Building and Editing with
MULTI® 2000

ry N

Green Hills

*SOFTWARE. INC.

UUUUU

Copyright © 1983-1999 by Green Hills Software, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission from Green Hills Software, Inc.

DISCLAIMER

GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software, Inc.

reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation
of Green Hills Software, Inc. to notify any person of such revision or changes.

Green Hills Software and the Green Hills logo are trademarks, and MULTI is a registered trademark, of Green Hills
Software, Inc.

System V is a trademark of AT&T.

Sun is a trademark of Sun Microsystems, Inc.

UNIX and Open Look are registered trademarks of UNIX System Laboratories.

ColdFire is a registered trademark of Motorola, Inc.

DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.

4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.

X and X Window System are trademarks of the Massachusetts Institute of Technology.

Motif is a trademark of Open Software Foundation, Inc.

VelOSity and Integrity are trademarks of Green Hills Software, Inc.

VxWorks is a registered trademark of Wind River Systems, Inc.

pSOS, pSOS+/Probe are trademarks of Integrated Systems, Inc.

Microsoft is a registered trademark, and Windows, Windows 95, and Windows NT are trademarks of Microsoft
Corporation.

All other trademarks or registered trademarks are property of their respective companies.

PubID: M41W-A1299-2BNG

Time Stamp: December 20, 1999 3:41 pm

CONTENTS

Preface P-1

About the MULTI manuals P-2

Conventions P-2

1 Introduction to MULT] 1
Features 2

Embedded programming in MULTI 4

Running MULTI from the command line 5

Resources 9

2 Using the Builder 11
Starting a Builder session 12

Setting up your software project 13

Navigating through your project 18

Setting options; An overview 20

Important options 23

Building your project 24

Debugging 27

3 The Builder GUI 31
The Builder window 32

The Builder menus 32

The Builder toolbar 41

Other Builder components 42

Build Panel 43

File Options dialog box 45

Language Options dialog box 68

CPU Options dialog box 92

Toolchain Options dialog box 118

The Progress window 126

Green Hills Software Inc.

CONTENTS

Version control

MULTI Version Control

How touse MVC

Branching and version numbers
How to use the MV C commands
MV C command list

Other version control systems

Using the Editor

Starting the Editor

Opening files

Navigating between open files
Saving files

Editing

Working with your code
Searching

Merging files

Comparing files

Using version control from the Editor
Configuring the Editor

The Editor GUI
The main Editor window
Editor menus

Editor toolbar

Location fields

Status bar

Merge dialog boxes
Search dialog box

Goto dialog box

129
130
131
131
132
134
139

143
144
145
147
147
148
151
155
156
160
160
162

163
164
164
173
174
174
175
178
182

Building and Editing with MULTI 2000

CONTENTS

Per File Settings dialog box 182
File chooser 183
Print dialog box 185

7 Editor commands 187
Navigation commands 188
Indentation commands 191
Selection commands 192
Drag-and-drop commands 195
Text deletion commands 197
Clipboard commands 197
Block commands 198
Search commands 200
Undo/Redo commands 201
File commands 202
Tool commands 205
Tag commands 207
Version control commands 209
Configuration commands 212
Help commands 214
Insert commands 214
'if” conditional commands 215

8 Default key bindings 217
Default keyboard settings 219
Escape key interrupt 225
Default mouse settings 225

9 Configuring and customizing MULTI 229
Setting configuration options 230

Green Hills Software Inc. iii

CONTENTS

10

Customizing the graphical user interface (GUI)
Creating custom functionality

How MULT]I uses startup files to configure a session
Example customizations

Configuration commands
Options dialog box
Other Configuration options

Third party tools

Third party version control systems
Third party editors

Using the Editor with third party tools
Using the Debugger with third party tools

Index

233
234
237
239

241
242
266

A-1
A-2
A-2
A-3
A-4

Building and Editing with MULTI 2000

Preface

This chapter contains:
« About the MULTI manuals

« Conventions

About the MULTI manuals

This manual systematically documents all the features and commands of the
MULTI Builder and Editor. The comprehensive index will help you locate the
information you need.

For other components of MULTI, such as the Debugger, refer to the Debugging
with AdaMULTI 2000 manual.

For specific target systems, refer to the Development Guide for your target.

Conventions

Typographical conventions

Convention Example Description

italic text in a command line | -o filename place-holder for mandatory user-supplied
arguments

square brackets, [] .macro name [list] encloses optional commands, terms, or
arguments

square brackets [] around Specifies char as command or option is the default

boldface word “default” signed. [default]

menu > item > sub-item... File > Open... menu bar, menu items, sub-menu items...

Enter something Enter adamulti a.out Type something AND press the Enter key.
Compare with “Type something” below.

Type something Type foo.s and press Type something WITHOUT pressing the Enter

Edit key. Compare with “Enter something” above.

For example, in the command descri ption:
gxyz [-processor] filename

the command gxyz should be entered as given, the word processor may
optionally be substituted with an appropriate option, and the word filename
must be replaced with an appropriate file name.

P-2 Building and Editing with MULTI 2000

Conventions

GUI mode conventions

The main MULTI windows in the Builder, Editor, and Debugger contain some
or al of the following regions:

Convention Description

source pane The portion of the window in which the source code is displayed.

status bar Displays information, such as the process state and the name of
the file being debugged.

command pane Area to enter commands and display results.

toolbar Contains buttons for commonly used commands.

GUI conventions

MULTI documentation assumes you have a working knowledge of your
operating system and its conventions, including its command-line and GUI
interfaces—for example, how to use a mouse and standard menus and
commands, and how to open, save, and close files, etc.

Convention Meaning

First mouse button Mouse buttons are numbered from the left. The first mouse
button is the left-most mouse button.

Shift+Click Hold down the Shift key while clicking a mouse button.

Ctrl+Click Hold down the Ctrl key while clicking a mouse button.

Check box conventions
There are two types of check boxes: two-way and three-way.
A two-way check box has two states: either enabled (with a check mark in it) or

disabled (when it's empty). For example, Config > Options... > Colors tab >
Build file coloring.

Green Hills Software, Inc. P-3

A three-way check box has three states (for example, Builder > Project >
Options > General tab > Automatically use MV C):

« Thefirst stateis On. Thebox hasaplussign (+), indicating that the option is
turned on, overriding any previous or inherited settings.

[* Show headers

» The second state is Off. The box contains a minus sign (-), indicating that
the option is turned off, overriding any previous or inherited settings.
[=' Show headers
« Thethird state is Default. The box is empty, indicating that the inherited
state, if any, is used.

[Show headers

P-4

Building and Editing with MULTI 2000

Chapter

Introduction to
MULTI

This chapter contains:
+ Features
» Embedded programming in MULTI
* Running MULTI from the command line
+ Resources

1. Introduction to MULTI

MULTI is a complete interactive software development environment for programs written in
Ada, C, C++, Pascal, and FORTRAN, aswell asin assembly language for each supported
target. Source code from these languages can be compiled and linked into a single executable
in virtually any combination.

NOTE: If you are upgrading from version 1.8.9 to MULTI 2000, DO NOT
INSTALL YOUR MULTI 2000 IN THE SAME LOCATION ASYOUR
1.89RELEASE.

Features

Some of MULTI's powerful features include:

Project Management
e A Program Builder for creating, assembling, and controlling your
programming projects. See Chapter 2, “Using the Builder”.

« A Progress Window to keep you informed at all times as you build your
project. See “The Progress window” on page 126.

Version Control

« An automaticVersion Control System with features for managing revision
levels and program branches, and for tracking the origins of suspicious code.
See Chapter 4, “Version control”.

« The capability tavl ergetwo or three versions of a file. See “Viewing
inherited options” on page 21.

« Highlighted Diff Windows to see the difference between two files. See
“Comparing files” on page 160.

Editing
« A built-in Editor that is fully configurable, enhanced with special features

to support some of the advanced capabilities of MULTI. See Chapter 5,
“Using the Editor”.

2 Building and Editing with MULTI 2000

Features

Debugging

For information about the following features, see the Debugging with
AdaMULTI 2000 manual.

A Source Level Debugger that supports mixed language debugging and all
C++ and Adalanguage constructs.

A Profiler that collects data, provides reports, annotates the source code to
find hot spots in your program, and provides mechanismsto feed
information back into the development process.

Run-Time Error Checking for different classes of errors, implemented
with acombination of compiler checks, libraries, and debugger commands.

Expression Evaluation to determine whether your expressions are correct.

A Data Explorer to monitor variables and evaluate expressions during
debugging.

Memory Leak Detection to find chunks of memory that have been
allocated but are no longer used.

Conditional Breakpoints that cause a breakpoint to be active under
conditions you specify.

A graphical Ada 95 Type | nheritance and C++ Class Browser to delineate
the structure of your classes and of classes you inherit.

Green Hills Software, Inc. 3

1. Introduction to MULTI

Embedded programming in MULTI

MULT!I supports embedded development for the following 32- and 64-bit

microprocessor families:

Processor families supported by MULTI

680x0/683xx

ARM / Thumb

ColdFire

960

MCore

MIPS

PowerPC

RH32

SPARC

SH

TriCore

V800

x86 / Pentium

Embedded programming is the programming of microprocessors which are
incorporated into an embedded product. Workstations and PCs are used as host
computers on which programs are edited and compiled. The programs are then
downloaded into atarget system to be debugged and executed.

MULTI interfaces to embedded targets by connecting to a debug server. The
debug server may reside on the same host as MULTI, or on any other host on
your network. The debug server communicates with the target under

Building and Editing with MULTI 2000

Running MULTI fromthe command line

development. Green Hills supplies servers for many common target systems
and real time operating systems:

e Instruction set simulators: Simulators can test programs before target
hardware is ready and are available for most processor models. Instruction
set simulators incorporate an integrated debug server as a front end.

« ROM Monitors: Monserv and the ROM monitor specific to your target
support basic debug features, host 1/0, a command window, and profiling.

e In-Circuit Emulators: Available for severa popular emulator families.
Emulator servers use your network to communicate with the command
interface of the emulator.

« ROM Emulator: NetROM provides debugging capabilities with only a
single connection to the ROM socket.

« RTOS(real-timeoperating system) servers. Available for severa rea
time operating systemsincluding INTEGRITY from Green Hills Software,
ThreadX from Express Logic, OSE from Enea Systems, and VxWorks from
Wind River. RTOS servers use ethernet and serial communication to
communicate with a debug process running under the RTOS. Commands
from MULT]I’s various debug windows are combined into a single command
stream by the RTOS server; the debug process interprets these messages and
performs the proper action on the appropriate task.

MULT]I allows you to use the same tools for both embedded and native
development. The same MULTI program can debug both native and embedded
code; the only difference is that MULTI uses a different host processor when
communicating with an embedded target.

Running MULTI from the command line

When you start MULTI, it attempts to use the host system windowing package
by default. If you start MULTI on a color monitor, it defaults to color. If you
start MULTI from a non-windowing monitor or if MULTI encounters problems
with the window interface, it comes up in non-GUI mode. If MULTI is
incorrectly coming up in non-GUI mode, check thatBh&PLAY environment
variable is set, or set it from the command line with-thisplay option.

If MULTI is in your path, then the command line syntax is:
adamulti pptiong] [filename]

Green Hills Software, Inc. 5

1. Introduction to MULTI

If filenameisabuild file, then the Builder starts up with the build file loaded.
Note that some options are specific to the Debugger and are not applicable to
the Builder.

If filenameis an executable program file that has had some (or al) of its

component modules compiled for debugging (with Green Hills compi@ér’s

or -g options), then the Debugger starts up. For a list of command line options to
use when opening the Debugger, see “Command line options” on page 7.

If you specify a build file, it can either be a main project or a subproject. To
open a subproject directly with the inherited options from a particular main

project, specify the main project name followed by the subproject’s name in
quotes. For example:

adanulti "main.bld sub. bld"

This opens the subprojestib.bld, with the options inherited frommain.bld.

See the following table of examples.

How to open MULTI

Example

Description

adamulti

Opens the Builder on the last build file that was
open.

adamulti default.bld

Opens the Builder on default.bld. If default.bld is
not found, MULTI will create it.

adamulti foo.bld

Opens the Builder on the file foo.bld. The build file
may be a main project or a subproject.

adamulti "parent.bld child.bld"

Opens the Builder on the subproject child.bld
directly with the inherited options from the main
project parent.bld.

adamulti a.out

Opens the Debugger on the executable a.out

adamulti -remote simppc

Opens the Builder and connects it to the simulator
simppc. In this syntax, it is a function of the debug
server whether the Builder window or the Debugger
window is opened. See the example below with
adamulti -remote 5emon.

adamulti -remote simppc a.out

Opens the Debugger on the executable a.out and
the Debugger is connected to the simulator simppc.

adamulti -remote 5emon

Opens the Debugger and connects it to the debug
server 5emon. In this syntax, it is a function of the
debug server whether the Builder window or the
Debugger window is opened. See the example
above with adamulti -remote simppc.

adamulti foo.c

Opens the Editor on the file foo.c.

Building and Editing with MULTI 2000

Running MULTI fromthe command line

Command line options

When you start MULTI from the command line on an executable program file
(i.e. when you want to use the Debugger directly), the following options may be
used. Some of these options should not be used when starting MULTI on abuild
file, or when starting MULTI without afile.

-cfile
Reads configuration information from file.

-C coréfile
Sets corefile. corefileis assumed to be a core image of objectfile.

-D
Ignores all currently specified alternate directories.

-data offset
Offsetsfor all data addresses. Thisisfor position independent data. The
offset is entered in decimal by default. A hexadecimal number may be
specified by preceding the number with Ox. For example, 0x10000.

-dotciscxx
Treatsfilesending in .c as C++ filesinstead of Cfiles.

-eentry
Specifies entry label. The default is main. In C++ mode, the entry must
be specified in such away that it may be demangled.

-E file
TellsMULTI to debug more than one file. Use this option for each file
you wish to debug at the same time. For example, if you want to debug
foo, bar, and rin, then type:

adamulti foo -E bar -E rin
-help
Runs MULTI and opens the on-line help system with the MULTI
manual.

-I directory
Names an aternate directory where files are searched for. Alternate
directories are searched in the order given. If afileisnot found in an
aternate, the current directory is searched.

-L[cpfC]
Sets language type (C, Pascal, FORTRAN, or C++ respectively). By
default, MULTI uses the file name extension to determine the language.

-m file
Usesfile as default specification file. See “Specification file” on page 8
for more information.

Green Hills Software, Inc. 7

1. Introduction to MULTI

-nocfg
Does not read any of the .cfg files of MULTI on startup.

-norc
Does not run any .rc files on startup.

-noshared
Does not debug shared libraries.

-nosplash
Does not open the About banner. See “About MULTI...” on page 41 for
more information.

-p file
Startup with command playback frdite.

-P pid
Attaches to process with processid. This option is currently for
Solaris only.

-r file
Startup with commands recordingfite.

-R file
Startup with commands and output recordingjl®

-rcfile
Readdile as a command script when the first debugger window appears.
The file is read after the global and user script files.

-remote target
Attaches to remote debug server with ndanget.

-text offset
Offsets for all text addresses. This is for position independent code. The
offset is entered in decimal by default. A hexadecimal number may be
specified by preceding the number with For exampleQx10000.

Prints debugger version information.

Specification file

The specification file allows you to set up a default set of command line
arguments that may be used with any given executable you want to debug.
However, not all command line options are available for use in a specification
file. If you want a set of default arguments for each program, put the program
name at the beginning of a line followed by a space and then a set of command
line arguments. The arguments may be continued on the next line if the first

8 Building and Editing with MULTI 2000

Resources

character in that line is atab. When you run MULTI with the -m option, thefile
listed is checked and if thereis an entry that matches the name of the executable
being debugged, then that list of command line argumentsis used. For example,
a specification file named albatr oss might ook like this:

foo -norc -1 /usr/joebob -1 /usr/foodir
bar -text 10000 -data 10000

If you then type:

adarmulti -m al batross foo

thefilealbatrossis searched and the argumentsfound after foo are used. Thisis

equivalent to typing:
adamulti foo -norc -1 /usr/joebob -1 /usr/foodir
Resources

To install MULTI, please see the MULTI 2000 Installation & Licensing Guide.

The Debugging with AdaMULTI 2000 manual provides information on using
the Debugger and its rel ated features.

The Quick Reference Card summarizes the most common Debugger and Editor
commands.

For assistance or additional information about the use of Green Hills Software,
please contact our Technical Support:

Green Hills Technical Support

North America Mountain/Pacific time, Australia, and New Zealand
Tel: (805) 965-6044, Fax: (805) 965-6343
email: support-west@ghs.com

North America Eastern/Central time, South America
Tel: (781) 862-2002, Fax: (781) 863-2633
email: support-east@ghs.com

Europe, Africa, India
email: support-ni@ghs.com

Japan, Taiwan, and South Korea
Tel: +81-3-3576-6805, Fax: +81-3-3576-0106
email: support@adac.co.jp

Green Hills Software, Inc. 9

1. Introduction to MULTI

10 Building and Editing with MULTI 2000

Chapter

Using the Builder

This chapter contains:
« Starting aBuilder session
« Setting up your software project
» Navigating through your project
« Setting options: An overview
« Important options
» Building your project
« Debugging

2. Using the Builder

The Builder is agraphical tool that configures how your software project gets built. In
addition to maintaining file dependencies like a make file, the Builder also lets you set
compiler options.

Starting a Builder session

When you start the Builder, it attempts to use the host system’s windowing
package. If the Builder is started on a machine with a color monitor, it defaults
to color.If you run MULTI from a non-windowing monitor or encounters
problems with the window interface, it will come up in non-GUI mode. If
MULT]I is incorrectly coming up in non-GUI mode, check that BHEPL AY
environment variable is set, or set it from the command line witkdibgal ay
option.

If you start MULTI with the-nodisplay command line option, or if MULTI

cannot start in GUI mode, then it will start in non-GUI mode in the Debugger.
Because the Builder and Editor are available only in GUI mode, the Debugger
is always displayed in non-GUI mode in these scenarios.

To start the Builder from the command line

Whenever you stagdamulti without specifying any options, the Builder
automatically opendefault.bld in the directory from where MULTI was

started. Ifdefault.bld does not exist in that directory, the Builder opens the
most recently used project instead. To start the Builder with a specific build file
of your project loaded, do the following:

1. At the command prompt, change to the directory where your project files are
located.

2. Assuming thaadamulti is in your path, enter:
adarul ti [filename]
wherefilenameis the build file {.bld) of the program, subproject, or library
of your project that you want to open.

Important: If you want to open a build file that is a child of another build
file in the hierarchy of your project, use the following syntax to ensure that
the child inherits all of the appropriate settings from its parent:

adanulti "parent.bld child.bld"

whereparent.bld is the build file from whickchild.bld inherits its option
settings.

12

Building and Editing with MULTI 2000

Setting up your software project

For example, suppose you want to build the source files that belong to
foochild.bld, which is aprogram that inherits options from the top-level
program of your project, masterfoo.bld. To open foochild.bld directly
while inheriting all the options needed to compile and link it properly, enter:

adamulti "masterfoo.bld foochild. bl d"

To open a different project in the same Builder window
1. Click Open ((2).
2. Browsefor the*.bld of the project you want to open, and click Open.

To open a project in a new Builder window
1. Choose File > Open Project in New Builder...

2. Browsefor the *.bld of the project you want to open, and click Open.

To set your target

When you start the Builder for the first time, it attempts to select atarget that
matches the target of your development environment. If the Builder does not
select the correct target, you need to manually set it. Once you set the correct
target, the Builder will remember and use it every time.

1. Choose Project > Set Build Target for Project...

2. Browsethe MULTI installation directory, and select the correct build file for
your target. For example, if your target is the PowerPC, select ppc.bld.

Note: Your MULTI installation may contain more than one build file for your
target. The majority of users select the most basic build file, for example,
ppc.bld. If you have acustomized MULTI environment, you may need to load a
specialized build filefor your target. For example, if you are using the PowerPC
500 as your target, load ppc500.bld.

Setting up your software project

By creating a hierarchical view of al your programs, libraries, sourcefiles,
headers, and other project files, you can define the file dependencies of your
software project.

Asyou define your file dependencies, you need to add a build file (*.bld) for
every program in your project. Also, add abuild file for libraries that you want

Green Hills Software, Inc. 13

2. Using the Builder

to rebuild with your project. If you would like to take this a step further and
group source files into modules, you may add build files for your subprojects.
These build files:

- List al of thefiles that comprise the program, subproject, or library.

« Store compiler options for the program, subproject, or library, and for each
source file.

When defining your project hierarchy, be aware that files inherit compiler
options from parent build files. For example, suppose a program,
masterfoo.bld, contains a subproject, subfoo.bld. In this scenario, subfoo.bld
isthe child that inherits options from the parent, master foo.bld. Now suppose
that subfoo.bld contains a sourcefile, foo.c. In this scenario, foo.c inherits
options from master foo.bld AND subfoo.bld.

Using default.bld

When you start creating your project hierarchy, the Builder automatically puts
default.bld at the top of the hierarchy. Since your entire project inherits from

default.bld, you can use default.bld to set global options that will be used as
the default throughout your project.

You can create your own top-level *.bld files directly below default.bld in the
hierarchy if you are uncomfortable with using default.bld at the top of your
hierarchy. You can then load one of your own *.bld files when you start the
Builder. Your project will still inherit from default.bld behind the scenes, but if
you never load default.bld, the relationship will have no impact.

To define the executable programs in your project

You define what programs get built in your project by adding a build file for
each program. You can have multiple programs that are built as part of your
project. These programs can be built at the same hierarchical level, or one
program can be a child of another program.

If aprogram isachild of another program (i.e., it islower in the hierarchy), the
source files of the child will inherit default settings from the parent. However,

the child’s source files will be compiled and linked into a separate executable
from the parent executable. For example, suppose you have a program build
file, masterfoo.bld, at the top of your project’s hierarchy. Lower in the
hierarchy, you havéooaid.bld, the build file for a separate program. The
source files contained fiooaid.bld inherit options frommasterfoo.bld, but are
compiled and linked into a separate executdbtmid.out.

1. Start the Builder from the project’s directory.

14

Building and Editing with MULTI 2000

Setting up your software project

2.

5.

If you want to put the program at the top of your project’s hierarchy, make
suredefault.bld is at the top of the Source pane.

If you want to put the program lower in your project’s hierarchy, navigate
until the program or subproject that will contain the new program is at the
top of the Source pane.

Click the Add button L3).

In the file chooser, browse for a location to create your new build file. It is
recommended to place the program’s build file in the same directory as the
source files for that program. When you have chosen a directory, type in the
name of the build file to create. Usually, this will be the same name as the
executable you wish to generate, but witbld extension. For example, if

your executable is calledaster foo.out, call your build filemasterfoo.bld.

Click Add.

To define a subproject

To organize your source code into logical units, use subprojects. A subproject is
always a child project of a program or another subproject. The source files
contained within a subproject are compiled and linked into its parent program;
subprojects do not get built into executables. You define a subproject as a
special type of build file*(bld) that does not get built.

If your project uses sub-directories to organize your source code in your file
system, you can create the subproject’s build file in the appropriate
sub-directory. This allows the Builder to look in the correct directory when you
add source files to the subproject.

1

Double-click the build file of the program or subproject that will contain the
new subproject.

Click Add (L3)).

In the file chooser, select a directory and enter the name of the build file for
the new subproject. The subproject’s build file needs to havel axten-

sion. Normally, the subproject is located in the same directory as the source
files contained within it.

Click Add.

Highlight the new subproject.

Choose Project > Options for Selected Files....

On the General tab, set the Type: field to Subproject.

Green Hills Software, Inc. 15

2. Using the Builder

8. Click OK.

To link in a compiled library

To link a compiled library to a program, add the library file to the program’s
build file.

1. Double-click the build file of the program to which you want to link the
library.

2. Click Add ([&).
3. Browse for the library file that you want to add, then click Add.

4. Look at the new file's type to make sure the Builder assigned it the type
Library. If the Builder did not assign the Library type:

a. Highlight the library file.
b. Choose Project > Options for Selected Files... .

c. Inthe General tab, set the Type text field to Library.

To link to a library that gets built with your project

You can define a library and its source files so that the library gets rebuilt every
time you start a build.

If the library is hierarchically lower than a program or subproject, the library
will inherit settings from the parent program or subproject. However, the
library’s source files get built into the library, not into the parent program.

1. Double-click the build file that will contain the new library.
2. Click Add ([&).

3. In the file chooser, select a directory and enter the name of the build file for
the new library. Make sure your library’s build file habla extension.
Normally, your library’s build file is located in the same directory as the
library’s source file, and the name of the build file is the same name as the
library, but with abld extension.

4. Click Add.

5. Highlight the new library.

6. Choose Project > Options for Selected Files... .

7. In the General tab, set the Type text field to Library.
8. Double-click the new library.

16

Building and Editing with MULTI 2000

Setting up your software project

9.

Add source filesfor the new library.

To add an existing source file to your project

Double-click the build file that will contain the source file.
Click Add (L3).

Browse for the sourcefile, and click Add. To add multiplefiles quickly, you
may specify a file pattern using the wildcard characters *’ and ‘?’ in the file
chooser.

To define and create a new source file

1

2.

3

4.

5.

Double-click the build file that will contain the new source file.
Click Add ([3).

In the file chooser, select a directory and enter the name of the new source
file. Click Add. The name of the file appears in the Source pane, but the
actual file does not yet exist.

Double-click the name of the new source file to open it in the Editor.
Save the new file.

To define header files

You can add header files to your project hierarchy to quickly access the header
files for edit. However, adding a header file to the hierarchy does NOT ensure
that the Builder will find the header when it is compiling your source files.

To define a header file in your project hierarchy, add the file the same way as
adding a source file.

To ensure that the Builder finds the header file when it is compiling your source
files:

1

2.

Select the build file for the program or library you are building.

Choose Project > Options for Selected Files..., then navigate to the General
tab.

In the Source Directories: field, enter the path where your header files are
located. If your header files are located in multiple directories, separate the
paths by commas WITHOUT any spaces.

Green Hills Software, Inc. 17

2. Using the Builder

To change a file’s type

The Builder automatically sets the type of file based on the file’s extension. If
you need to manually override the Builder’s choice:

1. Select the file.

2. Choose Project > Options for Selected Files... .

3. Go to the General tab.

4. In the Type: field, select the type of the selected file.

Note, however, that the compiler will always be selected based on the file’'s
extension, not the file type. So for instance, even if you set the type for foo.c to
Fortran, the C compiler will still be used instead of the Fortran compiler.
Therefore, you will need to rename the file if you want to use a different
compiler.

To rearrange the order of files in the hierarchy

The files at each level of your project’s hierarchy display in the order in which
you added them to the Builder. This is also the same order in which the files will
be built. You can rearrange the order in which the files are displayed to change
the build order, and also to help you visually understand your hierarchy. For
example, you may want to rearrange the files so the source files that belong to a
build file appear before the subprojects of that build file.

1. Highlight the files you want to move.

2. Choose Edit > Cut Selected Files, or click the Cut buidn ().

3. Highlight the file immediately above where you want the files to be placed.
4. Choose Edit > Paste Selected Files, or click the Paste b@on ().

Alternatively, after you highlight the files you want to move, press
Ctrl+UpArrow or Ctrl+DownArrow to move the files up or down in the list.

Navigating through your project

In the Builder’s hierarchical view of your project, files that belong to a build file
(program, subproject, or library) appear below the build file, and are indented to
the right.

18 Building and Editing with MULTI 2000

Navigating through your project

There are two ways to see the contents of abuild file in the hierarchy:

+ Click the plus (+) and minus (=) signs to expand or collapse the contents of a
program, subproject, or library. This does not change the base project.

« Double-click a program, subproject, or library to make it the new base
project. At this point, you can no longer see the parent build file that
contains the new base project.

The base project

The build file that appears at the top of the Source pane is the base project. The
base project changes as you navigate among the build files in your project.

File Edit Project Buld Debug Hemote Yersion Config Help

FHBER BRI FHE
Filename File Type Wergion Control
base project —— | B =IO [nobuild]

Hhello.khld [program]
Hfoo.bld [program]

foo.z [2] [edlee)

bar.c [2] [edlee)
EHhello cxx.bld [program]
EHbhig file.bld [program]

(REeading build file: "foo.hld™)

Knowing which build file is the base project is important for three reasons:
« When files are added, they are added to the base project.

« Options for build files get set differently depending on whether the build file
is the base project. For more details, see “Setting options for programs,
subprojects, and libraries” on page 21.

« When you start a standard build, the current base project is what gets built,
regardless of what is highlighted in the Source Window.

For example, suppose masterfoo.bld is the current base project, and contains
another program, foochild.bld. If you highlight foochild.bld and then choose
Build > Build Program, the Builder compiles the masterfoo.bld program,

NOT foochild.bld. To build foochild.bld, you must double-click foochild.bld

to make it the base project, then start the build.

Navigating among base projects

During a Builder session, you need to navigate through the various build files of
your project hierarchy. To descend one level in the project hierarchy,
double-click on the build files to navigate deeper. Then, you can quickly

Green Hills Software, Inc. 19

2. Using the Builder

navigate back and forth between levels by using the Back and Forward history
buttons:

<= Navigates up the project hierarchy to the build file that encloses the current
base project.

= Navigates down the project hierarchy to the location of the previous base
project opened.

Searching through your project

If you have abig project, it may be difficult to locate a particular file within the
hierarchy. You can perform an incremental search to find your files quickly. To
perform the search, first expand the projects that contain the files you are
searching for. To expand the projects, click on the plus signs or click the Expand
button (*'2). Then, use one of the following keystrokes:

Ctrl+f searches forward for the filename.
Ctrl+b searches backward for the filename.

When you type a key combination, the first instance of the matching filenameis
highlighted. To find the next match, repeat the key combination. When you are
done, press Escape to cancel the search mode.

Note that only filesin projects which have been expanded will be found. Thisis
why it is important to expand the relevant projects first, by clicking on the plus
signs, or using the Expand button.

To view all files in the base project

To expand the hierarchical view of the current program, subproject, or library so you can view
all of itsfiles, click (¥%).To open a source file in the Editor

If you want to edit a source file that appearsin the hierarchical view of your
project, ssimply double-click the filename.

Setting options: An overview

You can use the Builder to set options for your project such as how it gets
compiled and linked, how you debug the executable, and how runtime error
checking works. Many of these options correspond directly to the compile-time
options for the Green Hills compilers.

20

Building and Editing with MULTI 2000

Setting options: An overview

All of the Builder options are available through menu items in the Build menu.
For detailed descriptions of each Build menu item, see “Build menu” on page
37.

Inheriting options from parent build files

A file inherits its options from all build files* (bld) to which it belongs in the
project hierarchy. You can override these inherited options by setting options in
the file itself. When the Builder compiles your project, the top-level project’s
options are applied first, with each subsequent child project adding its options
to the existing ones, overriding or appending where specified, until finally the
individual file options are added for each file.

Viewing inherited options

When you look at the options for a particular file, whether it is a source file or
build file, you see only the options that have been specifically set for that file.
You do not see the options that the file inherits from the build files of its parents.
Before setting an option for a specific file, you probably want to see whether
that option is already being inherited from a parent.

To see the inherited value of the option, do one of the following:
« In the main Builder, click Merge®).

e From the Builder, choose Project > Options3deected Files... and click
Merge in the Options dialog box.

You cannot edit the options while you are looking at them in merged mode. If
you see an option you want to change, first do one of the following:

« In the main Builder, click Unmergé®).

« From the Builder, choose Project > Options3deected Files... and click
Unmerge in the Options dialog box.

Then, edit the option.

Setting options for programs, subprojects, and libraries

Because you can reuse build files for programs, subprojects, and libraries in
multiple projects, it is important to specify whether the options for a build file
are specific to the current project or whether the options are specific to the build
file itself regardless of what project it belongs to. This choice, which is based on
which build file is the base project, determines if the options are stored in the

Green Hills Software, Inc. 21

2. Using the Builder

build file itself or in its parent’s build file. For more information about the
Builder’'s base project, see “Navigating through your project” on page 18.

- If the options are specific to the current project, set the options while the
parent’s build file is the base project. For example, suppose foochild.bld is a
subproject of masterfoo.bld. Make sure masterfoo.bld appears at the top of
the Source Window, then select foochild.bld and set the options.

Options set in this way are stored in the parent’s build file (in this example,
masterfoo.bld). If you reuse the child’s build file in a different project, the
options will not be carried over into the new project.

« If the options are specific to the build file itself, set options for the build file
while it is the base project. For example, suppose foochild.bld is a
subproject of masterfoo.bld. Make sure foochild.bld is at the top of the
Source Window before you select foochild.bld and set the options. You will
not see masterfoo.bld in the Source Window.

Options set in this way are stored as part of the child’s build file (in this
example, foochild.bld), and therefore will be set for that build file regardless
of what parent it belongs to.

Setting options for source files
You can set options for an individual file or for a list of files.

« To set an option for an individual file, select the file in the Source Window
and set the options. Be aware that if you move the file to a different
program, subproject, or library, the options that you previously set do NOT
move with the file.

« To set an option for a group of files, select the build file that contains the
files in the Builder’s hierarchy of your project, then set the options. The
options are set in the build file; all files below the build file, including its
source files, will inherit these options.

Understanding tick boxes
Tick boxes allow you to set the value of some options. These tick boxes have
three states:
R On. The option is turned on regardless of the default setting inherited from a
parent build file.

= Off. The option is turned off regardless of the default setting inherited from
a parent build file.

22 Building and Editing with MULTI 2000

Important options

I Default. The value of this option is inherited from the parent build file. To
seetheinherited value of the option, click Mergein the Project > Options
for Selected Files... dialog box, or click Merge (&) in the main Builder
window.

Entering multiple text items for an option

Some options require that you enter atext item, such as a path or filename. If
you need to enter multiple items for these options, then separate each item by a
comma, without any spaces. Do not put spaces before or after the commas
because the Builder will not understand your items.

Important options

To set optimization options

To set compiler optimization options that correspond to the optimizations

options found in the Green Hills Language User’s Guide for your programming
language, choose Project > OptionsSdected Files... > Optimization tab. If

you have questions about individual options, see “File Options > Optimization
tab” on page 52.

To set run-time error checking options

To enable the Debugger to provide run-time error checking, set run-time error
checking options in your project before you build it. The options that you set
determine the types of errors the Debugger will be able to check at run-time.

To set run-time error checking options, choose Project > Options for
Slected Files... > Run-time Error tab. If you have questions about individual
options, see “File Options > Run-time Error tab” on page 55.

To set manifest constant definitions for the preprocessor

1. Navigate to the top of your hierarchy to ensure that the constant definition is
inherited throughout your project.

2. Choose Project > Options f8elected Files... .
3. Choose the General tab.

4. In the Defines: field, enter the constant definitions. Do not entebDtipee-
processor option before the constants. For example, if you want to set
DEBUG to 1 and MAX to 64, enter:

Green Hills Software, Inc. 23

2. Using the Builder

DEBUG, MAX=64
See “Defines:” on page 50, for more information.

To undefine manifest constant definitions for the preprocessor

1. Navigate to the top of your hierarchy to ensure that the undefined constant
definition is inherited thought your project.

2. Choose Project > Options for Selected Files... .
3. Select the General tab.

4. In the Undefines: field, enter the constant definitions you want to undefine.
Do not enter theU preprocessor option before the constants.

Building your project

To start a build, make the program'’s build file the base project, then choose
Build > Build program-name orlibrary-name or click (3¢). When you start a

build in this way, the Builder completes the build according to the options set in
the Build Panel.

To change options in the Build Panel, choose Build > Advanced Build
Controls... . For information about an individual build option, see “Build Panel”
on page 43.

To perform adryrun build

You can run a build that duplicates the command line optims un and-#.
The build will show the actions that take place without actually performing
them.

1. Choose Build > Advanced Build Controls... .
2. Choose Test Run.

3. Choose Commands.

4. Click the Build button 3¢).

To build individual source files
1. Select the source files that you want to build.

2. Choose Build > Build Selected Files.

24 Building and Editing with MULTI 2000

Building your project

To specify the name of the compiled program or library file

By default, the Builder names the compiled program or library file based on the
*.bld file that gets built. To override the default name:

1. Navigateto the * .bld that you want to change.

2. Choose Project > Options for Selected Files... .

3. Choose the Actions tab.

4. In Output Filename, enter the name you want for your program or library.

To track down errors from a build
1. Build your application.

2. Inthe Progress Window, double-click the error message you want to exam-
ine.

The Editor appears, opens the sourcefile that contains the error, and puts the
cursor on the line of code that caused the error.

Building platform-specific programs from the same source files

When a program needs to work on multiple hardware platforms, often timesthe
sourcefiles areidentical except for one or more assembly language routines that
vary from processor to processor. In cases like this, you can create Select One
subprojects that contain the processor-specific files so you can build the same
program for multiple target processors.

Consider the following example. Suppose a program for SH processors depends
on the following files:

i ndprogram c
i ndprogram h
traps. ppc ; Power PC assenbly | anguage file

Suppose the same program compiled for Alpha depends on these files:

i ndprogram c
i ndprogram h
traps.mp ; MPS assenbly | anguage file

You can use a Select One subproject, traps.bld, to build a program that uses
only the processor-specific file, traps.ppc or traps.mip, for the specified target
processor.

If you have multiple files that are specific to a single processor, create multiple
Select One subprojects. Suppose the program in the above example also uses

Green Hills Software, Inc. 25

2. Using the Builder

bdriver.ppc and bdriver.mip. In this case, you would need another Select One
subproject, bdriver.bld.

To define your project for multiple platforms
1. Create the program that gets compiled and linked.

2. Add to the program all of the source files except the processor-specific
assembly files.

3. Add to the program a Select One subproject that contains the processor-spe-
cific assembly files:
a Create abuild file for the subproject. For example, create traps.bld.

b. With the new build file highlighted, choose Project > Options for
Selected Files... .

c. Choose the General tab.
d. Inthe Type: fidld, select Select One.

e Inthe Source Window, add to this new Select One build file the vari-
ous processor-specific assembly files for the program. In the example
above, traps.bld contains two files: traps.sh and traps.alp

To build a platform-specific program

Once you have defined your project for multiple platforms using a Select One
subproject:

1. Set the Builder’s Target: field to specify the target processor for the current
build. For details about setting the target, see “To set your target” on page
13.

2. With the program as the base project and highlighted, choose Project >
Options for Selected Files... .

3. Choose the Configuration tab.

4. In the Select text field, enter one or more of the file extensions needed when
building for this particular target. That is, enter the extensions of the files
that apply specifically to the target processor. In the example above, if you
are building your program for PowerPC, ergpc in the Select text field. If
you are building your program for Mips, entaip in the Select text field.

5. Start the build.

When you start the build and each time the Builder reaches a Select One
subproject, it chooses the first file in the list that matches one of the extensions

26 Building and Editing with MULTI 2000

Debugging

specified in the Select: field of the program. The other filesin the Select One
subproject are ignored.

Debugging

You can use the Builder to set options that determine the type of debugging
information that gets generated when you build your project. Once you build
your project, you can use the Builder to connect to a simulator or debug server
and to start a debugging session on your new executable.

To set what debugging information gets generated
The default isto have MULTI level debugging information generated.

1. Choose Project > Options for Selected Files... .
2. Select the Genera tab.
3. Set the Debugging Level: field to the desired value.

To connect to atarget through a debug server or simulator

Before you can debug your application on your target system, you must first
connect to aremote target through a debug server or simulator.

1. Click Connect (%5) or choose Remote > Connect to Target.

2. Inthedialog box that appears, enter the debug server or simulator that you
are using in your debugging environment.

Green Hills Software, Inc. 27

2. Using the Builder

The available debug serversinclude:

MULTI debug servers

810serv, 830serv, 850serv

960serv

e7kserv

hpserv

idtserv

ml6serv

monserv

ocdserv

rtserv

spotlight (for pSOS)

tornserv

unixserv

vxserv

winserv

The available ssmulators include:

MULTI simulators

sim800, sim850

sim960

simalp

simarm

simm16

simmma

simmips

simppc

simrh32

simsh

simspc

28

Building and Editing with MULTI 2000

Debugging

3. You may also add command line options following the name of the debug
server. For example: ssmppc -ppc860

4. Click Ok.

When you connect to a debug server or simulator, an IN/OUT window and a
Target window will appear. You can close these windows without harming the
MULTI environment. If you close these windows and later wish to use them
again, you can choose Remote > Show Target Windows to redisplay them.

The IN/OUT window provides the basic 1/O for the program you are
debugging. The Target window allows you to send commands to the debug
server or simulator.

You can perform incremental searchesin both the IN/OUT and the target
window. The key presses are:

Ctrl+f Searchesforward.
Ctrl+b Searches backward.

To start a debug session
1. Connect to your debug server or simulator. Alternatively, you can wait to
connect to the debug server or simulator from the Debugger.
2. Double-click the project that you wish to debug.
3. Click Debug (#]) or select Debug > Debug program-name.

4. If the user entry point is known, then the Debugger displaysit on start-up.
Otherwise, the Debugger displays the executable entry point on start-up. For
normal C applications, the user entry point is main and the executable entry
point isusualy _start.

Green Hills Software, Inc. 29

2. Using the Builder

30 Building and Editing with MULTI 2000

Chapter

The Builder GUI

This chapter contains:

The Builder window

The Builder menus

The Builder toolbar

Other Builder components
Build Panel

File Options dialog box
Language Options dial og box
CPU Options diaog box
Toolchain Options dialog box
The Progress window

3. The Builder GUI

This chapter provides a comprehensive description of the commands and optionsin the main
Builder window menu bar.

The Builder window

To start MULTI and open the Builder windows, enter adamulti at the command
ling, if MULTI isin your path.

Menu barﬁ File Edit Project Build Debug Hemote “ersion Config Help

FEHBELE 2RO R LED
Filename File Type Wergion Control
Selected file ———> default.bld [nobuild]

Source pane ——>

Output pane ——>

Status bar ——— | Target: ppc

Title bar
Thettitle bar contains the title of the current project. In this example, the project
titleis default.bld, the default project title when you first run MULTI.

The Builder menus

NOTE: Thefollowing tables contain all Builder menu items along with brief
descriptions of the items. If amenu item has a command equivalent, thenitis
provided for advanced users wishing to configure their Builder menu settings.
To configure Builder menu settings, choose Config > Options... > General tab
and click the Menus... button. A dialog box appears where you can enter the

command equivalents. See Chapter 10, “Configuration commands” for more

information.

32 Building and Editing with MULTI 2000

The Builder menus

Pop-up menu
Many command operations can be performed in the builder by right-clicking in

the source pane. All operations available on the pop-up menu are documented
elsewhere in this chapter, and apply to the currently selected files.

File menu

NOTE: Spacesare not allowed in filenames. This restriction applies throughout
the entire MULTI development environment.

Green Hills Software, Inc. 33

3. The Builder GUI

File menu (builder)

Menu item Meaning Command
Open Project in Opens a project (*.bld) in the current Builder window. Open
Builder...
Open Project in Opens a project (*.bld) in a new Builder window. NewBuilder
New Builder...
Open File in Opens a file in a new editor window. Edit
Editor...
Save project Saves changes for all projects in the hierarchy that Save
have been modified.
Save project Same as Save, except you can save the current SaveAs
As... project under a new name.
Revert project Reloads the current project from disk, discarding any Revert
changes made since the last save.
Print Current Prints the currently displayed project hierarchy. The Print
View... hierarchy will be printed in the exact state that it is
displayed in the source pane. In particular, if you wish
to print the contents of subprojects, you need to
expand them first so that they are displayed.
Print Entire Prints the fully expanded project hierarchy. All projects | PrintEntire
Project... will be expanded first, then the entire project hierarchy
will be printed.
Write entire Prints the currently displayed project hierarchy to a PrintToFile
project to file... text file in ASCII format.
Recent Files This submenu contains recently edited files. You can Edit
choose one of these files to edit it more quickly.
RecentProjects | This submenu contains recently opened projects. You | Open
can choose one of these projects to open it more
quickly.
Close Builder Closes the Builder window. Close
Exit All Exits MULTI. If any files are not saved, a Save All QuitAll

dialog box appears first. All active debug sessions are
terminated.

Building and Editing with MULTI 2000

The Builder menus

Edit menu

Edit menu (builder)

Project menu

Menu item Meaning Command
Cut Selected | Removes the selected files from the current CutFiles
Files project and places them in the clipboard.
Note: For the commands Cut Files, Copy Files,
and Paste Files, an internal clipboard separate
from the system clipboard is used.
Copy Makes a copy of the selected files and places CopyFiles
Selected them in the clipboard.
Files
Paste Copies files from clipboard and inserts them PasteFiles
Selected into the top level project, after the current
Files selection.
Find in Greps through the files in your project. Grep
Files...
Project menu (builder)
Menu item Meaning Command
Add Files To | Opens a dialog box to add selected files to the current Add
Project project.
Remove Removes the currently selected files from the project. Remove
Selected
Files
Edit Selected | Opens in the Editor the files that are selected in the EditSelected
Files... source pane.
Simplify Attempts to convert absolute filenames to relative SimplifyNam
Filenames filenames when possible. To be more precise, if the path es

of a file is removed and if the file can still be found by
searching the source directories list, then the full
pathname is replaced by the filename without a path.
This is a simple means of converting absolute pathnames
in projects to short relative pathnames to increase
portability. To add source directories, select the project
first, then select Project > Options for Selected Files... >
General tab.

Green Hills Software, Inc.

35

3. The Builder GUI

Project menu (builder)

Menu item Meaning Command
Recalculate For efficiency, the Builder only evaluates filenames RecalculateF
Filenames against the “source directories” when a project is opened. | ilenames

To add source directories, select the project first, then
select Project > Options for Selected Files... > General
tab. It continues to use the filename calculated initially
unless Recalculate Filenames is selected. Choosing
Recalculate Filenames rescans the source directories list
for the files listed in the current project. This is useful after
changing the source directories list, where a file originally
found in one directory is now in another. It is also useful if
a file is moved from one source directory to another, or a
file is deleted from a source directory. Without performing
this operation, the Builder would continue to use the file in
the original directory.

Set Build Allows you to select a new target system for which to n/a
Target for build. All files in a project inherit a set of default options
Project... that depend upon the target system. These defaults are

set up in a build file which consists of the target name
followed by the .bld extension, such as ppc.bld. Some
targets are preinstalled in the same directory in which
MULTI was installed. You may create your own target
files as well.

Options for Displays the File Options dialog box, which you use to set | Options
Selected most build options. For more details, see “File Options FileOptions
Files... dialog box” on page 45. Note: Only the options for the
first file selected in the source pane will be affected.

36 Building and Editing with MULTI 2000

The Builder menus

Project menu (builder)

Build menu

Menu item Meaning Command
Language Displays the Language Options dialog box, which you use | Options
Options for to set language specific compiling options. These include | LanguageOp
Selected Ada, C, C++, FORTRAN, and Pascal options. See tions
Files... “Language Options dialog box” on page 68 for more

information. Note: Only the options for the first file

selected in the source pane will be affected.
CPU Options | Displays the Options dialog box that corresponds to the Options Cpu
for Selected | processor family for which you are building your program.
Files... The processor family is determined by the target you

have selected (see “Set Build Target for Project...” on

page 36 for more information). For example, if you are

building your program for the PowerPC, the PowerPC

Options dialog box appears.

See “CPU Options dialog box” on page 92 for more

information on choosing targets and a list of possible CPU

Options dialog boxes. Note: Only the options for the first

file selected in the source pane will be affected.
Toolchain Displays the Toolchain Options dialog box that Options
Options for corresponds to the toolchain for which you are building Toolchain
Selected your program. This dialog box includes linker options and
Files... assembler options. The toolchain is determined by the

target you have selected (see “Set Build Target for

Project...” on page 36 for more information). See

“Toolchain Options dialog box” on page 118 for more

information on the Toolchain. Note: Only the options for

the first file selected in the source pane will be affected.
Build menu (builder)
Menu item Meaning Command
Build Builds the current program and shows the status of the | Build
Program build in a separate window. For any type of build, the

project will be saved first if it has been modified.
Build Builds only the selected files instead of the whole Build Selected
Selected project.
Files
Rebuild All Builds the current project, and forces every file to be Build All

rebuilt, even if the dependencies show that the file has

already been built and is up to date.
Build and Builds the current project, and continues building upon | Build
IgnoreErrors | detection of an error. Normally, the build stops when IgnoreErrors

an error occurs.

Green Hills Software, Inc.

37

3. The Builder GUI

Build menu (builder)

Menu item

Meaning

Command

Cleanup
Intermediate
Files

Deletes all of the files which are normally created
when building the project. This includes object files,
libraries, and executables. In other words, at each step
where a file would be created in a normal build, the file
is deleted instead. The only files that remain after
Clean Up are the source files necessary for building
the project from scratch.

Build CleanUp

Show a
Dry-run of
Build

The Builder determines and displays the steps of
building the project, but does not actually run any of
the tools, such as the compiler, assembler, linker,
archiver, etc. This option is usually used in conjunction
with one of the Display Overrides settings in the Build
Panel. In particular, Progress, Reasons, and
Commands can all be displayed in a test run. The
Warnings setting has little effect in Test Run mode
because only the builder itself is executed in Test Run
mode, therefore only warnings from the builder itself
are displayed.

Enabling both Test Run and Commands is equivalent
to the -dryrun and -# build-time options on the driver
command line.

Build TestRun

Advanced
Build
Controls...

Opens the Build Panel dialog box, which you use to
temporarily set options for how you want to build the
project. These settings will be in effect for the current
session only, and will not be saved when you close the
Builder. See “Build Panel” on page 43 for more
information on each build panel options.

BuildPanel

Debug menu

Debug menu (builder)

Menu item

Description

Command

Debug Program ...

Starts a debugging session on the compiled
executable of the current project.

DebugCurrent

Debug Other...

Opens a dialog box which you can use to select
the executable that you want to debug.

Debug

Attach to Process...

Attaches to a running process. See also the
debugger command attach. This command
works only with a multi-tasking target and is
grayed out otherwise. It opens a new debugger
window to debug the specified task.

n/a

1,234

Debug the specified executable.

Debug

38

Building and Editing with MULTI 2000

The Builder menus

Remote menu

Remote menu (builder)

Menu item Description Command

ConnecttoTarget... | Opens a dialog box where you can enter the debug | Remote
server or simulator to which you want to connect.
The four most recently connected targets are
available in the drop-down list.

Disconnect from Disconnects from the remote target. Disconnect
Target

Show Target Displays the Target and I/O windows for the target | TargetWin
Windows to which you are currently connected.

Load Module This submenu is for multi-tasking debug servers LoadModule

only, allowing you to download a new object
module to the target. Choose Load Module... again
from the submenu to choose the module to
download from a dialog box, or choose one of the
recently downloaded projects from the list
provided.

1,23,4 Connect to the specified remote target. Remote

Version menu

Version menu (builder)

Menu item Description Command

Check Out Retrieves a writable copy of the latest version and BCheckOut
locks the file so others cannot change the file while
you work on it.

Check In Saves the changes made to the file, makes the file BCheckin
read-only, and removes the lock from the file. You will
be asked for comments to be saved in the log file
along with your changes.

Check In + Saves the changes made to the file, but keeps the file | BCheckinOut
Out checked out (locked).
Retrieve Retrieves a read-only copy of the current version of BRetrieve
the file, even if the file is locked.
Discard Discards changes made to the file, removes the lock BUncheck
Changes from the file, and reverts to the latest version. Use this
to undo a checkout when you decide not to make any
changes.

Green Hills Software, Inc. 39

3. The Builder GUI

Version menu (builder)

Menu item Description Command
Place Under Puts the current file under version control. Once afile | BCreate
VC is placed under version control, the file must be
checked out before changes can be made.
ShowHistory... | Opens a window that displays version history BShowHistory
information: version numbers, dates, user names, and
comments.
Other VC Allows you to run additional version control BOther
Command commands. For a complete list of the version control

commands, see Chapter 4, “Version control”.

Config menu

Config menu (builder)
Menu item Meaning Command
Options Displays the Options dialog box, which you ConfigOptions
use to change options that affect the way the
Builder and other MULT] tools look and
behave.
Save Allows you to permanently save the changes | SaveConfig
Configuration as | you made in the Options dialog box.
Default
Clear Default Clears all saved changes and reverts to all ClearConfig
Configuration... defaults in the Options dialog box.
Save Save the changes you made in the Options SaveConfigToFile
Configuration... dialog box to a user specified file.
Load Load changes to the settings in the Options LoadConfigFromFile
Configuration dialog box from a user specified file.

See Chapter 10, “Configuration commands” for more information.

40 Building and Editing with MULTI 2000

The Builder toolbar

Help menu
Help menu (builder)
Menu item Meaning Command
Builder Help... Opens MULTI’s online help for the Builder. Help
Manuals Opens the “Manuals sub-menu”, which will n/a
display a list of manuals appropriate to your
version of MULTI. Choosing one of these
manuals will open the online help to the first
page of that manual.
About MULTL... Displays the About banner. About

The Builder toolbar

These are the buttons on the Builder toolbar, their meanings, and their

equivalent commands:

Builder toolbar

previous build file that you were working with.

Button Meaning Command
= Opens a project (*.bld) in the current Builder window. Open
Saves changes for all projects in the order that they Save
U have been modified.
Cuts the selected files from the current project and CutFiles
3: places them in the clipboard. For the commands Cut
Files, Copy Files, and Paste Files, an external
clipboard separate from the system clipboard is used.
e Makes a copy of the selected files and places them in | CopyFiles
the clipboard.
Copies files from clipboard and inserts them into the PasteFiles
% current project.
y Opens a dialog box to add selected files to the current | Add
project.
Click to navigate up the project hierarchy to the build Back
& file that encloses the current build file.
o Click to navigate down the project hierarchy to the Forward

Green Hills Software, Inc.

41

3. The Builder GUI

Builder toolbar

Button Meaning Command

% Expand Click Expand to display an expanded view of all ExpandAll

% projects. In other words, each project will be expanded
= Contract (h_ave its plus sign ‘clicked). _

Click Contract to display a contracted view of all

projects. Each project will be contracted (have its

minus sign clicked).

Click Expand to display expanded view of subprojects.

Click Contract to hide the contents of all subprojects.

® Merge Merge and Unmerge. Clicking Merge shows the ShowMerged
merged options for a file, including full pathnames and
<Tf'> Unmerge all inherited options. This will affect the Builder window

and all of its options windows as well. After clicking
this button, it becomes Unmerge, which changes the
options view back to normal. See “Viewing inherited
options” on page 21 for more information.

Saves a project, if necessary, then builds it. The status | Build
w of the build is shown in a separate window.
?o Connect to a debug server or simulator. Remote

Connect

Disconnect from a debug server or simulator. Disconnect
3
Disconnect
. Debug the current program. DebugCurrent
Debug
Edit the currently selected files. EditSelected
2 Edit

Closes the Builder window. You will be prompted to Close
X save and/or check in all edited files. You can configure

whether or not to have this button on the toolbar. See

also “Display close (x) buttons” on page 243.

Other Builder components

Source pane

Your projects and source files are listed in the source pane. Each line of thislist
is displayed with the filename in the Filename column, followed by thefile type
in square brackets in the File Type column. If you are using MULTI Version
Control (MVC), then files that are checked out have the appropriate user name
in parentheses in the Version Control column. All projects (*.bld) have a small
plus or minus to their left. Clicking the plus will expand the view so that the
contents of the project are displayed (the plus will change into a minus).

42

Building and Editing with MULTI 2000

Build Panel

Clicking the minus will contract the view so that the contents of the project are
hidden (the minus will change into a plus).

When the names of filesin a project do not show an absolute path, the path is
relative to the directory the build file residesin. Your project is more portable if
you use only relative file names. You can specify additional source directories
in which to find files by doing the following: select the project you wish to add
source directories to, then choose Project > Options for Selected Files... >
General tab, and edit the Source Directories list. After you add source
directories, choose Project > Simplify Filenames, which will attempt to convert
absolute filenames to relative filenames.

You can change the order of thefilesin thelist by selecting afilein thelist, and
then while holding the Ctrl key press the up or down arrow keysto movethefile
up or down.

Output pane
The Output pane displays information about the current status of the build
project.

Status bar

When the cursor is on a button, the status bar shows a short description of the
function of the button.

Target window

The target window displays the currently selected build target. To change the
build target, select Project > Set Build Target for Project....

Build Panel

(Builder : Build > Advanced Build Controls....)
This sets options for how you want to build your project.
The Build Options check boxes affect the way the files are built.

Build all
Forces every file to be rebuilt, even if the dependencies show that the file has
already been built and is up to date.

Green Hills Software, Inc. 43

3. The Builder GUI

Ignore errors

Continues building upon detection of an error. Normally, the build stops when
an error occurs.

Clean up

Deletes all of the files which are normally created when building the project.
Thisincludes object files, libraries, debugger symbol files, and executables. At
each step where afile would be created in anormal build, thefile is deleted
instead. The only filesthat remain after Clean up are the source files necessary
for building the project from scratch.

Test run

The Builder goes through the steps of building the project, but does not actually
run any of the tools, such as the compiler, assembler, linker, archiver, etc. This
option is usually used in conjunction with one of the Display Overrides
settings described below. In particular, Progress, Reasons, and Commands can
al be displayed in atest run. The War nings setting has little effect in Test run
mode because only the builder itself is executed in Test run mode, therefore
only warnings from the builder itself are displayed.

Enabling both Test run and Commandsis equivalent to the -dryrun and -#
build-time options on the driver command line.

The Display Overrides check boxes affect the appearance of the build’s output.
These check boxes override display settings, which can also be set for your
project in Project > Options f@elected Files... > General tab > Show. When

the check box displays a plus|(), the option is turned on regardless of the
setting in the project. When the check box displays a m=us (), the option is
turned off regardless of the setting in the project. When the check box displays
nothing (), the setting in the project is used.

Progress
Displays the build steps as they occur. The default setting is on.

Warnings

Displays any warnings that occur from the compilation process. The default
setting is on.

Reasons
Displays why a certain action takes place. The default setting is off.

44 Building and Editing with MULTI 2000

File Options dialog box

Commands

Displays the actual program and arguments used in the step. Together with Test
run, thisis equivalent to the -dryrun and -# build-time command line options.
The default setting is off.

File Options dialog box

(Builder : Project > Options for Specified Files....)

Each of the Options menu items in the Project menu opens a dialog box that
allows you to set certain options. The File Options dialog box contains severa
tabs. Each tab contains options that affect your project and how it gets built.

Most of the options are compile-time options described in the Green Hills
Language User’s Guidesnd the Development Guide&or an overview of

issues involved when setting options, see “Setting options: An overview” on
page 20.

Note: The File, Language, CPU, and Toolchain options dialog boxes ALL have
the following buttons:

Merge

Allows you to see the inherited settings for options which have not
been set. When the dialog is displaying merged options, the settings may not be
modified. See “Viewing inherited options” on page 21 for more information.

OK
Applies any changes which have been made in the dialog box and closes it.

Cancel

Discards any changes and closes the dialog box. Certain operations, such as
Merging or selecting another file in the Source Window, require first that you
apply or discard any changes. You will then be prompted to choose whether to
apply or discard your changes for each Options dialog box which has been
modified.

Apply
Applies any changes and leaves the dialog box open.

File Options > General tab
(Builder: Project > Options fdgelected Files... > General tab)

Green Hills Software, Inc. 45

3. The Builder GUI

Type (drop-down list)
The Type drop-down list box alows you to select afile type. The Builder

normally tries to determine the file type by looking at the file’s extension. To
change the file type, open the Type box, then choose the desired type from the

drop down list. For example, to change a build file from a program to a

subproject, click the text program and select Subproject. Then click Apply. The

build file will show the newly assigned type in the build file list. MULTI does

not allow changing a file type to certain inappropriate file types. Below is an

explanation of each file type:

Type (drop-down list)

File Type

Meaning

Default

Determines file type by the file extension.

Nobuild

This type of build file is useful for containing other projects, such as
programs and libraries. Building a project of this type will build all the
projects contained within it. The file default.bld is normally set to this
type, since it contains all the projects you will want to build. If a
nobuild is contained within another build file (for example a program),
then building the program will not build the contents of the nobuild.
Instead, navigate into the nobuild and build it directly from there.

Program

Main build file for a project; generally contains source files and/or
subprojects. The contents of this project are compiled and linked to
form a program.

Subproject

A component of a project. Subprojects are useful for grouping source
files together so that common build options can be set for the whole
group. They generally contain one or more source files. Contained
files are compiled and linked with the program or library which
includes the subproject. Subprojects are also used to include the
same group of files in two different projects.

Select one

Sometimes a program needs to work on different kinds of hardware
platforms. Usually, most of the source files are identical, but there
may be one or more assembly language routines that vary from
processor to processor. Select one files allow the same .bld file to
build the program by selecting one of several assembly language
files.

For information about setting up Select one files, see “Building
platform-specific programs from the same source files” on page 25.

Singlefile library

A single object file used as a library.

46

Building and Editing with MULTI 2000

File Options dialog box

Type (drop-down list)

File Type

Meaning

Library

A normal library, usually a build file (*.bld). A build file (*.bld) of this
type contains source files and/or subprojects. When the library build
file is built, the source files are compiled and linked to create the
library. If the library build file is included in a program, then building
the program also builds the library and links the library into the
program. See “To link to a library that gets built with your project” on
page 16 for more information. On the other hand, a library file (*.a,
* lib, *.dll, etc.) may also have this type. A library file with this type
must be included in a program. Building the program will link the
library file into the program. See “To link in a compiled library” on
page 16 for more information.

Shared library

A shared library, usually a build file (*.bld). When building shared
libraries, it is necessary to build a corresponding shared data library
containing the modules of the shared library that exports initialized
data. MULTI creates both types of libraries from the same build file.
To create a build file with all of the desired library files, mark each
shared data file by selecting the Includes shared data option in the
File Options dialog box, General tab.

If you set the file type to Shared library in the File Options dialog
box, General tab, then files are built whether or not they are marked
as including shared data. If the file type is set to Shared data library,
then only the files marked as including shared data are built.

Shared data

A shared data library, usually a build file. Refer to Shared library

library above for more information.

Include file An include file. Adding include files to the project does not affect the
actual include files included during a compile. See “To define header
files” on page 17 for more information.

Script Contains shell script commands.

Documentation A documentation file.

C source file Contains C source code. During a build, the file type is ignored and

the Builder uses the file's extension to determine the correct compiler
to use. For example, setting the file type to C Source File for a file
named foo.f still runs the Fortran compiler.

Fortransourcefile

Contains FORTRAN source code.

Pascalsourcefile

Contains Pascal source code.

C++ source file

Contains C++ source code.

Ada source file

Contains Ada source code.

Object file An object code file. The object file will be linked into the program or
library containing it.

Linker file A linker directives file. This file is passed to the linker.

Assembly file Contains assembly language code. The assembly file will be

assembled and linked into the program or library containing it.

Integrate file

Integrate configuration file used for the INTEGRITY RTOS.

Green Hills Software, Inc.

47

3. The Builder GUI

Type (drop-down list)

File Type Meaning

Custom A source file which needs custom build rules. To set the custom build
rules from the Builder, choose Project > Options for Selected Files
and choose the Configuration tab. Scroll the commands list down to
Custom Processor, and set the appropriate command to build your
custom source files. See “File Options > Configuration tab” on page
57 for more information.

Show (drop-down list)

The Show drop-down list box sets which levels of information are displayed
when building, but the Build Panel overrides this which precedes the selected
level inthelist. Any of these settings automatically set al the choices before it
inthelist. For example, setting Warnings automatically sets Progress and Errors

Default
Uses the inherited setting. The default is Warnings.

Errors
Shows errors from the Builder, compiler, and linker.

Progress
Shows the steps being executed. For example, files being compiled or
your program being linked.

Warnings
Shows warnings from the Builder, compiler, and linker. The MULTI
default is to build without warnings.

Dependencies
Shows why actions occur. For example, why a particular sourcefileis
being recompiled (because a dependent source file has changed.)

Commands
Displays the compiler driver command lines used by the builder to run
the compiler, assembler, and linker as they are executed without
actualling run the tools. Equivalent to the -v and -# build-time options.
For example:

Debug
Shows warnings from the Debugger.

Debugging level (drop-down list)

The debugging level drop-down list box sets the type of debugging information
the compiler outputs.

48

Building and Editing with MULTI 2000

File Options dialog box

Default
Uses the inherited settings. The default isMULTI.

None
No debugging information should be generated.

Sack
Generates a stack framein every routine to support stack traces. Without
this option, some routines may not create stack frames, thereby reducing
code size and improving performance. This option does not imply the -g
option, but isimplied by the -g option. This option also disables |eaf
procedure optimization. Equivalent to the -ga debugging option.

Plain
Generates source-level symbolic debugging information. The debugging
information varies with the capabilities of the target system. Debugging
languages other than C has severe limitations. Equivalent to the -g
debugging option.

MULTI
Generates extended debugging information for MULTI. This option is
required for proper debugging of Ada, C, C++, FORTRAN, and Pascal
code, since it provides information for handling language specific
features. Equivaent to the -G debugging option.

Performance analysis (drop-down list)
Setsthe level of profiling information output by the compiler.

Default
Uses the inherited settings. The default is None.

None
No profiling information is generated.

Percent
Generates profiling calls. When your source files are compiled with this
option, calls to routines for maintaining profiling information are
embedded in each routine in the sourcefile. This displays the percentage
of time spent at each source line. Equivalent to the -p build-time option.

Functions
Determines the number of calls to each function. This option also sets
Per cent. Equivalent to the -p build-time option.

Graph
Generates code to collect extended profiling information to include call
graph information. This option functions similarly to the -p option,

Green Hills Software, Inc. 49

3. The Builder GUI

except additional information collected produces acall graph report.
This option also sets Functions and Percent. Equivalent to the -pg
build-time option.

Coverage analysis (drop-down list)

Coverage analysis generates basic block profiling calls. When your source files
are compiled with this option, callsto routines for maintaining profiling
information are embedded in each block of instructions generated by the
compiler. This displays information about which source lines are actually used
when your program executes. Thisiseither turned On or Off. The default is Off.
Equivalent to the -a build-time option.

Automatically use MVC

Automatically places all text files under MULTI Version Control (MVC) when
added to the project list or edited. If anon-existent file is added to the project
list, itisnot placed under version control until edited and created.

Driver options:

Any extra options sent to the driver are listed here. The Development Guide for
your system provides a description of driver options.

Defines:

Enters any desired macro definitions for the preprocessor. However, do not put
a-D infront of your entries. Equivalent to the -D C and C++ option. For
example:

XxXx=1,yyy=444
this defines xxx as 1 and yyy as 444.

Undefines:

Does not convert uppercase user-supplied variables to lowercase. By default,
FORTRAN isnot case sensitive and all FORTRAN names convert to lowercase.
The compiler and library both assume this translation is performed. This option
generally accesses variables defined in C as uppercase. However when using
this option, al FORTRAN keywords must be lowercase, making the compiler
incompatible with the ANSI FORTRAN-77 standard. Equivalent to the -U
FORTRAN option. Placing aminus sign (-) prevents any symbols, such as
__STDC__and __ghsto be defined by the Builder or compiler. Note that there
are two underscores (_) before and af#DC’, and two underscores before
‘ghs.

50

Building and Editing with MULTI 2000

File Options dialog box

Libraries:

Specifies extra user libraries. Library names are either given with their full
pathname, or a simple name, such as foo.

If you specify the file extension or full path of the library, the Builder looks for
thelibrary in the local directory rather than the directories specified by the
Library Directoriesfield.

If you enter a simple name, such as bat, the Builder looks for bat.ain the
library directory paths set in the Library Directories field.

To indicate the library located in the local directory, use .Jlibrary, for example,
Jbat.

Thisbox only addslibraries. To replace system libraries or Green Hills libraries
such aslibans, edit the Advanced tab of the File Options dialog box.

Source directories:

Normally, the Builder looks for source filesin the same directory as the build
file and in the directory from which the Builder is run. Additional directories
specified here are searched for source filesaswell asincludefiles. Thisisan
editable field in the File Options dialog box, General tab.

Library directories:
Additional library search paths may be listed here.

Don’t rebuild because of changes in:

Thisfile
By default, all files depend on the Builder file which includes them. For
example, if aprogram fly.bld contains a source file bat.c, then bat.c
depends on fly.bld. So, if fly.bld changes, then bat.c along with every
other fileisrebuilt. Thisis not always desired. When this option is set,
the Builder does not consider changesin the selected file and does not
rebuild other files when it changes.

Includefiles
By default, the Builder determines dependencies of source files on the
files they include (such as header files). Therefore, changing an include
file causes the recompilation of all the source files that include it.

When this option is set, the Builder ignores all dependencies on include
filesfor the current file.

Green Hills Software, Inc. 51

3. The Builder GUI

Other files:
Thisfield allows you to enter files which you do not want automatically
rebuilt because changes have been made to them. For example, if you
want the current file to depend on every header file except fly.h, then
type fly.h in this box.

File Options > Optimization tab

This tab controls the compilers’ optimization features. These optimizations are
discussed in more detail in the Optimization chapter inLéihguage User’s
Guides

Default

Uses the inherited settings. If no parent project has an explicit setting, then the
default is No optimization.

No optimization

No optimizations should be performed. Any settings in the Advanced
Optimizations dialog will be ignored.

Optimize for size

Employ optimization strategies that reduce code size, potentially at the expense
of code speed.

Optimize for speed

Employ optimization strategiesthat favor code speed, potentially at the expense
of code size.

Advanced button

If either “Optimize for size” or “Optimize for speed” are selected, the Advanced
button will be available. Pressing the button will open the Advanced
Optimizations Options dialog box.

Advanced Optimizations Options dialog box

To get to this dialog box, do this:

1. From the Builder, choose Project > OptionsSediected Files....
2. Choose the Optimization tab.

3. Choose either “Optimize for size” or “Optimize for speed”.
4. Click Advanced...

52

Building and Editing with MULTI 2000

File Options dialog box

Many of the options in this window automatically set other optionsin this
window. Use Merge to display the fully resolved option settings. The following
table shows the name of the section in the Language User’s Guidedealing with
the given optimization:

Optimization Section
Inline Inlining Enabled with -Ol
Loop Loop Optimizations Enabled with -OL

The following table shows the minor optimizations and the corresponding
command line option. Refer to the description of optimization control in the
processor specific Development Guidéor more information.

i
calls

Minor Optimization Command Line Option
Peephole -Onopeep

Common subexpression -Onocse

elimination

Constant propagation -Onoconstprop

Unroll loops -Onounroll

Recognize min, max, abs -Onominmax
expressions

Pipeline scheduling -Onopipeline

Inline strcpy() and stremp() -Onostrcpy

Tail recursion

-Onotailrecursion

line

Unroll loops up to 8 times -Ounroll8
Unroll bigger loops -Ounrollbig
Pipeline only within source -Olimit=pipeline

Peephole only within source
line

-Olimit=peephole

Green Hills Software, Inc.

53

3. The Builder GUI

The optimizations in the following table have an associated command line
option in the “register allocation by coloring” description in tiaaguage

User’s Guide
Minor Optimization Command Line Option
Allocate auto variables in -autoregister
registers
Overload variables in registers -overload

The first table of optimizations contains al major categories, while the second
and third tables contain minor optimizations. Turning on some of the major
optimizations automatical ly turns on some of the minor optimizations. The
minor optimization boxes are not altered to reflect their new state. To see the
final state of the minor optimizations, use the M er ge button in the Builder
window. The following table explains the state of minor optimizations:

Minor Optimization State

Overload registers Always on, unless forced off.

Auto register

Loop unrolling Implied by Loop optimization.

Unroll 8 Requires Loop optimization, but always off
Unroll Big unless forced on.

All others Always off, unless forced on.

Most of the time, you will be turning off optimizations, since Optimize for size
and Optimize for speed turn on most optimizations by default. The minor
optimizations are useful in special circumstances.

The textfields allow you to enter additional information about the
corresponding optimizations. For example, you may enter functionsto inlinein
the Inline textfield, and functions to loop-optimizein the L oop textfield.

There are three ways to use the Inline field.

e Click the small box to the left. The compiler inlines only those functionsiit
determines heuristically to be good inlining candidates.

» Enter alist of functions without clicking the box. The compiler inlines only
those listed functions.

« Enter both alist of functions and click the box. The compiler inlines the
listed functions and determines what other functions to inline.

54 Building and Editing with MULTI 2000

File Options dialog box

The L oop option works differently. If you click the checkbox, then all functions
will have loop optimizations applied, overriding any functions listed in the
textfield. So, if you enter any specific functionsin the textfield, do not click the
checkbox to the left.

Note: Not all optimizations are supported for all targets.

File Options > Run-time Error tab
(Builder: Project > Options for Selected Files... > Run-time Error tab)

Select the options that enable the desired error checks. Most of these checks
occur at run-time, although some occur at compile time.

Memory checking (drop-down list)

Default
Maintains the previous or inherited setting. Originally, the default is
None.

None
Disengages memory checking.

Allocation
Equivalent to the -check=alloc command line option. Enables the
Debugger’sindleaks command and checks for the following memory
errors. (See also “Finding memory leaks” in Debugging with MULTI
2000.)

If the program attempts to free memory not previously allocated, this
error is reported:

Attenpt to free sonething not allocated

If the program attempts to free memory already free, sometimes the
previous error message is reported here. Otherwise, this error is reported:

Attenpt to free sonething already free

If the program attempts to allocate memory after various other errors
occurred, this error report appears:

Mal l oc internals (free list?) corrupted
Memory
Generates an error message when the program tries to access memory
that is not yet allocated. (Equivalent to tiheck=memory command
line option.) It displays the approprigddlocation error messages,
above, in addition to the following:

Green Hills Software, Inc. 55

3. The Builder GUI

Attenpt to read/wite nmenory not yet allocated
Array Bounds

Checks array indexes against array bounds. For constant indexes, this

check occurs at compile-time; for other expressions at run-time.

(Equivalent to the -check=bounds command line option.)

The error messageis:
Array index out of bounds

Assignment Bounds

When assigning avalueto avariable or field which isasmall integral type such
as abit field, this checksif the value is within the range of the type. (Equivalent
to the -check=assignbound command line option.) The error messages are:

Assi gnnent out of bounds

or
Val ue outside of type

NULL Dereference

Generates an error message for all dereferences of NULL pointers. (Equivalent
to the -check=nilderef command line option.) The error messageis.

NULL poi nter dereference

Case/Switch Statement

Generatesawarning if the case/switch expression does not match any of the
case/switch labels. This does not apply when using a default case/switch label.
(Equivalent to the -check=switch command line option.) The error message is:

Case/ swi tch i ndex out of bounds

Divide by Zero
Generates an error message indicating a divide by zero. (Equivalent to the
-check=zer odivide command line option.) The error message is:

Divide by 0

Unused Variables

Generates an error message at compile-time for declared variables never used.
(Equivalent to the -check=usevariable command line option.) The error

message is.

56

Building and Editing with MULTI 2000

File Options dialog box

Unused vari abl e

Pascal Variants

Checks that the tag field of avariable declared as avariant record type matches
one of the case selectors in the record. This applies only to Pascal. (Equival ent
to the -check=variant command line option.) The error messageis:

Bad variant for reference

Watchpoint

Enabl es the Debugger command watchpoint to create one watchpoint without
using an assertion. (Equivalent to the -check=watchpoint command line
option.) See also “watchpoint” in Debugging with MULTI 2000. The error
message is:

Wite to watchpoint

Return

Generates a warning if a non-void procedure ends without an explicit return.
For example, the following procedure generates a warning when exiting:

int func() {
for (int x = 0; x< 10; Xx++)
{
if (x == 10)
return x;
}
}

This option only applies to C and C++. (Equivalent to-teck=return
command line option.) The error message is:

No val ue returned from function

File Options > Configuration tab
(Builder: Project > Options fdgelected Files... > Configuration tab)

Builder:

Specifies the name of the Builder programi(d). This program is otherwise
assumed to be in the same directory as MULTI.

Green Hills Software, Inc. 57

3. The Builder GUI

Select:

For the project type Select One, you may list several files which have different
extensions. Only one of those files will be built, however. To determine which

one is built, the builder looks at the ‘select’ list. This is a list of suffixes which
are to be built. Thus, when the builder comes across a Select One subproject, it
will look through the ‘select’ suffix list, and find the file which has a valid

suffix.

Green Hills C++ include dirs:

A list of directories containing Green Hills C++ include files. Addsctory to
the list of directories to search when procesginglude directives. Iffile.cxx
contains the lin¢iinclude “header.h”, the compiler searches for header.hin
the file.cxx directory, then in directories specified in Source Directories on the
File Options dialog box, General tab, and finally in alist of default directories.
If file.cxx contains the line #include <header.h> the processing isthe same
except the directory containing file.cxx is not searched. If header.his specified
with an absol ute pathname, then no directories are searched. Equivalent to the -
and -Y| build-time options.

Green Hills Cinclude dirs:

A list of directories containing Green Hills C includefiles. Adds directory to the
list of directories to search when processing #include directives. If file.c
containsthe line#include “header.h”, the compiler searchesfor header.hin the
file.c directory, then in directories specified in Source Directories on the File
Options dialog box, General tab, and finally in alist of default directories. If
file.c contains the line #include <header.h> the processing is the same except
the directory containing file.c is not searched. If header.his specified with an
absolute pathname, then no directories are searched. Equivalent to the -1 and
-Y1 build-time options.

System include dirs:

A list of directories containing system include files. Equivaent to the -YI
build-time option.

Green Hills library dirs:

A list of directories containing Green Hillslibraries. Equivaent tothe-L, -YL,
and -YU build-time options.

58 Building and Editing with MULTI 2000

File Options dialog box

System library dirs:

A list of directories containing system libraries. Equivalent to the-L, -YL, and
-Y U build-time options.

Tools directory:

Changes the default directory to look for the commands in the list described
below under Commands.

Alternate tools dir:

If you select the Gnu tool chain or aUNIX tool chain, instead of the Green Hills
tool chain, then this directory is used for the assembler, linker, and other files
that comprise this aternate tool set.

Commands:

Displays many different commands called by the Builder. You can change the
name and arguments to any or all of these commands. Select the command and
then fill in the appropriate information in the text fields below thelist.

Generally, the Builder’s default information is correct so you can leave these
entries blank.

Command directory:
Specifies a new directory to search for a command.

Command name:
Specifies a new name for a command.

Arguments:
Specifies a list of additional arguments sent to the command when called.

File Options > Actions tab
(Builder: Project > Options fdgelected Files... > Actions tab)

Output Filename:

Names the output file of the current driver command. In the simplest case, the
linker output file is calledilename. If another file is generated from the linker
output file, such as an S-Record file, this determines the name of the last file
created, which is the S-Record file. If only one source file is naroéslused

with either the-S or-c option to name the output of the compiler or assembler.
Equivalent to thec build-time option.

Green Hills Software, Inc. 59

3. The Builder GUI

On aproject of type Program, Library, Shared library, or Shared data
library, these commands are executed before calling the linker or archiver, and
not at the very beginning of processing. However, projects of type Shared and
Nobuild generate no output files, and at thistime thisfield isignored for
projects of these types.

Append Extension:

To make your file portable across different systems, the Builder can append the
appropriate extension to the output filename, so you do not have to specify it
yourself.

For example, if you are building a program with a build file called fly.bld and
want to name the executable file bat, enter bat into the output filename box.
Once thisis done, the executable will call bat on every system, including those
expecting the executables to have extensions such as .bat.exe. When setting this
option, the Builder adds the appropriate extension, .exe, on those systems that
requireit.

Object Directory:
Equivalent to -object_dir.

Stop with (drop-down list)

The Sop with field should be used in conjunction with the C Sourceoption in
the Compilation menu, located in the Advanced tab. Sop With setsthe type of
file with which to stop when building, so that you can look at the intermediate
files. For example, if you have a C source file and want to compileit into
assembly code but you do not want it to process any further, set this menu to
Assembly. The Builder compiles source files to object files by default.

Some of the file types in this menu are incompatible with the type set in the
Type: menu in the File Options dialog box, General tab. For example, you
cannot make a C source file into an archivefile.

Inf file
Indicates that an analyzing pass is being performed, and stops
after generating the .inf (information) file. The .inf file contains
reader-file dependent information.

Preprocessor output
For source files which are preprocessed (C and C++ files plus
preprocessed assembly language files), it runs the compiler only
as apreprocessor and places the output in the standard output file.
Although this does not process files as quickly as a standalone C

60 Building and Editing with MULTI 2000

File Options dialog box

preprocessor, it duplicates the action that istaken when thefileis
compiled. Equivalent to the -E C and C++ preprocessor option.

Preprocessor file
For source files which are preprocessed (C and C++ files plus
preprocessed assembly language files), it runs the compiler asa
preprocessor but sends the output to anew filewith a.i extension.
Equivalent to the -P C and C++ preprocessor option.

Translated C file
When converting from other languages to C, this stops with the C
file. Thisoption is used in conjunction with the C Source option
from the Compilation menu. Thisis currently not supported.

If you are converting from C++, you can set the Leave Translated
C in the C++ option window to achieve the same effect.

Syntax
For Ada, C, C++, FORTRAN, and Pascal, it checks the syntax of
the sourcefile, but does not generate code. Equivalent to the
-syntax command line option.

Assembly
Only produces an assembly file from the source file. For each
source language file specified in Ada, C, C++, FORTRAN, or
Pascal, compiles the file into an assembly language output file
using standard naming conventions. Implies the Assembly option
in the Compilation menu. Equivalent to the -S command line
option.

Object
Only generates a rel ocatabl e object file for each source input file
with afilename of inputfile.o. Appliesto al source fileswhich are
compiled, in Ada, C, C++, FORTRAN, and Pascal. Equivalent to
the -c command line option.

Green Hills Software, Inc. 61

3. The Builder GUI

Executable
Stops with an executable file. This option applies to projects of
type Program. If the Debugging level is not MULTI, this option
has no effect. Select this option to prevent dblink from running
on the executable after it is generated by the linker.

Sym file
Runs dblink on the executable file, producing debugging symbol
filesand strips the original executablefile of all symbol
information. This option appliesto projects of type Program. Itis
the default with Debugging level: MULTI.

Archive
Runs the librarian to generate an archive instead of invoking the
linker to generate an executable program. It is the default for
projects of type Library. This option must be used with the -0
filename option with a.a extension. For example:

cc960fly.c -archive -o libfly.a

Equivalent to the -ar chive command line option.

Shared Object
Stops with ashared library file with a .so extension. This option
appliesto project of type Shared Library and is the default for
such projects. Thistype of project is only supported if the Target
OSisUNIX. Equivalent to the -shared command line option.

Shared Data
Stops with a shared data library file with a.sa extension. This
option appliesto projects of type Shared Data Library and isthe
default for such projects. Thistype of project is only supported if
the Target OSis SUnOS.

Dependencies:

Enters any additional files you want the current file to depend on. When
changes are made in any of these files, the Builder rebuilds the current file.

Commands to set up input files:

If you want to execute shell commands before compilation, enter alist of
executable commands. Typically, you run commands to set up source files such
as preprocessing. These commands are executed verbatim with the default
command processor with no variable substitution.

62 Building and Editing with MULTI 2000

File Options dialog box

Commands to process output:

If you want to execute shell commands after compilation, enter alist of such
commands here. Typically, you run commands to process the output of the
compilation and produce more suitable output. These commands are executed
verbatim with the default command processor with no variable substitution.

File Options > Advanced tab
(Builder: Project > Options for Selected Files... > Advanced tab)

Set by the target Build File, the options on thistab are usually already cal culated
for you by the Builder. Changing these options will have unspecified results as
they are not valid in all configurations. All of these options are only set in
projects of type program or nobuild. This ensures consistency across all files
in asingle program. In addition, many of these options apply to the link phase
and areignored if set on individual files within a program.

Processor (drop-down list)

Sets the processor family for the program being built. This selection affects the
behavior of the Builder in many ways. Not all options are relevant for al
processor families. In particular a sub-window in the CPU Options dialog is
provided for each processor family. Only the options in the sub-window
corresponding to the selected processor take effect.

When set to C Translator, the source code is translated into C by one of the C
trandators. The native C compiler is then run on the generated C code.

Compilation (drop-down list)
Compil ation specifies the output format of the compiler itself.

C Source
The source code is trandated into C by one of the C trand ators. The
native C compiler is then run on the generated C code.

Assembly
The source file produces an assembly language file. The assembler will
then run on that file to produce an object code. Equivalent to the -noobj
command line option.

Object
The source file directly produces an object code file without producing
an assembly language file. Currently, this is only supported on M 16,
68000 and SH processors. Equivalent to the -obj command line option.

Green Hills Software, Inc. 63

3. The Builder GUI

Alignment (drop-down list)

Alignment sets the maximum data alignment for the target. Thisisrarely used.
Equivalent to the -align= machine specific option.

Structure packing (drop-down list)

Specifies the maximum alignment of fields in a structure. ThisfeatureisNOT
supported for all processors.

Toolchain (drop-down list)

This feature sets the toolchain: the assembler, linker, libraries and utilities. The
Builder and compilers are adapted to work with assemblers and linkers from
various vendors. Thisfield should not be set or changed at any time.

Object format (drop-down list)

BSD
Used by SunOS and some Gnu compilers. Equivalent to the -bsd
command line option.

COFF
The Common Object File Format is used by UNIX System V.3 and older
embedded environments. Equivalent to the -coff command line option.

ELF
The Executable and Linking Format is used by UNIX System V.4 and
the modern embedded environments. Equivalent to the -elf command
line option.

Oasys 68k
A proprietary format generated by the Oasys 680x0 assembler and linker.
Equivalent to the -oasys command line option.

Output mode (drop-down list)

This sets the file format produced by the linker. Many environments only
support one binary format. The following are descriptions of these output
formats:

BSD
Used by SunOS and some Gnu compilers. Equivalent to the -bsd
command line option.

COFF
The Common Object File Format is used by UNIX System V.3
and older embedded environments. Equivalent to the -coff
command line option.

64 Building and Editing with MULTI 2000

File Options dialog box

ELF
The Executable and Linking Format is used by UNIX System V.4
and the modern embedded environments. Equivalent to the -elf
command line option.

S-Records
Produces a COFF or ELF file, trandlates into an S-Record file,
and keeps both files. Equivalent to the -srec linker option.

Oasys 68k
A proprietary format generated by the Oasys 680x0 assembler
and linker. Equivalent to the -oasys command line option.

Memory
Memory image format. Equivalent to the-memory command line
option.

HP/OMF
Obsolete.

Only S-Records
Produces a COFF or ELF file, trandates into an S-Record file,
and then del etes the COFF or ELF file. Equivalent to the
-sreconly linker option.

Oasys Objectsand S-Records
Produces S-Record output directly using Oasys object format
instead of COFF or ELF. Equivalent to the -srecoasys command
line option.

Tek Hexadecimal
Tektronix extended hex format (680x0 only).

Exormacs
Obsol ete.

| EEE-695
Portable format used by 680x0 emulators. Equivalent to the
-ieee695 command line option.

Target OS (drop-down list)

Target OS sets the type of operating system on the target system you are
building.

Temp Directory

Stores temporary files in the directory specified by dir instead of /tmp. Thisis
useful if /tmp ison asmall file system that may run out of disk space during

Green Hills Software, Inc. 65

3. The Builder GUI

compiles with inlining or template processing. Thisis also set with the
TMPDIR environment variable. For example:

setenv TMPDIR /usr/tnp
Equivalent to the -tmp= C compiler option.

Start address:

Specifieswherethe program starts. Thisis passed to thelinker and isnormally a
symbol name, so it should be written so that the linker recognizesit (that is, you
may need to include an extra underscore (). Thisis equivaent to the -entry=
linker option.

Start/End file dir

Contains startup files, such as crt0.0. Equivalent to the -Y S command line
option.

Start files

A list of fileslinked at the beginning of your program. For example: mcrt0.0,
crt10.0. Thefileslisted replace crt0.o. If you just want to suppress the linker
from including the default startup code from the library into your program, you
cantypea’- inthisfield. It will prevent the builder from linking in any startup
code.

End files

A list of fileslinked at the end of your program. On systems using it, crtn.ois
replaced by these files.

Green Hills libraries

Replaces the default Green Hills Libraries normally linked in with those listed
here. These libraries are normally chosen automatically.

System libraries

Replaces the default System Libraries normally linked in with those listed here.
These libraries are normally chosen automatically.

Remote

Thisfield isonly used in adefault.bld file or a program build file. When the
Builder window is opened on a build file with thisfield set, the value specified

66

Building and Editing with MULTI 2000

File Options dialog box

automatically loads into the text field next to the Remote button in the Builder
window.

Small printf without %e%f%g

Uses libnoflt.a, a smaller version of printf, that does not handle floating point
numbers. The 1/0 routines within this library do not contain instructions for
floating point support and therefore are much smaller.

Show headers

Displays alist of files opened by a #include directive. Equivalent to the -H
command line option.

Source lines in asm File

Outputslinesfrom original sourcefilesinto the assembly language output of the
compiler as comments. This option has no effect with direct binary code
generation. This option interferes with some optimizations, including loop
optimization which produces inferior code in some circumstances. Equivalent
to the -passsour ce command line option.

Show Versions

Displays the copyright banner and version number of the compiler, assembler,
and linker asthey are run. By default, the version and copyright banner is
suppressed. Equivalent to the -V command line option.

Put versions

Places the compiler’s version into the comment section of each object module.
Currently, this is only available on some UNIX systems. Equivalent t&ye -
command line option.

Output dual debug formats
Output both Green Hills proprietary information as well as Dwarf.

Dynamic download project
For the INTEGRITY RTOS, build project for dynamic download.

Keep temp files
Does not delete temporary files after they are used.

Green Hills Software, Inc. 67

3. The Builder GUI

Link without default startfiles or libraries
Prevents the Builder from adding any of the following to the link command:

e Green Hills Libraries (Advanced tab)

» System Libraries (Advanced tab)

« Green Hills Library directories (Configuration tab)
e System Library directories (Configuration tab)

» Startup Files (Advanced tab)

« End Files (Advanced tab)

The option still specifies libraries and library directories using the fieldsin the
File Options dialog box, General tab. A linker directivefile still adds to the link
command line with the Oasys 68000 linker, 168. However, it does not add any
startup files or any libraries and passes fewer options to the linker command
line. (Thisisequivalent to the -nostdlib command line option.) An alternativeis
to override the default for individual fields listed above by placing a dagh “
the field.

Languages Used:

These check boxes tell the Builder which languages are used that it does not
recognize, such as those compiled to object files that have no source. The
Builder uses this field to select libraries during the link phase. This is equivalent
to the-language= linker option which ensures that the driver is aware of all
languages in use. It is specified once for each language used other than C.

Language Options dialog box

(Builder: Project > Language Options fealected Files...)

The Language Options dialog box contains several tabs, each of which contains
options for a particular language. Most of the options are compile-time options
described in the Green Hillsnguage User’s Guideand the Development Guides

For an overview of issues involved when setting options, see “Setting options:
An overview” on page 20.

Language Options > C tab

To get to this tab, from the Builder, choose Project > Language Options for
Selected Files..., and choose the C tab.

68 Building and Editing with MULTI 2000

Language Options dial og box

The following are descriptions of the itemsin the C tab.

C version (drop-down list)
K+R
For C source files, interpret the source code as the C version
documented in Kernighan & Ritchie, first edition, and compatible
with the portable C compiler, or PCC. Equivalent to the -k+r and
-Xs C options.

Transition Mode
Selectsamode of ANSI C compatibility similar to AT&T C
Issues 5.0 transition mode supporting function prototypes and the
new ANSI keywords signed and volatile in anon-ANSI
environment. Thisisthe default. Equivalent to the -Xt C option.

ANS|
Sets the compiler in Permissive ANSI compatibility mode. With
some systems, this uses the header filesin /usr/green/include and
/usr/green/ansi beforethosein /usr/include.

This mode supports the language features of the ANS|
X3.159-1989 standard, while allowing certain useful but
non-compliant constructsin an ANSI C framework. Equivalent to
the -ansi C option.

Srict ANSI
Strict ANSI mode is 100% compliant with the ANSI
X3.159-1989 standard and does not allow non-standard
constructs. This also uses the header filesin /usr/green/include
and /usr/green/ansi before thosein /usr/include. Equivalent to
the-ANSI C option.

Type of wchar_t (drop-down list)

Specifies the type of wchar _t, the type of all wide-characters. This allows you
to set the size of al wide characters and determine whether they are signed or
unsigned. Equivalent to the -shortwchar and -signedwchar C and C++
compiler options. The type selected here has the following effects:

« Changes the size and signed or unsigned attributes of wide character
constants and strings such asL'x’ and L“Hello” .

» Predefines one of the following symbols:
__WChar_Is_Unsigned
__WChar_Is_Signed

and also predefines one the following symbols:

Green Hills Software, Inc. 69

3. The Builder GUI

__WChar_Is Short__

__WChar_Is Int__

__WChar_Is Long

__WChar_Is LongLong
Notethat there are two underscores (_) both at the beginning and at the end
of each of the above symbols.

» Sdectswhich typeisused for the typedef of wchar _t in stddef.h.
Only the default selection works with the libraries provided.

short
Default for SUNOS 4.x.

unsigned short
int
Default for Ultrix on DEC station.

unsigned int

long
Default on UNIX System V.4, Solaris, and all embedded products.

unsigned long
Not supported for all target processors. See your target
Devel opment Guide for more information.

long long
Not supported for all target processors. See your target
Devel opment Guide for more information.

unsigned long long
Not supported for all target processors. See your target
Devel opment Guide for more information.

Target kanji (drop-down list)

Host kanji (drop-down list)

The Target kanji and Host kanji drop-down list boxes control the internal
representation of kanji characters recognizable in C host code, comments, and
character strings. If Host kanji > EUC and Target kanji > Shift-JIS are both
selected, then the compiler automatically trand ates character string literalsfrom
EUC to Shift-JIS format. The combination of Host kanji > Shift JIS and Target
kanji > EUC is not supported. On SunOS, Host kanji defaultsto EUC. On
Windows and HP/UX, Host kanji defaults to Shift-JIS. Target kanji defaultsto
Host kanji. Equivalent to the -kanji= command line option.

The following are descriptions of the check boxesin the C tab.

70

Building and Editing with MULTI 2000

Language Options dial og box

Ignore Duplicate #include

Ignores an #include directive if attempting to include afile already included.
The file must appear with exactly the same name in both #include directives to
ignore the second #include directive.

If afilename appearsin more than one #include directive during asingle
compilation, it skips all of the directives except the first one. Equivalent to the
-includeonce C preprocessor option.

Ignore All #include

Ignores all #includefile directives. Equivalent to the -includenever C
preprocessor option.

Allow Macros to be Re#defined

Suppresses the warning or error normally given when two #define directives
provide different values for the same preprocessor symbol. Equivalent to the
-redefine C preprocessor option.

Allow Wrong #directives inside #if O

During preprocessing, linesinside of false #if, #elif, #ifdef, and #ifndef are
ignored. With the exception that a warning or error is given for lines beginning
with #, they do not contain legal preprocessor directives. This option suppresses
these warnings and errors. Equivalent to the -nocpperror C and C++
preprocessor option.

Warn for Unknown #pragma

Generates awarning for unknown #pragma lines. Normally, unknown
#pragmae are ignored silently. Equivalent to the -unknownpragmawarn
command line option.

No Warning for Incorrect #pragma

Suppresses warnings for errorsin #pragma that are recognized by the compiler
and that are incorrect. Equivalent to the -nopragmawarn C and C++
preprocessor option.

Allow #pragma asm and #pragma inline

Allowsthe use of #pragma asm, #pragma endasm, and #pragma inlinein C
source files. See the Green Hills C User's Guidéor more information on these
pragmae. Equivalent to the -pragma_asm_inline command line option.

Green Hills Software, Inc. 71

3. The Builder GUI

No Output for #ident or #pragma ident

Prevents the compiler from outputting an ident directive in the assembly
language output or from placing the same information in the .comment section
when generating COFF or ELF object files directly. This option is primarily
intended for an assembler or linker that does not support the ident directive.
Equivalent to the -noidentoutput C compiler option.

Allow // style comments in C

Allows C++ style comments (beginning with // and terminating with a new line
to beused in C). Thisoption is aso used with preprocessed assembly files.
Equivalent to the -slashcomment command line option.

Keep Comments in Preprocessor Output

Includes comments in the preprocessor output. The default strips comments
from the output. Equivalent to the -C C and C++ preprocessor option.

Concat 2 Symbols Separated by Comment

Allows /* *[as concatenation in K&R C. You can turn off this option with the
-Zconcatcomments option. Equivalent to the -concatcomments C option.

Warn for Function Used without Prototype

Generates awarning if afunction isreferenced or caled but no prototypeis
givenfor that function. Thisisan extensionto ANSI C, ensuring that prototypes
exist for al functions used. Equivalent to the -wantpr ototype C compiler
option.

Disallow Function Used without Prototype

Generates afatal error if afunction isreferenced or called but no prototypeis
givenfor that function. Thisisan extensionto ANSI C, ensuring that prototypes
exist for al functions used. Equivalent to the -needprototype C compiler
option.

Allow ‘noalias’ keyword in C

Adds noalias keyword to C. You can turn off this option with the-Znoalias
option. Equivalent to the -noalias C option.

Disable ANSI aliasing rules

Disables ANSI dliasing rules. Equivaent to the -no_ansi_alias build-time
option.

72

Building and Editing with MULTI 2000

Language Options dial og box

No Warning for asm()

Does not give warnings for asm statements. Equivalent to the -asmwarn
build-time option.

Do not reserve asm keyword

By default, the compiler recognizes asm as a keyword and gives a syntax error
if any variable, structure field, macro, or function has the name asm. Selecting
this option causes the compiler to treat asm as an ordinary identifier in C. Any
attempt to use an asm statement with this option enabled causes the compiler to
call afunction asm() with a character string as its argument.

Thisoptionisimplied by Strict ANSI mode. The __asm keyword is always
recognized; only the asm directive without leading underscores is affected by
this switch. This switch is enabled with -ANSI . Equivalent to the -noasm C
compiler option.

Give fatal error for asm statement

Generates afatal error if an asm statement is used. Equivalent to the
-asmillegal command line option.

Allow Some Gnu Syntax Extensions

Supports GNU extensions, such as #import, zero size arrays, compound
statements as part of expressions, inline functions, and the __inline_ _
keyword. Equivalent to the -gnu_c C compiler option.

Japanese Automotive C

Enables a set of extensionsto ANSI C used by Japanese automobile
manufacturers. This option implies the following option settings:

Al l ow #pragnma asm and #pragma inline
No warning for asm()
Do not reserve asm keyword

Refer to the Green Hills C User’s Guidéor more information on this option.
Equivalent to the -japanese_automotive_c command line option.

Allow extern to be Initialized

Allows variables declared with the extern storage class to accept initial values.
In the K+R definition of C thisisan error, but islegal in ANSI C. This option
only affects K+R. Equivalent to the -initextern command line option.

Green Hills Software, Inc. 73

3. The Builder GUI

Disallow Old Fashioned Syntax

Does not recognize outdated syntax for initializing variables, such asint i 5;,
and for assignment operators like =+, =-, =*. If this option is not set, these are
accepted with awarning message. If this option is set, old fashioned
initializations give the error:

expected '=' got constant

and an equal sign followed by the symbals:

+-* % &|N<<>>

is recognized as two separate tokens. This resultsin asyntax error for the
symbols:

+/% | N<<>>
but is correct for the symboals:

-*8
which are legal unary operatorsin C. Therefore, this option isrequired to
correctly compile the following lines because no space appears after the equal
sign:

inti, *p;
i =-3;
p =&i;
i =*p;

By default, this option is only set on native UNIX 68K compilers. In al other
Green Hills compilers, thisisturned off by default. Equivalent to the
-nooldfashioned C option.

Use ANSI C Semantics for Assignment

Uses ANSI rulesfor ++ and *= in K&R C. Equivalent to the -ansiopeq
command line option.

74 Building and Editing with MULTI 2000

Language Options dial og box

Allocate Small Enums as char or short

Allocates enumerated types to the smallest storage possible. Equivalent to the
-shortenum C compiler option.

Consider char to be signed
Specifiestype char as signed. Equivalent to the -signedchar C compiler option.

Consider Bit-fields to be Signed

Specifies a bit field whose type is signed to be interpreted as a signed quantity.
Equivalent to the -signedfield C compiler option.

Consider Pointers to be Signed

Specifies pointers and addresses as signed. This isthe default. Equivalent to the
-signedptr C compiler option.

Truncate External Symbols to 8 characters

Truncates all symbol names to eight characters for compatibility with older
compilers and linkers. Equivalent to the -T C compiler option.

Allocate unique space for all strings

Creates separate space for each string. Normally, the compiler performs an
optimization in which equivalent strings are combined to share the same space.
This reduces code size, but could cause problemsiif the strings are modified.
This option disables the optimization and forces each string to have unique
storage. Equivaent to the -uniquestrings C compiler option.

Language Options > C++ tab
(Builder: Project > Language Options for Selected Files... > C++ tab)
The following are descriptions of the drop-down list boxes in the C++ tab.

C++ version (drop-down list)

Sandard C++
Enables ANSI C++ mode. Warning messages are i ssued when non-ANSI
C++ features are used. Features that conflict with ANS| C or C++ are
disabled. Equivalent to the --std command line option.

ARM
Accepts the C++ language as defined in The Annotated C++ Reference
Manual (ARM), by Ellis and Stroustrup. This version of C++ includes
templates, exception handling, which must be explicitly requested, and

Green Hills Software, Inc. 75

3. The Builder GUI

the anachronism of the book’s Chapter 18. This is essentially the same
language as the language reference manual for cfront 3.0, with the
addition of exception handling. This is the default C++ version.

ESTL C++
Enables the extended embedded C++ dialect. Equivalent tae¢he
command line option

Embedded C++
Enables the Embedded C++ dialect, with templates, STL, namespaces,
and mutable, new-style casts. Equivalent to-teeommand line option.

Cfront 3.0
Enables compatibility with cfront version 3.0. This causes language
constructs to be accepted which are not necessarily part of the C++
language definition, but which are accepted by the AT&T C++ Language
System (cfront) release 3.0. This mode also enables acceptance of
anachronisms.

Cfront 2.1
Enables compatibility with cfront version 2.1. This causes language
constructs to be accepted which are not necessarily part of the C++
language definition, but which are accepted by the AT&T C++ Language
System (cfront) release 2.1. This mode also enables acceptance of
anachronisms.

76 Building and Editing with MULTI 2000

Language Options dial og box

C++ Library (drop-down list)

C++ Library Option Command
Standard C++ library with exceptions. --stdle
Standard C++ library without exceptions. --stdl
Extended Embedded C++ library with exceptions. --eele
Extended Embedded C++ library without exceptions. --eel
Embedded C++ library without exceptions. --el
Embedded C++ library with exceptions. --ele

cfront version 2.1 compatibility with compilation of C++. This --cfront_2.1
causes the compiler to accept language constructs that, while not -2.1

part of the C++ language definition, are accepted by the AT&T

C++ Language System (cfront) release 2.1.

cfront version 3.0 compatibility with compilation of C++. This --cfront_3.0
causes the compiler to accept language constructs that, while not -3.0

part of the C++ language definition, are accepted by the AT&T

C++ Language System (cfront) release 3.0. This option also

enables acceptance of anachronisms.

Minimum Runtime Support Library --minl

Inlining (drop-down list)
Selects whether function inlining should be done.
Max inlining

Enables maximum inlining of function calls.
Max inlining unless debug

Disables maximum inlining of function calls when debugging

information is requested.
Inlining

Enables minimal inlining of function calls.
Inlining unless debug

Disablesinlining of function calls when debugging information is also

requested.
Noinlining
Disables inlining of function calls.

Virtual tables (drop-down list)
Controls the alocation of virtual tables.

Green Hills Software, Inc.

77

3. The Builder GUI

Sandard Allocation
Uses the standard heuristic to define avirtual function table for a class.
The virtual function table for aclassis defined in a compilation if that
compilation contains a definition of the first non-inline pure virtual
function for the class. For classes that contain no such function, the
default behavior defines the virtual function table as alocal static entity.

Force Allocation
Forces definition of virtual functions tables in cases where the heuristic
used by the front end, to decide on the definition of virtual tables,
provides no guidance.

Suppress Allocation
Suppresses definition of virtual function tables in cases where the
heuristic used by the front end, to decide on the definition of virtual
function tables, provides no guidance. For details on this heuristic, see
Sandard Tables above. The option suppresses definition of the local
static virtual function tables.

Type of enum (drop-down list)
Selects the algorithm to all ocate storage for enumeration types.
Int

Always allocates afull integer for an enumeration type. Thisisthe
default.

Smallest possible
Allocates enumerations to the smallest possible integral type.

Packing (drop-down list)

Selects the default alignment for packing classes and structs. Thisoption is
rarely used, and should match the alignment setting in the Project > Options for
Selected Files... dialog box, Advanced tab.

The following items describe check box itemsin the Language Options dialog
box, C++ tab:

Enable exception handling

Enabl es support for the C++ exception handling feature. Code size and speed
may be impacted even when exception handling is not directly used.

Disable namespaces
Disables support for the C++ namespaces feature.

78

Building and Editing with MULTI 2000

Language Options dial og box

Enable std namespace

Enablesimplicit use of the standard namespace when standard header files are
included.

Disable RTTI

Disables support for runtime type information (RTTI) features “dynamic_cast”
and “typeid.”

Disable “bool” keyword

Disables recognition of the “bool” keyword. Equivalent to omitting-theol
command line option.

Disable “explicit” keyword
Disables support for the “explicit” specifier on constructor declarations. It is
equivalent to the-no_explicit build-time option.

Disable wchar_t keyword

Does not recognizechar_t as a keyword. Use this option if your source
contains dypedef that declaresvchar _t.

Disable array new/delete
Disables support for the array new and delete feature.

Recognize “restrict” keyword
Enables recognition of the “restrict” keyword.

Disable “extern inline”

Disable support for ‘inline’ functions with externa linkage in C++. Functions
which are declared only ‘inline’ will be external or static depending on the flag
specified. Equivalent to the --no_extern_inline command line option.

Disable 'extern "C" type conversion

Disable an extension to permit implicit type conversionin C++ between a

pointer to an ‘extern “C™ function and a pointer to an ‘extern “C++" function.
Equivalent to the-no_implicit_extern_c type conversion command line
option.

Green Hills Software, Inc. 79

3. The Builder GUI

C and C++ functions have distinct types

Function types are considered distinct if their only difference isthat one has
‘extern “C™ routine linkage and the other has ‘extern “C++™ routine linkage.
Equivalent to the-c_and_cpp_functions_are_distinct command line option.

Allow overloading of enum types

Allow operator functions to overload built-in operations on enum-typed
operands.

Use late tiebreaker rules

When resolving an overloaded function, tie-breakers (‘const’ and ‘volatile’
gualifiers) are ignored during the initial comparison. They are considered only
if the two functions are otherwise equally good on all arguments. Equivalent to
the--late tiebreaker command line option.

Force zero initialization of scalars

Force all uninitialized scalar global variables to be explicitly initialized to zero.
Equivalent to the-force zero_initialization command line option.

No constructor initialization in main

Do not generate an automatic call to _main from main. _main performs
constructor initialization.

Enable multibyte characters

Enable processing for multibyte character sequences in comments, string
literals, and character constants. Equivalentrtaltibyte chars.

Enable Microsoft extensions

Enables recognition of a set of Microsoft extensions. Giteen Hills C++
User’s Guidediscusses thisin further detail.

Allow anachronisms
Enabl es support of anachronisms.

Use old for-loop initialization scoping

The old (Cfront-compatible) scoping rules means the declaration of avariable
in theinitialization part of a for statement is in the scope to which the for
statement itself belongs. The new (standard conforming) rules, in effect, wrap
the entire for statement in its own implicitly generated scope.

80 Building and Editing with MULTI 2000

Language Options dial og box

Don’t demangle linker messages

Does not demangle names that appear in linker messages. These are typically
symbol names which are either undefined or multiply defined.

Leave translated C
Leaves aC version of the C++ code. The trandated C fileis filename.ic.

Keep comments in preprocessor output

If producing a preprocessor output file (see File Options dialog box, Actions
tab) passes comment lines through from the C++ source to the preprocessor
output file.

Ignore duplicate #include

Ignores an #include directive if attempting to include afile already included.
The file must appear with exactly the same name in both #include directives to
ignore the second #include directive.

If afilename appearsin more than one #include directive during asingle
compilation, it skips all of the directives except the first one. Equivalent to the
-includeonce C preprocessor option.

Consider char to be signed
The “char” type is treated as “signed char.”

Consider bit-fields to be signed
Bit fields within a struct or class are treated as signed entities by default.

Consider enum bit-fields to be signed

Bit fields of type “enum” within a struct or class are treated as signed entities by
default.

Use long lifetimes for temps

Creates temporary variables whose lifetime ends at the earliest end of scope,
end of switch clause, or next label. This is the behavior of cfront. Long lifetime
temporaries are implied by the cfront compatibility modes. The alternative is
for temporary variable lifetimes to end at the end of the full expression for
which they are created. This is the behavior of standard C++.

Green Hills Software, Inc. 81

3. The Builder GUI

Recognize alternate tokens

Enabl es recognition of alternative tokens. These are tokensthat makeit possible
to write C++ without theuse of the {, }, [,], #, &, |, * and ~ characters. The
aternative tokens include the operator keywords, such as and and bitand, and
digraphs.

More C++ Options > Template tab

(Builder: Project > Language Options for Selected Files... > C++ tab > More
Options... > Template tab)

This dialog box contains more C++ specific options, including templ ate,
precompiled header, diagnostics, and listing file options.

Template mode (drop-down list)

Select the manner in which the compiler should force the templ ate instantiation.
This form of template instantiation is done when a source file is compiled, as
opposed to alowing the automatic template instantiation mechanism to decide
which templates need instantiation.

Never forceinstantiations
Gives the automatic templ ate i nstantiation mechanism complete control
over which templates to instantiate.

Forceinstantiations for used entities
The compiler instantiates all templates which are used in the current
compilation.

Force all possibleinstantiations
The compiler instantiates all template entities whether or not they have
been used in this compilation.

Forcelocal instantiations when used
The compiler instantiates only the template entities that are used in this
compilation, and forces those entities to be local to this compilation.

Disable automatic instantiations

Does not do template instantiation automatically. This assumes the

responsi bility of making sure the necessary entities are instantiated, possibly
using one of the Template Mode settings, or through the use of #pragma
directives.

82

Building and Editing with MULTI 2000

Language Options dial og box

Disable template implicit inclusion

“Implicit inclusion” is a convention that Cfront uses where template definitions
must appear in a header (.h) file. For each such file, there must be a
corresponding C++ source file containing the associated template definitions.
This option tells the automatic instantiation mechanism NOT to attempt to use
this convention to locate template definitions.

Use distinct template signatures

Uses signatures for template functions that can never match those of
non-template functions. A normal (non-template) function, sustoas

f (i nt), cannot be used to satisfy the need for an instantiation of a template,
such azoid f(T),withT settoi nt.

Disable old-style specializations

Does NOT accept old-style template specialization, that is, specializations that
do not use theemplate <> syntax.

Disable “typename” keyword

Disable recognition of the keyword ‘typename’. ‘typename’ can be used
instead of class when declaring template parameters. Equivalent to the
--no_typename command line option.

Disable implicit typename determination

Disables implicit determination, from context, whether a template
parameter-dependent name is a type or non-type.

Disable “guiding declarations”

Disable “guiding declarations” of template functiongguiding declaration is a
function declaration that matches an instance of a function template, but has no
explicit definition (since its definition derives from the function template). For

example:
tenplate <class T> void f(T) { ... }
void f(int);

Equivalent to the --no_guiding_decls command line option.

Non-standard qualifier deduction

Controls whether non-standard template argument deduction should be
performed in the qualifier portion of a qualified name.

Green Hills Software, Inc. 83

3. The Builder GUI

One template instantiation per object file

Places each template instantiation in this compilation (function or static data
member) in a separate object file.

More C++ Options > Precompiled Header tab

(Builder: Project > Language Options for Selected Files... > C++ tab > More
Options... > Precompiled Header tab)

Automatic PCH processing
Automatically uses or creates a precompiled header file.

Disable PCH creation message

Disables the message indicating that a precompiled header file was created or
used during a compilation.

PCH directory
Directory to search for and create a precompiled header file.

Create PCH file:
Creates a precompiled header file with the specified name.

Use PCH file:

Uses a precompiled header file of the specified name as part of the current
compilation.

More C++ Options > Diagnostics tab

(Builder: Project > Language Options for Selected Files... > C++ tab > More
Options... > Diagnostics tab)

Change certain ANSI C++ errors to warnings
Non-fatal ANSI C++ errors are downgraded to warnings.

Suppress all warnings
Suppresses all warning level messages from the compiler.

Quit building if warnings occur

Stop building when awarning occurs. Without the option, the build continues
when warnings occur but stops when an error occurs.

84 Building and Editing with MULTI 2000

Language Options dial og box

Issue remarks
Issues remark level messages from the compiler, equivalent to mild warnings.

No “used before set” warnings

Does not issue warnings on local automatic variables used before their values
are set.

No warnings for old for-loop scoping

If the new for-loop scoping is used, do NOT give awarning for programswhich
would have different behavior under the old rules.

Display message numbers

Displays the error message number in the diagnostic messages. These message
number may be used in the Suppress specific diagnostic and Change severity
to... text fields.

Display brief messages

Enables an error reporting mode in which asingle line error messageis
produced. The original source line and pointer to the location of the error within
that line is not displayed.

Don’t wrap diagnostic messages
Displays messagesin single long lines, instead of wrapping them.

Maximum number of error mgs

Forces the compiler to abandon the compilation after this number of error
messages, not including warning and remark level messages. The default limit
is 100.

Suppress specific diagnostic

Suppresses diagnostic messages corresponding to the given error numbers.
Multiple error numbers may be listed in a comma separated list. Use the
Display message numbers check box to list error numbersin the diagnostic
output.

Change severity to remark

Overrides the normal severity of the specified diagnostic message, making it a
remark, whenever possible. Multiple error messages may be listed in acomma

Green Hills Software, Inc. 85

3. The Builder GUI

separated list. Use the Display message numbers check box to list error
numbers in the diagnostic output.

Change severity to warning

Overrides the normal severity of the specified diagnostic message, making it a
warning, whenever possible. Multiple error numbers may be listed in acomma
separated list. Use the Display message numbers check box to list error
numbers in the diagnostic output.

Change severity to error

Overrides the normal severity of the specified diagnostic message, making it a
fatal error. Multiple error number may be listed in a comma separated list. Use
the Display message numbers check box to list the error numbersin the
diagnostic outpuit.

More C++ Options > Listing tab

(Builder: Project > Language Options for Selected Files... > C++ tab > More
Options... > Listing tab)

Cross reference file

Generates a cross reference file corresponding to the source file. Thefile
extension of cross reference filesis .xrf.

Listing file

Generates alisting file corresponding to the source file. The file extension of a
listing fileis .lis.

Listing Directory

The directory in which to generate the cross reference and listing files.

Language Options > Ada tab

(Builder: Project > Language Options for Selected Files... > Adatab)
The following are descriptions of the itemsin the Ada tab.

Main program name

Specifies the name of the main procedure for your Adabuild (if .bld fileis not
labeled with the name).

86

Building and Editing with MULTI 2000

Language Options dial og box

Library directories

Allows additional library paths to be searched for libraries to be incorporated
into the program. Equivalent to the -L dir command line option.

Elaboration only library directories

Allows additional elaboration only library paths to be incorporated into the
program. Equivalent to the -ep build-time option to adaopts (adaoptsisan Ada
utility program; see the Ada Language User's Guijle

Ada83 analysis mode

Gives useful hints on converting Ada33 code to Adad5 code. It does not
generate object code (strictly analysis mode). Same as -ada83.

Suppress all runtime checks

Suppresses all automatic run-time checking including numeric checking. This
optionisequivalent to using Pragma Suppresson all checks. Using this option
reduces the size of the code. Same as-no_check.

Suppress numeric runtime checks

Suppresses two kinds of Numeric Checks for the entire compilation:
division_check and overflow check. The Ada95 LRM describes these checks.
Using this option reduces the size of the code. Same as-no_num_check.

Generate cross reference

Generates a cross reference listing containing aline-numbered listing, followed
by a crossreference table. Thelisting iswritten to file.xIst. Same as-list/x.

Generate text elaboration table
Generates an elaboration table listing in the elab_table.txt file.

Source listing (drop-down list)
Will generate source listing Always, Only if errors, or Never (default).

Always -list/c
Only if errors -list/e
Never no listing
no options thrown

Green Hills Software, Inc. 87

3. The Builder GUI

Listing format (drop-down list)
Displays all source lines, all source lines numbered, and only error lines.

All source lines default
All lines numbered -list/p
Only error lines -list/r

Page length/width

Allows you to format page length and width for the paginated source listing.
Same as -page/l and -page/w respectively.

Diagnostics

Informs the Builder what to display in the progress window when building the
application.

Suppress errorsisthe same as-nomsg/e.

Suppress war nings is the same as -nomsg/w.

Suppress informative messages is the same as -nomsg/i.
Suppressimplementation dependent messages is the same as -nomsg/d.
Thisisadescription of the Ada95 Library Displays:

Library info
Displays search path to libraries used by the application.

Registered units

Displays Unit Names and Unit descriptions of modules registered in the Ada
library.

Registered sources
Displays source code path and names of modules registered in the Adalibrary.

Language Options > FORTRAN tab

(Builder: Project > Language Options for Selected Files... > FORTRAN tab)

FORTRAN version (drop-down list)

Sandard
Interprets FORTRAN code in compliance with the ANSI FORTRAN
standard.

88

Building and Editing with MULTI 2000

Language Options dial og box

Fr7
Interprets FORTRAN code for compatibility with AT&T’s f77 compiler.
Equivalent to thef77 command line options.

DaoD
Enables DoD FORTRAN extensions. Equivalent to-tteel command
line option.

Vax/VM S
Interprets code for compatibility with DEC’s VAX/VMS FORTRAN
compiler. This includes all Dod extensions. Equivalent tohes
command line option.

Extended
Allows as many general purpose language extensions as possible.

Enable Debug Lines

Compiles lines starting witth, D, x, or X. The default treats them as comments.
This option enables debugging statements. Equivalent to thee command
line option.

Namelist

Enables the IBM and VMS compatiMAMEL I ST extensions in FORTRAN.
These extensions are already enabled in VMS compatibility mode. Equivalent
to the-namelist command line option.

132 columns

Extends source to interpret columns 1 through 132 instead of only 1 through 72.
Equivalent to theextend_source command line option.

Implicit Undefined

Makes the default data type for undeclared variables as “undefined”, equivalent
to codingiMPLICIT UNDEFINED(A-Z) at the top of the source file.
Equivalent to theu command line option.

Case Sensitive

Does not convert uppercase user-supplied variables to lowercase. By default,
FORTRAN is not case sensitive and all FORTRAN names are converted to
lowercase. The compiler and library both assume this translation is performed.
This option generally accesses variables defined in C as uppercase. However,
when using this option, all FORTRAN keywords must be lowercase, making

Green Hills Software, Inc. 89

3. The Builder GUI

the compiler incompatible with the ANSI FORTRAN-77 standard. Equivalent
to the -U command line option.

Locals on Stack

Allocates|ocal variablesto registers or stacks, equivalent to coding IMPLICIT
AUTOMATIC (A-2Z) at the start of every subroutine or function. Programs
compiled with this option are compliant with ANSI FORTRAN-77 and in some
cases execute much more quickly. Equivalent to the -nosave command line
option.

Check array bounds at runtime

Check that array subscripts are within the bounds of an array at runtime.
Equivalent to the -boundcheck command line option.

One Trip Do Loops

Executes at |east one iteration for every DO loop. By default, when the lower
bound index of a DO loop is greater than the upper bound index, the compiler
does not execute the DO loop for compatibility with the ANSI FORTRAN-77
standard. This option may be required for some older FORTRAN-66 programs
to operate correctly. Equivalent to the -onetrip command line option.

VMS Common

Names COMMON blocksin the VMS style with adollar sign appended. This
option is enabled by default in VMS compatibility mode, but is also selected in
F77 compatibility mode. Equivalent to the -vms_common command line
option.

VMS Octal

Controls whether a double quotation mark is used for octal characters. If thisis
set, then the quotation mark is used for octal charactersevenin F77 and
Extended modes. If thisis not set, then the double quotation mark is an
alternative to an apostrophe as a delimiter for character string constants. For
example, PRINT*,“sofa sofa” prints sofa sofaThisistrueevenin VMS
mode. The quotation mark is not allowed in Standard mode. Equivalent to the
-vms_octalcommand line option.

2 Byte Integer

Setsthetypefor INTEGER to INTEGER*2 . The default isINTEGER*4 .
Equivalent to the -i2 command line option.

90

Building and Editing with MULTI 2000

Language Options dial og box

Hollerithblankpad

Pads hollerith constants on the right with blanks. The default, compatible with
F77 mode, is that only the first byte of the hollerith is significant and the
constant zero is padded on the right. Equivalent to the -hollerith_blank_pad
command line option.

Missing Args Ok
Allows CALL X(1,,2). Suppresses warning resulting from the missing

argument. The compiler in either case passes a null value for the missing
argument. Equivalent to the -missing_args ok command line option.

Language Options > Pascal tab
(Builder: Project > Language Options for Selected Files... > Pascal tab)

Pascal version (drop-down list)
ISO Level O
Interprets Pascal code in compliance with the ISO Level 0 standard.

ISOLevel 1
Interprets Pascal code in compliance with the ISO Level 1 standard.

Extended
Accepts al available Pascal extensions.

Big Set
Allocates al setsin the range 0..255. Otherwise, sets are allocated in the range

0..31 for efficiency. ISO Level 0 and Level 1 Pascal default to Big Set, but
Extended Pascal does not.

Case Sensitive

Specifiesthat Pascal is case sensitive. Extended Pascal defaultsto case sensitive
and 1SO Level 0 and Level 1 Pascal does not. Equivalent to the -X59 command
line option.

Append score

Appends an underscore to the names of al functions and procedures. This
prevents conflict with C routinesthat have the same name. However, thisresults
in unresol ved symbols because the Green Hills Pascal library does not expect to
have this option set.

Green Hills Software, Inc. 91

3. The Builder GUI

CPU Options dialog box

Thisisacomplete description of the CPU specific option dialog boxes. MULTI
displays only the CPU options dialog box that appliesto the processor for which
you are building your program.

Note: To set the processor family for your program, choose Project > Set Build
Target For Project..., and pick atarget.

For more detailed information on any of the options in these windows, please
refer to the appropriate Development Guide.

i386/i486/Pentium dialog box

Processor (drop-down list)
Generates code optimized for the selected processor’s instruction set.

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has no
floating point support.

None
Rejects any use of floating point variables or constants in C, C++, or
Pascal. Equivalent to thénene build-time option.

Software
Generate software floating point emulation code, regardless of the
capabilities of the selected processor. Libraries built for software will
also be used. Equivalent to tHeoft build-time option.

The following are descriptions of the check boxes in3B6/i486/Pentium
window.

fprecise

Stores all floating point calculations in memory to ensure precise truncation.
Normally, all floating point operations on the 386/486/Pentium are done in
extended precision. Without this option, calculations on the 386/486/Pentium

are done at a different precision than on other architectures, which is sometimes

undesirable. This option generates more predictable results, but makes your
code larger and slower. Equivalent to tha ecise command line option.

92

Building and Editing with MULTI 2000

CPU Options dialog box

ffunctions

Enables the compiler to directly use the 387 hardware instructions for certain
floating point functions instead of calling them in the library. Equivalent to the
-ffunctions machine specific option.

manifest

The Builder predefines many symbols for compatibility with the SCO native C
compiler. These symbols are known as manifest defines and all begin withM _.
Thisoptionisonly relevant for an SCO target system. Equivalent to the
-nomanifest command line option.

The following options only apply to native Win32 compilation. Both fields are
passed directly to the Microsoft linker:

Reserve
How much stack space you want allocated.

Commit
How much of that stack space you want unpaged.

The Microsoft linker documentation provides further information on these
fields.

MC68000 dialog box

Processor (drop-down list)

68000
Generates code for the 68000 instruction set. Equivalent to the
-68000 machine specific option.

68010
Generates code for the 68010 instruction set. Equivalent to the
-68010 machine specific option.

68020
Generates code for the 68020 instruction set. Equivalent to the
-68020 machine specific option.

68030
Generates code for the 68030 instruction set. Equivalent to the
-68030 machine specific option.

Green Hills Software, Inc. 93

3. The Builder GUI

68040
Generates code for the 68040 instruction set. Equivalent to the
-68040 machine specific option.

68L C040
Generates code for the 68LC040 instruction set. Equivalent to the
-68L C040 machine specific option.

68EC040
Generates code for the 6BEC040 instruction set. Equivalent to the
-68E.C040 machine specific option.

68060
Generates code for the 68060 instruction set. Equivalent to the
-68060 machine specific option.

68L C060
Generates code for the 68LC060 instruction set. Equivalent to the
-68L C060 machine specific option.

68EC060
Generates code for the 6BEC060 instruction set. Equivalent to the
-68EC060 machine specific option.

6830x
Generates code for the 68000 instruction set used by the 68302
and 68306. Equivalent to the -68302 machine specific option.

6833x
Generates code for the CPU32 instruction set used by the 68330,
68331, 68332, and 68F333. Equivalent to the -68331 machine
specific option.

68340
Generates code for the CPU32 instruction set used by the 68340.
Equivalent to the -68340 machine specific option.

68360
Generates code for the CPU32+ instruction set used by the 68360.
Equivalent to the -68360 command line option.

M CF510x
Generates code for the ColdFire 5100 series instruction set.
Equivalent to the -cf5102 command line option.

94

Building and Editing with MULTI 2000

CPU Options dialog box

M CF5202

M CF5203

M CF5204

M CF5206E
Generates code for the ColdFire 5200 series instruction set.
Equivalent to the -cf5202, -cf5203, -cf5204, -cf5206, -cf206e
machi ne specific options.

M CF5307
Generates code for the ColdFire 5300 series instruction set.
Equivalent to the -cf5307 machine specific option.

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constantsin C, C++,
or Pascal. Equivalent to the -fnone build-time option.

Software
Generate software floating point emulation code, regardless of the
capabilities of the selected processor. Libraries built for software
will also be used. Equivalent to the -fsoft build-time option.
68881
Generates code for the 68881 floating point processor. Equivalent
to the -68881 machine specific option.
68882
Generates code for the 68882 floating point processor. Equivalent
to the -68882 machine specific option.

Position independent code (drop-down list)
Absolute
Generates absolutely addressed (position dependent) code.
Equivalent to the -nopic command line option.
16 bit pc-relative
Generates position independent code for the code and data
sections of the program. The position offsets are 16 bits (+/-

Green Hills Software, Inc. 95

3. The Builder GUI

32KB), and are relative to the program counter. Equivalent to the
-picl6 PIC option.

32 bit pc-relative
Generates position independent code for the code and data
sections of the program. The position offsets are 32 bits, and are
relative to the program counter. Equivalent to the -pic32 PIC
option.

Position independent data (drop-down list)

Absolute
Generates absolute addressed (position dependent) data.
Equivalent to the -nopid PID option.

16 bit pc-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
rel ative to the program counter. Equivalent to the -pid16 option.

16 bit a2-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a2. Equival ent to the -pid16=a2 option.

16 bit a3-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a3. Equivalent to the -pid16=a3 option.

16 bit a4-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a4. Equivalent to the -pid16=a4 option.

16 bit a5-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a5. Equival ent to the -pid16=a5 option.
16 bit a6-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a6. Equivalent to the -pid16=a6 option.

96 Building and Editing with MULTI 2000

CPU Options dialog box

32 bit pc-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
program counter. Equivalent to the -pid32 option.

32 bit a2-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register a2. Equivalent to the -pid32=a2 option.

32 bit a3-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register a3. Equivalent to the -pid32=a3 option.

32 bit a4-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register ad. Equivalent to the -pid32=a4 option.

32 bit a5-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register ab. Equivalent to the -pid32=a5 option.

32 bit a6-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register a6. Equivalent to the -pid32=a6 option.

The following are descriptions of the check boxesin the M C-68000 window.

Use built-in fp funcs
Uses built-in floating point instructions rather than calling library
functions such as fabs(), sqrt(), and sin(). Equivalent to the -ffunctions
machine specific option.

Insert extra Fpnops
Appends one FPNOP instruction after every 68881 instruction, other
than FM OV E, unlessimmediately followed by a 68881 instruction. This
ensures that interrupts are taken at the correct position. Equivalent to the
-ffpnop machine specific option.

Return fp in d0/d1
Returns floating point numbers from functionsin the registers d0 and d1
instead of fp0. Equivalent to the -freturnd0 machine specific option.

Green Hills Software, Inc. 97

3. The Builder GUI

Truncate fp expressions
In 68881/68882 and 68040 mode, this stores all single and double
precision floating point variables and valuesin memory to ensure precise
truncation. Without this option, variables and intermediate values are
often located in the internal 80-bit floating point registers, resulting in
additional precision. This produces results different from other
architectures that truncate all resultsto 32 or 64 bits. Equivaent to the
-fprecise machine specific option.

Enable 68851 support
Enables use of a 68851 memory management unit. This option only
affects the assembler. Equivalent to the -68851 machine specific option.

Use DSfor uninit vars
Thisis currently unsupported. For zero initialized variables and
assembly output, the DS directiveis used instead of DCB. Thisresultsin
much smaller output from the assembler but does not explicitly initialize
the variablesto zero. It is then your responsibility to make sure the
variables are initialized to zero.

Portable assembly code
For assembly output, use constant directives rather than actual 68K
instructions. The compiler outputs assembly code which is portable to
many more assemblers than the standard assembly code outpuit.
Equivalent to the -preassemble machine specific option.

Large switch statements
Allows large switch statements by forcing the compiler to use a 32-bit
offset, which works regardless of the destination label. The default isa
16-bit offset which is smaller and faster. However, it failsif alabel istoo
far away. Equivalent to the -bigswitch FORTRAN option.

Minimum structure alignment
Does not round up the size of structs containing one byte of datato the
default minimum alignment value. These structs will be one byte in size
and may be linked at an odd-numbered address with the option.

Pop stack args often
Subroutine calls require a substantial amount of code in many programs.
Each time a subroutineis called the arguments are pushed on the stack,
the subroutineis called, and when the subroutine returns the arguments
are removed from the stack by adding to the stack pointer. In many
programs a substantial savingsin code sizeisrealized by the Green Hills
compiler by not adding to the stack pointer after each call.

Instead, the total amount of space that needs to be removed is
accumulated until some occurrence, such as a branch, forces the

98

Building and Editing with MULTI 2000

CPU Options dialog box

compiler to adjust the stack. The optimization may cause a program to
use more stack space than it otherwise would have.

This option forces a stack adjustment after each subroutine call. This
stops stack frames from growing too large at the expense of generating
more code.

V800 dialog box

Thiswindow applies to the most up-to-date V800 toolset which uses ELF asthe
default format and version 1.8.9 compilers. To use the previous generation of
tools and COFF or ELF format, either use the V805/V810/V 820/V 830 window
or the VV850/V 851 window.

To change the target processor to a different member of the V800 series, change
the entry in the Target box in the main Builder window. Do not change the
processor field in this window.

Processor (drop-down list)

Generates code for the selected processor’s instruction set. Equivalent to
executing the corresponding processor specific compiler driver from the
command line.

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor.

None
Rejects any use of floating point variables or constants in C, C++, or
Pascal. Equivalent to thénene build-time option.

V850 tiny data area (drop-down list)

Allocates a small area of Tiny Data Area (TDA) memory to hold small data
objects and reference objects in that area using a base pointer register (r30) and
short load and store instructions. The total size of the Tiny Data Area is limited
to 4K. Please refer to the “Tiny Data Area Optimization” chapter in the

Embedded V800 Devel opment Guide for more information.

You need to specify which TDA model to enable. Because TDA is enabled only
through #pragma by default, no objects are placed in the TDA.

Green Hills Software, Inc. 929

3. The Builder GUI

None
No TDA. The compiler uses the TDA base register r30 asa
normal temporary register.

Single
Enables the Single TDA model.

Multiple
Enables the Multiple TDA model.

The following are descriptions of the check boxes and text fieldsin the V800
window:

Reserver2 for the user
The compiler reservesr2 for the user. Thisisthe default. If the box is set
to “-”, the compiler uses r2 as a temporary register. Equivalent to the
-reserve_r2 command line option.

Reserver5 for the user
The compiler reserves r5 for the user. This is the default. If the box is set
to “-”, the compiler uses r5 as a temporary register. Equivalent to the
-reserve_r5 command line option.

Reserver15-r24 for the user (22 register mode)
Generates code in 22 register mode. Default is 32 register mode.
Equivalent to thecpu=v800_22 V800 specific option.

Reserver17-r22 for the user (26 register mode)
Generates code in 26 register mode. Default is 32 register mode.
Equivalent to thecpu=v800_26 V800 specific option.

Constant value 255isin r20
The compiler assumes that r20 contains the value 255 and uses r20
instead of 255 during code generation. r20 should be initialized in the
startup code. Equivalent to the20has255 command line option.

Constant value 255isin r20 and 65535 isin r21
The compiler assumes that r20 contains the value 255 and r21 contains
the value 65535. The compiler will use r20 and r21 instead of 255 and
65535 during code generation. r20 and r21 should be initialized in the
startup code. Equivalent to the21has65535 command line option.

Position independent code

Generates position independent code. Equivalent tepthéIC option.
Position independent data

Generates position independent data. Equivalent tgptHe”ID option.

100

Building and Editing with MULTI 2000

CPU Options dialog box

Far function calls
Generates register-indirect calls (“far"-calls) for user functions. The
default is not to generate far calls, but to use PC-relative calls.
Equivalent to thefarcalls command line option.

Inline prologue
Forces the compiler to generate function prologue and epilogue code
inline. The alternative is to call routines in the Green Hills libraries to
save and restore registers and allocate stack space for locals. This option
is on by default for unoptimized code, or when not optimizing for small
code size.

Do not use V850E callt instruction
Prevents the compiler from generating the CALLT instruction on the
V850E. Also causes the linker to use a different set of libraries which
also do not use the CALLT instruction.

Small Data or Zero Data threshold
Specifies a size in bytes to determine which data objects appear in the
Small or Zero Data Areas. By default, objects less than 8 bytes are
placed in Small Data Area (i.e., the default small data area threshold is
8), and no objects are placed in Zero Data Area (i.e, the default zero data
area threshold is 0). Equivalent to tisda= and-zda= special data area
options.

See theDevelopment Guide for more information on the SDA and ZDA
optimizations.

Put variables smaller than threshold into (drop-down list)

Normal Data
Puts variables smaller than threshold into the Data Area.

Small Data
Allocates an area of memory to hold data objects smaller than the
Small Data Threshold and references objects in that area using r4
as the base pointer register. Equivalent to-stda Small Data
Area option.

Zero Data
Allocates an area of memory to hold data objects smaller than the
Zero Data Threshold and references objects in that area using r0
as the base pointer register. This improves program size and speed
because addressing an object via the Small/Zero data area base
register uses fewer instructions. The total size of the Small/Zero
data area is limited to 64k; large applications may not be able to

Green Hills Software, Inc. 101

3. The Builder GUI

take advantage of this feature. Equivalent to the -zda special data
area option.

1960 dialog box

Processor (drop-down list)

Generates code for the selected processor’s instruction set. Equivalent to the
-cpu=960 machine-specific option.

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to thinene build-time option.

Software
Generates software floating point emulation code, regardless of
the capabilities of the selected processor. Libraries built for
software will also be used. Equivalent to tfeft build-time
option.

The following is a description of the items in the 1960 window.

Big-Endian
Generates code with big endian byte order. The most significant byte of
an integer appears at the lowest address. Equivalent {oi¢jeadian
command line option.

Position I ndependent Code
Generates position independent code. Equivalent tgptbdIC option.

Position Independent Data
Generates position independent data. Equivalent tgptbePID option.

Small Data Area
Allocates a small area of memory to hold small data objects and
references objects in that area using a base pointer register. This
improves program size and speed because addressing an object via the
small data area base register uses fewer instructions. Equivalent to the
-sda Small Data Area option.

102

Building and Editing with MULTI 2000

CPU Options dialog box

Small Data Area Threshold
Specifies asize in bytes to determine which data objects appear in the
Small Data Area. By default, objects four bytes or less are placed in the
Small Data Area. Equivaent to the -sda= special data area option.

See the 1960 Devel opment Guide for more information about the Small Data

Area optimization.

Alpha dialog box

Floating point processor (drop-down list)
Default
Generates code using the floating point capabilities of the Alpha
processor.
None
Rejects any use of floating point variables or constantsin C, C++,
or Pascal. Equivalent to the -fnone build-time option.

ARM dialog box

Processor (drop-down list)

Generates code for the selected processor’s instruction set. Equivalent to
setting the correspondingpu flag on the command line.

Floating point processor (drop-down list)
Default

Generates code using the floating point capabilities of the selected
processor.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to thinene build-time option.

Software
Generate software floating point emulation code, regardless of the
capabilities of the selected processor. Libraries built for software
will also be used. Equivalent to thsoft build-time option.

FpalO
Generate code for the ARM FpalO hardware floating point unit.
Equivalent to thear m_fputype=fpal0 command line option.

The following describes the items in the ARM window:

Green Hills Software, Inc. 103

3. The Builder GUI

Big endian
Generates code with big endian byte order. The most significant byte of
an integer appears at the lowest address. Equivalent to the -bigendian
command line option.

Thumb code
Generate code for 16-bit instruction Thumb mode. Equivalent to the
-thumb command line option.

Thumb libraries
Link with runtime libraries built for Thumb mode (default is ARM
libraries).

FR20 dialog box

Floating point processor (drop-down list)
Default
Generates code using the floating point capabilities of the FR
processor.
None
Rejects any use of floating point variables or constantsin C, C++,
or Pascal. Equivalent to the -fnone build-time option.

MCore dialog box

Processor (drop-down list)
Generates code for the selected processor’s instruction set.

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to thinene build-time option.

Software
Generates software floating point emulation code, regardless of
the capabilities of the selected processor. Libraries built for
software will also be used. Equivalent to thepft build-time
option.

104 Building and Editing with MULTI 2000

CPU Options dialog box

Single Precision Hardware
Causes the compiler to use hardware instructions to do some
single-precision floating point operations for the CPU types that
support it.

MIPS dialog box

Processor (drop-down list)
Generates code for the selected processor’s instruction set.

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point code if the selected processor
has no floating point support.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to thnene build-time option.

Software
Generates software floating point emulation code, regardless of
the capabilities of the selected processor. Libraries built for
software will also be used. Equivalent to theoft build-time
option.

Hardware Single
Uses hardware floating point for single precision, but software
floating point for double precision (when this mode is supported
in the selected processor). The compiler uses different libraries
instead of the default. Equivalent to tfigngle build-time
option.

Calling sequence (drop-down list)

RH32 always uses the Embedded Calling Sequence, which is the default.
Therefore this item should be kept as "Default” for RH32 (equivalent to the
-embedded_calling_sequence command line option). Selecting "Workstation"
(equivalent to theworkstation_calling_sequence command line option)
would have undefined effect on the code generation.

RH32 FPU (drop-down list)

Select for which Floating Point Unit the floating point instructions are
generated. When the FPU numbem,ishe compiler will append to every

Green Hills Software, Inc. 105

3. The Builder GUI

floating point instructions generated when appropriate. The default FPU
number is 0. Equivalent to the -fpu=n option.

The following are descriptions of the itemsin the MIPS window.

Pasition I ndependent Code
Generates position independent code. Equivalent to the -pic PIC option.

Position Independent Data
Generates position independent data. Equivalent to the -pid PID option.

PIC Compatible Code
Generates code that does not use the PI C base register. Code compiled
with this option is absolutely addressed, but can be safely linked with
code compiled with the position independent code or position
independent data options.

MIPS Assembler Compatible Output
Produces assembly language code for the MIPS native assembler. By
default, codeis produced for the Green Hills assembler.

Little-Endian
Generates code with little endian byte order. The least significant byte of
an integer appears at the lowest address. Thisis the default with native
compilers on the DEC station and is aso used for embedded
development. Equivalent to the -littleendian command line option.

MIPS-16 Instruction Set
Enables the MIPS-16 ISA. Equivalent to the -mips16 command line
option.

MIPS-16 Library
Link in the MIPS-16-specific runtime libraries (prebuilt with MIPS-16
enabled) by default, when the MIPS-16 instruction set is enabled. If the
MIPS-16 ISA is not enabled, clicking this button will have no effect.
Equivalent to the -mipsl6_lib command line option.

64 bit integers
Enables the 64-bit mode. In this mode, all registers are 64-bit wide, and
64-bit integers and arithmetical are supported (viathe long long type).
However, pointers and addresses are still 32 bits. Thisoption is not
available with all processors. Equivalent to the -64bit command line
option.

Far Function Calls
Enables the far function call mode. All functions are called viathejalr
instruction instead of thejal instruction by first loading the address of

106

Building and Editing with MULTI 2000

CPU Options dialog box

the function into atemporary register. This allows the functions called to
be in any address within the range of 32 bits. Equivalent to the -farcalls
command line option.

Inline Prologue
Always generates the inlined prologue/epilogue code that saves and
restores the permanent registers in/from the stack of afunction. If this
option is not turned on, then the compiler will choose for each function
to generate the prologue/epilogue code either inlined or offlined (when
in Software Floating Point mode, and not with -ga nor -G), depending on
which is better for code size when the # of registers to be saved/restored
are more than 2.

Note: An offline prologue/epilogueis afunction call to alibrary routine
__savegN that saves registers $16 to $N, or __restgN that restored
registers $16 up to $N, respectively. These routines exist in indarch.a.

Multiple Near Code Regions (M IPS-X only)
Generates code in 'multiple near code region mode’. This is used to
create multiple code regions in memory. Code in each region is
accessible via an offset from a base register whose initial value is
determined during link time by specifying thaitreg linker option.
This feature is available for MIPS-X only. See y@avelopment Guide
for more information.

Small Data or Zero Data Threshold

Specifies a size in bytes to determine which data objects appear in the Small or
Zero Data Areas. By default, objects less than 8 bytes are placed in Small Data
Area, and no objects are placed in Zero Data Area. Equivalenttsdtiveand

-zda= special data area options.See the MIFrege opment Guide for more
information about the Small Data Area optimization.

Putvariables smaller than threshold sizeinto (drop-down list)

Normal Data
Puts variables smaller than threshold into the Data Area.

Small Data
Allocates an area of memory to hold data objects smaller than the
Small Data Threshold and references objects in that area using r4
as the base pointer register. Equivalent to-stda Small Data
Area option.

Zero Data
Allocates an area of memory to hold data objects smaller than the
Zero Data Threshold and references objects in that area using r0

Green Hills Software, Inc. 107

3. The Builder GUI

asthe base pointer register. Thisimproves program size and speed
because addressing an object viathe Small/Zero Data Area base
register uses fewer instructions. Thetotal size of the Small/Zero
Data Areais limited to 64k; large applications may not be able to
take advantage of this feature. Equivalent to the -zda special data
area option.

nCPU dialog box

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constantsin C, C++,
or Pascal. Equivalent to the -fnone build-time option.

Software
Generates software floating point emulation code, regardless of
the capabilities of the selected processor. Libraries built for
software will also be used. Equivalent to the -fsoft build-time
option.

The following are descriptions of the check boxes in the nCPU window.

Far function calls
This causes the compiler to generate function calls through aregister;
this alows for functionsto be located at any distance from the caler.
Without this, extremely large programs or programs with discontinuous
text sections may not link if the range of the call instruction is exceeded.
Small Data Area Threshold
Specifies asize in bytes to determine which data objects appear in the
Small Data Area. By default, objects four bytes or less are placed in the
Small Data Area. Equivaent to the -sda= special data area option.

See the Devel opment Guide for more information about the Small Data
Area optimization.

Put variables smaller than threshold sizeinto (drop-down list)

Normal Data
Puts variables smaller than threshold into the Data Area.

108

Building and Editing with MULTI 2000

CPU Options dialog box

Small Data
Allocates an area of memory to hold data objects smaller than the
Small Data Threshold and references objects in that area using r4
as the base pointer register. Equivalent to the -sda Small Data
Areaoption.

Zero Data
Allocates an area of memory to hold data objects smaller than the
Zero Data Threshold and references objects in that areausing rO
asthe base pointer register. Thisimproves program size and speed
because addressing an object viathe Small/Zero data area base
register uses fewer instructions. Thetotal size of the Small/Zero
dataareais limited to 64k; large applications may not be able to
take advantage of this feature. Equivalent to the -zda special data
area option.

NDR dialog box

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constantsin C, C++,
or Pascal. Equivalent to the -fnone build-time option.

The following describes the items in the NDR window.

Position independent code
Generates position independent code. Equivalent to the -pic PIC option.

Position independent data
Generates position independent data. Equivalent to the -pid PID option.

Zerodataarea
Enables the ZDA optimization. Puts variables smaller than the threshold
in the Zero Data Area. Equivalent to the -zda= special data area option.

Zero data area threshold
Specifies asize in bytes to determine which data objects appear in the
Zero Data Area. Equivalent to the -zda=special data area option.

Green Hills Software, Inc. 109

3. The Builder GUI

PowerPC dialog box

Processor (drop-down list)
Generates code for the selected processor’s instruction set.

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to thinene build-time option.

The following are descriptions of the check boxes in the PowerPC window.

Constant Data Section
Places all string literals, floating point constants, and initialized variables
declared const in C and C++ in a separate section, rather than the section
containing other initialized data.

This option is on by default. When disabled, constant data will be placed
in the.data or .sdata section. The user should take care when using this
option and interfacing with the provided libraries. The libraries place
constant data imodata sections, and problems can come up due to the
inconsistency, particularly if the user turns on Position Independent Code
or Data.

Position Independent Code
Generates position independent code. Equivalent tepthéIC option.

Position Independent Data
Generates position independent data. Equivalent tgptHe?ID option.

Far Function Calls
Uses the PowerPC instructiomslr followed byblrl instead obl for all
calls so that a full 32-bit displacement may be used. This is not supported
with position independent code. Equivalent to-fiaecalls command
line option.

Inline Prologue
Normally, the compiler chooses the most efficient function prologue and
epilogue, depending on the optimization settings. This option prevents
the compiler from calling off to library routines for this purpose; inline

110 Building and Editing with MULTI 2000

CPU Options dialog box

code sequences will be used instead. This option may adversely impact
the size of the generated code, so it should only be used whenitis
necessary (for example, when the routines may not exist in memory yet).

Little Endian
Specifies code generation for alittle endian system. Equivalent to the
-littleendian command line option.

Label at End of Function
Specifiesthat aglobal label of theform __ghs eofn_funcname will be
placed at the end of every function. This can be useful for computing the
size of functions based on global symboals.

Truncate single-precision fp on RSC:
This option only affects the Power architecture -cpu=rsc. Unlike
PowerPC, the closely related Power Architecture/RS6000 does not have
arithmetic instructions that produce a single precision result. As aresult,
code which depends on the exact precision of single precision quantities
may not execute correctly. This option causes the compiler to truncate
the result to a single precision quantity after each single precision
arithmetic operation; thiswill cause the code to have the desired
behavior in these cases. This option is meaningless for non-RS6000
members of the Power/PowerPC family.

Small Data or Zero Data Threshold
Specifies asize in bytes to determine which data objects appear in the
Small or Zero Data Areas. By default, objects less than 8 bytes are
placed in Small DataArea(i.e. the default small dataareathreshold is 8),
and no objects are placed in Zero Data Area (i.e. the default zero data
areathresholdis0).Equival enttothe-sda=and-zda=special dataareaoptions.

See the Development Guide for more information on the SDA and ZDA
optimizations.

Putvariablessmallerthanthresholdsizeinto (drop-downlist)

Species the XDA section for variables smaller than the specified threshold. I
“Normal Data” is selected, all variables will be placed in normal data rather
than the SDA or ZDA sections.

SH dialog box

Processor (drop-down list)
Generates code for the selected processor’s instruction set.

Green Hills Software, Inc. 111

3. The Builder GUI

Floating point processor (drop-down list)

Default

Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support..

None
Rejects any use of floating point variables or constantsin C, C++,
or Pascal. Equivalent to the -fnone build-time option.

Software
Generate software floating point emulation code, regardless of the
capabilities of the selected processor. Libraries built for software
will aso be used. Equivalent to the -fsoft build-time option.

The following describes the items in the SH window.

Paosition I ndependent Code
Generates position independent code. Equivalent to the -pic PIC option.

Position Independent Data
Generates position independent data. Equivalent to the -pid PID option.

Little Endian

Specifies code generation for alittle endian system. Equivalent to the

-littleendian command line option.

All Floating Point is Single Precision
This option will cause "double" to be interpreted as "float" so no 64-bit
instructions will be required for floating point operations. Equivalent to
the -floatsingle command line option.

Disable use of MACH, MACL, and GBR by compiler
Prevents the compiler from using the MACH, MACL, or GBR registers
as general purpose, permanent registers.

Small Data Area
Allocates a small area of memory to hold small data objects and
references objectsin that area using a base pointer register. This may
improve program size and speed because addressing an object viathe
Small Data Area base register sometimes uses fewer instructions.
Equivalent to the -sda small data area option.

Small Data Area Threshold
Specifies asize in bytes to determine which data objects appear in the
Small Data Area. Equivalent to the -sda= special data area option.

12

Building and Editing with MULTI 2000

CPU Options dialog box

SPARC dialog box

Processor (drop-down list)
Generates code for the selected processor’s instruction set.

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to thinene build-time option.

Software
Generates software floating point emulation code, regardless of
the capability of the selected processor. Libraries built for
software will also be used. Equivalent to tfeft build-time
option.

The following are descriptions of the check boxes in the Sparc window.

pic (small offset)
Generates System V.4 style Position Independent Code with 16-bit
offsets. Code generated with this option is placed into a shared object.
Equivalent to thepic PIC option.

PIC (large offset)
Generates System V.4 style Position Independent Code with 32-bit
offsets. Code generated with this option is placed into a shared object.
The larger offset degrades program size and speed, but increases the
limit on the number of external symbols appearing in a shared object. All
modules in a single shared object are compiled with the same type of
offset. Equivalent to theé®’lC command line option.

Assume Double Alignment
By default, 4-byte loads and stores access all 8-byte objects in memory
to avoid any errors caused by using an 8-byte load on an address which is
a multiple of four, but not a multiple of eight. This option uses 8-byte
loads and stores to access 8-byte objects. This improves program size
and speed, but requires all 8-byte objects to align properly. Equivalent to
the-dalign command line option.

Green Hills Software, Inc. 113

3. The Builder GUI

Reserve Registers g5, g6, g7 for User
This option will keep the compiler from using the %g5, %g6 or %g7
registers as general purpose, permanent registers.

Small Data Area
Allocates asmall area of memory to hold small data objects and
references objectsin that area using a base pointer register. This
improves program size and speed because addressing an object viathe
Small Data Area base register uses fewer instructions. The total size of
the Small Data Areaislimited to 8K; therefore, large applications may
not be able to take advantage of this feature. Equivalent to the -sda
command line option.

ST100 dialog box

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constantsin C, C++,
or Pascal. Equivalent to the -fnone build-time option.

The following describes the items in the ST100 dialog box.

Paosition I ndependent Code
Generates position independent code. Equivalent to the -pic PIC option.
Gp 16 Mode
Causes code to be generated in the gpl6 instruction set of the ST100.
This provides smaller overall code size, at the expense of code speed
Gp 16 Libraries
Causes your application to be linked with standard libraries that were
built in gp16 mode (see above). The gpl6 libraries are smaller in size,
but may execute more slowly.
Small Data Area Threshold
Specifies asize in bytes to determine which data objects appear in the
Small Data Area. Equivalent to the -sda= small data area build-time
option.
Tiny Data Area Threshold
Specifies asize in bytes to determine which data objects appear in the
Tiny Data Area. Equivalent to the -tda= tiny data area build-time option.

14 Building and Editing with MULTI 2000

CPU Options dialog box

StarCore dialog box

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constantsin C, C++,
or Pascal. Equivalent to the -fnone build-time option.

The following describes the items in the StarCore window.

Big Endian

Specifies code generation for a big endian system. Equivalent to the -b
command line option.

Far function call

Treatsal function calls asfar calls. Equivalent to the -farcalls command
line option.

Align functions to 16-byte boundaries
Causes al functions to be aligned on 16-byte boundaries.

Do not allocate to d8-d15

Prevents the compiler from alocating variables to the high data registers, d8
through d15.

Do not allocate to r8-r15

Prevents the compiler from alocating variables to the high address registers, r8
through ri5.

Small Data or Zero Data threshold

Specifies asize in bytes to determine which data objects appear in the Small or
Zero Data Areas. By default, objects less that 8 bytes are placed in the Small
Data Area (i.e the default small data area threshold is 8), and no objects are
placed in the Zero Data Area (i.e the default zero data areathreshold is 0).
Equivalent to the -sda= and -zda= specia data area options.

Green Hills Software, Inc. 115

3. The Builder GUI

See the Development Guide for more information on the SDA and ZDA
optimizations.

Put variables smaller than threshold sizeinto (drop-down list)

Normal Data
Puts variables smaller than threshold into the data area.

Small Data
Allocates an area of memory to hold data objects smaller than the Small
Data threshold and references objects in that area using r4 as the base
pointer register. Equivalent to the -sda Small Data Area option.

Zero Data
Allocates an area of memory to hold data objects smaller than the Zero
Data threshold and references objects in that area using r0 as the base
pointer register. Thisimproves program size and speed because
addressing an object viathe Small/Zero Data Area base register uses
fewer instructions. Thetota size of the Small/Zero Data Areaislimited
to 64Kk; large applications may not be able to take advantage of this
feature. Equivalent to the -zda special data area option.

TriCore dialog box

Processor (drop-down list)
AUDO-lite
For use with AUDO-lite boards.
AUDO-1
For use with AUDO-1 boards.
Rider A
For use with the TriCore Rider A Evaluation Board.
Rider B
For use with the TriCore Rider B Evaluation Board.

Floating point processor (drop-down list)

Default
Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support..

None
Rejects any use of floating point variables or constantsin C, C++,
or Pascal. Equivalent to the -fnone build-time option.

116 Building and Editing with MULTI 2000

CPU Options dialog box

The following describes the item boxes in the TriCore window.

Far Function Calls
Treats al function callsasfar calls.

A function call is normally performed with a CALL instruction, which
takes a 24-bit PC-relative displacement. In large programs with functions
placed throughout memory, you can make functions unreachable with
the CALL instruction. Thiswill result in an error at link time.

To avoid this problem, the compiler provides support for Far Function
Calls. In place of the CALL instruction, the compiler places the address
of the called function into aregister and uses a CALLI instruction to
perform an indirect call. This method can reach afunction anywherein
the address space of the processor, at the expense of slightly larger code.

Small Data or Zero Data Threshold
Specifies asizein bytes to determine which data objects appear in the
Small or Zero Data Areas. By default, objects lessthat 8 bytes are placed
in Small Data Area (i.e the default small data areathreshold is 8), and no
objects are placed in Zero Data Area (i.e the default zero data area
thresholdis0). Equival ent tothe-sda= and -zda= special dataareaoptions.

See the Development Guide for more information on the SDA and ZDA
optimizations.

Put variables smaller than threshold sizeinto (drop-down list)

Normal data
Puts variables smaller than threshold into the data area.

Small data
Allocates an area of memory to hold data objects smaller than the
Small Datathreshold and references objects in that area using r4
as the base pointer register. Equivalent to the -sda Small Data
Areaoption.

Zero data
Allocates an area of memory to hold data objects smaller than the
Zero Datathreshold and references objectsin that areausing r0 as
the base pointer register. Thisimproves program size and speed
because addressing an object viathe Small/Zero Data Area base
register uses fewer instructions. Thetotal size of the Small/Zero
Data Areais limited to 64k; large applications may not be able to
take advantage of this feature. Equivalent to the -zda specia data
area option.

Green Hills Software, Inc. 17

3. The Builder GUI

Toolchain Options dialog box

Thisisacomplete description of the tool chain specific option dialog boxes.
MULTI displays only the tool chain options window that appliesto the toolchain
with which you are building your program. For more detailed information on
any of the optionsin these windows, please refer to the appropriate
Development Guide.

Toolchain Options > Linker tab

(Builder: Project > Toolchain Options for Selected Files... > Linker tab)

Linker section overlap (drop-down list)
Allows sections to overlap in the final layout without warning or error.

Disable warnings
Disables warnings from the linker.

Generate checksum
Generates a 4-byte checksum at the end of every section, equivalent to
the -checksum option. See the Development Guide for more
information.

Allow undefined symbols
Allows alink to complete successfully with undefined symbols rather
than producing an error. Equivalent to the -undefined command line
option.

Re-scan libraries
Continually re-scans the list of librariesto resolve dependenciesif at the
end of a pass through the libraries some symbols remain unresol ved.
This continues until either all symbols are resolved or no symbols were
resolved in the last pass. See the linker section in the Development Guide
for more information.

Relocatable program
Generates an object file which is suitable for input into another linker
run, adynamic loader, or an executable. Equivalent to linking with the
-relprog option.

No INTEGRITY shared objs
INTEGRITY specific: do not use shared objects (libraries are statically
linked into each AddressSpace).

C parameter checking
Causes the C compiler to output special symbols which represent every
function definition and every function call. The Green Hillslinker (Ix or
elxr) will recognize these symbols and give an error if afunctionis

118

Building and Editing with MULTI 2000

Toolchain Options dialog box

called inconsistently with its definition. Equivalent to the build-time
option -parameter_check.

Full C parameter checking
This is a superset of “C parameter checking” above. It causes the linker
to give an error if a function is called but there is no parameter checking
information associated with the definition. This option cannot be used
unless all libraries and objects are compiled with some form of C
parameter checking enabled. Furthermore, any functions defined in
assembly language will need to have parameter checking information
added manually. Note that libraries provided by Green Hills are not
compiled with parameter checking enabled except on certain targets.
Equivalent to the build-time optioifiull_parameter _check.

Undefined symbols
Identify these symbols as undefined in the symbol table. This is
generally used to force the loading of a library symbol that otherwise
might not be loaded. Equivalent to tiesym command line option.

Defined symbols
The format issym=val. Defines a symbokym’ with value ‘val’.

Absobjectsto link against
Equivalent to linking withA <name of object>

General linker options
These options are passed through to the linker.

Generate map file
Generate a link map file showing where symbols are located. See the
linker chapter in th®evelopment Guide for more information.
Equivalent to themap command line option.

Add cross reference
Adds cross reference information to the link map. See the linker chapter
in the Development Guide for more information. Equivalent to thislx
command line option.

Sort symbols by address
Sorts symbols in the link map by their address. See the linker chapter in
the Development Guide for more information. Equivalent to thkln
command line option.

Wide format
Prints the link map in wide format. See the linker chapter in the
Development Guide for more information. Equivalent to thlw
command line option.

Green Hills Software, Inc. 119

3. The Builder GUI

Map file name
Specifies the filename for the map file (optional). Equivalent to the
-map=name command line option.

Map filedirectory
Specifies the directory where the map file will be generated (optional).
Equivalent to the -map=name command line option.

Toolchain Options > Assembler tab
(Builder: Project > Toolchain Options for Selected Files... > Assembler tab)

Disable warnings
Disable warnings from the assembler.

Error for undefined sym
Give an error for undefined symbols. Normally undefined symbols are
silently converted into external references.

General assembler options
These options are passed through to the assembler. Equivalent to using
the -asm= command line option.

Generatelisting file
Generates an assembly listing file. See the assembler chapter in the
Development Guide for more information. Equivalent to the -list
command line option.

Add cross reference
Adds cross reference information to the assembly listing file. See the
assembler chapter in the Development Guide for more information.
Equivalent to the -ref command line option.

Do not expand macros
Do not expand macros in the assembly listing file. See the assembler
chapter in the Devel opment Guide for more information. Equivalent to
the -nogen command line option.

Listing file name
Specifies the filenamefor the assembly listing file (optional). Equivalent
to using the -list=name command line option.

Listing filedirectory
Specifies the directory where the assembly listing file will be generated
(optional). Equivalent to using the -list=name command line option.

120 Building and Editing with MULTI 2000

Toolchain Options dialog box

68000 Toolchain Options > Linker tab

Disable warnings
Disables warnings from the linker.

Extract common varsfrom libraries
Interpret uninitialized global variables defined with XCOM as
definitions rather than references when processing libraries. Equivalent
to the -cd option.

Do not create ___ghs _begin symbols
Avoids outputting the COFF special symbols which are defined in the
linker. Equivalent to the -S7 option.

Relocatable program
Creates an output file which is both relocatable and executable.
Equivalent to using the -r and -a command line options.

No INTEGRITY shared objs
INTEGRITY specific: do not use shared objects (libraries are statically
linked into each AddressSpace).

Undefined symbols
Idenfity these symbols as undefined in the symbol table. Thisis
generally used to force the loading of alibrary symbol that otherwise
might not be loaded. Equivalent to the -u sym command line option.

Absobjectsto link against
Use only the symbols from these objects and do not include the contents
of any sections from these objects in the output file. Equivalent to the -A
objs command line option.

General linker options
These options are passed through to the linker.

Generate map file
Generate alink map file showing where symbols are located. Equivalent
to the -map command line option.

Generate crossreferencefile
Generate afile containing cross-reference information. Equivalent to the
-Mx command line option.

Sort symbols by address
Sorts symbolsin the link map by their address. Equivalent to the -Mn
command line option.

Map file name

Specifies the filename of the output map file. Equivalent to using the
-map=name command line option.

Green Hills Software, Inc. 121

3. The Builder GUI

Cref file name
Specifies the filename of the output cross-reference information.
Map and cref directory

Specifies the directory in which the cross-reference and map files will be
created.

68000 Toolchain Options > Assembler tab
Forward branch size

Sets the default size for forward branches when they've not otherwise
been specified. Equivalent topt: BRB, -opt:BRS, -opt:BRW, or -opt:
BRL assembler options

Disable assembler warnings
Do not display warning messages on the screen. However, if a listing file
is being created, the warning messages are still output to the file. By
default, warning messages are output both to the screen and the listing
file, if there is one. Equivalent t&1 assembler option.

Accept C style numerical constants
Accept C style numeric constants. Hexadecimal constants are identified
by the prefixOx. Octal constants are identified by a leading zero.
Decimal constants have no prefix. Motorola constant syntax is also
accepted{ for hex,@ for octal,% for binary). There is a conflict
between this option and Motorola’s normal constant analysis. Constants

122 Building and Editing with MULTI 2000

Toolchain Options dialog box

beginning with zero are considered octal when this option is set but are
considered decimal otherwise. Equivalent to -opt: CNUMS.

Reserve upper caseregister names
Reserves upper case register names and do not allow them to be used as
variable names. Equivalent to -reg:/UPPER.

Reserve lower caseregister names
Reserves |ower case register names and do not allow them to be used as
variable names. Equivalent to -reg:/LOWER.

Reserve safe register names (such as % A5)
Reserves safe case register names and do not alow them to be used as
variable names. Equivalent to -reg:/SAFE.

Reserve register namesonly for this CPU
Reserves register names that are valid only for this CPU, rather than the
entire CPU family. Equivaent to -reg:/CPU.

Pad sectionsto 4-byte boundary, not 2
Pad relocatable sections to a4 byte boundary (the default is 2).
Equivalent to -Y5.

Use abs short mode for absforward refs
Uses absolute short mode (16-bit) for forward references that are in the
absolute format. Equivalent to -opt:FRS.

Interpret .L on branchesto be 16-bits
Interpret the branch size code .L as being a 16-hit branch. Equivaent to
-opt:OLD.

General assembler options
These options are passed through to the assembler.

Defined symbols
The format is sym=val. Defines a symbol ‘sym’ with value ‘val’.

Generatelisting file
Generates an assembly listing file. Equivalent tolilsecommand line
option.

Do not expand macros
Do not expand macros in the assembly listing file. Equivalent to the
-nogen command line option.

Green Hills Software, Inc. 123

3. The Builder GUI

Do not list macro call
Do not print macro calls in the assembly listing file. Equivalent to the
-opt:NOM C option.

Do not list macro definition
Do not print macro definitions in the assembly listing file. Equivalent to
the -opt:NOM D option.

Do not expand control statement
Do not print expansions of control statementsin the listing. Equivalent to
the -opt: NOMEX option.

Listing file name
Specifies the filename for the listing file (optional). Equivalent to the
-list=name option.

Listing filedirectory
Specifies the directory in which the listing file will be generated
(optional).

Unix Toolchain Options > Linker tab

Relocatable program
Generates an output file which is both relocatable and executable.
Equivalent to using the -r and -a command line options.

No shared objects
Prevents shared objects from resolving library references of the form
-Iname.

Undefined symbols
Identify these symbols as undefined in the symbol table. Thisis
generally used to force the loading of alibrary symbol that otherwise
might not be loaded. Equivalent to the -u sym command line option.

Abs objectsto link against
Use only the symbols from these objects and do not include the contents
of any sections from these objects in the output file. Equivalent to the -A
objs command line option.

General linker options
These options are passed through to the linker.

Map file name
Specifies the file name for the link map file (optional). Equivalent to the
-map=name command line option.

124 Building and Editing with MULTI 2000

Toolchain Options dialog box

Map filedirectory
Specifies the directory where the link map file will be generated
(optional).

Unix Toolchain Options > Assembler tab

General assembler options
These options are passed through to the assembler.

Windows Toolchain Options > Linker tab

Undefined symbols
| denfity these symbols as undefined in the symbol table. Thisis
generally used to force the loading of alibrary symbol that otherwise
might not be loaded. Equivalent to the -u sym command line options.

General linker options
These options are passed through to the linker.
Map file name
Specifies the filename for the map file (optional). Equivalent to the
-map[=name] option.
Map file directory
Specifies the directory where the map file will be generated (optional).

Windows Toolchain Options > Assembler tab

General assembler options
These options are passed through to the assembler.

Gnu Toolchain Options > Linker tab

Relocatable program
Equivalent to linking with the -r and -a options.

No shared objects
Passes -Bstatic to the linker to prevent shared objects from resolving
library references of the form -Iname. This option is available only for
SunOsS, Solaris2, and System V.4 Unix.

Undefined symbols
Place these symbols as an undefined symbol in the symbol table. Thisis
generally used to force the loading of alibrary symbol that otherwise
might not be loaded.

Abs objectsto link against
The fully linked object files given are used to resolve addresses.

Green Hills Software, Inc. 125

3. The Builder GUI

General linker options
These options are passed through to the linker.

Map file name
Specifies the filename for the map file (optiona).

Map filedirectory
Specifies the directory where the map file will be generated (optional).

Gnu Toolchain Options > Assembler tab

General assembler options
These options are passed through to the assembler.

The Progress window

When you build a project (e.g. if you click the Build button to start compiling),
MULTI opens a Progress window. This window displays information about the
progress of the build, aswell as any errors or warnings.

To control exactly what information is displayed, use the Build Panel (see
“Build Panel” on page 43).

File Edit “iew Block Tools “ersion Config Help

FH 2B ag ool H
File: [output for hello.bid 001 | Line: |232

Done
Build completed

-

4 | »
[[Ln2col17 [[#]

In addition to the normal editor buttons, the progress window Radtdutton
while building. This button changes tdNaxt Error button when the build
finishes.

TheNext Error button is only present if you have either halted the build
process or after the build process has completed. It allows you to quickly edit
the source files which have generated errors. If any errors occurred during
compilation of a source file, then pressing this button edits the file in which the
error was detected in a new editor window, with the line containing the error

126

Building and Editing with MULTI 2000

The Progress window

highlighted. Pressing the button again will do the same things, but for the next
error in the build.

The Halt button is only present during the build. If the Halt button is pressed,
then the build stops.

Another way to quickly edit errorsisto double click the line in the progress
window where the error message was reported. Thiswill edit the sourcefile
which generated the error and highlight the line on which the error occurred.
For example, double clicking an error message such as:

"far.c", line 6: expected: ";" got: return

opens a new editor window displaying the source of far.c with line 6
highlighted.

Green Hills Software, Inc. 127

3. The Builder GUI

128 Building and Editing with MULTI 2000

Chapter

Version control

This chapter contains:
* MULTI Version Control
* Howtouse MVC
« Branching and version numbers
» How to use the MVC commands
 MVC command list
« Other version control systems

A

4. \ersion control

MULTI Version Control

MULTI provides a proprietary version control system (MVC) for text files. By
default, MULT!I is configured to use MV C as its version control system. If you
already use another version control system, see the “Other version control
systems” on page 139 to learn how you can use your existing version control
system with MULTI. If you do not have a version control system, it is easy to
begin using MVC.

Caution: MVC works on text files only. If you attempt to check in any binary
files, they will be deleted without warning.

MULTI keeps track of all changes to your text file in a separate log file. When
you edit the file, you first “check out” your file from version control. After you
finish editing your file, you then “check in” your changes. This creates a new
version in the log file. The log file preserves the entire version history, allowing
you to restore any previous version to compare or revert back to another file.

If you are using the MULTI editor to edit a file under version control, the file is
automatically checked out when you make changes, assuming you have
Automatic Checkout enabled. The file is automatically checked in when you
close it. During the check in process, a dialog appears, requesting comments.
These comments are saved in the log file along with the new version.

To prevent changes from being made to files without the version control
system’s knowledge, all files in version control are read-only. Files become
writable when they are checked out and return to read-only status when they are
checked in. Files become writable only to the user who checked out the files.
This prevents multiple users from editing the same file at the same time.

When a file is in version control, several directories are created in the same
directory:

mvc.log
This directory contains log files. For example, if the f@gdhn/fly.cis
placed under version control, then the log fil&igohn/mvc.log/fly.c.

Note: These log files must not be modified by hand, as all version
history may be lost if the file becomes corrupted.

mvc.log/mvc.lok
This directory contains the lock files showing who has checked out the
file. MVC only allows one user to check out a file at a time. The lock file
for /aljohn/fly.c is/a/john/mvc.log/mvc.lok/fly.c.

130 Building and Editing with MULTI 2000

How to use MVC

mvc.log/mve.sem
This directory contains temporary files used as semaphores to prevent
two different MULTI sessions from writing to the same log file at the
sametime.

How to use MVC

There are three ways to access MULTI version control

1. Usethe Editor on atext file under version control. Files are checked in and
out automatically. Although MV C is enabled by default, only your .bld files
are automatically put under version control. All other files must be placed
under version control manually. To place files under version control:

a. Select Editor > Version > Place Under VC.
b. Enter the create command on the command line.
2. Choose menu itemsin the Builder or Editor VVersion menus.

3. Enter afull MVC command line. You can enter afull MV C command in two
different places:

a. Thefirstisfrom aUNIX shell; thereis an MV C executable which
comeswith MULTI.

b. Choose Version > Other VC Command... in the Builder.

Example

% mvc co foo.c (assumes mvc isin your PATH)

Branching and version numbers

Version numbers are created when new files are added to a branch or version.
Thisalows you to revert to previous versions if necessary. Version numbers
have the form:

major_version. minor_version

Asyou create new versions, the minor version number increments by one for
each new version. You can set the version number for anew version (for
instance if you want to increment the major version number) by using the -v
version option of the various check in commands. Thisis done from an MVC
command line. For example, mvc ci foo.c -v 3.2 checks in foo.c with version

Green Hills Software, Inc. 131

4. \ersion control

number 3.2. Version numbers are never alowed to decrease. 1.4 -> 1.5 and 1.5
-> 2.1 areallowed, but 2.5 -> 2.4 and 2.5 -> 1.6 are not allowed.

You can create a branch in the version for afile, by adding two more dots (..) to
the version number. For example, a version sequence might be: 1.1, 1.2, 1.3,
1.4. If you create a version with the number 1.3.1.1, that version is a branch off
the main sequence. The version sequence for that branch would be 1.1, 1.2, 1.3,
1.3.1.1. The next version for that branch after 1.3.1.1 would be 1.3.1.2.

To create a branch, you use the -v version option of the various checking
commands. The version is of the form of a branch version (with 4 numbers).
This needs to be done from the MV C command line. For example, mvc ci foo.c
-v 1.5.1.1 creates a branch off of version 1.5. When you work on a branch, you
always use the -v version option. If you omit the -v version option, MVC
assumes that you are working on the main version sequence. This creates a
version on the main sequence instead of on the branch. For example:

mvc co foo.c-v 1.5.1.1
(edit foo.c)
mvc ci foo.c-v 1.5.1.2

NOT mvc ci foo.c, which creates a version on the main branch (1.8, for
instance).

How to use the MVC commands

Some of the MV C commands are also listed in the Editor > Version and Builder
> Version menus. To type these commands, see “How to use MVC” on page
131.

For any of the commands that check in a file, you can entec tgion to
force MVC to ask for comments.

In all of the following commandsersion refers to the version number you want

the command to manipulate. If no version number is specified, then the current
version is assumed. For a check out, the current version is the latest version on
the main version sequence. For a check in, the current version is the same but
with the minor version number incremented by one.

Some of the commands use a datledéte) instead of a version number to refer
to a given version. The date needs to be in the form:

MMDDYYhhmmss

132

Building and Editing with MULTI 2000

How to use the MVC commands

where:
MM month
DD day
YY year
hh hour
mm minutes
ss seconds

Theindividua components of the date are separated by non-digit characters
(except for white space). For example, you can specify the date as
082597120000 or 08.25.97.12.00.00. Do not put spaces in the date. If any part
of the date is omitted, the maximum value for that part is used. For example,
082597 implies 082597235959. Two digit years between 50 and 99 are assumed
to describe years from 1950-1999, while years from 00 to 49 are used to refer to
years from 2000-2049.

You can use four-digit years by using the -D date option which takesa date in
the form:

YYYYMVDDhhnms s

All of the following commands use afilename. Multiple filenames are separated
by spaces. You can specify these files using the command-line option -I list_file
instead of filename. Thelist fileisanormal text file that starts with the keyword
mvc-list, followed by the number of files, then the filenames. Everything in the
list file needs to be separated by spaces, tabs, and/or newlines. For example, you
have the following list file named fly:

mvc-list 3
art.c
trip.c
hat . c

With the above list file, you can specify acommand to work on all three of the
listed files, art.c, trip.c, and hat.c. This means the following two commands
areidentical:

ci art.c trip.c hat.c
ci -1 fly

Green Hills Software, Inc. 133

4. \ersion control

With both of these commands, the three files are checked in. Thefirst linelists
them explicitly; in the second line, alist file is specified which contains the
threefiles.

To use directories other than the current one, specify the -L logdir and -S
sourcedir options. logdir is the directory that contains the mvc.log directory to
use for the log files. sourcedir is the directory containing the source files. For
example, if the sourcefilesarein /usr/john and the log filesarein

/usr/geor ge/mvc.log then the command:

ci fly.c bat.c -S /usr/john -L /usr/george
takes the files /usr/john/fly.c and /usr/john/bat.c and checks them into the log
files /usr/geor ge/mvc.log/fly.c and /usr/geor ge/mvc.log/bat.c.

MVC command list

Alias

aliasfilenames-v alias[-V version]

Allows you to refer to a given version number in the log file for the files
specified by filenames by another name, alias. This alias is used with other
MV C commands to refer to that version. If you do not specify -V version, the
current version is assumed. Valid aliases must satisfy the following conditions:

 they must be one word;

 they must begin with anon-digit;

 two aliases with the same name cannot be defined for the samefile.
For example, if version 5.3 isaworking version, enter:

alias fly.c -v goodone -V 5.3

where the word goodone becomes the alias for version 5.3. Later, you can use
goodone to specify the version number in any command which takes a version
number as an argument. For example:

get fly.c -v goodone

This command is extremely useful for making awhole set of source files. For
instance, if you are ready to release a product and want to mark all the current
sources as release, make sure all source files are checked in and then do the
following:

134

Building and Editing with MULTI 2000

MVC command list

alias [list of source files] -v rel ease

Then you can continue working on the product, making changes and creating
new versions. If you ever need to return to the sources for the release version,
you can use the following:

get [list of source files] -v rel ease

Another way to accomplish the same goal is to specify the date of the release:
get [list of files] -d date

Remembering an aliasis easier than remembering a date. If you find that you
need to change the alias (for example, if anew releaseis going to replace the
old one), you can use the unalias command to remove the old dias, then usethe
alias command again to create the new alias.

Copy file
copyfile [list of files] new_directory
Copies each file and its accompanying log file to the new_directory.

Create log
create filenames [-v version]
Creates alog file for each file specified by filenames. Thelog fileis placed in

the mvc.log, which is created if it does not currently exist. The log file’'s name
is mvc.log/filename.

You can specify the starting version number witlrersion. The version
numbers start at 1.1 by default.

Check in changes
All these commands check in changes made to the file into the log file. For this
command to work, the file needs to be previously checked out.
delta filenames [-v version | -d date]
Changes are checked in and the file is deleted.
delget filenames [-v version | -d date]
Changes are checked in and the file becomes read-only.
ci filenames[-v version | -d date]
Same aslelget.

Green Hills Software, Inc. 135

4. \ersion control

deledit filenames [-v version | -d date]
Changes are checked in, but the file remains checked out and is editable.
In effect, thisis acheck in followed by a check out.

cio filenames [-v version | -d date]

Same as deledit.
Delete file
mvc deletefile filenames
Deletes the filenames and its log files.
Diff Files

diff filename [-v versionl -V version2]

Finds the differences between different versions of the specified file. To specify
the versions, enter one of the following:

diff filename
Determines the latest changes to filename. MV C finds differences
between the source file version retrieved from the log file and the last
version in thelog file. If thelast versionin thelog file is the same as the
sourcefile, it uses the next to the last version instead. If the source file
does not exist, MV C compares the last version in the log file to the next
to thelast version in thelog file.

diff filename -v version
Compares the latest version of filename against the specified version.
MV C considers the source file the latest version. If the source file does
not exist, the latest version in the log file is used.

diff filename -v version1 -V version2
Compares versionl of filename to version2 of filename.

Display version
disp filenames [-v version | -d date]

Displays thefiles specified by filenames and their versions. The version number
in which each line was originally created is prepended to the line.

Check out and edit

edit filenames [-v version | -d date]
co filenames [-v version | -d date]

136 Building and Editing with MULTI 2000

MVC command list

Check out the specified files and retrieve editable copies for your use. These
commands are identical.

Find changed version

fc filenames [-v version | -d date] -s startline [-e endline]

Finds the most recent version of the files specified by filenames which changes
aparticular piece of text. startline specifies the starting line number of the

change. endline specifies the ending line number of the change. If no ending

lineis specified, then only one line (startline) is used. See also “ShowLastEdit”

on page 210. The current file must also be checked in. Otherwise, the results of
this operation are undefined.

Read (only) version

Move file

get filenames [-v version | -d date]

Retrieves a read-only copy of the specified file. This does not check out the file
and is not affected if someone else checks out the file. This command does not
work if you are currently editing a writable copy of the file.

movefile filenames new_directory
Moves each file and its log file to timew_directory.

Remove from version control

unmvc filenames

Removedilenames from version control.

Package files

package [-f packfile] filenames

Archives, or “packs”, the listed files and their corresponding log and lock file if
they exist. The result is placed in the fibgs.pak, unless you specifyackfile.
The package file is in UNIX tar format.

Unpackage files

unpackage [-f packfile] [-L directory] [filenames]

Green Hills Software, Inc. 137

4. \ersion control

Unpacks the files in the specified packfile, or from logs.pak if a packfileiis not
specified. If you specify directory, all the files unpack into that directory. If you
specify filenames, then only the specified files are unpacked.

Delete version

Show log

Unalias

remver filenames[-v version | -d date]
Deletes the specified version.

Important: Do not delete any versions that start branches or you will not be
able to trace the branched copies back to the originator. Once aversionis
deleted it can never be recovered, so use this command with care.

show filenames [-F]

Displays atable of contents of the log files for the files specified by filenames.
Each versioninthelog file is displayed with its date, username, and comment.
By default, only the first line of the comment is displayed. To display the full
comment, specify the -F option.

unalias filenames -v alias

Removes an dlias (alias) previously defined with the alias command.

Check in, lose changes

Unlock file

uncheck filenames
unedit filenames

Checksin afile without checking in the changes, so that any changes made to
thefile arelost. Thiscommand applies only to files which have previously been
checked out. A read-only copy of the latest version of the fileis then retrieved.

This command is useful if you check out a file and later decide you don't need

to make any changes to it.

unlock filenames

Forcibly checks in a file, even if the file was checked out by another user. Any

changes made are checked in. This command is useful when someone

138

Building and Editing with MULTI 2000

Other version control systems

accidentally leaves afile checked out and cannot be contacted to check the file
back in. If the file was checked out by another user, amail messageis sent to
that user.

Who checked out a file
who filenames

Displays the user who has each file specified by filenames checked out, as well
as the time when each file was checked out.

Other version control systems

MULTI supports several version control systems to keep track of your source
code changes:

« MVC
« RCS
« ClearCase

MULT!I Version Control (MVC) is provided with MULT!I for those who do not
have another version control system. RCS and ClearCase are available from
third-party vendors. If you use aversion control system not specified above,
you will not experience the benefit of MULTI's integrated version control
features.

How to use other version control systems with MULTI

MULTI provides the Version menu in both the Builder and Editor Windows
where you can perform version control operations such as checking in files,
checking out files, and showing histories. For more information on Version
menu options, see “Version menu” on page 39 in the Builder or “Version menu”
on page 170 in the Editor.

When you begin to edit a file in the Editor, MULTI automatically checks out the
file for you if Automatic Checkout is enabled. See “Check or uncheck
‘Automatic checkout’.” on page 140. When you close a file you have checked
out during an editing session, MULTI asks you whether to check in the file or
leave it checked out.

When you open a project in the Builder, any checked out files in the project
contain the user’s name listed next to the file.

Green Hills Software, Inc. 139

4. \ersion control

When you debug a program with MULT], it attempts to find the version of the
source files which was current when the program was built. Files from version
control may be used if the source files have changed since the program was
built.

If you are using ClearCase as your version control system, you need to set the
view you want to use before you start MULTI. You cannot change it once you
have started MULTI. However, you can see what your current view is by
choosing Version > Show View in the Editor.

To enable other version control systems with MULTI

For MVC, RCS, or ClearCase Users
1. Choose Config > Options... > Version Control tab.

2. Check the ‘Use version control’ checkbox. (See also “Options...” on page
232)

Generall Debuggerl Editor “ersion Control | Colors I

Wergion Control Options

W Use version contral

V¥ Automatic checkout

Command:

Under ¥C:

3. Choose the appropriate version control system from the Version control sys-
tem drop-down list.

4. Check or uncheck ‘Automatic checkout’.

If you enable ‘Automatic checkout’, MULTI automatically checks out a file for
you when you start editing. If this box is not checked, choose Version > Check
Out and MULT]I allows you to edit a file. This setting only affects new files that
you open; files already open when you change this setting are not affected. To
change this attribute on a per-file basis, choose Version > Auto Checkout.

Note: If you use RCS, thed, co, rlog, andrcsdiff must exist in your path. If
you use ClearCase, theleartool must exist in your path.

Tip: Save your configuration and restart MULTI whenever you change either
the “Version control system” setting or the “Use version control” setting.
Switching version control systems while you have files open can lead to
unpredictable results.

140

Building and Editing with MULTI 2000

Other version control systems

For other version control systems
1. Choose Config > Options... in the Builder, Editor, or Debugger.

2. Uncheck the Use version control checkbox under the Version Control tab.
(See “Options...” on page 232 for more information.)

Note: MULTI provides special support and added benefits for ClearCase, RCS
and MVC users. If you use another version control system, you may be able to
create custom menus that control your version control system. This can give
you some (but not all) of the benefits of using a more supported version control
system. For more information, see Appendix A, “Third party tools”.

Tip: Save your configuration and restart MULTI whenever you change the
“Version control system” setting or the “Use version control” setting. Switching
version control systems while you have files open can lead to unpredictable
results.

Green Hills Software, Inc. 141

4. \ersion control

142 Building and Editing with MULTI 2000

Chapter

5

Using the Editor

This chapter contains:
« Starting the Editor
» Opening files
e Saving files
« Editing
« Working with your code
e Searching
* Maerging files
« Comparing files
« Using version control from the Editor
» Configuring the Editor

5. Using the Editor

Starting the Editor

You can start the Editor from other MULTI tools or as a standal one editing
program.

To start the Editor from the Builder window

Asyou use the Builder to navigate through your projects, you can open a source
file the following ways:

« Double-click the filename in the Source pane.

» Select one or more files in the Source pane, then choose Project > Edit
Selected Filesto edit the selected files.

« Choose File > Open File in Editor to be prompted for the name of an
arbitrary file to edit.

If the file already exists, then the Editor will open the existing fileg;
otherwise, the Editor will open on a new (blank) file.

To start the Editor from the Progress window

When you use the Builder to build a project, a Progress window appears with
information about the build, including any build errors. When you double-click
an error in the Progress window, the Editor opens the sourcefile, placing the
cursor on the line with the error.

To start the Editor from the Debugger

When you start the Editor from the Debugger, MULTI creates temporary copies
of source files so you can continue to debug your program while looking at the
origina source code. Changes that you make in the Editor affect the actud file,
not the temporary file that the Debugger is using to show the original code.
When you exit the Debugger, the temporary files are deleted.

To open the Editor on the Debugger’s current source file, click the Edit button
in the Debugger.

144 Building and Editing with MULTI 2000

Opening files

You can also start the Editor by entering commandsin the Debugger Command
Window. The following table summarizes which command to use to open a
certain file:

Debugger commands that start the Editor

To open Enter Examples and Comments

The current source file | edit n/a

A file by name edit filename n/a

Afile by selectingitina | editfile n/a

dialog box

A file that contains a edit procedure If a procedure name is followed by a
certain procedure wildcard pattern, then a window appears

with a list of procedures from which you
select a procedure to edit. For example,
the command edit f* opens a window that
lists all procedures beginning with the letter
f.

A file whose procedure | edit numberb For example, to edit the procedure

has a certain containing breakpoint number three, use

breakpoint the command edit 3b. You can obtain
breakpoint numbers with the B command.

A file whose procedure | edit number_ For example, to edit the procedure at stack

is at a certain stack depth three, use the command edit 3_.

depth You can obtain stack depths with the calls
command.

To start the Editor as a standalone program

The Editor is an executable program, me, that islocated in the Green Hills
directory (by default, /usr/green). To run the Editor as a standal one program,
you can:

« Enter the following at a command line prompt:

me +/ i nenunber fil enane

Opening files

Asyou are working in the Editor, you can open a new filein the current Editor
or in a separate Editor window.

Green Hills Software, Inc. 145

5. Using the Editor

To open afile in the current Editor window

You can open multiple files in the same Editor window. When you open an
additiona file, the Editor places the newly opened file on top of its stack of
open files. You can then navigate through the open files using View > Next File
and View > Previous File, or the toolbar buttons.

1. Choose File > Open
Click the Open buttori®)

2. In the Edit File file chooser, select the file you want to open.

Shortcut: To quickly open a file, type the filename in the Fiédd, and press
Enter.

Fie: [helo.c = e [677 |

If the file is not located in the current directory, you must include the path.

To open afile in a new Editor window

Some people prefer to work with multiple Editor windows, each containing a
single file, rather than opening multiple files in the same Editor window. If you
are working in the Editor and want to open a different file in a separate Editor
window:

1. Choose File > New Editor.
2. In the Edit File file chooser, select the file you want to open.

Shortcut: To quickly open an existing file in a different Editor window, type the
filename in the Filefield, and press Shift+Enter. If the file is not located in the
current directory, you must include the path.

To create a new file

If you want to create a new file, follow the first step to opening an existing file.
When the Edit File file chooser appears, enter a new filename and click Open.
The Editor creates and opens the new file.

Shortcut: To quickly create a new file in the current directory, type the filename
in the Filefield, and press Enter. If you want the new file to open in a new
Editor window, press Shift+Enter.

Fie: [helo.c = e [677 |

146

Building and Editing with MULTI 2000

Navigating between open files

Navigating between open files

When you open multiple files in the same Editor window, only onefileis
visible at any given time. The rest of the open files are stacked below the
current file in the order in which they were opened.

To view the previous file

To view the file that you were looking at just prior to the current file, choose
View > Previous File, or click the Previous File button (<=).

To view the next file

To view the next file in the Editor’s stack of open files, choose View > Next
File, or click the Next File buttor=>).

If you are viewing the most recently opened file, going to the next file allows
you to view the first file opened.

Navigating between files in different Editor windows

If you like to work with multiple Editor windows, each containing a single file
(rather than opening the files in the same Editor window), you might want to
customize the Editor to make thiextWindow command (see “NextWindow”

on page 215) easily accessible. You can use this command to cycle through all
of the Editors that are currently open on your computer. To learn how to add
commands to the Editor through menus, buttons, mouse clicks, and keystrokes,
see Chapter 9, “Configuring and customizing MULTI".

Saving files

There are several ways to save changes made to the file or files being edited.

To save changes to the file currently being viewed

To save changes to the file currently visible in the editor, do one of the
following:

« click the Save buttorla)

» choose File > Save

Green Hills Software, Inc. 147

5. Using the Editor

To save the file currently being viewed under a new name

To save thefile currently visible in the editor with a different name, choose File
> Save As.

To save all files currently open in the editor
To save dl the files currently open in the editor, choose File > Save All.

Editing

To perform common editing operations

You can right-click in the editor window to open a menu of common editing
operations. This menu allows easy access to cutting, copying, and pasting the
current selection, undoing the last editing operation, or navigating to the tag the
cursor iscurrently over. All these functions are documented separately in this
chapter.

To reverse changes made to a file
You can reverse any edits you have made to afile since you opened it.

To reverse the last edit, do one of the following:

e Click Undo (*=%).

» Right-click and choose Undo from the pop-up menu.
+ Choose Edit > Undo

Keep clicking Undo to reverse more edits, until the file isin the same state as
when you opened it.

To restore changes that you reversed
To restore any changes you have reversed using Undo, do one of the following:

» click the Redo button ()
« choose Edit > Redo

Each time you choose Edit > Redo, the effects of one Undo are reversed,
beginning with the most recent.

To reverse all changes made to a file since the last save
To return to the last saved version of afile, choose File > Revert to Saved.

148 Building and Editing with MULTI 2000

Editing

To insert a character blocked by a custom keybinding

If you customize the Editor to run a command based on a single keystroke, you
cannot directly insert the literal character of that keystroke into afile. For
example, if you customize the Editor so that every time you press d the cursor
moves down one line, then you will not be able to type the litera letter d ina
file. In this scenario, you would have to complete the following steps to enter
the literal character d in your file.

1. PressCitrl+\
2. Pressthe key for the character that you want to enter into the file.

To repeat the last change you made to a file
1. Place the cursor where you want to repeat the last edit.
2. Choose Edit > Repeat Last Edit.

You can repeat only certain types of edits. For example, if you just selected text
and then replaced it with new text, then repeating the last edit will delete a
similar selection contiguous to the cursor and insert the new text. Suppose you
file contains the text:

The al batross said it was 8:09, and everyone cheered.

If you select the word everyone and type rainbow, your text becomes:

The al batross said it was 8:09, and rai nbow cheered.

If you move the cursor to the beginning of the word albatross (you do not have
to highlight the word) and choose Edit > Repeat Last Edit, the text becomes:

The rai nbow said it was 8:09, and rai nbow cheered.

To copy a column of text

You can copy acolumn of datafrom afile, excluding data on either side of the
column. For example, suppose you have atab delimited file that lists date, time,
file size, and filename. You can copy just the column that list the times without
affecting any of the other data.

1. Onthefirst line that contains data you want to copy, start the selection at the
first character you want copy.

2. Extend the selection to include al of the datain the column. The last charac-
ters selected should be the last character of the column.

Green Hills Software, Inc. 149

5. Using the Editor

3. Choose Block > Rect Copy.

Example
You highlight the following selection, then choose Block > Rect Copy.

FH . Bmeng o -2 BEX

File: [otmp_ditshello.tut =/ tine: 1414

| v

294,191 wing
6 File(s) 168,066,152 bytes
1,382,562,368 bytes free

-
1 | »

[[Ln1.Col17 [Tl

When you paste the contents of the clipboard, the following text isinserted in
your file:

09: 21a
09: 22a
09: 23a
09: 36a
09: 23a
09: 33a

To cut a column of text

To cut acolumn of text out of afile, highlight the column and choose Block >
Rect Cut. For more details on how to highlight a column of text, see “To copy a
column of text” on page 149.

To paste a column of text

After you have cut or copied a column of text from a file, if you use the regular
paste (Edit > Paste), the contents of the clipboard are pasted in the file with line
breaks.

150 Building and Editing with MULTI 2000

Working with your code

To paste the column without inserting line breaks, choose Block > Rect Paste.

Working with your code

To configure the Editor for your programming language

When you open a source file that has a language-specific extension, the Editor
automatically configuresitself to work with that programming language. For
example, if you open afile foo.c, the Editor uses /* */ whenever you insert a
comment block. The Editor also displays elementsin your code in different
colors based on the specified language.

If you need to manually specify your programming language because the Editor
does not recognize afile extension:

1. Open the sourcefile.

2. Choose View > Language, then select the programming language used in the
sourcefile.

Using comments

To insert a comment

The Editor inserts the proper syntax for comments based on the programming
language you are using. If the Editor is not using the correct syntax, choose
View > Language to make sure it is set to the correct language. Block comment
operations are not supported in FORTRAN or Green Hills Script.

First, do one of the following:

« To comment out existing code, highlight the text. If thereis no highlighted
selection, the entire line the cursor is currently on will be commented out by
default.

e Toinsert anew comment, place the cursor on a blank line where you want
the comment to start.

Then, do one of the following:

* Right-click the highlighted code, and choose Comment from the pop-up
menu.

« Choose Block > Comment.

Green Hills Software, Inc. 151

5. Using the Editor

If you want to uncomment a comment block, highlight the block and choose
Block > UnComment or right-click the selected block and choose Uncomment
from the pop-up menu.

To keep comments flush-left

If you want commentsin your code to stay flush-left even when you auto-indent
your code:

1. Choose Config > Options....
2. On the Editor tab, select Comments Stick Flush Left.
3. Enter your comments next to the left margin.

Note: If you insert # asthe first character of a comment, then the comment will
move to the left margin regardless of the position where you started the
comment. For example, if you are coding in C and enter /*#, then the comment
automatically movesto the left margin.

Indenting your code

Asyou write code, you can insert an indent manually, or you can let the Editor
indent your code based on common coding standards.

To set the size of indents code

You can change the size of indents that you manually insert, or that are
automatically inserted by the Editor.

1. Choose Config > Options....
2. On the Editor tab, change the Indent size field to specify the size of indents.

To manually insert or remove an indent
1. Place the cursor on the line of code you want to indent or unindent.

2. Toinsert an indent, choose Block > Indent.
To remove an indent, choose Block > Unindent.

To let the Editor indent your code
The Editor has an auto-indent feature that indents your code according to
common coding standards.

1. If you want to auto-indent asingle line of code, move the cursor to that line.
If you want to auto-indent multiple lines of code, highlight those lines.

152

Building and Editing with MULTI 2000

Working with your code

2. Choose Block > Auto-Indent, or press Ctrl+2, or press Ctrl+; (semi-colon).
Pressing Tab also automatically indents everything to the right of the cursor.

3. Select the block you wish to indent, right-click it, and choose Auto Indent
from the pop-up menu.

Influencing how the Editor auto-indents your code

You can change how far the Editor auto-indents the lines of alexical block of
code. At the start of the lexical block, indent the code how you want the entire
block to look. Then, highlight the rest of the block and start the auto-indent.
This prevents the Editor from breaking the conventions of a pre-existing block.

How indenting multiple lines affects your comments
If you are auto-indenting multiple lines of code and do not want to indent the
comments within those lines:

1. Choose Config > Options....

2. On the Editor tab, deselect Indent Comments when Indenting Multiple
Lines.

Characters that auto-indent your code

By default, the Editor automatically makes indenting adjustments when you
enter the following characters:

#
* {
}

To disable characters from auto-indenting your code and comments
1. Choose Config > Options....

2. On the Editor tab, deselect Implicit Auto Indent.
To disable characters from auto-indenting your comments only

You might want special characters to auto-indent your code, but to disable them
if you use them within a comment.

1. Choose Config > Options....
2. Onthe Editor tab, deselect Implicit Auto Indent In Comments.

Green Hills Software, Inc. 153

5. Using the Editor

Indenting the line following a left parenthesis ‘(’

You can configure how the Editor indents the line of code that follows a left
parenthesis ‘(.

1. Choose Config > Options....

2. Go to the Editor tab.

3. In the C Paren Indent Mode, select one of the following according to your
preferred coding standard:

 If you want the Editor to indent by two levels the line of code that
follows a left parenthesis ‘(’, select “Indent in two”. Your code will look
like this:
int main (
int argc
- If you want to indent the line of code that follows a left parenthesis ‘(’ so
that it lines up with the parenthesis, select “Even with parentheses”. Your
code will look like this:
int main (
int argc

To alter the case of the currently selected code

Choose Block > UpperCase to transmute the case of all alphabetic characters in
the current selection to uppercase, or Block > LowerCase for lowercase. This
operation is not supported in FORTRAN, Pascal, and Green Hills Script.

To highlight the boundaries of the current block of code

To quickly identify the start and end of the current block of code, choose
View > Match.

The Editor searches backward from the cursor and finds the first enclosing
instance of a left parenthesis ‘(, left curly brace {’, or a left bracket [', then
searches forward from the cursor to find the matching ending mark and selects
the code in between.

Using tags in your files
If you use the utilityctags to create a tag file, the Editor uses the information to
open files and move the cursor based on the name of a function.

154 Building and Editing with MULTI 2000

Searching

To navigate to a function
1. Choose Edit > Goto...

2. Inthe GoTo diaog box, select the Function radio button. If the Function
radio button is not available, the Editor could not find atag file.

3. Typethe name of the function, and click Go. If the functionisin the current
file, the Editor moves the cursor to the beginning of the function. If the func-
tionisin adifferent file, the Editor opens that file and moves the cursor to
the beginning of the function.

1. Right-click the function name and choose Jump to Function from the pop-up
menu.

To manually load a tag file in an Editor session

When the Editor starts, it looks for a file calkegs. If the tag file has a
different name or is in an unexpected location, the Editor may not find it. To
manually load a tag file into an Editor session:

1. Choose Tools > Append TagFile.
2. Enter the path and filename of the tag file, and click OK.

To remove atag file from an Editor session

If you want to unload a tag file from an Editor session, choose Tools > Reset
Tags. Once you have unloaded a tag file, the Editor no longer uses that file to
navigate to functions.

Searching

To start a full search, do one of the following:

+ Click Search #).

« Choose Edit > Find...

For a general description of the fields available to tailor a search, see “Search
dialog box” on page 178.

To make a “quick” incremental search

If you do not want to spend the time opening the Search dialog box and do not
need to replace what you find, you can perform a quick search.

Green Hills Software, Inc. 155

5. Using the Editor

1

If you want to search forward in the file, press Ctrl+f.
If you want to search backward in the file, press Ctrl+b.
The left corner of the status bar changesto Srch:..

Enter the character pattern you are looking for. As you enter the characters,
the Editor highlights the first occurrence of that character pattern.

If the current file contains more than one occurrence of the character pattern
you entered, continue to press Ctrl+f to view the next match or Ctrl+b to
view the previous match until you find what you are looking for.

Quick search tips

If you want quick searches to be case-sensitive, choose Config > Options...,
go to the General tab, and select Match Exact Casein Searches. Be aware
that this setting affects quick searchesin al MULTI tools, not just the Editor.

If you previously used the Search dialog box to perform afull search, you
can perform a quick search using the same advanced criteria. To perform a
quick search, press Ctrl+f, then press Ctrl+f again without entering any text.
The Editor searches for the first instance that matches the criteria previously
defined in the Search dial og box.

To search using wildcards

1

2.

3.

Choose Edit > Find..., or click Search (#).
In the Search dialog box, select Wildcard.

Enter the character pattern you are looking for. The following characters act
aswildcards:

Wildcard Behavior Example

? Matches any single character, except c?t finds cat and cot, but not coat
newline

* Matches any number of characters, c*t finds cat, cot, and coat
except newlines

Merging files

You can use the Editor to merge two or threefilesinto asingle file. The two or
three files can be different versions of the same file or be different files.

If you are using a version control system and want to use a different version of
the file from disk, then enter the name of the file which you want to mergein

156

Building and Editing with MULTI 2000

Merging files

the Filename field, and the version of that file you wish to merge in the Version
text field.

To merge two files into a single file

1

Choose Tools > Merge Files...

An EditMerge dialog box appears. In the Filel field, enter the first version
of thefile. If you specify afile which you are currently editing and you do
not enter a version number, Filel will be the copy of the file with your cur-
rent (unsaved) edits. Thisis useful if someone else has edited the file at the
same time you were working on it.

In the File2 field, enter the second version of the file. If you specify afile
which you are currently editing and you do not enter aversion number, Filel
will be the last saved copy of thefile.

Deselect Automatic.
Click Merge.

A window appears for each file you specified, as well as an extra window
for the results of the merge. To identify which fileisin awindow, look at the
title bar at the top of the window.

Use the Merge window to select what gets placed in the merged file.

The Editor pauses at each point where the two files are different, and
highlights the text that differs. Using the Control Panel, you can select
which one of the highlighted sections, or both, to copy into the results
window. You can also manually cut and paste text into the results window.
Listed below are the features of the results window:

Skip

The Editor finds the next difference.

Help

Opens help on the control panel.

Cancel

Aborts the merge, closing all merger windows.

Filel

Copies the selected text from Filel.

File2

Copiesthe selected text from File2.

Green Hills Software, Inc. 157

5. Using the Editor

Both
Thefirst timeyou press this button, adial og box appears asking you how
you want to merge the two selections: in what order, with change bars
around them, with comments in front, between, or after them, and so
forth. The next time you press this button, the last values entered are
used.

ChangeBars...
Changes the way the Both button works, and opens the same dialog box
asthe first time you press the Both button.

When merging is complete, the windows on the original files are removed and a
dialog box allows you to save the results window. If you save it as the same
name as one of the original files, then any windows still looking at that file are
replaced with the merged results. After saving, the results window is removed.

To merge three files into a single file

When merging three files, oneis considered the base file that the other two are
derived from. With this assumption, the Editor is usually able to merge without
asking you. The Editor does this using the following rules:

« If adifference exits between the two sourcefiles, and one is the same as the
base file, then the Editor uses the one that is different from the base file.

« If both sourcefiles differ from the base file, but are the same as each other,
then the Editor uses the new text from either source file.

- If dl threefiles are different, then a conflicting change was made and the
Editor hasto ask which change to use. In this case, it islikely that you will
have to merge the change manually.

1. Choose Tools > Merge Files...

2. InFilel, enter the first variation of the base file. If you want to use aversion
from version control, enter the version number in the adjacent Version field.

3. InFile2, enter the second variation of the base file. If you want to use aver-
sion from version control, enter the version number in the adjacent Version
field.

4. In Base, enter the version of the file from which Filel and File2 files are
derived. If you want to use a version from version control, enter the version
number in the adjacent Version field.

5. If you want to manually control every merge change, deselect Automatic. If
Automatic is selected, the Editor asks you to control a change only if it
encounters a conflict it cannot resolve.

158

Building and Editing with MULTI 2000

Merging files

6. Click Merge.

7. Use the Merge window to control merges. If you deselected Automatic, the
Merge window appears for every change. If you selected Automatic, the
Merge window appears only when the Editor encounters a conflict it cannot
resolve. Listed below are the features of the merge window:

Skip

The Editor finds the next difference.

Help

Opens help on the control panel.

Cance
Aborts the merge, closing all merger windows.

Filel

Copiesthe selected text from Filel.
File2

Copiesthe selected text from File2.

Base
Copies the selected text from the basefile.

All
Copiesthe selected text from all threefiles.

Thefirst time you pressthis button, adial og box appears asking you how
you want to merge the three selections. in what order, with change bars
around them, with comments in front, between, or after them, and so
forth. The next time you press this button, the last values entered are
used.

1&2
The first time you press this, or either of the next two, a button dialog
box appears asking you how to merge the two selections from Filel and
File2: in what order, with change bars around them, with comments in
front, between, or after them, and so forth. The next time you press this
button, it uses the last values entered.

1& Base
Thisisidentical to 1 & 2 except it merges the selections from Filel and
the basefile.

2 & Base
Thisisidentical to 1 & 2 except it merges the selections from File2 and
the basefile.

Green Hills Software, Inc. 159

5. Using the Editor

ChangeBars...
Changestheway 1 & 2,1 & Base, and 2 & Base buttons work, and
opens the same dialog box as the first time you press any of those
buttons.

Automatic
Choose if you want the Editor to try to make merge changes without
prompting you. Deselect if you want to manually control every merge
change.

Comparing files

To compare two files, do the following:
1. Choose Tools > Diff Files...

2. InFilel, specify the version you want to compareto File2. If you do not
specify aversion, the Editor assumes you mean the current version.

3. InFile2, specify the version you want to compare to Filel. To decrement the
version number, click Previous Version.

4. Click Diff.
The specified versions appear in a separate windows.

5. Click Previous or Next to navigate among the differences between the two
versions. The Editor highlights the differences.

Using version control from the Editor

The Editor isfully aware of several version control systems. Many version
control operations can be performed without leaving the Editor when using a
supported version control system.

To configure MULTI to work with your version control system
See Chapter 4, “Version control” for more information.

To automatically check out files when they are modified

The Editor will prevent you from making changes to files that are not checked
out, because they are read-only. To configure the Editor to automatically check
out files when you modify them, choose Version > Auto Checkout or choose

160 Building and Editing with MULTI 2000

Using version control from the Editor

Config > Options... and check or un-check Automatic Checkout on the Version
Control tab.

To check out a file manually
Choose Version > Check Out to check afile out of version control.

To save your changes and check in afile

There are several waysto check in files. To save a current file and manually
check it in, choose Version > Check In. To manually check in all open files that
are checked out, choose Version > Check In All. Finally, when you close afile
or the editor, you will be asked whether to check in any modified files which
you have checked out during the current editor session.

To check in afile and revert to the previous version

Choose Version > Discard Changes to check afile back in without making
changes.

To put a new file under version control
Choose Version > Place Under VC.

To view the version history of a file

Choose Version > Show History to display the list of file versions and the
comments made when these versions were checked in.

To show the last change to a portion of a file

Thisfeature is only supported when using MV C as the version control system.
Select the portion of the file you are interested in and choose Version > Show
Last Edit. Two additional editor windows will appear displaying the version of
the file where the last edit to the selected area was made and the version
immediately prior to that version. A third window will appear alowing you to
navigate between changes made at the time of the last edit to the selected area.

Green Hills Software, Inc. 161

5. Using the Editor

Reverting to a previous version of a file

There are three ways to specify the version of afile you wish to revert to:

« If you wish to select the version to revert to from alist of al versions,
choose Version > Revert to History.

 If you wish to revert to the current version as of a particular date, choose
Version > Revert to Date.

 If you know the version number you wish to revert to, choose Version >
Revert to Version.

Configuring the Editor

To help you work more efficiently, you can:

« Change how the Editor looks and behaves. For example, you can change
whether you can drag and drop text within afile. To access settings that
change how the Editor looks, behaves, and handles your code, choose
Config > Options..., and go to the Editor tab.

« Customize the Editor to perform actions in new ways. You can replicate al
of the actions that are available in the standard Editor window by assigning
the appropriate commands to a new menu, keystroke combination, mouse
click combination, or button. For example, if you do not like to use the
mouse when you are editing, you can assign commands to keystrokes.

Perhaps the easiest way to find out what command you want isto look in
Chapter 5, “Using the Editor”, which lists the equivalent command for each
GUI component. You can also look at the complete list of commands in
Chapter 7, “Editor commands”.

For information about how you assign commands to menus, keybindings,
mouse bindings, and buttons, see Chapter 9, “Configuring and customizing
MULTI".

Once you learn the basic method of customizing menus, keybindings, mouse
bindings, and buttons in the Editor, you can easily customize the Editor to
improve your efficiency.

162

Building and Editing with MULTI 2000

Chapter

The Editor GUI

This chapter contains:

The main Editor window
Editor menus

Editor toolbar

Location fields

Status bar

Merge dialog boxes
Search dialog box

Goto dialog box

Per File Settings dialog box
File chooser

Print dialog box

6. The Editor GUI

This chapter describes al buttons and menus used in the main Editor window.

The main Editor window

When you open the Editor, you see the foll owing window:
File Edit ‘“iew Block Tools Yersion Config Help
FH =2 ng o o= B
File: [c:\anghties.c | tine: [1727

binclude"green.h"

| v

wvoid insert (TREE**old tree, char language[z0],char word[20],int id)
{
if (*old tree==NULL]
{
o0ld _tree = (TREE)malloc (sizeof (TREE)):
(*old tree)-»language=language;
{*old tree)->word = word;
{*old tree)-»id =id;
{*old tree)->left=NULL;
{*old tree)->right=NULL;
i
elze if ((strcmwp((¥old tree)->language, language))>0)
insert(&(*old tree)->left, language, word, id):
else
insert(&(*old tree)->right language, word, id):

i

wvoid print_tree (TREE*print me)
{
if {print_me==NULL]
return;
print_tree(print_me->left):;
printf ("sshChtitisin", print_mwe-»language, print_me->word);
print_tree(print_me->right);
i

1 | »

[[Ln1.cal 1 [[*]

The main menu bar at the top, rests on atool bar of Editor buttons. Underneath
the button bar isthe title bar. Below thisis the source pane, where your code to
be edited is displayed. The optionsin the menu bar, the tool bar, and thetitle bar
are explained bel ow.

Editor menus

The following tables contain all menu items along with brief descriptions of the
items. For each menu item, the equivalent command, if any, is provided for
advanced users wishing to configure their menu settings. See Chapter 10,
“Configuration commands” for more information.

164 Building and Editing with MULTI 2000

Editor menus

File menu

NOTE: Spacesare not allowed in filenames. This restriction applies throughout
the entire MULTI devel opment environment.

File menu (editor)

Menu item

Meaning

Command

New Editor...

Opens the Edit File dialog box, which you use to
open a file in a new Editor window. To open an
existing file, browse and select the file. To create a
new file, enter the new filename and click Open.
Tip: Use the wildcards ™*’ (any number of characters)
and '?’ (one character) to match and select multiple
files.

LoadFile

Open...

Opens the Edit File dialog box, which you use to
open a file in the current Editor window. To open an
existing file, browse and select the file. To create a
new file, enter the new filename and click Open. The
file is pushed to the top of the context stack for the
current window.

Tip: Use the wildcards ™*’ (any number of characters)
and '?’ (one character) to match and select multiple
files.

OpenFile

Save

Saves the current file.

Save

Save As...

Opens the Save As dialog box, which you use to
save the current file under a different name.

SaveAs

Save All...

Opens a dialog box that lists all open files with
changes that have not been saved. Select the check
box next to the files you want to save, then click
Save Selected. If you want to save all of the listed
files, click Save All.

QuerySaveAll

Revertto Saved

Removes all changes made to the current file since
the last time you saved it.

Revert

Print...

Opens the print dialog, which will allow you to print
the current file to either a printer or a file. See“Print
dialog box” on page 185 for more information.

Print

1,2,3,4

Up to four previously viewed files may be listed.
Select one to open it into the current Editor window.

OpenFile

Close File

Closes the top file in the Editor’s file stack. If the file
is not saved, it will prompt you to save it. If the file
was checked out of version control this session, it
will prompt you to check it back in.

Pop

Close Editor

Prompts you to save changes made to open files,
then exits the Editor.

Close

Exit All

Prompts you to save changes made to open files,
then quits all MULTI tools that are currently running.

Quit

Green Hills Software, Inc.

165

6. The Editor GUI

Edit menu

Edit menu (editor)

Menu item Meaning Command

Undo Allows you to undo each of the changes made to the | Undo
current file since it was opened.

Redo Restores the edit that was just removed by selecting | Redo
Undo. You can redo each undo, until a new change
is made to the file.

RepeatLastEdit | Repeats the last edit you made to the file. For RepeatLast
example, suppose you replace a selection with the
word albatross. If you select a new part of the file
and select Repeat Last Edit, the selection is also
replaced with the word albatross. Only works for
some types of edits. For more details, see “To repeat
the last change you made to a file” on page 149.

Cut Copies the current selection to the clipboard and Cutl
deletes selection from the current file.

Copy Copies the current selection to the clipboard. Copyl

Paste Pastes the clipboard contents in the current location. | Pastel

Delete Deletes the current selection. If there is no current Delete

selection, this deletes the character after the
insertion point.

Select All Selects the entire contents of the current file. SelectAll

Find... Opens the Search dialog box. See also “Search Find
dialog box” on page 178. Tip: To quickly search for a
string without using the dialog box, use Ctrl+f.

Goto... Opens the GoTo dialog box, which youusetogotoa | Goto
new file, a line within the current file, or a function.
See also “Goto dialog box” on page 182. Tip: To
quickly goto a line number without using the dialog
box, use ctrl+g.

166 Building and Editing with MULTI 2000

Editor menus

View menu

View menu (editor)

Menu item Meaning Command
Language Select the programming language used in the Language
current source file. The Editor uses this setting for
syntax coloring, commenting, and auto-indenting
features.
Per File A list of variables which can be set for an individual EditorFlags
Settings... file for the current session only. See “Per File
Settings dialog box” on page 182 for more
information.
Next File Accesses the next open file in the Editor’s stack. CyclePushBack
PreviousFile | Accesses the previous open file in the Editor’s stack. | CyclePush

FlashCursor

Scrolls to and flashes the line containing the cursor.

FlashCursor

Match

Searches backward from the cursor for the first open
parenthesis, square bracket, or curly brace at the
same nesting level as the cursor. It then selects all
the text enclosed by the corresponding close
parenthesis, square bracket, or curly brace.

SelectToMatch

Column...

Puts the cursor at the specified column on the
current line, if possible.

Column

Read Only

Toggles the file between read-only and writable
modes. A dot next to this menu item indicates that
the file is currently read-only.

ToggleReadOnly

Green Hills Software, Inc.

167

6. The Editor GUI

Block menu

Block menu (editor)

Menu item

Meaning

Command

Indent

Adds an indent at the beginning of the current line or
selected lines. To set the size of the indent, choose
Config > Options..., then select the Editor tab and
edit the Indent size field. The default size is four
spaces.

Indent

Unindent

Unindents the current line, deleting a number of
spaces equal to or less than the size of an indent
from the beginning of the current line. To set the size
of the indent, choose Config > Options..., then select
the Editor tab and edit the Indent Size field. The
default size is four spaces.

Unindent

Auto Indent

Indents the current line or block of lines to positions
indicated by the syntax of the code. Available for C,
C++, and Ada languages. See “To let the Editor

indent your code” on page 152 for more information.

Autolndent

Comment

Inserts the appropriate characters to signify that the
selected text is a comment, not code. The comment
style that is used is determined by the language that
you have set in View > Language.

CommentBlock

UnComment

Removes comment style characters from the
selected text to make it active code.

UnCommentBlock

UpperCase

Changes all the characters in the current selection to
upper case.

UpperCaseBlock

LowerCase

Changes all the characters in the current selection to
lower case.

LowerCaseBlock

Rect Copy

Copies a rectangular subsection of the current
selection to the clipboard. For more details, see “To
copy a column of text” on page 149.

RectCopyl

Rect Cut

Copies a rectangular subsection of the current
selection to the clipboard, then deletes it. For more
details, see “To copy a column of text” on page 149.

RectCutl

RectPaste

If you have used Rect Copy or Rect Cut to copy a
selection to the clipboard, you can use Rect Paste to
put the selection into the file without linebreaks. If
you use Edit > Paste to paste a rectangular
selection, linebreaks will be added.

RectPastel

168

Building and Editing with MULTI 2000

Editor menus

Block menu (editor)

Menu item

Meaning

Command

Cut Lines

Extends the current selection to the closest line
boundaries, copies the resulting selection to
clipboard number two, then deletes it.

SelectToLines;
Cut2

Join Lines

Joins two lines of text by removing the new line
character from the end of the current line, as well as
all initial whitespace on the next line, then adding
one space.

JoinLines

Insert File...

Opens the Insert dialog box, which you use to insert
the contents of a separate file into the current file.
The contents of the selected file is placed on the line
above the cursor.

InsertFile

Tools menu

Tools menu (editor)

Menu item

Meaning

Command

Insert Date

Inserts the current date, as a formatted string,
at the cursor’s position in the current file.

Date

Grep...

Searches for a regular expression in all open
files. (If you have a debugger open when you
run this command, it will also search in all of
your program’s source files.) The output from
this command appears in a temporary Editor
window. Double click any of the lines in the
temporary window to open a new Editor on the
specified file. See also “Grep” on page 205.

Grep

Make...

Calls the make utility on a project of your
choosing.

Make

Execute Shell

Executes a command to the sh shell. Output

ExecuteCmd

Command... will appear at the insertion point in the
currently open file.
Command to Executes a command to the sh shell. Output CommandToWindow
Window... will appear in a new temporary Editor window.
Notepad... Calls a small Editor window on a scratch file. Notepad
Execute Editor Prompts for an editor command to execute in | MiniBuffer

Commands...

the current editor. See Chapter 7, “Editor
commands” for valid commands.

Green Hills Software, Inc.

169

6. The Editor GUI

Tools menu (editor)

Version menu

Menu item Meaning Command
Append Allows you to specify a tag file (in the format AppendTagFile
TagFile... determined by the ctag utility) that the Editor
can use to find procedures in files. By default,
the Editor looks for a file called "tags". See the
command “OpenTag” on page 208 for more
information.
Reset Tags... Resets the tag file the Editor uses back to the | ResetTags
default of "tags".
Merge Files... Merges either two or three files. See “Merging | MergeFiles
files” on page 156 for more details.
Diff Files... Finds and displays the differences between DiffFiles
two files. See also “Comparing files” on page
160.
Version menu (editor)
Menu item Meaning Command
Check Out Checks out the current file from version Checkout
control for editing. Enabled only if the current
file uses version control.
Check In Checks the current file back into version Checkin
control, making the file read-only. Enabled
only if the current file uses version control.
Check In All Checks in all of the files currently checked QuerySaveCheckinAll
out in the Editor.
Discard Reverts the file back to the last checked in Discard
Changes version from version control. Enabled only if
the current file uses version control.
Place UnderVC Puts the current file under version control. CreatelLog
Once a file is placed under version control,
the file must be checked out before changes
can be made.
Auto Checkout Toggles Auto-Checkout mode. When AllowAutoCheckout

selected, the Editor automatically checks out
a file from version control when you start to
make changes. If deselected, you must
manually check out a file that uses version
control before making changes.

Building and Editing with MULTI 2000

Editor menus

Version menu (editor)

Menu item

Meaning

Command

Show History...

Shows information about all versions of the

current file with a dialog box that allows you
to open any version in a new Editor. Enabled
only if the current file uses version control.

ShowHistory

Show Last Edit

Finds the version of the current file that
changed the selected text. This command
opens a window on the version that changed
the text, placing the cursor at the beginning
of the change. Enabled only if the current file
uses version control, and is checked in (if
the current file is checked out, the results of
this operation is undefined). See also
“ShowLastEdit" on page 210.

ShowLastEdit

Revert To
History...

Displays a window with a list of all versions
and comments. You can choose a version
from this list to load into the Editor, replacing
the currently open version. Enabled only if
the current file uses version control.

RevertHistory

Revert To
Date...

Displays a small window to enter a version
date. The Editor loads the version current to
the specified date. Enabled only if the
current file uses version control.

RevertDate

Revert To
Version...

Displays a window to enter a version
number to load into the Editor. Enabled only
if the current file uses version control.

RevertVersion

Config menu

Config menu (editor)

Menu item Meaning Command
Options... Displays the Options dialog box, which you configoptions
use to change options that affect the way the
Editor and other MULTI tools look and behave.
Save Allows you to permanently save the changes SaveConfig
Configuration as | you made in the Appearance Settings and
Default Functionality Settings dialog boxes.
Clear Default Clears all saved changes and reverts to all ClearConfig

Configuration... default Appearance and Functionality settings

dialog boxes.
Save Save the Appearance and Functionality SaveConfigToFile
Configuration... settings to a user specified file.
Load Load Appearance and Functionality settings LoadConfigFromFile
Configuration from a user specified file.

Green Hills Software, Inc.

171

6. The Editor GUI

Help menu

Help menu (editor)

Menu item Meaning Command
Editor Help... Opens MULTI’s help index. Help
Manuals Opens the “Manuals sub-menu”, which will display a n/a

list of manuals appropriate to your version of MULTI.
Choosing one of these manuals will open the online
help to the first page of that manual.

Identify... Displays help for the next key or mouse click Identify
sequence that you perform.

About MULTI... Opens the About banner. About

Right-click pop-up menu

Menu item Meaning Command
Cut Copies the selection to the clipboard and deletes Cutl
selection from the current file.
Copy Copies the selection to the clipboard. Copyl
Paste Pastes the clipboard contents in the current Pastel
location.
Undo Allows you to undo each of the changes made to Undo
the current file since it was opened.
Jump to Goes to the location of the function selected (if a OpenTag
Function selection exists), otherwise to the one indicated in

the menu item

172 Building and Editing with MULTI 2000

Editor toolbar

Menu item Meaning Command
Comment Inserts the appropriate characters to signify that CommentBlock
the selected text is a comment, not code. The
comment style that is used is determined by the
language that you have set in View > Language.
This menu item appears only for context menus
brought up on selections.
Uncomment Removes comment style characters from the UnCommentBlock
selected text to make it active code. This menu
item appears only for context menus brought up on
selections.
Auto Indent Indents the current line or block of lines to positions | Autolndent
indicated by the syntax of the code. Available for C,
C++, and Ada languages. See “To let the Editor
indent your code” on page 152 for more
information.
Editor toolbar
Editor toolbar
Button Meaning Command
= Opens a file into the current Editor window. OpenFile
u Saves the current file. Save
33 Copies the current selection to the clipboard, then deletes | Cutl
it.
Copies the current selection to the clipboard. Copyl
% Pastes the contents of the clipboard. Pastel
Opens the Editor’s search window. See “Search dialog Search
#h box” on page 178.
Opens the GoTo dialog box, which you use to goto a new | Goto
8 file, a line within the current file, or a function. See “Goto
dialog box” on page 182 for more information.
Undoes the last edit. You can undo to the original status Undo
o of your file.

Green Hills Software, Inc.

173

6. The Editor GUI

Editor toolbar
Button Meaning Command
Redoes the last edit that was undone. You can redo all Redo
o undos until a new edit is made.
- Accesses the previous open file in the Editor’s stack. CyclePush
= Accesses the next open file in the Editor’s stack. CyclePushBack
Quits after saving permanent files. Temporary files like the | Done
ﬁ progress window (build output) and notes are not
automatically saved.
Closes the current file. You will be prompted to save Pop
@ and/or check in the file before closing it.
Quits the Editor. You will be prompted to save and/or Close
X check in all edited files before quitting. You can configure
whether or not to have this button. See also “Display
close (x) buttons” on page 243.

Location fields

Below the toolbar are two text fields that control and describe where you arein
the current file. These fields display the following information:

File:

The File: field contains the name of the file you are currently editing. If you
want to edit another file, enter another filename in the File: field and press
Enter. If the filename you entered does not exist, MULTI prompts to create a
new file. The file will appear in the current window, pushing the current file
onto the Editor’s stack.

To open the file in a new Editor window, use Shift+Enter instead of Enter.

Line:
TheLine: field tells you what program line your cursor is on. You can go to a
specific line by clicking this text field and typing a new line number.

Status bar

The status bar is at the very bottom of the Editor window. It displays the
following information:

174 Building and Editing with MULTI 2000

Merge dialog boxes

Status box

The left corner of the status bar displays status, usage, and error messages.
When the mouse hovers over certain widgets, this areawill display a usage
message, and when the source pane is active it will display status and error
messages. For example, when you press Ctrl+f, the left corner of the Status Bar
displays the search text as you typeit in, and when you type Ctrl+g it displays
the line number to goto as you typeit.

Cursor position indicator
Displays the current line and column on which the text cursor resides.

Read-only indicator
When the current file is read-only, a Stop Sign displays in the Status Bar.

Change dot

If changes were made to the file since the last time it was saved, asmall red star
appears in the bottom right corner of the screen. When thefileis saved, this star
disappears.

Version control status

If the current file is controlled by version control, VC appearsin the right
corner of the Status Bar. If you have the current file checked out from version
control, the letters will be red. Otherwise they will be black.

Merge dialog boxes

Merge dialog box
(Tools > Merge Files...)

Filez to merge:

Fiet: [helo.c Version: |
File:2: I Yersion: I—
Base: I Yersion: I—

W Automatic MI

Green Hills Software, Inc. 175

6. The Editor GUI

If you are using a version control system and want to merge a different version
of afilefrom disk, enter the filenamein the Filename field and the version of
that file to be merged in the adjacent Version field.

Filel
Enter the name of thefirst file you want to merge.

File2
Enter the name of the second file you want to merge. If you specify the
same file as you specified in the Filel field, then the Filel file refersto
the copy currently open in the Editor, while File2 file refersto thefile on
disk. Thisisuseful if someone else has edited the file at the sametime
you were working onit.

Enter the name of the file from which the other two files, Filel and File2,
are derived. If you are merging two files, then leave thisfield blank

Automatic
Select if you want the Editor to try to resolve merges without prompting
you. Deselect if you want to manually review every proposed merge.
Thisfield has no meaning when merging two files.

Control panel (two-file merge)
(Tools> Merge Files... ; fill in Filel and File2, and click Merge.)

Copy from: Help |

Filel [File2 | Bath
Pt |] b
Change Bars... |

Cancel |

This dialog box allows you to control the merge. The Editor pauses at each
differenceit finds and waits for you to tell it what to do.

The panel contains the following buttons:
Skip

Finds the next difference.
Help

Opens help on the control panel.

Cancdl
Aborts the merge, closing all merger windows.

176 Building and Editing with MULTI 2000

Merge dialog boxes

Filel
Copies the selected text from Filel.

File2
Copies the selected text from File2.

Both
Thefirst timeyou press this button, adial og box appears asking you how
you want to merge the two selections: in what order, with change bars
around them, with comments in front, between, or after them, and so
forth. The next time you press this button, the last values entered are
used.

ChangeBars...
Changes the way the All button works, and opens the same dialog box as
the first time you press the All button.

Edit...
This performs the same action as 1,2, but then allows you to modify the
changes in atemporary editor before merging them into the new file.

Automatic
Enables or disables the automatic merge feature. If enables, the Editor
will try to make merge changes without prompting you. If disabled, the
Editor will let you manually control every merge change.

Control panel (three-file merge)
(Tools > Merge Files... ; fill in Filel and File2 and Base, and click Merge.)

Copy from: Help |

Fiel | Fiez | an |
Edit... |

12 | 1,Base| 2,Base|
B | EhangeBars...l

Cancel |

This dialog box allows you to control the merge. If the automatic featureis
turned off, you can control the entire merge. If the automatic feature is turned
on, you only control the merge of conflicting changes with this window. The
panel contains the following buttons:
Skip

Finds the next difference.
Help

Opens help on the control panel.

Green Hills Software, Inc. 177

6. The Editor GUI

Cancel
Aborts the merge, closing all merger windows.

Filel
Copiesthe selected text from Filel.

File2
Copies the selected text from File2.

All
Copiesthe selected text from all threefiles. Thefirst time you press this,
or any of the next three buttons, a button dialog box will appear asking
you how to merge the selection: in what order, with change bars around
them, with commentsin front, between, or after them, and so forth. The
next time you press this button, it will use the last val ues entered.

12
Merges the selections from Filel and File2.

1,Base
Thisisidentical to 1,2 except it merges the selections from Filel and the
base file.

2,Base
Thisisidentical to 1,2 except it merges the selections from File2 and the
basefile.

ChangeBars...
Changestheway 1,2, 1,Base, 2,Base, and All buttons work, and opens
the same dialog box as the first time you press any of those buttons.

Edit...

This performs the same action as 1,2, but then allows you to modify the

changes in atemporary editor before merging them into the new file.
Automatic

Enables or disables the automatic merge feature. If enables, the Editor

will try to make merge changes without prompting you. If disabled, the
Editor will let you manually control every merge change.

Search dialog box

To open the search dialog box, do one of the following:
+ Click the Search button (#4).

» Choose Edit > Find...

+ Press Ctrl+Shift+f

178 Building and Editing with MULTI 2000

Search dialog box

Searcher for hello.c

Find: | Il
Feplace: | I

Fieplace Then Find | Find Then Replace Fieplace Al Undo

& Foward ¢ Backward Caze: { Exact & Either
Search Type: * Maomal ¢ “wildeard ¢ RegExpr
I~ Starts\word [~ Endsword [~ StartsLine [~ EndsLine

This dialog box searches and replaces text in your file. You can open a search
dialog box for each file you are editing.

Enter the desired text or search string in the field next to the Find button. To
search for control characters, such as a tab, use the Quote command to enter
them correctly (by pressing Ctrl+\). For example, if you want to search for atab,
press Ctrl+\ and then press Tab. You can copy and paste specia characters from
an Editor window.

To replace text, enter the desired text or replace string in the field next to the
Replace button.

The Editor searches from the current location in the file towards the end of the

filefor aforward search, and toward the top of thefile for abackward search. If
the search string is not found before it reaches the end or the beginning, it prints
amessage and stops. If you start again, it resumes the search from the beginning
or the end of thefile.

There are six buttons in the search window:
Find
Searches for and highlights the next occurrence of the search string.
Simply pressing Enter also searches for the next occurrence.
Replace
Replaces the current selection with the replace string.
Replace Then Find
Replaces the current selection and then searches again.
Find Then Replace
Searches for the next occurrence of the search string, and replacesit with
the replace string if found.
Replace All

Starts at the beginning of the file and replaces all occurrences of the
search string with the replace string.

Green Hills Software, Inc. 179

6. The Editor GUI

Undo
Undoes the last Editor command.

There are anumber of check boxes, which click on and off, and several radio

buttons, small circles that either contain a solid dot for ‘on’ or are empty for
‘off.” Radio buttons are in sets, and only one turns on at a time. The check boxes
and radio buttons include:

Forward or Backward
Determines whether the search proceeds forward or backward.

Case: Exact or Either
Determines whether case should be matchdeka€t is on, then only
strings that exactly match the case are found. For exaRiplejatches
Fly, but notfly or FLY. If Either is on, then case is ignored. For
example Fly matches botlfily andFLY.

Sartsword or EndsWord
If only StartsWord is on, then the search string must appear at the
beginning of a word. For exampléy matchedly or flybat, but not
batfly.

If only EndsWord is on, then the search string must appear at the end of
a word. For examplély matchegly or batfly, but notflybat.

If they are both on, then the string must form a complete word. For
examplefly matchedly, but notflybat or batfly.

If neither is on, then any occurrence of the string is found.
SartsLineor EndsLine
These are similar t&tartsword andEndsWord above, except they
apply to the beginning and end of a line.
Normal

If this is on, then there are no special characters; that is, characters only
match themselves.

WildCard
If this is on, then the following characters have a special meaning in the
search string:

? Matches any single character except a newline.
* Matches any number of characters except newlines.
RegExpr

If this is on, then the following characters have a special meaning in the
search string. In this description, a regular expression is an expression

180

Building and Editing with MULTI 2000

Search dialog box

using any combination of the following specia characters. Note that you
cannot match a newline.

Regular expressions

(A period) Matches any single character except a newline.

[string] Matches any single character appearing in the String. For example,
[abc] matches an a, b, or c. You can specify character ranges by
separating the start and end of the range with a -. For example,
[b-e] matches any character between b and e (b, c, d, and e). To
include a] as part of the String, make it either the first character of
the string, or the last character of a range. For example, []abc].

If the first character of the stringis a ~, then it matches any
character that does not match the rest of the String.

n At the start of the search string, this matches the beginning of a line.

$ At the end of the search string, this matches the end of a line.

< At the start of the search string, this requires the rest of the search
string to match the beginning of a word. Same as the StartsWord
toggle.

> At the end of the search string, this requires the rest of the search
string to match the end of a word. Same as the EndsWord toggle.

(re) Matches the regular expression re enclosed in parentheses.

re* Matches zero or more occurrences in succession of the regular
expression re.

reljre2 Matches regular expression rel or regular expression re2.

For example:

a.d matches and, a d, and aud.

a.*d matches ad, are d, and abd.

<and matches and, but not stand.

arelis matches either are or is.

(arelis)* bad matches are bad, is bad, areisare bad, and bad.

The settingsin this dialog box set the defaults for the next quick search.

Green Hills Software, Inc. 181

6. The Editor GUI

Goto dialog box

To open the Goto dialog box, do one of the following:
« Click the Goto button (€).

« Choose Edit > Goto...

e PressCirl+Shift+g

You can use this dialog box to ‘goto’ a file, line number, or function by
selecting the appropriate radio button.

Goto: I Go I

Type: & Filename ¢ Line Mumber ¢ Function — Cancel |

Goto afile

When Filename is selected, you can type a filename into the textfield to open it
into the current editor.

Goto a line number

When Line Number is selected, you can type a number into the textfield to go to
that line in the current editor.

Goto a function

When Function is selected, you can type a function name into the textfield to
search for a function name and open its file into the current editor. This option is
only available if ectags style tag file named "tags" resides in the current
directory, or if a tags file has been specified using the Tools > Append TagFile...
menu option or by using theppendTagFile editor command. See
AppendTagFile on page 208 and/orReset Tags on page 209 for more

information.

Per File Settings dialog box

The Per File Options dialog box lists a number of indenting and text wrapping
options that you can set for the current file and current session only.

To open this dialog box, choose View > Per File Settings.

182 Building and Editing with MULTI 2000

File chooser

Indent size

Controls the tab size that the Editor inserts when you press the Tab key. The
default is 4 spaces. If you enter O to disable tabs, pressing Tab will insert a
single space.

Ada indent size

For Adalanguage file types only. Same as above, except the default is 3. See
“Language” on page 167 for more information.

Ada continuation size

For Ada language file types only. Determines how far a line of Ada source code
is indented if it continues to multiple lines.

Wrap column

If word wrap is enabled, this specifies the column at which word wrap takes
affect. See “Word wrap” on page 183 for more information. If a line grows to
longer than this number of columns as you are typing, the Editor will insert a
page break at the first white space before the column. It will indent the newly
formed line by the same amount as the line above it, plus the wrap indent offset,
described below.

Wrap indent offset

If word wrap is enabled, this determines how much the wrapped line will be
indented past the indention of the line above it. See “Word wrap” on page 183
for more information.

Word wrap

This check box enables or disables word wrap. If word wrap is enabled, the
Editor will not wrap long lines while loading a file, but will wrap lines
automatically as you type. See Wrap column and Wrap indent offset (above).

Disk format

Determines whether the file will be written in UNIX format or DOS format
when the Editor saves it to disk. It will default to the appropriate setting.

File chooser

This File Chooser Window allows you to browse and choose files for various
functions.It displays the following information:

Green Hills Software, Inc. 183

6. The Editor GUI

Directory

Thistextfield displaysthe current directory being listed. Typein anew directory
name and press return to display a different directory list.

Directory Buttons

This set of buttons allows you to jump quickly to different important
directories:

Button Meaning
@ Pops up to the parent of the current directory.
= Jumps to the Current Working Directory.
p 9 Y.
- Jumps to the directory MULTI is running from.
i1 Jumps to the user’s home directory.

File List

Below the directory text field isthefilelist. Double click on adirectory to enter
it. Double click on afilename to choose it and dismiss the window. To sort the
list in ascending or descending order by any column, click on the desired
column header. Resize any of the columns by clicking and dragging the column
separators in the column headers. If multiple files are allowed for the present
operation (i.e. Edit and Open), the File Chooser will alow you to select
multiple files with the mouse. Hold down the Control key to select
non-consecutive files. Use the Shift key to extend a consecutive list of selected
files.

Filename

Type afilename or directory nameinto thistextfield. The selected filein thefile

list will change as you type in this field to reflect the closest match. If you enter
adirectory name and pressreturn or enter atrailing slash, the file list will

change to that directory. If you type afilename and press return the file will be
chosen and the window dismissed. Chooser will translate the wildcards "*' and
'?" to match respectively: 1) any number of consecutive characters, and 2) one
character.

184

Building and Editing with MULTI 2000

Print dialog box

Action buttons

There are two buttonsin the lower right corner of the file chooser window. The
upper button displays the action that takes place upon pressing it (i.e. Edit or
Save). The lower button is the Cancel button, which closes the window without
taking any action.

Print dialog box

The Print menu item opens a Print dialog box. You can use this dialog box to
print the current file in various ways. The following describes the items in the
dialog box.

Print To

The Print To radio button allows you to choose to print to a printer or to a
postscript file.

Print Command

For Print To Printer mode only, this textfield displays the actual command that
will be run when the Print button is clicked. Use thisto add printer or system
specific options or commands.

Filename

For Print To File mode only, thistextfield displaysthe postscript file that will be
written to when you click the Print button. You can use the Browse... button to
look for afileto print to.

Font Name

You can use this combo box to pick the font that will be used when you click the
Print button.

Font Size

Use this combo box to select the font size that will be used when you click the
Print button.

Paper Size

Use this radio button to select the paper size that will be used when you click
the Print button.

Green Hills Software, Inc. 185

6. The Editor GUI

Orientation

Use this radio button to select the paper orientation that will be used when you
click the Print button.

Columns

Use this radio button to select the number of columns that will be used when
you click the Print button.

Print button
When all options are set correctly, click this button to print the file.

186 Building and Editing with MULTI 2000

Chapter

Editor commands

This chapter contains:
» Navigation commands
 Indentation commands
» Drag-and-drop commands
+ Text deletion commands
« Clipboard commands
» Block commands
» Search commands
« Undo/Redo commands
» Filecommands
« Tool commands
¢ Tag commands
» Version control commands
« Configuration commands
¢ Help commands
* Insert commands
« i’ conditional commands

7. Editor commands

Most of the commands listed in this chapter duplicate actions you can perform using the
Editor's Graphical User Interface (GUI). Green Hills Software provides these commands so
you can customize the Editor to help you work more efficiently. For example:

- If you do not want to use the mouse when you are editing, you can bind any
command to a keystroke combination. Since all editor actions available from
the GUI are also commands, all Editor functionality may be bound to keys
in this way.

« If you find that you are often performing the same two or more actions in
succession, you can combine the commands for these actions into a single
keystroke, key sequence, mouse button combination, GUI button, or menu
item.

Please see Chapter 9, “Configuring and customizing MULTI" to find out how
you can bind commands to menus, keystrokes, mouse clicks, and buttons. Of
course, many of these commands are already accessible via the default
bindings; for a list of those defaults, please see Chapter 8, “Default key
bindings”.

Navigation commands

The cursor is the point in the open file where new text appears in response to
keystrokes, and is denoted by a flashing vertical bar between two characters.
These commands change the location of the cursor, scrolling the open file as
necessary to keep the cursor within the Editor’s window. None of these
commands will modify the contents of the open file in any way.

Up
Moves the cursor up one line.
Down
Moves the cursor down one line.
Left
Moves the cursor one character to the left. If the cursor is already in the first
column of the line, this command has no effect.
Right

Moves the cursor one character to the right. If the cursor is already in the last
column of the line, this command has no effect.

188 Building and Editing with MULTI 2000

Navigation commands

PageUp
Scrolls the window and moves the cursor up one window-length.

PageDown
Scrolls the window and moves the cursor down one window-length.

UpSome
Moves the cursor up by some lines. The size of the “some” parameter defaults
to 5, but may be changed via W@&l-cursor jump size field, which is located in
Config > Options... > Editor tab.

DownSome
Moves the cursor down tgpme lines. The size of the "some" parameter
defaults to 5, but may be changed via@te-cursor jump size field, which is
located in Config > Options... > Editor tab.

LeftSome
Moves the cursor to the left Bpme characters. The size of the "some”
parameter defaults to 5, but may be changed vi€ftithecur sor jump size field,
which is located in Config > Options... > Editor tab.

RightSome
Moves the cursor to the right lspme characters. The size of the "some"
parameter defaults to 5, but may be changed vi€ftithecursor jump size field,
which is located in Config > Options... > Editor tab.

LeftU
Moves the cursor one character to the left. If the cursor is in the first column of
the line, moves the cursor to the last column of the previous line.

RightD
Moves the cursor one character to the right. If the cursor is in the last column of
the line, moves the cursor to the first column of the next line. If the cursor is in
the last column of the last line of the open file, this command has no effect.

Return

Moves the cursor to the first column of the next line.

Green Hills Software, Inc. 189

7. Editor commands

Word
Moves the cursor to the end of the next word. If the cursor is currently not on a
word (a group of consecutive a phanumeric characters), this command moves
the cursor to the end of the next word in the open file.

ReverseWord
Moves the cursor to the beginning of the previous word, in asimilar fashion to
the Word command.

SOL
Moves the cursor to the first non-whitespace character on the line. If the cursor
is aready to the left of the first non-whitespace character, moves the cursor to
the first column of the current line.

EOL
Moves the cursor to the last column of the current line.

SOF
Moves the cursor to the first column of the first line of the open file.

EOF
Moves the cursor to the last column of the last line of the open file.

SOLO
Movesthe cursor to the first column of the current line (before any indentation),
even if thefirst character is indented.

SOL1
Moves the cursor to the first non-whitespace character on the line, even if the
cursor is currently to the left of the first non-whitespace character.

EditLine
Allows you to enter the line number you want to place the cursor on. When you
run the editline command, the prompt “Goto Line:” isdisplayed in the status
bar. Enter the line number.
If you prefer to enter a new line number in a dialog box, se@thecommand.
If you prefer to enter a line number as a parameter, ségribB command.

190 Building and Editing with MULTI 2000

Indentation commands

Goto

LineD

Column

Opens the Goto dialog box that allows you to specify afilename, line number,
or tag to open in the editor.

Format: LineD [line_number]

Moves the cursor to the specified line. If no parameter is specified, this
command opens a dialog box that allows you to specify the line to which the
cursor should be moved.

Format: Column [column_number]

Moves the cursor to the specified column in the current line. If no parameter is
specified, this command opens a dialog box that allows you to specify the
column to which the cursor should be moved.

FlashCursor

Flashes the line the cursor is on. This command also turns off insert mode off.
(See the EnterlnsertM ode command.) This command is equivaent to View >
Flash Cursor.

Indentation commands

Indent

Indentation is whitespace at the beginning of each line, and may be used to
more clearly denote the hierarchical structure of your code, thus making it more
readable. Each of these commands change the way that the current line is
indented, either by altering the indentation manually or by automatically
applying language-specific heuristics to determine how the line should be
indented. If anumber of lines are selected, these commands will operate on
each linein the selection instead.

Adds an indent at the beginning of the current line or selection. The default
indent size is 4 spaces, which can be overridden on a per-file, per-session basis
with the Editor Flags Editor command. The default indent size is specifiedin
Config > Options... under the Editor tab.

Green Hills Software, Inc. 191

7. Editor commands

Unindent

Removes an indent from the beginning of the current line or selection. Up to
one indent worth of whitespace is removed. If there is|ess whitespace than the
indent size at the beginning of the current line, this command will remove all of
it. If there is no whitespace at the beginning of the current line, this command
has no effect. See the Indent command for notes about the indent size.

SelectLanguage

Selects the language to use for color syntax and for auto-indenting. Available
modesinclude: C, C++, Ada, Pascal, Fortran, None, GreenHillsScript.

Note: The C and C++ syntax highlighting modul e attemptsto gray out any code
that isenclosed by the#i f O preprocessor directive. However, if several such
directives are nested, only the outermost one will be highlighted correctly.

Autolndent

For C, C++, and Adaonly. Automatically indents the current line or selection
according to the structure of the code. Several configuration options affect the
operation of Autolndent. See “Auto Indent Options” on page 255 for more
information.

Autoindentimplicit

Like Autolndent, except that it can be turned off (made to do nothing) by setting
the configuration optiodlimplicitindent to Off. This is equivalent to clearing

the Implicit Auto Indent check box, which is in Config > Functionality
Settings... under the Editor tab. See “Implicit auto indent” on page 255 for more
information.

AutolndentOrTab

Like Autol ndent, except that if the current file is in a language not supported
by Autolndent, a Tab is inserted instead. This command is typically bound to
the Tab key.

Selection commands

The current selection is a highlighted area of the text in the open file. When text
is selected, many commands operate differently upon the selected text than they

192 Building and Editing with MULTI 2000

Sdlection commands

would ordinarily. These differences are documented in the individual command
descriptions. The MULTI Editor supports two selections:

e Textthatis part of the primary selection can be manipulated by many
commands, such as the Clipboard Commands, Indentation Commands, and
Drag-and-Drop Commands. The primary selection is replaced by any typed
or inserted text, and is cancelled by any Navigation Command. One end of
the primary selection, the cursor-end, is always at the cursor’s current
location, and may be either the start or the end of the selection. By default, a
primary selection is created by dragging over text with the left mouse
button.

« Textthat is part of theecondary selection can be replaced using either the
Secondar ySel ectionReplace or Secondar ySelectionReplaceClip
commands. Any other non-selection-related MULTI Editor command or
keystroke will cancel a secondary selection if it exists. By default, a
secondary selection is created by dragging over text with the middle mouse
button. When the middle button is releas&atondar ySelectionReplace is
executed.

The Selection Commands can be used to create or cancel these two types of
selections. Commands which don't explicitly mention the secondary selection
operate on the primary selection only. With the exception of the

Secondar ySelectionReplace andSecondar ySel ectionReplaceClip

commands, none of the commands in this section will modify the contents of

the open file in any way.

NoSelection

Moves the cursor to the beginning of the current primary selection and cancels
it. If no primary selection exists, this command has no effect.

SelectAll
Makes the entire open file the primary selection, moving the cursor to the end of
the open file. The window is not scrolled to show the cursor.

SelectWord

Makes the current word the primary selection, moving the cursor to the end of
the word. The window is not scrolled to show the cursor.

Green Hills Software, Inc. 193

7. Editor commands

SelectLine

Makes the entire current line (including any indentation) the primary selection,
moving the cursor to the end of the line. The window is not scrolled to show the
cursor.

SelectMatch

If the character immediately after the cursor isapaired character, such asa
parenthesis, square bracket, quote, or curly brace, it will select the
corresponding paired character in the open file. For example, if the cursor is
positioned immediately before a closing parenthesis, this command will select
the opening parenthesis character that matchesit. If the cursor is not over one of
these characters, or if the parenthesis, bracket, etc. has no match, this command
will cause a beep and have no further effect. See also SelectToM atch.

SelectToLines

Extends the current selection so that it completely includes the first and last
lines of the current selection. The new selection begins at the first column of the
first line of the current selection and ends at the last column of the last line of
the current selection. If thereis no current selection, this command is equivalent
to SelectLine.

SelectToMatch

Extends the selection to include the nearest paired characters (quotes,
parentheses, etc.) that enclose the current selection, along with any text that is
between them. If there is no selection, this command makes the selection
include the nearest paired characters on either side of the cursor. This command
is equivalent to View > Match. See also SelectMatch.

ContinueSelection

Moves the cursor-end of the current selection with the next Navigation
Command, extending or shrinking the selection accordingly. For example, if the
cursor-end of the selection islast and a Down command is preceded by
ContinueSelection, the cursor will move down and the selection will be

extended down one line to the cursor’s position. However, if the cursor-end of

the selection is first (at the beginning of the selection) dndven command is
preceded by ontinueSelection, the cursor will move down and the selection
will shrink by one line to the cursor’s position.

194

Building and Editing with MULTI 2000

Drag-and-drop commands

SelectionStart, SelectionGrab, SelectionExtend, SelectionAdjust

These commands create and manipulate selectionsin away that is dependent
upon the mouse. To be useful, these commands should be bound to mouse
buttons and used in conjunction with one another. (See “Default mouse
settings” on page 225 for a sense of how these commands are used.)

SecondarySelectAll, SecondarySelectLine, SecondarySelectWord

These commands have the same behavior as their primary selection
counterparts, except that they operate on the secondary selection.

SecondarySelectionStart, SecondarySelectionExtend,
SecondarySelectionAdjust

These commands have the same behavior as their primary selection
counterparts, except that they operate on the secondary selection.

SOLSecondary

Starts the secondary selection at the beginning of the current line, the first
column, and changes it to zero length. It contains no characters.

SecondarySelectionReplace

Deletes the text in the secondary selection, replacing it with a copy of the text in
the primary selection. This command also cancels the secondary selection.

SecondarySelectionReplaceClip

Deletes the text in the secondary selection, replacing it with a copy of the text in
the clipboard. This command also cancels the secondary selection. For more
information about the clipboard, see “Clipboard commands” on page 197.

Drag-and-drop commands

The MULTI Editor supports editing the open file by dragging selected text
around to move it. These commands perform various functions associated with
this drag-and-drop behavior. Because they are all dependent upon the location
of the mouse pointer, these commands are rarely useful when not bound to
mouse buttons and actions. See “Default mouse settings” on page 225 for a
sense of how these commands are used.

Green Hills Software, Inc. 195

7. Editor commands

SelectionStartDrag

Starts adrag-and-drop operation. When the mouse is over alegal drop spot, the
cursor will change into the drop cursor, allowing you to drop the text to a new
location. At the completion of a drag-and-drop operation, the text will be
deleted from the current location, and pasted to the dropped location. If thereis
no primary selection, this command has no effect.

By default this command is executed by left-clicking and dragging from within
the current primary selection. If the control key is pressed during any point
during a drag-and-drop operation, the operation will turninto a
drag-and-drop-add operation.

Warning: This command must be followed by a SelectionDrop. See also
SelectionDrop and SelectionStartDragAdd.

SelectionStartDragAdd

Starts adrag-and-drop-add operation. When the mouse is over alegal drop spot,
the cursor will change into the drop-add cursor, alowing you to copy the text
to anew location. At the completion of a drag-and-drop-add operation, the text
will be copied to the dropped location. If thereisno primary selection, this
command has no effect.

By default this command is executed by left-clicking and dragging selected
text, while holding down the control key. If the control key is pressed during
any point during a drag-and-drop operation, the operation will turn into a
drag-and-drop-add operation.

Warning: This command must be followed by a SelectionDrop. See aso
SelectionDrop and SelectionStartDragAdd.

SelectionDrop

This command will complete the drag-and-drop or drag-and-drop-add
operation. Legal drag spots are anywhere in the editor text pane, except on the
current selection, and are indicated by the mouse cursor changing into the drop
(or drop-add) cursor. lllegal drop spots are indicated by the no mouse cursor.
See SelectionStartDrag and SelectionStartDragAdd below.

By default this command will be called whenever the left mouse button is
released during a drag-and-drop or a drag-and-drop-add operation.

196

Building and Editing with MULTI 2000

Text deletion commands

Text deletion commands

These commands destroy text in the open file, either at the cursor or in the

primary selection. Once text is destroyed by these commands, it can only be
recovered with the undo command. (See “Undo/Redo commands” on page 201
for more information.)

Backspace

Deletes the text in the current primary selection and cancels the primary
selection. If there is no selection, this command deletes the character
immediately before the cursor.

Delete

Deletes the text in the current primary selection and cancels the primary
selection.

Clipboard commands

« Theclipboard is a special place set aside in your computer's memory that
may be used to store text for you to use later. Although it is not visible, the
data will persist until you restart MULT]I or until you replace it with different
data. In fact, MULTI provides 4 different areas in which you may store text,
which is useful for quickly moving or duplicating parts of the open file.
These commands provide you with facilities for storing and retrieving text
from the clipboard.

Copyl, Copy2, Copy3, Copy4

Copies the text in the current selection into the first and second, third, and
fourth clipboards, respectively. The previous contents of the given clipboard
will be lost after this command is issued, although all of the other clipboards
will be unaffected.

Cutl, Cut2, Cut3, Cut4

Copies the text in the current selection into the first, second, third, and fourth
clipboards, respectively, and then deletes the text in the selection from the open
file. The previous contents of the given clipboard will be lost after this
command is issued, although all of the other clipboards will be unaffected.

Green Hills Software, Inc. 197

7. Editor commands

Pastel, Paste?2, Paste3, Paste4

Inserts the text from the first, second, third, and fourth clipboards, respectively

into the open file at the cursor’s current location. The contents of the given
clipboard will still be intact after this command is issued, so subseRastet
commands will still insert the same text that was originally copied or cut (with
the Copy or Cut command).

RectCopyl

Copies a rectangular subsection of the current selection to the first clipboard. If
the selection extends across multiple lines, only the characters in the columns
that are between the start and end of the selection will be stored in the clipboard.

For examples, see “To copy a column of text” on page 149. This command is
equivalent to Block > Rect Copy.

RectCutl

Copies a rectangular subsection of the current selection to the first clipboard,
and then deletes the copied text. If the selection extends across multiple lines,
only the characters in the columns that are between the start and end of the
selection will be stored in the clipboard. The remaining text in the selection will
shift to the left to fill the space left by the text that was cut.

For examples, see “To cut a column of text” on page 150. This command is
equivalent to Block > Rect Cut.

RectPastel

If the first clipboard contains a rectangular section (that was put there by a
RectCopy1 or RectCutl command), inserts the selection as a rectangle starting
at the current cursor position. Text on lines below the cursor will be shifted to
the right to make room for the rectangle that is being inserted.

For examples, see “To paste a column of text” on page 150. This command is
equivalent to Block > Rect Paste.

Block commands

These commands modify text in the current primary selection in convenient
ways. Although they are designed to operate on selected text, most of these
commands have some default behavior that occurs even when there is no
selection.

198 Building and Editing with MULTI 2000

Block commands

CommentBlock

Comments the text in the selection using language-specific commenting (see
also SelectlLanguage). For languages such as C that do not support
parenthesis-style nested comments, any comment-delimiting charactersin the
selected text will be mangled so that they are no longer parsed as comment
characters. For example, if the following C code is selected:

int i=5; /* index */

voi d bad(void) {}

Then the CommentBlock will replace it with:

/*int i=5; /@%$ index $*@
- void bad(void) {}*/

In other words, the block would be surrounded with C-style comments '/*', "*/,
nested comments would have '@’ and '$’ inserted to allow for uncommenting
and correct nesting, and new lines are replaced by ' - . Note that if these
comments are now included in another CommentBlock command, they will
change to /@ @*$’ and '$*@ @/, so subsequent UnCommandBlock
commands will work as expected.

For C++, C++ style comments ’//" will be prepended to every line.

Pascal behaves like C, except that the block is surrounded with *{’, '}, and
nested comments will be replaced by '(@*%', '$*@)’.

function foo {ny comment};
begi n
i :=5;
end; {foo}
Would become:

{function foo (@$ny coment$*@;
- begin

i :=5;
- end; (@%fo00$*@}
If there is no selectiolGommentBlock treats the current line as the selection.

UnCommentBlock

Removes comment characters that are specific to the current language from the
selected text (see also SelectLanguage). The selected text must begin with
comment-start symbols and end with comment-stop symbols in order for

Green Hills Software, Inc. 199

7. Editor commands

UnCommentBlock to work. Otherwise, it will do nothing. If correctly
commented, UnCommentBlock applies the following rules to the selected text:

 Lines beginning with * - * will have the ’ -’ deleted.

« Nested comments detected (i.e. /@*$, $*@!/ for C) will be unnested back to
their original state.

« The beginning and ending comment markers will be removed from the ends
(i.e. for C, /*, and */).

This command should “undo”@ommentBlock and is useful for
uncommenting old comment blocks in later sessions.

If there is no selectiorlGommentBlock treats the current line as the selection.

LowerCaseBlock
Changes each alphabetic character in the selection to lower case.

UpperCaseBlock
Changes each alphabetic character in the selection to upper case.

JoinLines

Joins the currently selected lines by replacing new lines with spaces. If there is
no selection, the current line is joined with the successive line.

Search commands

The MULTI Editor supports two ways to search the open file for text:

« Interactive search allows you to perform a variety of searching tasks, such
as search-and-replace and regular expression matching, through an
interactive dialog box.

« Incremental search has fewer options but allows you to see the area of the
open file that matches the text you are searching for as you type the search
text. This can be useful for quickly finding a piece of text without having to
type it completely. Except for the replace facilities in the interactive search
dialog box, these commands will not modify the open file.

Search

Opens the interactive Search dialog box. This command is equivalent to Edit >
Find. See “Searching” on page 155 for more information.

200 Building and Editing with MULTI 2000

Undo/Redo commands

ISearch

Starts an incremental search that will proceed forward (toward the end of the
open file) from the current cursor position. When you run | Sear ch, the word
Srch: isdisplayed in the status bar, indicating that you should begin typing the
text that you wish to locate. As you type each character, the next piece of text in
the open file that matches what you have typed so far will be selected, and the
cursor will be moved to the matching text. If no matching text can be found
before the end of the open file, the editor will beep.

If an incremental search is already in progress when this command is executed,
the next piece of text after the cursor which matches the characters typed so far
will be selected. In thisway, each piece of text matching the search text will be
selected in succession, once for each time that the | Search command is
re-executed. If there are no more matching pieces of text before the end of the
open file, theincremental search will “wrap around,” proceeding from the top
of the open file.

To search the open file using more powerful methods such as regular expression
matching, use th8earch command instead. See aBackl| Search.

BacklISearch

This command is similar to tH&earch command, except that it searches
backward (toward the beginning of the open file) from the current cursor
position. When no more matching text appears before the cursor, the backward
incremental search will wrap around, proceeding from the bottom of the open
file.

TruncateSearch
Restarts the incremental search at the cursor’s current position.

StopSearch

Stops an incremental search. The most recently matched or partially matched
text will remain selected, and the cursor will remain at the matched text
selection, if any. Thébort command will also stop an incremental search.

Undo/Redo commands

These commands allow you to undo, repeat, and cancel other commands and
actions that you have executed in the past, or are currently executing.

Green Hills Software, Inc. 201

7. Editor commands

Undo

Allows you to undo all the changes made to the current file since it was opened.
You can undo as many of the changes as you want. For example, suppose you
open afile and make three separate edits. Now, you choose undo, then undo
again. Your file now contains only the first edit that you made. Typingis
merged into a single undo; typing "abc" and then performing an undo will
remove al three characters. Equivalent to Edit > Undo.

Redo

Redoes an edit that was undone with the Undo command. You can redo any
undone edits if you have not yet made any other edits. Equivalent to Edit >
Redo.

RepeatlLast

Repeats the most recent edit at the cursor’s current position. See “To repeat the
last change you made to a file” on page 149 for more information.

Abort
Aborts any ongoing command, such as a search.

File commands

These commands allow you to choose new files to edit, as well as save or
discard open files.

OpenFile
Format:OpenFile [filename]
Opens the given file in the current Editor window. If no parameters are
specified, then this command opens the Edit File dialog box that allows you to
open or create a file. This command is equivalent to File > Open.

LoadFile

Format:L oadFile [filename]

Opens the given file in either a new editor window or the current editor window,
depending on the current setting of @genFileslnNewBuffers config option.

This config option is accessible from Config > Options... > Editor tab > Reuse
Editor Windows. If no parameters are specified, then this command opens the
Edit file dialog box that allows you to open or create a file.

202 Building and Editing with MULTI 2000

File commands

LoadFileWithNewEditor
Format: L oadFileWithNewEditor [filename]

Opensthe given file in anew Editor window. If no parameters are specified,
then this command opens the Edit file dialog box that alows you to open or
create afile. This command is equivalent to File > New Editor.

Save
Saves the current file. Equivalent to File > Save.

SaveAs

Opens the Save As dialog box alowing you to enter the name you wish to save
the current file. This allows you to save additional copies of the current file
under different names. After saving afile under adifferent name, the current file
edited is changed to the new file. Equivalent to File > Save As.

SaveAll
Automatically saves al open files without prompting you with a dialog box.

SaveAllLog

Opens adiaog box that lists all currently edited files that are under version

control. You can choose to save any combination of these files by clicking the

box next to the file’s name. Clicking OK saves all the files selected and allows
you to enter the same comment for all of them. This is equivalent to saving all
the files at once and entering the same comment for each log. All the files also
have exactly the same date and time in their log entry.

QuerySaveAll

Lists all currently edited files modified since the last save. Click the box next to
the file's name to select any files to be saved. By default, all modified files are
selected. Clicking OK saves all selected files. If any of the files are under
version control, it will ask you to enter a comment. The comment is the same
for all files saved. Equivalent to File > Save All.

QuerySaveComments

Identical to QuerySaveAll, except if comments are turned off for a file under
version control, it will still ask you for a comment.

Green Hills Software, Inc. 203

7. Editor commands

Revert

Revertsthefile to the last saved version (file on disk), deleting any unsaved
changes. Equivalent to File > Revert to Saved.

CyclePush

Allows you to edit the previous file in the Editor’s stack of open files. Every
time you open a file in an existing Editor window, previously opened files are
stacked below the newly opened file. Equivalent to the Previous toolbar button.

CyclePushBack

Allows you to edit the next file in the Editor’s stack of open files. Every time
you open a file in an existing Editor window, previously opened files are
stacked below the newly opened file. Equivalent to the Next toolbar button.

EditorFlags

Opens a dialog box to control the file settings for the current file. These include
the tag and indent sizes, the time spent on matching parentheses, where text
wraps, whether text should wrap, and whether subsequent lines should indent if
they wrap. These settings default to the settings in the Config > Options...
dialog > Editor tab, and are only applied to the current file in the current session
(they are not stored for future sessions). See “Editor tab” on page 254 for more

information.
Print
Opens the print dialog box that allows you to print the file or current selection.
Close
Closes the current Editor window. If changes were made to open files, you are
prompted to save the files before closing the window. Equivalent to File > Close
Editor.
Quit

Opens a dialog box asking which modified files you wish to save, saves the
selected files, and quits the entire MULTI session, not just the Editor.
Equivalent to File > Exit All.

204 Building and Editing with MULTI 2000

Tool commands

Done

OpenText

Performs a QuitAll, except that any filesthat were not checked out by the Editor
during this session are automatically saved without prompting you.

This command has been deprecated. Please see the OpenFile command.

Tool commands

Grep

DiffFiles

MULTI provides several useful tools for working with your open files,
including searching and diffing files and revisions, and executing shell
commands. These commands provide access to those tools.

Opens adialog box that asksfor text to search for in al of thefilesin the current
program being debugged (if any), aswell asany open files. The output from this
command is put in atemporary window. Double clicking any of thelinesin this
window opens an Editor window on the line.

This command works by running the GNU grep utility. For your convenience, a
copy of GNU grep isinstalled along with MULTI. However, GNU grep is not
part of MULTI and is not distributed under the same license as MULT]. For
more information about the GNU Genera Public License which GNU grep is
distributed under, refer to the file gnugrep.README, which islocated in the
directory where MULTI isinstalled.

Opens the Diff Files dialog box that you may use to find and display the
differences between two files or between two versions of the samefile. This
command is equivalent to Tools > Diff Files. See “Comparing files” on page
160 for more information.

MergeFiles

Opens the Merge dialog box that allows you to merge two or three files
together. You can also merge versions of the same file together. Also see the
Version Control Commands section. This command is equivalent to Tools >
Merge Files. See “Merging files” on page 156 for more information.

Green Hills Software, Inc. 205

7. Editor commands

Minibuffer

Opens adialog box that you use to execute an Editor command. This command
is equivalent to Tools > Execute Editor Commands.

CommandToWindow

Format: CommandToWindow [command ;]

Sends the given command to the shell as a command. (The parameter must end
with asemicolon ‘;’.) The output is placed into a new Editor window which is
given a temporary name. If no parameters are specified for this command, it
opens a dialog box that prompts you for a command to send.

ExecuteCmd

Format:ExecuteCmd [command ;]

Sends the given command to the shell as a command. (The parameter must end
with a semicolon ‘;'.) The command uses the current selection in the editor as
stdin, and replaces that selection with stdout. If nothing is selected, the output
from the command is inserted into the open file after the cursor’s current
position. If no parameters are specified for this command, it opens a dialog box
that prompts you for a command to execute.

In the following command, the special macro sequébE¢L E is replaced by
the current file name. Thus, you could implement a PRINT button with the
following commands:

NoSelection; ExecuteCmd
Ipr %FILE> /dev/null

If there is a current selection, then it sends to the command as standard input.
Any output from the command replaces the selection. The following macro
sequences are recognized:

%FILE: Replaced with the name of the current open file.

% SEL : Replaced with current selection.

%LINE: Replaced with current line number.

% COMMENTS: Replaced with text from a dialog box that prompts for input.

Same agxecuteCmd on page 206.

206

Building and Editing with MULTI 2000

Tag commands

Shell
Format: Shell [command ;]
Sends the given command to the shell as a command. (The parameter must end
with a semi-colon ";".) The output is sent to the console from which MULTI
was launched. Thus, this command has no effect on the document. If no
parameters are specified for this command, it opens a dialog box that prompts
you for acommand to execute.

Notepad
Opens asmall editing window on a scratch file for taking notes. Equivalent to
Tools > Notepad..., or the note command in the Debugger.
The scratch file used is ~/.Notes.

cmdprompt2wnd

This command is deprecated. Please see CommandToWindow on page 206.

Tag commands

ErrorOrTag

Searches either an output window from the grep command or a progress
window for the next item. In grep windows, the next item is the Next tag and
file/line number combination. When the next item is found, the insertion point
movesto it. A window opens the file the item is from with the appropriate line
selected.

Green Hills Software, Inc. 207

7. Editor commands

OpenTag

NewTag

SpecialTag

The window searched is determined in the following ways:
 If the current window contains output from grep, then it is searched.

« If the current window does not contain output from grep, and the last time
this command is used was on a progress window, then the progress window
is searched.

« If the current window does not contain output from grep, and the last time
this command is used was on a grep window, then the grep window is
searched.

« If the current window does not contain output from grep, and thisis the first
time using this command, then the latest progress window is searched.

« If thiscommand refers to awindow that does not exist, for example, if no
grep window exists, then MULTI gives you an error.

Enters anew file or procedure to edit in the current window. The new tag is
typed at the top of the window, exactly asif clicking the filename. If text is
currently selected, then the text is automatically used for the new tag to edit.

For windows produced by the grep command, this opens the file and specifies
the line number.

If no text is selected, it isidentical to the EditTag command.

Searches the tag database for a procedure with the name of the selected text. If
the tag is found, the file containing the tag is opened in a new Editor window
and the editor attempts to search for the tag.

In windows produced by the grep command, this opens the file and specifiesthe
line number.

When used inside of awindow with output from the progress window, this
moves to the location of the next error.

AppendTagFile

Append the entries from the specified tag file into the tag database for later
queries.

208

Building and Editing with MULTI 2000

Version control commands

ResetTags
Clear the current tag database of all entries.

EditTag

This command has been deprecated. Please see the OpenTag and NewTag
commands.

Version control commands

Checkin
Checks the file into version control, prompting you for comments.

CheckOut
Checks the file out of version control.

AllowAutoCheckout

Enables auto checkout from version control. This only affects buffers that are
under version control. AutoCheckout means whether typing implicitly checks
out afile or whether explicit checkout operations are required. Thisoptionison
aper-file basis, and defaults to the value of the “Automatic Checkout”
configuration option. See al®veventAutoCheckout.

PreventAutoCheckout
Opposite ofAllowAutoCheckout.

Discard

Discards the current checkout. If the file is checked out, discards the checkout
and reverts the contents of the file to those from the last checked in version.
This function updates the timestamp on a file in case the modified version was

used in a previous build.

PlaceUnderVC

Places the current file under version control, prompting you to insert comments

(if desired). If using MVC, this is equivalent to tbreeate command, which
creates a log file. See “Create log” on page 135 for more information.

Green Hills Software, Inc. 209

7. Editor commands

vcbuffer

Opens adialog box that asks you for aversion control command. The full name
of the current fileis appended at the end of the command.

Mvcbuffer
Opens adiaog box that asks you for aMULTI version control command.

RevertDate

Opens adiaog box that asks you to specify the date to revert the file to out of
version control (currently only supported for some version control systems (e.g.
MVC).

RevertHistory

Opens adialog box that allows you to select aversion to revert thefile to out of
version control (currently only supported for some version control systems (e.g.
MVC). See “ShowHistory” on page 210.

RevertToBackup

Revert the current file to the backup file. Only valid if editor backups are
enabled in the configuration options (off by default).

RevertVersion

Opens a dialog box to specify the version number to revert the file to out of
version control (currently only supported for some version control systems (e.g.
MVC)).

ShowHistory

Opens a dialog box that shows the version-control specific version history. For
MVC, this opens a dialog box that shows you the first line of every comment,
who checked the file in, and the date. Clicking on an entry opens an editor on a
temporary copy of that version.

ShowlLastEdit

Note: This command is only supported when using MVC (MULTI Version
Control).

Finds the version of the current file that changed the selected text. This
command opens a window on the version that changed the text, placing the
cursor at the beginning of the change. Enabled only if the current file is under

210 Building and Editing with MULTI 2000

Version control commands

version control (such as MV C) that supports this feature. Equivalent to the
menu item if you choose Version > Show Last Edit.

The current file must also be checked in. Otherwise, the results of this operation
are undefined.

When you run this command, three windows are opened very much like a Diff
(Tools > Diff Files... > Diff). The editor window on the left shows the last
version which had different text in the selected lines. The editor window on the
right shows the next version. Looking at the two versions will show you how
the text changed between the two versions.

The third window is the Show Last Edit controller. It consists of a button bar
with three buttons and a text section underneath.

i & Ebwl

1.3) edlee 09/27/99 16:10:25
added comments /% foobar! */

Here’s a description of the buttons:

« Previous &): shows the previous difference (if any) between the two
displayed versions.

« Next (£): shows the next difference (if any) between the two displayed
versions.

« ‘Close’ (Lt |): closes the controller and both editor windows.

All three windows will also be closed if you close either of the two editor
windows.

The text section below the button bar shows information regarding the change
between the two versions. This information is laid out as follows:

Version number) User ‘ Date and Time

Comments

Where the first line contains the version number, user, and date for the right
hand file (the one where the change was checked in). The remaining lines show
the comments (potentially several lines) and is displayed in the currently
configured comment color.

ShowView
Note: This command is only supported when using ClearCase.

Green Hills Software, Inc. 211

7. Editor commands

Displays the user’s current view.

CreatelLog
This command has been deprecated.FsageUnder VC for more information.

Configuration commands

The MULTI Editor’s appearance and behavior can be configured heavily
beyond the defaults. These commands allow you to specify values for any of the
MULTI Editor’s options.

Configure
Format:Configure config_item=value

Format:Configure config_item:value
Format:Configure config_item value

This is identical to the Debugger commamdfigure. If no parameters are
specified, then this command opens a dialog box which requests that you enter a
configuration command.

ConfigureFile
Format:ConfigureFile [fil€]

This command treats the given file as a list of configuration commands, and
executes them in order.

AlterMode
Format:Alter M ode [mode number]

This command is typically only bound to keys, and can be used to create
bindings for sequences of key combinations, instead of just single-stroke key
combinations.

The actualAlter M ode command switches the editor to any of 10 modes, called
"Edit0" through "Edit9". In each mode, keystrokes have different behavior
depending on what their binding is for that particular mode. This is useful
because it can cause any given key combination to have up to 10 meanings,
depending on whether or not it was preceded by a key that is bound to the
Alter M ode command.

212 Building and Editing with MULTI 2000

Configuration commands

Usually, the keybind command only allows you to bind a command to a key
with modifiers such as the Control and Shift keys. However, with Alter M ode,
you can bind commands to a key sequence. The keybind command requiresthe
specification of an editing mode. When you press the key in that mode, the
given command executes. To bind commands to keys to work in the MULTI
Editor, the mode should usually be Edit (which refers to the same mode as
Edit0). However, if this command is specified and followed by a mode called
Edit1-Edit9, then the next key pressin the Editor will execute the command that
it is bound to the new mode. For example:

keybind “x”|Control@Edit=SaveFile
keybind “s”|Control@Edit2=RightD

With this command, pressing Ctrl+x in the Editor saves the current file.
However, pressing Ctrl+s in the Editor window does nothing because this
command only worksin mode Edit2. By default, the Editor mode is Edit or
Edit0. However, if you enter the command:

keybind “g”|Control@Edit=AlterMode Edit2

then pressing Ctrl+q changes the Editor mode to Edit2 for only the next key
press. So if you type Ctrl+q Ctrl+s, the cursor movesto the right one character,
the RightD command. Ctrl+sworks this time because it is now in the correct
mode, Edit2.

Any command issued while in an aternate mode will switch the mode back to
Edit0, the default mode.

->
This command is only used for specifying menu bindings. It must be followed
by the name of a menu, which is created with the specific menu command that
opens that menu. Any menus created for the Editor should only contain editing
commands.

ShowContextMenu

This command is issued to open a context sensitive menu at the current mouse
location. This should be bound only to mouse buttons.

AlterLocation

Format: AlterLocation [mode _number]
This command is deprecated. Please see the Alter M ode command.

Green Hills Software, Inc. 213

7. Editor commands

Help commands

These commands allow you to access the MULTI Editor’s help features.

About
Opens the About box which describes version information.

Help
Opens the online help system. This command is equivalent to Help > Editor
Help.

Identify

Waits until you enter another command, either by key presses or mouse clicks,
and displays the name of that command.

Insert commands

These commands add text to the open file at the cursor’s current position.

“ 7 (text surrounded by double-quotes)

Inserts all of the text between double quotes into the open file at the cursor’s
current position. The current selection, if any, is replaced with the text between
the quotes. Standard C quoting sequences (i.e. \n, \t, \\) are allowed.

Tab

Inserts a tab (\t) character into the open file at the cursor’s current position. The
current selection, if any, is replaced with the tab.

UserName

Inserts the current user name into the open file at the cursor’s current position.
The inserted name is inserted in lower case.

InsertNewline

Inserts a newline (\n) character into the open file at the cursor’s current position.
The current selection, if any, is replaced with the newline.

214 Building and Editing with MULTI 2000

'if’ conditional commands

InsertFile

Opens the Insert dialog box, in which you may select afile to be inserted into
the current line. The contents of the selected file are placed on the line above the
Cursor.

EnterInsertMode

Puts the Editor into insert mode, allowing you to enter literal keystrokesinto
your file, even if the keys are bound to commands.

For example, suppose you customized the Editor so that every time you pressd,
the cursor moves down one line. This makesit impossible to typethe letter din
the file. When you turn on insert mode and press d, the letter d appearsin the
file, and the cursor does not move down one line.

Insert mode may be turned off by the FlashCur sor command (see
FlashCursor on page 191).

Quote
Forcesthe character generated by the next key pressto beliterally entered inthe
file, even if the key isbound to acommand. Thisis useful for entering
characters that have commands bound to them.

Beep
Sounds a tone that should be audible to the user.

NextWindow

Moves the pointer into another Editor window and raises that window to the
foreground. Using this command repeatedly will eventually cycle through all of
the open Editor windows.

ToggleErrorView
Enables error view mode, which is useful for grep and Progress windows.

'if conditional commands

The conditional command is useful for constructing scripts and key bindings
which predicate on a particular state or mode within the editor. For example, if
commands can be used to make your key bindings more responsive to the
existence of selections or whether or not the editor isin insert mode.

Green Hills Software, Inc. 215

7. Editor commands

if condition {cmds1}[else {cmds2}];

This executes the commands given for cmdsl if condition is true, and executes
cmds2 if condition is false (although specifying the else clause is optional).

Currently, condition may only be one of the following:

<searching>
Thisistrueif an incremental search is currently in progress, and false
otherwise. (See the | Search on page 201.)
<noselection>
Thisistrueif thereis no primary selection.
<nosselection>
Thisistrueif thereis no secondary selection.
<insertmode>
Thisistrueif you are not in insert mode.
<select num=line>
Thisistrueif the selection number num aigns on line boundaries.
<select num=rect>
Thisistrueif the selection number num s rectangular.

<select num~text>
Thisistrueif neither of the above two are true.

The keyword else isincluded optionally, followed by a second command list. If

elseisincluded and condition is not true, then the second command list
executes.

The final closing braceis followed by a semicolon.

Example

i f <nosel ection> {SelectLine}; Cutl

If there is no selection, then this selects the entire line. The Cutl command is
always executed.

i f <nosel ection> {ContinueSel ection; SO.} else {Del ete}
If there is no selection, then this selects from the current cursor position to the
end of theline. If thereisasealection, it is deleted.

216

Building and Editing with MULTI 2000

Chapter

8

Default key bindings

This chapter contains:
» Default keyboard settings
« Escape key interrupt
« Default mouse settings

8. Default key bindings

This chapter tabulates the default key and mouse combination settings. See Chapter 10,
“Configuration commands” for information on how to implement the keybindings and
customize your settings.

218 Building and Editing with MULTI 2000

Default keyboard settings

Default keyboard settings

Moving the cursor

Function Editor command | Keystrokes

Move the cursor up one line Up Up Arrow
Ctrl+k

Move the cursor up a number of lines UpSome Ctrl+Up Arrow

(default is 4)

Move the cursor up one page PageUp Ctrl+Shift+b
PageUp
F29

Move the cursor down one line Down Down Arrow
Ctrl+j

Move the cursor down a number of lines DownSome Ctrl+Down Arrow

(default is 4)

Move the cursor down one page PageDown Ctrl+Shift+n
PageDown

Move the cursor left one character LeftU Left Arrow
Ctrl+h

Move the cursor right one character RightD Right Arrow
Ctrl+l (lowercase 'L’)

Move the cursor to the previous word ReverseWord Ctrl+Left Arrow

Move the cursor to the next word Word Right Arrow

Move the cursor to the beginning of the line SOLO Ctrl+w or Home

Move the cursor to the end of line EOL Ctrl+e or End

IMove the cursor to the beginning of the next | EOL; RightD Ctrl+Enter

ine

Move the cursor to the end of the file EOF Ctrl+End

Move the cursor to the beginning of the file SOF Ctrl+Home

Green Hills Software, Inc.

219

8. Default key bindings

Selecting text

Function

Editor commands

Keystrokes

Extend selection up one line

ContinueSelection; Up

Shift+Up Arrow

Ctrl+Shift+k
Extend selection up a number | ContinueSelection; UpSome Ctrl+Shift+Up Arrow
of lines
Extend selection up one page | ContinueSelection; PageUp Shift+PageUp
Shift+F29

Extend selection down one line

ContinueSelection; Down

Shift+Down Arrow

Ctrl+j
Extend selection down a ContinueSelection; DownSome Ctrl+Shift+
number of lines Down Arrow
Extend selection down one ContinueSelection; PageDown Ctrl+Shift+
page PageDown
Shift+F35
Extend selection left one ContinueSelection; LeftU Shift+Left Arrow
character -
Ctrl+Shift+h
Extend selection right one ContinueSelection; RightD Shift+
character Right Arrow
Ctrl+Shift+
Extend selection to previous ContinueSelection; ReverseWord | Ctrl+Shift+
word Left Arrow
Extend selection to next word ContinueSelection; Word Ctrl+Shift+
Right Arrow
Extend selection to beginning ContinueSelection; SOLO Shift+Home
of line
Ctrl+Shift+w
Extend selection to end of line | ContinueSelection; EOL Shift+End
Ctrl+Shift+e
Extend selection to beginning ContinueSelection; Return Ctrl+Shift+Enter
of next line
Select entire document SelectAll Ctrl+a
Searching
Function Editor commands | Keystrokes
Start or continue an incremental search forward | ISearch Ctrl+f
220 Building and Editing with MULTI 2000

Default keyboard settings

search dialog box

BacklSearch;Searc
h

Function Editor commands | Keystrokes

Start or continue an incremental search BacklSearch Ctrl+b

backward

Cancel a search Abort ESC

Open the search dialog box Search Ctrl+Shift+f
L9

Start an incremental search, then open the Shift+L9

Green Hills Software, Inc.

221

8. Default key bindings

Deleting text

Function Editor commands Keystrokes
Delete last character Backspace Backspace
Delete next character if <noselection> { Delete
ContinueSelection; RightD };
Delete Ctrl+d
Cut an entire line SelectToLines; Cut2 Ctrl+m
Merge selected lines JoinLines Ctrl+p
Delete previous word if <noselection> { Ctrl+

ContinueSelection; ReverseWord | Backspace
}; Backspace

Delete next word if<noselection> { Ctrl+Delete
ContinueSelection; Word }; Delete
Cut to beginning of line if<noselection>{ContinueSelection | Ctrl+u
; SOL}; Cut2
Indenting
Function Editor commands Keystrokes
Indent a line Indent Ctrl+i
Unindent a line Unindent Ctrl+Shift+i
Auto-indent the selected if<beforenonwhite> Tab
line(s) {AutoIndentOrTab} else {if
<noselection> {Tab} else
{AutoIindentOrTab} }

Copying, cutting and pasting

Function Key | Modifiers Command
Copy to clipboard L6 n/a Copyl

c C Copyl
Copy to second buffer | L6 S Copy2

C C,S Copy2
Copy to third buffer L6 C Copy3

c M, C Copy3
Copy to fourth buffer L6 C,S Copy4

C M, C, S Copy4

222 Building and Editing with MULTI 2000

Default keyboard settings

Function Key | Modifiers Command
Cut to clipboard L10 | n/a Cutl
X Cc Cutl
Cut to second buffer L10 | S Cut2
X C, S Cut2
Cut to third buffer Lo | C Cut3
X M, C Cut3
Cut to fourth buffer L10 | C,S Cut4
X M, C,S Cut4
Paste from clipboard L8 n/a if <noselection> { if <selectl=lines>
{SOLO}} Pastel
\Y C if <noselection> { if <selectl=lines>
{SOLO}} Pastel
Paste from second L8 S if <noselection> { if <selectl=lines>
buffer {SOLO0}} Paste2
\Y C,S if <noselection> { if <selectl=lines>
{SOLO}} Paste2
Paste from third buffer | L8 C if <noselection> { if <selectl=lines>
{SOLO}} Paste3
\Y M,C if <noselection> { if <selectl=lines>
{SOLO}} Paste3
Paste from fourth L8 C,S if <noselection> { if <selectl=lines>
buffer {SOLO0}} Paste4
\Y M, C, S if <noselection> { if <selectl=lines>
{SOLO}} Paste4

Green Hills Software, Inc. 223

8. Default key bindings

Fixing errors

Function Key | Modifiers | Command
Undo last edit L4 n/a Undo
z C Undo
Redo last undo L2 n/a Redo
y C Redo
Load version that changed text r M,C,S ShowLastEdit

File commands

Function Editor commands | Keystrokes

Close the current editing window Close Ctrl+q

Save the current file Save Ctrl+s

Save the current file under a new name SaveAs Ctrl+Shift+s

Edit the tag the cursor is near in a new window SelectWord, Ctrl+t

NewTag

Open a dialog box to open a file in the current OpenFile Ctrl+o

window L7

Open a dialog box to open a file in a new window | LoadFile Ctrl+n
Ctrl+Shift+o

Enter a new line number to go to EditLine Ctrl+g

Cycle through open file buffers forward CyclePush Ctrl+Tab

Cycle through open file buffers backward CyclePushBack Ctrl+Shift+Tab

Save current file, then close window Done Ctrl+Shift+q

Debugging
Function Command Keystrokes
View the procedure one higher on the call stack | UpStack (E +) Ctrl++ (plus)

View the procedure one lower on the call stack | DownStack (E -) Ctrl+- (minus)

Help Help (help) F1

Run a program if not started or continue Go (C) F5
executing if a program has stopped

224 Building and Editing with MULTI 2000

Escape key interrupt

Miscellaneous

Function Command Keystrokes

Continue to the end of the current subroutine Return (cU) F9

and stop in the calling routine after returning

Execute single statements and step over Next (n) F10

procedure calls

Execute single statements and step into Step (s) F11 (May not work

procedure calls on some
keyboards.)

Function Editor commands Keystrokes

Flash the line the cursor is on NoSelection; FlashCursor | ESC

Enter the next key press sequence Quote Ctrl+\ (backslash)
literally

Insert a new line InsertNewline;Autolndent ENTER

Insert a new line at the end of the EOL; InsertNewLine Ctrl+Shift+r
current line

Repeat the last command RepeatlLast Ctrl+. (period)
Transpose previous two characters NoSelection; Ctrl+Shift+t

ContinueSelection; Left;
Cut2; Left; Paste2; Right

Escape key interrupt

Pressing ESC during awhile, step or blocking run will cause MULT] to abort
the command and clean up. In the case of a step or blocking run, the process

will be halted and the PC displayed.

Default mouse settings

Key for Mouse Clicks:
LC = Singleleft click

LLC =Doubleleft click, LLLC = Triple left click, etc.

MC = Single middle click

MMC = Double middle click, MMMC = Triple middle click, etc.

RC = Singleright click

Green Hills Software, Inc.

225

8. Default key bindings

RRC = Doubleright click, RRRC = Triple right click, etc.

Ctrl = Control Key

First (leftmost) mouse button

Function Mouse operations
Start new (primary) selection LC

Select text for the primary selection LC+drag
Extend your selection to the mouse pointer Shift+LC
Select the current word LLC

Select the current line LLLC

Select the entire file LLLLC

Select text and copy it to the clipboard Ctrl+LC
Extend your selection to the mouse pointer and copy it to Ctrl+Shift+LC
the clipboard

Select the current word and copy it to the clipboard Ctrl+LLC
Select the current line and copy it to the clipboard Ctrl+LLLC
Select the entire file and copy it to the clipboard Ctrl+LLLLC
Select text and cut to clipboard Meta+LC+drag
Select the current word and cut to clipboard Meta+LLC
Select the current line and cut to clipboard Meta+LLLC

Second (middle) mouse button
The middle button may not be available, depending on your mouse.

Function Mouse operations
Make a secondary selection and either delete it or replace itwitha | MC

primary selection

Replace a current word with primary selection MMC

Replace a current line with primary selection MMMC

Replace an entire file with primary selection MMMMC

Make a secondary selection and replace with clipboard Ctrl+MC

Replace a current word with clipboard Ctrl+MMC

Replace a current line with the clipboard Ctrl+MMMC

226

Building and Editing with MULTI 2000

Default mouse settings

Function Mouse operations
Makes secondary selection and replace with clipboard Meta+MC
Replaces current word with clipboard Meta+MMC
Replaces current line with clipboard Meta+MMMC

Third (right-most) mouse button

Function Mouse operations

Open the pop-up menu for performing operations on RC
the object you just clicked

Edit the current tag in current window Meta+RC
Edit the current tag in a new window Meta+RRC
Select a matching parenthesis Shift+RC
Select from the current location to the first matching Shift+RRC
parenthesis

Open a window for taking notes Ctrl+Shift+RC
Select word, open a tag Meta+RC
Select word, open a tag in new window Meta+RRC

Green Hills Software, Inc. 227

8. Default key bindings

228 Building and Editing with MULTI 2000

Chapter

9

Configuring and
customizing MULT]

This chapter contains:
» Setting configuration options
« Customizing the graphical user interface (GUI)
 Creating custom functionality
* How MULTI uses startup files to configure a session
« Example customizations

9. Configuring and customizing MULTI

MULT!I gives you the ability to configure and customize your I ntegrated Devel opment
Environment (IDE) to fit the way you work most efficiently. You can:

Set configuration options
Customize the MULT]I graphical user interface (GUI)
Create custom functionality

Setting configuration options

MULTI provides standard options governing MULTI's appearance and

behavior that you can edit according to your preferences. You can save these
options in a configuration file (*.cfg), then have MULTI reconfigure itself at
startup based on existing configuration files. Alternatively, you can manually
load a configuration file during a MULTI session to reconfigure your
environment. For more information about specific configuration settings, see
Chapter 10, “Configuration commands”.

Editing configuration options

You can edit MULTI's configuration options in two ways: using the Config
menu and using theonfigure commandBoth methods write your settings to
the same temporary configuration file; when you edit a setting using the
configure command, your changes are automatically reflected in the Config
menu dialog boxes.

Be aware that changes that you make are NOT automatically saved for future
MULTI sessions. You must manually save your configurations if you want them
restored the next time you run MULTI.

Config menu

To make changes to MULTI’s options using the graphical configuration
interface, choose Config > Options....

configure command

If you know the name of the options you want to change, you can use the
configure command from the Debugger Command Pane. The format is:

configure config_item=value
configure config_item:value

configure config_itemvalue

configure ?

230

Building and Editing with MULTI 2000

Setting configuration options

Typing configure ? displays alist of all items you can configure. You can
change individual items by including their name followed by an equal sign
('="), a colon (%), or a space (* "), then the new value. For example:

configure tabsize=9

confi gure background #ffffff

configure nmoon: On

configure |inenunbernode: Both Nunbers
configure pronpt: "MJLTI> "

configure status. stopped STOPPED
configure key: "Up"@onmand=backhi story

Saving configuration options for future MULTI sessions

You must save your option settings if you want to preserve them for future
MULTI sessions. When you save the settings, you are saving a *.cfg file which
can be loaded into MULTI in future session.

If you want to save the current settings so that they are loaded every time
you start MULTI, choose Config > Save Configuration As Default. When a
user chooses this menu item, the current options are saved in the user
configuration file, which loads each time the same user starts MULTI. For
more information about the user configuration file, see “user configuration
file” on page 238.

If you want to save the current settings, but don’t want them to be loaded
automatically every time you start MULTI, choose Config > Save
Configuration, then save the *.cfg file.

If you want to save the current settings so that they are always loaded for
every user in a user group, choose Config > Save Configuration, then save
the file as: SMULTI'S_INSTALLATION_DIR/configimulti.cfg. For more
information, see “global configuration file” on page 237.

You can also manually create and edit a *.cfg file.

Loading configuration files

When MULTI starts a session, it automatically configures itself based on the
following configuration files (*.cfg), if they exist:

global configuration file
user configuration file
a configuration file specified on the commands line with-toafig option

Green Hills Software, Inc. 231

9. Configuring and customizing MULTI

Be aware that settings in a configuration file can override global or user
options, and that MULT]I also loads script files that can affect configuration
options. For more information about what files MULTI uses at startup, see
“How MULTI uses startup files to configure a session” on page 237.

Loading a configuration file during a session

To load a predefined configuration file during a MULTI session, do one of the
following:

« Choose Config > Load Configuration, then select the configuration file you
want to load.

« Inthe Debugger Command Pane, use the following command:

configurefile filename

Configuration file format

Configuration files consist of lines, each one of which can be blank, a comment,
or a configuration. Blank lines contain only whitespace characters and are
ignored. Comment lines start with a pound sign (#) and are ignored. For
example:

t absi ze: 8

background: #ffffff

nmoon: On

I i nenunmber node: Both Numbers
prompt: "MJLTI> "

stat us. st opped: STOPPED

key: "Up" @omrand=backhi story

Config menu

The following is an overview of the menu items in the Config menu.

Options...

Opens a tabbed dialog that allows you to set most of the configuration options
that affect visual and behavioral aspects of MULTI.

Save Configuration as Default

Saves the current configuration of MULTI into the user configuration file,
which MULTI reads each time it starts to restore your configuration to the state
it was in when you saved it. MULTI doesn't ask if you want to save changes to
your configuration when you quit, so you have to remember to do so.

232

Building and Editing with MULTI 2000

Customizing the graphical user interface (GUI)

See “user configuration file” on page 238 for the location of the user
configuration file and other files which MULTI reads automatically on startup.

See “Configuration file format” on page 232 for the format of configuration
files (.cfg files).

Clear Default Configuration...
Deletes the user configuration file.

Save Configuration...

Like Save Configuration as Default, but lets you choose a file to save the
configuration into. This saved configuration will not be automatically loaded at
start up. This can be useful in conjunction vatihfigurefile or Load
Configuration.... (see “Loading a configuration file during a session” on page
232). For the format of configuration files (.cfg files), see “Configuration file
format” on page 232.

Load Configuration...
Loads a configuration file of your choosing.

Customizing the graphical user interface (GUI)

MULTI allows you to customize buttons, menus, keystroke combinations, and
mouse clicks in the Debugger, Builder, and Editor. You can remove these GUI
elements, add new GUI elements, or change the commands that are executed
when the GUI element is used. You can also define a button, keystroke
combinations, or mouse click to display a custom menu (see “Opening menus
on page 275).

”

You can define customized GUI elements in two ways:

« Use the Config > Options dialog box to edit a configuration file (*.cfg). For
more information about saving and loading configuration files, see “Setting
configuration options” on page 230. If you customize using the Config >
Options dialog box, you may need to refer to the corresponding commands
in Chapter 10, “Configuration commands”for proper syntax; you can use the
table below to determine the appropriate command.

« Write a script file that contains customization commands. The table below
lists the commands you need to execute for each GUI element. Be aware
that the script files that MULTI loads automatically (global, user, and
program script files) are loaded only when the Debugger is active, so don't

Green Hills Software, Inc. 233

9. Configuring and customizing MULTI

put customizations that apply to the Builder and Editor into these startup
script files; use a configuration file instead. For more information about
writing a script, see “Scripting” on page 234.

Once you have defined a configuration file or script file that customizes the
GUI, you can have MULTI load that file. For more information about these and
other files that MULTI uses at startup, see “How MULTI uses startup files to
configure a session” on page 237.

Use the following table as a guide to where you need to go to customize a
particular GUI element.

To customize using a configuration file, choose | using commands, see
Debugger buttons | Config > Options > Debugger tab > | clearbuttons on page 266
Configure Debugger Buttons debugbutton on page 266
Editor buttons Config > Options > Editor tab > editbutton on page 268
Configure Editor Buttons cleareditbuttons on page 268
menus Config > Options > General tab > menu on page 273
Menus... clearmenus on page 273
keystroke Config > Options > General tab > keybind on page 269
combinations Key Bindings... clearkeys on page 269
mouse clicks Config > Options > General tab > mouse on page 275
Mouse Bindings... clearmice on page 275

Creating custom functionality

Scripting

You can customize MULTI to perform complex procedures that automate and
simplify tasks, configure MULTI automatically based on specific situations, and
perform tests, including regression tests. You create custom functionality using
scripts and macros.

A script is a list of commands in a file that MULTI reads and executes as if they
were entered individually in the Debugger Command Pane. They typically end
with .rc.

A script can contain both commands and expressions. It can cor{}dipelse
{} statements that could, for example, compare a program variable to a
particular value and then perform some action based on that result.

You can use scripts for automating common tasks and for regression testing. By
writing a command script that executes parts of your program and checks that

234

Building and Editing with MULTI 2000

Creating custom functionality

your program is running correctly, you can rerun this script at alater date, after
making supposedly unrelated changes, to verify that your program still runs the

way you expect. See “Example 1: Connecting to a target from MULTI” on page
239, for an example.

Creating a script
You can create a script automatically by use tfisecommand (see “Record
and playback commands” in Debugging with MULTI 2000).

You can also manually create a script by putting the commands and expressions
into a text file.

Running a script
To run a script, do one of the following:

« Use the< filecommand (see “Record and playback commands” in
Debugging with MULTI 2000).

« Specify the script file on the command line (see “-rc file” on page 8).

« Customize a button or menu item to execute the script. Defifile as the
command that is executed by the button or menu item.

In addition, you can save a script as one of the following startup scripts, which
MULTI runs automatically at specific times:

« global script file (see “global script file” on page 238).
« user script file (see “user script file” on page 238).
e program script file (see “program script file” on page 238).

Checking the syntax of your script

Syntax checking checks the validity of your command syntax without causing
target interactions or changing system settings. You can check your script's
syntax using:

« Thesc command (see Debugger Commands inMii Tl Debugger
Reference Manual) checks a script to make sure it has correct syntax and
valid object references (references to variables, etc.).

« Thebpsyntaxchecking configuration option controls whether MULTI
checks the syntax of the commands associated with breakpoints when the
breakpoint is set.

In many debugging environments, it would be tedious to repeatedly run into
syntax errors minutes or hours into a lengthy auto-debugging process. You

Green Hills Software, Inc. 235

9. Configuring and customizing MULTI

Macros

could manually find the syntax errors by starting the process, making sure that
all the breakpoints are hit and the associated commands are executed, and
testing all of the script branches, but that can be very time-consuming. A better
option is to use the sc command to check the syntax of your scripts before
putting them into service.

The sc command has three limitations;

1. It can't check syntax errors in commands associated with a breakpoint set
with thebu command. Théu command sets up-level breakpoints; the con-
text of the breakpoint depends on the dynamic execution. For example, in
the commandbu {print var A}, MULTI cannot determine the up-level pro-
cedure until thédbu command is actually encountered while running the
script. So, it has no way to check if the varialdeA is a valid reference
when syntax checking the script.

2. sccannot check the syntax errors in the body of a MULTI macro.

3. sctreats all local variable references that are not in a breakpoint command as
errors, as in the following script:

b mai n#10 {if (argc>2) {print argc+i;} else {print
"Too few argunents"}}

print argc+i;

print gl obal var;

If the procedurenain contains the number variablagyc andi, and

global_var is a global variablesc will pass the first and the third lines. But

sc treats the second line as error because MULTI cannot determine the con-
text in which theprint argc+i; command will be performed.

Macros are available through tdefine command. Theefine command is

similar to the C preprocessor directidefine. It gives you the ability to create

a macro inside MULTI. You can then later run that macro from the Debugger
command pane or a script. See “Example 2: Regression testing” on page 239 for
an example.

Macros can combine a small set of commands into one macro function, just as
#define macros are used in C programs. A macro can return a value and be used
in an expression evaluated in the Debugger Command Pane, juktidima

macro. Although you can probably automate most tasks by using commands
and scripting, you might want to create macros in some circumstances.

236

Building and Editing with MULTI 2000

How MULTI uses startup files to configure a session

How MULTI uses startup files to configure a session

Certain configuration files are executed automatically to set up the environment
whenever MULTI starts up, and additional script files are executed whenever
the Debugger starts on a particular program. MULTI parses thesefilesin the
following order (if afile does not exist, it is skipped):

1. global configuration file

2. user configuration file

3. command line configuration file

4. global script file (Debugger environment only)

5. user script file (Debugger environment only)

6. command line script file (Debugger environment only)
7. program script file (Debugger environment only)

Because changes to the same configuration item (see Chapter 10,

“Configuration commands”) can exist in multiple files, the execution order of
such files is important. A configuration change can override the effects of a
previous change.

The global config file, user config file, and command line config file are parsed
on MULTI startup, whether the Builder comes up first or the Debugger. The
global script file, user script file, and command line script file are executed once
when MULTI’s first Debugger window appears (the first time you start a
Debugger on a program from an invocation of MULTI). The program script file
is executed every time that program is loaded into a Debugger window, i.e., on
every new Debugger window on that program, on every program reload (debug
command with no arguments), but not on every program restart.

If you load a new program into an existing Debugger, MULTI will
automatically execute the commands in the new program’s script file (if any),
but does not clean up the effects of the old program’s script file (if any).

All Debugger windows launched in a debugging session share the same
Debugger environment. If you launch multiple Debugger windows from the
same MULTI program (for example, the Builder), all the script files of the
corresponding debugged programs will be executed, resulting in the final
Debugger environment.

global configuration file
$MULTI'S_INSTALLATION_DIR/config/multi.cfg

Green Hills Software, Inc. 237

9. Configuring and customizing MULTI

Thisfileis useful in setting up a common environment, required by whole user
groups when debugging any program. If you run the MULTI editor asa
stand-alone executable (not from within MULTI (#) it uses me.cfg instead of
multi.cfg.

user configuration file
$HOME/.ghs/multi.cfg

Thisfileis useful in setting up a common environment, required by asingle
user when debugging any program. If you run the MULT]I editor as a standalone
executabl e (as opposed to from within MULT]), it looks for me.cfg instead of
multi.cfg.

command line configuration file

You can specify a configuration file on the MULTI command line with -config
filename or -configurefilename. Thisfeatureis not available when running
the MULT!] editor as a separate executable.

global script file
SMULTI'S_INSTALLATION_DIR/config/multi.rc

This file is useful for commands which need to run once when any person in a
whole user group starts the Debugger the first time in a debug session.

user script file
$HOME/.ghs/multi.rc

This file is useful for commands which need to run once when debugging any
program by a single user.

command line script file

You can specify a script file in the command to run MULTI with-tteeoption,
such asnulti my_prog -rc your_script.

program script file
$EXECUTABLE_DIR/executable_name.rc

238

Building and Editing with MULTI 2000

Example customizations

Example customizations

You can customize MULTI to hel p you work more efficiently. For example, you
can create a script file that defines anew button in the MULTI Debugger which
executes a script that contains alist of Debugger commands and may also
define and make use of a macro. You could al so define a Debugger button from
aconfiguration file. You now have a Debugger button which can perform a
complex task. The following two exampl es show some automating possibilities.

Example 1. Connecting to a target from MULTI

You can automate the series of repeated steps required to connect to atarget.
With the large number of connection methods and the variability of specific
user environments, automating a connection is generally unique to a user.
MULTI lets you define exactly what you want automated.

In this example, the target processor is a PPC860, the target board is Motorola
PPC860ADS, and MULTI is connected to it viaan HP Processor Probe. The
program being debugged is foo. The following scripts give you a button in
MULTI that will connect MULTI to the target and initialize it.

File: foo.rc

debugbutton “My Connect” c="< connect.txt" i=connect

File: connect.txt

remote hpserv 192.67.44.234
target rst
target ads setup

Example 2: Regression testing

Thisregression test consists of aprogram with afunction that cal culates Celsius
from a given Fahrenheit.

File: foo.c

#define CONV (5.0/9.0)

extern int mytotal;

int celsius (int fahrenheit) {
int rval = (int) ((fahrenheit - 32) * CONV);
return rval;

void main (void) {
int some_degrees;

Green Hills Software, Inc. 239

9. Configuring and customizing MULTI

i nt sone_cel si us;
some_cel sius = cel si us(sonme_degrees);

}

File: foo.rc

debugbutton RegTestl c="<bar.txt" i="letter_a”
define check_celsius(arg) {
if (some_celsius != arg) {
print "Failed!"
printf ("Failed\n actual:%d\n expected:%d\n",
some_celsius, arg);
}else {
print "Pass";
printf ("Pass\n actual:%d\n expected:%d\n",
some_celsius, arg);

File: bar.txt

b main

r

some_degrees = 45;
S

check_celsius(7);

Now, when you start up aMULTI Debugger on foo, MULTI runs the script

foo.rc automatically. foo.rc creates a button (with name RegTest1 and built-in

icon letter_a with the shape of ‘A’) and also defines a macro. You can run the
regression test by clicking the button. Notice that:

« commands such dwsare used as if you entered them directly;

« program variables anddefine macros are referenced;

- functions that are linked into your program lientf() are callable;
e C-like expressions such #¢) {}then{} are evaluated.

This file exists in the same directory as the executable and shares the same
name as the executable, but with.lamextension. This file is useful for
commands that need to execute whenever the Debugger starts on a particular
executable.

240 Building and Editing with MULTI 2000

Chapter

10

Configuration
commands

This chapter contains:
» Optionsdiaog box
« Other Configuration options

10. Configuration commands

The previous chapter discussed how you can customize your interface using MULTI's
configuration options. This chapter describes each configuration option and it includes the
default settings, if applicable. The chapter begins with options you can access from the
Config Options window, as well as the command line or a config file. It is followed by options
which can only be set from the command line or a config file.

The format of each entry in this chapter is:

Namein GUI
Format: (command line name)
Default: (if any)

Explanation of option. In cases where the sense of the config option is reversed
depending on whether it is accessed through the GUI, through a config file, or
the command pane, the default is for the option as it is set in config files and in
the command pane, not in the GUI. For config options where there are choices
in a pull-down menu, the command line choice may differ from the choice
presented in the GUI. For this situation, the GUI choice will be listed followed
by the command line choice in parentheses. For example: Use Color Offsets
(Offset).

Note: Remember to save your configuration using Config > Save Configuration as Default
before you quit MULTI, otherwise you will lose your changes.

Options dialog box

This section describes the Options dialog box (when you choose Config >
Options...).

General tab
(Config > Options... > General tab)

Save window positions and sizes
Format:rememberwindowpositions

Default: On

Remembers the position and size of each type of window so that the next time a
window of the same type is created, it will be created with the same size and
position. The first window of a given type is positioned in the saved location,
but subsequent windows of the same type are positioned slightly offset from the

242 Building and Editing with MULTI 2000

Options dialog box

previous window (although they are still sized to the same size). This takes
effect even across sessions (after you exit and restart the program). For
example, if you resize the Builder window, move it to a specific location on
your screen, and then close the window, the next time a Builder window is
created it will appear in the same exact place. Not all windows are affected by
this option. In particular, data explorer windows are not affected.

Use icons for buttons
Format: iconifiedbuttons

Default: On
Uses icon based buttons instead of textual buttons.

Display close (x) buttons
Format: closebuttonontitlebar

Default: On

Check to have MULTI aways provide a close button of its own on windows it
creates. This option will only affect new windows created after you change the
setting, except for Debugger windows which will adjust to the new setting
immediately.

Match exact case in searches
Format: exactcase
Default: Off

Determines the case sensitivity of all text searchesin MULTI. This option can
also be set on a per-editor-window basis with the Edit > Find... dialog.

Allow beeping
Format: beep

Default: On

Determines whether MULTI beeps. Enabled, MULTI beeps on various error
conditions, such as a search that doesn’t match anything. Disabled, MULTI
never beeps.

Show tooltips
Format: tooltips

Default: On

Green Hills Software, Inc. 243

10. Configuration commands

To enable tooltips, turn this option on. Tooltips are the little explanatory boxes
that pop up when you hover the mouse cursor over something.

Warp pointer
Format: war ppointer

Default: Into Dialog

Controls when MULTI warps the mouse pointer across the screen to a
convenient location.

Warp pointer values

Value Command Meaning

Never never Never move the mouse pointer; the user has
complete control over its location.

Into Dialog IntoDialogue Warp the mouse pointer onto the default
button of new dialog boxes that appear.

In & Out of Dialog In&OutDialogue | Warp the mouse pointer onto the default
button of new dialog boxes that appear, and
then back to where it was when the dialog box
is closed.

Print command

Format: printcommand

Default: lpr

The UNIX command to print a postscript file. This command will be used
whenever MULTI triesto print anything.

Vertical scroll bar location
Format: scrolllocation

Default: Right
Location of the vertical scroll bar (Left or Right).

Horizontal scroll bar location
Format: scrollhlocation

Default: Bottom
Location of the horizontal scroll bar (Top or Bottom).

244 Building and Editing with MULTI 2000

Options dialog box

Display moon phase

Format: moon

Default: Off

Display the approximate phase of the moon in the nook of the vertical and
horizontal scroll barsinstead of the Green Hills Software logo.

Scroll bar width
Format: scrollbarwidth

Default; 18
Width of scroll bars.

Main Font...
Format: font

Change the main font, used for code and filenames in the Builder. This font
should normally be set to afixed width font, so that text will line up properly.

Button Font...
Format: buttonfont

Change the button font, used on buttons, menus, and other GUI contrals.

Kanji Font...
Format: kanjifont

Default: (none)
Change the 16-bit font used to display Kanji text.

Menus...

Opens a dialog box which allows editing of the menusin MULTI using the
same format that the menu command takes. See also menu on page 273.

Mouse Bindings...

Openss a dialog box which alows editing of the mouse bindings using the same
format that the mouse command takes. See also mouse on page 275.

Green Hills Software, Inc. 245

10. Configuration commands

Key Bindings...
Opens adialog box which alows editing of the key bindings using the same
format that the keybind command takes. See also keybind on page 269.

Online Help...

Opens adialog box which contains additional configuration options for the
online help system. See Online Help Options.

Online Help Options

(Config > Options... > General tab > Online Help)

Help browser
Format: helpbrowser
Default: netscape

Web browser to use for online help. Can aso be used to give command line
arguments to the browser. For example, to set the display to a different
machine;

"/home/site/bin/netscape -display othermachine:0.0"
If the browser isn’t in your path, the full path must be provided.

Use current context to resolve help ambiguities
Format: helpcontextdisambiguates

Default: On

Enabled, the online help system will take the current context into account if you
ask for help on a help keyword for which there are multiple help entries.
Disabled, the online help system will always ask you to pick which context you
are interested in when there is ambiguity.

Browser supports -remote command line option (Netscape)
Format: helpnoremotecommand

Default: Off (Onin GUI)

NOTE: The meaning of this option varies depending on whether you set it from
the GUI, or from the command line or a config file.

If enabled in the GUI, the debugger will try to use Netscape’s -remote facility so
that the same browser can be used for multiple help sessions. If disabled in the
GUI, then help will always open a new web browser each time you request help.

246

Building and Editing with MULTI 2000

Options dialog box

Help in new browser window
Format: helpinnewwindow
Default: On

To launch help in a new Netscape window when the browser is already open,
turn this option on. Not applicable when helpnoremotecommand is on.

Use Java (1.1) applet for online help
Format: helpnojava

Default: On

NOTE: This meaning of this option varies depending on whether it is accessed
from the GUI, or using the command line or a config file.

To use Java-based help (with features such as full-text searching), turn this
option on. With this option off, a set of html-only pages will be used.
Java-based help requires a browser that supports Java 1.1 or greater.

Help port number
Format: helpportnumber
Default: 5150

Sets the port number that help will try to bind to. Must be between 1024 and
2"16-1. No effect if helpnojavaison.

Number of ports to scan if bind fails
Format: helpnumportstoscan
Default: 100

If the connection is unsuccessful when connecting on the port specified by
helpportnumber, this many ports after that one are scanned to find a port to bind
to.

Debugger tab
(Config > Options... > Debugger tab)

Ask before halting to set breakpoint
Format: verifyhalt

Default: On

Green Hills Software, Inc. 247

10. Configuration commands

When enabled, the Debugger will ask before halting the process to set a
breakpoint. Disabled, the Debugger will automatically halt, set the breakpoint,
and continue the process without requiring user intervention.

Use procedure relative line number (vs. file relative)
Format: procrelativelines

Default: On

Make Debugger commands such as the e command interpret line numbers as
procedure relative instead of file relative by default. You can obtain the
non-default behavior by using the '# character in the invocatian of

Display all numbers/characters as hex
Format:hexmode

Default: Off

Display all numeric values as hexadecimal. Disabled, the display format is
chosen based on the "natural” display format for that type. For integral types,
the “natural” display format is decimal.

View unsigned char as integer
Format:viewunsignedchar asint

Default: Off

Make the "natural” display format of unsigned chars the same as the natural
format for ints. This is useful when you want to view byte values as numerical
values instead of characters. Disabled, the natural display format for unsigned
chars is a literal character, such as 'A.

Remember breakpoints
Format:remember breakpoints
Default: Within Session

Determines whether the Debugger should remember breakpoints that you have
set for a program the next time you debug the same program.

Never - the Debugger will clear all breakpoints whenever you load or reload a
program.

Within Session (WithinSession) - the Debugger will remember breakpoints that
you have set for a program when you reload the program during a single session
(i.e. until you exit MULT]).

248

Building and Editing with MULTI 2000

Options dialog box

Across Sessions (AcrossSessions) - the Debugger will remember breakpoints
for aprogram even if you exit and restart MULTI.

Coloring for multiple debuggers
Format: backgroundmode

Default: Offset from current

Controls the background color of debuggers other than the first one. It is useful
to turn this on when using multiple debugger windowsiif it hel ps you keep track
of which iswhich.

Off - All debugger windows use the normal background color (see).

Use Color Offsets (Offset) - The subsequent debuggers use predetermined
offsets from the normal background color. Thisoption is usually the best since it
will pick colors near the current background color, and will keep the text as
legible as possible.

Preset high contrast (Preset) - The subsequent debuggers use a set of pre-chosen
colors.

Line numbers in source pane
Format: linenumbermode

Default: Both Numbers

Controls which line number(s) are displayed on the left side of the Debugger
Source Pane.

No Number (None) - No line numbers are displayed.

File Number (File) - Line numbersin file are displayed.

Proc Number (Proc) - Line numbers in procedure are displayed.
Both Numbers (Both) - Line numbersin both procedures and in files are
displayed.

Position of buttons

Format: debugbuttonsoc

Default: Top

Controls the position of the Debugger buttons

Top - Below the menu bar and above the source pane.

Bottom - Below the command pane and above the status bar.

Green Hills Software, Inc. 249

10. Configuration commands

Command pane height in lines
Format: cwindlines
Default: 10

Number of lines in the Command Pane.

Command pane prompt
Format: prompt

Default: “MULTI> "

Text which acts as a prompt just before any commands you enter in the
Debugger Command Pane.

Configure Debugger Buttons...

Opens a dialog which allows editing of the debugger buttons using the same
format that the debugbutton command takes. In the dialog that comes up, there
is a list of buttons on the left and a list of available icons on the right.

More Debugger Options...

Opens the More Debugger Options... dialog which contains additional
configuration options for the debugger.

Data Explorer Options

Minimum initial size (WxH)

Format:minviewsize

Default: 40x3

Minimum initial size of a data explorer window (also known as view window).

If left blank, MULTI will auto-size the data explorer windows appropriately.

Maximum initial size (WxH)
Format:maxviewsize

Default: 40x42

Maximum initial size of a data explorer window. If the minviewsize (see above)
is greater in either dimension than the maxviewsize, the maxviewsize wins.
Initial position (XxY)

Format:firstposition

250 Building and Editing with MULTI 2000

Options dialog box

Default: 0x0

Initial position from the top-left of the screen for a data explorer window,

specified in characters and lines. To give the coordinates in pixels, puta 'p’

after them (e.g. “100x100p”). This only applies to the first data explorer
window; subsequent ones are offset some, avoiding excessive overlap. If left
unspecified (blank), the debugger auto-positions all the data explorer windows.

Two color mode
Format: blackwhite

Default: Off

Use only the foreground and background color (except in icons). This increases
usability in low-graphics-bandwidth situations, such as when displaying
MULTI on a different machine.

Load Color Scheme...

Opens a dialog which lets you choose from a list of prepared color schemes. If
you prefer a fundamentally different look from the default, you can try these to
find the one that'’s closest to what you want, then modify the colors.

More Debugger Options...
(Config > Options... > Debugger > More Debugger Options...)

Automatically dereference pointers
Format:derefpointer

Default: On

To have MULTI automatically follow pointers when it encounters them instead
of just printing the pointer value, enable this option. When on, MULTI shows
the value of the pointer and what it points to. Disabled, MULTI only shows the
value of the pointer.

Check syntax of breakpoints when they are set
Format:bpsyntaxchecking

Default: On

Ensure that the commands being associated with a breakpoint pass syntax
checking when the breakpoint is set. With this option on, breakpoints whose
commands fail syntax checking cannot be set. Disabled, a syntax error in a

Green Hills Software, Inc. 251

10. Configuration commands

breakpoint command will not be detected by MULTI until the breakpoint is hit
and MULTI tries to execute the breakpoint's commands.

Continue running script files on error
Format: continueplaybackfileonerror
Default: Off

Ignore errors in script files (.rc files). Disabled, the Debugger will stop running
a script file if an error is encountered.

"s" (step) and "n" (next) are blocking by default
Format: blockstep

Default: Off

Ensure that no Debugger commands execute until a step or next finishes.
Disabled, scripts that user n can appear to behave inconsistently since
subsequent commands can appear to be lost sometimes, when in reality they
just happened before the step or next finished. A step or next can be made
blocking or non-blocking regardless of the setting of this option by appending
ann (for non-blocking) ob (for blocking) to the command.

Show locations of variables

Format: showaddress

Default: On

Print the location of a variable (address in memory or register name) before
printing the value of the variable when using phent command.

Display typedef type instead of basic type
Format: leavetypedef

Default: Off

Display the typedef’ed name of a type instead of the actual (self-contained)
type.

Show position in non-GUI (-nodisplay) mode

Format: showposinnodisplaymode

Default: On

Print the current line after every command in non-GUI mode.

252

Building and Editing with MULTI 2000

Options dialog box

Repeat last command on return key in non-GUI (-nodisplay)
mode

Format: disablecarriagereturnrepeat
Default: On (Off in GUI)

The meaning of this command varies according to whether you access it
through the Config menu, through the command line, or through a config file.

To make the return key repeat the last entered command when running in
non-GUI mode, turn this option on in the GUI.

If setting this option from the command line or a config file, turn this option on
to disable repetition of the last command viathe return key.

Stepping over C++ exception or longjmp
Format: longjmpstepmode

Default: Ignore/RunAway

When nexting over a subroutine that calls longjmp or does a C++ exception

throw (a call to longjmp internally), the subroutine never returns in the normal

way. Thisissignificant because the debugger uses atemporary breakpoint just

after the normal return to effect the next (thisis also true of step if thereis no
source available for the subrouting). When longjmp is called, this temporary
breakpoint is bypassed and execution can “run away” instead of just nexting.

This configuration option controls how MULTI handles this situation.

Ignore/RunAway (IgnoreRunAway) - Let the code call longjmp without
worrying about the consequences to a next.

Minimize Temp Stops (MinimizeTempStops) - Fix the problem in a way that
doesn’t cause temporary stops in longjmp as the program runs normally under
the debugger. This option inserts and removes a temporary breakpoint for each
next over a subroutine.

Maximize Step Speed (MaximizeStepSpeed) - Fix the problem in a way that
minimizes the time it takes to do a next. This option leaves a breakpoint in
longjmp, and will result in a temporary stop if longjmp is called when the
program is running normally under the debugger.

Command pane buffer size in bytes
Format: ctextsize

Default: 524288

Green Hills Software, Inc. 253

10. Configuration commands

Maximum number of bytes of memory used for the command pane scroll-back
buffer. Increase thisvalue if you keep scrolling back only to find that the thing
you are interested in has scrolled out of the top of the buffer.

Seconds to wait for debug server before timing out
Format: servertimeout

Default: 15

Number of seconds to wait for the debug server before assuming it is dead and
disconnecting fromit. A number that istoo low will sometimes mistakenly
disconnect from the debug server, and is not recommended. A fairly high
number can be useful for very slow debug servers or debug servers that are
being debugged. A high number can be frustrating if the debug server actually
does die from time to time, because it keeps the debugger from accepting input
while it's waiting to time out.

Editor tab
(Config > Options... > Editor tab)

Reuse editor windows
Formatopenfilesinnewbuffers
Default: off (files are opened in new editor windows)

Specifies whether a buffer in an existing editor window should be created for
files opened from the builder and debugger. If off, a new editor window will be
created for each file edited.

Create backup files when saving
Format: editorbackups
Default: Off

Automatically create a backup of the on-disk version of a file before saving
over it. The backup file has the same name as the original file, with a "~"
appended to it.

Drag and drop text editing
Format: draganddrop

Default: On

Check to enable drag and drop text editing. After you select a block of text, you
can click on it and drag the mouse to move the text to another location.

254 Building and Editing with MULTI 2000

Options dialog box

Tab size

Format: tabsize

Default: 8

Number of spacesin atab when displayed in the Editor.

Indent size
Format: editindent

Default: 4

Number of spacesin an indent for languages other than Ada. Used with
indentation editor commands. Ada has its own indent setting.

Ctrl+cursor jump size
Format: editsomesize

Default: 5

Multiplier used by UpSome, DownSome, LeftSome, and RightSome editor
commands. These are bound to the Ctrl+cursor keys by default. So pressing
Ctrl+Left will move the cursor left by 5 characters by defaullt.

Configure Editor Buttons...

Opens adialog which allows editing of the editor buttons using the same format
that the editbutton command takes. In the dialog that comes up, thereisalist of
buttons on the left and alist of availableicons on the right.

More Editor Options...

Opens the More Editor Options... dialog which contains additional
configuration options for the editor.

Auto Indent Options

Implicit auto indent
Format: aiimplicitindent
Default: On

Check to turn on the Editor command Autolndentimplicit. Thiswill cause the
editor to auto indent your file as you type, as opposed to manually invoking the
auto indent. Disabled, Autolndentimplicit has no effect.

Green Hills Software, Inc. 255

10. Configuration commands

Implicit auto indent in comments
Format: aiimplicitindentincomments
Default: On

If aiimplicitindent is on, then check to enable Autol ndentlmplicit within
comments. Disabled, Autolndentlmplicit has no effect in comments.

Switch bodies indented two instead of one
Format: aiswitchintwo
Default: On

C - Switch bodies are indented two levels so that case |abels are indented one
level in from the switch. Disabled, the case |abels are even with the switch.

Ada- Select bodies areindented two levels so that when |abels are indented one
level in from the select. Disabled, the when labels are even with the select.

Indent comments when indenting multiple lines
Format: aitouchcomments

Default: Off

Auto indent comments even when auto indenting multiple lines. If Disabled,
then comments aren’t modified by Autolndent unless Autolndent is run on just
one line.

Comments stick flush left
Format: aicommentsstayflushleft

Default: On

Check to keep comments from indenting away from the left margin. If you
want to indent a comment that is stuck to the left margin while this is on, insert
a space just before the comment to get it unstuck, then use Autolndent.

C chars aligned like '* in comments
Format: aichardikestarincomment

Default: "-"

To have characters other than ™' line up in comments as if they were *', make
them part of this string. For example, this allows correct auto indention of
comments which have a column of -'s down the left side, lined up under the * in
the /*.

256

Building and Editing with MULTI 2000

Options dialog box

C paren indent mode, Ada paren mode
Format: aiparenindentmode

Default: IndentinTwo

Format: aiadaparenindentmode
Default: EvenWithParen

Controls how the editor indents aline if it starts within an open paren/close
paren pair in the corresponding language.

EvenWithParen - If there is a non-whitespace character between the open paren
and the end of its line, then the lines enclosed in () start at the same column as
that character. Otherwise, the lines enclosed in () start in the column just after
the open paren.

IndentinTwo - Thelines enclosed in () start two indent levelsin from the open
paren’s line.

More Editor Options...
(Config > Options... > Editor > More Editor Options...)

Print 2 columns in landscape
Format: editprint2column

Default: On
Print files in landscape mode, with two pages per sheet.

Temp file directory
Format: tempfiledir

Default: (blank, looks for the TMPDIR, TEMP environment vars, resorts to
/tmp)

Directory used for temporary editor files.

Initial width in characters
Format: editwidth

Default: 80

Green Hills Software, Inc. 257

10. Configuration commands

Initial width (in characters) of the internal MULT!I editor. This option is only
useful when the rememberwindowpositions option is off. See also “Save
window positions and sizes” on page 242.

Initial height in characters
Format: editheight

Default: 32

Initial height (in characters, i.e. lines) of the internal MULT]I editor. This option
is only useful when the rememberwindowpositions option is off. See also “Save
window positions and sizes” on page 242.

Selection margin width in pixels
Format: selectionmar ginwidth

Default: 13

Width of the left margin of the editor. If the width is O, the left margin does not
appear, and text can no longer be selected by line using the margin. Changing
the selection margin width does not affect already open editors, only new
editors.

Generate auto-recover file every ... seconds
Format: editincrfrequency

Default: 120

The editor creates auto-recover files every so often, in case the power goes out
or the editor crashes. If this happens, the next time you open the editor on the
file it will give you the option to restore to the auto-recover file. This option

sets the frequency at which the editor generates these auto-recover files.

Per File Settings Defaults

The settings in this section apply to files when the files are first opened. You can
use View > Per File Settings... in the Editor to modify these settings on a
per-file basis. However, changes to these settings will also affect already open
files, so you have to make the changes on a per-file basis after you make any
desired changes to the defaults.

Spaces per indent for Ada
Format: adaindentsize

Default: 3

258

Building and Editing with MULTI 2000

Options dialog box

Number of spacesin anindent for Adafiles.

Ada continuation line indent
Format: adacontinuationsize

Default: 2
Number of spacesin theindent for a continuation linein Adafiles.

Word wrap
Format: wordwrap

Default: Off
Automatically split lines on word boundaries as you type.

Wrap column
Format: wrapcolumn

Default: 79

When wordwrap is on, thisisthe last column that will be used before wrapping
to the next line unless a single word is so long that it can't fit within this many
columns, in which case it will be put on a line by itself.

Wrap indent offset

Format: wrapindent

Default: 2

When a word wrap to the next line occurs, the line is automatically indented this
many extra spaces from where it would normally appeatr.

Alternate Editor Options
Allows you to use a third-party editor in MULTI.

Use Alternate editor
Format: usealter nateeditor
Default: Off

When enabled, MULTI opens an external editor instead of using the internal
one.

Green Hills Software, Inc. 259

10. Configuration commands

Use xterm for alternate editor

Format: usextermforalternateeditor

Default; Off

When enabled, MULTI runs the alternate editor within anewly created xterm.

Executable
Format: editor

Default: me

Name of the alternate editor executable, with full path if the directory isn’t in
your path.

Command line arguments
Format: editorlaunch

Default: (blank)

Command line arguments for the alternate editor, not including the name of the
editor itself. There are three special strings in editorlaunch that get replaced
with useful information for the alternate editor. “Third party editors” on page 2
contains the required configuration of these three strings for some common
editors.

%file0 - Replaced with the first file MULTI is opening.
%line - Replaced by the line number the first file should be opened to.

%files - Replaced by a space separated list of all the files other than the first
one. There is no mechanism for conveying what line numbers to open these
files to.

Version Control tab

(Config > Options... > Version Control tab)

Use version control
Format: dontusevc
Default: Off (Onin GUI)

The meaning of this option varies depending on whether you access it through
the Config menu or through the command line or a config file.

If you are accessing this option from the GUI, check it to enable version control
awareness.

260

Building and Editing with MULTI 2000

Options dialog box

If you are setting this option from the command line or a config file, turn this
option on to disable version control awareness.

Automatic checkout
Format: preventautocheckout

Default: Off (Onin GUI)

The meaning of this command varies depending on whether you access it
 through the Config menu

« through the command line

 through aconfig file

If you are accessing this option from the GUI, check it to enable automatic
checkout of fileswhen you start to edit them.

If you are accessing this option viathe command line or a config file, turn this
option on to prevent automatic checkout of files when you try to begin editing
them.

Version control system
Format: versioncontroltype

Default: MVC
Controls which version control system MULTI uses.

MVC - MULTI Version Control. Green Hills Software provides this version
control system as part of MULTI.

ClearCase
RCS

Command
Format: vc_command

Default: (varies per versioncontroltype)

Command prepended to all the other version control configuration strings. For
instance, if vc_command is"mvc", and vc_checkout is"co", then to check afile
out, MULTI would issue "mvc co filename". It is ok to leave this blank if it's
not required.

The version control configuration strings are provided in case your site requires
a slightly different syntax. Attempting to set up MULTI to automatically use an

Green Hills Software, Inc. 261

10. Configuration commands

arbitrary unsupported version control system by modifying the settings for, say,
ClearCase, may or may not be possible. If you are so inclined, the best hope for
success is probably with ClearCase selected. Any changes to the defaults for a
system may break support for that version control system (until you restore that
system to the default settings).

Under VC
Format: vc_undervc

MULTI uses this command to determine if afileis under version control. Only
used with ClearCase. If the output of this command begins with the name of the
file being checked, the fileis considered to be under version control.

Check out
Format: vc_co

Command to check out afile from version control for editing.

Get

Format: vc_get

Only used for MVC and RCS. Command to get aread only copy of the latest
version of afile.

Un check out
Format: vc_unco

Command to undo the effects of acheck out. Revertsto thelatest version of the
file in the repository and restores the file’s checked-in status (if applicable),
discarding any edits since the check out.

Check in
Format: vc_ci

Command to check in a file as the latest version.

Check in, no comments
Format: vc_cinocomments

Command to check in a file as the latest version without entering any comments
into the version control logs.

262

Building and Editing with MULTI 2000

Options dialog box

Create

Format: vc_create

Command to put afile under version control for thefirst time (i.e. have version
control start managing afile).

Show history

Format: vc_show

Command to output alist of versions afile has gone through, with optional
comments or information about each.

Who

Format: vc_who

Only used for ClearCase. Command to check which user has this file checked
out. Output of this command is the username who has this file checked out.

Previous version

Format: vc_prevver

Only used for ClearCase. Used to get version number for the previous version
of afile.

Restore Defaults for This VC System

Resets the version control configuration stringsto their defaultsfor this system.
This a so happens when you switch to another version control system and back.

Colors tab
(Config > Options... > Colors tab)

Colors tab: Global Colors
Background

background: #ffffff

Background color of "user areas" such as the background behind code or text
that you enter.

Foreground
foreground: #000000

Default color of text.

Green Hills Software, Inc. 263

10. Configuration commands

Control Area
controlcolor: #c0c0cO

Background color of "control areas" such as menu bars.

Selection

select: #000080

Background color of text selections (foreground color chosen automatically).

Builder File Coloring check box
Format: colorbuilder

Default: On
Check to enable coloring the filesin the Builder based on their type (code, build
file, etc.).
Builder File Coloring settings
GUI Name Command Hex RGB Default
NoBuild nobuild #b00000
Program program #900010
SubProject subprogram #c80020
Source source #00b010
Header header #007010
Documentation documentation #a0a0a0
Library Build singlelibrary #000080
Object object #000050
Library library #004580
Script script #808000
Other other #808080

Color of the corresponding type of filein the Builder.

Colors tab: Debugger Colors

Assembly

Format: assembly

264

Building and Editing with MULTI 2000

Options dialog box

Default: #0000ff
Color of interlaced assembly code in the Debugger.

Break Dot

Format: bdotcolor

Default: #00cd00

Col Iodr of break dots in the Debugger; the dots that show where a breakpoint
could go.

Status
Format: breakcolor

Default: #f0000
Color of the program status ("STOPPED", "RUNNING", etc.).

Context Arrow

Format: pointercolor

Default: #0000ff

Color of the context arrow, which indicates which context to use for commands
in the Debugger.

Colors tab: Syntax Coloring
Format: color syntax

Default: On
Color code according to its syntax.

Syntax Color settings

GUI Name Command Hex RGB Default
Comments comment #008000
Keywords keyword #0000ff

Dead Code deadcode #808080
Numbers number #e000e0

Strings string #800000
Characters character #c000c0

Green Hills Software, Inc. 265

10. Configuration commands

Color of corresponding item in source code. Dead code refers to code enclosed
in#if O ... #endif.

Color C++ comments in C

Format: cppcommentsinc

Default: On

Color C++ style comments (/) as comments, even if the sourcefileisaCfile.

Other Configuration options

This section describes configuration options not accessible from the Config
menul.

NOTE: These configuration options are only available from the Debugger
Command Pane using the Debugger command configure or from a Config file.

clearbuttons
Format: clearbuttons

Removes al the buttons so they can be created from scratch with debugbutton.

debugbutton

Format: debugbutton [num] [name] [[c=]command] [[i=]iconname]
[[h=]helpstring] [[t=]tooltip]

This command adds a new icon button to the debugger tool bar.

command, iconname, helpstring, and tooltip are all either single words, or
guoted strings. Quoted string are of the form:

“This is a quoted string.”

266 Building and Editing with MULTI 2000

Other Configuration options

There are several forms of the command:

Form Meaning

debugbutton By itself, the command lists all the defined buttons. Note
that the quit button and the spacer before it are never
listed. Those buttons are special and can not be modified

or deleted.
debugbutton 0 Deletes all buttons (except the quit button and its spacer).
debugbutton numM Deletes the button numbered num.
debugbutton nuUM namMme|...] Replaces the button numbered num
debugbutton name Deletes the button named hame
debugbutton name...] If a button named Naime exists, the button is replaced.

Otherwise a new button named name is added to the end
of the debugger toolbar.

command is the command executed when the button is pressed. You may use
semicolons in the command to execute multiple commands. For example:

debugbutton printxy c="print x;print y” ‘

iconname is the name of the icon associated with the button. If not specified,
then the first | etter of the command name will be used as the icon for the button.

iconname may either be the name of one of MULTI’s built-in icons (see below
for how to obtain a list of these names), or it may be the filename of a bitmap
you have created yourself. If the filename is not an absolute filename, it is
assumed to be relative to the directory where MULTI is installed.

If you create your own bitmap file, it must end ilap extension and must be

in the uncompressed 16-color Windows Bitmap format. Other color depths are
not supported, and compressed bitmaps are not supported. An easy way to
create such bitmaps is to use the Paint accessory under Microsoft Windows, and
make sure you choose “16 Color Bitmap” in the “Save as type” drop-down list
box of the “Save As” dialog.

The built-in icons in MULTI are 20 pixels wide by 20 pixels tall, so your
buttons will look best if you also use this size for your custom bitmaps.

By default, the color light gray in your custom icons will become transparent.
You can specify additional color translations for your custom icon by appending
a string of the form “oldcolorl=newcolorl&oldcolor2=newcolor2” with a
guestion mark to the end of your bitmap filename. For example:

debugbutton Hello c="echo hello”
i="/home/user/hello.bmp?black=fg&dkgray=shadow&white=highlight” h="Say
hello”

Green Hills Software, Inc. 267

10. Configuration commands

You can use the following values for oldcolor and newcolor:

Oldcolor (R,G,B values) Possible values for newcolor
white (255,255,255) white (default)
highlight
Itgray (192,192,192) Itgray
transparent (default)
dkgray (128,128,128) dkgray (default)
shadow
black (0,0,0) black (default)
fg

helpstring is the help text that appears at the bottom of the window when the
mouse moves over the button.

tooltip isthe tooltip text that appears when you move your mouse over the
button and wait. If you do not specify atooltip, the name of the button will be
used.

button

This command is deprecated. Use debugbutton. See debugbutton on page
266. 1.8.9 MULT]I users upgrading to MULTI 2000 should note that the syntax
for the debugbutton command is different than it was for the button command.

cleareditbuttons

Removes al the editor buttons so they can be created from scratch with
editbutton.

editbutton
Format: editbutton ButtonName c="commands” [isonname] [h="Status bar
string[@ @tooltip string]”]

Creates a new editor button. For additional information about creating new
buttons, sedebugbutton on page 266.

ButtonName - Name of the button. If iconifiedbuttons is off, this is the name
that goes on the button. If no tooltip string is provided, this becomes the tooltip.

¢ - Commands the button executes when pressed.

i - Name of icon to use on the button if iconifiedbuttons is on. (See Config >
Options... > Editor > Configure Editor Buttons... for a list of icons with
pictures.) Alternatively, you can specify your own 16-color bitmap (*.bmp) as
the icon. If no icon is specified, the help icon (question mark) is used instead.

268 Building and Editing with MULTI 2000

Other Configuration options

h - Status bar string which shows up as soon as the mouse is over the button,
and tooltip string which shows up after the mouse hovers over the button for a
short time. The status bar string and tooltip string are separated by ‘@@’.

clearkeys
Removes all keybindings so they can be created from scratch with keybind.

keybind

Format:keybind

Format:keybind location

Format:keybind key[|maodifiers][@l ocation][=command]

Assigns an action to a key pressed while holding down modifiers while the
cursor is in a specified area of a window. In other words, if the mouse is in the
specified location (area of a window) and the specified modifiers (such as shift)
are held down, and the specified key is pressed, then the specified command
will execute. The syntax for this command is essentially the samerastise
command, exceteybind does not use a click count.

To print the current key press setting for a location, kgybind followed by
the location (see below for valid locations). If no location is specified, then all
settings for the source pane are displayed.

key is a single ASCII (or ISO8859) character or a quoted string containing the
name of one of the keys on the keyboard, su¢tBaCK SPACE" or“F3" . A
list of the acceptable key names are obtainable by typing:

keybi nd "?27?"

Characters needing more than one key press (besides the Shift, Control, and
Meta keys) to generate cannot be used. To specify a double quote, put it inside
double quotes: " (that isthree double quotesin arow).

modifier is any combination of Shift, Meta, and Control. If amodifier is

specified, then the command isonly runif that modifier is depressed at the time

the key is pressed. If more than one modifier is specified, they should be

separated from each other and from key by vertical bars|". The BACKSPACE

key is different fromh|Control even though their ASCII representations are the
same.

Green Hills Software, Inc. 269

10. Configuration commands

A location may be one of the following:

Location Meaning

All Any of MULTI's windows, except the Editor.

InputWindow Any MULTI input window, such as the command pane or a
remote or /O window.

OutputWindow Any output only window, such as the source pane or a monitor
window.

View Qnywhere in a view (data explorer) window, excluding the title

ar.

Title Anywhere in a title bar of a data explorer or monitor window.

Command Anywhere in the command pane or source pane.

Remote Anywhere in a ‘pass through’ or I/O window.

Monitor Anywhere in a monitor window, excluding the title bar.

Labels Displays the field names in the data explorer’s pane.

Values Contains the field values in the data explorer’s pane.

Name Region of the title bar displaying the name of the expression in
the data explorer, or a monitor window command.

Type Region of the title bar displaying the type of expression in a
data explorer.

Freeze Region indicating whether the window is frozen.

Close Close box in the title bar.

Pop Near the pop arrow on the title bar.

Help Near the question mark on the title bar.

Menu Inverted triangle in the data explorer title bars.

Dup Duplication button, if togglebuttons is set.

Shrink Shrink button, if togglebuttons is set.

ScrollBar Entire scrollbar.

UpArrow Arrow pointing up at the top of the scrollbar.

DownArrow Arrow pointing down at the bottom of scrollbar.

ScrollArea Scrollbar between the arrows.

Thumb Grey region in scrollbar middle.

270

Building and Editing with MULTI 2000

Other Configuration options

Location Meaning

AboveThumb Blank area above Thumb and below arrow.
BelowThumb Blank area below Thumb and above arrow.
Edit MULT]I Editor.

If location is omitted, the default is Command.

These locations are arranged hierarchically with:

Locations hierarchy

Location Composed of:

All InputWindow, OutputWindow, View, and
Title

InputWindow Command and Remote

OutputWindow Source and Monitor

View Labels and Values

Title Name, Type, Freeze, Close, Pop, Help, and
sometimes Dup and Shrink.

ScrollBar UpArrow, DownArrow, and ScrollArea

ScrollArea Thumb, AboveThumb, and BelowThumb

Green Hills Software, Inc.

271

10. Configuration commands

command isany MULTI command. Thetext it specifies may include any of the
following special sequences. These sequences are not valid for key binding in
the Editor:

Sequences for command

Sequence Meaning

%s Replaced by the current selection.

%p Replaced by the current selection if it exists,
otherwise MULTI prompts for input.

%P Always prompts for input.

%w Replaced by a special number identifying the
window to MULTI.

%X Replaced by the x location in the window
when pressing the button.

%y Replaced by the y location in the window.

%k Replaced by the ASCII expansion of the key.
For the key labeled a, this is "a."

%m Replaced by Press.

%% Replaced by %.

If the key[|modifier] @l ocation of akeybind input matches one previously
defined, then the new definition replaces the old. If no command is specified in
the new definition, then the new definition del etes the old.

When akey isdepressed in awindow, MULTI searches for keybind actions that
match. There may be more than one, in which case MULTI chooses the one
whose location is most specific. If there are still several, then MULTI chooses
one arbitrarily.

Example

With this command, MULTI evaluates and prints the sel ection when the first
function key is pressed in the source window.

keybind “F1"=print %s

With this command, the Debugger opens a data explorer which displays the
current selection when the first function key is pressed anywhere while the Ctrl
key is depressed.

keybind “F1”|Control@All= view %s

272

Building and Editing with MULTI 2000

Other Configuration options

With these commands, MULTI scralls the window when the up or down arrow
is depressed.

keybind “Up”@All= (%w) scrollcommand 11
keybind “Down”@All= (%w) scrollcommand -11

With this command, MULTI single steps the program when Ctrl+sis pressed in
the source window.

keybind s|Control=S

The following is a special case: Any key bound to the command HEL P at
location All opens context sensitive help.

keybind ?|Control@All=HELP

clearmenus
Removes all menus so they can be created from scratch using menu.

menu

Format: menu name {{label cmd}}
menu name
menu

Defines a menu to be attached to a menu bar, MULTI button, mouse button, or
key from the keyboard. All menus have a name, by which they are run, and a
body which lists labels and associated commands. When amenu is opened, the
menu name at the top of the menu is shown with all the labels beneath.
Selecting alabel causes the associated command to execute.

To choose a menu item, do one of the following:
- Clickit.
« Usethearrow keysto highlight it and press Enter.

If one of the charactersin a menu label is preceded with an ampersand (&), it
will be underlined, and if the user types that character while the menuisup, the
command associated with that label will be executed just asif the user had
clicked on the label.

MULTI comes with a set of predefined menus for the main MULTI window, as
well asfor the Editor. (See “Debugger menus” in Debugging with MULTI 2000
and “Editor menus” on page 164)

Green Hills Software, Inc. 273

10. Configuration commands

If you enter menu by itself, alist of al defined menu namesis printed. Entering
menu followed by a menu name displays the body of that menu. (Thisis case
sensitive.)

To create amenu, enter menu followed by the name you giveit, followed by the
set of labels and commands. The entire body of the menu must be enclosed in
curly braces {}, aswell as curly braces for each line. Thefirst entry of each line
isthe label that appears in the menu left justified. The second entry isthe
command corresponding to the label. (Each of these lines must be contained in
itsown set of curly braces.) The command portion can contain its own subset of
curly braces, such as using the if...else command, aslong as they are paired
correctly. If the command is a single command (not alist of commands), and
that command has a key binding associated with it, then that key binding will be
displayed (right justified) next to the label.

The following example creates a menu named RunCmds:

nenu RunCnds {
{Step s}
{Next S}
{Run r}
{CGo c}
{Return cU}
}

Menus can contain other menus, for example:

menu Main {
{RunCnds -> RunCrds}

{W {E 1}}
{Down {E -1}}
{ToPC E}
Invoking this menu and moving the cursor to the right edge of the RunCmds

entry calls up the submenu RunCmds.

The following example allows you to customize your own menu and bind itto a
mouse click . Typing the following in the Debugger command pane allows you
to use your customized menu in the Debugger with a click.

nmenu MyMenu {
{G G

{Step s}
{Next S}

}

nouse nmouse*Press1@\ | =- >MyMenu

To replace a menu definition, type a new menu command with the same name.

274

Building and Editing with MULTI 2000

Other Configuration options

To edit existing menus, choose Config > Options... > General tab > Menus....
You can also usethis dialog box to add or delete menus. See also “Menus...” on
page 245.

Opening menus

You can open a menu by typirg directly before their name in the Debugger
command pane. For example, to open the niain from the command
window, enter:

->Mai n

To bind a menu to a Debugger button, type:
debugbut t on RunCrds - >RunCnds

To bind a menu to a mouse button, enter:

nouse nmouse3*Press1@\ | =- >RunCrrds
(wherenbuse3 is the rightmost mouse button)

clearmice

Removes all mouse button bindings so they can be created from scratch with
mouse.

mouse
Format: mouse location

Format:mouse mouse button_numAtOnce][*click click_num] [|modifiers]
[@location] [=command]

Defines the function of the mouse buttons. The first form of the command prints
the current mouse commands in the given location (see the list below for valid
locations), and the second form of the command changes the way the mouse

buttons work.

To execute the desired command, you must indicate a combination of modifiers,
button number, number of clicks, and a location for the command to occur, as
explained below.

mouse button_num may either be the keywoiny, meaning any mouse

button, or the wordnouse followed by some of the digits between 1 and 5,
meaning those mouse buttons whose numbers are listed. Not all mice have five
buttons, so any commands assigned to non-existent buttons are not run. For
example, to set a command for buttdrer 3, usemousel3.

Green Hills Software, Inc. 275

10. Configuration commands

The click count option, *click click_num, may be omitted, in which case it
defaults to one click. However if present, it specifies the number of times the
mouse button must be depressed before the command is executed. click_num
may be anumber between 1 and 5. The keyword click may be replaced by press
in which case the command executes on the button press, rather than on the
release. Or it may be either, in which case the command executes on both the
press and release.

The keyword click isaso followed by the text (AtOnce). This meansthe
command bound to it executes immediately rather than pausing briefly to seeif
thisis part of aclick sequence. It has the unfortunate side effect that this
command isaways doneimmediately, even if followed by the second click of a
double click. Thisis acceptable for many options such as the standard selection
clicks: one click setsthe insertion point, two clicks select the current word,
threetheline, and so forth. The downside to not using AtOnce is that thereisa

delay when invoking single-click commands (while it's waiting to see if there

will be the second click of a double click, etc.).
modifiers may be one of the keywor&hift, Meta, or Control. All modifiers

are preceded by a vertical bl This separates them from each other and from

mousebutton_num. If a modifier is specified, then the command is only run if
that modifier is depressed. If more than one modifier is specified, then all
modifiers listed must be depressed simultaneously.

A location is one of the following:

Location Meaning

All Any of MULTI's windows.

InputWindow Any MULTI input window, such as the command pane or a
remote pass through window.

OutputWindow Any output only window, such as the source pane or a monitor
window.

View Qnywhere in a view (data explorer) window, excluding the title

ar.

Title Anywhere in a title bar of a data explorer or monitor window.

Command Anywhere in the command pane.

Remote Anywhere in a pass through or 1/0O window.

Source Anywhere in the source pane.

Monitor Anywhere in a monitor window, excluding the title bar.

Labels In the pane of a data explorer displaying the field names.

276

Building and Editing with MULTI 2000

Other Configuration options

Location Meaning

Values In the pane of a data explorer containing the field names.

Name Region of the title bar displaying the name of the expression in
the data explorer, or the command of a monitor window.

Type Region of the title bar displaying the type of expression in a
data explorer.

Freeze Region indicating whether the window is frozen.

Close Close box in the title bar.

Pop Near the pop arrow on the title bar.

Help Near the question mark on the title bar.

Dup Duplication buton, if togglebuttons are set.

Shrink Shrink button, if togglebuttons are set.

ScrollBar Entire scrollbar.

Menu On the inverted triangle in data explorer title bars.

Edit MULT! Editor.

If location is omitted, then Source is the default.
These locations are arranged hierarchically with:

Locations hierarchy

Location Composed of:

All InputWindow, OutputWindow, View, and
Title

InputWindow Command and Remote

OutputWindow Source and Monitor

View Labels and Values

Title Name, Type, Freeze, Close, Pop, Help, and
sometimes Dup and Shrink.

Green Hills Software, Inc. 277

10. Configuration commands

command isany MULTI command. The text specified may include any of the
following special sequences. These sequences are not valid when binding
commands in the Editor:

Sequences for commands

Sequence Meaning

%s Replaced by the current selection.

%p Replaced by the current selection if it exists,
otherwise MULTI prompts for input.

%P Always prompts for input.

%w Replaced by a special number identifying the
window to MULTI.

%X Replaced by the x location in the window
when pressing the button.

%y Replaced by the y location in the window.

%k Replaced by the null string.

%m Replaced by Press or Release, as
appropriate.

%% Replaced by %.

If the mousebutton_num[|modifiers>][@l ocation] of a mouse input matches
one previously defined, then the new definition replaces the old one. If no
command is specified, then the new definition del etes the old.

When the mouseis clicked in awindow, MULT]I searchesits list of mouse
actionsto match. If thereis more than one, the following procedure determines
which one to choose: First, the one whose location is the most specific. If there
are still several, then the one which accepts the fewest number of buttonsis
chosen. If there are still several, then MULTI chooses one arbitrarily.

Example
nouse nousel=print %

The Debugger evaluates and prints the selection when you click the left mouse
button once in the source window.
mouse mousel*d i ck2@\ | =vi ew ¥%s

The Debugger opens a data explorer displaying the current selection when you
double-click the left mouse button anywhere.

278

Building and Editing with MULTI 2000

Other Configuration options

configurefile
configure

Formats: configurefile filename
configure filename

Usedin aconfig file (.cfg file), these both read filename in as a .cfg file. Then
processing of the original .cfg file continues as normal. configure used in this
capacity is deprecated. Use configurefile instead.

grabtimeout
Format: grabtimeout

Default: -1

If timeislessthan zero, then MULTI does not check to see if there are any
outstanding grabs on the X server each timeit stops. Otherwise it checks, and if
both the keyboard and the mouse are grabbed, waits time is seconds before
aborting the grab and debugging. Thisis useful for debugging X-windows
programs that are broken and keep grabbing the keyboard and mouse, making it
impossible to issue commands to the debugger.

clickpause
Format: clickpause

Default: 4

Specifies the length of time, in tenths of a second, that MULTI waits between
button pressesto get a double or triple click. For example, if timeisfour, and
two clicks come within four tenths of a second of one another, and they are on
the same button in the same place, then they are treated as a single double-click.
On the other hand, if they come with more than four tenths of a second between
them, then they are treated as two single-clicks. If MULTI determinesthereis
no possible double click command, then it does not wait.

viewdef (Data Explorer Window Format)
Format: viewdef

Default: formats
Default setting: ShowName, ExpandValue, ReEval Context, ShowChanges

Green Hills Software, Inc. 279

10. Configuration commands

Thisresource sets which itemsin the format menu of the data explorer windows
are set by default. formatsisalist containing the following keywords:

Default data explorer formats
ShowAddress ShowAllFields
ShowName ShowBases
Alternate ReEvaluate
OnlyAlternate ReEvallnGlobal
Hex ReEvallnContext
Oct UseAddress
ExpandValue ShowChanges

For more information on the format menu, see “Data explorer format menu” in
Debugging with MULTI 2000.

geometry
Format: geometry

Default: widthxheight+x_offset+y_offset

Default setting: Depends on screen size and varies from system to system. The
width is approximately wide enough to display 80 characters on a line.

Sets the size and position of the Debugger window.offlset values are
optional. The italicized fields are specified in pixels. Théffeld may also be
“-" to specify relative to lower and right edges. For example:

geonetry 500x700+0+0

usewmpositioning

Format: useswmpositioning [on | off]

Default: Off

Allows the window manager to decide where all windows should go. When off,
MULTI tries to be a bit smarter about where windows should go.

iconify

Format: iconify

Default: Off

280 Building and Editing with MULTI 2000

Other Configuration options

Specifies whether the next MULTI window will come up iconified. state may
be on (iconify) or off (do not iconify). This option is reset to off when theicon
for the iconified window appears.

ignoremotion
Format: ignoremotion

Default: 4

Specifies the number of pixels of movement in the mouse that MULTI ignores
during the time of pressing and releasing a mouse button. If the mouse is moved
by more than the value of pixels between press and rel ease, then the mouse click
isno longer treated as a single click.

linesnonoverlapped
Format: linesnonoverlapped

Default: 4

By default, when the Debugger opens a data explorer or monitor window using
its own positioning algorithm, it tries to stack it on top of previous windows. To
save screen space, it overlaps the new data explorer or monitor window on top
of the old one. This obscures the bottom of the previous window. Set
linesnonover lapped to be the number of lines of the old window that should
still be visible after the new window is placed on top of it.

editparenmatch
Format: editparenmatch

Default: 10

Every time you type aright parenthesis, right square bracket, or right curly
brace, the Editor briefly selects the matching one. This controls how long it
pauses on the selection. timeis given in tenths of a second.

sharedsymbols
Format: sharedsymbols

Default: On

Determines whether dblink is run to process debug information from shared
libraries. Thisis also controlled with the -noshared Green Hills compiler
option.

Green Hills Software, Inc. 281

10. Configuration commands

procqualifiedlocalimpliesoutermostblock
Default: Off

On - Evenif the context pointer isin an inner block, and that inner block defines
avariable which has the same name as a variable in the outer block, areference
to that name in that procedure will reference the outer variable of that name.

Off - If the context pointer isin the inner block and the variable nameis
referenced, the inner variable will be used.

warnonbpreplacement
Default: Off

To get awarning from the debugger before replacing a breakpoint that was
already there, turn this option on. Thisisuseful to avoid losing along
breakpoint command by accidentally replacing that breakpoint with a new
breakpoint (which has no command).

warnoncmdadrlinepromotion
Default: Off

To get awarning when setting a breakpoint on aline with no corresponding
assembly (no breakdot), turn this option on.

attempttoshowoldversionofupdatesource
Default: Off

To have the debugger attempt to show the versions of source files that were
used to build the executable being debugged (via version control), turn this
option on.

allowexecutioninbpcommand
Default: Off

To allow stepping, nexting, and execution of command line procedure calls
from within a breakpoint command, turn this option on. Thisis somewhat
risky, in that if the execution from within the breakpoint command causes
another breakpoint to be hit (or the same one), infinite breakpoint command
recursion can occur. Continue ("c") is always alowed in a breakpoint
command.

keeploaders
Default: Off

282

Building and Editing with MULTI 2000

Other Configuration options

To have the debugger keep certain item chooser windows (such asfile choosers)
open after they've been used to load one file, turn this option on. With this
option off, such windows disappear after being used once.

icongeometry
Default: 32x64+0+0

icongeometry widthxheight+x_offset+y_offset
Specifies the geometry of the iconified form of the debugger. Some window
managers ignore this setting.

exprcasesensitivity
Default: Language_Default

Controls the case sensitivity of expression evaluation.

Language_Default - Recommended. Follows the case sensitivity rule for the
language of the program being debugged.

On - Expression evaluation is case sensitive.

Off - Expression evaluation is not case sensitive.

gotohitsbpattargetaddress
Default: Off

When using the debugger commapdf this option is on, any breakpoint at the
destination will be hit as soon as execution begins at the new location. If the
option is off, the breakpoint will not be hit.

disasmstyle
Default: remote

Controls the style of Motorola 68000 series assembly code.

remote - XORmacs style if and only if the code is destined for execution on an
embedded processor (not going to be executing on the same processor as
MULTI).

XORmacs - Always XORmacs style (MOVE.L (12,A6),D0).
unix - Always unix/sun style (movl a6@(12),d0).

synchronous
Default: Off

Green Hills Software, Inc. 283

10. Configuration commands

To enable synchronous X-windows mode, turn this option on. Synchronous
mode insures that X-windows calls within MULTI complete before they return.
This can be useful when running MULTI on faulty X-servers.

builderposition

This command is deprecated.
Format: builderposition
Default: 0x0

Initial position of the builder window from the upper left of the screenin

characters and lines. To specify in pixels, append the letter ‘p’. This option is
only useful if therememberwindowpaositions option is off. See also “Save
window positions and sizes” on page 242.

minwindowsize
This command is deprecated.

Default: 51x6

Minimum initial size of a non-view window, such as an 10, Target, or Monitor
window. If left unspecified, the Debugger will auto-size them appropriately.
This option is only useful if theememberwindowpositions option is off. See
also “Save window positions and sizes” on page 242.

maxwindowsize
This command is deprecated.

Default: 128x20

Maximum initial size of a non-view window. This option is only useful if the
remember windowpasitions option is off. See also “Save window positions
and sizes” on page 242.

nodecoration
Format: nodecor ation
Default: Off

If this ison and the window manager supports it, then all windows appear
without title bars.

QuietTogCmd
Default: off

284

Building and Editing with MULTI 2000

Other Configuration options

Causes the tog command to not echo the status of the breakpoint(s) it toggles.
Example:

D, // delete all breakpoints

b; // set a breakpoint

tog off; // disable the current breakpoi nt
B; // list all breakpoints

configure QuietTogCnd on

tog on; // enable the current breakpoint
B; // list all breakpoints

Green Hills Software, Inc. 285

10. Configuration commands

286 Building and Editing with MULTI 2000

Appendix

Third party tools

This appendix contains:

Third party version control systems
Third party editors

Using the Editor with third party tools
Using the Debugger with third party tools

A. Third party tools

Third party version control systems

You can configure MULTI to use athird party version control system, such as

RCS or ClearCase. See Chapter 4, “Version control” for information. If you are
using a third party version control system other than RCS or ClearCase, MULTI
does not have built-in support for it, but you can provide partial support
yourself by creating menus which open your version control system as a shell
command. For more information on invoking shell commands from editor
menus, see “Using the Editor with third party tools” on page 3.

Third party editors

You can configure MULTI to use another editor in place of MULTI’s built-in
Editor with the configuration strings:

usealter nateeditor ,usextermfor alter nateeditor, editor andeditorLaunch.

These options are accessible from the GUI by choosing Config > Options... >
Editor Tab > More Editor Options.... For more information on these variables,
see Chapter 9, “Configuring and customizing MULTI” or Chapter 10,
“Configuration commands’usealter nateeditor (which corresponds to the
"Alternate editor" checkbox in the GUI) means that MULTI should use a third
party editor instead of the build-in editarsexter mforalter nateeditor
(corresponds to "Use Xterm for alternate editor" checkbox) means that MULTI
will launch the editor inside an xterm window; use this option if your editor is
non-graphical.editor (corresponds to the "Executable” text field) should be set
to the command name of the third party editor, editbr L aunch (corresponds

to "Command line arguments" text field) to a string which indicates the format
of arguments that the Editor expects. Witkditor L aunch, the following

special escape sequences are recognized:

% LINE The line number.
%FILEO Filename (first file name if there are multiple ones).

%FILES Where the rest of the file names should go if the editor can accept
multiple file names.

For example, here are configurations for commonly used editors:

Vi

useal ternateeditor: On
usexternforal ternateeditor: On
editor: Vi

edi t or Launch: "+%. NE %I LEO"

A-2

Building and Editing with MULTI 2000

Using the Editor with third party tools

emacs

useal ternateeditor: On
usexternforal ternateeditor: o f
editor: emacs

edi t or Launch: "+0%4.| NE %I LEO %I LES"
notepad

useal ternateeditor: On
usexternforal ternateeditor: O f
editor: not epad

edi t or Launch: " 9% LEO"

Depending upon your PATH environment variable, you may need to specify the
full path to the Editor.

Using the Editor with third party tools

The Editor can be configured to launch third party tools from buttons or menus.
The Editor commands !, Shell and CommandToWindow are appropriate for
this purpose.

I (and the equivalent command ExecuteCmd) takes the current selection in the
editor, if any, and pipesit to the standard input of the specified command, and
then replaces the selection with the standard output of the specified command.
If there is no selection, the command gets no input, and the output is inserted at
the cursor.)

Shell runs a shell command with no input/output redirection.

CommandToWindow runs a shell command and opens a new editor window
which the standard output of the command is redirected to.

For more information on !, Shell, and CommandToWindow, see Chapter 7,
“Editor commands”.

Here is an example configuration that runs some simple UNIX commands:

nenu: MyTools {{’insert pretty date’ ! date "+%: %V % on
"B %, %"} {’ count words’ CommandToW ndow "printf
9BsYBsYBsY@s\\\\n lines words chars filename ; wc %I LE"}}
nenu: EditMenuBar {{&File ->EditFile} {&Edit ->EditEdit}
{V& ew ->EditVi ew}{&Bl ock ->EditBlock} {&Tool s

->Edi t Tool s} {MyTool s ->MyTool s} {&Versi on ->Edit Versi on}
{&Config ->Config} {&Help ->EditHel p}}

Green Hills Software, Inc. A-3

A. Third party tools

Recall that an easier way to configure menusis to use the Menus... button on the
General tab of the Config > Options... dialog.

Using the Debugger with third party tools

External tools can be run from within the Debugger using the Shell command.
Menus and buttons can be configured to run arbitrary external commands and
dynamically construct command-line arguments to those commands. The main
facility for constructing command-line argumentsis the % EVAL escape
sequence.

For example, hereisaset of configuration directives appropriate for invoking
SNiFF+ from within the Debugger. The variable _ SELECTI ON isaDebugger
special variable, corresponding to the current selection in the Debugger source
pane.

shellconfirm Of

useal ternateedi tor: On

usexternforalternateeditor: Of

editor: sniffedit

edi torLaunch: 9%l LEO

debugbutton: Cass i=letter_c h="SN FF browse cl ass"

c="shel | sniffaccess

browse_class */ 9%&VAL{_SELECTI O\} "

debugbutton: Hierarchy i=dsndnt h="SNi FF hi erarchy"

c="shel | sniffaccess

hi erarchy */ 9%&VAL{_SELECTI ON}"

debugbutton: Synbol i=search h="SNi FF find synbol"

c="shel | sniffaccess

find_synmbol */ %EVAL{_SELECTI O\}"

debugbutton: Retriever i=letter_r h="SN FF retriever

c="shel | sniffaccess

retrieve */ %EVAL{_SELECTI O\}"

menu: Sniff {{d ass shell sniffaccess browse_class */

YEVAL{ _SELECTI O\} }

{H erarchy shell sniffaccess hierarchy */

YEVAL{_ SELECTION}} {Synbol shell

sni ffaccess find_synbol */ %&VAL{_SELECTION}} {Retriever

shel | sniffaccess

retrieve \'*/ 9% EVAL{_SELECTI O\}}}

nenu: Ml ti MenuBar {{ &File ->FileMenu } { &Debug
->DebugMenu } { &View ->ViewMenu } { &Browse
->BrowseMenu } { T&arget ->Target } { &Tools
->Tool sMenu } { &SNi FF ->Sniff } { &Config
->ConfigMenu } { &Help ->Hel pMenu } }

A4

Building and Editing with MULTI 2000

Using the Debugger with third party tools

Green Hills Software, Inc. A-5

A. Third party tools

A-6 Building and Editing with MULTI 2000

| ndex

-sign 18

Symbols
#

using in comments 152
-# build-time option
GUI equivalent to 38,44, 48
+sd€ign 18
.bld extension 32
.inf extension 60
-> command 275
__ghs
compiler symbol 50
__ghs_eofn_funcname
compiler symbol 111
__SIDC__
compiler symbol 50
__ WChar_Is Int__
compiler symbol 70
_ WChar_Is Long__
compiler symbol 70
__WChar_Is LongLong__
compiler symbol 70
__WChar_Is Short__
compiler symbol 70
__WChar_Is Signed
compiler symbol 69
__WChar_Is Unsigned__
compiler symbol 69

Numerics
1,2,3,4 option
in builder 34, 38,39

16 bit pc-relative code 95
-2.1 option 77

-3.0 option 77

32 hit pc-relative code 96
386 options 92

486 options 92

-64bit command line option, equivalent to 106

68000 series instruction sets 93,94

68020 instruction set 93

-68030 machine specific option, equivalent
to 93

-68851 machine specific option, equivalent

to 98

68851 memory management unit 98

-68881 machine specific option, equivaent
to 95

68881 processor 95

-68882 machine specific option, equivaent
to 95

68882 processor 95

68EC* instruction sets 94

68ECO060 instruction set 94

68LC* instruction sets 94

A
-abuild-time option
GUI equivaent to 50
Abort command 202
AboutMULT]I option
in builder 41
in editor 172
Ada
eab tabletxt file 87
Ada Source Filefile type 47
Add Files to Project option
in builder 35
adding
filesto your project 17
program to your project 14
Advanced Optimizations dialog box 52
Advanced tab 63
dias
command 134,135
creating 134
removing 138
-align= machine specific option
GUI equivdent to 64
Alignment option 64
All Others optimization 54
Allocation, memory checking option 55
Allow Auto Checkout menu item
in editor 170
Alphaoptions 103
AlterMode command 212,213
-ANSI C option
GUI equivdent to 69
Append extension field
in file actionswindow 60

Green Hills Software, Inc.

| ndex

AppendTagFile menu item

in editor 170
-archive command line option

GUI equivaent to 62
Archive, filetype 62
Arguments field

in builder File Options window 59
Array Bounds check box

in Runtime Checking window 56
-asmwarn build-time option

GUI equivaent to 73
assembly code

compiler output 63

file type for builder 47

stopping with from C source 61
Assignment Bounds check box

in Runtime Checking window 56
Attach to Process...

in builder File menu 38
Auto Indent menu item

in editor 168
Auto Register optimization 54
auto-indent 152

characters 153
automatic checkout 139
automatically indenting text 168
Automatically use MV C check box

in file options window 50

B

.bld extension 32
Backl Search command 201
Backspace command 197
Backward radio button

in search window 180
base project 19
beeping

enabling and disabling 243
Big-Endian option 102
-bigswitch Fortran option, equivalent to 98
block profiling 50
braces,matching 167
brackets,matching 167
branching and version numbers 131
-bsd command line option

GUI equivaent to 64
bsd output mode 64

buffers

containing string of editor commands 206
copying to 197

cutting to 197

pasting from 198

build

files 13
inheritance from 21
projects
collapsing 18
expanding 18

Build All check box

in Build Panel 43

Build All option

in Builder 37

Build menu

in Builder 37

build menu

Toolchain options 118

Build Selected Files option

in builder 37

Builder

Build menu 37

Build Panel 43

closing 34

Config menu 40

Debug menu 38

display options for 44
Edit menu 35

filemenu 33

Help menu 41

help option 41

ignoring errors 37,44
ignoring file dependencies 51
main window 32
opening anew project 13
opening a project in adifferent window 13
opening a subproject 12
output pane 43

Project menu 35
rebuilding all files 37, 43
Remote menu 39

source pane 42

starting 12

status bar 43

stopping 127

target window 43

test run 38,44

-2

Building and Editing with MULTI 2000

| ndex

toolbar 41
Version menu 39
window 32
Builder field
in builder File Options window 57
Builder Help option
in Builder 41
building 24
librarieswith your project 16
sourcefiles 24
button command (deprecated) 268
buttons
attaching amenu to 273
changing behavior of 268
using iconsinstead of text for 243

C

-C C and C++ preprocessor option, Kanji

equivalent 72
-C command line option

to MULTI 7
-c command line option

GUI equivaent to 61

to MULTI 7

version control 77,132
C language

C version, in Language Options dialog

box 69

optionsin builder 68

Source Filefile type 47

Source output format 63
Ctab

in Language Options dialog box 68
C Trandator processor option 63
C++ language

optionsin builder 75

Source Filefile type 47
C++tab

More Options dialog box 82
case sensitivity

in searches 243

variablesin program files 50

when searching in editor 180
Casetoggle

in search window 180
Case/Switch Statement check box

in Runtime Checking window 56
cfront options 77
--cfront_2.1 option 77
change dot
in editor 175
characters
auto-indenting 153
inserting 149
inserting literally 215
check 57
check box
convention for P-3
Check In All menu item
in editor 170
Check In option
in builder 39
Check In+Out option
in builder 39
Check Out option
in builder 39
-check=* commands
GUI equivaent to 55,56, 57
-check=usevariable command line option
GUI equivaent to 56
Checkin menu item
in editor 170
checking in all files 170
checking in files 39,135,138, 170
checking out files 39, 131, 136, 137,170
Checkout menu item
in editor 170
ci command 135
cio command 136
Clean Up check box
in build panel window 44
Clean Up option
in builder 38
Clear Default Configuration menu item
in editor 171
Clear Default Configuration option
in builder 40
ClearCase 139
clickpause, resource 279
clipboard
copying filesto 35
copying rectangular text section to 198
copying to 166, 197

Green Hills Software, Inc.

| ndex

cutting filesto 35
cutting rectangular text section to 198
cutting to 166, 197
pasting filesfrom 35
pasting from 166
Close
menu item
in editor 165
close buttons
displaying 243
Close command 204
co command 136
code indenting 152
-coff command line option
GUI equivaent to 64
COFF output mode 64
ColdFireingruction set 94
collapsing projects 18
colors
configuring 263
Column menu item
in editor 167
Command Directory field
in builder File Options window 59
command line
configuration file 238
script file 238
command name field
in configuration options window 59
command pane P-3
commands
binding multiple key pressesto 212, 213
configuration 242
conventions for P-2
cursor movement 219
deleting text 222
file manipulation 224
for keys or mouse clicksin editor 172
identifying for keys or mouse clicks 214
indenting text 222
searching files 220
selecting text 220
shell 206
strings of 169, 206
Commands check box
in build panel window 45
Commands display level 48
Commandsfield

in builder File Options window 59
Commands to process output

in builder, File Options window 63
Commandsto set up input files

in builder, File Options window 62
Comment menu item

in editor 168
commenting text

inserting 168

removing 168
comments

for log files 165

inMVC 77,132

inserting in code 151

keeping flush-left 152

using 151
Common Subexpression optimization 53
comparing files 160
Compilation menu

in builder, File Options window 63
compiling

libraries with your project 16
Config menu

in Builder 40
configuration

commands for 242
configuration file format 232
configuration option

QuietToCmd 284
configure command 212, 230
configuring

colors 263
configuring editor 162
configuring MULTI

clearing &l saved changes 171

loading appearance/functionality

settings 171

Options menu item 171

saving changes 171
constant definitions

setup 23

undefining 24
Constant Propagation optimization 53
ContinueSelection command 194
control characters

inserting 215
conventions for this manual P-2
Copy Files option

-4

Building and Editing with MULTI 2000

| ndex

in builder 35
Copy in editor

Copyl1 command 197

Copy2 command 197

Copy3 command 197

Copy4 command 197
Copy menu item

in editor 166
copyfile command 135
copying, cutting and pasting 222
Coverage Analysismenu

in file options window 50
CPU Options menu

in CPU options window 92
CPU Options option

in builder 37
Create

command 131, 135

new filein editor 146
Createl.og command 209, 212
curly braces,matching 167
cursor movement

beginning of file 190

beginning of line 190

beginning of next line 189

column 167

displaying line containing 191

down multiple lines 189

down oneline 188

down one page 189

end of file 190

end of line 190

flashing to current line 167

left multiple characters 189

line number 190, 191

list of keys and commands for 219

next character 188, 189
next word 190
previous character 188, 189
right multiple characters 189
size of "some" commands 255
up multiple lines 189
up oneline 188
up one page 189
when dialog box opens 244
customizing See configuring
Cut Files option

in builder 35
Cut in editor
Cutl command 197
Cut2 command 197
Cut3 command 197
Cut4 command 197
Cut Lines menu item
in editor 169
Cut menu item
in editor 166
CyclePush command 204

D

-D C and C++ option
GUI equivaent to 50
-D command line option
to MULTI 7
-d option 132
-dalign command line option, equivaent to 113
-data command line option
to MULTI 7
data explorer windows
format for 279
date command 169
dblink command
processing debug information 281
Debug in builder
Current Project option 38
Other option 38
servers 28
Debug menu 38
debug servers
currently supported 28
debugger
debugging level from compiler output 49
debugger window
size and position of 280
Debugging 27
Debugging level 48
Default
display level 48
filetype 46
memory checking option 55
default.bld 14
Definesfield
in file options window 50

Green Hills Software, Inc.

| ndex

deledit command 136
Delete command 197
Delete menu item
in editor 166
deletefile command 136
deleting text
current selection 197
list of keys and commands for 222
previous character 197
delget command 135
deltacommand 135
Dependencies display level 48
Dependencies field
in file actionswindow 62
dialog boxes
cursor movement in 244
diff 160
diff command 136
DiffFiles command 205
DiffFiles menu item
in editor 170
directories
for subprojects 15
Discard Changes menu item
in editor 170
Discard Changes option
in builder 39
Disconnect option
in builder 39
disp command 136
DISPLAY 5,12
Display close (x) buttons
Config > Options 243
-display command line option
to MULTI 5
-display option 12
displaying
close buttons 243
Divide by Zero check box
in Runtime Checking window 56
division_check
runtime check, suppressing 87
Do not rebuild... check box
in file options window 51
Documentation file type 47
-dotciscxx command line option
to MULTI 7
Down command 188

DownSome command 189
size of 255
Driver Optionsfield
in file options window 50
dryrun build 24
-dryrun build-time option
GUI equivaent to 38,44
Dynamic download project check box
in advanced options window 67

E

-E C and C++ preprocessor option
GUI equivaent to 61
-E command line option
to MULTI 7
-e command line option
to MULTI 7
Edit
command 136
Edit menu
in Builder 35
Edit Selected Files option
in builder 35
editincrfrequency command 258
EditLine command 190
editor
accessing next files 167
accessing previousfiles 167
closing 204
command stringsin 169
configuring 162
creating files 146
cycling through windows 204, 215
editing files 148
exiting 165
files merging 156
frequency of recording recent changes 258
helpon 172
insert mode 215
invoking 165
keyboard settings
moving the cursor 219
keyboard settings for 219
main window 164
merge
threefilesinto asingle file 158
two filesinto asingle file 157

-6

Building and Editing with MULTI 2000

| ndex

merging files 156
navigating between open files 147
opening files 145,146
quick search 155
repeating previous actions 202
repeating previous commands 166
saving files 147
scratch filesin 169
searching 155
quick search tips 156
using wildcards 156
selecting languages 167
setting files 167
setting language 151
starting 144
from the Builder window 144
from the Debugger 144
from the Progress window 144
starting as standalone program 145
version control 160
working with your code 151
using comments 151
Editor commands
ShowContextMenu 213
editor window
iconsin 173
progress 126
EditorFlags command 204
editparenmatch command 281
edits
repeating 149
reversing 148
EditTag command 209
--eel option 77
--eeleoption 77
Either radio button
in search window 180
--¢l option 77
elab_table.txt file
Adaoutput file 87
--ele option 77
-elf command line option
GUI equivaent to 64, 65
ELF output mode 64, 65
embedded programming in MULTI 4
Endfiles option
in advanced options window 66

EndsLine radio button
in search window 180
EndsWord radio button
in search window 180
EnterlnsertM ode command 215
-entry= linker option
GUI equivdent to 66
EOF command 190
EOL command 190
-ep build-time option
GUI equivaent to 87
ErrorOrTag command 207
errors
alocation 55
array bounds 56
assignment bounds 56
case/switch statements 56
display level 48
displaying from builder 126
divide by zero 56
exit without return 57
from builder 126
from make command 208
ignoring when building 37,44
memory 55
null dereferences 56
Pascal variants 57
tracing down build errors 25
unused variables 56
watchpoint 57
escape key interrupt 225
Exact radio button
in search window 180
executable
defining in your project 14
filetype 62
ExecuteCmd command 206
Exit menu item
in editor 165
Exit option
in Builder 34
Exormacs output mode 65
expanding projects 18

=
-F option 138

Green Hills Software, Inc.

| ndex

Far Function Calls option 110

fc command 137

-ffpnop machine specific option, equivalent
to 97

-ffunctions machine specific option, equivalent
to 93,97

File Actionstab 59

Filefield
in editor 174

File menu
in Builder 33
in editor 165

File Options
dialog box 45

File Options option
in builder 36

filetype, changing 18

filetypes 60

filename
no spaces alowed 33
recalculating after change source

directories 36

files
adding to project 35
adding to your project 17
archiving 137
automatic check out 170
changesindicated in editor 175
checking in 39, 135, 138, 170
checkinginal 170
checking out 39, 136, 137,170
closing 165
comparing 160
copying to clipboard 35
cutting to clipboard 35
differences between 170, 205
displaying comments and versions 40
editing 165
inserting 169
last edited version 171
list of keys and commands for 224
merging 156, 170, 205
packing 137
pasting to clipboard 35
printing 165
pushing 204
retrieving when locked 39
reverting to last version 170

saving 165, 203
scratch 169, 207
searching for in project 20
searching with grep. See grep command
setting options 22
simplifying filenames 35
switching read/write modes 167
temporary 38,44
type of 46
unlocking 138
unpacking 137
version control 170
versions of. See version control
Find button
in search window 179
Find menu item
in editor 166
Find then Replace button
in search window 179
Flash Cursor menu item
in editor 167
FlashCursor command 191
-fnone build-time option, equivalent to 92, 95,
99,102, 103, 104, 105, 108, 109, 110,112,113,
114,115,116
FORTRAN
options dialog box 88
optionsin builder 88
Source Filefile type 47
Version menu
in FORTRAN options window 88,91
Forward radio button
in search window 180
-fprecise command line option, equivaent to 92
-fpreci se machine specific option, equivalent
to 98
FR20 options 104
-freturnd0 machine specific option, equivalent
to 97
-fsoft build-time option, equivaent to 92, 95,
102,103,104, 105,108,112, 113
full_parameter_check
build-time option, GUI equivalent to 119
Functions profiling level 49

G

-G command line option

Building and Editing with MULTI 2000

| ndex

to the compiler 6
-g command line option
to the compiler 6
-G debugging option
GUI equivaent to 49
-g debugging option
GUI equivaent to 49
-gadebugging option
GUI equivaent to 49
geometry command 280
get command 137
global configuration file 237
global script file 238
gnu_c C compiler option, equivaent to 73
Goto menu item
in editor 166
grabtimeout, resource 279
Graph profiling level 49
Green Hills Include Dirsfield
in builder File Options window 58
Green Hills Librariesfield
in advanced options window 66
Green HillsLibrary Dirsfield
in builder File Options window 58
grep command 169, 205
See Also searching files
Grep menu item
in editor 169
GUI conventions P-3

H

-H command line option
GUI equivaent to 67
Halt button
in progress window 127
header files 17
-help command line option
to MULTI 7
Help menu
in Builder 41
in editor 172
hierarchy
of your project 13
Host kanji drop-down list
in Language Options dialog box > C tab 70

I
-I build-time option
GUI equivaent to 58
-I command line option
to MULTI 7
i386 options 92
i486 options 92
1960 options 102
iconify, resource 280
icons
using for buttons 243
Identify command 214
Identify menu item
in editor 172
-ieee695 command line option
GUI equivdent to 65
|EEE695 output mode 65
Ignore Errors check box
in Build Panel 44
Ignore Errors option
in Builder 37
ignoremotion command 281
in Builder 38
IN/OUT window 29
In-Circuit Emulators 5
Include Filefiletype 47
Indent command 191
Indent menu item
in editor 168
indenting text 152, 191, 204
automatically 168
changing size of 152
Editor auto-indent 152
inserting indents 168
list of keys and commands for 222
removing indents 168, 192
size of indent 204
Inf file, file type 60
infiniteredo 166
infinite undo 166
information file 60
Inline check box
in optimization options window 53
Inline field
in optimization options window 54
Inline Prologue option 110
Inlining drop-down list box

Green Hills Software, Inc.

| ndex

inC++tab 77
Insert Date menu item

in editor 169
Insert File menu item

in editor 169
insert mode 215
InsertFile command 215
inserting

commentsin code 151

control characters 215

entirefiles 215

extra Fpnops 97

literal characters 149

new line 214

text between double quotes 214
InsertNewline command 214
instruction set simulators 5
instruction sets, 68000 series 93
| Search command 201

J

Join Lines menu item
in editor 169
JoinLines command 200

K

-k+r C option
GUI equivdent to 69
kanji - see 16hitfont,resource
-kanji= command line option
GUI equivaentto 70
Keep Temp Files check box
in advanced options window 67
keybind command 269
keyboard settings
in editor 219
Copying, cutting and pasting 222
Debugging 224
Deleting text 222
File commands 224
Fixing errors 224
Indenting 222
Miscellaneous 225
Moving the cursor 219
Searching 220
Selecting text 220

keys
attaching amenu to 273
binding commands to 212,213
for cursor movement 219
for deleting text 222
for file manipulation 224
for indenting text 222
for searching files 220
for selecting text 220
identifying command for 214
specifying actions and locations for 269

L
-L build-time option
GUI equivaent to 58,59
-L command line option
to MULTI 7
-L option 134
-l option 133
Label at End of Function option 111
language
optionsin builder 37
setting in Editor 151
Language menu item
in editor 167
Left command 188
LeftSome command 189
size of 255
LeftU command 189
Librariesfield
in file options window 51
library
building with your project 16
filetype 47
linking to a program 16
setting options 21
Library Directories field
in file options window 51
Linefield
in editor 174
line numbers
moving to 190, 191
LineD command 191
lines
cutting 169
inserting 214
joining 169

[-10

Building and Editing with MULTI 2000

| ndex

leaving unobscured 281
merging 200
linesnonoverlapped command 281
Link without
default startfiles or libraries 68
Linker Filefiletype 47
linking
to acompiled library 16
Little Endian option 111
-littleendian command line option, equivalent
to 106
Little-Endian option 106
Load Configuration menu item
in editor 171
Load Configuration option
in builder 40
LoadFile command 202
L oadFileWithNewEditor command 203
LoadM odule option
in builder 39
log files 131
comments for 165
creating 135, 209, 212
creating diasin 134
displaying 138,171
saving 165, 203
Loop optimization 54
options
check box 53
field 55
Loop Unrolling optimization 53, 54
LowerCase menu item
in editor 168
lowercasing characters 168

M

-m command line option

to MULTI 7
macros 236

definitions 50
make command

errors from 208
Match menu item

in editor 167
MC68000 options 93
MCF510x instruction set 94

MCF520* instruction sets 95
MCore options 104
Mem output mode 65
memory checking option 55
-memory command line option
GUI equivaent to 65
menu
creating 273
invoking 275
menu command 273
MergeFiles command 205
MergeVersions menu item
in editor 170
merging files 156
messages. See errors
Min Max optimization 53
Minibuffer command 206
MiniBuffer menu item
in editor 169
MIPS options 105
modifications to files, indicating 175
moon command 245
mouse
attaching amenu to 273
conventions for using P-3
default functions for 225
defining functions for 275
identify commands for 214
ignoring motion of 281
mouse clicks
time between - see clickpause, resource 279
movefile command 137
MULTI
chip support 4
command line options 7
exiting 34, 165,204
running from command line 5
MULTI Version Control. See version control
Multiple Tiny Data Area option 101
MVC
commands 132
menu in editor 170
MV C. See version control
Mvcbuffer command 210

Green Hills Software, Inc.

| ndex

N

naming executable 25
navigating project 18
nCPU options 108
NDR options 109
New Builder option
in builder 34
NewEditor menu item
in editor 165
NewTag command 208
Next File menu item
in editor 167
NextWindow command 215
-no_ansi_alias build-time option
GUI equivdent to 72
--no_explicit build-time option, equivalent to 79
-no_num_check
runtime check 87
Nobuild file type 46
-nocfg command line option
to MULTI 8
nodecoration, resource 284
-nodisplay
command-line option for MULTI 12
-nomanifest command line option, equivalent
to 93
None, memory checking option 55
-noobj command line option
GUI equivaent to 63
-nopic command line option, equivaent to 95
-nopid PID option, equivalent to 96
-norc command line option
to MULTI 8
Normal check box
in search window 180
NoSelection command 193
-noshared command line option
to MULTI 8
-nosplash command line option
to MULTI 8
-nostdlib command line option
GUI equivaent to 68
Notepad command 207
NotePad menu item
in editor 169
NULL Dereference check box
in Runtime Checking window 56

NxtErr button
in progress window 126

@)
-0 build-time option
GUI equivaent to 59
-oasys command line option
GUI equivaent to 64,65
Oasys output mode 64, 65
Qasys Srec output mode 65
-obj command line option
GUI equivaent to 63
Object Filefiletype 47
Object output format 63
Object, filetype 61
Only Srec output mode 65
Open
menu item
in editor 165
option
inbuilder 34
open
filesin the editor 146
new project in Builder 13
subproject in Builder 12
OpenFile command 202
OpenTag command 208
OpenText command 205
operating system, target 65
optimization options setup 23
Optimization tab 52
options
advanced 63
constant definitions setup 23
entering multiple items 23
file 45
file actions 59
inheritance in your project 21
language 37
optimization 52
optimization setup 23
runtime checking 55
run-time error checking setup 23
selecting targets 36
setting for aproject 38
setting for programs and subprojects 21
setting for source files 22

[-12

Building and Editing with MULTI 2000

| ndex

setting in builder 36, 37

undefining constant definitions 24
Options menu item

in builder Config menu 40
Other filesfield

in file options window 52
Other VC Command option

in builder 40
Output dual debug formats check box

in advanced options window 67
Output Filename field

in file actionswindow 59
Output Mode option 64
output pane

in Builder 43
overflow_check

runtime check, suppressing 87
Overload Registers optimization 54

P
-p build-time option
GUI equivaent to 49
-P C and C++ preprocessor option
GUI equivaent to 61
-P command line option
to MULTI 8
-p command line option
to MULTI 8
package command 137
packing, structure 64
PageDown command 189
PageUp command 189
-parameter_check
build-time option, GUI equivalent to 119
parentheses
matching 167,204
pause for matching 281
Pascal
optionsin builder 91
optionswindow 91
Pasca Source Filefile type 47
Pasca Variants check box
in Runtime Checking window 57
Pascal Version menu
in Pascal optionswindow 91
-passsource command line option

GUI equivaent to 67
Paste Files option
in builder 35
Paste in editor
Pastel command 198
Paste2 command 198
Paste3 command 198
Paste4 command 198
Paste menu item
in editor 166
Peephole optimization 53
Pentium options 92
Per File Settings menu item
in editor 167
Percent profiling level 49
Performance analysis drop-down list
in File Options dialog box 49
-pg build-time option
GUI equivdent to 50
-PIC command line option, equivalent to 113
PIC option
GUI equivaent to 114
PIC options, equivalent to 96, 100, 102, 106, 109,
112,113
-pic32 PIC option, equivalent to 96
PID options, equivalent to 96
-pid PID option, equivalent to 100,102, 106, 109,
110,112
-pid16 PIC option, equivalent to 96
-pid16=a* PIC options, equivaent to 96,97
-pid32 PIC option, equivaent to 97
Pipeline optimization 53
Place under VC menu item
in editor 170
Place Under VC option
in builder 40
Plain debugging level 49
platforms
building for multiple 25
Position Independent Code option 95, 100, 102,
106, 109, 110,112,113, 114
Position Independent Data option 96, 100, 102,
106, 109, 112
Position Independent Data options 110
PowerPC options 110
-preassembl e machine specific option, equiva
lent to 98

Green Hills Software, Inc.

1-13

| ndex

Preprocessor file, file type 61
Preprocessor output, file type 60
Previous File menu item
in editor 167
Print
menu item
in editor 165
Print Current View option
in builder 34
print entire hierarchy option
in builder 34
print to file option
in builder 34
processors
building for multiple 25
profiler
level of 49
program
adding sourcefiles 17
building 24
case sengitivity in 50
changing name of compiled file 25
defining in your project 14
linking to alibrary 16
script file 238
setting options 21
Program file type 46
Progress check box
in Build Panel 44
Progress display level 48
progress window 126
project
1,2,3,4 option 34
adding sourcefiles 17
building 24,37
hierarchy 13
loading in builder 34
printing current view 34
printing the entire hierarchy 34
printing to file 34
rearranding order of files 18
rearranging order of files 17
reverting to last saved version 34
saving 34
searching for files 20
Select One Files option 46
setting optionsfor 38
Project menu

in Builder 35

Q

QuerySaveAll command 203
QuerySaveComments command 203
QuietToCmd configuration option 284
Quit command 204
QUuIitAll menu item

in editor 165
QuitAll option

inbuilder 34
Quote command 179, 215
quotes, inserting text in 214
-Qy command line option

GUI equivaent to 67

R

-R command line option
to MULTI 8
-r command line option
to MULTI 8
RCS 139
Read Only menu item
in editor 167
rearranging
filesinproject 17,18
Reasons check box
in build panel window 44
Recal cul ate Filenames option
in builder 36
rectangular text section
copying 168, 198
cutting 168, 198
pasting 168
RectCopy menu item
in editor 168
RectCopy1 command 198
RectCut menu item
in editor 168
RectCut1 command 198
RectPaste menu item
in editor 168
redo changes 166
Redo command 202
Redo menu item
in editor 166

1-14

Building and Editing with MULTI 2000

| ndex

RegExpr toggle

in search window 180
regular expressions

in search strings 180
-remote command line option

to MULTI 8
Remote field

in advanced options window 66
Remote menu 39

in Builder 39
remote system

disconnecting from 39
remver command 138
repeating edits 149
Repeatlast command 202
RepeatL stEdit menu item

in editor 166
Replace All button

in search window 179
Replace button

in search window 179
Replace Then Find button

in search window 179
ResetTags menu item

in editor 170
restrictions

in filenames (no spaces allowed) 33
Retrieve option

in builder 39
Return check box

in Runtime Checking window 57
Return command 189
ReverseWord command 190
Revert command 204
Revert itemsin editor

Revert File 165

RevertDate 171

RevertHistory 171

RevertToVersion 171
Revert Project option

in builder 34
Right command 188
RightD command 189
RightSome command 189

size of 255
ROM emulator 5
ROM monitors 5

RTOS (real time operating system) servers 5

Runtime Checking options 55
Runtime Checking tab 55
run-time error checking options 23

S

-S command line option
GUI equivaent to 61
-Soption 134
Save Asoption
in builder 34
Save command 203
Save Configuration
as Default option
in builder 40
option in builder 40
Save Configuration as Default menu item
in editor 171
Save Configuration menu item
in editor 171
Save menu item
in editor 165
Save option
in builder 34
save window positions and sizes
Config > Options 242
SaveAll command 203
SaveAll menu item
in editor 165
SaveAllLog command 203
SaveAs command 203
SaveAs menu item
in editor 165
saving
window positions and sizes 242
Saving Files 147
scratch files
editing 169, 207
Script file type 47
scripting 234
scroll bars
displaying on left or right 244
width of 245
scrollbarwidth command 245
scrolllocation command 244

-sda Small Data Area option, equivalent to 101,

Green Hills Software, Inc.

| ndex

102,107,109, 112,116,117
-sda= small data area option
GUI equivalent to 114
-sda= special dataareaoption, equivaent to 103,
108,112
-sda= tiny data area option
GUI equivaent to 114
Search button
in editor 178
Search command 200
Search menu item 178
search window 178
invoking 200
searching
case sensitivity in 243
case-senditive 155
for filesin your project 20
functions 154
in Editor 155
quick search in Editor 155
searching files 179
case sensitivity 180
incrementally 201
list of keys and commands for 220
regular expressionsin 180
wildcardsin 180
SecondarySel ectAll command 195
Secondary Sel ectionExtend command 195
SecondarySel ectionReplace 195
Secondary Sel ectionReplaceClip command 195
SecondarySelectionStart 195
SecondarySelectLine command 195
SecondarySel ectWord command 195
Select field
in builder File Options window 58
Select One
build files 25
file type 46
Files,setting up for a project 46
Select Target option
in builder 36
SelectAll command 193
SelectAll menu item
in editor 166
selected text
entirefile 166
extending 194
list of keys and commands for 220

Selection commands 193, 194, 195
setting your target 13
SH options 111
-shared command line option
GUI equivaent to 62
Shared Data Library file type 47
Shared Data, file type 62
Shared Library file type 47
Shared Object, file type 62
sharedsymbols command 281
shell commands
executing 206
shortcut commands
backward 20
forward 20
-shortenum C compiler option, equivaent to 75
-shortwchar C and C++ compiler option
GUI equivaent to 69
show command 138
Show Headers check box
in advanced options window 67
Show History option
in builder 40
Show menu
in file options window 48
Show Versions check box
in advanced options window 67
ShowContextMenu (Editor command) 213
ShowHistory menu item
in editor 171
ShowL astEdit command (editor) 210
ShowL astEdit menu item
in editor 171
-signedchar C compiler option, equivalent to 75
-signedfield C compiler option, equivaent to 75
-signedptr C compiler option, equivalent to 75
-signedwchar C and C++ compiler option
GUI equivaent to 69
Simplify Filenames option
in builder 35
simulators
currently supprted 28
Single File Library filetype 46
16hitfont, resource 245
sizeindents 152
Small Data Area
option 101,102,112, 115,117
Threshold option 103,108, 112,114

1-16

Building and Editing with MULTI 2000

| ndex

Small Printf check box
in advanced options window 67
SOF command 190
SOL command 190
SOL1 command 190
SOLO command 190
SOL Secondary command 195
somesize command 255
source code control. See version control
source directories
recalculating filenames after updating 36
Source Directoriesfield
in file options window 51
sourcefiles
adding to your project 17
building individually 24
defining and creating 17
setting options 22
Source Linesin Asm File check box
in advanced options window 67
source pane P-3
in Builder 15,42
in Builder (picture of) 19
Source pane (Builder)
navigating 18
spaces
not allowed in filenames 33
SPARC options 113
Special Tag command 208
specification file 8
square brackets
matching 167
-srec linker option
GUI equivdent to 65
Srec output mode 65
-srecoasys command line option
GUI equivdent to 65
-sreconly linker option
GUI equivaent to 65
ST100 options 114
Stack debugging level 49
StarCore options 115
Start/End File Dir field
in advanced options window 66
Startfilesfield
in advanced options window 66
starting

Builder 12

editor 144
dtarting editor 144

from the Progress window 144
StartsLine radio button

in search window 180
Startsword radio button

in search window 180
startup files 237
status bar P-3

in Builder 43
--stdl option 77
--stdle option 77
Stop With menu

in file actionswindow 60
stopping

Builder 127
Strcpy optimization 53
Structure Packing option 64
subproject 15

filetype 46

opening in Builder 12

saving 34

setting options 21

using separate file directories 15
Sym file, file type 62
syntax checking 235
-syntax command line option

GUI equivaent to 61
Syntax, filetype 61
System Include Dirs

in builder File Options window 58
System Librariesfield

in advanced options window 66
System Library Dirsfield

in builder File Options window 59

T

-T C compiler option, equivaent to 75
tab size 204, 255
tabsize command 255
tag files
appending 170
deleting 170
tags 154
Tail Recursion optimization 53

Green Hills Software, Inc.

I-17

| ndex

target
building for multiple 25
setting 13
supported 4

Target kanji drop-down list

in Language Options dialog box > C tab 70

Target OS option 65
Target window 29
target window
in Builder 43
target window, how to search 29
Tekhex output mode 65
Temp Directory field
in advanced options window 65
temporary files 44
Test Run check box
in Build Panel 44
Test Run option
in Builder 38
-text command line option
to MULTI 8
third party tools
editors with the MULTI environment A-2
integrating the Debugger A-4
integrating the editor A-3
using with MULTI A-1
version control systems 139
version control systemswith MULTI A-2
three-way check box P-3
Tiny Data Area
Threshold option 114
title bars - see nodecoration, resource 284
-tmp= C compiler option
GUI equivaent to 66
Toolbar P-3
tool bar
in Builder 41
Toolchain option 64
Toolchain Options
in builder 37
Tools Directory field
in configuration options window 59
tooltips
enabling and disabling 243
Trandated Cfile, filetype 61
TriCore options 116
two-way check box P-3
Type drop-down list

in File options dialog box 46
Type of wchar_t menu
in C options window 69

U

-U Fortran option

GUI equivaent to 50
unalias command 135, 138
UnComment menu item

in editor 168
Undefinesfield

in file options window 50
Undo button

in search window 180
undo changes 166
Undo command 202
Undo menu item

in editor 166
unedit command 138
Unindent command 192
Unindent menu item

in editor 168
unindenting text 168, 192
unlock command 138
unmvc command 137
unpackage command 137
Unroll 8 optimization 53, 54
Unroll Big optimization 53,54
Unused Variables check box

in Runtime Checking window 56
Up command 188
UpperCase menu item

in editor 168
uppercasing characters 168
UpSome command 189

size of 255
user configuration file 238
user script file 238
usewmpositioning, resource 280
using third party toolswith MULTI A-1

\%
-v build-time option
GUI equivaent to 48
-V command line option
GUI equivaent to 67

[-18

Building and Editing with MULTI 2000

| ndex

to MULTI 8
-v option 131
V800 options 99
version control 129,170
automatic checkout 139
automatically placing files under 50
checking out files 131
ClearCase 139, 140
commands for 132
deleting version 138
differences between files 205
differences between versions 170
displaying last edited version 210
editor 160
enabling 170
file history 171
finding changed version 137
invoking commands for 210
last edited version 171
merging multiplefile versions 170
merging multiple files 205
RCS 139
remove version 138
removing 137
removing alias 138
reverting to previous version 171, 204
reverting to previously saved version 165
reverting to specific date 171
reverting to specific version 171
Version menu
in Builder 39
version number
branching 131
creating aias from 134
displaying 136
View menu
in editor 167
viewdef resource 279
Virtual Tablesmenu
in C++ options window 77

w

Warnings check box

in build panel window 44
Warnings display level 48
warppointer command 244

Watchpoint check box
in Runtime Checking window 57
who command 139
WildCard check box
in search window 180
wildcards
in searches 180
window positioning - see usewmpositioning,
resource 280
window positions and sizes
saving 242
windows
conventions for P-3
Word command 190
wrapped text 204

X

-Xansiopeq command line option, equivalent
to 74

-Xincludenever C preprocessor option, equiva-
lent to 71

-Xincludeonce C preprocessor option
GUI equivaentto 71

-Xincludeonce C preprocessor option, equiva-
lent to 81

-Xinitextern command line option, equivalent
to 73

-Xneedprototype C compiler option, equivalent
to 72

-Xnoalias C option, equivalent to 72

-Xnocpperror C and C++ preprocessor option,
equivalent to 71

-Xnoidentoutput C compiler option, equivalent
to 72

-Xnooldfashioned C option, equivalent to 74

-Xnopragmawarn C and C++ preprocessor
option, equivaent to 71

-Xpragma_asm_inline command line option,
equivalent to 71

-Xredefine C preprocessor option, equivalent
to 71

-Xs C option,GUI equivalent to 69

-Xslashcomment command line option, equiva-
lent to 72

-Xt C option, GUI equivaent to 69

-Xunknownpragmawarn command line option,

Green Hills Software, Inc.

1-19

| ndex

equivalent to 71
-Xwantprototype C compiler option, equivalent
to 72

Y
-Y| build-time option

GUI equivaent to 58
-YL build-time option

GUI equivaent to 58,59
-Y S command line option

GUI equivaent to 66
-Y U build-time option

GUI equivaent to 58,59

Z

-zda special data area option, equivalent to 102,
108,109, 116, 117
Zero Data Threshold option 101, 115,117

1-20 Building and Editing with MULTI 2000

	Building and Editing with MULTI® 2000
	Contents
	Preface
	About the MULTI manuals
	Conventions
	Typographical conventions
	GUI mode conventions
	GUI conventions
	Check box conventions

	1 Introduction to MULTI
	Features
	Project Management
	Version Control
	Editing
	Debugging

	Embedded programming in MULTI
	Running MULTI from the command line
	Command line options
	Specification file

	Resources

	2 Using the Builder
	Starting a Builder session
	To start the Builder from the command line
	To open a different project in the same Builder window
	To open a project in a new Builder window
	To set your target

	Setting up your software project
	Using default.bld
	To define the executable programs in your project
	To define a subproject
	To link in a compiled library
	To link to a library that gets built with your project
	To add an existing source file to your project
	To define and create a new source file
	To define header files
	To change a file’s type
	To rearrange the order of files in the hierarchy

	Navigating through your project
	The base project
	Navigating among base projects

	Searching through your project
	To view all files in the base project
	To expand the hierarchical view of the current program, subproject, or library so you can view al...

	Setting options: An overview
	Inheriting options from parent build files
	Viewing inherited options
	Setting options for programs, subprojects, and libraries
	Setting options for source files
	Understanding tick boxes
	Entering multiple text items for an option

	Important options
	To set optimization options
	To set run-time error checking options
	To set manifest constant definitions for the preprocessor
	To undefine manifest constant definitions for the preprocessor

	Building your project
	To perform a dryrun build
	To build individual source files
	To specify the name of the compiled program or library file
	To track down errors from a build
	Building platform-specific programs from the same source files
	To define your project for multiple platforms
	To build a platform-specific program

	Debugging
	To set what debugging information gets generated
	To connect to a target through a debug server or simulator
	To start a debug session

	3 The Builder GUI
	The Builder window
	Title bar

	The Builder menus
	Pop-up menu
	File menu
	Edit menu
	Project menu
	Build menu
	Debug menu
	Remote menu
	Version menu
	Config menu
	Help menu

	The Builder toolbar
	Other Builder components
	Source pane
	Output pane
	Status bar
	Target window

	Build Panel
	Build all
	Ignore errors
	Clean up
	Test run
	Progress
	Warnings
	Reasons
	Commands

	File Options dialog box
	Merge
	OK
	Cancel
	Apply
	File Options > General tab
	Type (drop-down list)
	Show (drop-down list)
	Debugging level (drop-down list)
	Performance analysis (drop-down list)
	Coverage analysis (drop-down list)
	Automatically use MVC
	Driver options:
	Defines:
	Undefines:
	Libraries:
	Source directories:
	Library directories:
	Don’t rebuild because of changes in:

	File Options > Optimization tab
	Default
	No optimization
	Optimize for size
	Optimize for speed
	Advanced button

	Advanced Optimizations Options dialog box
	File Options > Run-time Error tab
	Memory checking (drop-down list)
	Assignment Bounds
	NULL Dereference
	Case/Switch Statement
	Divide by Zero
	Unused Variables
	Pascal Variants
	Watchpoint
	Return

	File Options > Configuration tab
	Builder:
	Select:
	Green Hills C++ include dirs:
	Green Hills C include dirs:
	System include dirs:
	Green Hills library dirs:
	System library dirs:
	Tools directory:
	Alternate tools dir:
	Commands:
	Command directory:
	Command name:
	Arguments:

	File Options > Actions tab
	Output Filename:
	Append Extension:
	Object Directory:
	Stop with (drop-down list)
	Dependencies:
	Commands to set up input files:
	Commands to process output:

	File Options > Advanced tab
	Processor (drop-down list)
	Compilation (drop-down list)
	Alignment (drop-down list)
	Structure packing (drop-down list)
	Toolchain (drop-down list)
	Object format (drop-down list)
	Output mode (drop-down list)
	Target OS (drop-down list)
	Temp Directory
	Start address:
	Start/End file dir
	Start files
	End files
	Green Hills libraries
	System libraries
	Remote
	Small printf without %e%f%g
	Show headers
	Source lines in asm File
	Show Versions
	Put versions
	Output dual debug formats
	Dynamic download project
	Keep temp files
	Link without default startfiles or libraries
	Languages Used:

	Language Options dialog box
	Language Options > C tab
	C version (drop-down list)
	Type of wchar_t (drop-down list)
	Target kanji (drop-down list)
	Host kanji (drop-down list)
	Ignore Duplicate #include
	Ignore All #include
	Allow Macros to be Re#defined
	Allow Wrong #directives inside #if 0
	Warn for Unknown #pragma
	No Warning for Incorrect #pragma
	Allow #pragma asm and #pragma inline
	No Output for #ident or #pragma ident
	Allow // style comments in C
	Keep Comments in Preprocessor Output
	Concat 2 Symbols Separated by Comment
	Warn for Function Used without Prototype
	Disallow Function Used without Prototype
	Allow ‘noalias’ keyword in C
	Disable ANSI aliasing rules
	No Warning for asm()
	Do not reserve asm keyword
	Give fatal error for asm statement
	Allow Some Gnu Syntax Extensions
	Japanese Automotive C
	Allow extern to be Initialized
	Disallow Old Fashioned Syntax
	Use ANSI C Semantics for Assignment
	Allocate Small Enums as char or short
	Consider char to be signed
	Consider Bit-fields to be Signed
	Consider Pointers to be Signed
	Truncate External Symbols to 8 characters
	Allocate unique space for all strings

	Language Options > C++ tab
	C++ version (drop-down list)
	C++ Library (drop-down list)
	Inlining (drop-down list)
	Virtual tables (drop-down list)
	Type of enum (drop-down list)
	Packing (drop-down list)
	Enable exception handling
	Disable namespaces
	Enable std namespace
	Disable RTTI
	Disable “bool” keyword
	Disable “explicit” keyword
	Disable wchar_t keyword
	Disable array new/delete
	Recognize “restrict” keyword
	Disable “extern inline”
	Disable ’extern "C"’ type conversion
	C and C++ functions have distinct types
	Allow overloading of enum types
	Use late tiebreaker rules
	Force zero initialization of scalars
	No constructor initialization in main
	Enable multibyte characters
	Enable Microsoft extensions
	Allow anachronisms
	Use old for-loop initialization scoping
	Don’t demangle linker messages
	Leave translated C
	Keep comments in preprocessor output
	Ignore duplicate #include
	Consider char to be signed
	Consider bit-fields to be signed
	Consider enum bit-fields to be signed
	Use long lifetimes for temps
	Recognize alternate tokens

	More C++ Options > Template tab
	Template mode (drop-down list)
	Disable automatic instantiations
	Disable template implicit inclusion
	Use distinct template signatures
	Disable old-style specializations
	Disable “typename” keyword
	Disable implicit typename determination
	Disable “guiding declarations”
	Non-standard qualifier deduction
	One template instantiation per object file

	More C++ Options > Precompiled Header tab
	Automatic PCH processing
	Disable PCH creation message
	PCH directory
	Create PCH file:
	Use PCH file:

	More C++ Options > Diagnostics tab
	Change certain ANSI C++ errors to warnings
	Suppress all warnings
	Quit building if warnings occur
	Issue remarks
	No “used before set” warnings
	No warnings for old for-loop scoping
	Display message numbers
	Display brief messages
	Don’t wrap diagnostic messages
	Maximum number of error mgs
	Suppress specific diagnostic
	Change severity to remark
	Change severity to warning
	Change severity to error

	More C++ Options > Listing tab
	Cross reference file
	Listing file
	Listing Directory

	Language Options > Ada tab
	Main program name
	Library directories
	Elaboration only library directories
	Ada83 analysis mode
	Suppress all runtime checks
	Suppress numeric runtime checks
	Generate cross reference
	Generate text elaboration table
	Source listing (drop-down list)
	Listing format (drop-down list)
	Page length/width
	Diagnostics
	Library info
	Registered units
	Registered sources

	Language Options > FORTRAN tab
	FORTRAN version (drop-down list)
	Enable Debug Lines
	Namelist
	132 columns
	Implicit Undefined
	Case Sensitive
	Locals on Stack
	Check array bounds at runtime
	One Trip Do Loops
	VMS Common
	VMS Octal
	2 Byte Integer
	Hollerithblankpad
	Missing Args Ok

	Language Options > Pascal tab
	Pascal version (drop-down list)
	Big Set
	Case Sensitive
	Append score

	CPU Options dialog box
	i386/i486/Pentium dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	fprecise
	ffunctions
	manifest
	Reserve
	Commit

	MC68000 dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	Position independent code (drop-down list)
	Position independent data (drop-down list)

	V800 dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	V850 tiny data area (drop-down list)
	Put variables smaller than threshold into (drop-down list)

	i960 dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	Alpha dialog box
	Floating point processor (drop-down list)

	ARM dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	FR20 dialog box
	Floating point processor (drop-down list)

	MCore dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	MIPS dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	Calling sequence (drop-down list)
	RH32 FPU (drop-down list)
	Put variables smaller than threshold size into (drop-down list)

	nCPU dialog box
	Floating point processor (drop-down list)
	Put variables smaller than threshold size into (drop-down list)

	NDR dialog box
	Floating point processor (drop-down list)

	PowerPC dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	Put variables smaller than threshold size into (drop-down list)

	SH dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	SPARC dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	ST100 dialog box
	Floating point processor (drop-down list)

	StarCore dialog box
	Floating point processor (drop-down list)
	Big Endian
	Far function call
	Align functions to 16-byte boundaries
	Do not allocate to d8-d15
	Do not allocate to r8-r15
	Small Data or Zero Data threshold
	Put variables smaller than threshold size into (drop-down list)

	TriCore dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	Put variables smaller than threshold size into (drop-down list)

	Toolchain Options dialog box
	Toolchain Options > Linker tab
	Toolchain Options > Assembler tab
	68000 Toolchain Options > Linker tab
	68000 Toolchain Options > Assembler tab
	Unix Toolchain Options > Linker tab
	Unix Toolchain Options > Assembler tab
	Windows Toolchain Options > Linker tab
	Windows Toolchain Options > Assembler tab
	Gnu Toolchain Options > Linker tab
	Gnu Toolchain Options > Assembler tab

	The Progress window

	4 Version control
	MULTI Version Control
	How to use MVC
	Example

	Branching and version numbers
	How to use the MVC commands
	MVC command list
	Alias
	Copy file
	Create log
	Check in changes
	Delete file
	Diff Files
	Display version
	Check out and edit
	Find changed version
	Read (only) version
	Move file
	Remove from version control
	Package files
	Unpackage files
	Delete version
	Show log
	Unalias
	Check in, lose changes
	Unlock file
	Who checked out a file

	Other version control systems
	How to use other version control systems with MULTI
	To enable other version control systems with MULTI
	For MVC, RCS, or ClearCase Users
	For other version control systems

	5 Using the Editor
	Starting the Editor
	To start the Editor from the Builder window
	To start the Editor from the Progress window
	To start the Editor from the Debugger
	To start the Editor as a standalone program

	Opening files
	To open a file in the current Editor window
	To open a file in a new Editor window
	To create a new file

	Navigating between open files
	To view the previous file
	To view the next file
	Navigating between files in different Editor windows

	Saving files
	To save changes to the file currently being viewed
	To save the file currently being viewed under a new name
	To save all files currently open in the editor

	Editing
	To perform common editing operations
	To reverse changes made to a file
	To restore changes that you reversed
	To reverse all changes made to a file since the last save
	To insert a character blocked by a custom keybinding
	To repeat the last change you made to a file
	To copy a column of text
	Example

	To cut a column of text
	To paste a column of text

	Working with your code
	To configure the Editor for your programming language
	Using comments
	To insert a comment
	To keep comments flush-left

	Indenting your code
	To set the size of indents code
	To manually insert or remove an indent
	To let the Editor indent your code
	Influencing how the Editor auto-indents your code
	How indenting multiple lines affects your comments

	Characters that auto-indent your code
	To disable characters from auto-indenting your code and comments
	To disable characters from auto-indenting your comments only

	Indenting the line following a left parenthesis ‘(’

	To alter the case of the currently selected code
	To highlight the boundaries of the current block of code
	Using tags in your files
	To navigate to a function
	To manually load a tag file in an Editor session
	To remove a tag file from an Editor session

	Searching
	To make a “quick” incremental search
	Quick search tips

	To search using wildcards

	Merging files
	To merge two files into a single file
	To merge three files into a single file

	Comparing files
	Using version control from the Editor
	To configure MULTI to work with your version control system
	To automatically check out files when they are modified
	To check out a file manually
	To save your changes and check in a file
	To check in a file and revert to the previous version
	To put a new file under version control
	To view the version history of a file
	To show the last change to a portion of a file
	Reverting to a previous version of a file

	Configuring the Editor

	6 The Editor GUI
	The main Editor window
	Editor menus
	File menu
	Edit menu
	View menu
	Block menu
	Tools menu
	Version menu
	Config menu
	Help menu
	Right-click pop-up menu

	Editor toolbar
	Location fields
	File:
	Line:

	Status bar
	Status box
	Cursor position indicator
	Read-only indicator
	Change dot
	Version control status

	Merge dialog boxes
	Merge dialog box
	Control panel (two-file merge)
	Control panel (three-file merge)

	Search dialog box
	Goto dialog box
	Goto a file
	Goto a line number
	Goto a function

	Per File Settings dialog box
	Indent size
	Ada indent size
	Ada continuation size
	Wrap column
	Wrap indent offset
	Word wrap
	Disk format

	File chooser
	Directory
	Directory Buttons
	File List
	Filename
	Action buttons

	Print dialog box
	Print To
	Print Command
	Filename
	Font Name
	Font Size
	Paper Size
	Orientation
	Columns
	Print button

	7 Editor commands
	Navigation commands
	Up
	Down
	Left
	Right
	PageUp
	PageDown
	UpSome
	DownSome
	LeftSome
	RightSome
	LeftU
	RightD
	Return
	Word
	ReverseWord
	SOL
	EOL
	SOF
	EOF
	SOL0
	SOL1
	EditLine
	Goto
	LineD
	Column
	FlashCursor

	Indentation commands
	Indent
	Unindent
	SelectLanguage
	AutoIndent
	AutoIndentImplicit
	AutoIndentOrTab

	Selection commands
	NoSelection
	SelectAll
	SelectWord
	SelectLine
	SelectMatch
	SelectToLines
	SelectToMatch
	ContinueSelection
	SelectionStart, SelectionGrab, SelectionExtend, SelectionAdjust
	SecondarySelectAll, SecondarySelectLine, SecondarySelectWord
	SecondarySelectionStart, SecondarySelectionExtend, SecondarySelectionAdjust
	SOLSecondary
	SecondarySelectionReplace
	SecondarySelectionReplaceClip

	Drag-and-drop commands
	SelectionStartDrag
	SelectionStartDragAdd
	SelectionDrop

	Text deletion commands
	Backspace
	Delete

	Clipboard commands
	Copy1, Copy2, Copy3, Copy4
	Cut1, Cut2, Cut3, Cut4
	Paste1, Paste2, Paste3, Paste4
	RectCopy1
	RectCut1
	RectPaste1

	Block commands
	CommentBlock
	UnCommentBlock
	LowerCaseBlock
	UpperCaseBlock
	JoinLines

	Search commands
	Search
	ISearch
	BackISearch
	TruncateSearch
	StopSearch

	Undo/Redo commands
	Undo
	Redo
	RepeatLast
	Abort

	File commands
	OpenFile
	LoadFile
	LoadFileWithNewEditor
	Save
	SaveAs
	SaveAll
	SaveAllLog
	QuerySaveAll
	QuerySaveComments
	Revert
	CyclePush
	CyclePushBack
	EditorFlags
	Print
	Close
	Quit
	Done
	OpenText

	Tool commands
	Grep
	DiffFiles
	MergeFiles
	Minibuffer
	CommandToWindow
	ExecuteCmd
	!
	Shell
	Notepad
	cmdprompt2wnd

	Tag commands
	ErrorOrTag
	OpenTag
	NewTag
	SpecialTag
	AppendTagFile
	ResetTags
	EditTag

	Version control commands
	CheckIn
	CheckOut
	AllowAutoCheckout
	PreventAutoCheckout
	Discard
	PlaceUnderVC
	vcbuffer
	Mvcbuffer
	RevertDate
	RevertHistory
	RevertToBackup
	RevertVersion
	ShowHistory
	ShowLastEdit
	ShowView
	CreateLog

	Configuration commands
	Configure
	ConfigureFile
	AlterMode
	->
	ShowContextMenu
	AlterLocation

	Help commands
	About
	Help
	Identify

	Insert commands
	“ ” (text surrounded by double-quotes)
	Tab
	UserName
	InsertNewline
	InsertFile
	EnterInsertMode
	Quote
	Beep
	NextWindow
	ToggleErrorView

	’if’ conditional commands
	if condition {cmds1}[else {cmds2}];
	Example

	8 Default key bindings
	Default keyboard settings
	Moving the cursor
	Selecting text
	Searching
	Deleting text
	Indenting
	Copying, cutting and pasting
	Fixing errors
	File commands
	Debugging
	Miscellaneous

	Escape key interrupt
	Default mouse settings
	First (leftmost) mouse button
	Second (middle) mouse button
	Third (right-most) mouse button

	9 Configuring and customizing MULTI
	Setting configuration options
	Editing configuration options
	Config menu
	configure command

	Saving configuration options for future MULTI sessions
	Loading configuration files
	Loading a configuration file during a session

	Configuration file format
	Config menu
	Options...
	Save Configuration as Default
	Clear Default Configuration...
	Save Configuration...
	Load Configuration...

	Customizing the graphical user interface (GUI)
	Creating custom functionality
	Scripting
	Creating a script
	Running a script
	Checking the syntax of your script

	Macros

	How MULTI uses startup files to configure a session
	global configuration file
	user configuration file
	command line configuration file
	global script file
	user script file
	command line script file
	program script file

	Example customizations
	Example 1: Connecting to a target from MULTI
	Example 2: Regression testing

	10 Configuration commands
	Options dialog box
	General tab
	Save window positions and sizes
	Use icons for buttons
	Display close (x) buttons
	Match exact case in searches
	Allow beeping
	Show tooltips
	Warp pointer
	Print command
	Vertical scroll bar location
	Horizontal scroll bar location
	Display moon phase
	Scroll bar width
	Main Font...
	Button Font...
	Kanji Font...
	Menus...
	Mouse Bindings...
	Key Bindings...
	Online Help...

	Online Help Options
	Help browser
	Use current context to resolve help ambiguities
	Browser supports -remote command line option (Netscape)
	Help in new browser window
	Use Java (1.1) applet for online help
	Help port number
	Number of ports to scan if bind fails

	Debugger tab
	Ask before halting to set breakpoint
	Use procedure relative line number (vs. file relative)
	Display all numbers/characters as hex
	View unsigned char as integer
	Remember breakpoints
	Coloring for multiple debuggers
	Line numbers in source pane
	Position of buttons
	Command pane height in lines
	Command pane prompt
	Configure Debugger Buttons...
	More Debugger Options...
	Data Explorer Options
	Minimum initial size (WxH)
	Maximum initial size (WxH)
	Initial position (XxY)
	Two color mode
	Load Color Scheme...

	More Debugger Options...
	Automatically dereference pointers
	Check syntax of breakpoints when they are set
	Continue running script files on error
	"s" (step) and "n" (next) are blocking by default
	Show locations of variables
	Display typedef type instead of basic type
	Show position in non-GUI (-nodisplay) mode
	Repeat last command on return key in non-GUI (-nodisplay) mode
	Stepping over C++ exception or longjmp
	Command pane buffer size in bytes
	Seconds to wait for debug server before timing out

	Editor tab
	Reuse editor windows
	Create backup files when saving
	Drag and drop text editing
	Tab size
	Indent size
	Ctrl+cursor jump size
	Configure Editor Buttons...
	More Editor Options...
	Auto Indent Options
	Implicit auto indent
	Implicit auto indent in comments
	Switch bodies indented two instead of one
	Indent comments when indenting multiple lines
	Comments stick flush left
	C chars aligned like ’*’ in comments
	C paren indent mode, Ada paren mode

	More Editor Options...
	Print 2 columns in landscape
	Temp file directory
	Initial width in characters
	Initial height in characters
	Selection margin width in pixels
	Generate auto-recover file every ... seconds
	Per File Settings Defaults
	Spaces per indent for Ada
	Ada continuation line indent
	Word wrap
	Wrap column
	Wrap indent offset
	Alternate Editor Options
	Use xterm for alternate editor
	Executable
	Command line arguments

	Version Control tab
	Use version control
	Automatic checkout
	Version control system
	Command
	Under VC
	Check out
	Get
	Un check out
	Check in
	Check in, no comments
	Create
	Show history
	Who
	Previous version
	Restore Defaults for This VC System

	Colors tab
	Colors tab: Global Colors
	Background
	Foreground
	Control Area
	Selection
	Builder File Coloring check box
	Colors tab: Debugger Colors
	Assembly
	Break Dot
	Status
	Context Arrow
	Colors tab: Syntax Coloring
	Color C++ comments in C

	Other Configuration options
	clearbuttons
	debugbutton
	button
	cleareditbuttons
	editbutton
	clearkeys
	keybind
	Example
	clearmenus
	menu
	Opening menus
	clearmice
	mouse
	Example
	configurefile configure
	grabtimeout
	clickpause
	viewdef (Data Explorer Window Format)
	geometry
	iconify
	ignoremotion
	linesnonoverlapped
	editparenmatch
	sharedsymbols
	procqualifiedlocalimpliesoutermostblock
	warnonbpreplacement
	warnoncmdadrlinepromotion
	attempttoshowoldversionofupdatesource
	allowexecutioninbpcommand
	keeploaders
	icongeometry
	exprcasesensitivity
	gotohitsbpattargetaddress
	disasmstyle
	synchronous
	builderposition
	minwindowsize
	maxwindowsize
	nodecoration
	QuietTogCmd

	A Third party tools
	Third party version control systems
	Third party editors
	Using the Editor with third party tools
	Using the Debugger with third party tools

	Index

