child programs from that window which
currently debugging are also killed.

If core_file is specified, then the program shows where it died. Otherwise, t
main routine is shown.

The filenames will be searched for using the default search path. See “def
search path” on page 70.

debugbutton
Format: debugbutton [num] [name] [[c=]command] [[i=]iconname]
[[h=]helpstring] [[t=]tooltip]

This command adds a new icon button to the debugger toolbar.

command, iconname, helpstring, and tooltip are all either single words, or
quoted strings. Quoted string are of the form:

There are several forms of the command:

command is the command executed when the button is pressed. You may
semicolons in the command to execute multiple commands. For example:
debugbutton printxy c="print x;print y".

“This is a quoted string.”

Form Meaning

debugbutton By itself, the command lists all the defined buttons. Note
that the quit button and the spacer before it are never
listed. Those buttons are special and can not be modified
or deleted.

debugbutton 0 Deletes all buttons (except the quit button and its spacer).

debugbutton num Deletes the button numbered num.

debugbutton num name [...] Replaces the button numbered num
debugbutton name Deletes the button named name
debugbutton name [...] If a button named name exists, the button is replaced.

Otherwise a new button named name is added to the end
of the debugger toolbar.
Green Hills Software, Inc. 97

4. Debugger commands

w
ap

 are
o
s, and
 list

nt.
ding

iconname is the name of the icon associated with the button. If not specified,
then the first letter of the command name will be used as the icon for the button.

iconname may either be the name of one of MULTI’s built-in icons (see belo
for how to obtain a list of these names), or it may be the filename of a bitm
you have created yourself. If the filename is not an absolute filename, it is
assumed to be relative to the directory where MULTI is installed.

If you create your own bitmap file, it must end in a .bmp extension and must be
in the uncompressed 16-color Windows Bitmap format. Other color depths
not supported, and compressed bitmaps are not supported. An easy way t
create such bitmaps is to use the Paint accessory under Microsoft Window
make sure you choose “16 Color Bitmap” in the “Save as type” drop-down
box of the “Save As” dialog.

The built-in icons in MULTI are 20 pixels wide by 20 pixels tall, so your
buttons will look best if you also use this size for your custom bitmaps.

By default, the color light gray in your custom icons will become transpare
You can specify additional color translations for your custom icon by appen
a string of the form “oldcolor1=newcolor1&oldcolor2=newcolor2” with a
question mark to the end of your bitmap filename. For example:

You can use the following values for oldcolor and newcolor:

To access the list of MULTI’s built-in icon names along with what they look
like, first open the Options dialog box by doing one of the following:

• Choose Config > Options...

• In the command pane, enter: configoptions

debugbutton Hello c=“echo hello”
i=“/home/user/hello.bmp?black=fg&dkgray=shadow&white=highlight” h=“Say
hello”

Oldcolor (R,G,B values) Possible values for newcolor

white (255,255,255) white (default)
highlight

ltgray (192,192,192) ltgray
transparent (default)

dkgray (128,128,128) dkgray (default)
shadow

black (0,0,0) black (default)
fg
98 Debugging with MULTI 2000

Debugger commands

e

be

e

ther

 list of
 a

nnot

 is
Then choose the Debugger tab, and click the button “Configure Debugger
Buttons...”.

helpstring is the help text that appears at the botton of the window when th
mouse moves over the button.

tooltip is the tooltip text that appears when you move your mouse over the
button and wait. If you do not specify a tooltip, the name of the button will
used.

define
Format: define name([arguments]) {body}

Creates a macro inside the debugger.

name is the name of the macro followed by a set of arguments to pass to th
macro.

The body of the macro is a command list which may contain if statements and
while loops. Macros also return a value by using the return command in the
body. (See if on page 110, while on page 142, return on page 130, and
“Command list” on page 69.)

The only local variables created in the macro are the given arguments. All o
variables refer to either a variable in your program or to debugger special
variables. See “Special variables” on page 51. The debugger searches the
arguments before the registers, special variables, or program variables. As
result, if an argument in a macro has the same name as a register, you ca
examine that register from within that macro.

A trace of the macro call stack is produced with the macrotrace command. See
macrotrace on page 115. If an error occurs inside of a macro, a trace back
printed, and all macros will clear off the stack.

For example, if you define the following macro:

define fly(bat1, bat2) {return(bat1 + bat2)}
then enter:

fly(3,6)
The debugger displays:

9

detach
Format: detach [pr=num]
Green Hills Software, Inc. 99

4. Debugger commands

ess is
cess
s is
s. See

the
d
The detach command quits the debugger. All breakpoints are removed before
detaching. The process number, num, refers to MULTI’s internal process slot
number, not the operating system’s pid number for the process. If the proc
a child of the debugger, and not attached to in the first place, its parent pro
id is set to one. If no process slot number is given, then the current proces
used. After a process is detached, the window associated with it disappear
also attach on page 80.

dialog
Format: dialog name

Opens a pre-defined dialog box named name. Dialog boxes are loaded into
MULTI with the loaddialogfile command. See loaddialogfile on page 115. A
list of the currently defined dialog boxes are given by the l command (lowercase
‘L’) with the D option:

dialogsearch
Format: dialogsearch

Opens a dialog box which controls text or regular expression searching in
debugger source pane. This dialog contains options for search direction an
case sensitivity. See also fsearch on page 105 and bsearch on page 86. See
“Search commands” on page 75.

For a list of regular expressions, see “Search dialog box” in the Building and
Editing with MULTI 2000 manual.

dialogue
This command is deprecated. It has been replaced by dialog.

disconnect
Format: disconnect

Forces MULTI to close the current debug server connect. If no connection
exists, MULTI issues a warning.

dumpfile
Format: dumpfile

l D
100 Debugging with MULTI 2000

Debugger commands

the

6.
Dump the file currently being viewed in the debugger into a text file. This is
useful when viewing interlaced source or pure assembly instructions. A file
chooser will appear to prompt for the name of the file to be dumped to.

E
Format: E [stack | +num | –num]

Shows or changes your current viewing location in the code. It has one of
following forms:

e
Format: e [address_expression]

If address_expression is specified, it changes your current viewing location in
the code to that address expression. See “Address expressions” on page 6

Displaying variables

Expression Meaning

E Enters the procedure at the top of the stack. Equivalent to e 0_.

E stack Enters the procedure at stack number stack. Equivalent to the
e stack_ command.

E +num Increments location in stack by num, and enters that procedure. For
example, E +1 moves up one procedure on the stack. This is different
than E 1 which enters the procedure at stack number one.

E –num Decrements location in stack by num, and enters that procedure. For
example, E –1 moves down one procedure on the stack. /
Green Hills Software, Inc. 101

4. Debugger commands

An
ith
With no arguments, it prints your viewing location in the code. Here are several
examples of this command:

echo
Format: echo text

Echoes text to the command pane, taking out quotes if there are any. For
example, both of the following give the same result:

This command is preferable to print in cases where you don’t want the text to
be evaluated. (See also print on page 123.)

edit
Format: edit [address_expression]

Opens an Editor on the file and line of address_expression. If no
address_expression is given, it uses the current viewing location in the code.
example: edit bar opens the Editor on the file containing the function bar, w

Displaying variables

Expression Meaning

e Shows current file, procedure, and line number. For example:
test.c:PrintLine:28

e (proc | file) Enters procedure proc or file file. If a wildcard pattern is used
while in GUI mode, then a dialog box appears allowing you to
choose from the matching procedures or files.

e stack_ Enters the procedure at call stack trace level number stack.
The stack number must be followed by an underscore “_”. Use
the calls command to view the stack. See also “Stack trace
commands” on page 75.

e address_expression Enters the procedure at address specified by the address
expression.

e +offset Changes the viewing location to (current address + offset).

e –offset Changes the viewing location to (current address – offset).

e numb Enters the procedure containing breakpoint number num. Use
the B command to view breakpoint numbers. (See B on page
80.) For example, e 1b enters the procedure containing
breakpoint number one.

echo foo bar

echo “foo bar”
102 Debugging with MULTI 2000

Debugger commands

 this

e

the cursor positioned at the beginning of the function bar. See “Address
expressions” on page 66.

editbutton
Format: editbutton [num] [name] [[c=]command] [[i=]iconname]
[[h=]helpstring] [[t=]tooltip]

This command adds a new icon button to the Editor toolbar. The syntax of
command is identical to the debugbutton command. (See debugbutton on
page 97.)

editfile
This command is deprecated. Use the edit command. See edit on page 102.

editview

Either opens the MULTI editor or a data explorer window, depending on th
arguments passed to it. You can bind this command to a mouse to create a
“smart” mouse click that either views or edits anything you click.

error

This command is deprecated. Instead, use the break command to abort a while
loop, and the return command to abort a macro. See break on page 85 and
return on page 130.

eval
Format: eval exp

exp is an expression in the current language.

This is similar to print, but does not echo the results. This should be used
instead of print when performing I/O accesses since printing the result of exp
may cause an extra read of the I/O address. For example,

Arguments editview [expr | proc | file]

expr an expression

proc procedure name

file file name

eval *(int *) 0xffffa0c0 = 0x123
Green Hills Software, Inc. 103

4. Debugger commands

is
 title
If you are concerned about accessing I/O memory, see also the system variable
_CACHE on page 61.

examine
Format: examine [/format] exp

If exp is a procedure name then this is equivalent to e exp which will display the
named procedure in the source pane. If exp consists of <number>b then it will
cause MULTI to display that breakpoint. Otherwise it is equivalent to print exp
which will evaluate the expression and print the result. See print on page 123. .

f
Format: f “ printf_style_format”

Sets address printing format using printf style formatting specification. See any
C reference for more information on printf . If no argument exists, this defaults
to “%#lx”, which prints the address in long hex. This is for viewing memory
addresses in decimal, octal, or some other format.

For example, entering:

may by default give:

You may get the address in octal instead by entering the following:

which will show:

All future addresses will also be in this format until f is used again.

filedialog
Format: filedialog [buttonlabel windowtitle]

This command opens a File Chooser and returns the name of the file that
selected from the chooser. By default the button is labeled “Select” and the

print a

*0x21098: 5

f "0%o"; print a

*0410230: 5
104 Debugging with MULTI 2000

Debugger commands

er
 .

 is
of the window is “Choose File”, but these may be changed with the buttonlabel
and windowtitle parameters.

filedialogue
This command is deprecated. See filedialog on page 104.

fill
Format: fill dest length [value] [size]

Performs raw memory initialization. Fills the block of memory beginning at
dest and length units of size size long with value, or zero if value is not
specified. This, the total size of memory filled is (length x size). size is the
number of bytes to place value in, and is either 1, 2, or 4. If size is not specified,
the default is 4. If value is larger than size, then value is truncated.

You can interrupt this command with the Esc key.

find
Format: find src length value [size] [mask]

Searches memory starting at src for value of size size. size may be 1, 2, or 4
bytes, and defaults to the size of an integer. The search stops when length values
of the given size are checked. If mask is specified, then it is logically AND’ed
with each memory location before comparing with value. Every match found is
listed on a separate line with the address of the match.

findleaks
Format: findleaks

Find memory leaks within a program that has been compiled with the prop
run-time error checking options. See “Finding memory leaks” on page 171

forwardhistory
Gives the next command in the command pane history list. This command
intended to be bound to a key (see keybind on page 112). By default, MULTI
bounds the DownArrow key to this command.

fsearch
Format: fsearch string

Searches forward in the source pane for the next occurrence of string, and
highlights it. If string is omitted, then the string used in the last fsearch,
Green Hills Software, Inc. 105

4. Debugger commands

o

ure

 runs.

ows

ws
bsearch, or incremental search is used. If it reaches the end of the file, it beeps
and then resumes searching from the beginning. This command is only
available in GUI mode. To search forward in non-GUI mode, use the
/ command (forward slash). See “Search commands” on page 75.. See als
dialogsearch on page 100.

To search incrementally within the Target Window, press Ctrl+f for a forward
search, and use Ctrl+b for a backward search.

g
Format: g line

This changes the program counter so line becomes the next execution point.
You cannot set the next execution point to a line outside the current proced
with this command.

getargs
Format: getargs

Shows the current arguments that will be passed the next time the program
Both getargs and setargs are only applicable to the debugging of programs
which take arguments in the traditional main(argc,argv) sense. The
setargs command sets the program arguments to be used. The getargs
command prints the current program arguments. The following example sh
the use of setargs, getargs, and r:

See also setargs on page 134.

goaway
Format: goaway

Used to hide all of MULTI’s windows, including the debugger. These windo
can be brought back with the comeback command. See comeback on page 91.
goaway and comeback are only useful when MULTI is being controlled
externally via something like a command script.

MULTI> setargs abc def ghi
MULTI> getargs
abc def ghi
MULTI> r
running ’a.out abc def ghi’
MULTI>
106 Debugging with MULTI 2000

Debugger commands

e
.

ill

ot
r
 is
e

d the

ee

g
pt,
grep
Format: grep [[-i] [-w] [-F] text]

This command searches all files edited and all files in MULTI’s file list for th
string entered. The output from this command is put in a temporary window
Double-clicking any of the lines in this window opens an Editor.

If text is specified, then that expression is used. Otherwise, the debugger w
prompt you for an expression. If the -i option is specified, grep will search in a
case-insensitive way. If the -w option is specified, grep will only find matches
which match as a whole word. If the -F option is specified, grep will treat text
as a fixed string to search for, rather than a regular expression.

This command works by running the GNU grep utility. For your convenience,
a copy of GNU grep is installed along with MULTI. However, GNU grep is n
part of MULTI and is not distributed under the same license as MULTI. Fo
more information about the GNU General Public License which GNU grep
distributed under, refer to the file gnugrep.README, which is located in th
directory where MULTI is installed.

H
Format: H

When the process is halted, this command will give the signal which cause
halt.

h
Format: h [depth]

Shows the previous depth commands in the debugger’s command history.
depth must be between 0 and 61, and defaults to 10 if no value is given. S
“History commands” on page 73.

halt

Halts the program number num, or the current program if num is not specified.
num corresponds to MULTI’s internal program number, and not the operatin
system’s process ID number. The program halts without sending an interru

Arguments [pr=num] [{ cmds }]

num program number

{ cmds } See “Command list” on page 69.

Button equivalent
Green Hills Software, Inc. 107

4. Debugger commands

ur

et.

 on a
are
ts.

c
dless
allowing you to cleanly continue the program later. If cmds are specified, they
will be executed as soon as the process halts.

halta
Format: halta

Halt an actor. Actors are not supported by every target. Consult your target’s
Development Guide for details specific to your target.

haltag
Format: haltag

Halt an actor set. Actor sets are not supported by every target. Consult yo
target’s Development Guide for details specific to your target.

haltx
Format: haltx object

‘object’ is a required argument and can be one of t, a, g, or e.

Halts a task, actor, or actor group. t stops a task, a stops an actor, g stops an
actor group, and e stops every actor. Actors are not supported by every targ
Consult your target’s Development Guide for details specific to your target.

hardbrk

Sets, clears, displays, enables, and disables hardware breakpoints, based
single address with attributes read, write and execute. These breakpoints
implemented through direct hardware support and are only on some targe
MULTI removes all hardware breakpoints when detaching from process.

One advantage to a hardware breakpoint is that you can set it on a specifi
memory location. This causes a break when accessing that location, regar
of what instruction the program is on.

Arguments [read] [write] [execute] [mask=num] exp[:num] [{cmds}] [delete=num]

read attribute

write attribute

execute attribute

mask bit mask

exp memory address, variable, or pointer name

{cmds} See “Command list” on page 69.

delete attribute
108 Debugging with MULTI 2000

Debugger commands

or
s.

yte

ed
When a hardware breakpoint is reached, a message displays the breakpoint
number and whether the break occurred on a read, write, or execute. For
example:

Stopped by hardware break 1 on execute
Typing hardbrk by itself lists all currently set hardware breakpoints.

Any combination of read, write, and execute can be specified. read causes the
break to occur when reading from the given address. write causes the break to
occur when writing to the given address. execute causes the break to occur if
the instruction stored at the given address is executed. Often the break only
occurs after the read or write. read and write are used by default.

If mask=num is specified, then the bitwise complement of num is bitwise
AND’ed with all addresses involved. This can give a range of addresses. F
example, including mask=0xf ignores the lower four bits of the given addres
In effect, this gives a range of 15 memory locations to use. mask is set to zero
by default.

exp may be a memory address, variable, or pointer name. If :num is specified
after exp, then num bytes after the address is used. The default size is one b
for memory locations, and the size of the object for variables.

If cmds is specified, the given commands will be executed each time the
hardware breakpoint is hit.

If delete=num is specified, then hardware breakpoint num is deleted. Use
hardbrk to get breakpoint numbers.

An error message appears if the target system cannot support the request
breakpoint.

For example:

hardbrk read val
Stops on any read from variable val.

hardbrk mask=0xf 0x10000
Stops on any read or write to locations 0x10000 to 0x1000f.

hardbrk write *string:9
Stops on any write to the first nine bytes pointed by string.

hardbrk delete=2
Deletes breakpoint number two.

hardbrk val {"stopped on val ";c}
Green Hills Software, Inc. 109

4. Debugger commands

ger’s

e
Prints stopped on val in the command window any time the variable val is
accessed.

hardbrk execute 0x100ff
Stops anytime when the instruction at address 0x100ff is executed.

help
Format: help [keyword]

Opens the help system to look for help on keyword. If no keyword is given,
brings up general help on the debugger. See Online Help System .

i
This command is obsolete. It has been replaced by the info command. See info
on page 111.

if

This is a conditional command execution. If the expression exp evaluates to a
non-zero value, the first group of commands is executed, else the second group,
if present. This command can be nested.

indexnext

Changes the current viewing location in the code to the next item in Debug
history list. See “History navigation buttons” on page 19.

indexprev

Changes the current viewing location in the code to the previous item in th
debugger’s history list. See “History navigation buttons” on page 19.

Format if exp {cmds} [else {cmds}]

exp an expression in the current language

{ cmds } See “Command list” on page 69.

Arguments none

Button equivalent

Arguments none

Button equivalent
110 Debugging with MULTI 2000

Debugger commands
infiniteview
Format: infiniteview lvalue

Creates a view window that displays memory as an array of the basic type of
lvalue with every line formatted to that type. The window can be scrolled in
either direction until you run out of memory. Some examples:

infiniteview $sp Displays the stack starting where at the stack pointer.

infiniteview $pc Displays the text segment starting at the program counter.

This effect can also be achieved by selecting Format > Infinite from the format
menu in a normal view window.

info
Format: info

Prints out the following information about the state of MULTI:

• Debugging status

• Core file status

• Child program status

• Assertion status

• Output recording status

• Command recording status

• Case sensitivity status

inspect
Format: inspect [string]

This command is generally bound to a mouse click. See mouse on page 119
This opens a context sensitive menu on string, equivalent to the default
behavior of right-clicking string.

iobuffer
Format: iobuffer state

Disables or enables buffering for the remote in/out window. Buffering is
enabled by default. If buffering is enabled (on), then input to the remote in/out
window is not sent to the target until a newline is encountered in the input
stream. If buffering is disabled (off), then every character is sent to the target as
Green Hills Software, Inc. 111

4. Debugger commands
soon as it is typed. Disabling the buffering in MULTI may cause problems on
some remote targets if they expect input to buffer.

isearch
Format: isearch [+|–]wid=num

This command starts an incremental search in the window specified by num, the
window id number. If an incremental search is already active in that window,
then the current search string is searched again. Putting a plus sign (+) in the
command searchs forward. This is the default. Putting a minus sign (–) in the
command searchs backward.

This command should not be used from the command window. It should be
bound to a key with the keybind command, or to a mouse press with the mouse
command. See keybind on page 112 and mouse on page 119.

isearchadd
Format: isearchadd wid=num text

Adds text (no quotes) to the search string and continues an incremental search in
the window pointed by num. The window must already be in an incremental
search for this command to work.

This command should not be used from the command window. It should be
bound to a key with the keybind command, or to a mouse press with the mouse
command. See keybind on page 112 and mouse on page 119.

k
Format: k

Kills the current program. The process must be halted in order to be killed. To
access from the menus, choose Debug > Kill Process.

keybind
Format: keybind [location]

Format: keybind key[|modifiers][@location][=command]

This command is used to bind a key to a command. This command is covered
in great detail in the Configuration Command List chapter. See also
backhistory on page 82, forwardhistory on page 105, isearch on page 112,
and isearchadd on page 112.
112 Debugging with MULTI 2000

Debugger commands

n of
L
This command was in 1.8.9 MULTI but has been removed. E will give the
same functionality. See E on page 101.

l
This command is the lowercase ‘L’.

Format: l [option] [string]

This command lists most items. If no argument is given, then all locals and
parameters of the current procedure are listed. The following is a descriptio
the allowed option values for this command:

Values for option

Value Meaning

@ Lists the addresses of local variables. If a string is specified, it is interpreted
as a procedure name and variables local to that procedure are listed. The
procedure must be on the stack. Equivalent to View > List > Local Addresses.

a Lists assertions. Equivalent to View > List > Assertions.

b Lists breakpoints. Identical to the B command. Equivalent to View > List >
Breakpoints. See also B on page 80.

d Lists the directories that will be searched for source. Identical to the source
command. Equivalent to View > List > Source Paths. See also source on
page 136.

D Lists all dialog boxes. Equivalent to View > List > Dialog Boxes.

e Lists the exceptions with breakpoints.

f Lists files. This command takes an optional prefix as the string argument. If
given, all files with string are displayed. Otherwise, all files are printed.
Equivalent to View > List > Files.

g Lists globals. This command takes an optional prefix as the string argument.
If given, all global variables starting with string are displayed. Otherwise, all
global variables are displayed. Equivalent to View > List > Globals.

m Lists procedures with their mangled names. This is identical to l p, except that
in C++ programs it also lists the mangled names of the procedures.
Equivalent to View > List > Mangled Procedures.

M Lists menus defined with the menu command. Equivalent to Config >
Functionality Settings... > General tab > Configure Menus. See also menu on
page 119.

p Lists procedures and their addresses. An asterisk (*) indicates that the
procedure has no debug information. This command takes wild cards. If a
filename is given as the string argument, then all procedures located in that
filename are listed. Equivalent to View > List > Procedures.
Green Hills Software, Inc. 113

4. Debugger commands

gets
licit

m is
e

me
et of
ut
load
Format: load filename

Loads the current program into the target system’s memory. For some tar
this is a rather long process, depending on the size of the program. An imp
load is performed when executing a program for the first time. The progra
not started automatically. By default, .bss is zeroed but this may depend on th
debug server.

If filename (for example load a.out) is specified, the given file will be loaded to
the server instead of the image being debugged. Use this option with extre
caution. MULTI will assume that the loaded file contains an adequate subs
the current image, and will attempt to execute and debug it as such, witho
attempting to download the current image as well.

P Lists processes. Equivalent to View > List > Processes.

r Lists registers. This takes an optional prefix as the string argument. If given,
all registers starting with string are listed. Otherwise, all registers are listed.
Equivalent to View > List > Registers. See “View menu” on page 26 and
“regview” on page 128.

R Identical to l r if string is specified. Otherwise, it lists all register synonyms.
Equivalent to View > List > Register Synonyms.

s Lists special variables. This command takes an optional prefix as the string
argument. If given, all special variables starting with string are displayed.
Otherwise, all special variables are displayed. Equivalent to View > List >
MULTI Variables.

S Lists statics. This command takes either a filename or a prefix as the string
argument. If a filename is given, all static variables in that file are displayed. If
a prefix is given, all static variables in the current file starting with string are
displayed. Otherwise, all static variables in the program are displayed.
Equivalent to View > List > Statics.

T Lists tasks. Equivalent to View > Tasks.

t Lists typedefs. This command takes an optional prefix as the string
argument. If given, all typedefs starting with string are displayed. Otherwise,
all typedefs are displayed.

z Lists signals. Equivalent to View > List > Signals.

? Lists help on this command.

proc Lists all locals and parameters of the procedure proc. If the procedure name
proc starts with an @, then the address of all locals and parameters are
printed. proc must be on the stack. Equivalent to View > List > Locals and
View > List > Variables in Procedure.

Values for option

Value Meaning
114 Debugging with MULTI 2000

Debugger commands

ult

 to

d
re

ally
d

le:

ult
The filename will be searched for using the default search path. See “defa
search path” on page 70.

You can interrupt this command with the Esc key.

loadconfigfromfile
Format: loadconfigfromfile

Brings up a file dialog allowing the user to select a MULTI configuration file
load into MULTI. See the Configuration Chapter for more information.

loaddialogfile
Format: loaddialogfile file

Loads dialog box descriptions from file file. See also dialog on page 100.

loaddialoguefile
This command is deprecated. See loaddialogfile on page 115.

loadsym
Format: loadsym filename [text_offset [data_offset]]

Loads the debug symbols from the file specified by filename and merges them
into the symbol table. If the optional text and data offset values are supplie
(text_offset and data_offset, respectively) then the text and data addresses a
offset by the given values.

You can use this command in remote environments where new code, typic
position independent code, is loaded to the target at runtime. This comman
does not load executable code from the given file to the target. For examp

loadsym a.out 0x20000
You can load additional symbol information for a module while debugging.

The filename will be searched for using the default search path. See “defa
search path” on page 70.

M
This command is obsolete; it has been replaced by the map command. See map
on page 116.

macrotrace
Format: macrotrace
Green Hills Software, Inc. 115

4. Debugger commands

Prints the stack of all presently executing macro commands. For example, with
the following macros:

define a1() {return a2();}
define a2() {return a3();}
define a3() {macrotrace; return 42;}

then the following would be output if you enter a1():

 0 a3()
 1 a2()
 2 a1()
42

See also define on page 99.

make
Format: make [string]

Executes the system command make and passes to it the arguments you supply
in string. If make succeeds, it kills the current process, removes all state
information, reloads the program you are currently debugging, and allows you
to continue debugging.

If you are using the MULTI Editor, then any changes you make are saved before
make starts. The output of make then appears in a special window. You can
examine erroneous lines by clicking the appropriate error messages that appear
in this window.

map
Format: map

Prints the section address map for the current program.

mark

This command is obsolete. It was in 1.8.9 MULTI, but has been removed. It has
been replaced by MULTI’s automarking capability. See “History navigation
buttons” on page 19.
116 Debugging with MULTI 2000

Debugger commands
memdump

Copies a section of memory to a file named name. start specifies the starting
address in memory to copy, and length specifies the number of bytes to copy. If
srec is specified, then the file is stored in Motorola S-Record format. If srec is
not specified, then the file is stored in a MULTI specific binary format.

Note: This MULTI specific binary format is platform specific. You should only
use memload to load the file from the same platform from which you saved the
file. See memload on page 117.

You can interrupt this command with the Esc key.

memload

If start and length are omitted, then the values specified when the file was
created is used. If srec is specified, then start and length are ignored, and the
file is read as a Motorola S-Records file. If srec is not specified, then the file is
read as a MULTI specific binary file created by memdump. See memdump on
page 117.

If raw is specified, load a binary file, starting at the first byte of the file, and
continuing for length bytes. start must be specified. length defaults to the length
of the file, but may be overridden.

Arguments [srec | raw] filename start length
srec Motorola S-Record

raw Raw binary data

filename The file to load into memory

start The starting address in memory to load.

length How many bytes of data to load into memory, starting at start.

Arguments [srec | raw] [-wsize] filename [start [length]]

srec Motorola S-Record

raw Raw binary data

filename The file to load into memory

start The starting address in memory to load.

length How many bytes of data to load into memory, starting at start.

size The size in bytes of the individual memory writes. The value
must be 1, 2, or 4. The default is 1 byte. length must be a
multiple of size.
Green Hills Software, Inc. 117

4. Debugger commands

n

 on

 be
 I/O
d the

t
You can interrupt this command with the Esc key.

memread
Format: memread size addr

Performs a sized memory read from the target and prints the result. This
command is intended to be used to perform low-level writes to regions of
memory or memory-mapped I/O registers. This command does not make use of
MULTI’s memory cache and the read is performed immediately. See _CACHE
on page 61.

size must be 1, 2, or 4. The units are bytes. addr must be aligned correctly to the
nearest size bytes, and may consist of any expression that the debugger ca
evaluate.

memview
Format: memview [%name] [@count] address

The memview command opens a memory view window for interactively
displaying and modifying memory contents. This window starts at memory
address address (which can be specified by any expression in the current
language). By default, the window will open sized to show 64 bytes on the
screen; this can be changed by specifying count. Also, a title can be given to the
window by specifying name. For example:

opens a memory view window titled “Arguments”, sized to show 128 bytes
the screen, beginning with the address of argv[0]. See Chapter 9, “Memory
view window”.

memwrite
Format: memwrite size addr value

Performs a sized memory write to the target. This command is intended to
used to perform low-level writes to regions of memory or memory-mapped
registers. This command does not make use of MULTI’s memory cache an
write is performed immediately. See _CACHE on page 61.

size must be 1, 2, or 4. The units are bytes. addr must be aligned correctly to
the nearest size bytes. Both addr and value may consist of any expression tha
MULTI can evaluate. If value is larger than can fit in size bytes, it will be
truncated to fit.

memview %Arguments @128 argv[0]
118 Debugging with MULTI 2000

Debugger commands

r,
us if

in

ept
menu
Format: menu [name] [{{label [‘rlabel’] cmd}}]

This command defines a menu to attach to a menu bar, MULTI button, mouse
button, or key from the keyboard. This command is covered in great detail in
the Configuration Command List chapter. See also l on page 113 (lowercase
‘L’) with the M option.

monitor
Format: monitor [0 | {cmds} | [num [{cmds}]]]

Saves the command list cmds to send to the debugger every time the program
stops. An unlimited number of monitors can be active at any time. Howeve
you should be careful when using this command, as the output is quite tedio
your code stops frequently.

This command has five forms:

mouse
Format: mouse [location]

Format: mouse button_num[AtOnce][*click click_num] [|modifiers]
[@location] [=command]

Defines the function of the mouse buttons. See also inspect on page 111, and
isearch on page 112, and isearchadd on page 112. This command is covered
great detail in the Configuration Command List chapter.

mprintf
Format: mprintf(format_string, ...)

This command takes the same syntax as the C library printf() function, exc
the %n format is not supported.

Form Meaning

monitor Lists all of the monitors in order.

monitor num Deletes monitor number num. This does not renumber the
current monitors so that if you have four monitors and delete
number 3, then the remaining three are numbered 1, 2, 4,
creating an “empty slot” where 3 was formerly located.

monitor {cmds} Inserts a monitor with the given command list in the first
available empty slot.

monitor num {cmds} Puts a monitor with the given command list in the num slot. It
replaces any existing monitor in that position.

monitor 0 Deletes all monitors.
Green Hills Software, Inc. 119

4. Debugger commands

e

 the

sing
and
iew
For example, given the following target code:

char * my_string = "hello world";
int my_int = 10;
And with the following command:

mprintf("my_string=\"%s\" and (2*my_int+1)=%d",
my_string, 2*my_int+1);

The debugger will output:

my_string="hello world" and (2*my_int+1)=21

mvc
Format: mvc args

The args are passed to MULTI’s version control for the file that is presently
displayed in the debugger. For example:

would check the presently displayed file out of MULTI’s version control. Se
the chapter on MULTI version control for more details on mvc arguments.

mvconfig
Format: mvconfig [%name] key[=value] [key[=value]] [...]

Configures a memory view window. (This is mv-config, not mvc-config.) See
Chapter 9, “Memory view window”.The %name option specifies the memory
view window to configure. If the name is omitted, the command configures
memory view window that was last created or configured. You may also
configure the defaults for the next memory view window to be created by u
%default as the name. The mvconfig command is mainly useful for scripts
most of the functions it provides are accessible directly from the memory v
window.

mvc co
120 Debugging with MULTI 2000

Debugger commands
The following key-value pairs are valid (note that the keys and values are case
insensitive):

Valid values for type=typestr include:

n
Format: n

Same as the S command. See S on page 131. .

Key Meaning

bpr=n Changes the number of bytes per row displayed. Valid values for n
are +, –, 4, 8, 16, 32, 64, or 128. The plus sign (+) increases the
bytes per row to the next higher setting. The minus sign (–)
decreases the bytes per row to the next lower setting. A number sets
the bytes per row to that number.

name=newname Renames the window with the given new name.

endian= e Sets the endianness mode. Valid values for e include big and lit or
little .

type= typestr Displays memory as the type specified by the type strings. This is
equivalent to setting the type pulldown to the specified position. See
the table below of valid values for typestr.

ascii= state Sets the state of the ASCII column. Valid values for state are on
(show the ASCII column), off (hide the ASCII column), and toggle
(switch the current state of the ASCII column to the opposite setting).

frozen= state Sets the frozen state of the window. Valid values for state are on
(freeze the window), off (unfreeze the window), and toggle (switch
the current freeze state of the window to the opposite setting).

quit Closes the memory view window.

Valid values for typestr

Value Meaning

f float

fd double

un unsigned decimal integer of size n bytes. n=1,2,4,8

sn signed decimal integer of size n bytes. n=1,2,4,8

hn hexadecimal number of size n bytes. n=1,2,4,8

bn binary number of size n bytes. n=1,2,4,8
Green Hills Software, Inc. 121

4. Debugger commands

dd
ened
y
he
ave

 by
given
new
Format: new program_name [pr=num] [core_file]

Tells the debugger to open a new window to start debugging the program,
program_name, and put in MULTI’s internal program slot numbered num. If
program_name is not specified, the current program name is used. If num is not
specified, MULTI puts the program in the first empty slot.A core file for the
new program may also be specified.

ni
Format: ni

Same as the Si command. See Si on page 135.

nl
This is lowercase ‘N’ and lowercase ‘L’.

Format: nl

Same as the Sl command. See Sl on page 135.

note
Format: note

Opens a “notes” file in a normal MULTI Editor window, to which you may a
you own free-form notes. This command takes no arguments. The file op
is “.Notes”, located in the user’s home directory (~). If the notes file alread
exists, it will be opened so you may edit or add to your previous notes. If t
file does not yet exist, it will be created once you save the new notes you h
made.

P
This is the uppercase ‘P’.

Format: P [pr=num] [subcommand]

Used exclusively during multi-process debugging. If this command is given
itself, it lists all process slots in use. This command sends the commands
for subcommand to the process in MULTI’s internal process slot number num.
For example P pr=1 b toggles the state of the b flag in process number one.
122 Debugging with MULTI 2000

Debugger commands

t
do
nd,

y the
The following is a list of subcommands:

After a fork or exec of a process, MULTI prints a message indicating that this
has happened, provided that the system variable _NOTIFY is set appropriately.
See _NOTIFY on page 62.

The following subcommands are deprecated in this version, and were left in for
compatibility purposes. The commands that supersede them are given.

p
This is lowercase ‘P’. This is the same as the print command. See print on
page 123.

Note for users of 1.8.9 MULTI: The ‘p’ command in 1.8.9 version would prin
the line you were on in non-GUI mode. The current ‘p’ command does not
that any more. To get the functionality of the 1.8.9 version of the ‘p’ comma
use the printline command. See printline on page 124.

pop
This command is obsolete. It was in 1.8.9. MULTI, but has been replaced b
indexprev command. See indexprev on page 110.

print
Format: print[/format] exp

Sub-command Meaning

b Toggles breakpoint inheritance after forking. If true, children of the
current process inherit all breakpoints set at the time of the fork.

c Toggles flag causing children to be debugged. If true, children of the
current process are added to the list of processes under control of
MULTI.

e Toggles flag causing children to stop upon execution of the exec system
call. This acts as if a breakpoint were encountered at the first instruction
of routine main in the exec’d program.

f Toggles flag causing children to stop upon execution of the fork system
call. This acts as if a breakpoint were encountered immediately following
the fork. This normally means you are in the middle of the library routine
fork.

k Toggles flag causing tasks to be debugged.

t Toggles flag causing MULTI to stop upon task-creation.

Deprecated sub-commands

Sub-command Meaning

s num Sends signal num to the current process. Equivalent to the signal
command. See signal on page 135.
Green Hills Software, Inc. 123

4. Debugger commands

t.

ere is
g

d

n

it.
Displays the value of exp exactly as the current language does with format. exp
can be any expression in the current language. See “Expression formats” on
page 52. See also echo on page 102 and examine on page 104.

printline
Format: printline [count [line]]

Prints count lines, starting at the line number line. If count is not specified, one
line is printed. If line is not specified, then the current line is the starting poin
The current line is updated to the last line printed after this command is
executed, which will change the source display if in GUI mode.

Simply typing a line number also proints out that line in non-GUI mode.

printsearch
Format: printsearch

Prints out the search string or indicates that there is no search string. If th
a search string, it is printed within square brackets, so beginning and endin
whitespace can be seen. For example:

printsearch
may result with:

[foo]
meaning that the search string is the word foo preceeded by one space an
followed by two spaces. See isearch on page 112, fsearch on page 105,
bsearch on page 86, ? command on page 76, and / command on page 76.

printwindow
Format: printwindow [line] [num]

This command is most useful in non-GUI mode. Prints a window of text, num
lines long, centered about line. The default value for num is specified by the
system variable _LINES which defaults to 22. The default for line is the current
line. See “System variables” on page 60. The current line is indicated by a
greater-than sign (>) in the left most print position. The current viewing positio
is unchanged.

profdump
Format: profdump

Used to retrieve profiling information from a target prior to the program’s ex
See Chapter 7, “The Profiler”.
124 Debugging with MULTI 2000

Debugger commands

 the

e

le,
 be
profile
Format: profile

Opens the Profiler window. See Chapter 7, “The Profiler”.

profilegui
This command is obsolete It was in 1.8.9 MULTI, but has been replaced by
profile command. See profile on page 125. .

profilemode
Format: profilemode command

Used to control a vast array of Profiler functionality, such as starting the
profiler, range analysis, processing data, and much more. See Chapter 7, “Th
Profiler” for all of the commands.

push
This command is obsolete. It was in 1.8.9 MULTI, but has been has been
replaced by the indexprev command. See indexprev on page 110.

pwd
Format: pwd

Show MULTI’s current working directory.

Q
Format: Q [0|1]

This is the “quiet” command. Q 0 (zero) turns off quiet mode (its default),
Q 1 (one) turns on quiet mode, and Q alone toggles quiet mode. When the
debugger is in quiet mode, many commands are less verbose. For examp
when setting or toggling a breakpoint in quiet mode, the breakpoint will not
echoed to the command pane.

q
Format: q
Green Hills Software, Inc. 125

4. Debugger commands
This is the prompted quit command in non-GUI mode only. When prompted,
answer either:

qfst
Note: This is a software-update command and may not be available on most
systems.

Format: qfst

Lists the status of all applied and backed out modules.

quit
Format: quit [ask | force | now | all]

Quits the current debugger window. If this is the last program, and no control
panel is present, then MULTI quits. If you do not specify any arguments, you
will be prompted as to the disposition of any process you are attached to. You
may specify one of the following arguments to modify the behavior of the quit
command:

quitall
Format: quitall

Causes MULTI to quit without prompting the user.

R
Format: R

Runs a new target program with no arguments. If a program already exists,
terminate it. When debugging multiple programs, this causes re-running of the

Answer Meaning

n Cancels the exit request. This is the default.

s Saves breakpoints, assertions, and directory list to the file named
multistate and then exits.

y Exits MULTI.

Option Meaning

ask Always confirms whether to exit if the PromptQuitDebugger
config option is true.

force or now Causes the debugged process to be killed without asking.

all Equivalent to the quitall command.
126 Debugging with MULTI 2000

Debugger commands

 ”),
u are
ell

ops.
s

that

o the
current program if and only if it is a direct child program of MULTI. See also r
on page 127.

r
Format: r arguments

Runs a new target program passing arguments, a space separated list, to the
program. If a program already exists, terminates and restarts it. When
debugging multiple programs, this causes re-running of the current program if
and only if it is a direct child program of MULTI.

If no arguments are given, then the last ones given are used again. If no
previous run exists, no arguments are used.

arguments may contain <, >, >>, >&, or >>& to redirect standard in, standard
out, and standard error. Text between quotes, either single (‘ ’) or double (“
are treated as a single argument. Eventually, the quotes are removed. If yo
running csh, then a ~ expands the same way as the shell. However, other sh
processing is not done; no wildcards, pipes, and so forth.

For example, r fly 3, runs the program with the two arguments fly and 3.

See also setargs on page 134.

Rb
Format: Rb

See rb on page 127.

rb
Format: rb arguments

Similar to the r and R commands, rb and Rb run and block the command line
input until the program terminates, until it hits a breakpoint, or the target st
While using these commands, you can still perform all interactive operation
appropriate with a running program. There are useful when writing scripts
control execution of a remote program. Use rb or Rb when you want to run
until you hit a breakpoint and then read the next line of a script file. See als
Continue and Block command cb on page 90, r on page 127, and R on page
126.

refresh
Format: refresh section
Green Hills Software, Inc. 127

4. Debugger commands

 from

5,

en

emote

get.
vice,
ram

r

bug

ally,

Reloads a section of the program into the target system’s memory. section may
be either text, data, or all.

If text is specified, then the code sections of the debugged program reads
the executable file and reloads into target memory.

If data is specified, then the global variables reset to their initial values.
Uninitialized global variables are set to zero.

If all is specified, then the entire program image reloads.

This command is not supported for all targets.

registers
This command is deprecated. See regview on page 128.

regview
 Opens a data explorer window displaying all the registers. See Chapter

“The data explorer”. In non-GUI mode, the registers are echoed to the scre
instead of in a new window.

remote
Format: remote [log[=filename] | nolog] debug_server [arguments]

Connects to a remote target before any debugging on that target is done. R
targets include simulators, emulators, and monitors. (See also connect on page
93.)

debug_server is the name of the debug server executable for the remote tar
This debug server is generally a program that controls the remote target de
and must be designed for the target CPU that your are compiling your prog
for. arguments are specific to each debug server; consult your debug serve
documentation.

If log is specified, then a list of all transactions between MULTI and the de
server is sent to standard error. If a filename is specified after log=, then the
transaction list is written to the named file instead of standard error. Gener
the output of the log option is a debugging feature to aid customers who are

Arguments none

Button equivalent
128 Debugging with MULTI 2000

Debugger commands

ult

 See

 line 5
nd
developing their own debug servers. remote log=filename may be specified
after having connected to a debug server.

restart

Identical to the R command when not used with remote debugging. (See R on
page 126.) When used with a remote system configuration, this command saves
a lot of time when re-executing a program. Instead of completely reloading the
entire program, the debugger resets global variables, the program counter, and
the stack pointer to their initial values. Uninitialized global variables are set to
zero. Then the program begins execution.

restore
Format: restore [filename]

Restores the state of the debugger from the file filename, or from the file
multistate if filename is not given. These files must have been created with the
save command. (See save on page 132.) If you are connected to a debug server
when using the save command and are not currently connected to the server,
then this command also reconnects you to that debug server.

The filename will be searched for using the default search path. See “defa
search path” on page 70.

resume
Format: resume [address_expression]

This command is only for use within a breakpoint command list. (See
“Command list” on page 69.) It resumes program execution at the given
address_expression, after all the breakpoint commands have been executed.
“Address expressions” on page 66. If no address_expression is specified then
the address that the breakpoint is set at is used. For example, to skip over
in your program, you could use the following, which will stop before line 5, a
then resume execution at line 6:

b 5 {resume 6}

remote nolog Stops logging and closes log file.

remote log Enables logging again.

Arguments none

Button equivalent
Green Hills Software, Inc. 129

4. Debugger commands

 for

ult

sult

 This
resume will continue the program in the same manner that the breakpoint was
encountered. For example, if the program was performing an S instruction
when the breakpoint was encountered, the S command will be resumed.

return
Format: return [exp]

Returns from macro defined in MULTI. See define on page 99. If exp is given,
then exp is returned as the macro’s value. See also error on page 103.

rload
Format: rload [load_symbols] executable

The rload command loads an object module while debugging. The symbols
the executable (executable.dnm and executable.dla) are loaded only if
load_symbols is set to 1. In addition, if load_symbols is set to 1, .bss is not
zeroed and the program is not started automatically.

The filename will be searched for using the default search path. See “defa
search path” on page 70.

You can interrupt this command with the Esc key.

rom
This is used for ROM debugging, which is not supported on all targets. Con
your target’s Development Guide for details specific to your target.

rundir
Format: rundir [dir]

This command changes the directory your program runs in to dir. If no
argument is given, then the current directory the program runs in is printed.
command is only relevant to native debugging.

runtask
Format: runtask proc [args]

Works only for multitasking remote targets such as VxWorks. This is the
standard way to start a task on these systems.
130 Debugging with MULTI 2000

Debugger commands

hus,

 not
g the
proc is the name of any downloaded procedure, and args is a list of space
separated arguments to pass to the procedure. Acceptable values for args are:

• decimal and hexadecimal numeric constants

• character constants

• string constants enclosed in double quotes

• names of global variables (the & operand does not work here)

• I/O redirection operators < and >

When debugging C++, proc may be the member function of a global object,
specified as object.function. If the requested function is ambiguous, a dialog
box presenting all options is displayed.

S

This is uppercase ‘S’.

Same as the s command, but treats procedure calls as normal statements. T
it steps over, instead of into, procedures. See also n on page 121 and s on page
131.

You can interrupt this command with the Esc key.

s

This is the lowercase ‘s’.

Single steps one statement. If you accidently step into a procedure you do
care about, you can click the Return button (), which is the same as usin
cU command. See cU on page 94.

You can interrupt this command with the Esc key.

Arguments none

Button equivalent

Menu equivalent Debug > Next

Keyboard equivalent F10

Arguments none

Button equivalent

Menu equivalent Debug > Step

Keyboard equivalent F11
Green Hills Software, Inc. 131

4. Debugger commands

e

cific.
save
Format: save [filename]

Saves the state of the debugger. This writes out the breakpoints, the assertions,
the source directory or directories as set by the source command, and the
remote debug server you are connected to, if any, to the file filename, or to
multistate if no filename is given on the command line. This file is retrieved by
the restore command. See restore on page 129.

saveconfig
Format: saveconfig

This command will save out a file which MULTI will read each time it starts to
restore your configuration to the state it was in when you saved it.

saveconfigtofile
Format: saveconfigtofile

Similar to the saveconfig command, but lets you choose a file to save the
configuration into. (See saveconfig on page 132.) This can be useful in
conjunction with configurefile command. See configurefile on page 93.

sb
Format: sb <a | d | t | u > <g | e | t | a | s | n> [l | i | p | x] val [@count] [{cmds}]

(In ‘Format’ above, the angular bracket pair <> contains arguments that must b
supplied.)

This command sets special breakpoints. These breakpoints are target spe
Consult your target’s Development Guide for more specific details.

In the first group of letters, a specifies any task, d is on any attached task, t is on
the current task, and u is on any unattached task.

In the second group of letters, a specifies to stop the actor, e is stop every actor,
g is stop the actor group, n is to notify, s is to stop the system, and t is to stop the
task.

In the third (optional) group of letters, l (lowercase ‘L’) indicates that val is a
line number, i indicates that val is an address, and p and x are target specific.

sc
Format: sc [“ command” | <filename]
132 Debugging with MULTI 2000

Debugger commands

ult

 the

ode:
Performs syntax checking on either a single command or an entire script file
and all nested script files. See “Syntax checking” on page 63.

The filename will be searched for using the default search path. See “defa
search path” on page 70.

scrollcommand
Format 1: scrollcommand max [l | c] [pixels] [wid=num]

Format 2: scrollcommand count [l | c] [pixels] [wid=num]

Scrolls the window indicated by the identification number num by count, or to
the maximum, in the given direction. If count or max are followed by l, and by
default, the scroll is vertical and count corresponds to a number of lines. If
count or max are followed by a c, then the scroll is horizontal and count
corresponds to a number of characters. If pixels is also specified, then it scrolls
by that many additional pixels. Not all windows scroll on a per pixel basis;
some are constrained to full lines. Both count and pixels may be negative.

The window identification number num is obtained by using the special
sequence %w with either the mouse command or the keybind command. If no
window identification number is supplied, the source window is used. See
mouse on page 119 and keybind on page 112.

For example,

The following example scrolls the source pane one line towards the end of
file:

scrollcommand 1
This example scrolls the command pane backwards by two lines:

scrollcommand -2 wid=-2
This scrolls the source pane three characters to the right:

scrollcommand 3c
And both these commands scroll the source pane to the beginning of the c

scrollcommand -max
scrollcommand -maxl wid=-1
See bsearch on page 86 and fsearch on page 105.
Green Hills Software, Inc. 133

4. Debugger commands

reak

nd
nd

n
n the
setargs

Sets the program arguments used with the next r command. (See r on page
127.) If no arguments are specified, then no arguments are used. The arguments
are a space separated list. See also getargs on page 106.

setbrk
Format: setbrk [0]

Toggles the breakpoint set at the current line (pointed to by the current line
pointer) or the current address. The current address exists only in GUI mode
and specifies the line where the mouse was last clicked in an interlaced
text/assembly view. By setting one of the mouse’s click commands to setbrk
(via the mouse command), you can toggle a breakpoint on a line in the
debugger by clicking anywhere on the line rather than having to touch the b
dots at the side of the text. See mouse on page 119.

This command has two forms:

shell
Format: shell cmds

Invokes a shell. If cmds is present, then the given commands are executed a
immediately returned to the debugger. All windows are put in the backgrou
until the commands are completely executed.

Before being passed to the shell, the command string following shell is
processed and all instances of the escape sequence %EVAL {multi_command}
are replaced by the result of evaluating multi_command. This is useful for
constructing dynamic arguments (that is, arguments that vary depending o
your current debugging context) to shell tools. For instance, to run a tool o
current file, construct a command of the form:

shell toolname constant_args %EVAL{$_FILE}

Arguments [program_arguments]

Menu equivalent Debug > Set Program Arguments...

Form Meaning

setbrk Toggles the break on the current line or the current assembly address in
interlaced source/assembly view.

setbrk 0 Sets a temporary breakpoint on the current line or current address and
executes the c command. (See c on page 88.) Once reaching the
temporary breakpoint, the program halts and the debugger automatically
clears the breakpoint.
134 Debugging with MULTI 2000

Debugger commands
showdef
Format: showdef [name1 [name2 [...]]]

Looks at each name on the line and attempts to find a #define macro definition
for that name, then prints it out. Without arguments, it prints out the defined and
undefined macros in the current file. Only enabled for programs built with
MULTI debug information.

showfds
Format: showfds

This command is only supported on Solaris. It uses the Solaris fstat() function
to give information about all of the open file descriptors.

Si
Format: Si

See si on page 135.

si
Format: si

The Si and si commands are similar to the S and s commands (see S on page
131and s on page 131), but cause the process to only advance by one machine
instruction. Furthermore, the stop-position is shown as a disassembled
instruction, not as a statement.

You can interrupt this command with the Esc key.

signal
Format: signal signal [pr=num]

Sends the signal signal to the process specified by num, or the current process if
num is not specified.

This is not supported for all target environments. Currently, only UNIX targets
support this command.

Sl
This is capital ‘S’ and lowercase ‘L’.

Format: Sl

See sl on page 136.
Green Hills Software, Inc. 135

4. Debugger commands

ne

les

If a
cified

en

 is
 point
ps

ng
sl
This is lowercase ‘S’ and lowercase ‘L’.

Format: sl

The Sl and sl commands are similar to the S and s commands (see S on page
131and s on page 131), but they cause the process to always advance by o
higher language instruction, even when viewing the interlaced assembly.

You can interrupt this command with the Esc key.

source
Format 1: source [num] [dir]

Format 2: source - dir

This command specifies directories that MULTI will search to find source fi
for the debugged executable. Typing source by itself lists the current directories
that will be searched. If num is specified, then the directory numbered num in
the current source path is replaced by the new one given by dir. In the listed
directories, num is zero-based. You can specify multiple directories at once.
number is specified but no replacement directory is supplied, then the spe
entry will be deleted from the list.

source - dir discards the old directory list which is replaced with the one giv
by dir.

Directory names may include ~ as an abbreviation for specifying your home
directory.

stopif
Format: stopif [file_relative_line_number] exp

exp is an expression in the current language.

Sets a conditional breakpoint at the line number specified. If a line number
not specified, then use the current line number. The program breaks at this
if the condition given in exp is true. For example, the following command sto
the debugger at line 20 if y is equal to five:

stopif 20 y==5
If you omit the line number, then you should not have expressions beginni
with a number, otherwise it will be ambiguous. For example, the following
should not be done:

stopif 5==y
136 Debugging with MULTI 2000

Debugger commands

ds

ine
st

f the

d
The debugger tries to set a breakpoint on line five that stops on the condition
(==y), which does not make sense. If you do this, enclose the expression in
parentheses:

stopif (5==y)
MULTI will do limited syntax checking to be sure “y” exists, but the user nee
to use variables which exist.

See also “Procedure-relative vs file-relative line numbers” on page 67 and
“Address expressions” on page 66.

stopifi
Format: stopifi [addr] exp

exp is an expression of the current language.

addr is either a procedure name or the address of an instruction.

Identical to the stopif command, except the breakpoint is placed on the mach
instruction at address addr. If addr is not specified, then the address of the la
item you saw with the “/i” or “ /I” display mode is used. addr may also be a
procedure name, in which case the breakpoint is set on the first address o
procedure.

syncolor
Format: syncolor [0] [1] [a] [C] [k] [d] [n] [s] [c]

Set syntax coloring options.

For example, syncolor 0Ck will turn on syntax coloring for only comments an
language keywords; syncolor 1d will turn on syntax coloring for everything
except deadcode. Without any arguments, syncolor will echo the present state
of all options.

Option Meaning

0 (zero) Turns off syntax coloring for all options.

1 Turns on syntax coloring for all options.

a Toggles syntax coloring for all options.

C Toggles syntax coloring for comments.

k Toggles syntax coloring for language keywords.

d Toggles syntax coloring for deadcode.

n Toggles syntax coloring for numbers.

s Toggles syntax coloring for string constants.

c Toggles syntax coloring for character constants.
Green Hills Software, Inc. 137

4. Debugger commands

to the
T
This command existed in 1.8.9 MULTI, but has been removed. To get the same
functionality, enter: calls local. See calls on page 89.

t
This command is obsolete. It was in 1.8.9 MULTI, but has been replaced by the
calls command. See calls on page 89.

target
Format: target string

Transmits commands to the target. Identical to xmit command. See xmit on
page 143.

targetwindow
Format: targetwindow

Opens the Target and I/O windows used by some debug servers and simulators
for direct communication with the target. These windows open automatically
when you connect to a debug server. See Using the Builder section for more
information about these windows. For a command line interface to these
windows, see xmit on page 143 and xmitio on page 143.

taskwindow
Format: taskwindow

Opens the Task Window which displays the current tasks that are run on an
embedded multi-tasking target, such as rtserv, vxserv, and tornserv. This
window contains columns of information about each of the tasks. The contents
of these columns differ depending on the target. See your target’s Development
Guide for information specific to your target. Clicking on a task name will
automatically attach to and begin a debug session on any task (equivalent
command attach tid. See attach on page 80).

tog
Format: tog [on|off|tog] [e exception_number | hbp hbp_id | [b]
[address_expression | breakpoint_list]]

Toggles the active status of address_expression or a breakpoint. See “Address
expressions” on page 66.
138 Debugging with MULTI 2000

Debugger commands
Only existing breakpoints/hardware breakpoint/exceptions can be modified
with this command. If no such breakpoint/hardware breakpoint/exception
exists, an error message is displayed.

See also b on page 81, be on page 82, de on page 96, hardbrk on page 108.

unalias
Format: unalias string

Unassigns an alias. It disassociates string from its substitution. For example, if
you had aliased sh to showdef, then typing:

unalias sh
unassigns sh.

update
Format: update [interval]

This command forces all currently open and non-frozen view and monitor
windows to be re-evaluated, halting the process, if necessary, to get the
information. If it halts the process, it will resume it after refreshing the
windows. This provides a quick and easy way to update your view windows to
their current values without having to manually halt the process and then
resume it.

If interval is specified, then MULTI will automatically do an update
approximately every interval seconds while the program is running. This is a
useful way to monitor the value of a variable continuously while the program is
running. To deactivate the automatic update, specify 0 for interval.

uptosource
Format: uptosource

Moves up the stack until it finds a procedure with source code, and shows the
corresponding source. Note this does not change the program counter or
execute any program instructions on the target.
Green Hills Software, Inc. 139

4. Debugger commands

is

view
This command creates a data explorer window to display an item. There are
several ways to open a data explorer window:

See “View command” on page 150.

viewcommand
Format: viewcommand cmds [=y[,x]] [press|release] [wid=num]

This command is not meant to be used from the command line, but rather
expected to be an argument to the mouse or keybind command. See “View
command” on page 150.

viewdel
Format: viewdel

Closes all of the current view windows.

viewlist
Format: viewlist structptr nextptr [links]

Bring up a number of items from a list type of structure, where structptr is the
pointer to the structure, nextptr is the name of the next pointer within the
structure, and links is the number of items in the list to show (default value is
25). For example, given the following C code:

The command viewlist ptr next 3 would bring up view windows on the first
three structures in this list. In this case, the viewlist command is equivalent to
entering:

Form Meaning

view exp Creates a view displaying the expression exp.

view type Creates a view displaying the type type.

view $locals$ Displays all local variables.

view filename Displays all procedures and any special variables in the file
filename.

view *address Creates a window displaying the contents of the given location in
memory. An asterisk (*) must be in front of the viewed address.

view exp1,exp2,exp3 Creates a view displaying the multiple expressions.

struct S {int a; struct S *next; }; struct S *ptr;

view ptr; view ptr->next; view ptr->next->next;
140 Debugging with MULTI 2000

Debugger commands

69.)

e

dress
W
This command is obsolete. It was in 1.8.9 MULTI, but has been replaced by the
printwindow command. See printwindow on page 124.

w
This command was in 1.8.9 MULTI but has been removed. To get the same
functionality, enter:

See printwindow on page 124.

wait
Format: wait

Blocks command processing until the program is halted. This is useful in
playback files or breakpoint command lists. (See “Command list” on page
For example, if you want to step the program three times after a certain
breakpoint is encountered, but you don’t want to enable blockStep, enter:

This assures each s comand is complete before executing the next one. Sinc
Esc halts the process, it in effect cancels this command.

watchpoint
Format: watchpoint exp

Set a watchpoint on the address indicated by exp, which causes the program to
halt when the address is written do.

This command is implemented in one of three ways:

• On systems which support it (emulators, simulators, etc.) a hardware
breakpoint is set at the given address. (See hardbrk on page 108.)

• If you compiled your program with the -check=watch option of the Green
Hills compiler then you may establish one watchpoint which will operate
fairly efficiently. (See the Builder chapter on how to set this.)

• Otherwise, the debugger will create an assertion to check when that ad
changes value. This will slow down your program considerably. (See a on
page 77.)

printwindow (1+_LINES/2)

b {s; wait; s; wait; s}
Green Hills Software, Inc. 141

4. Debugger commands

r
list.
the
.

d list

lorer

e

er
while
Format: while (exp) {cmds}

exp is an expression in the current language.

This command list cmds continues to execute as long as exp evaluates to a
non-zero value. This is similar to the while loop in C. See “Command list” on
page 69.

You can interrupt this command with the Esc key.

window
Format: window [num] [{cmds}]

This command creates, deletes, lists, or changes the contents of a monito
window. A monitor window captures the output of a command or command
See “Command list” on page 69. The commands are executed every time
program stops, and the output of these commands is printed in the window
There is a limit of 100 windows per program that are defined. The comman
may contain multiple commands separated by a semicolon (;). Multiple
commands must be surrounded by curly braces (for example, window {calls;
B}). Monitor windows have the same standard window features as data exp
windows.

This command has several forms:

For example, the command window calls displays a stack trace. To change th
window to display the breakpoints, use the command window 1 B.

windowcopy
Format: windowcopy wid=num

Copies the current selection in the window specified by num, its window
identification number, to the clipboard. Many commands that affect specific
windows require this window identification number. You can get this numb

Form Meaning

window Lists all existing windows and their assigned commands in order.

window num Deletes window number num. The number is displayed on the
window border. For example, window 1 is titled MONITOR 1,
therefore entering window 1 removes that window.

window {cmds} Creates a window displaying the results of given command list.

window num {cmds} Replaces the command list for monitor number num with cmds.
The command list also changes by left-clicking the command’s
name in the window in the upper left hand corner.

window 0 Deletes all existing windows.
142 Debugging with MULTI 2000

Debugger commands

 by

 by

out

al
 listed
by using the special sequence %w as part of a mouse or keybind command.
See mouse on page 119 and keybind on page 112. See “Other window topics”
on page 42.

windowpaste
Format: windowpaste wid=num

Takes the clipboard and places it in the input buffer of the window specified
num, its window id number. This command is typically used as part of a mouse
or keybind command. See mouse on page 119 and keybind on page 112. Note
that this slightly differs from the windowspaste command in that this uses the
clipboard, where as windowspaste uses the selection. See windowspaste on
page 143.

windowspaste
Format: windowspaste wid=num

Takes the selection and places it in the input buffer of the window specified
num, its window id number. This command is typically used as part of a mouse
or keybind commands. See mouse on page 119 and keybind on page 112. Note
that this slightly differs from the windowpaste command in that this uses the
selection, where as windowpaste uses the clipboard. See windowpaste on page
143.

x
This command was in 1.8.9 MULTI but has been removed. Use the halt
command instead. See halt on page 107.

xmit
Format: xmit string

Transmits commands to the target. Identical to target command. See target on
page 138.

xmitio
Format: xmitio string

Transmits string immediately to the remote debug server, if one exists, with
being processed any further by the debugger. string is sent exactly as typed,
meaning that no form of local substitutions will work such as aliases or loc
symbol names. The commands available with the remote debug server are
Green Hills Software, Inc. 143

4. Debugger commands

he

he

as

or

in the manual for the particular remote debug server used. xmit has no effect
with some remote debug servers.

Z
This is the capital Z. This command is obsolete. It was in 1.8.9 MULTI, but has
been replaced by the chgcase command. See chgcase on page 91.

z
This command is obsolete. It was in 1.8.9 MULTI, but has been replaced by the
zignal command. See zignal on page 144.

zignal
Format: zignal [signal] [s] [i] [r] [b] [C] [Q] [c [{cmds}]]

Sets up the signal handling table. If signal is not specified, the “current” signal
is used. The optional flags are:

s Toggles stop. If stop is on, then the program stops execution when t
signal occurs.

i Toggles ignore. If ignore is on, then the debugger does not send the
signal to the process.

r Toggles report. If report is on, then a message displays every time t
signal occurs.

b Toggles bell. If bell is on, then a beep sounds every time the signal
occurs.

C Clears the signal by setting all four of the above flags to false.

Q Does not print the new state of the signal.

c The signal’s command list is set to cmds and is executed every time the
signal is encountered. If no commands are supplied, any existing
commands are removed. If you wish to continue from a signal that h
commands, end the commad list with the c command (see c on page 88).

The l z command (see l on page 113) to list the current handling of signals. F
example, assuming a start up state of (don’t stop, don’t ignore, don’t report ,
no bell), the command z 14 sr sets the alarm clock signal to stop (but still don’t
ignore) and report it occurred, but don’t beep. Doing z 14 sr again toggles
these flags back to the other state. Doing z 14 Csb, no matter what the previous
state of the signal, will set the alarm clock signal to stop (but still don’t ignore)
and beep, but don’t report .
144 Debugging with MULTI 2000

Debugger commands
WARNING: It is highly recommended that you do not tamper with the state of
the “breakpoint” signal.
Green Hills Software, Inc. 145

4. Debugger commands
146 Debugging with MULTI 2000

Chapter
5

The data explorer
This chapter contains:

• The data explorer

• Data explorer basics

• View command

• Related commands

• Data explorer autosizing

• Data explorer messages

• Working with data explorers

• Data explorer format menu

• Data explorers with an infinite view

• Updating data explorer windows

5. The data explorer

w
f

n the
The data explorer

The data explorer allows you to view one or more variables of any type in a
separate window and is one of MULTI’s most powerful features. This windo
can be moved around and resized. The data explorer updates the values o
variables each time the program stops.

To open a data explorer, do one of the following:

• Double-click a variable in the source pane.

• In the command pane, enter: view variable_name.

For more information on the view command, see “View command” on page
150.

Data explorer basics

Here is an example of a data explorer:

Title bar
The title bar of a data explorer is active. Here is a description of the items o
title bar from left to right:

Data explorer title bar

Item Meaning

name

This is the name or address of the variable or variables displayed. In the above
example, i is the name of the data explorer. You can change the name. For
more information, see “Modifying values” on page 158.

type

This is the type of the variable being displayed. In the above example, int
refers to the C type integer. You can change the type. For more information,
see “Modifying values” on page 158.

This is the Format button. When you click it, the data explorer Format menu
appears. For a description of the menu items, see “Data explorer format menu”
on page 160
148 Debugging with MULTI 2000

Data explorer basics

t
tion
age

arch

re.
ings
Hot keys
You can access many of data explorer’s different formatting options via ho
keys, so an experienced user can quickly and easily control which informa
is displayed and how it is displayed. See “Data explorer format menu” on p
160 for a list of formatting options and their hot keys.

Searching and selections
To search for a value or label in a data explorer, use Ctrl+f or Ctrl+b. The se
string will be displayed in the “name” area of the data explorer. See also
“Incremental search” on page 40.

Text can only be selected in a data explorer window using the search featu
Selections cannot be made with the mouse unless the default mouse bind
are removed. See also “Selecting text” on page 39.

Mouse bindings
Many mouse actions are bound to useful data explorer commands. See
“Working with data explorers” on page 156 for a list of mouse clicks and
behaviors.

Next to the down arrow is a bullet called the freeze dot. Clicking the bullet
freezes and unfreezes the representation of the data explorer. In a frozen state,
a stop sign appears and the contents of the window are preserved. The window
is no longer being updated, and you cannot change the contents. Once a
window is unfrozen (click the stop sign), it will be updated to reflect the current
state of the program.
Typing Ctrl+d in the window opens a duplicate window and freezes the original,
replacing the bullet with a stop sign. This is useful if you want to continue
execution and compare a future value of a variable to its current value.

The pop arrow pops the data explorer back up one level. This only occurs when
there are derived data explorers present. See also “Working with data
explorers” on page 156.

When you click the close button, this closes the data explorer window. You can
also press Ctrl+q in the window to close it.
Green Hills Software, Inc. 149

5. The data explorer

d of
View command

The view command opens a data explorer to display an item. You can monitor
an item and modify it, if it is a changeable variable (as opposed to a constant).
The different items you can view are the following:

Viewing multiple items
You can view several items at once in a data explorer by specifying a comma
separated list of items to the view command. For example, this command:

displays the three variables—fly, bat, and cheese—in the same data explorer.

To view an individual variable from the list in the same window, click the
variable. To view an individual variable from the list in a new window,
double-click the variable. For a list of mouse clicks and behaviors, see
“Working with data explorers” on page 156.

Viewing structures
If the item being viewed is a structure, the data explorer will show each fiel
the struct separately.

View items

Command Description

view expr Opens a data explorer displaying the given expression.

view type Opens a data explorer displaying the given type. This is useful
for viewing items in a structure or class.

view $locals$ Displays all local variables in the current scope.

view filename Displays all procedures and any special variables in the given
file.

view *address Opens a data explorer displaying the contents of the given
location in memory. An asterisk (*) must be in front of the
viewed address. See also “Data explorers with an infinite view”
on page 164.

view fly, bat, cheese
150 Debugging with MULTI 2000

View command

nt of

d by

yed.
The following is a data explorer showing a struct. It was generated with the
command view my_tree:

In this example, the data explorer value is *my tree, and its type is struct tree,
which contains five fields: language, word, id, left, and right.

Fields are displayed in their natural format (except unexpanded fields that are
structures or arrays), pointers to simple items are tracked and the value of the
item pointed to is shown. By default, fields are highlighted whenever their
values change. See also “ShowChanges” on page 164.

Viewing arrays
If the item being viewed is an array, the data explorer will show each eleme
the array separately.

The following is a data explorer window showing an array. It was generate
the command view bat, where bat is an array of 4 integers:

To display pointer or address types as arrays, do one of the following:

• Right-click the type field. In this example, the int [4].

• Click the Format button ()and choose MakeArray.

Each subsequent use of MakeArray will increase the size of the array displa
See also “Data explorer format menu” on page 160.

To view a char pointer (in C and C++) as an array, click the Format button
()and choose View Alternate.
Green Hills Software, Inc. 151

5. The data explorer

l. See

 of a
Viewing disassembled code
Using a procedure name as the argument displays disassembled code. For
example, view procedure_name opens a frozen data explorer of the
disassembled code for that routine:

Viewing C++ classes
In C++, classes are displayed including base classes and virtual base classes.
Static fields are displayed inside square brackets. Members of anonymous
unions are displayed with a greater-than sign (>) preceding the member names.

Related commands

infiniteview
This command creates a data explorer with an “infinite” view at a specified
address. See “Data explorers with an infinite view” on page 164.

update
This command opens data explorer windows once or at a specified interva
“Updating data explorer windows” on page 164.

viewlist
This command provides a convenient way to view any number of elements
linked list. Its usage is:

viewlist structptr nextptr [links]

Where structptr is the name of the linked list head, nextptr is the name of the
element of the structure that points to the next link, and links is the maximum
number of links to follow. See “viewlist” on page 140.
152 Debugging with MULTI 2000

Related commands

ger
viewdel
This command deletes all data explorer windows associated with the debugger.
It also deletes all memory view windows, call stack windows, and breakpoints
windows.

viewcommand
This command can be used to manipulate the data explorer. This command is
event driven and therefore is only useful for mouse or key bindings.

Format: viewcommand cmds [=y[,x]] [press|release] [wid=num]

Requests a data explorer, monitor, or remote window to perform some action.
The num is a window identification number obtained by the %w command. See
“scrollcommand” on page 133 for more information on num.

Much of the information needed for certain viewcommand’s is dynamic and
difficult to obtain, thus there are a few variables available which the debug
will automatically assign when a viewcommand is run. They can be used to
dynamically assign some of these values:

For more examples, choose Config > Options... > General tab > Mouse
Bindings... and look at the bindings in the Mouse Commands window.

The following is a list of cmds:

Variables automatically assigned by the debugger

%m If the event is a mouse button press or release, this will be
replaced by the word press or release respectively.

%w This will automatically be replaced with the window manager
assigned identification number of the window in which the
event took place.

%x This will be replaced with the current mouse X-coordinant.

%y This will be replaced with the current mouse Y-coordinant.

Examples

viewcommand IncrField=%y,%x %m wid=%w

viewcommand Pop wid=%w

Values for cmds

Beep The data explorer beeps to indicate an error. If no command matches
a press, this is the default.

Noop Does nothing. (Short for “No operation”.)
Green Hills Software, Inc. 153

5. The data explorer
EditType Opens a dialog box to change the type of data displayed in the data
explorer. This command needs a window number.

EditAddress Opens a dialog box to change the address displayed by the data
explorer. This command needs a window number.

AddVariable Opens a dialog box to change the variable(s) displayed by the data
explorer. This command needs a window number.

AddVarOrAdr Opens a dialog box to change either the variables or the address
displayed by the data explorer. This command needs a window
number.

EditField Opens a dialog box to change the value of a field, or element of an
array. This command needs a y value and a window number.

IncrField Increases the value of the field by the integer value one. This
command needs a window number, x, y, and a press/release field.

DecrField Decreases the value of the field by the integer value one. This
command needs a window number, x, y, and a press/release field.

MakeArray Changes the type of item displayed in an array of the current type. If
the current type is an array, it makes a bigger one. This command
needs a window number.

FindTypeAndCast For C++ only: determines the most derived type of current object,
casts the data explorer to that, and displays it. This command needs
a window number.

ViewField Changes the data explorer to look at a field. This command needs a y
value and a window number.

NewViewField Opens a new data explorer to look at a field. This command needs a
y value and a window number.

FormatMenu Opens the format menu. This command needs a window number and
a press/release field.

ToggleFreeze Toggles the data explorer between being frozen or not. This
command needs a window number.

Duplicate Opens another copy of this data explorer. This command needs a
window number.

DuplicateFreeze Opens another copy and freezes the current data explorer. This
command needs a window number.

CloseView Pops to a previous data explorer if it exists, or removes the data
explorer. This command needs a window number.

KillView Removes the data explorer. This command needs a window number.

PopView Pops to a previous data explorer. This command needs a window
number.

Help Pops up a small help window describing the behavior of the data
explorer.
154 Debugging with MULTI 2000

Data explorer autosizing
Data explorer autosizing

The debugger will try to pick reasonable and convenient values for certain data
explorer window sizes. In order they do not override user sizing, auto-sizing
will only occur when the data explorer is created and when the number of rows
changes.

The width and height of the window will be set to the best value between the
specified minimums and maximums. You may configure these minimums and
maximums in the Configuration Options dialog box (Choose Config >
Options...). For uniformity, the width minimum and maximum are both set to 40
characters, by default. The height ranges from 3 rows minimum to a function of
the display height for the maximum.

The column divider will resize itself based on the length of the longest string in
the first column.

Data explorer messages

A number of messages may be displayed in the data explorer at various times.
Some warn that the data being displayed might be untrustworthy, others
describe why the data cannot be displayed.

Data explorer messages

Message Meaning

Infinite views must look
at memory, not registers

The data explorer is in infinite view mode, but the variable is in
a register. See also “Infinite” on page 163.

NaN Short for “not a number”. For floating-point variable types, the
value is not a legal representation of any number.

na The data is too complex to show on this line. To expand the
data to the current window, left-click the line. To show the data
in a new data explorer window, double-left-click the line.

No process No process is currently being debugged.

No symbols for this
procedure

Debug symbol information does not exist for the current
procedure.

Optimized away The variable does not exist because a compiler optimization
decided it was not necessary.

Original procedure not
on stack

The original procedure in which the variable was in scope is no
longer on the call stack. This message will only be displayed in
“evaluate in context” mode. See “In Context” on page 162.
Green Hills Software, Inc. 155

5. The data explorer

 the
s are

data
er

ures
res
Working with data explorers

Data Explorers are interactive, and are manipulated to display associated
information or to change the values of variables. Most of the mouse actions
listed below refer to the default bindings. The bindings have been provided
where applicable. To change the default mouse bindings, choose Config >
Options... > General tab and press the “Mouse Bindings...” button, or use the
mouse command from the debugger. See mouse on page 119.

Configuring the maximum complexity of displayed data
Depending on your target, it may be desirable to minimize reading data from
target which has not been explicitly requested. Three configuration option
provided to limit the complexity of information displayed in data explorer
windows. The FormatStringMaxLength configuration option allows you to
specify a maximum length for the string representation of your data in the
explorer window. Once the data accumulated reaches this length, no furth
data will be read from the target for the display of that variable in the data
explorer window without pushing into it. The FormatStringMaxDepth
configuration option allows you to specify how many levels of nested struct
the data explorer window attempts two display on one line. Nested structu
below this depth will have their values displayed as “< na >”. Finally, the
LoadLongArraysOnViewWinCreation configuration option allows you to
specify whether arrays of more than 1,000 elements will initially have all
elements displayed or only their first 1,000 elements.

Out of register scope The variable was assigned to a register, but is no longer
assigned to any register. If the register has been overloaded, it
may now represent a different variable. The data explorer will
show the current value of the register along with this message,
but the value may now be meaningless.

Out of scope The variable no longer exists in the current lexical scope. The
data explorer will show the current value of the register along
with this message, but the value is most likely meaningless.

Process running The process being debugged is currently running, so no value
is known for the variable.

Uninitialized The variable has most likely not been assigned a value and
could be a random value in memory. The data explorer will
show the current value of the memory, but it is most likely
meaningless.

Unreadable memory For a pointer or address type, the debugger does not have
read access to the memory pointed to, or it does not exist.
156 Debugging with MULTI 2000

Working with data explorers

tack,
ate

le

 be

d.
ed,
 one
Changing views

Pushing views
To display more information on a field in a data explorer window, click the
desired field. This pushes the currently displayed data onto the window’s s
displaying the requested information. An up arrow () will appear to indic
that this data explorer contains other view(s) on its stack. To return to the
previous data explorer view, click this arrow. In our “view my_tree” examp
above:

When we click “language”, we get the item pointed to by “language” in the
same data explorer window:

The default binding for this action is:

Popping views
To return to the first window, click the Pop button (). The Pop button may
pressed once for each view that has been pushed.

New views
To open a new data explorer window to display a field, double click the fiel
This leaves the original window unchanged. The view stack is not transferr
so the new explorer will not have any views on its stack even if the original
did.

The default binding for this action is:

Mouse1*Click1@View=viewcommand ViewField=%y wid=%w

Mouse1*Click2@View=viewcommand NewViewField=%y wid=%w
Green Hills Software, Inc. 157

5. The data explorer
Modifying values
You can modify the information displayed in the data explorer window. Here
are the values you can modify:

• type of variable displayed

• value of a variable

• name of variable displayed

• address of data displayed

Modifying the name or address
To change the name or address of the data being displayed, left-click the name
field. You cannot change addresses in frozen data explorers. If you are changing
the variable name, you can enter a comma separated list of items in this dialog
box to view multiple items at once.

The default binding for this action is:

Modifying the type
To change the type of the data being displayed, left click the type field. You
cannot change types in frozen data explorers.

The default binding for this action is:

Modifying the data
To increment the value of the data in a field, middle click the number to be
incremented. The value will be increased by the integer one.

To decrement the value of the data in a field, Shift middle click the number to
be decremented. The value will be decreased by the integer one.

To change a data value more generally, right click the data to be changed. A
dialogue box will pop up prompting you to type in a new value.

The default binding for this action is:

Mouse1*Click1@Name=viewcommand AddVarOrAdr wid=%w

Mouse1*Click1@Type=viewcommand EditType wid=%w

Mouse1*Click1@Values=viewcommand EditField wid=%w
158 Debugging with MULTI 2000

Working with data explorers
Changing view style
To change the type into an array, right click the type field. If it is already an
array, a larger array is created. This is useful for looking at items of unknown
size such as Ada unconstrained typed variables, C strings, or C++ virtual tables.

Right clicking the address is only relevant in C++. If an object is examined
through a pointer to one of its base classes, then the actual type is hidden. With
multiple inheritance, its address is also altered. The debugger attempts to find
the actual type by looking up the name of the virtual table.

Note: to view a C or C++ char pointer as an array first use the ViewAlternate
command.

The default binding for this action is:

Default mouse bindings
The following are the default mouse clicks.

Mouse3*Click1@Type=viewcommand MakeArray wid=%w

Default mouse clicks

Mouse Click Object Effect

left click Freeze button Toggles data explorer frozen state

left click Close button Closes the data explorer

left click Format button Opens the Format menu

left click Name field Edit the item(s) to be viewed

left click Type field Edit the type

right click Type field Makes the data explorer an array, or increases
the size of the current array

left click Data field Pushes the current view, showing the data
value

double left click Data field Opens a new data explorer showing the data
value

middle click Data field Increments the value in the field

shift+middle click Data field Decrements the value in the field

left click Data field Edit the value in the field
Green Hills Software, Inc. 159

5. The data explorer

, in

al”
sses
Data explorer format menu

To open the data explorer format menu, click the Format button ()on the title
bar.

A dot beside an option indicates it is currently set. Selecting an option toggles
its state. The following sections contain an explanation of each option. Hotkeys
are shown for options where they are available. You can type these hotkeys
anywhere in a data explorer window.

Display address or type

Show Address
Hotkey: S

The name field in the upper left corner of the data explorer will either display
the actual name of the viewed variable, or the address. This option toggles
between these two states.

Show Type
Hotkey: T

When you view multiple variables, classes, or structures, to display the type of
each member, choose Show Type.

Number bases
The following pertain to all types except string types (character pointers) which
are always displayed as quotes strings unless “View Alternate” is selected
which case they are displayed as an array of characters.

Natural
Hotkey: N

In natural mode all numbers are shown in their default state. If “Hexadecim
mode is selected, all numbers are shown in hexadecimal, otherwise addre
are displayed in hexadecimal, characters in ASCII, and other numbers in
decimal.

Decimal
Hotkey: D

All numbers are displayed in base 10.
160 Debugging with MULTI 2000

Data explorer format menu

ode
Hexadecimal
Hotkey: H

All numbers are displayed in base 16.

Binary
Hotkey: B

All numbers are displayed in base 2.

Octal
Hotkey: O

All numbers are displayed in base 8.

Alternate viewing methods

View Alternate
Hotkey: V

In addition to the standard way of displaying a value, an alternate is available.
The definition of the alternate depends on the type of item displayed. For
example, an integer is also displayed in hex, a field with an enum type is also
displayed in decimal. Character pointers, which are normally displayed as a
string, will be displayed as a character array. Other pointers have no alternate
display type.

Memory View
Hotkey: M

Opens a Memory View window for interactively displaying and modifying
memory contents. This window initially displays memory at the address
specified. See memview on page 118.

Make Array
Hotkey: A

Displays pointer and address types as an array. If the displayed item is already
an array, this will increase the size of the array displayed. This will also be
executed by a mouse right-click on the type field of the data explorer window.
Note: character pointer types (in C and C++) must be in “view alternate” m
to be viewed as an array, see View Alternate above.
Green Hills Software, Inc. 161

5. The data explorer

sed
he
the

when
n the
it was
r was
e

 stack

 at

d only
ves

t valid
ing
Evaluate sub-menu
Only one of these four can be selected at a time. Normally, “As Global” is u
for all expressions involving only global variables, “By Address” is used if t
expression is a static variable, and “In Context” is used for most others. If
value to create the data explorer involves a procedure call, such as
“array[fly()]”, then “By Address” is employed.

In Context
Hotkey: C

Every time the debugger is about to update the data explorer (for instance
the target process hits a breakpoint) it reevaluates the expression named i
title bar. It attempts to evaluate the expression in the same context where
first evaluated. For example, if a procedure is called since the data explore
created, the debugger walks up the stack until it finds a stack frame with th
right procedure and evaluates the expression there. If it cannot find such a
frame, it displays an error.

As Local
Hotkey: L

Similar to “In Context”, except it always evaluates to the current procedure
the top of the stack.

As Global
Hotkey: G

The debugger reevaluates the expression, ignores all procedure scopes, an
looks for variables in the global scope. This is useful if an expression invol
only global variables.

By Address
Hotkey: A

The debugger pays no attention to the expression, and instead uses the las
address for this data explorer to display the data. This is useful for examin
local variables before and afer they are in scope.

Format sub-menu
You can only select one of the following:
162 Debugging with MULTI 2000

Data explorer format menu

e
ll
he

o,
n by
Formatted
The data explorer shows the data according to the given type. This is the normal
mode.

Type
Only the type information is displayed. In C++, a list of all member functions of
the type is displayed. Left clicking a member function causes the source pane to
display that function. Warning: Inlined functions are not shown in the list.

Using the same “my_tree” example above, we choose Format > Type:

Infinite
The address of the viewed object displays memory in an infinitely scrollabl
fashion, limited only by the memory of the machine. In this mode, the scro
thumb is fixed in the center of the scrollbar. You can click above or below t
fixed scroll thumb, or on the scroll arrows, to scroll the windows.

See also “Data explorers with an infinite view” on page 164.

Advanced Sub-menu

Expand Value
This indicates that pointers to simple items show what they point to (if in
readable memory), rather than displaying only the value of the pointer. Als
simple arrays and structures show their first few elements. This option is o
default.
Green Hills Software, Inc. 163

5. The data explorer

croll

 also
Open Pointer
If this item is selected, the data explorer automatically dereferences all pointers.
Otherwise it displays the value of the pointer. This option is on by default.

ShowChanges
If this item is selected, then fields changing in the data explorer windows are
highlighted. This option is on by default.

Print
This item will invoke the Print Dialog, allowing you to print the contents of the
window.

Make Default
If this item is selected, then the current setting of the items above will be the
default when the next data explorer is created. This command does not pertain
to the Format menu items. These settings are saved for the remainder of this
MULTI session only.

Reset Type
Resets the type field to the original setting if it has changed.

Refresh
Reloads the data explorer from memory, and redraws it.

Data explorers with an infinite view

infiniteview *address

This is almost identical to the view command. See “View command” on page
150. The difference is that this command opens a data explorer window to s
through all of memory, starting at the location specified by address. The
memory address must be preceded by an asterisk (*). To get the same effect
with a normal data explorer, choose Format menu > Format > Infinite. See
“Format sub-menu” on page 162.

Updating data explorer windows

Format: update [interval]
164 Debugging with MULTI 2000

Updating data explorer windows
This command forces all currently open and non-frozen data explorer and
monitor windows to re-evaluate, halting the process, if necessary, to get the
information. If the process halts, it resumes after refreshing the windows. This
provides a quick and easy way to update your data explorer windows to their
current values without having to manually halt the process and resume. This
feature may not work under all circumstances.

If interval is specified, then the debugger automatically updates data explorer
windows approximately every interval seconds while the program is running.
This is a useful way to monitor the value of a variable continuously while the
program is running. To deactivate the automatic update, specify interval to zero.
Green Hills Software, Inc. 165

5. The data explorer
166 Debugging with MULTI 2000

Chapter
6

Run-time error
checking

This chapter contains:

• Run-time error checking

• Run-time Error tab check boxes

• Memory checking drop-down list

• Finding memory leaks

6. Run-time error checking
MULTI provides run-time error checking for many different classes of program errors, using
a combination of compiler checks, special libraries, and debugger commands. You can enable
several run-time error checking capabilities in the Run-time Checking tab (or the -check=
build-time command line option). Building the program with run-time checking enabled
makes the error checking available to the debugger.

Run-time error checking

(Builder: Project > Options for Selected Files... > Run-time Error tab)

The Memory Checking drop-down list box at the top has four choices: Default,
None, Allocation, or Memory, explained below. Below this list box is a row of
check boxes. Select the check boxes to enable the desired error checks. Most of
these checks occur at run-time, although some occur completely at compile
time, indicated below. To support the run-time checks, the compiler generates
extra code at compile time which will increase the size of the resulting program.

Run-time Error tab check boxes

The following are the check boxes in the Run-time Error tab.

Run-time Error tab check boxes

Check box Description

Array Bounds Checks array bound indexes. For constant indexes, this check
occurs at compile-time; for other expressions at run-time.
Equivalent to the -check=bounds build-time command line
option.
The error message is: “Array index out of bounds”

Assignment Bounds When assigning a value to a variable or field which is a small
integral type such as a bit field, this checks if the value is within
the range of the type. Equivalent to the -check=assignbound
build-time command line option.
The error message is:
“Assignment out of bounds”
or
“Value outside of type”

NULL Dereference Generates an error message for all dereferences of NULL
pointers. Equivalent to the -check=nilderef build-time
command line option. The error message is: “NULL pointer
dereference”
168 Debugging with MULTI 2000

Run-time Error tab check boxes
Case/Switch Statement Generates a warning if the case/switch expression does not
match any of the case/switch labels. This does not apply
when using a default case/switch label. Equivalent to the
-check=switch build-time command line option.
The error message is: “Case/switch index out of bounds”

Divide by Zero Generates an error message indicating a divide by zero.
Equivalent to the -check=zerodivide build-time command line
option. The error message is: “Divide by 0”

Unused Variables Generates an error message at compile-time for declared
variables never used. Equivalent to the -check=usevariable
build-time command line option.
The error message is: “Unused variable”

Pascal Variants Checks that the tag field of a variable declared as a variant
record type matches one of the case selectors in the record.
This applies only to Pascal. Equivalent to the -check=variant
build-time command line option.
The error message is: “Bad variant for reference”

Watchpoint Enables the debugger’s watchpoint command to create one
watchpoint without using an assertion. Equivalent to the
-check=watchpoint build-time command line option. See
“watchpoint” on page 141.
The error message is: “Write to watchpoint”

Return Generates a warning if a non-void procedure ends without an
explicit return. For example, the following procedure generates
a warning when exiting:
int func() {
 for (int x = 0; x< 10; x++) {
 if (x == 10)
 return x;
 }
}
This option only applies to C and C++. Equivalent to the
-check=return build-time command line option.
The error message is: “No value returned from function”

Run-time Error tab check boxes

Check box Description
Green Hills Software, Inc. 169

6. Run-time error checking
Memory checking drop-down list

(Builder: Project > Options for Selected Files... > Runtime-Error tab > Memory
checking drop-down list)

Memory checking is not available for use on all systems. It is not supported for
use with an RTOS with non-standard memory allocation primitives.

Memory checking drop-down list

Item Description

Default Maintains the previous or inherited setting. Originally, the default is None.

None Disengages memory checking.

Allocation

Checks for the following memory errors. Equivalent to the -check=alloc
build-time command line option. It also enables the debugger’s findleaks
command. See “Finding memory leaks” on page 171. To support this
allocation memory checking the program is linked with an instrumented
version of the malloc() library, usually located in the library libdbmem.a.
If the program attempts to free memory not previously allocated, this error is
reported:
“Attempt to free something not allocated”
If the program attempts to free memory already free, sometimes the
previous error message is reported here. Otherwise, this error is reported:
“Attempt to free something already free”
If the program attempts to allocate memory after various other errors
occurred, this error report appears:
“Malloc internals (free list?) corrupted”

Memory

Generates an error message when the program tries to access memory that
is not yet allocated. Equivalent to the -check=memory build-time command
line option.
Compiling a source file with this level of checking will cause the generated
code to be both larger and slower. You may wish to link the application with
Allocation checking and only compile a few selected modules with Memory
checking.
This level of checking displays the appropriate Allocation error messages,
above, in addition to the following:
“Attempt to read/write memory not yet allocated”
170 Debugging with MULTI 2000

Finding memory leaks
Finding memory leaks

Command-line format: findleaks

If your program is built/linked with either allocation or memory level memory
checking, then this command finds chunks of memory that were allocated but
are not reachable by pointer in the application.

You must halt the process you are debugging to use this command, but invoke
the command before the process terminates. Often, this is most easily
accomplished by setting a breakpoint on the last line of your program.

This command creates a window showing the following information for each
chunk of memory found:

• The address of the chunk of memory allocated.

• The size of the allocated block.

• The procedure and line number (or address) of the routine calling malloc
and the routine calling that routine and so on up to five levels.

If you click a line in this window, the debugger source pane display moves to
the procedure which called malloc, while double clicking a line shows the
procedure which called that one, and so on up to five clicks.
Green Hills Software, Inc. 171

6. Run-time error checking
172 Debugging with MULTI 2000

Chapter
7

The Profiler
This chapter contains:

• Introduction to the profiler

• Using the profiler

• Profiling targets

• The profdump command

• The protrans utility

7. The Profiler

t
nce

.

t

ry
s

cific.

ints
u

ving
tion
tion
Introduction to the profiler

The MULTI profiler (“the profiler”) is a tool that gathers important data abou
the execution of your program. This data can greatly improve the performa
of existing programs.

To compile a program with one or more of the profiling options:

1. From the Builder window, choose Project > Options for Selected Files..

2. Set the Performance Analysis and the Coverage Analysis drop-down lis
boxes. They set the profiling options for the compiler.

The Performance Analysis drop-down list box contains the Functions and
Graph options mentioned below. These options are equivalent to the -p and -pg
compiler options. Coverage Analysis is equivalent to compiling with the -a
compiler option.

Support for profiling and the steps necessary to collect profile data may va
depending on your target environment. Please consult the Profiling Target
section of this Chapter and your target’s Development Guide for additional
target-specific information on using the profiler.

Execution time
During execution, the runtime environment collects samples of the program
counter (PC) at various times. The exact sampling mechanism is target-spe
See “Profiling targets” on page 182. The resulting collection of PC data po
gives a profile of where the program spends its time. The profiler shows yo
how much time is spent in:

• the program

• each function

• each basic block

• each source line

• each assembly instruction.

You may see large improvements in execution time by focusing and impro
small amounts of code corresponding to a large percentage of total execu
time. The compiler does not need to change your code to gather an execu
sampling.
174 Debugging with MULTI 2000

Using the profiler

y

ing:

ns.

here
ry to

. .

can
and
Standard calls
Compiling with the Functions option places calls to special profiling routines in
your program to see how many times each function is called.

Call graph
Compiling with the Graph option also places calls in your program. It shows the
number of calls made to each function, which “child” functions are called b
each “parent” function, and how many times each child is called.

To bring up a graphical representation of the call graph, do one of the follow

• In the command pane, enter: browse dcalls

• Choose Browse > Dynamic Calls...

See also “Browsing dynamic calls, by function” on page 218.

Block coverage
Compiling with Coverage Analysis gathers a profile of basic block executio
If a given basic block is executed zero times, then the group of instructions
making up this block is considered dead code for the given sample input w
the program runs. You may remove the dead code from the application or t
discover if there is functionality missing from the application since it never
reaches the dead code.

Using the profiler

Before using the Profiler, you must do the following:

1. From the Builder window, choose Project > Options for Selected Files..

2. Before you compile your program, choose the desired profiler options.

3. Before you run your program, open the debugger and start profiling. You
do this one of two ways: either open the profiler window or in the comm
pane, enter: profilemode start.

4. Let your program run at least once (or halt it and use the profdump com-
mand) before generating reports in the profiler. See “The profdump com-
mand” on page 183.

Note: Some targets require additional preparation to collect profiling data.
Green Hills Software, Inc. 175

7. The Profiler
To open the profiler window, do one of the following:

• Choose View > Profile...

• In the command pane, enter profile.

Let your program run at least once before generating profiler reports. This
allows MULTI to generate profile information files from the program’s
directory that the profiler can use.

The following are the menus in the profiler window.

The following shows the “Config > New Data” and the “Config > Data
Processing” sub-menu items and their command line equivalents:

File menu

Item Description

Save Report... Save the report currently in the profiling window to a file.

Append Report... Append the report currently in the profiling window to a
pre-existing file.

Print Report... Print the report currently in the profiling window.

Config menu

Item Description of Configuration Command

New Data >
Added to old

When a new set of profile data is
processed, such as data from a new run of
the program, this new data will be added to
the old data. This is the default.

profilemode add

New Data >
Replaces old

When a new set of profile data is
processed, such as data from a new run of
the program, this new data will replace the
old data.

profilemode replace

Data Processing >
Automatic

After a run completes, the new profile data
is automatically processed and stored in
the profile database. This is the default.

profilemode automatic

Data Processing >
Manual

After a run completes, the data must be
manually processed. Helpful if a program
is to be run multiple times prior to
analyzing profiling results.

profilemode manual
176 Debugging with MULTI 2000

Using the profiler
The following are the buttons in the profiler window and their command-line
equivalents, if any:

Profiler window buttons

Button Description of action Command

 Begin collecting profiling information. Bringing up the
profiling window automatically executes this command.

profilemode start

 Stop collecting profiling information. profilemode stop

 Delete any existing profiling data. profilemode clear

 Displays in the debugger the percentage of time spent
in each source line, to the left of each source code line.
In assembly mode, it is the percentage of time spent on
each instruction. This is the default. (Note that "~0%"
means that line/instruction took very close to 0% of the
total execution time.)

profilemode percent

 Highlights "dead code", lines which were never
executed during the profiling run. This is only available
if the program was compiled with the Coverage option.

profilemode
coverage

 If the program was compiled with the Coverage option,
then this displays in the Debugger the total number of
times each line (or instruction) is executed.
If the program was not compiled with the Coverage
option, but was compiled with either the Functions or
Graph options, then this displays in the Debugger (at
the beginning of each function) the number of times
each function was called.
If the program was not compiled with any of the
Coverage, Functions, or Graph options, then this view is
not available.

profilemode count

 Displays in the profiler the Status Report. See “Status
report” on page 179.

n/a

 Displays in the profiler the Standard Calls Report. See
“Standard calls report” on page 179.

n/a

 Displays in the profiler the Call Graph Report. See “Call
graph report” on page 180.

n/a

 Displays in the profiler the Summary of Coverage
Information Report. See “Block coverage summary” on
page 181.

n/a

 Displays in the profiler the Detailed Coverage
Information Report. See “Detailed block coverage” on
page 181.

n/a

 Displays in the profiler the Source Lines Report. See
“Source lines report” on page 182.

n/a

 Manually processes the profiling information. See
“Processing data” on page 178.

profilemode
process
Green Hills Software, Inc. 177

7. The Profiler
Processing data
To set the processing of data to manual, do one of the following:

• Choose Config > Data Processing > Manual

• In the command pane, enter: profilemode manual

When the processing of data is set to manual, to force processing of profiling
data, do one of the following:

• Click the Process data button ().

• In the command pane, enter: profilemode process

When debugging natively, data processing is also used when first entering the
profiler to process mon.out, gmon.out files, etc. previously generated with the
program.

When debugging on an embedded target, the data processing is only used when
at least one run of the program is completed in the current profiler session. The
sampling data generated by the debug server, unlike mon.out, gmon.out files
etc. produced by the program itself, are internal to the profiler and are deleted
after processing. The profile data file written by the debug server also contains
information such as the target endianness which must be known by the profiler
in order to read the other profile data files such as mon.out. Thus, the profiler
cannot read in profile data generated during a different session.

Range analysis
Improving the performance of an application often requires isolation of small
portions of large subroutines, such as computationally intensive nested loops,
which account for the majority of the subroutine’s execution time.

After profile data becomes available, you can get profile information for a
particular section of code by clicking the Range Analysis button ().

 Opens Range Analysis window. See “Range analysis”
on page 178.

profilemode range
addr1 addr2

 Opens Dynamic Call Graph centered on the present
function being examined in the debugger. See
“Browsing dynamic calls, by function” on page 218.

browse dcalls

 Dump the currently available profiling information from
the target. See “The profdump command” on page 183.

profdump

 Close the profiler window. Note that this does not
deactivate or in any other way affect the state of
profiling. You can configure whether or not to have this
button.

n/a
178 Debugging with MULTI 2000

Using the profiler
You may specify a range of hexadecimal addresses with these fields. When the
debugger displays the program in assembly mode, hexadecimal addresses are
located to the left of their corresponding instructions. You can click these
addresses to input the number into the range text fields, thereby giving a
convenient way to specify ranges.

When a range is specified in the text fields, click the Calculate Range button to
display the amount of time in seconds as well as a percentage of total execution
time for this range in the bottom of the Range Analysis window. If no range or
an inappropriate range is specified when you select the Calculate Range button,
the valid range of sampling addresses for the program is displayed in the Range
Analysis window. The window can be dismissed by pressing the Close button.

To obtain Range Analysis from the debugger command pane, enter:

where start_addr and end_addr are the beginning and end of your range,
respectively. The result will appear in the debugger command pane.

The profiling reports
Six profile reports are available, depending on whether the appropriate data
exists. The reports generally consist of several columns of information, and a
status bar at the bottom of the report. Most of the columns can be sorted by
clicking the header. Clicking the same header again will sort in the opposite
direction. All of the columns can be resized by dragging the seperator to the left
or right. All of the columns can also be moved around by dragging the header to
the appropriate location. Within each of the reports, clicking a function name
(or other program component) moves you to that location in the Debugger
source pane; a double click invokes an editing window. You can save, append,
or print any report from the File menu.

Status report
This is the report that appears when you first open the profiling window. It is
always available. It gives general information about profiling, such as what type
of data has been collected. The status bar indicates whether or not profiling is
active.

Standard calls report
This report gives a summary of program execution time per function. It is
available when any type of program counter sampling is done such as mon.out
or gmon.out.

profilemode range start_addr end_addr
Green Hills Software, Inc. 179

7. The Profiler

y that
y
 with

Note that the percentages may not add to 100%, as the profiler only monitors
how much time is actually spent in the function.

Call graph report
This report gives a summary of program execution time per function, including
functions’ descendants. Descendants of a function are all routines called b
function, and all routines called by those routines, and all routines called b
those routines, etc. This report is available when the program is compiled
the Graph option and gmon.out file(s) are created.

Standard calls

Header Meaning

Percent time The percentage of the total program time spent in each
function.

Time The amount of time spent in each function. The status bar
indicates if this is measured in seconds or milliseconds

calls The number of times the function is called.

Time(ms)/call The number of milliseconds spent on each call to the function.
Note that this is always measured in milliseconds, regardless
of the contents of the status bar.

Function The name of the function.

Call graph

Header Meaning

Function The name of the function.

Calls by Function The routines called by the function. This lists each function
called by the function, and the percent of the total calls made
by this function to each of the listed routines.

Calls to Function The routines that called the function. This lists all the routines
that called the function, and the percent of the total calls made
to this function by each of the listed routines.

Self Time The actual time spent in each function

Self % The percentage of total time spent in each function.

Child Time The actual time spent in the all of the children of each function

Child % The percentage of total time that the children of each function
represent
180 Debugging with MULTI 2000

Using the profiler
The status bar indicates if the times are listed in seconds or milliseconds.

Block coverage summary
The status bar gives a summary of the coverage of the entire program. It is
available when the program is compiled with the Coverage Analysis option on.

The status bar gives a summary of the coverage of the entire program. For more
information about coverage within each function, see the Block Coverage
Detailed section below.

Detailed block coverage
This report gives the program code coverage per basic block. It is available
when the program is compiled with the Coverage Analysis option on.

The status bar indicates if the times are listed as seconds or milliseconds.

Self+Child Time The total time spent in each function including its children.

Self+Child % The percentage of total time spent in each function and its
children.

Block coverage summary

Header Meaning

Function The function names.

Blocks The number of basic blocks in each function.

% Covered The percentage of basic blocks executed.

Block coverage (detailed)

Header Meaning

Function The function names.

Address The starting address of each block.

Line Number The (file-relative) source line corresponding to each block.

Executions The number of times that block was entered.

Time The total time spent in each block.

% Total Runtime The percentage of total time spent in each block
Green Hills Software, Inc. 181

7. The Profiler
Source lines report
This report is a listing of all the source lines of the program, along with how
long each took to execute. A source line is uniquely determined by the filename
and (file-relative) line number. Only lines with positive times are displayed. The
time it takes to process this report is proportional to the size of the program and
hence may take longer for very large programs. This report is available when
any type of program counter sampling is done such as mon.out or gmon.out.

Profiling targets

You can use the Profiler with both remote and native targets. It works with
simulators, monitors, and emulators.

Profiling native targets
Profiling uses a regular interrupt, typically 60 Hz, to obtain the location of the
program counter.

Profiling with simulators
Profiling with a simulator is often much more accurate than native profiling.
Normally, profiling information is obtained by periodically halting the program
and recording the location of the program counter. This method is purely
statistical and is subject to errors. Besides knowing which instruction it is
simulating, a simulator also has a concept of how many machine clocks passed.
This information tells the length of each instruction. This gives exact profiling
information, subject to the accuracy of the simulator’s model of the target
processor.

Source lines

Header Meaning

Filename The file that the source line is in.

Line Number The (file-relative) line number of the source line.

Function The function that the source line appears in.

Time The time spent on the given line. The status bar indicates if
this is displayed in seconds or milliseconds.
182 Debugging with MULTI 2000

The profdump command

 data”
 of it
Profiling with monitors
When profiling, monitors use a regular interrupt, typically 60 hertz, to obtain
the location of the program counter. These samples are stored in an internal
buffer, the contents of which are sent to the host as soon as it is full.

Profiling with emulators
When profiling, emulators provide a mechanism where trace information is
interpreted as profiling data. Depending on the emulator, this is done either
automatically or manually.

The profdump command

profdump

This command is primarily used when debugging a remote program that does
not terminate normally such as an operating system, since normally profiling
information is dumped upon exiting the program. This command also obtains
timing information prior to complete program execution.

To write and clear current timing buffers, do one of the following:

• Click the Profdump button ().

• In the command pane, enter the command profdump

After the command executes, you must process the data (see “Processing
on page 178). Because this command clears the buffers, subsequent uses
dump profile information not contained in the previous dump.

The protrans utility

Format: protrans options program
Green Hills Software, Inc. 183

7. The Profiler

,
le

he

, the
Options:

protrans is a utility that reads profile data produced when a program built for
profiling is executed. protrans accumulates profile data over multiple runs of a
program. protrans translates the data into an intermediate format that the
profiler uses when displaying profile data.

The protrans utility is also used outside of the MULTI environment. This is
desirable if you want to automate the acquisition of large amounts of profile
data, and then use the profiler to display the data once all the runs are complete.
Suppose you have a program called dylan, built with some combination of
calls, call graph, and coverage profiling (see “Standard calls” on page 175
“Call graph” on page 175, and “Block coverage” on page 175), and a samp
input to the program: sampleinput1, sampleinput2, etc. Now, consider the
following csh shell script:

This script repeatedly runs the dylan program with the sample input and calls
the protrans utility to read in the generated profile data for each execution. T
argument dylan specifies the profiled program from the generated data. The
default is a.out.

After the script finishes, an intermediate profile data file is generated which
contains the summary profile. The intermediate file has a .pro extension
appended to the program name if there is no current extension. Otherwise
.pro extension replaces the current extension. For example, the program fly.bat
generates the file fly.pro. In the example above, the file dylan.pro is generated
in the same directory we are executing.

Protrans options

Option Meaning

-a This switch adds the profile data for the current execution to the
summary profile. Without this switch, a new profile is generated
with each execution, overwriting the previous profile.

-q This switch suppresses message printing. Without this switch,
protrans prints a small message for each execution describing
the type of profile data found.

-m file Specifies file as a file containing calls profile data.

-g file Specifies file as a file containing call graph profile data.

-b file Specifies file as a file containing coverage analysis profile data.

#!/bin/csh
foreach p (sampleinput*)
 $RUN dylan $p
 protrans -a -q dylan
end
rm -f mon.out gmon.out bmon.out
184 Debugging with MULTI 2000

The protrans utility

er

re

a

n

ta,
 is
Now you can process the data (see “Processing data” on page 178) in the
debugger to read in the summary profile stored in dylan.pro and then use the
various features of the Profiler to view the information.

The last line in the script above deletes any profile data files left around aft
executions of the profiled program. The mon.out file is produced after running
a program built for calls profiling. See “Standard calls” on page 175 for mo
information. The gmon.out file is produced after running a program built for
call graph profiling. See “Call graph” on page 175 for more information. A
program can only produce one or the other of these two files. A bmon.out file is
produced after running a program built for coverage analysis (see “Block
coverage” on page 175); this type of profiling is either done alone or in
conjunction with either calls or call graph profiling. By default, the protrans
utility looks for files with the names mentioned above. However, you can
specify certain data files to protrans.

Thus, the shell script is rewritten:

The first loop runs dylan with the sample input and stores the generated dat
files into uniquely named temporary files. The second loop then calls protrans
to read in the data from these files and produces a summary profile. The -m
switch specifies a calls profile data file; the -g switch specifies a call graph
profile data file; the -b switch specifies a coverage analysis data file. You ca
specify multiple files of a single profile data type with multiple uses of these
switches. For example:

When using the profiler to run a profiled program to collect the resulting da
the actions of protrans are transparent to you. The information in this section
only provided for those who want to run protrans separately from MULTI.

#!/bin/csh
foreach p (sampleinput*)
 $RUN dylan $p
 mv gmon.out gmon.$p
 mv bmon.out bmon.$p
end
foreach p (sampleinput*)
 protrans -q -a -m mon.$p -b bmon.$p dylan
 rm -f mon.$p bmon.$p
end

protrans -m mon.1 -m mon.2 -m mon.3 ...
Green Hills Software, Inc. 185

7. The Profiler
186 Debugging with MULTI 2000

Chapter
8

Browse window

This chapter contains:

• Browse window

• Browse window for procedures

• Browse window for globals

• Browse window for source files

• Dialog box for procedures

8. Browse window

re

each
re
for
 can
y
This chapter shows you how to use the Browse window to explore procedures, globals, and
source files, and the Dialog box to choose procedures.

Browse window

The debugger provides a Browse window for browsing procedures, global
variables, and source files.

Once you have opened a browse window, you can change the object you’
browsing with the Object menu.

Browse window > Object menu

The debugger provides a set of predefined filters in a browse window. For
type of object, some of the predefined filters are applicable, while others a
grayed out. The debugger also enables by default some predefined filters
your convenience when globals are first loaded into a browse window. You
choose which objects to display by toggling the pre-defined filters, and/or b

Browse window > Object menu

Item Description

Globals Browses all globals of the debugged program in the current
browse window.

Procedures Browses all procedures of the debugged program in the current
browse window.

Files Browses all source files of the debugged program in the current
browse window.

Print Prints the text contents of the current browse window.

Help Opens a browser for HTML file and show MULTI’s online help for
browse window in it. You can navigate and search in the HTML
browser.

Close Closes the browse window.
188 Debugging with MULTI 2000

Browse window
defining filters yourself. User-defined filters are applied to the displayed object
names, which are always shown in the browse window.

Browse window > View menu

Other than User-defined Filter, all the other menu items are predefined filters,
and they affect the objects shown in the browse window only when they are
enabled.

Browse window > View menu

Item Description

User-defined Filter Opens a dialog box so you can define your filters (see Filter
Dialog Box below).

Hide C++ VTBLs Enables or disables displaying Virtual Tables in C++ programs.
Applicable only to globals.

Hide C++ Type
Identifiers

Enables or disables displaying Type Identifiers in C++
programs. Applicable only to globals.

Hide C++ Type Info Enables or disables displaying Type Information in C++
programs. Applicable only to globals.

Hide C++ Initialization
Names

Enables or disables displaying Initialization names in C++
program. Applicable only to globals.

Hide C++ std::* Enables or disables displaying names matching pattern “std::*”
in C++ program. Applicable to globals and procedures.

Hide .* Enables or disables displaying names matching pattern “.*”.
Applicable only to globals and procedures.

Hide _* Enables or disables displaying names matching pattern “_*”.

Hide __* Enables or disables displaying names matching pattern “__*”.

Hide Globals from
Shared Library

Enables or disables displaying globals from shared library.

Hide Files without
Procedure

Enables or disables displaying source files which don’t contain
any procedures.

Hide Procedures
without Source

Enables or disables displaying procedures which don’t have
source code.

Hide Inlined Procedure Enables or disables displaying procedures which are inlined.

Hide Static Names Enables or disables displaying objects which are defined as
static. Applicable only to globals and procedures.

Hide Non-Static
Names

Enables or disables displaying objects which are not defined
as static. Applicable only to globals and procedures.
Green Hills Software, Inc. 189

8. Browse window

rst
ly

he let-

bject
w

t >

nd
s. For

bject

der
e
ted
e

iated
 area
User-defined Filter dialog box
From a browse window, to open the User-defined Filter dialog box, choose
View > User-defined Filter.

In the Show and Hide text fields, you can type in a set of patterns separated by a
space or semicolon.

The debugger uses the following algorithm to determine the set of objects to
display in a browse window:

1. Determine the “base” set of objects in the browse window. When you fi
open a browse window, the base set of objects are those that are initial
loaded in the browse window. (For example, if you enter the command e f*,
then the base objects are all the procedures whose names begin with t
ter f. Another example: if you enter the command browse procs, then the
base objects are all the procedures.) After that, each time you use the O
menu to change the object type to browse, the newly loaded objects no
become the new base set. (For example, you open a browser with browse
procs, the base set is now all the procedures. Now if you choose Objec
Globals, the base set is now all the global variables.)

2. Use the user-defined filters to select objects from the base object set, a
then remove those whose names match the user-defined hiding pattern
example, if the user-defined filters include fa* as a selection pattern and fab*
as a hiding pattern, then only those objects which come from the base o
set and whose names start with fa but not fab will be selected.

3. Remove those specified by the enabled predefined filters.

Note: the base set is not affected by the View menu or any menu items un
the View menu. The View menu only affects what is displayed in the brows
window, depending what filters there are to operate on the base set. As no
above, the base set does change if you use the Object menu to change th
objects to view.

The mouse clicks in the browse pane (just below the menu bar) are assoc
with some actions. Right clicking in the browse pane or the column header
opens a pop-up menu. The right click pop-up menu usually contains the
following information:

• The formats in which to display the names of the objects.

• Switches for showing and hiding some attributes of the objects.

• Actions applicable to the clicked object.
190 Debugging with MULTI 2000

Browse window

t box,
in

se

iteria
se a
se
You can switch the relative positions of existing columns by dragging the
corresponding column header and dropping it at the desired position.

To sort the objects according to a column, click the corresponding column
header.

Browse window for procedures
To open a browse window for procedures, do one of the following:

• From the debugger, choose Browse > Procedures...

• In the command pane, use the e command with a pattern. For example,
“e f*”.

• In the command pane, enter browse procedures or browse procs.

• From the status bar of the debugger, open the Procedure drop-down lis
and choose “Browse procedures in program...” or “Browse procedures
current file...”.

• In a browse window for source file, double click a file or right click a file
and choose “Show procedures of File” from the pop-up menu.

• In the debugger source pane, right click a procedure and choose “Brow
Callers” or “Browse Callees” from the pop-up menu.

When you open a browse window, it may contain all the procedures in the
debugged program or a subset of all the procedures selected by certain cr
(for example, a pattern, or “callers of a procedure”). But whenever you choo
different object type and then choose Object > Procedures again, the brow
window will contain all procedures.
Green Hills Software, Inc. 191

8. Browse window

d

d
By default, a browse window for procedures shows four attributes of a
procedure. The following table lists all the attributes of a procedure which can
be shown in a browse window for procedures.

A procedure’s information is displayed as follows:

• Grayed out if it has no source code.

• Displayed in the color for “dead code” in syntax coloring if it is an inline
procedure.

• Displayed in the color for “comment” in syntax coloring if it is a static an
not fall in the above categories.

• Displayed in the normal foreground color otherwise.

The following table lists the operations when you click in the browse pane.

Procedure attributes

Attribute Information shown in column

Procedure Name The name or mangled name of the procedure, depending on what
kind of name is chosen.

BP If a breakpoint is set at the prologue address of the procedure, the
icon for the corresponding breakpoint type will be shown,
otherwise, a green dot is shown.

Object File The object file from which the procedure comes.

Source File The source file from which the procedure comes.

Module Name of the module from which the procedure comes, if any.

Library Name of the library from which the procedure comes, if any.

Address Address of the procedure.

Size Size of the procedure.

Type GI: if the procedure is an inlined non-static procedure;
SI: if the procedure is an inlined static procedure;
G: if the procedure is a not-inlined non-static procedure;
S: if the procedure is a not-inlined static procedure.
192 Debugging with MULTI 2000

Browse window

The following table lists the operations when you click a column header in the
browser pane:

Browse window for globals
To bring up a browse window for globals, do one of the following:

• From the debugger, choose Browse > Globals...

• In the command pane, enter: browse globals.

Mouse action Description

Left click Displays the clicked procedure in the debugger source pane. If
you click in the BP column, the debugger will either insert a
breakpoint at the clicked procedure if no breakpoint is there, or
remove the breakpoint there if one already exists. If it sets a
breakpoint at the procedure, it is at the first instruction after the
prologue, if any.

Double left click Opens an Editor window for the clicked procedure. If the clicked
procedure has no source code, the debugger will issue a beep as
a warning.

Right click Opens a pop-up menu. See “Pop-up menu for procedure” below
for detail.

Pop-up menu for a procedure

Menu Item Description

Name Shows normal (unmangled) names of procedures.

Mangled Name Shows mangled names of procedures.

Show in Debugger Loads the clicked procedure into the debugger source pane.

Show in Editor Opens an Editor window for the clicked procedure.

Show in Tree
Browser

Opens a tree browser window to show the clicked procedure’s
calling relationships.

(other options) Enables or disables displaying the corresponding attribute.

Mouse action Function Description

Left click Sorts the objects according to the column (the order toggles).

Right click Opens a pop-up menu. The menu items’ functions are the same
as those specified in table "Pop-up menu for procedure" above.
Green Hills Software, Inc. 193

8. Browse window

By default, a browse window for globals shows three attributes of a global
variable. The following table lists all the attributes of a global variable which
can be shown in a browse window for globals.

A global variable’s information is displayed as follows:

• Displayed in the color for “comment” in syntax coloring if it is static.

• Displayed in the normal foreground color otherwise.

The following table lists the operations when you click in the browse pane.

Procedure attributes

Attribute Information shown in column

Global Name The name or mangled name of the global variable, depending on
what kind of name is chosen.

Module Name of the module from which the global variable comes from, if
any.

Object File Name of the object file in which the global variable is defined if it is
static, or name of a object file in which the global variable is
defined or referred to if it is not static.

Library Name of the library from which the global variable comes from, if
any.

Address Address of the global variable.

Size Size of he global variable.

Type G: if the global variable is non-static;
S: if the global variable is static.

Mouse action Function Description

Left click Prints the global’s value in the command pane if applicable,
otherwise, the debugger issues a beep as a warning (for reasons
such as the process is running, etc.).

Double left click Opens a data explorer to show the global’s value if applicable,
otherwise, the debugger issues a beep as a warning (for reasons
such as the process is running, etc.).

Right click Opens a pop-up menu. See “Pop-up menu for a global” below for
details.
194 Debugging with MULTI 2000

Browse window

The following table lists the operations when you click a header column in the
browse pane:

Browse window for source files
To open a browse window for source files, do one of the following:

• From the debugger, choose Browse > Files...

• From the status bar of the debugger, open the File drop-down list box, and
choose “Browse all source files in program...”.

• In the command pane, enter: browse files.

A source file’s information is displayed as follows:

• Grayed out if there is no procedure defined in the source file.

• Displayed in the normal foreground color otherwise.

Pop-up menu for a global

Menu Item Description

Name Shows normal names for globals.

Mangled Name Shows mangled names for globals.

Print Value Prints the clicked global’s value in the command pane.

View Value Opens a data explorer for the clicked global.

(other options) Enables or disables displaying the corresponding attribute.

Mouse action Function Description

Left click Sorts the objects according to corresponding column (the order
toggles).

Right click Opens a pop-up menu. The menu items’ functions are the same
as those specified in the table “Pop-up menu for a global” above.
Green Hills Software, Inc. 195

8. Browse window
The following table lists the operations when you click in the browse pane.

The following table lists the operations when you click a column header in the
browse pane:

Mouse action Function Description

Left click Displays the clicked source file into the debugger source pane.

Double left click Opens a browse window to show the procedures defined in the
clicked source file if it is not grayed out, otherwise issues a beep
as a warning.

Right click Opens a pop-up menu, see “Pop-up menu for a source file” below.

Pop-up menu for a source file

Menu Item Description

Full Name Shows full names for source files.

Base Name Shows base names for source files.

Show Procedures
of File

Opens a browse window to show all procedures defined in the
source file.

Show in Debugger Displays the source file in the debugger source pane.

Show in Editor Opens an Editor window on the source file.

Show in Tree
Browser

Opens a tree browser to show the reference relationships of the
source file.

Action Function Description

Left click Sorts the objects according to the corresponding column (the
order toggles).

Right click Opens a pop-up menu. The menu items’ functions are the same
as those specified in the table “Pop-up menu for a source file”
above.
196 Debugging with MULTI 2000

Dialog box for procedures

+

two
the

ect
 extra
Dialog box for procedures

The dialog box for procedures is similar to a browse window for procedures
except for the following:

• The dialog box is modal. (A browse window is modeless.)

• The dialog box does not let you change anything in the debugger until you
dismiss the dialog box.

• The dialog box has an extra attribute column.

• The dialog box has a set of buttons at the bottom.

The debugger opens the dialog box for procedures one of two ways:

• Case 1: In the command pane, you use the b command with a pattern as
parameter, for example, “b *”.

• Case 2: The debugger tries to resolve an overloaded procedure in a C+
program.

The extra attribute column is always shown. This column header is one of
different names depending on which way the dialog is opened. In Case 1,
name is “Set BP?”. In the Case 2, the name is Choice.

In Case 1, you can select multiple procedures. In Case 2, you can only sel
one procedure. If you select a procedure, a check mark appears under the
attribute column.
Green Hills Software, Inc. 197

8. Browse window
The following table shows the buttons in the dialog box.

Button Name Description

OK Accepts the current selection(s).

All Marks all procedures shown in the dialog box as selected. The
item is only applicable in Case 1.

None Marks all procedures shown in the dialog box as unselected. The
item is only applicable in Case 1.

Cancel Cancels what has been done in the dialog box and closes it.
198 Debugging with MULTI 2000

Chapter
9

Memory view
window

This chapter contains:

• Opening a memory view window

• Configuring a memory view window

• Changing the address in a memory view window

• Editing memory in a memory view window

9. Memory view window

mory

ed
The Memory View window is useful for examining large buffers, strings, and other data that
do not display well in the normal data explorer. The window can be configured to display
memory in a variety of formats. Additionally, the memory may be modified from this
window.

Opening a memory view window

To open a memory view window, do one of the following:

• Click the Memory View button () on the tool bar.

• Choose View > Memory.

• In a data explorer, type m, or click the Format button () and choose
Memory View... . This will bring up a memory view window examining the
same memory location as the data explorer.

• In the command pane, use the memview command. See “memview” on
page 118.

The memory view window consists of a memory pane and several controls
which configure how the contents of memory are displayed. In the memory
pane, there are three columns. The left column displays the address of me
being viewed. The middle column displays the memory contents in ASCII
format. The right column displays the memory contents in a customized
format, based on the configuration you have currently selected. When the
memory view window is not stopped, it is updated every time the program
being debugged stops. Bytes in the memory view which have been chang
since the last time the program was stopped will appear highlighted.
200 Debugging with MULTI 2000

Configuring a memory view window
Configuring a memory view window

The first four buttons control the basic format of the memory display.

Click one of the buttons to set the display to that format. The button will remain
depressed to show that the memory view is currently configured to that format.
By default, the memory view window appears in hexadecimal mode.

The size drop-down list box controls the unit size of the memory elements
displayed. For hexadecimal, decimal, and binary, the choices are: 1 byte, 2
bytes, 4 bytes, and 8 bytes. For floating point, the choices are single precision
and double precision. The default is 1 byte and single precision.

The signed button () affects decimal display only. It controls whether the
decimal display should show signed values or unsigned values. When the
button is depressed, the memory displays as signed values. When the button is
raised, the memory is displayed as unsigned values. There is no effect unless the
basic format is set to decimal. The default is unsigned.

The endian button () controls the endianness of the displayed memory.
There are two choices for endianness. In big endian mode, the most significant
byte is first and the least significant byte is last. In little endian mode, the least
significant byte is first, and the most significant byte is last. When the button is
depressed, the memory is displayed in big endian mode. When the button is
raised, the memory is displayed in little endian mode. Note that in 1 byte view,
endianness has no effect, since both modes are identical. The default is big
endian.

The ASCII button () toggles the state of the ASCII column. The ASCII
column may be hidden or shown. When the button is depressed, the ASCII
column is shown. When the button is raised, the ASCII column is hidden. The
default is to show the ASCII column.

The freeze button () controls the refreshing of the memory view window.
When the button is depressed, the contents of the window are frozen. This

Call stack window tool bar

Button Display format

hexadecimal

decimal

binary

floating point
Green Hills Software, Inc. 201

9. Memory view window

e
 If
iting
ill

ane.
ber

w is

), an

ss.
 the
n
 the
g.
 the
is
means that the window will not be updated when the memory contents change,
and will continue to display the same information until the window is unfrozen.
While the window is frozen, several features are disabled. You may not edit the
contents of memory, scroll to a different memory location, or change the size of
the view. You can still change the display format, however. When the button is
raised, the window is unfrozen and will update normally. The default is
unfrozen.

The shrink () and expand () buttons control the width of each line of
memory. You may shrink the window to as few as 4 bytes per row, or expand
the window to as many as 128 bytes per row. The default is 8 bytes per row.

The print button () allows you to print the contents of the memory view
window. Only the visible area will be printed, so you should resize the window
and scroll to the correct location before printing.

The first memory view window will appear with the default settings for the
configuration options. Subsequent memory view windows will appear with the
same settings as the previous memory view window. You may also use the
mvconfig command to configure the memory view window and to change the
default settings of the memory view window. See “mvconfig” on page 120.

Changing the address in a memory view window

To change the address being viewed, enter an address or expression in th
Address text field. (Note that this does not work if you are editing memory.
you are editing, click anywhere in the column of addresses to get out of ed
mode before entering an address expression.) The memory view window w
jump to the specified address and display it in the top row of the memory p
Note that the starting memory address will be aligned according to the num
of bytes per row. For example, if you entered 0x00010007, and the windo
currently displaying 8 bytes per row, the memory view will actually jump to
0x00010000.

Valid entries in the Address text field include an absolute address (0x10000
expression (pointer + 0x200), or a variable name (mybuffer). For absolute
addresses and expressions, the memory view jumps to the specified addre
For variable names, the memory view will behave differently depending on
type of the variable. If the type is a pointer type (eg. pointer, array, functio
name, string), the memory view will take the value of the pointer and show
contents of the memory at that location. If the type is not a pointer type (e
integer, floating point, structure), the memory view will take the address of
variable and show the contents of memory at that location. If the variable
202 Debugging with MULTI 2000

Editing memory in a memory view window

e
er of
 To
ge

 it.

ht-
he

umn

 you

pecial

 to
ply
g 8
” in

o
being stored in a register (and therefore does not reside in memory), the
memory view will reject the variable and not change the view.

You may also use the scrollbar to change the address being viewed. Because
the contents of memory are so large, the scrollbar is set to a special “infinit
mode”. In this mode the scroll thumb is deactivated and is fixed in the cent
the scrollbar. You may still scroll the window line by line or page by page.
scroll one line at a time, click on the up or down scroll arrow. To scroll a pa
at a time, click on the scrollbar above or below the scroll thumb. You may
scroll continuously by holding down the mouse button instead of releasing

Editing memory in a memory view window

To edit the contents of memory, do the following:

1. Click a row of memory you want to edit.

2. Choose the ASCII (middle) column to edit in ASCII or the formatted (rig
most) column to edit in the currently displayed format. The contents of t
row will appear in the textfield above the memory pane.

3. Edit the contents of the textfield.

4. Press Enter to write the contents back into memory.

The format you use to edit memory will be the same as the format of the col
selected. For example, if you clicked in the ASCII column, you must edit
memory as ASCII characters. If you are in hexadecimal 2-byte mode, and
click the formatted column, you must edit memory as 2 byte hexadecimal
values.

A non-printing character is normally represented by a period (.) in the ASCII
column. When editing in ASCII, however, non-printing characters are both
displayed and modified using a special backslash sequence “\nn”, where nn is
the hexadecimal value for the character. The backslash character has the s
sequence “\\” (a double backslash).

When you edit the contents of the memory in the text field, you are allowed
modify memory beyond the end of the current row. You can do this by sim
adding more values to the end. For example, if you are currently displayin
bytes per row, and you click in the ASCII column, you might see “abcdefgh
the textfield. If you change the contents to “1234567890”, you will not only
change the original 8 bytes from “abcdefgh” to “12345678”, but you will als
change the next 2 bytes to “90”.
Green Hills Software, Inc. 203

9. Memory view window

204 Debugging with MULTI 2000

Chapter
10

Call stack window

This chapter contains:

• Call stack window

10. Call stack window

 it
 on a
k,
y.
This chapter shows you how to open a call stack window and how to use it.

Call stack window

To open a call stack window, do one of the following:

• Click the call stack button ().

• Choose View > Call Stack... .

• In the command pane, use callsview. See callsview on page 89.

The following are the buttons on the toolbar.

To the far right of the toolbar is the “Max Depth” field, which defines the
maximum depth the debugger will display the calls stack. You can change
according to your preference. For example, if you’re debugging a program
very slow target and you only care about the first few levels of the call stac
you can decrease the number so that the window is refreshed more quickl

Call stack window tool bar

Button Description

 Parameter Enables or disables displaying parameters in function calls.

 Position Enables or disables displaying the position of the function call,
that is, the filename, the file-relative and proc-relative line
numbers.

 Freeze Enables or disables refreshing the window.

 Edit Opens an Editor window on the selected function if it has
source code.

 Locals Opens a data explorer to show all the local variables of the
selected function.

 Print Prints the ASCII text contents of the call stack window.

 Close Closes the call stack window. You can configure whether or not
to have this button.
206 Debugging with MULTI 2000

Call stack window

utes

me.

ged
 you,
ow,

ck

and

ng is
are
, but
sks
Below the toolbar is the call stack pane, where the call stack is displayed up to
the maximum depth. The following table lists the mouse and keyboard
operations in the pane:

In a debugging session, whenever you change a call stack window’s attrib
(that is, displaying parameters, displaying location), the changes will affect
subsequently created call stack windows until you change them the next ti
You can also change these attributes with the cvconfig command. See cvconfig
on page 94.

Call stack window and command-line function call
Suppose from the command pane, you make a function call into the debug
program, and suppose the program is stopped before the function returns to
for example, because it hits a breakpoint. If you open a call stack window n
you will see two parts in the call stack pane. The bottom part is the call sta
before you call the function, the top part is the call stack starting from the
function.

Caveat
At the beginning and end of every function is a region called the prologue
epilogue. Inside this region of code, various registers may be saved and
restored, and the stack pointer may be modified. Full source-level debuggi
not possible within these regions. This is why no source level breakpoints
displayed here. You may single step at the machine level through this code
you cannot trace the stack, or examine variables, or perform many other ta
until you are outside this region.

To do this Do this

Display a function in the source pane. Click the function

Open an Editor window on a function. Double click the
function

Search forward in the call stack pane, if it has the focus (click
in it to put focus there.)

Press Ctrl+f

Search backward in the call stack pane, if it has the focus (click
in it to put focus there.)

Press Ctrl+b

Reset the search pattern, if you are searching in the call stack
pane.

Press Ctrl+u
Green Hills Software, Inc. 207

10. Call stack window
208 Debugging with MULTI 2000

Chapter
11

Breakpoints window
This chapter contains:

• Opening the Breakpoints window

• Breakpoint types

• Using the Breakpoints window

11. Breakpoints window

ted
The Breakpoints window provides a graphical interface for examining and manipulating
various kinds of breakpoints.

Opening the Breakpoints window

To open the Breakpoints window from the debugger, do one of the following:

• Choose View > Breakpoints.

• From the command pane, enter the bpview command.

When you bring up the Breakpoints window, it will initially appear in software
breakpoint mode. (See “bpview” on page 84.)

Breakpoint types

There are three kinds of breakpoints which can be examined and manipula
with the Breakpoints window:

• Software breakpoints

• Hardware breakpoints

• Signals

To work with software breakpoints
Click the Software radio button.

This is the default type whenever the Breakpoints window appears.
210 Debugging with MULTI 2000

Using the Breakpoints window
To work with hardware breakpoints
Click the Hardware radio button. If hardware breakpoints are unavailable on the
current target, the Hardware radio button will be greyed out.

To work with signals
Click the Signals radio button. If signals are unavailable on the current target,
the Signals radio button will be greyed out.

Using the Breakpoints window

To toggle a breakpoint
This function is not available for Signals.

1. Choose the breakpoint from the list.

2. Click the Active check box.

To toggle whether a bell will sound when a breakpoint is hit
1. Choose the breakpoint from the list.

2. Click the Bell check box.

To change the count for a breakpoint
This function is only available for Software breakpoints.

1. Choose the breakpoint from the list.

2. Type the new count into the Count text field.

3. Click the Set button.

To change the list of commands associated with a breakpoint
1. Choose the breakpoint from the list.

2. Type the new command list into the Command text field.

3. Click the Set button.

To make a breakpoint conditional
1. Choose the breakpoint from the list.

2. Type the new condition into the Condition text field.
Green Hills Software, Inc. 211

11. Breakpoints window
3. Click the Set button.

To examine a breakpoint
This function is only available for Software breakpoints.

1. Choose the breakpoint from the list.

2. Click the Show button.

This action can also be performed using the e command. See e on page 101.

To delete a breakpoint
This function is not available for Signals.

1. Choose the breakpoint from the list.

2. Click the Delete button.

This action can also be performed using the d command. See d on page 96.

To set a new software breakpoint
1. Choose the Software radio button.

2. Type the address expression where the breakpoint should be set into the
Address Expression text field.

3. Type the count into the Count text field.

4. Type the command list into the Command text field.

5. Type the condition into the Condition text field.

6. Click the Set button.

This action can also be performed using the b command. See b on page 81.

To save the current list of software breakpoints to a file
1. Choose the Software radio button.

2. Click the Save button.

3. Choose a filename to save to in the file chooser which appears.

This action can also be performed using the bpsave command.

To load a list of software breakpoints from a file
1. Choose the Software radio button.
212 Debugging with MULTI 2000

Using the Breakpoints window

 field.

 into
reak-
on
n in

e

.

m-

.

2. Click the Load button.

3. Choose a filename to load from in the file chooser which appears.

This action can also be performed using the bpload command.

To set a new hardware breakpoint
1. Choose the Hardware radio button. Hardware breakpoints are not available

on some targets.

2. Type an expression into the Expression text field.

— or —

Type the address at which the breakpoint is to be set into the Address text

3. Type the size, in bytes, of the region on which the breakpoint is to be set
the Size text field. The default depends on how the address to set the b
point at was specified. If the name of a variable is given in the Expressi
text field, the default size is the size of the variable. If an address is give
the Address text field, the default size is one byte.

4. Type the mask to be applied to all addresses into the Mask text field. Th
default is 0.

5. Choose one of the Read, Write, Read/Write, and Execute radio buttons

6. Type the command list into the Command text field. The default is no co
mand list.

7. Type the condition into the Condition text field. The default is uncondi-
tional.

8. Click the Set button.

This action can also be performed with the hardbrk command. See “hardbrk”
on page 108.

To change the actions performed when a signal is received
1. Choose the signal to be modified from the list.

2. Choose the desired combination of the Stop, Report, and Ignore check
boxes. Note that changes to these check boxes take effect immediately

3. Type the condition into the Condition text field. The default is uncondi-
tional.
Green Hills Software, Inc. 213

11. Breakpoints window
4. Type the command list into the Command text field. The default is no com-
mand list.

5. Click the Set button.

This action can also be performed with the zignal command. See zignal on
page 144.
214 Debugging with MULTI 2000

Chapter
12

Tree browser
This chapter contains:

• Opening a tree browser

• Using a tree browser

12. Tree browser

ts
class

our
The debugger tree browser is a graphical tool which allows you to examine the structure of
your program in several ways.

Opening a tree browser

To use a tree browser, you must be debugging a program. You can open a tree
browser in several ways, depending on what type of information you want to
view.

Browsing classes
To use a tree browser to browse your class hierarchy, do one of the following:

• Choose Browse > Classes...

• In the debugger command pane, enter browse classes.

A window that looks something like this will appear:

The children of the ‘root classes’ node are all of your classes (including struc
and unions) which do not inherit from another class. A class which is a sub
of another class is shown as a child of its parent class. Colors are used to
distinguish classes and structs, shown in one color, from unions, shown in
another.

To view the members in a class, do one of the following:

• Double-click the class.

• Right-click the class and choose Browse Members in Class.

Browsing static calls, by function
The tree browser can use information from your program’s symbol table to
show you which functions your functions call, or are called by. These are
potential, or “static”, paths solely based on the build-time symbol table of y
216 Debugging with MULTI 2000

Opening a tree browser
program, and not the actual run-time paths taken by your program during
execution.

To browse static calls by function, do one of the following:

• Choose Browse > Static Calls...

• In the debugger command pane, enter: browse scalls.

A tree browser will then start up centered on the function you are currently
looking at in the debugger source window.

To open a tree browser on a specific function, for example, foo:

• In in the debugger command pane, enter: browse scalls foo.

Color is used to provide information about the function represented by a given
node. Separate colors are used for functions with debug information, functions
without debug information, functions which may be recursive, and nodes used
to represent functions whose address is taken and may therefore be called via
function pointers.

To view a function in the debugger source pane, click the function node.

To open an editor window on a function, double-click the function node.

Both features are also available from the right-click menu.

Browsing static calls, by file
Besides being able to view the static call graph as functions, you can also view
it as files. This will let you see the other source files whose functions are called
from a particular source file.

To browse static calls by file, do one of the following:

• Choose Browse > File Calls...

• In the debugger command pane, enter browse fcalls.

A tree browser will then open on the file you are currently looking at in the
debugger.

To start a tree browser on a specific file, for example, foo.c:

• In the debugger command pane, enter: browse fcalls foo.c.

To view a file in the debugger, click its node. To edit a file, double-click its
node. Right-click a file node to bring up a menu which allows you to edit the
file, view the file in the debugger source pane, or browse a list of functions in
the file.
Green Hills Software, Inc. 217

12. Tree browser

iew,

e in
ct)
 bar
re

oot
t node
oot
ot

ting,

e

Browsing dynamic calls, by function
The dynamic call graph uses profiling information to display which functions a
function actually called during run-time, unlike the static call graph which
shows potential calls.

To browse the dynamic call graph, do one of the following:

• Choose Browse > Dynamic Calls...

• In the debugger command pane, enter: browse dcalls.

• To view a particular function specified by function_name, in the debugger
command pane, enter: browse dcalls function_name.

This will only work if you have collected profiling information. See “Call
graph” on page 175.

Using a tree browser

Regardless of what kind of information you are using the tree browser to v
the interface is basically the same.

The main part of the tree browser window is a tree graph. There is one nod
the graph which is the ‘root node’; it is the particular function (or other obje
which you are examining. The name of the root node is displayed in the title
of the tree browser window. You can expand ancestors (i.e. callers, if you a
looking at a function, or superclasses, if you are looking at a class) of the r
node towards the left, and descendents (callees, or subclasses) of the roo
towards the right. You may go as many levels as you want away from the r
node. However, if you wish to look at an ancestor of a descendent of the ro
node, for example, you will need to reroot your graph. (See more on reroo
below.)

Ancestor of root node Root node Descendents of root nod

Status bar
218 Debugging with MULTI 2000

Using a tree browser
To expand ancestors or descendents of a node, click the plus sign next to the
node. If there is no plus sign, it means there is nothing you can expand. To
contract something you have expanded, click the minus sign.

If you wish to expand many things at once, there are four ways to do it, and they
are available from the Expand menu, or from the four purple expansion buttons
on the toolbar.

To expand all of the nodes on the descendent side of the graph, until there are no
more descendents, or until recursion is detected, do one of the following:

• Choose Expand > All Descendents.

• Click Expand All Descendents ().

Note that performing this expansion on a large program may take an extremely
long time, and may yield unmanagable results anyway. To cancel this operation,
press Esc.

To do the similar expansion for the ancestor side of the graph, do one of the
following:

• Expand > All Ancestors

• Click Expand All Ancestors ().

Perhaps more useful than expanding all the nodes is the ability to expand one
level of nodes.

To expand one more level of descendents, do one of the following:

• Choose Expand > One Level of Descendents.

• Click Expand Descendents One Level ().

This is basically equivalent to clicking the plus sign on every node in the
descendent side of the graph.

To do the same thing to ancestors, do one of the following:

• Choose Expand > One Level of Ancestors.

• Click Expand Ancestors One Level ().

Node operations
Each node is labeled with a short name which describes what it is. In C++, the
short name does not include class or namespace names which come before the
final double colon (::). To view the entire name, point the mouse cursor over
the node, and a tooltip will appear with the entire name.
Green Hills Software, Inc. 219

12. Tree browser
To view more information about a node, click it. Information about the node,
including its full name, will be displayed in the status bar of the tree browser
window. For certain types of nodes, such as function and file nodes, this will
also cause the source code for the node to be displayed in the debugger source
pane.

To open a right-click menu for a node, right-click it.

For example, the right-click menu for a function node will look something like
this:

For a class node, its right-click menu will look something like this:

The first two operations, Reroot and Reroot in New Window, are described in
the section on rerooting, below. The middle portion of the menu contains
various actions you can perform on the node; these actions vary depending on
the type of node, and are documented in the section on invoking the tree
browser, above. The bottom portion of the menu lists the type(s) of ancestors or
descendents a node may have, and allows you to select whether they are
expanded; this is equivalent to the plus/minus box on the side of the node.

Rerooting
If there is a node on the graph that you would like to make the root node (so that
you can examine both its ancestors and its descendents), you can reroot on that
node.

To reroot on a node, do one of the following:

• Left-click the node and choose Browse > Reroot Selected Node.

• Right-click the node and choose Reroot.

• Middle-click the node.

Once you reroot on a node, everything which was previously in your window
disappears. However, your previous window contents are stored in a history
mechanism much like a web browser.
220 Debugging with MULTI 2000

Using a tree browser

x)

ting
To access the history, do one of the following:

• Choose Browse > Back, or click Back ().

• Choose Browse > Forward, or click Forward ().

To reroot a node in a new window, rather than replacing the current window
contents, do one of the following:

• Left-click the node and choose Browse > Reroot Selected Node(s) in New
Window(s).

• Right-click the node and choose Reroot in New Window.

• Double-middle click the node.

Window operations
To close a tree browser:

Choose Browse > Close Window, or click Close (). (You can configure
whether or not to have this button on the toolbar. See also “Display close (
buttons” on page 241.)

To open a new tree browser which has the exact same contents as an exis
tree browser, choose Browse > Clone Window.

For help on the tree browser:

Choose Help > Help.
Green Hills Software, Inc. 221

12. Tree browser
Configuring tree browser colors

A number of configuration options exist which allow you to control how nodes
of various types are displayed:

Foreground color
configuration option

Background color
configuration option

Node type

TBFunctionNormalFG TBFunctionNormalBG Functions in the static calls browser
with debugging information.

TBFunctionNoInfoFG TBFunctionNoInfoBG Functions in the static calls browser
without debugging information.

TBFunctionRecursiveFG TBFunctionRecursiveBG Functions which may be recursive in
the static calls browser.

TBFunctionAdrTakenFG TBFunctionAdrTakenBG Nodes representing the possibility of
calls to a function through a function
pointer.

TBDynNormalFG TBDynNormalBG Functions with debugging
information in the dynamic calls
browser.

TBDynNoInfoFG TBDynNoInfoBG Functions without debugging
information in the dynamic calls
browser.

TBFileNormalFG TBFileNormalBG Files with debugging information.

TBFileNoInfoFG TBFileNoInfoBG Files without debugging information.

TBClassUnionFG TBClassUnionBG Unions.

TBClassStructFG TBClassStructBG Classes and structs.

TBClassNoInfoFG TBClassNoInfoBG Types without debugging
information.
222 Debugging with MULTI 2000

IndexIndex
Symbols
! command See repeat command
^ command 54
… See ellipsis
^ command (caret)76
-> command (menu)76
- command (minus)76
+ command (plus)76
? command (question mark)76
/ command (slash)76
" " command66
command (obsolete)73
variable search designator49
$ variable search designator48
$result, special predefined variable52
% command (obsolete) See percent sign com-

mand
%bp_label, debugger notation66
%w key sequence133
* wildcard 57
. (period) last character seen designator49
.* operator46
.text section debugging42
/ search forward designator75
/* */ comment delimiters46, 69, 74
: variable search designator49
:: variable search designator49
; command separator69
< command74
<< command74
= command (obsolete) See repeat command
= operator47
== operator47
> command74

menu equivalent33
->* operator46
>> command74

menu equivalent33
? search backward designator75
? wildcard57
@ sign, count number71, 72
@ wildcard57
@bp_count, debugger notation66
_ASMCACHE system variable61
_BREAK system variable63
_CACHE system variable61
_DATA system variable61

_DISPMODE system variable61
_ERRHALT system variable62
_FILE system variable63
_INIT_SP system variable62
_INTERLACE system variable63
_LANGUAGE system variable62
_LINE system variable63
_LINES system variable62
_MULTI_DIR system variable63
_NOTIFY system variable62

in relation to fork or exec123
_OPCODE system variable62
_PID system variable63
_PROCEDURE system variable63
_PROCESS system variable63
_REMOTE system variable63
_SELECTION system variable63
_STATE system variable63
_TEXT system variable62
{ } command list delimiters69
{ cmds } command list66
~ command See repeat command, smart

Numerics
1,2,3,4

in File menu (debugger)23
in Target menu (debugger)30

A
-a compiler option

GUI equivalent to174
A, command77
a, command77
About MULTI...

in debugger Help menu34
Ada language

generics16
Add Assertion

in debugger Debug menu25
address

halting on write to141
viewing procedure at27

address expressions66
address map

printing 115
Green Hills Software, Inc. I-1

Index

address_expression, debugger notation 66
AddVariable command

for viewcommand 154
AddVarOrAdr command

for viewcommand 154
alias command 78
Allocation, memory checking option 170
ANSICMODE system variable 60
apply command 79
Array Bounds check box

in Run-time Error tab 168
ARRAYPRINTMAX system variable 60
arrays

viewing in data explorer 151
Assem button

in debugger 35
assem command 79
assembly code 17

toggling between source-only and 26
viewed in debugger 17
viewing in data explorer 152

assembly-only view 17
Assertions

in debugger View > List sub-menu 28
assertions 77

activating 77
adding 25, 77
exiting 143
listing 28
modifying, deleting, suspending 78

Assignment Bounds check box
in Run-time Error tab 168

attach command 80
attach to process 80
Attach to Process...

in debugger File menu 23

B
B command 80
b command 81
bA command 81
ba command 82
backhistory command 82
backout command 82
bat command (deprecated)

see sb command 82
be command 82

Beep command
for viewcommand 153

beeping
in debugger while in incremental search 40

bg command 83
bi command 83
bif command 83
binary

viewing data in 161
binding UpArrow key to 82
bl command 83
block coverage 175
block coverage detailed

in profiler 181
block coverage summary

in profiler 181
blue arrow 15
bpload command 84
bpsave command 84
bpview command 84

opening the breakpoints window 210
bR command 84
br command 84
braces {}

around command lists 69
break dot

in source pane 13
breakdots 14
breakpoint 15

changing the count of 211
clearing 15
command list associated with 211
commands for 71
conditional, setting 211
deleting 15, 95, 96, 212
examining in debugger 212
examining with the e command 212
hardware 210
hardware, setting 213
in source pane 13
labels 68
listing 28
lists 68
ranges 68
removing 15
restoring 84
saving 84
setting 15, 81, 82, 84
I-2 Debugging with MULTI 2000

Index
setting on instruction 83
signals 210
software 210
software, setting 212
toggling 138, 211
types of 210

breakpoint commands 72
breakpoint labels 68
breakpoint list 68
Breakpoints

in debugger View > List sub-menu 28
breakpoints button

in debugger 35
breakpoints command (deprecated) 85
breakpoints dialog box

opening 26
breakpoints window

opening 210
opening with command-line 84
screenshot of 210

Breakpoints...
in debugger View menu 26

browse command 85
Browse menu

in debugger 29
Browse menu (debugger) 29
browse window 188

for globals 193
for procedures 191
for source files 195

browsing
all procedures in current file 19
all procedures in program 19
classes 216
dynamic calls, by file 218
globals 188
objects 85
procedures 188
source files 18, 188
static calls, by file 217
static calls, by function 216

bsearch command 86
bt command 86
bU command 86
bu command 86
build command 87
Builder button

in debugger 36
builder command 87
Builder...

in debugger Tools menu 31
button command (deprecated) 88
buttons

configuring 97
in main debugger window 34

bX command 87
bx command 87

C
C command 88
c command 88
-C command line option

to MULTI 7
-c command line option

to MULTI 6
C language

printing structs 70
C++ classes

viewing in data explorer 152
C++ language

C++ templates 16
casts not supported in expressions 46
destructors not called by debugger 47
operators not supported in expressions 46
viewing expressions 57

ca command 88
cag command 88
call graph

opening from command line 175
call graph report

in profiler 180
call stack trace window

invoking 26
Call Stack...

in debugger View menu 26
Calls button

in debugger 35
calls command 89
callstack view command 89
callsview command 89
case sensitivity 16

changing 91
in searches 91
Green Hills Software, Inc. I-3

Index

of configuration options 16
of system variables 16

Case/Switch Statement check box
in Run-time Error tab 169

caveat
in debugging prologue and epilogue

code 207
Cb command 90
cb command 90
cf command 90
cfb command 91
check 169
check box convention P-3
-check= option, GUI equivalent to

-check=alloc 170
-check=assignbound 168
-check=bounds 168
-check=memory 170
-check=nilderef 168
-check=return 169
-check=switch 169
-check=usevariable 169
-check=variant 169
-check=watchpoint 169
-check=zerodivide 169

-check=watchpoint option 141
chgcase command 40, 91
classes

browsing in debugger 216
Classes...

in debugger Browse menu 29
Clear Default Configuration

in debugger Config menu 32
Close All Views

in debugger View menu 26
close button

in data explorer 149
Close Debugger Window

in debugger File menu 23
CloseView command

for viewcommand 154
colors

syntax, configuring 137
comeback command 91
command list 66, 69
command pane P-3

in debugger 13, 21
command prompt

configuring 21
in command pane 21

commands
conventions for P-2
debugger buttons 35

comments
in command lists 69
in debugger expressions 46

compare command 91
Compare...

in debugger Target > Memory Manipulation
sub-menu 31

completeselection command 92
conditional breakpoint

setting 211
Config menu (debugger) 32
configuration options 16

case sensitivity of 16
configure command 92
configurefile command 93
configuring

buttons 97
syntax colors 137

connect command 93
Connect from Target

in debugger Target menu 30
Connect to Target

in debugger Target menu 30
continue commands 72
CONTINUECOUNT system variable 60, 72
CONTINUING message

on status bar 18
conventions for this manual P-2
copy memory command 93
Copy...

in debugger Target > Memory Manipulation
sub-menu 31

count
for breakpoints 71

coverage analysis 175
createcontrol command 93
Ctrl+b key

in data explorer 149
Ctrl+f key

in data explorer 149
CU command 94
Cu command 94
cU command 94
I-4 Debugging with MULTI 2000

Index
cu command 94
curly braces {}

around command lists 69
current line pointer 15

in source pane 13
Current PC

in debugger View menu 27
customizing See configuring
cvconfig command 94
cx command 95

D
d * command 95
D command 95
d command 96
-D command line option

to MULTI 7
data

viewing in alternate mode in data
explorer 161

-data command line option
to MULTI 7

data explorer 147
Advanced sub-menu 163
alternate view in 161
autosizing 155
close button in 149
Ctrl+b key in 149
Ctrl+f key in 149
data explorer window 148
Evaluate sub-menu 162
expandvalue 163
format menu 160
formatted, memory, type 162
formatted, memory,type 162
freeze dot in 149
freezing 149
frozen 149
hot keys in 149
infinite mode 163
infinite scrolling in 39
infiniteview 164
infiniteview command 152
make default 164
messages 155
modifying

address of data 158
name of variable 158
type of variable 158
value of variable 158
values 158

mouse bindings 159
mouse bindings in 149
name in title bar of 148
opening

from the command pane 148
from the GUI 148

opening a new window on a field 157
openpointer 164
picture of 148
pop arrow in 149
popping views 157
pushing views in 157
refreshing 164
scroll bars in 39
searching in 149
selecting text in 149
showaddress 160
showchanges 164
showftype 160
stop sign in title bar of 149
title bar 148
type in title bar of 148
unfreezing 149
up arrow in 149
update 164
update command 152
view command 150
viewcommand command 153
viewdel command 153
viewing

arrays 151
C++ classes in 152
data in alternate mode in 161
data in binary 161
data in decimal 160
data in hexadecimal 161
data in octal 161
disassembled code in 152
memory 161
multiple objects in 150
pointer as array 151, 161
structures in 150
Green Hills Software, Inc. I-5

Index

viewlist command 152

dblink program 16
dbnew command 96
dbprint command 96
de command 96
Debug > Step 38
debug button 12

in debugger 12
debug command 97
Debug menu (debugger) 24
Debug Program in New Window...

in debugger File menu 23
Debug Program...

in debugger File menu 23
debugbutton command 97
debugger 12

buttons in main debugger window 34
closing 23
commands for 66
main window 12
multi-language applications 47
scroll bars in 39
searching source

searching source, in debugger 41
starting 12
system variables for 60
viewing special variables 51
viewing variable values 48

debugger buttons
in main debugger window 34

debugger command
zignal 214

debugger notations 66
%bp_label, breakpoint label 66
@bp_count, breakpoint count 66
{ cmds }, command list 66
address_expressioin 66
stacklevel_ 69

debugger toolbar
changing location in window 35

debugging
multiple .text sections 42
variable lifetime 41

Debugging commands
default search path 70

debugging commands 72
! command 75
^ command (caret) 76

-> command (menu) 76
- command (minus) 76
+ command (plus) 76
/ command (slash) 76
" " command, printing text 66
A, assertion command 77
a, assertion command 77, 78
address print format command 104
alias command 78
apply command 79
assem command 79
attach command 80
b command 81
B command, list breakpoints 80
bA command 81
ba command, using dialog box 82
backhistory command 82
backout command 82
bat command (deprecated) 82
be command 82
bg command 83
bi command

setting breakpoint 83
bif command 83
bl command

setting breakpoint 83
bpload command 84
bpsave command 84
bpview command 84
bR command 84
br command 84
breakpoints command 85
browse command 85
bsearch command, search backward 86
bt command, trace procedure 86
bU command 86
bu command 86
build command 87
builder command 87
button command (deprecated) 88
bX command 87
bx command, at procedure exit 87
c command 88
C command, continue unconditionally 88
ca command 88
cag command 88
calls command 89
callsview command 89
I-6 Debugging with MULTI 2000

Index
Cb command 90
cb command 90
cf command, continue from blocking

command 90
cfb command, continue from halted

process 91
chgcase command 91
comeback command 91
compare memory command 91
completeselection command 92
configure command 92
configurefile command 93
connect command 93
continue command 72
copy memory command 93
createcontrol command 93
CU command 94
Cu command 94
cU command 94
cu command 94
cvconfig command 94
cx command 95
d * command 95
D command 95
d command 96
dbnew command 96
dbprint command 96
de command 96
debug command 97
debugbutton command 97
define command 99
detach command 99
dialog command

invoking dialog boxes 100
dialogsearch 41
dialogsearch command 100
dialogue command (deprecated) 100
disconnect command 100
dumpfile command 100
E command 101
e command

viewing code 101
echo command 102
edit command 102
editbutton command 103
editfile command 103
editview command 103

error command (deprecated) 103
eval command 103
examine command 104
filedialogue command (deprecated) 105
fill command 105
find command 105
findleaks command 171
fsearch command 105
getargs command 106
goto line command 106
grep command 107
halt command 107
halta 108
haltag 108
haltx 108
hardbrk 213
hardbrk command, hardware

breakpoints 108
help command 110
history commands 73
i command, information 110
I/O buffer command 111
if command, if...else 110
infiniteview command 152
isearch command 112
isearchadd command 112
k command, kill 112
L command (deprecated) 113
l command, list 113
load command 114
loaddialogfile command 115
loaddialoguefile command

(deprecated) 115
loadsym command, load new debug

symbols 115
M command (obsolete) 115
macrotrace command 115
make command 116
mark command (obsolete) 116
memdump command, memory dump 117
memload command, memory load 117
memview command 118
menu command 119
monitor command 119
mouse command 119
mprintf 119
mvc command 120
Green Hills Software, Inc. I-7

Index

mvconfig command 120
n command 121
new command 122
ni command 122
nl command 122
note command 122
P command 122
p command, print lines 123
pop command (obsolete) 123
print command 123
printsearch command 124
printwindow command 124
profdump 183
profdump command 124
profile command 125
profilegui command (obsolete) 125
profilemode command 125
protrans 183
push command (obsolete), go to next

mark 125
pwd command 125
Q command, quiet 125
qfst command 126
? command (question mark) 76
quit command, prompted quit 125
quit command, quit current process 126
quitall command, quit MULTI 126
r command, run 127
R command, run, no arguments 126
Rb command, run, do nothing else 127
rb command, run, do nothing else 127
record and playback commands 73
refresh command 127
refresh command (deprecated) 128
remote command, remote connect 128
restart command 129
restore command 129
return command, return from macro 130
rload command 130
rundir command, run directory 130
runtask command 130
s command, single step 131
S command, step over procedures 131
save command 132
saveconfig command 132
saveconfigtofile command 132
sc command 132
scrollcommand command 133

setargs command, set arguments 134
setbrk command 134
showdef command, show defines 135
Si command 135
si command 135
signal command 135
source command 136
stack trace commands 75
stopif command, conditional

breakpoint 136
stopifi command, conditional breakpoint on

instruction 137
syncolor 137
t command (obsolete) 138
T command, stack trace 138
target command, send to remote server 138
targetwindow command 138
taskwindow command 138
unalias command 139
update command 139, 152
uptosource, move to procedure with

source 139
view command 140
viewcommand command 140, 153
viewdel command 140, 153
viewlist command 140, 152
W command (obsolete) 141
w command (obsolete) 141
wait command 141
watchpoint command, stop on address

change 141
while command, while loops 142
window command, monitor window 142
windowcopy command, window paste

clipboard 142
windowpaste command, paste selection 143
windowspaste command, paste

selection 143
x command, assertion 143
xmitio command, send to remote

program 143
Z command (deprecated), case

sensitivity 144
Debugging Level

MULTI 58
DEBUGSHARED system variable 60
decimal

viewing data in 160
I-8 Debugging with MULTI 2000

Index
DecrField command
for viewcommand 154

default search path
in debugger 70

Default, memory checking option 170
define command 99
defined macros

listing 28
Defines

in debugger View > List sub-menu 28
Delete Views button

in debugger 36
deleting

breakpoints 95, 96
DEREFPOINTER system variable 60
descendants 180
detach command 99
Detach from Process

in debugger File menu 23
Dialog Boxes

in debugger View > List sub-menu 28
dialog boxes

listing 28
dialog command 100
dialogsearch

debugger command 41
dialogsearch command 100
dialogue command (deprecated) 100
diamond

on debugger scroll bar 39
disassembled code

interlaced with source code 17
disconnect command 100
DISNAMELEN system variable 60
DISPLAY 5
-display command line option

to MULTI 5
displaying See viewing
Divide by Zero check box

in Run-time Error tab 169
.dla symbol file

for debugging 16
.dnm symbol file

for debugging 16
-dotciscxx command line option

to MULTI 7
DownStack

in debugger View menu 27
Downstk button

in debugger 35
dumpfile command 100
Duplicate command

for viewcommand 154
DuplicateFreeze command

for viewcommand 154
DYING message

on status bar 18
dynamic calls

browsing by file 218
Dynamic Calls...

in debugger Browse menu 29

E
e 0_

E command equivalent to 101
E command 101
e command 55, 66, 101

examining breakpoints 212
E command equivalent to 101
-E command line option

to MULTI 7
-e command line option

to MULTI 7
e stack _ command 101
echo command 102
Edit button

in debugger 36
edit command 102
EditAddress command

for viewcommand 154
editbutton command 103
EditField command

for viewcommand 154
editfile command 103
Editor...

in debugger Tools menu 31
EditType command

for viewcommand 154
editview command 103
ellipsis (…)

in menu item22
epilogue code

and caveat in debugging207
Green Hills Software, Inc. I-9

Index

equal sign command (obsolete) See repeat com-
mand

error checking 168
error command (deprecated) 103
errors

allocation 170
array bounds 168
assignment bounds 168
case/switch statements 169
divide by zero 169
exit without return 169
memory 170
null dereferences 168
Pascal variants 169
run-time error checking 168
unused variables 169
watchpoint 169

eval command 55, 103
examine command 55, 104
examining See viewing
exclamation mark (!) See repeat command
exclamation point See repeat command
EXEC’ING message

on status bar18
executable halt62
exp_format, expression format52
expression format exp_format52
expressions

evaluating46
in debugger commands46
view formats for52
viewing 54
viewing using wildcards57

F
f command104
File Calls...

in debugger Browse menu29
File drop-down list ("File:")18

on debugger status bar18
File drop-down list box ("File:")

on debugger status bar17
File menu (debugger)22
filedialogue command (deprecated)105
filename

no spaces allowed22
file-relative line numbers15, 67

Files
in debugger View > List sub-menu28

files
listing 28

Files...
in debugger Browse menu29

fill command105
Fill...

in debugger Target > Memory Manipulation
sub-menu31

find command105
Find...

in debugger Target > Memory Manipulation
sub-menu31

finding
memory leaks171

findleaks command171
FindTypeAndCast command

for viewcommand154
FORKING message

on status bar18
format button

in data explorer148, 151
format menu

in data explorer148, 151, 160
FormatMenu command

for viewcommand154
formats for expressions52
FORTRAN language

printing structs70
freeze dot

in data explorer149
fsearch command105
functions

stepping into25, 38
stepping out of25
stepping over25

G
-G

build-time option58
g command106
-G command line option

to the compiler5
-g command line option

to the compiler5
generic instantiations
I-10 Debugging with MULTI 2000

Index
for Ada 16
getargs command 106
Globals

in debugger View > List sub-menu 28
globals

listing 28
Globals...

in debugger Browse menu 29
Go

in debugger Debug menu 24
Go button

in debugger 35
Goto Location...

in debugger View menu 27
green dots 14
grep command 107
Grep...

in debugger Tools menu 31
GUI conventions P-3

H
h command 73

menu equivalent 33
Halt

in debugger Debug menu 24
Halt button

in debugger 35
halt command 107
halta command 108
haltag command 108
halted process

continuing 90, 91
haltx command 108
hardbrk command 108

in debugger 213
hardware breakpoint 210
hardware exception breakpoints 82, 96, 113
Help button

in debugger 35
Help command

for viewcommand 154
help command 110
-help command line option

to MULTI 7
Help menu

in debugger 34

Help menu (debugger) 34
hexadecimal

viewing data in 161
history commands 73
history navigation buttons

on debugger status bar 19
hot keys

in data explorer 149

I
i command 110
-I command line option

to MULTI 7
if...else command 110
incremental search 40
IncrField command

for viewcommand 154
infinite scrolling

in data explorer 39
infiniteview command 152
Input File field

in Set Program Arguments dialog box 25
instructions

stepping through 25, 38
Interlaced Assembly

in debugger View menu 26
interlaced source

toggling between assembly and 26
interlaced source view 17
iobuffer command 111
isearch command 112
isearchadd command 112

K
k command 112
kanji characters

viewing in debugger 43
keybind command 133
keyboard shortcuts 14

for debugging 14, 22
for navigating in command pane 22
for navigating in source pane 14
for searching in source pane 14, 40, 41
for searching in Target window 86
searching in Target window 106
Green Hills Software, Inc. I-11

Index

Kill Process

in debugger Debug menu 24
KillView command

for viewcommand 154

L
l command 113
L command (deprecated) 113
-L command line option

to MULTI 7
language keywords 47
left-click and drag

in command pane 22
libmulti.a 58
line numbers 14, 15, 55

breakdots next to 14
in debugger 67
in source pane 13
memory address of 49
of program counter 16
viewing 15

line pointer 15
List

in debugger View menu 26
listing See also viewing
-lmulti

build-time option 58
load command 114
Load Configuration...

in debugger Config menu 32
Load Program

in debugger Target menu 30
loaddialogfile command 115
loaddialoguefile command (deprecated) 115
loading breakpoints 84
loadsym command 115
Local Addresses

in debugger View > List sub-menu 28
local variable addresses

listing 28
local variables

listing 28
Local Variables...

in debugger View menu 26
Locals

in debugger View > List sub-menu 28
Locals button

in debugger 35

M
M command (obsolete) 115
-m command line option

to MULTI 7
macrotrace command 115
main debugger window 12
make command 116
MakeArray command

for viewcommand 154
Mangled Procedures

in debugger View > List sub-menu 28
mangled procedures

listing 28
mark command (obsolete) 116
memdump command 117
memload command 117
memory

comparing 91
copying 93
leaks in 171
viewing contents of 140, 150
viewing from data explorer 161
viewing preceding memory location 54

Memory button
in debugger 35

memory checking commands
findleaks 171

Memory Checking drop-down list box
in Run-time Error Checking tab 168

Memory checking drop-down list box
in Run-time Error tab 170

Memory Dump...
in debugger debugger Target > Memory

Manipulation sub-menu 31
memory leaks

finding 171
Memory Load...

in debugger Target > Memory Manipulation
sub-menu 31

Memory Manipulation
in debugger Target menu 30

Memory, memory checking option 170
Memory...

in debugger View menu 26
memview command 118
I-12 Debugging with MULTI 2000

Index
menu bar
in debugger 13, 22

menu command 119
in debugger 22

messages
in data explorer 155

middle-click
in command pane 22

monitor command 119
mouse

conventions for using P-3
customizing for debugger 42
using in debugger windows 42

mouse bindings
default 159
in data explorer 149

mouse command 119, 133
mprintf command 119
MULTI

command line options 6
Debugging Level 58
exiting 23, 126
running from command line 5

multi debugger 12
MULTI Help...

in debugger Help menu 34
multi-language applications, debugging 47
mvc command 120
mvconfig command 120

N
n command 121
Navigation

in debugger View menu 26
new command 122
NewViewField command

for viewcommand 154
Next

in debugger Debug menu 25
next 122
Next button

in debugger 35
ni command 122
nl command 122
NO PROCESS message

on status bar 18

-nocfg command line option
to MULTI 7

None, memory checking option 170
Noop command

for viewcommand 153
-norc command line option

to MULTI 7
-noshared command line option

to MULTI 8
-nosplash command line option

to MULTI 8
note command 122
Notes

in debugger Tools menu 31
NULL Dereference check box

in Run-time Error tab 168

O
octal

viewing data in 161
Options menu item

in builder Config menu 32
Output File field

in Set Program Arguments dialog box 25

P
P command 122
p command 123
-P command line option

to MULTI 8
-p command line option

to MULTI 8
-p compiler option

GUI equivalent to 174
Pascal language

set constructors in expressions 47
viewing expressions 57

Pascal Variants check box
in Run-time Error tab 169

percent sign command (obsolete) 73
-pg compiler option

GUI equivalent to 174
playback and record commands 73
Playback Commands...

in debugger Config > State sub-menu 33
Green Hills Software, Inc. I-13

Index

pointer

viewing as array in data explorer 151
pointers

viewing as array in data explorer 161
pop command (obsolete) 123
pop-up menu

for a procedure 37
for a type 38
for a variable 37
for other objects 38
in debugger source pane 36

PopView command
for viewcommand 154

print command 55, 123
Print Expression...

in debugger View menu 26
print lines 123
Print to File...

in debugger File menu 23
Print Window...

in debugger File menu 23
Print...

in debugger File menu 23
printing text

in command pane 66
printsearch command 124
printwindow command 124
procedure

pop-up menu for 37
procedure calls

in debugger 58
Procedure drop-down list ("Proc:")

on debugger status bar 19
Procedure drop-down list box ("Proc:")

on debugger status bar 17
procedure-relative line numbers 15, 55, 67
Procedures

in debugger View > List sub-menu 28
procedures

invoking in debugger 58
listing 28
stepping into 25, 38
stepping out of 25
stepping over 25

procedures in current file
browsing 19

Procedures in Files...
in debugger Browse menu 29

procedures in program
browsing 19

Procedures...
in debugger Browse menu 29

process
attaching to 80
halting 107
halting current 24
killing current 24
listing 28
sending signal to 25

process button, profiler 178
process data, profiler 178
Processes

in debugger View > List sub-menu 28
procRelativeLines 15

configuration option 15
profdump debugger command 124, 183
profile

debugger command 176
profile command 125
Profile...

in debugger View menu 26
profilegui command (obsolete) 125
profilemode command 125

GUI equivalents 177
profiler 173

block coverage detailed 181
block coverage summary 181
call graph report 180
calls information 175
outside of MULTI 183
prerequisites for using 175
process button 178
process data 178
profdump command 183
profile prior to exit 183
range analysis 178
range button 178
report buttons 179
reports 179
source lines report 182
standard calls button 179
standard calls report 179
status report 179
status report button 179

profiler window
opening 176
I-14 Debugging with MULTI 2000

Index
profiling
native targets 182
with emulator 183
with monitor 183
with simulator 182

profiling programs that don’t exit183
Program arguments

in Set Program Arguments dialog box25
program counter16

in source pane13
program state18
programs

halting on write to address141
prologue code

and caveat in debugging207
protrans

debugger command183
protrans utility

in profiler
profiler

protrans utility183
protrans, utility183
push command (obsolete)125
pwd command125

Q
Q command125
q command125
qfst command126
Quit button

in debugger36
quit command126
QuitAll

in debugger File menu23
quitall command126

R
R command126
r command127
-R command line option

to MULTI 8
-r command line option

to MULTI 8
R_SIGNAL system variable60
range button, profiler178

Rb command127
rb command127
read-only system variables63
Rebuild...

in debugger Tools menu31
record and playback commands73
Record Command+Output...

in debugger Config > State sub-menu33
Record Commands...

in debugger Config > State sub-menu33
red STOPPED arrow16
refresh command127
Refresh Section...

in debugger Target menu30
Refresh Views

in debugger View menu26
refreshing

data explorers164
Register Synomyms

in debugger View > List sub-menu28
register synonyms

listing 28
Registers

in debugger View > List sub-menu28
registers

listing 28
registers command (deprecated)128
Registers...

in debugger View menu26
Regs button

in debugger35
remote command128
-remote command line option

to MULTI 8
repeat command75
repeat command (!)73
repeat command (=), obsolete73
repeat command, smart (~)73
report buttons, profiler179
rerooting, in tree browser220
Restart

in debugger Debug menu24
Restart button

in debugger35
restart command129
restore command129

menu equivalent33
Green Hills Software, Inc. I-15

Index

Restore State

in debugger Config > State sub-menu 33
restoring breakpoints 84
restrictions

in filenames (no spaces allowed) 22
$result, special predefined variable 52
Return button

in debugger 35
Return check box

in Run-time Error tab 169
return command 130
right-click

a procedure 37
a type 38
a variable 37
in command pane 22
in debugger source pane 36
other objects 38

right-clicked line
pertaining to right-click pop-up menus 36

rload command 130
root class 216
Run button

in Set Program Arguments dialog box 25
rundir command 130
RUNNING message

on status bar 18
runtask command 130
run-time error checking 168
Run-time Error Checking tab 168
Run-time Error tab check boxes 168

S
S command 131
s command 131
save command 132

menu equivalent 33
Save Configuration as Default

in debugger Config menu 32
Save Configuration...

in debugger Config menu 32
Save State

in debugger Config > State sub-menu 33
saveconfig command 132
saveconfigtofile command 132
saving breakpoints 84
sc command 132

scripts search path 75
scroll bars

diamond in 39
in data explorer 39
in debugger windows 39

scrollcommand command 133
search dialog box

for debugger source pane 41
search path 75
Search...

in debugger Tools menu 31
searching

in data explorer 149
in source pane. See keyboard shortcuts
in Target window. See keyboard shortcuts
strings 76

searching files
in debugger 75
incrementally 40

selected text
in debugger windows 39

selecting text
in debugger windows 39

semicolons(:)
command separator 69

Send Signal
in debugger Debug menu 25

SERVERTIMEOUT system variable 60
Set button

in Set Program Arguments dialog box 25
Set Program Arguments

in debugger Debug menu 24
setargs command 134
setbrk command 134
setting a breakpoint 81, 82, 84
setting up-level breakpoints 86
shell, commands to 75
Show Command History

in debugger Config > State sub-menu 33
Show Target Window...

in debugger Target menu 30
showdef command 135
showing See viewing
Si command 135
si command 135
signal

sending to process 25
signal command 135
I-16 Debugging with MULTI 2000

Index
SIGNAL system variable 60
Signals

in debugger View > List sub-menu 28
signals 210

listing 28
sending to current program 25

software breakpoint 210
source code

interlaced with disassembled code 17
stepping through 25, 38

source command 136
source files

browsing in debugger 18
source lines report

profiler 182
source pane P-3, 13

in main debugger window 13
Source Paths

in debugger View > List sub-menu 28
source paths

listing 28
SourcePath...

in debugger View menu 26
spaces

not allowed in filenames 22
special variables

$result 52
viewing value in debugger 51

specification file 8
SSrch message

on debugger status bar 18, 40
Stack Trace commands

T 138
stack trace commands 75
stacklevel_

debugger notation 69
standard calls report

in profiler 179
State

in debugger Config menu 32
static calls, browsing by file 217
static calls, browsing by function 216
Static Calls...

in debugger Browse menu 29
static variables

listing 28
Statics

in debugger View > List sub-menu 28
Status 18

on debugger status bar 18
status bar P-3, 17

in debugger 13
status report

in profiler 179
Step

in debugger Debug menu 25, 38
Step button

in debugger 35
Step Out

in debugger Debug menu 25
Stop Recording Commands+Output...

in debugger Config > State sub-menu 33
Stop Recording Commands...

in debugger Config > State sub-menu 33
Stop sign 15

in data explorer 149
in debugger source pane 15

stopif command 136
stopifi command 137
STOPPED message

on status bar 18
Stops button

in debugger 35
structs

printing 70
structures

viewing in data explorer 150
subroutines

stepping into 25, 38
stepping out of 25
stepping over 25

syncolor command 137
syntax checking 63
system variables 16

case sensitivity of 16
in debugger 60
read-only 63
representing internal state of debugger 61

T
T command 138
t command (obsolete) 138
target command 138
Green Hills Software, Inc. I-17

Index

Target menu

in debugger 30
Target menu (debugger) 30
targetwindow command 138
TASKWIND system variable 60
taskwindow command 138
template instantiation

for C++ 16
text buttons

configuring in debugger’s tool bar34
-text command line option

to MULTI 8
text, selecting in debugger windows39
three-way check boxP-3
tilda See repeat command, smart
tog command138
Toggle IO Buffering...

in debugger Target menu30
ToggleFreeze command

for viewcommand154
Toolbar P-3
toolbar

changing location in debugger window35
in debugger13, 34

Tools menu
in debugger31

Tools menu (debugger)
tree browser

opening216
two-way check boxP-3
Type...

in debugger Browse menu29

U
unalias command139
Unused Variables check box

in Run-time Error tab169
up arrow

in data explorer149
UpArrow key

bound to backhistory command82
update command139, 152
UpStack

in debugger View menu27
Upstack button

in debugger35
UpStack To Source

in debugger View menu27
uptosource command139

V
-V command line option

to MULTI 8
variable lifetime debugging41
variable lifetime information

in debugger50
variables

$result52
notations in debugger48
special51
viewing value of48, 52

variables in a procedure
listing 28

Variables In Procedure...
in debugger View > List sub-menu28

VERIFYHALT system variable60
VERIFYRESTART system variable60
view command140

opening a data explorer150
View Expression...

in debugger View menu26
View menu

in debugger26
View menu (debugger)26
VIEWARRAYMAX system variable61
viewcommand command140, 153
Viewdel button

in debugger36
viewdel command140, 153
ViewField command

for viewcommand154
viewing

arrays in a data explorer151
C++ classes in data explorer152
data in alternate mode in a data

explorer161
data, in binary161
data, in decimal160
data, in hexidecimal161
data, in octal161
disassembled code in a data explorer152
kanji in debugger43
line numbers in source pane15
memory addresses49
I-18 Debugging with MULTI 2000

Index
memory from a data explorer 161
multiple objects in a data explorer 150
pointer as array in data explorer 161
structures in a data explorer 150

viewlist command 140, 152

W
W command (obsolete) 141
w command (obsolete) 141
wait command 141
Watchpoint check box

in Run-time Error tab 169
watchpoint command 141
watchpoints

setting 141
while command 142
wildcards

for viewing expressions 57
window command 142
windowcopy command 142
windowpaste command 143
windows

conventions for P-3
identification numbers for 133

windowspaste command 143

X
x assertion command 143
x command 143
xmitio command 143

Z
Z command (deprecated) 144
z, command 144
zignal command

in debugger 214
Green Hills Software, Inc. I-19

Index
I-20 Debugging with MULTI 2000

	Debugging with MULTI® 2000
	Contents
	Preface
	About the MULTI manuals
	Conventions
	Typographical conventions
	GUI mode conventions
	GUI conventions
	Check box conventions

	1 Introduction to MULTI
	Features
	Embedded programming in MULTI
	Running MULTI from the command line
	Command line options
	Specification file

	Resources

	2 Debugger GUI
	Main debugger window
	Source pane
	Breakdots
	Breakpoint markers
	Current line pointer
	Line numbers
	PC pointer / Highlighted line
	C++ Templates and Ada Generics

	dblink
	Interlaced source view
	Assembly code view
	Assembly-only view

	Status bar
	Status
	File drop-down list
	Procedure drop-down list
	History navigation buttons

	Command pane

	Debugger menus
	File menu
	Debug menu
	View menu
	Browse menu
	Target menu
	Tools menu
	Config menu
	Help menu

	Debugger toolbar
	Pop-up menus
	Pop-up menu for a procedure
	Pop-up menu for a variable
	Pop-up menu for a type
	Pop-up menu for other objects

	Generic debugger window features
	Scroll bars
	Infinite scrolling

	Selecting text
	Incremental search
	Search dialog box for the source pane
	Variable lifetime debugging
	Multiple .text section debugging

	Other window topics
	Mouse clicks
	Kanji character support

	3 Expressions, variables, and procedures
	Evaluating expressions
	Language keywords

	Viewing variables
	Viewing memory addresses
	Printing results of a complex statement

	Variable lifetime
	Special variables
	Examining data
	Variables
	Expression formats
	Viewing expressions
	Eval
	Examine
	Print

	Examining line numbers
	C Labels:
	Procedure-relative mode:
	File-relative (non-procedure-relative) mode:

	Language dependencies

	Wildcards
	Procedure calls
	Caveats for procedure calls

	System variables
	Syntax checking

	4 Debugger commands
	Debugger notations
	Double quotes “ ”
	%bp_label
	@bp_count
	{ cmds }
	Address expressions
	Procedure-relative vs file-relative line numbers

	Breakpoint label
	Breakpoint list and ranges
	stacklevel_
	Command list
	default search path
	Printing structs

	Command groups
	Breakpoint commands
	Continue commands
	History commands
	Record and playback commands
	Search path for scripts

	Search commands
	Stack trace commands

	Debugger commands

	5 The data explorer
	The data explorer
	Data explorer basics
	Title bar
	Hot keys
	Searching and selections
	Mouse bindings

	View command
	Viewing multiple items
	Viewing structures
	Viewing arrays
	Viewing disassembled code
	Viewing C++ classes

	Related commands
	infiniteview
	update
	viewlist
	viewdel
	viewcommand

	Data explorer autosizing
	Data explorer messages
	Working with data explorers
	Configuring the maximum complexity of displayed data
	Changing views
	Pushing views
	Popping views
	New views

	Modifying values
	Modifying the name or address
	Modifying the type
	Modifying the data
	Changing view style

	Default mouse bindings

	Data explorer format menu
	Display address or type
	Show Address
	Show Type

	Number bases
	Natural
	Decimal
	Hexadecimal
	Binary
	Octal

	Alternate viewing methods
	View Alternate
	Memory View
	Make Array

	Evaluate sub-menu
	In Context
	As Local
	As Global
	By Address

	Format sub-menu
	Formatted
	Type
	Infinite

	Advanced Sub-menu
	Expand Value
	Open Pointer
	ShowChanges
	Print
	Make Default
	Reset Type
	Refresh

	Data explorers with an infinite view
	Updating data explorer windows

	6 Run-time error checking
	Run-time error checking
	Run-time Error tab check boxes
	Memory checking drop-down list
	Finding memory leaks

	7 The Profiler
	Introduction to the profiler
	Execution time
	Standard calls
	Call graph
	Block coverage

	Using the profiler
	Processing data
	Range analysis
	The profiling reports
	Status report
	Standard calls report
	Call graph report
	Block coverage summary
	Detailed block coverage
	Source lines report

	Profiling targets
	Profiling native targets
	Profiling with simulators
	Profiling with monitors
	Profiling with emulators

	The profdump command
	The protrans utility

	8 Browse window
	Browse window
	Browse window > Object menu
	Browse window > View menu
	User-defined Filter dialog box
	Browse window for procedures
	Browse window for globals
	Browse window for source files

	Dialog box for procedures

	9 Memory view window
	Opening a memory view window
	Configuring a memory view window
	Changing the address in a memory view window
	Editing memory in a memory view window

	10 Call stack window
	Call stack window
	Call stack window and command-line function call
	Caveat

	11 Breakpoints window
	Opening the Breakpoints window
	Breakpoint types
	To work with software breakpoints
	To work with hardware breakpoints
	To work with signals

	Using the Breakpoints window
	To toggle a breakpoint
	To toggle whether a bell will sound when a breakpoint is hit
	To change the count for a breakpoint
	To change the list of commands associated with a breakpoint
	To make a breakpoint conditional
	To examine a breakpoint
	To delete a breakpoint
	To set a new software breakpoint
	To save the current list of software breakpoints to a file
	To load a list of software breakpoints from a file
	To set a new hardware breakpoint
	To change the actions performed when a signal is received

	12 Tree browser
	Opening a tree browser
	Browsing classes
	Browsing static calls, by function
	Browsing static calls, by file
	Browsing dynamic calls, by function

	Using a tree browser
	Node operations
	Rerooting
	Window operations

	Configuring tree browser colors

	Index

