<set>
namespace std { template<class Key, class Pred, class A> class set; template<class Key, class Pred, class A> class multiset; // TEMPLATE FUNCTIONS template<class Key, class Pred, class A> bool operator==( const set<Key, Pred, A>& lhs, const set<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator==( const multiset<Key, Pred, A>& lhs, const multiset<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator!=( const set<Key, Pred, A>& lhs, const set<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator!=( const multiset<Key, Pred, A>& lhs, const multiset<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator<( const set<Key, Pred, A>& lhs, const set<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator<( const multiset<Key, Pred, A>& lhs, const multiset<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator>( const set<Key, Pred, A>& lhs, const set<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator>( const multiset<Key, Pred, A>& lhs, const multiset<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator<=( const set<Key, Pred, A>& lhs, const set<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator<=( const multiset<Key, Pred, A>& lhs, const multiset<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator>=( const set<Key, Pred, A>& lhs, const set<Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator>=( const multiset<Key, Pred, A>& lhs, const multiset<Key, Pred, A>& rhs); template<class Key, class Pred, class A> void swap( const set<Key, Pred, A>& lhs, const set<Key, Pred, A>& rhs); template<class Key, class Pred, class A> void swap( const multiset<Key, Pred, A>& lhs, const multiset<Key, Pred, A>& rhs); };
Include the STL
standard header <set>
to define the
container
template classes set
and
multiset
, and their supporting
templates.
multiset
allocator_type
· begin
· clear
· const_iterator
· const_reference
· const_reverse_iterator
· count
· difference_type
· empty
· end
· equal_range
· erase
· find
· get_allocator
· insert
· iterator
· key_comp
· key_compare
· key_type
· lower_bound
· max_size
· multiset
· rbegin
· reference
· rend
· reverse_iterator
· size
· size_type
· swap
· upper_bound
· value_comp
· value_compare
· value_type
template<class Key, class Pred = less<Key>, class A = allocator<T> > class multiset { public: typedef Key key_type; typedef Pred key_compare; typedef Key value_type; typedef Pred value_compare; typedef A allocator_type; typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef typename A::rebind<value_type>::other::const_reference reference; typedef typename A::rebind<value_type>::other::const_reference const_reference; typedef T0 iterator; typedef T1 const_iterator; typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; multiset(); explicit multiset(const Pred& comp); multiset(const Pred& comp, const A& al); multiset(const multiset& x); template<class InIt> multiset(InIt first, InIt last); template<class InIt> multiset(InIt first, InIt last, const Pred& comp); template<class InIt> multiset(InIt first, InIt last, const Pred& comp, const A& al); const_iterator begin() const; iterator end() const; const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; size_type size() const; size_type max_size() const; bool empty() const; A get_allocator() const; iterator insert(const value_type& x); iterator insert(iterator it, const value_type& x); template<class InIt> void insert(InIt first, InIt last); iterator erase(iterator it); iterator erase(iterator first, iterator last); size_type erase(const Key& key); void clear(); void swap(multiset x); key_compare key_comp() const; value_compare value_comp() const; const_iterator find(const Key& key) const; size_type count(const Key& key) const; const_iterator lower_bound(const Key& key) const; const_iterator upper_bound(const Key& key) const; pair<const_iterator, const_iterator> equal_range(const Key& key) const; protected: A allocator; };
The template class describes an object that controls a
varying-length sequence of elements of type
const Key
.
Each element serves as both a sort key and a value.
The sequence is represented in a way that permits lookup, insertion,
and removal of an arbitrary element with a number of operations
proportional to the logarithm of the number of elements
in the sequence (logarithmic time). Moreover, inserting an element
invalidates no iterators, and removing an element
invalidates only those iterators which point at the removed element.
The object orders the sequence it controls by calling a
stored function object of type Pred
. You access
this stored object by calling the member function
key_comp()
.
Such a function object must impose a total order on sort keys.
For any element x
that precedes
y
in the sequence,
key_comp()(y, x)
is false. (For the default function object
less<Key>
,
sort keys never decrease in value.)
Unlike template class set
,
an object of template class multiset
does not ensure that
key_comp()(x, y)
is true.
(Keys need not be unique.)
The object allocates and frees storage for the sequence it controls
through a protected object named
allocator
,
of class A
. Such an
allocator object must have
the same external interface as an object of template class
allocator
.
Note that allocator
is not copied when the
object is assigned.
multiset::allocator_type
yypedef A allocator_type;
The type is a synonym for the template parameter A
.
multiset::begin
const_iterator begin() const;
The member function returns a bidirectional iterator that points at the first element of the sequence (or just beyond the end of an empty sequence).
multiset::clear
void clear();
The member function calls
erase(
begin(),
end())
.
multiset::const_iterator
typedef T1 const_iterator;
The type describes an object that can serve as a constant
bidirectional iterator for the controlled sequence.
It is described here as a
synonym for the unspecified type T1
.
multiset::const_reference
typedef typename A::rebind<value_type>::other::const_reference const_reference;
The type describes an object that can serve as a constant reference to an element of the controlled sequence.
multiset::const_reverse_iterator
typedef reverse_iterator<const_iterator> const_reverse_iterator;
The type describes an object that can serve as a constant reverse bidirectional iterator for the controlled sequence.
multiset::count
size_type count(const Key& key) const;
The member function returns the number of elements x
in the range
[lower_bound(key),
upper_b3und(key)).
multiset::difference_type
typedef typename A::difference_type difference_type;
The signed integer type describes an object that can represent the difference between the addresses of any two elements in the controlled sequence.
multiset::empty
bool empty() const;
The member function returns true for an empty controlled sequence.
multiset::end
const_iterator end() const;
The member function returns a bidirectional iterator that points just beyond the end of the sequence.
multiset::equal_range
pair<const_iterator, const_iterator> equal_range(const Key& key) const;
The member function returns a pair of iterators x
such that x.first ==
lower_bound(key)
and x.second ==
upper_bound(key)
.
multiset::erase
iterator erase(iterator it); iterator erase(iterator first, iterator last); size_type erase(const Key& key);
The first member function removes the element of the controlled
sequence pointed to by it
.
The second member function removes the elements
in the range [first, last)
.
Both return an iterator that designates the first element remaining
beyond any elements removed, or
end()
if no such element exists.
The third member removes
the elements with sort keys in the range
[lower_bound(key),
upper_bound(key)).
It returns the number of elements it removes.
multiset::find
const_iterator find(const Key& key) const;
The member function returns an iterator that designates
the earliest element in the controlled sequence whose sort
key equals key
. If no such element exists,
the iterator equals
end()
.
multiset::get_allocator
A get_allocator() const;
The member function returns
allocator
.
multiset::insert
iterator insert(const value_type& x); iterator insert(iterator it, const value_type& x); template<class InIt> void insert(InIt first, InIt last);
The first member function inserts the element x
in the controlled sequence, then returns
the iterator that designates the inserted element.
The second member function returns insert(x)
,
using it
as a starting place within the controlled
sequence to search for the insertion point. (Insertion can occur
in amortized constant time, instead of logarithmic time, if the
insertion point immediately follows it
.)
The third member function
inserts the sequence of element values in the range
[first, last)
.
multiset::iterator
typedef T0 iterator;
The type describes an object that can serve as a bidirectional
iterator for the controlled sequence.
It is described here as a
synonym for the unspecified type T0
.
multiset::key_comp
key_compare key_comp() const;
The member function returns the stored function object that determines the order of elements in the controlled sequence. The stored object defines the member function:
bool operator(const Key& x, const Key& y);
which returns true if x
strictly
precedes y
in the sort order.
multiset::key_compare
typedef Pred key_compare;
The type describes a function object that can compare two sort keys to determine the relative order of any two elements in the controlled sequence.
multiset::key_type
typedef Key key_type;
The type describes the sort key object which constitutes each element of the controlled sequence.
multiset::lower_bound
const_iterator lower_bound(const Key& key) const;
The member function returns an iterator that designates the
earliest element x
in the controlled sequence for which
key_comp()(x, key)
is
false.
end()
.
multiset::multiset
multiset(); explicit multiset(const Pred& comp); multiset(const Pred& comp, const A& al); multiset(const multiset& x); template<class InIt> multiset(InIt first, InIt last); template<class InIt> multiset(InIt first, InIt last, const Pred& comp); template<class InIt> multiset(InIt first, InIt last, const Pred& comp, const A& al);
All constructors store an
allocator object in
allocator
and
initialize the controlled sequence. The allocator object is the argument
al
, if present. For the copy constructor, it is
x.get_allocator()
.
Otherwise, it is A()
.
All constructors also store a function object that can later
be returned by calling
key_comp()
.
The function object is the argument comp
, if present.
For the copy constructor, it is
x.key_comp()
).
Otherwise, it is Pred()
.
The first three constructors specify an
empty initial controlled sequence. The fourth constructor specifies
a copy of the sequence controlled by x
.
The last three constructors specify the sequence of element values
[first, last)
.
multiset::max_size
size_type max_size() const;
The member function returns the length of the longest sequence that the object can control.
multiset::rbegin
const_reverse_iterator rbegin() const;
The member function returns a reverse bidirectional iterator that points just beyond the end of the controlled sequence. Hence, it designates the beginning of the reverse sequence.
multiset::reference
typedef typename A::rebind<value_type>::other::const_reference reference;
The type describes an object that can serve as a reference to an element of the controlled sequence.
multiset::rend
const_reverse_iterator rend() const;
The member function returns a reverse bidirectional iterator that points at the first element of the sequence (or just beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.
multiset::reverse_iterator
typedef reverse_iterator<iterator> reverse_iterator;
The type describes an object that can serve as a reverse bidirectional iterator for the controlled sequence.
multiset::size
size_type size() const;
The member function returns the length of the controlled sequence.
multiset::size_type
typedef typename A::size_type size_type;
The unsigned integer type describes an object that can represent the length of any controlled sequence.
multiset::swap
void swap(multiset& str);
The member function swaps the controlled sequences between
*this
and str
. If
allocator
== str.allocator
, it does so in constant time;
and it throws an exception only as a result of copying the stored
function object of type Pred
. Otherwise,
it performs a number of element assignments and constructor calls
proportional to the number of elements in the two controlled sequences.
multiset::upper_bound
const_iterator upper_bound(const Key& key) const;
The member function returns an iterator that designates the
earliest element x
in the controlled sequence for which
key_comp()(key, x)
is
true.
end()
.
multiset::value_comp
value_compare value_comp() const;
The member function returns a function object that determines the order of elements in the controlled sequence.
multiset::value_compare
typedef Pred value_compare;
The type describes a function object that can compare two elements as sort keys to determine their relative order in the controlled sequence.
multiset::value_type
typedef Key value_type;
The type describes an element of the controlled sequence.
operator!=
template<class Key, class Pred, class A> bool operator!=( const set <Key, Pred, A>& lhs, const set <Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator!=( const multiset <Key, Pred, A>& lhs, const multiset <Key, Pred, A>& rhs);
The template function returns !(lhs == rhs)
.
operator==
template<class Key, class Pred, class A> bool operator==( const set <Key, Pred, A>& lhs, const set <Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator==( const multiset <Key, Pred, A>& lhs, const multiset <Key, Pred, A>& rhs);
The first template function overloads operator==
to compare two objects of template class
multiset
.
The second template function overloads operator==
to compare two objects of template class
multiset
.
Both functions return
lhs.size() == rhs.size() &&
equal(lhs.
begin(), lhs.
end(), rhs.begin())
.
operator<
template<class Key, class Pred, class A> bool operator<( const set <Key, Pred, A>& lhs, const set <Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator<( const multiset <Key, Pred, A>& lhs, const multiset <Key, Pred, A>& rhs);
The first template function overloads operator<
to compare two objects of template class
multiset
.
The second template function overloads operator<
to compare two objects of template class
multiset
.
Both functions return
lexicographical_compare(lhs.
begin(), lhs.
end(), rhs.begin(), rhs.end())
.
operator<=
template<class Key, class Pred, class A> bool operator<=( const set <Key, Pred, A>& lhs, const set <Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator<=( const multiset <Key, Pred, A>& lhs, const multiset <Key, Pred, A>& rhs);
The template function returns !(rhs < lhs)
.
operator>
template<class Key, class Pred, class A> bool operator>( const set <Key, Pred, A>& lhs, const set <Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator>( const multiset <Key, Pred, A>& lhs, const multiset <Key, Pred, A>& rhs);
The template function returns rhs < lhs
.
operator>=
template<class Key, class Pred, class A> bool operator>=( const set <Key, Pred, A>& lhs, const set <Key, Pred, A>& rhs); template<class Key, class Pred, class A> bool operator>=( const multiset <Key, Pred, A>& lhs, const multiset <Key, Pred, A>& rhs);
The template function returns !(lhs < rhs)
.
set
allocator_type
· begin
· clear
· const_iterator
· const_reference
· const_reverse_iterator
· count
· difference_type
· empty
· end
· equal_range
· erase
· find
· get_allocator
· insert
· iterator
· key_comp
· key_compare
· key_type
· lower_bound
· set
· max_size
· rbegin
· reference
· rend
· reverse_iterator
· size
· size_type
· swap
· upper_bound
· value_comp
· value_compare
· value_type
template<class Key, class Pred = less<Key>, class A = allocator<T> > class set { public: typedef Key key_type; typedef Pred key_compare; typedef Key value_type; typedef Pred value_compare; typedef A allocator_type; typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef typename A::rebind<value_type>::other::const_reference reference; typedef typename A::rebind<value_type>::other::const_reference const_reference; typedef T0 iterator; typedef T1 const_iterator; typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; set(); explicit set(const Pred& comp); set(const Pred& comp, const A& al); set(const set& x); template<class InIt> set(InIt first, InIt last); template<class InIt> set(InIt first, InIt last, const Pred& comp); template<class InIt> set(InIt first, InIt last, const Pred& comp, const A& al); const_iterator begin() const; iterator end() const; const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; size_type size() const; size_type max_size() const; bool empty() const; A get_allocator() const; pair<iterator, bool> insert(const value_type& x); iterator insert(iterator it, const value_type& x); template<class InIt> void insert(InIt first, InIt last); iterator erase(iterator it); iterator erase(iterator first, iterator last); size_type erase(const Key& key); void clear(); void swap(set x); key_compare key_comp() const; value_compare value_comp() const; const_iterator find(const Key& key) const; size_type count(const Key& key) const; const_iterator lower_bound(const Key& key) const; const_iterator upper_bound(const Key& key) const; pair<const_iterator, const_iterator> equal_range(const Key& key) const; protected: A allocator; };
The template class describes an object that controls a
varying-length sequence of elements of type
const Key
.
Each element serves as both a sort key and a value.
The sequence is represented in a way that permits lookup, insertion,
and removal of an arbitrary element with a number of operations
proportional to the logarithm of the number of elements
in the sequence (logarithmic time). Moreover, inserting an element
invalidates no iterators, and removing an element
invalidates only those iterators which point at the removed element.
The object orders the sequence it controls by calling a
stored function object of type Pred
. You access
this stored object by calling the member function
key_comp()
.
Such a function object must impose a total order on sort keys.
For any element x
that precedes
y
in the sequence,
key_comp()(y, x)
is false. (For the default function object
less<Key>
,
sort keys never decrease in value.)
Unlike template class multiset
,
an object of template class set
ensures that
key_comp()(x, y)
is true.
(Each key is unique.)
The object allocates and frees storage for the sequence it controls
through a protected object named
allocator
,
of class A
. Such an
allocator object must have
the same external interface as an object of template class
allocator
.
Note that allocator
is not copied when the
object is assigned.
set::allocator_type
typedef A allocator_type;
The type is a synonym for the template parameter A
.
set::begin
const_iterator begin() const;
The member function returns a bidirectional iterator that points at the first element of the sequence (or just beyond the end of an empty sequence).
set::clear
void clear();
The member function calls
erase(
begin(),
end())
.
set::const_iterator
typedef T1 const_iterator;
The type describes an object that can serve as a constant
bidirectional iterator for the controlled sequence.
It is desciibed here as a
synonym for the unspecified type T1
.
set::const_reference
typedef typename A::rebind<value_type>::other::const_reference const_reference;
The type describes an object that can serve as a constant reference to an element of the controlled sequence.
set::const_reverse_iterator
typedef reverse_iterator<const_iterator> const_reverse_iterator;
The type describes an object that can serve as a constant reverse bidirectional iterator for the controlled sequence.
set::count
size_type count(const Key& key) const;
The member function returns the number of elements x
in the range
[lower_bound(key),
upper_bound(key)).
set::difference_type
typedef typename A::difference_type difference_type;
The signed integer type describes an object that can represent the difference between the addresses of any two elements in the controlled sequence.
set::empty
bool empty() const;
The member function returns true for an empty controlled sequence.
set::end
const_iterator end() const;
The member function returns a bidirectional iterator that points just beyond the end of the sequence.
set::equal_range
pair<const_iterator, const_iterator> equal_range(const Key& key) const;
The member function returns a pair of iterators x
such that x.first ==
lower_bound(key)
and x.second ==
upper_bound(key)
.
set::erase
iterator erase(iterator it); iterator erase(iterator first, iterator last); size_type erase(const Key& key);
The first member function removes the element of the controlled
sequence pointed to by it
.
The second member function removes the elements
in the range [first, last)
.
Both return an iterator that designates the first element remaining
beyond any elements removed, or
end()
if no such element exists.
The third member removes
the elements with sort keys in the range
[lower_bound(key),
upper_bound(key)).
It returns the number of elements it removes.
set::find
const_iterator find(const Key& key) const;
The member function returns an iterator that designates
the earliest element in the controlled sequence whose sort
key equals key
. If no such element exists,
the iterator equals
end()
.
set::get_allocator
A get_allocator() const;
The member function returns
allocator
.
set::insert
pair<iterator, bool> insert(const value_type& x); iterator insert(iterator it, const value_type& x); template<class InIt> void insert(InIt first, InIt last);
The first member function determines whether an element y
exists in the sequence whose key matches that of x
.
(The keys match if
!key_comp()(x, y) &&
!key_comp()(y, x)
.) If not, it creates such
an element y
and initializes it with x
.
The function then determines the iterator it
that
designates y
. If an insertion occurred, the function
returns pair(it, true)
.
Otherwise, it returns pair(it, false)
.
The second member function returns insert(x)
,
using it
as a starting place within the controlled
sequence to search for the insertion point. (Insertion can occur
in amortized constant time, instead of logarithmic time, if the
insertion point immediately follows it
.)
The third member function
inserts the sequence of element values in the range
[first, last)
.
set::iterator
typedef T0 iterator;
The type describes an object that can serve as a bidirectional
iterator for the controlled sequence.
It is described here as a
synonym for the unspecified type T0
.
set::key_comp
key_compare key_comp() const;
The member function returns the stored function object that determines the order of elements in the controlled sequence. The stored object defines the member function:
bool operator(const Key& x, const Key& y);
which returns true if x
strictly
precedes y
in the sort order.
set::key_compare
typedef Pred key_compare;
The type describes a function object that can compare two sort keys to determine the relative order of any two elements in the controlled sequence.
set::key_type
typedef Key key_type;
The type describes the sort key object which constitutes each element of the controlled sequence.
set::lower_bound
const_iterator lower_bound(const Key& key) const;
The member function returns an iterator that designates the
earliest element x
in the controlled sequence for which
key_comp()(x, key)
is
false.
end()
.
set::max_size
size_type max_size() const;
The member function returns the length of the longest sequence that the object can control.
set::rbegin
const_reverse_iterator rbegin() const;
The member function returns a reverse bidirectional iterator that points just beyond the end of the controlled sequence. Hence, it designates the beginning of the reverse sequence.
set::reference
typedef typename A::rebind<value_type>::other::const_reference reference;
The type describes an object that can serve as a reference to an element of the controlled sequence.
set::rend
const_reverse_iterator rend() const;
The member function returns a reverse bidirectional iterator that points at the first element of the sequence (or just beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.
set::reverse_iterator
typedef reverse_iterator<iterator> reverse_iterator;
The type describes an object that can serve as a reverse bidirectional iterator for the controlled sequence.
set::set
set(); explicit set(const Pred& comp); set(const Pred& comp, const A& al); set(const set& x); template<class InIt> set(InIt first, InIt last); template<class InIt> set(InIt first, InIt last, const Pred& comp); template<class InIt> set(InIt first, InIt last, const Pred& comp, const A& al);
All constructors store an
allocator object in
allocator
and
initialize the controlled sequence. The allocator object is the argument
al
, if present. For the copy constructor, it is
x.get_allocator()
.
Otherwise, it is A()
.
All constructors also store a function object that can later
be returned by calling
key_comp()
.
The function object is the argument comp
, if present.
For the copy constructor, it is
x.key_comp()
).
Otherwise, it is Pred()
.
The first three constructors specify an
empty initial controlled sequence. The fourth constructor specifies
a copy of the sequence controlled by x
.
The last three constructors specify the sequence of element values
[first, last)
.
set::size
size_type size() const;
The member function returns the length of the controlled sequence.
set::size_type
typedef typename A::size_type size_type;
The unsigned integer type describes an object that can represent the length of any controlled sequence.
set::swap
void swap(set& str);
The member function swaps the controlled sequences between
*this
and str
. If
allocator
== str.allocator
, it does so in constant time;
and it throws an exception only as a result of copying the stored
function object of type Pred
. Otherwise,
it performs a number of element assignments and constructor calls
proportional to the number of elements in the two controlled sequences.
set::upper_bound
const_iterator upper_bound(const Key& key) const;
The member function returns an iterator that designates the
earliest element x
in the controlled sequence for which
key_comp()(key, x)
is
true.
end()
.
set::value_comp
value_compare value_comp() const;
The member function returns a function object that determines the order of elements in the controlled sequence.
set::value_compare
typedef Pred value_compare;
The type describes a function object that can compare two elements as sort keys to determine their relative order in the controlled sequence.
set::value_type
typedef Key value_type;
The type describes an element of the controlled sequence.
swap
template<class Key, class Pred, class A> void swap( const multiset <Key, Pred, A>& lhs, const multiset <Key, Pred, A>& rhs); template<class Key, class Pred, class A> void swap( const set <Key, Pred, A>& lhs, const set <Key, Pred, A>& rhs);
The template function executes
lhs.swap(rhs)
.
See also the Table of Contents and the Index.
Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by Hewlett-Packard Company. All rights reserved.