

Green Hills C++
User’s Guide

Version 1.8.9

Copyright © 1983-1999 by Green Hills Software, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission from Green Hills Software, Inc.

DISCLAIMER

GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software, Inc.
reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation
of Green Hills Software, Inc. to notify any person of such revision or changes.

Green Hills Software and the Green Hills logo are trademarks, and MULTI is a registered trademark, of Green Hills
Software, Inc.
System V is a trademark of AT&T.
Sun is a trademark of Sun Microsystems, Inc.
UNIX and Open Look are registered trademarks of UNIX System Laboratories.
ColdFire is a registered trademark of Motorola, Inc.
DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.
4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.
X and X Window System are trademarks of the Massachusetts Institute of Technology.
Motif is a trademark of Open Software Foundation, Inc.
Microsoft is a registered trademark, and Windows, Windows 95, and Windows NT are trademarks of Microsoft
Corporation.
All other trademarks or registered trademarks are property of their respective companies.

Revision History

PubID: L01B-C0499-89NG

Revision Release Date Location of Revision(s)

CONTENTSContents
PREFACE P-1
About this Manual P-2

Typographical Conventions P-2

1 C++ LANGUAGE FEATURES 1
Introduction 2

Template Instantiation 16

Using clearmake with Green Hills C++ 25

Namespace Support 27

Precompiled Headers 29

Cross Reference Information 35

Preprocessor 36

asm Statement 37

Linkage 37

Pragmas 38

Post Processing in C++ 39

C++ Utilities 40

2 EC++/ESTL FEATURES 43
How to Effectively Use GHS C++ 44

C++ in the Wind River VxWorks/Tornado Environment 47

Introduction to EC++ 47

Introduction to ESTL 50

Getting Started with EC++ and ESTL 52

Standard C++ 53

3 MIXING LANGUAGES 55
How the Driver Builds a Mixed Language Executable 56

Initialization of Libraries 57

Performing I/O on a Single File in Multiple Languages 59
i Green Hills C++ User’s Guide, v. 1.8.9

CONTENTS
Native UNIX Libraries versus Green Hills Libraries 60

Calling a C Routine from FORTRAN 60

Calling a FORTRAN Routine from C 68

Calling a C Routine from Ada 74

Calling an Ada Routine from C 76

Interfacing Pascal and C 80

C Routines and Header Files In C++ 81

Using C++ in C Programs 82

Function Prototyping in C versus C++ 83

4 WRITING PORTABLE CODE 85
Compatibility Between Green Hills Compilers 86

Word Size Differences 86

Byte Order Problems 87

Alignment Requirements 88

Classes and Bit Fields 89

Character Set Dependencies 90

Floating Point Range and Accuracy 91

Operating System Dependencies 91

Assembly Language Interfaces 91

Evaluation Order 91

Machine-Specific Arithmetic 92

Illegal Assumptions about Compiler Optimizations 93

Memory Optimization Restrictions 94

Problems with Source Level Debuggers 95

Problems with Compiler Memory Size 96

5 OPTIMIZATION 99
Default Optimizations 100

General Optimizations Enabled with the -O Option 103
ii Green Hills C++ User’s Guide, v. 1.8.9

CONTENTS
Specialized Optimizations Set with the Suboptions -OLAMIS 110

Selecting Optimizations 121

A IMPLEMENTATION NOTES A-1
Identifiers A-2

Linkage Specifications A-2

Class Members A-2

B ERROR MESSAGES B-1

INDEX I-1
iii Green Hills C++ User’s Guide, v. 1.8.9

.
iv Green Hills C++ User’s Guide, v. 1.8.9

PREFACE

ABOUT THIS MANUAL

This manual explains the Green Hills C++ language. Green Hills
system-specific Development Guide provides details on using the compiler. It is
a primary reference guide, providing language-specific information for the
programmer. It assumes familiarity with commonly used software terminology,
plus relevant programming languages and operating systems.

The platform for all examples is a Sun workstation running a UNIX
environment. Differences on other systems are mentioned, where applicable.

The explanations and examples in this manual assume the Green Hills products
are installed in the directory /usr/green. If this is not the case, substitute the
correct directory. The C++ compiler driver is gcx in this manual. If this is not
the case for your release, substitute the correct driver name.

TYPOGRAPHICAL CONVENTIONS

For example, in the command description

gcx [-cpu=processor] filename

the command gcx should be entered as given, the -cpu=processor is optional
with the appropriate CPU option replacing processor, and the appropriate file
name replacing the word filename.

Convention Example Description

bold text -noansi name of program, command, directory, or file

bold characters in quotes “A” name to enter as shown, without quotes

courier setenv TMPDIR samples of code, or instructions to enter

italic text in a command line -o filename place-holder for user-supplied information

square brackets, [] .macro name [list] encloses optional commands or terms

square brackets [] around
boldface default

Specifies char as
signed [default].

command or option is the default
P-2 Green Hills C++ User’s Guide, v. 1.8.9

Typographical Conventions
Green Hills Software, Inc. P-3

P-4 Green Hills C++ User’s Guide, v. 1.8.9

Chapter
1

C++ LANGUAGE
FEATURES

1. C++ Language Features

ty is

r

er

This chapter provides information on the C++ compiler and language-specific C++ issues.

INTRODUCTION

The Green Hills Software C++ compiler accepts several dialects of C++ - ANSI
Standard C++ (very close to full compliance): EC++ (Embedded C++), ESTL
(Embedded C++ with templates and namespaces), Cfront 3.0, Cfront 2.1, and
ARM compliant C++. The default dialect is Standard C++.

In ARM mode, the Green Hills C++ compiler accepts the C++ language as
defined by The Annotated C++ Reference Manual (ARM) by Ellis and
Stroustrup, Addison-Wesley, 1990, including templates, exceptions, and the
anachronisms of Chapter 18. This is essentially the same language defined by
the language reference for Cfront version 3.0.x, with the addition of exceptions.

The Green Hills C++ compiler also has a Cfront compatibility mode, which
duplicates a number of “features” and bugs of Cfront. Complete compatibili
not guaranteed or intended; the mode allows programmers who have
unwittingly used Cfront features to continue to compile existing code. Othe
options enable and disable anachronisms and strict standard-conformance
checking.

The following features, not in the ARM, but in the J16/WG21 Working Pap
are accepted:

▲ The dependent statement if, while, do-while, or for is a scope, and the
restriction on such a statement’s being a declaration is removed.

▲ The expression tested in an if, while, do-while, or for, as the first operand of
a “?” operator, or as an operand of the “&&”, “ ||”, or “!” operators may have
a pointer-to-member type or a class type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted by the
ARM.

▲ Qualified names are allowed in elaborated type specifiers.

▲ Use of a global-scope qualifier in member references of the form x.::A::B
and p->::A::B.

▲ The precedence of the third operand of the “?” operator is changed.

▲ If control reaches the end of the main() routine, and main() has an integral
return type, it is treated as if a return 0; statement were executed.
2 Green Hills C++ User’s Guide, v. 1.8.9

Introduction
▲ Pointers to arrays with unknown bounds as parameter types are diagnosed as
errors.

▲ A functional-notation cast of the form A() can be used even if A is a class
without a (nontrivial) constructor. The temporary created gets the same
default initialization to zero as a static object of the class type.

▲ A cast can be used to select one out of a set of overloaded functions when
taking the address of a function.

▲ Template friend declarations and definitions are permitted in class
definitions and class template definitions.

▲ Type template parameters are permitted to have default arguments.

▲ Function templates may have non-type template parameters.

▲ A reference to const volatile cannot be bound to an rvalue.

▲ Qualification conversions, such as conversion from T** to T const * const
* are allowed.

▲ Digraphs are recognized.

▲ Operator keywords (e.g., and, bitand, etc.) are recognized.

▲ Static data member declarations can be used to declare member constants.

▲ wchar_t is recognized as a keyword and a distinct type.

▲ bool is recognized.

▲ RTTI (runtime type identification), including dynamic_cast and the typeid
operator, is implemented.

▲ Declarations in tested conditions (in if, switch, for, and while statements)
are supported.

▲ Array new and delete are implemented.

▲ New-style casts (static_cast, reinterpret_cast, and const_cast) are
implemented.

▲ Definition of a nested class outside its enclosing class is allowed.

▲ mutable is accepted on non-static data member declarations.

▲ Namespaces are implemented, including using declarations and directives.
Access declarations are broadened to match the corresponding using
declarations.

▲ Explicit instantiation of templates is implemented.

▲ The typename keyword is recognized.

▲ explicit is accepted to declare non-converting constructors.
Green Hills Software, Inc. 3

1. C++ Language Features

g

f the

 and

C++
▲ The scope of a variable declared in the for-init-statement for a for
loop is the scope of the loop (not the surrounding scope).

▲ Member templates are implemented.

▲ The new specialization syntax (using “template <>”) is implemented.

▲ Cv-qualifiers are retained on rvalues (in particular, on function return
values).

▲ The distinction between trivial and nontrivial constructors has been
implemented, as has the distinction between PODs and non-PODs with
trivial constructors.

▲ The linkage specification is treated as part of the function type (affectin
function overloading and implicit conversions).

▲ extern inline functions are supported, and the default linkage for
inline functions is external.

▲ A typedef name may be used in an explicit destructor call.

▲ Placement delete is implemented.

▲ An array allocated via a placement new can be deallocated via delete.

▲ Covariant return types on overriding virtual functions are supported.

▲ enum types are considered to be non-integral types.

▲ Partial specialization of class templates is implemented.

▲ Partial ordering of function templates is implemented.

▲ Function declarations that match a function template are regarded as
independent functions, not as “guiding declarations” that are instances o
template.

▲ It is possible to overload operators using functions that take enum types
no class types.

▲ Explicit specification of function template arguments is supported.

▲ Unnamed template parameters are supported.

▲ The new lookup rules for member references of the form x.A::B and
p->A::B are supported.

▲ The notation :: template (and ->template, etc.) is supported.

In ANSI Standard C++ mode, the compiler accepts the full ANSI Standard
language with the exception of:

▲ enum types cannot contain values larger than can be contained in an int.
4 Green Hills C++ User’s Guide, v. 1.8.9

Introduction

ed
ta

 only
▲ reinterpret_cast does not allow casting a pointer to member of one
class to a pointer to member of another class if the classes are unrelated.

▲ Two-phase name binding in templates, as described in [temp.res] and
[temp.dep] of the Working Paper, is not implemented.

▲ In a reference of the form f()->g(), with a g a static member function,
f() is not evaluated. This is as required by the ARM. The WP, however,
requires that f() be evaluated.

▲ Class name injection is not implemented.

▲ Putting a try/catch around the initializers and body of a constructor is
not implemented.

▲ Template template parameters are not implemented.

▲ Koenig lookup of function names on all calls is not implemented.

▲ Finding friend functions of the argument class types on name lookup on the
function name in calls is not implemented.

▲ String literals do not have const type

▲ Universal character set escapes (e.g., \uabcd) are not implemented.

▲ The export keyword for templates is not implemented.

We recommend Bjarne Stroustrup’s The C++ Programming Language, Third
Edition as a good reference for ANSI Standard C++.

ACCEPTED ANACHRONISMS

The following anachronisms are accepted when enabled:

▲ overload, in function declarations, is accepted and ignored.

▲ Definitions are not required for static data members that can be initializ
using default initialization. The anachronism does not apply to static da
members of template classes; they must always be defined.

▲ The number of elements in an array may be specified in an array delete
operation. The value is ignored.

▲ A single operator++() and operator--() function can be used to overload
both prefix and postfix operations.

▲ The base class name may be omitted in a base class initializer if there is
one immediate base class.
Green Hills Software, Inc. 5

1. C++ Language Features
▲ Assignment to this in constructors and destructors is allowed. This is
allowed only if anachronisms are enabled and the assignment to this
configuration parameter is enabled.

▲ A bound function pointer (a pointer to a member function for a given object)
can be cast to a pointer to a function.

▲ A nested class name may be used as a non-nested class name provided no
other class of that name has been declared. The anachronism is not applied
to template classes.

▲ A reference to a non-const type may be initialized from a value of a different
type. A temporary is created, it is initialized from the (converted) initial
value, and the reference is set to the temporary.

▲ A reference to a non-const class type may be initialized from an rvalue of
the class type or a derived class thereof. No (additional) temporary is used.

▲ A function with old-style parameter declarations is allowed and may
participate in function overloading as though it were prototyped. Default
argument promotion is not applied to parameter types of such functions
when the check for compatibility is done, so that the following declares the
overloading of two functions foo:

 int foo(int);
 int foo(x) char x; {return x;}

 It will be noted that in C this code is legal but has a different meaning: a
 tentative declaration of foo is followed by its definition.

▲ A reference to a non-const class can be bound to a class rvalue of the same
type or a derived type thereof.

 struct A {
 A(int);
 A operator=(A&);
 A operator+(const A&);
 };
 main() {
 A b(1);
 b = A(1) + A(2); // Allowed as anachronism
 }
6 Green Hills C++ User’s Guide, v. 1.8.9

Introduction

opy

EXTENSIONS ACCEPTED IN NORMAL C++ MODE

The following extensions are accepted in all modes (except when strict ANSI
violations are diagnosed as errors):

▲ A friend declaration for a class may omit the class keyword:

 class B;
 class A {
 friend B; // Should be “friend class B”
 };

▲ Constants of scalar type may be defined within classes:

 class A {
 const int size = 10;
 int a[size];
 };

▲ In the declaration of a class member, a qualified name may be used:

 struct A {
 int A::f(); // Should be int f();
 };

▲ The preprocessing symbol c_plusplus is defined in addition to the standard
_ _cplusplus.

▲ An assignment operator declared in a derived class with a parameter type
matching one of its base classes is treated as a “default” assignment
operator; that is, such a declaration blocks the implicit generation of a c
assignment operator. (This is Cfront behavior that is known to be relied
upon in at least one widely used library.) For example:

 struct A {};
 struct B : public A {
 B& operator=(A&);
 };
Green Hills Software, Inc. 7

1. C++ Language Features

By default, as well as in Cfront-compatibility mode, there will be no implicit
declaration of B::operator=(const B&), whereas in strict ANSI mode
B::operator=(A&) is not a copy assignment operator and B::operator=(const
B&) is implicitly declared.

▲ Implicit type conversion between a point to an extern “C” function and a
pointer to an extern “C++” function is permitted. Here’s an example:

 extern “C” void f(); // f’s type has extern “C” linkage

 void (*pf)() // pf points to an extern “C++” function
 = &f; // error unless implicit conversion is allowed

EXTENSIONS ACCEPTED IN CFRONT 2.1 COMPATIBILITY MODE

The following extensions are accepted in Cfront 2.1 compatibility mode in
addition to the extensions listed in the 2.1/3.0 section following (i.e., these are
things that were corrected in the 3.0 release of Cfront):

▲ The dependent statement of an if, while, do-while, or for is not considered
to define a scope. The dependent statement may not be a declaration. Any
objects constructed within the dependent statement are destroyed at exit
from the dependent statement.

▲ Implicit conversion from integral types to enumeration types is allowed.

▲ A non-const member function may be called for a const object. A warning
is issued.

▲ A const void * value may be implicitly converted to a void * value, e.g.,
when passed as an argument.

▲ When, in determining the level of argument match for overloading, a
reference parameter is initialized from an argument that requires a non-class
standard conversion, the conversion counts as a user-defined conversion.
(This is an outright bug, which unfortunately happens to be exploited in the
NIH class libraries).

▲ When a builtin operator is considered alongside overloaded operators in
overload resolution, the match of an operand of a builtin type against the
builtin type required by the builtin operator is considered a standard
conversion in all cases (e.g., even when the type is exactly right without
conversion).

▲ A reference to a non-const type may be initialized from a value that is a
const-qualified version of the same type, but only if the value is the result of
selecting a member from a const class object or a pointer to a such an object.
8 Green Hills C++ User’s Guide, v. 1.8.9

Introduction

the
you

,

ted
▲ A cast to an array type is allowed; it is treated like a cast to a pointer to the
array element type. A warning is issued.

▲ When an array is selected from a class, the type qualifiers on the class object
(if any) are not preserved in the selected array. (In the normal mode, any
type qualifiers on the object are preserved in the element type of the
resultant array.)

▲ An identifier in a function is allowed to have the same name as a parameter
of the function. A warning is issued.

▲ A value may be supplied on the return statement in a function with a void
return type. A warning is issued.

▲ A parameter of type const void * is allowed on operator delete; it is treated
as equivalent to void *.

▲ A period “.” may be used for qualification where “::” should be used. Only
“ ::” maybe be used as a global qualifier. Except for the global qualifier,
two kinds of qualifier operators may not be mixed in a given name (i.e.,
may say A::B::C or A.B.C but not A::B.C or A.B::C). A period may not be
used in a vacuous destructor reference nor in a qualifier that follows a
template reference such as A<T>::B.

▲ Cfront 2.1 does not correctly look up names in friend functions that are
inside class definitions. In this example, function f should refer to the
functions and variables (e.g., f1 and a1) from the class declaration. Instead
the global definitions are used.

 int a1;
 int e1;
 void f1();
 class A {
 int a1;
 void f1();
 friend void f()
 {
 int i1 = a1; // cfront uses global a1
 f1(); // cfront uses global f1
 }
 };

Only the innermost class scope is (incorrectly) skipped by Cfront as illustra
in the following example:
Green Hills Software, Inc. 9

1. C++ Language Features
 int a1;
 int b1;
 struct A {
 static int a1;
 class B {
 static int b1;
 friend void f()
 {
 int i1 = a1; // cfront uses A::a1
 int j1 = b1; // cfront uses global b1
 }
 };
 };

▲ operator= may be declared as a nonmember function. (This is flagged as an
anachronism by Cfront 2.1)

▲ A type qualifier is allowed (but ignored) on the declaration of a constructor
or destructor. For example:

 Class A {
 A() const; // No error in cfront 2.1 mode
 };

CFRONT COMPATIBILITY MODE EXTENSIONS

The following extensions are accepted in both Cfront 2.1 and Cfront 3.0
compatibility mode (i.e., these are features or problems that exist in both cfront
2.1 and 3.0):

▲ Type qualifiers on the this parameter may be dropped in contexts such as
this example:

 struct A {
 void f() const;
 };
 void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a const function may be put into a
pointer to non-const, because a call using the pointer is permitted to modify the
10 Green Hills C++ User’s Guide, v. 1.8.9

Introduction

ter
object and the function pointed to will actually not modify the object. The
opposite assignment would not be safe.

▲ Conversion operators specifying conversion to void are allowed.

▲ A nonstandard friend declaration may introduce a new type. A friend
declaration that omits the elaborated type specifier is allowed in default
mode, but in cfront mode the declaration is also allowed to introduce a new
type name.

 struct A {
 friend B;
 };

▲ The third operator of the ? operator is a conditional expression instead of an
assignment expression as it is in the modern language.

▲ A reference to a pointer type may be initialized from a pointer value without
use of a temporary even when the reference pointer type has additional type
qualifiers above those present in the pointer value. For example:

 int *p;
 const int *&r = p; // No temporary used

▲ A reference may be initialized with a null.

▲ Because cfront does not check the accessibility of types, access errors for
types are issued as warnings instead of errors.

▲ When matching arguments of an overloaded function, a const variable with
value zero is not considered to be a null pointer constant. In general, in
overload resolution a null pointer constant must be spelled “0” to be
considered a null pointer constant (e.g., ‘\0’ is not considered a null poin
constant).

▲ An alternate form of declaring pointer-to-member-function variables is
supported, as follows:

 struct A {
 void f(int);
 static void f(int);
 typedef void A::T3(int); // non-std typedef decl
 typedef void T2(int); // std typedef
 };
 typedef void A::T(int); // non-std typedef decl
Green Hills Software, Inc. 11

1. C++ Language Features
 T* pmf = &A::f; // non-std ptr-to-member decl
 A::T2* pf = A::sf; // std ptr to static mem decl
 A::T3* pmf2 = &A::f; // non-std ptr-to-member decl

where T is construed to name a routine type for a non-static member function of
class A that takes an int argument and returns void; the use of such types is
restricted to nonstandard pointer-to-member declarations. The declarations of T
and pmf in combination are equivalent to a single standard point-to-member
declaration:

void (A::*pmf)(int) = &A::f;

A non-standard pointer-to-member declaration that appears outside of a class
declaration, such as the declaration of T, is normally invalid and would cause an
error to be issued. However, for declarations that appear within a class
declaration, such as A::T3, this feature changes the meaning of a valid
declaration. Cfront version 2.1 accepts declarations, such as T, even when A is
an incomplete type; so this case is also excepted.

▲ Protected member access checking is not done when the address of a
protected member is taken. For example:

 class B {protected: int i;};
 class D : public B {void mf();};
 void D::mf() {
 int B::* pmi1 = &B::i; // error, OK in cfront mode
 int D::* pmi2 = &D::i; // OK
 }

Note that protected member access checking for other operations (i.e.,
everything except taking a pointer-to-member address) is done in the normal
manner.

▲ The destructor of a derived class may implicitly call the private destructor of
a base class. In default mode this is an error but in cfront mode it is reduced
to a warning. For example:

 class A {
 ~A();
 };
 class B : public A {
 ~B();
 };
12 Green Hills C++ User’s Guide, v. 1.8.9

Introduction

s
 B::~B(){} // Error except in cfront mode

▲ When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the pattern
type-name-or-keyword(identifier...) is treated as an argument. For example:

 class A { A(); };
 double d;
 A x(int(d));
 A(x2);

By default, int(d) is interpreted as a parameter declaration (with redundant
parentheses), and so x is a function; but in cfront-compatibility mode int(d) is
an argument and x is a variable.

The declaration A(x2); is also misinterpreted by cfront. It should be interpreted
as the declaration of an object named x2, but in cfront mode is interpreted as a
function style cast of x2 to the type A.

Similarly, the declaration:

int xyz(int());

declares a function named xyz, that takes a parameter of type “function taking
no arguments and returning an int.” In cfront mode this is interpreted as a
declaration of an object that is initialized with the value int() (which evaluates
to zero).

▲ A named bit-field may have a size of zero. The declaration is treated a
though no name had been declared.

▲ Plain bit fields (i.e., bit fields declared with a type of int) are always
unsigned.

▲ The name given in an elaborated type specifier is permitted to be a typedef
name that is the synonym for a class name. For example:

 typedef class A T;
 class T *pa; // No error in cfront mode

▲ No warning is issued on duplicate size and sign specifiers.

Green Hills Software, Inc. 13

1. C++ Language Features
 short short int i; // No warning in cfront mode

▲ Virtual function table pointer update code is not generated in destructors for
base classes of classes without virtual functions, even if the base class
virtual functions might be overridden in a further-derived class. For
example:

 struct A {
 virtual void f() {}
 A() {}
 ~A() {}
 };
 struct B : public A {
 B() {}
 ~B() {f();} // Should call A::f according to ARM
 // 12.7
 };
 struct C : public B {
 void f() {}
 } c;

In cfront compatibility mode, B::~B calls C::f.

▲ An extra comma is allowed after the last argument in an argument list. For
example:

 f(1, 2,);

▲ A constant pointer-to-member-function may be cast to a pointer-to-function.
A warning is issued.

 struct A {int f();};
 main () {
 int (*p)();
 p = (int (*)())A::f; // OK, with warning
 }

▲ Arguments of class types that allow bitwise copy construction but also have
destructors are passed by value (i.e., like C structures), and the destructor is
14 Green Hills C++ User’s Guide, v. 1.8.9

Introduction

ther
not called on the copy. In normal mode, the class object is copied into a
temporary, the address of the temporary is passed as the argument, and the
destructor is called on the temporary after the call returns. Note that because
the argument is passed differently (by value instead of by address), code like
this compiled in cfront mode is not calling-sequence compatible with the
same code compiled in normal mode. In practice, this is not much of a
problem, since classes that allow bitwise copying usually do not have
destructors.

▲ A union member may be declared to have the type of a class for which the
user has defined an assignment operator (as long as the class has no
constructor or destructor). A warning is issued.

▲ When an unnamed class appears in a typedef declaration, the typedef name
may appear as the class name in an elaborated type specifier.

 typedef struct {int i, j;} S;
 struct S x; // No error in cfront mode

▲ Two member functions may be declared with the same parameter types
when one is static and the other is non-static with a function qualifier.

 class A {
 void f(int) const;
 static void f(int); // No error in cfront mode
 };

▲ The scope of a variable declared in the for-init-statement is the scope to
which the for statement belongs.

 int f(int i) {
 for (int j = 0; j < i; ++j) { /* ... */ }
 return j; // No error in cfront mode
 };

▲ Function types differing only in that one is declared extern “C” and the o
extern “C++” can be treated as identical:

 typedef void (*PF)();
 extern “C” typedef void (*PCF)();
Green Hills Software, Inc. 15

1. C++ Language Features

”

s

ses

 type.

an

d in a

s
iately,

ies to
 void f(PF);
 void f(PCF);

 PF and PCF are considered identical and void f(PCF) is treated as a
 compatible redeclaration of f.

In cfront-compatibility mode an implicit type conversion will always be done
between a pointer to an extern “C” function and a pointer to an extern “C++
function.

▲ Functions declared inline have internal linkage.

▲ enum types are regarded as integral types.

▲ An uninitialized const object of non-POD class type is allowed even if it
default constructor is implicitly declared:

 struct A { virtual void f(); int i; };
 const A a;

▲ A function parameter type is allowed to involve a pointer or reference to
array of unknown bounds.

TEMPLATE INSTANTIATION

The C++ language includes the concept of templates. A template is a
description of a class or function that is a model for a family of related clas
or functions. For example, one can write a template for a Stack class, and then
use a stack of integers, a stack of floats, and a stack of some user-defined
In the source, these might be written Stack<int>, Stack<float>, and Stack<x>.
From a single source description of the template for a stack, the compiler c
create instantiations of the template for each of the types required.

The instantiation of a class template is always done as soon as it is neede
compilation. However, the instantiations of template functions, member
functions of template classes, and static data members of template classe
(hereafter referred to as template entities) are not necessarily done immed
for several reasons:

▲ You would like to end up with only one copy of each instantiated entity
across all the object files that make up a program. (This of course appl
entities with external linkage.)
16 Green Hills C++ User’s Guide, v. 1.8.9

Template Instantiation
▲ The language allows you to write a specialization of a template entity, i.e., a
specific version to be used in place of a version generated from the template
for a specific data type. (You could, for example, write a version of
Stack<int>, or of just Stack<int>::push, that replaces the
template-generated version; often, such a specialization provides a more
efficient representation for a particular data type.) Since the compiler cannot
know, when compiling a reference to a template entity, if a specialization for
that entity will be provided in another compilation, it cannot do the
instantiation automatically in any source file that references it.

▲ The language also dictates that template functions that are not referenced
should not be compiled, that, in fact, such functions might contain semantic
errors that would prevent them from being compiled. Therefore, a reference
to a template class should not automatically instantiate all the member
functions of that class.

Note that certain template entities are always instantiated when used, e.g., inline
functions. Also, there is no support for the export directive.

From these requirements, one can see that if the compiler is responsible for
doing all the instantiations automatically, it can only do so on a program-wide
basis. That is, the compiler cannot make decisions about instantiation of
template entities until it has seen all the source files that make up a complete
program.

The Green Hills C++ compiler provides an instantiation mechanism that does
automatic instantiation at link time. For cases where the programmer wants
more explicit control over instantiation, the Green Hills C++ compiler also
provides instantiation modes and instantiation pragmas, which can be used to
exert fine-grained control over the instantiation process.

AUTOMATIC INSTANTIATION

The goal of an automatic instantiation mode is to provide painless instantiation.
The programmer should be able to compile source files to object code, then link
them and run the resulting program, and never have to worry about how the
necessary instantiations get done.

In practice, this is hard for a compiler to do, and different compilers use
different automatic instantiation schemes with different strengths and
weaknesses:
Green Hills Software, Inc. 17

1. C++ Language Features

ll

m
and

each
ns

n is
. For
 tries
use it
pile

he

,

ate
rce
in
Cfront saves information about each file it compiles in a special directory called
the repository. It instantiates nothing during the normal compilations. At link
time, it looks for entities that are referenced but not defined, and whose
mangled names indicate that they are template entities. For each such entity, it
consults the repository information to find the file containing the source for the
entity, and it does a compilation of the source to generate an object file
containing object code for that entity. This object code for instantiated objects
is then combined with the “normal” object code in the link step.

The programmer using cfront must follow a particular coding convention: a
templates must be declared in .h files, and for each such file there must be a
corresponding .C file containing the associated definitions. The compiler is
never told about the .C files explicitly; one does not, for example, compile the
in the normal way. The link step looks for them when and if it needs them,
does so by taking the .h file name and replacing its suffix.

This scheme has the disadvantage that it does a separate compilation for
instantiated function (or, at best, one compilation for all the member functio
of one class). Even though the function itself is often quite small, it must be
compiled along with the declarations for the types on which the instantiatio
based, and those declarations can easily run into many thousands of lines
large systems, these compilations can take a very long time. The link step
to be smart about recompiling instantiations only when necessary, but beca
keeps no fine-grained dependency information, it is often forced to “recom
the world” for a minor change in a .h file. In addition, cfront has no way of
ensuring that preprocessing symbols are set correctly when it does these
instantiation compilations, if preprocessing symbols are set other than on t
command line.

Borland’s C++ compiler instantiates everything referenced in a compilation
then uses a special linker to remove duplicate definitions of instantiated
functions.

The programmer using Borland’s compiler must make sure that every
compilation sees all the source code it needs to instantiate all the template
entities referenced in that compilation. That is, you cannot refer to a templ
entity in a source file if a definition for that entity is not included by that sou
file. In practice, this means that either all the definition code is put directly
the .h files, or that each .h file includes an associated .C (actually, .CPP) file.
18 Green Hills C++ User’s Guide, v. 1.8.9

Template Instantiation
This scheme is straightforward, and works well for small programs. For large
systems, however, it tends to produce very large object files, because each
object file must contain object code (and symbolic debugging information) for
each template entity it references.

The Green Hills C++ approach is a little different. It requires that for each
instantiation required, there is some (normal, top-level, explicitly-compiled)
source file that contains both the definition of the template entity and of any
types required for the particular instantiation. This requirement can be met in
various ways:

▲ The Borland convention: each .h file that declares a template entity also
contains either the definition of the entity or includes another file containing
the definition.

▲ Implicit inclusion: when the compiler sees a template declaration in a .h file
and discovers a need to instantiate that entity, it is given permission to go off
looking for an associated definition file having the same base name and a
different suffix, and it implicitly includes that file at the end of the
compilation. This method allows most programs written using the cfront
convention to be compiled with Green Hills C++. See the section on implicit
inclusion.

▲ The ad hoc approach: the programmer makes sure that the files that define
template entities also have the definitions of all the available types, and adds
code or pragmas in those files to request instantiation of the entities there.

The Green Hills C++ automatic instantiation method works as follows:

1. The first time the source files of a program are compiled, no template enti-
ties are instantiated. However, template information files are generated and
contain information about entities that could have been instantiated in each
compilation. These template information files have a .ti suffix.

2. When the object files are linked together, a program called the prelinker is
run. It examines the object files, looking for references and definitions of
template entities, and for the added information about entities that could be
instantiated.

3. If the prelinker finds a reference to a template entity for which there is no
definition anywhere in the set of object files, it looks for a file that indicates
that it could instantiate that template entity. When it finds such a file, it
Green Hills Software, Inc. 19

1. C++ Language Features

m to
of
 to

 be

in
m
ct
ue

e in
.
tity,

he
assigns the instantiation to it. The set of instantiations assigned to a given
file is recorded in an associated instantiation request file (with a .ii suffix).

4. The prelinker then executes the compiler again to recompile each file for
which the .ii file was changed. The original compilation options (saved in
the .ti file) are used for recompilation.

5. When the compiler compiles a file, it reads the .ii file for that file and obeys
the instantiation requests therein. It produces a new object file containing
the requested template entities (and all the other things that were already in
the object file). The compiler also receives a definition list file, which lists
all the instantiations for which definitions already exist in the set of object
files. If during compilation the compiler has the opportunity to instantiate a
referenced entity that is not on that list, it goes ahead and does the instantia-
tion. It passes back to the prelinker (in the definition list file) a list of instan-
tiations that it has “adopted” in this way, so the prelinker can assign the
a file. This adoption process allows rapid instantiation and assignment
instantiations referenced from new instantiations, and reduces the need
recompile a given file more than once during the prelinking process.

6. The prelinker repeats steps 3-5 until there are no more instantiations to
adjusted.

7. The object files are linked together.

Once the program has been linked correctly, the .ii files contain a complete set
of instantiation assignments. From then on, whenever source files are
recompiled, the compiler will consult the .ii files and do the indicated
instantiations as it does the normal compilations. That means that, except
cases where the set of required instantiations changes, the prelink step fro
then on will find that all the necessary instantiations are present in the obje
files and no instantiations assignment adjustments need be done. That’s tr
even if the entire program is recompiled.

If the programmer provides a specialization of a template entity somewher
the program, the specialization will be seen as a definition by the prelinker
Since that definition satisfies whatever references there might be to that en
the prelinker will see no need to request an instantiation of the entity. If the
programmer adds a specialization to a program that has previously been
compiled, the prelinker will notice that too and remove the assignment of t
instantiation from the proper .ii file.
20 Green Hills C++ User’s Guide, v. 1.8.9

Template Instantiation
The .ii files should not, in general, require any manual intervention. One
exception: if a definition is changed in such a way that some instantiation no
longer compiles (it gets errors), and at the same time a specialization is added in
another file, and the first file is being recompiled before the specialization file
and is getting errors, the .ii file for the file getting the errors must be deleted
manually to allow the prelinker to regenerate it.

If the prelinker changes an instantiation assignment, it will issue a message like:

C++ prelinker: A<int>::f() assigned to file test.o
C++ prelinker: executing: /usr/green/gcx -c test.c

The automatic instantiation scheme can coexist with partial explicit control of
instantiation by the programmer through the use of pragmas or command-line
specification of the instantiation mode. See the following sections for more
information.

Instantiations are normally generated as part of the object file of the translation
unit in which the instantiations are performed. But when One instantiation per
object file is used, each instantiation is placed in its own object file. This mode
is useful when building libraries that need to include copies of the instances
referenced from the library. If each instance is not placed in its own object file,
it may be impossible to link the library with another library containing some of
the same instances.

Automatic instantiation may optionally be turned off. If automatic instantiation
is turned off, the template information file is not generated.

INSTANTIATION MODES

Normally, when a file is compiled, no template entities are instantiated (except
those assigned to the file by automatic instantiation). The overall instantiation
mode can, however, be changed by the following command line options:

-tnone Do not automatically create instantiations of any template entities.
This is the default. It is also usually the appropriate mode when
automatic instantiation is done.

-tused Instantiate those template entities that were used in the
compilation. This will include all static data members for which
there are template definitions.
Green Hills Software, Inc. 21

1. C++ Language Features
-tall Instantiate all template entities declared or referenced in the
compilation unit. For each fully instantiated template class, all of
its member functions and static data members will be instantiated
whether or not they were used. Nonmember template functions
will be instantiated even if the only reference was a declaration.

-tlocal Similar to -tused except that the functions are given internal
linkage. This is intended to provide a very simple mechanism for
those getting started with templates. The compiler will instantiate
the functions that are used in each compilation unit as local
functions, and the program will link and run correctly (barring
problems due to multiple copies of local static variables.)
However, one may end up with many copies of the instantiated
functions, so this is not suitable for production use. -tlocal can not
be used in conjunction with automatic template instantiation. If
automatic instantiation is enabled by default, it will be disabled by
the -tlocal option. If automatic instantiation is not enabled by
default, use of -tlocal and -template=auto is an error.

In the case where the compiler is given a single file to compile and link (e.g.,
gcx albatross.C), the compiler knows that all instantiations will have to be
done in the single source file. Therefore, it uses the -tused mode and suppresses
automatic instantiation.

INSTANTIATION #PRAGMA DIRECTIVES

Instantiation pragmae can be used to control the instantiation of specific
template entities or sets of template entities. There are three instantiation
pragmas:

instantiate Causes a specified entity to be instantiated.
do_not_instantiate

Suppresses the instantiation of a specified entity. It is typically
used to suppress the instantiation of an entity for which a specific
definition will be supplied.

can_instantiate
Indicates that a specified entity can be instantiated in the current
compilation, but need not be. This is used in conjunction with
automatic instantiation to indicate potential sites for instantiation
if the template entity turns out to be required.
22 Green Hills C++ User’s Guide, v. 1.8.9

Template Instantiation
Each of the above instantiation pragmae take an argument, which may be one of
the following:

▲ A template class name (e.g., A<int>)

▲ A template class declaration (e.g., class A<int>)

▲ A member function name (e.g., A<int>::f)

▲ A static data member name (e.g., A<int>::i)

▲ A static data declaration (e.g., int A<int>::i)

▲ A member function declaration (e.g., void A<int>::f(int, char))

▲ A template function declaration (char* f(int, float))

A pragma directive in which the argument is a template class name is equivalent
to repeating the pragma for each member function and static data member
declared in the class. When instantiating an entire class a given member
function or static data member may be excluded using the do_not_instantiate
pragma. For example:

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation
for an instantiation to occur. If an instantiation is explicitly requested by use of
the instantiate pragma and no template definition is available or a specific
definition is provided, and error is issued.

template <class T> void f1(T); // No body provided
template <class T> void g1(T); // No body provided
void f1(int) {} // Specific definition
void main()
{
 int i;
 double d;
 f1(i);
 f1(d);
 g1(i);
 g1(d);
}
#pragma instantiate void f1(int) // error - specific
 // definition
#pragma instantiate void g1(int) // error - no body
 // provided
Green Hills Software, Inc. 23

1. C++ Language Features
f1(double) and g1(double) will not be instantiated (because no bodies were
supplied) but no errors will be produced during the compilation (if no bodies are
supplied at link time, a linker error will be produced).

A member function name (e.g., A<int>::f) can only be used as a pragma
argument if it refers to a single user defined member function (i.e., not an
overloaded function). Compiler-generated functions are not considered, so a
name may refer to a user defined constructor even if a compiler-generated copy
constructor of the same name exists. Overloaded member functions can be
instantiated by providing the complete member function declaration. For
example:

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated
function, an inline function, or a pure virtual function.

IMPLICIT INCLUSION

When implicit inclusion is enabled, the compiler is given permission to assume
that if it needs a definition to instantiate a template entity declared in a .h file it
can implicitly include the corresponding .C file to get the source code for the
definition. For example, if a template entity ABC::f is declared in file xyz.h,
and an instantiation of ABC::f is required in a compilation but no definition of
ABC::f appears in the source code processed by the compilation, the compiler
will look to see if a file xyz.C exists, and if so it will process it as if it were
included at the end of the main source file.

To find the template definition file for a given template entity, the compiler
needs to know the full path name of the file in which the template was declared
and whether the file was included using the system include syntax (e.g.,
#include <file.h>). This information is not available for preprocessed source
containing #line directives. Consequently, the compiler will not attempt
implicit inclusion for source code containing #line directives.

The following suffixes will be searched for: .c, .C, .cpp, .CPP, .cxx, .CXX, and
.cc.

Implicit inclusion works well alongside automatic instantiation, but the two are
independent. They can be enabled or disabled independently, and implicit
inclusion is still useful when automatic instantiation is not done.
24 Green Hills C++ User’s Guide, v. 1.8.9

Using clearmake with Green Hills C++
USING CLEARMAKE WITH GREEN HILLS C++

The Green Hills C++ compiler offers several methods of building template
code. The following sections describe these methods. This information is
provided by ClearCase® of Atria, Inc.

AUTOMATIC INSTANTIATION

The Green Hills C++ compiler performs automatic template instantiation to
build template code by default. During a prelink step, the compiler determines
the necessary template code the program requires and compiles into some of the
object files to make up the program. The compiler tracks how the program uses
template code. It records this information in the .ii files in the build directory.

If using the Automatic Instantiation method, clearmake sometimes executes
unnecessary rebuilds of program components. When the prelinker compiles
template code into an existing object file, the dependency information that
clearmake previously recorded for that object file is no longer updated. The
next time that clearmake is invoked, it will rebuild the object file. After this
rebuild, the dependency information for the object file is correct once again. At
this point, clearmake no longer executes unnecessary rebuilds of that object
file.

The Automatic Instantiation method is the easiest to use because it requires no
programmer intervention and it is suitable for most applications. Aside from the
unnecessary rebuilds described above, this method does not conflict with
ClearCase configuration management.

COMPILE-TIME DEMAND INSTANTIATION

The Compile-Time Demand Instantiation method instantiates templates at
compile-time, rather than during a prelink step. To use this method, specify the
-tused and --no_auto_instantiation option to the Green Hills C++ compiler.

This option causes the compiler to compile all the template code that the source
module refers to into the object module. If multiple source modules refer to the
same template class or function, copies of the compiled template code appear in
multiple object modules.
Green Hills Software, Inc. 25

1. C++ Language Features
The Compile-Time Demand Instantiation is easy to use, requiring the
programmer only to specify extra compiler options. It is suitable for most
applications, especially for building archives. Also, this method does not
conflict with ClearCase configuration management. The disadvantage of the
method is that the compiler uses extra time and disk space to perform redundant
template instantiation, and the same instantiation may appear in multiple source
files causing programs to be larger than necessary.

EXPLICIT INSTANTIATION

The Explicit Instantiation method is an alternate form of compile-time
instantiation. The Green Hills C++ compiler allows you to add directives to the
source code to specify which template classes to instantiate.

When it compiles a source module, the compiler instantiates all the template
classes specified by the directives in the source. The compiler instantiates each
template classes completely, that is, it instantiates every member function and
static data member of the class.

To use the Explicit Instantiation method, follow these steps:

1. For each template class to instantiate, add one #pragma instantiate directive
to the source code. For example, if the program requires the Array<String>
class, then add the following directive:

 #pragma instantiate Array<String>

2. In each source file that contains a #pragma instantiate directive, include
the header files that contain definitions of the templates and classes used in
the directives.

3. This step is optional: Disable automatic instantiation by specifying the
-tnone and --no_auto_instantiation compiler options. Automatic instantia-
tion does not interfere with explicit instantiation, but you may choose to dis-
able it.

The Explicit Instantiation method requires more effort to use. However, it
allows you to control the placement of instantiated template code into object
modules. This control is useful in some situations, especially when building
archives of instantiated template code. Using explicit instantiation does not
conflict with clearmake build avoidance.
26 Green Hills C++ User’s Guide, v. 1.8.9

Namespace Support
NAMESPACE SUPPORT

Namespaces are enabled by default except in the cfront modes. Options can be
used to enable or disable the features.

Name lookup during template instantiations now does something that
approximates the two-phase lookup rule of the X3J16/WG21 Working Paper.
When a name is looked up as part of a template instantiation but is not found in
the local context of the instantiation, it is looked up in a synthesized
instantiation context. The Green Hills C++ compiler follows the new
instantiation lookup rules for namespaces as closely as possible in the absence
of a complete implementation of the new template name binding rules.

For example:

namespace N {
 int g(int);
 int x = 0;
 template <class T> struct A {
 T f(T t) {return g(t);}
 T f() {return x;}
 };
}
namespace M {
 int x =99;
 double g(double);
 N::A<int> ai;
 int i = ai.f(0); // N::A<int>::f(int) calls
 // N::g(int)
 int i2 = ai.f(); // N::A<int>::f() returns 0 (=
 // N::x)
 N::A<double> ad;
 double d = ad.f(0); // N::A<double>::f(double)
 // calls M::g(double)
 double d2 = ad.f(); // N::A<double>::f() also
 // returns 0 (= N::x)
}

The lookup of names in template instantiations does not conform to the rules in
the working paper in the following respects:
Green Hills Software, Inc. 27

1. C++ Language Features

ls.

y the
e
ead
hen
avior,

,

ce

e the
▲ Although only names from the template definition context are considered
for names that are not functions, the lookup is not limited to those names
visible at the point at which the template was defined.

▲ Functions from the context in which the template was referenced are
considered for all function calls in the template. Functions from the
referencing context should only be visible for “dependent” functions cal

The lookup rules for overloaded operators are implemented as specified b
Working Paper, which means that the operator functions in the global scop
overload with the operator functions declared extern inside a function, inst
of being hidden by them. The old operator function lookup rules are used w
namespaces are turned off. This means a program can have different beh
depending on whether it is compiled with namespace support enabled or
disabled:

struct A {};
A operator+(A, double);
void f() {
 A a1;
 A operator+(A, int);
 a1 + 1.0; // calls operator+(A, double) with
 // namespaces enabled
} // but otherwise calls operator+(A, int);

The interaction between friend declarations and namespaces is incompletely
(or incorrectly) specified in the current Working Paper; pending clarification
the following implementation choices have been made:

▲ A namespace-qualified friend declaration must refer to a previously
declared entity.

▲ A globally qualified name is permitted in a friend declaration (e.g., friend
void ::f();) as an extension; it too must refer to an existing entity.

▲ An unqualified friend declaration may be a definition, but a
namespace-qualified friend declaration may not.

▲ The lookup of an unqualified friend declaration begins in the innermost
non-class scope and continues no further than the innermost namespa
scope.

The final rule (which for friend declarations in non-local classes effectively
requires that the scope for name lookup and the scope for name injection b
28 Green Hills C++ User’s Guide, v. 1.8.9

Precompiled Headers

n

en

ism
r
en
t of
ing
ight
e.

a
on a

top
 file
ed
same) prevents a namespace from being “polluted” by declarations from a
enclosing namespace. For example:

namespace N {
 class A {
 friend void f();// always declares N::f regardless
 // of whether ::f is visible
 };
}

The programmer is assured that f is injected into namespace N whether or not
there is a declaration of f in the scope enclosing N.

PRECOMPILED HEADERS

It is often desirable to avoid recompiling a set of header files, especially wh
they introduce many lines of code and the primary source files that #include
them are relatively small. The Green Hills C++ compiler provides a mechan
for, in effect, taking a snapshot of the state of the compilation at a particula
point and writing it to a disk file before completing the compilation. Then, wh
recompiling the same source file or compiling another file with the same se
header files, it can recognize the snapshot point, verify that the correspond
precompiled header (PCH) file is reusable, and read it back in. Under the r
circumstances, this can produce a dramatic improvement in compilation tim
The trade off is that PCH files can take up a lot of disk space.

AUTOMATIC PCH PROCESSING

When --pch appears on the command line, automatic precompiled header
processing is enabled. This means the compiler will automatically look for
qualifying precompiled header file to read in and/or will create one for use
subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the header s
point. The header stop point is typically the first token in the primary source
that does not belong to a preprocessing directive, but it can also be specifi
directly by #pragma hdrstop (see section Other Ways to Control PCH’s on
page 34) if that comes first. For example:

#include “xxx.h”
#include “yyy.h”
int i;
Green Hills Software, Inc. 29

1. C++ Language Features
The header stop point is int (the first non-preprocessor token) and the PCH file
will contain a snapshot reflecting the inclusion of xxx.h and yyy.h. If the first
non-preprocessor token or the #pragma hdrstop appears within a #if block, the
header stop point is the outermost enclosing #if. To illustrate, here’s a more
complicated example:

#include “xxx.h”
#ifndef YYY_H
#define YYY_H 1
#include “yyy.h”
#endif
#if TEST
int i;
#endif

Here, the first token that does not belong to a preprocessing directive is again
int, but the header stop point is the start of the #if block containing it. The PCH
file will reflect the inclusion of xxx.h and conditionally the definition of
YYY_H and inclusion of yyy.h; it will not contain the state produced by #if
TEST.

A PCH file will be produced only if the header stop point and the code
preceding (mainly, the header files themselves) meet certain requirements:

▲ The header stop point must appear at file scope; it may not be within an
unclosed scope established by a header file. For example, a PCH file will
not be created in this case:

 // xxx.h
 class A {

 // xxx.C
 #include “xxx.h”
 int i; };

▲ The header stop point may not be inside a declaration started within a header
file, nor (in C++) may it be part of a declaration list of a linkage
specification. For example, in the following case the header stop point is
int, but since it is not the start of a new declaration, no PCH file will be
created:
30 Green Hills C++ User’s Guide, v. 1.8.9

Precompiled Headers

)

cient
iled

pshot
nder

t.

e

en
ine
 // yyy.h
 static

 // yyy.C
 #include “yyy.h”
 int i;

▲ Similarly, the header stop point may not be inside a #if block or a #define
started within a header file.

▲ The processing preceding the header stop must not have produced any
errors. Note that warnings and other diagnostics will not be reproduced
when the PCH file is reused.

▲ No references to predefined the predefined macros _ _DATE_ _ or
_ _TIME_ _ may have appeared.

▲ No use of the #line preprocessing directive may have appeared.

▲ #pragma no_pch (see section Other Ways to Control PCH’s on page 34
must not have appeared.

▲ The code preceding the header stop point must have introduced a suffi
number of declarations to justify the overhead associated with precomp
headers.

When a precompiled header is produced, it contains, in addition to the sna
of the compiler state, some information that can be checked to determine u
what circumstances it can be reused. This includes:

▲ The compiler version, including the date and time the compiler was buil

▲ The current directory (i.e., the directory in which the compilation is
occurring).

▲ The command line options.

▲ The initial sequence of preprocessing directives from the primary sourc
file, including #include directives.

▲ The date and time of the header files specified in #include directives.

This information comprises the PCH prefix. The prefix information of a giv
source file can be compared to the prefix information of a PCH file to determ
whether the latter is applicable to the current compilation.

As an illustration, consider two source files:
Green Hills Software, Inc. 31

1. C++ Language Features

he

e
// a.C
#include “xxx.h”
// Start of code
// b.C
#include “xxx.h”
// Start of code

When a.C is compiled with the --pch option, a precompiled header file named
a.pch is created. Then, when b.C is compiled (or when a.C is recompiled), the
prefix section of a.pch is read in for comparison with the current source file. If
the command line options are identical, if xxx.h has not been modified, and so
forth, then, instead of opening xxx.h and processing it line by line, the compiler
reads in the rest of a.pch and thereby establishes the state for the rest of the
compilation.

It maybe be that more than one PCH file is applicable to a given compilation. If
so, the largest (i.e., the one representing the most preprocessing directives from
the primary source file) is used. For instance, consider a primary source file
that begins with:

#include “xxx.h”
#include “yyy.h”
#include “zzz.h”

If there is one PCH file for xxx.h and a second for xxx.h and yyy.h together, the
latter will be selected (assuming both are applicable to the current compilation).
Moreover, after the PCH file for the first two headers is read in and the third is
compiled, a new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary
source file, with the suffix replaced by .pch. Unless --pch_dir is specified (see
Other Ways to Control PCH’s on page 34), it is created in the directory of t
primary source file.

When a precompiled header file is created or used, a message such as th
following is issued:

“test.C”: creating precompiled header file “test.pch”

You may suppress the message by using the command-line option
--no_pch_messages.
32 Green Hills C++ User’s Guide, v. 1.8.9

Precompiled Headers
In automatic mode (i.e., when the --pch option is used) the compiler will
consider a precompiled header file obsolete and delete it under the following
circumstances:

▲ if the precompiled header file is based on at least one out-of-date header file
but is otherwise applicable for the current compilation

▲ if the precompiled header file has the same base name as the source file
being compiled (e.g., xxx.pch and xxx.C) but is not applicable for the
current compilation (e.g., because of different command-line options).

This handles some common cases. Other PCH file clean-up must be dealt with
by the user.

Support for precompiled header processing is not available when multiple
source files are specified in a single compilation: an error will be issued and the
compilation aborted if the command line includes a request for precompiled
header processing and specifies more than one primary source file.

MANUAL PCH PROCESSING

The command-line option --create_pch=filename specifies that a precompiled
header file of the specified name should be created.

The command-line option --use_pch=filename specifies that the indicated
precompiled header file should be used for this compilation. If it is invalid (i.e.,
if its prefix does not match the prefix for the current primary source file), a
warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch_dir, the
indicated file name (which may be a path name) is tacked on to the directory
name, unless the file name is an absolute path name.

The --create_pch, --use_pch, and --pch options may not be used together. If
more than one of these options is specified, only the last one will apply.

Nevertheless, most of the description of automatic PCH processing applies to
one or the other of these modes. Header stop points are determined the same
way, PCH file applicability is determined the same way, etc.
Green Hills Software, Inc. 33

1. C++ Language Features

 if it

ader

 not

 when
OTHER WAYS TO CONTROL PCH’S

There are several ways you can control and/or tune how precompiled headers
are created and used.

▲ #pragma hdrstop may be inserted in the primary source file at a point prior
to the first token that does not belong to a preprocessing directive. It enables
the user to specify where the set of header files subject to precompilation
ends. For example:

 #include “xxx.h”
 #include “yyy.h”
 #pragma hdrstop
 #include “zzz.h”

 Here the precompiled header file will include processing states for xxx.h and
 yyy.h but not zzz.h. This is useful if you decide that the information added
 by what follows the #pragma hdrstop does not justify the creation of
 another PCH file. This applies to C++ only. See
 Precompiled Headers on page 29 for more information.

▲ #pragma no_pch may be used to suppress precompiled header processing
for a given source file.

▲ The command line option --pch_dir=directory is used to specify the
directory in which to search for and/or create a PCH file.

PERFORMANCE ISSUES

The relative overhead incurred in writing out and reading back in a precompiled
header file is quite small for reasonably large header files.

In general, it doesn’t cost much to write a precompiled header file out even
does not end up being used, and if it is used it almost always produces a
significant speedup in compilation. The problem is that the precompiled he
files can be quite large (from a minimum of about 250K bytes to several
megabytes or more), and so you probably don’t want many of them sitting
around.

Thus, despite the faster recompilations, precompiled header processing is
likely to be justified for an arbitrary set of files with nonuniform initial
sequences of preprocessing directives. Rather, the greatest benefit occurs
34 Green Hills C++ User’s Guide, v. 1.8.9

Cross Reference Information
a number of source files can share the same PCH file. The more sharing, the less
disk space is used. With sharing, the disadvantage of large precompiled header
files can be minimized, without giving up the advantage of a significant
speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should
expect to reorder the #include sections of their source files and/or to group
#include directives within a commonly used header file.

Different environments and different projects will have different needs, but in
general, you should be aware that making the best use of the precompiled
header support will require some experimentation and probably some minor
changes to source code.

Note: The -fnone option does not work with the standard C++ header files.

CROSS REFERENCE INFORMATION

Here is information to read the cross reference information produced by the
--xref option (or from the GUI: Options->C++->More Options->Listing
Options->Cross Reference File).

The format for the cross reference information is:

symbol-id name ref-code file-name line-number
column-number

All fields are separated by tabs. Here is more information to understand the
cross reference information:

Field Name Meaning

symbol-id A unique decimal number for the symbol (differentiates different variables
with the same name).

name The symbol name.
Green Hills Software, Inc. 35

1. C++ Language Features

.

PREPROCESSOR

Green Hills C++ uses an ANSI C compliant preprocessor.

PREDEFINED C++ SYMBOLS

The following symbols are predefined for C++, in addition to those listed in the
Green Hills C User’s Guide.

ref-code D for definition
d for declaration
M for modification
A for address taken
U for a use
C for changed (used and modified in a single operation, like ++variable;)
R for any other kind of reference
E for an error which causes the kind of reference to be indeterminate

file-name Source file in which the reference occurs.

line-number Line number on which the reference occurs.

column-number Column number at which the reference occurs.

Macro Name Value Description

_ _ARRAY_OPERATORS 1 Defined when array new and delete are enabled.

_BOOL 1 Defined when --bool is specified on the driver command
line

_ _cfront 1 Indicates cfront

_ _c_plusplus
_ _cplusplus

1 Indicates C++ (this is for backwards compatibility with
some older C++ implementations)

_ _EDG_IMPLICIT_USING_STD 1 Defined when an implicit “using namespace std” is done

_ _EMBEDDED_CXX 1 Indicates embedded C++.

_ _EXCEPTION_HANDLING
_ _EXCEPTIONS

1 Indicates C++ compiler is running in a mode that allows
exception handling.

_ _ghs 1 Indicates this is a Green Hills compiler

_ _NAMESPACES 1 Indicates C++ namespaces accepted.

Table 1 Predefined Symbols in C++

Field Name Meaning
36 Green Hills C++ User’s Guide, v. 1.8.9

asm Statement
ASM STATEMENT

The asm statement generates in-line assembly code, and can be used anywhere
a statement can appear.

The asm syntax is as follows:

asm (“ assembler_instruction operands”);

Note that there must be a space or tab between the first double quotes (“) and
the assembler instruction.

For example:

asm (“ sethi %hi(L16),%o0“);

This statement drops the sethi instruction into the assembly code generated by
the compiler, corresponding exactly to where the compiler found it in the source
code.

Since the code generated by Green Hills C is substantially different from the
code generated by other compilers, it is usually necessary to modify most asm
statements. Also, the code generated by the asm statement is of course specific
to the target on which the source file was originally compiled.

It is important to note that the asm statement will not function if object code is
directly produced.

LINKAGE

C++ accepts the extern language directive in order to achieve linkage between
C++ and C. The full syntax is as follows:

_ _PLACEMENT_DELETE 1 Defined when placement delete is enabled.

_ _RTTI 1 Indicates Runtime Type Identification code accepted.

_ _STDC_ _ 0 Indicates C++ or ANSI C

_WCHAR_T 1 Defined if wchar_t is a keyword.

Macro Name Value Description

Table 1 Predefined Symbols in C++
Green Hills Software, Inc. 37

1. C++ Language Features

inds
+
extern language {

 declarations

}

or

extern language declaration;

where language may be C or C++.

Note that the extern “ language” directive only affects the external names of
functions so that the compiler will apply the appropriate function naming rules.
This directive does not modify the type or number of arguments of a function,
or its return type. Normal C++ type checking rules are not altered by this
directive.

For more information on using C++ with C, see Chapter 3, “Mixing
Languages”.

PRAGMAS

#pragma directives are used within the source program to request certain k
of special processing. The #pragma directive is part of the standard C and C+
languages, but the meaning of any pragma is implementation-defined.

In addition to the #pragma directives specifically recognized for C++, all
“#pragma ghs” directives are recognized. See the Green Hills C User’s Guide
for details.

The Green Hills C++ compiler recognizes several pragmae. The following are
described in detail in section Template Instantiation on page 16:

Language Effect on Resulting Code

C C++ does not alter the procedure name as it usually would when
confronted with an overloaded function.

C++ Uses C++ naming rules. Function names are always mangled
according to C++ linkage specifications. This is the default linkage.

Table 2 Function/Procedure Naming with extern
38 Green Hills C++ User’s Guide, v. 1.8.9

Post Processing in C++
#pragma instantiate
#pragma do_not_instantiate
#pragma can_instantiate

and two others are described in section Precompiled Headers on page 29:

#pragma hdrstop
#pragma no_pch

The compiler also recognizes #pragma once, which, when placed at the
beginning of a header file, indicates that the file is written in such a way that
including it several times has the same effect as including it once. Thus, if the
compiler sees #pragma once at the start of a header file, it will skip over it if
the file is included again with a #include statement.

A typical idiom is to place a #ifndef guard around the body of the file, with a
#define of the guard variable after the #ifndef:

#pragma once // optional
#ifndef FILE_H
#define FILE_H
// body of header file goes here
#endif

The #pragma once is marked as optional in this example because the compiler
recognizes the #ifndef idiom and does the optimization even in its absence.
#pragma once is accepted for compatibility with other compilers and to allow
the programmer to use other guard-code idioms.

POST PROCESSING IN C++

NOTE: This section does not apply to VxWorks/Tornado.

Global objects in C or C++ (or non-local static objects) are those objects which
are declared outside of the scope of any function and are available throughout
the entire program. C++ objects which are instances of a class type have
mechanisms for automatic construction/initialization and destruction/cleanup
through the use of constructors and destructors. Constructors are functions
which are automatically called by the compiler when an object is created.
Destructors are called when an object is deleted. This implies some
Green Hills Software, Inc. 39

1. C++ Language Features
implementation-specific behavior for global objects which may vary from C++
system to C++ system.

Global objects, such as those in libraries (e.g. cin, cout, and cerr) must be
constructed and initialized for the entire program. This means that the
constructor functions must be called as soon as the program begins. The
compiler has no knowledge of external global objects contained in other
modules or libraries except for an extern declaration. This is not enough
information for the compiler to be able to properly insure that these calls are
done. For targets that use the GHS linkers, the linker resolves the global
constructor and destructor information. In other environments, the cxxmunch
utility assumes this responsibility. The VxWorks environment is unique in that
the module load/unload functions invoke the global constructors/destructors, or
else the user executes them manually.

After an executable has been produced, the Green Hills C++ compiler driver
calls the nm utility to find all global symbols. The output of nm is sent to the
postlink program cxxmunch. cxxmunch searches for all global constructor and
destructor calls and generates a C module which will execute these calls
appropriately at program startup and exit. The driver then invokes the compiler
and assembler to produce another object module. Then the linker is invoked to
relink the new constructor/destructor object with the original object and
libraries. This produces the fully processed C++ executable, which has all of the
appropriate constructor and destructor calls.

The driver makes all of this processing completely transparent to the user.
However, if you do not use the driver provided by Green Hills, then you are
responsible for calling the postlink program after producing an executable,
otherwise your program may not run correctly.

C++ UTILITIES

The following utility is provided with Green Hills C++.

DECODE

decode [names]

Print demangled string from the specified C++ mangled string. If no names are
given, then standard input will be read. For example:
40 Green Hills C++ User’s Guide, v. 1.8.9

C++ Utilities
$ decode adjustfield__3ios
ios::adjustfield
Green Hills Software, Inc. 41

1. C++ Language Features
42 Green Hills C++ User’s Guide, v. 1.8.9

Chapter
2

EC++/ESTL FEATURES
 THIS CHAPTER CONTAINS:

▲ How to effectively use GHS C++

▲ C++ in the Wind River VxWorks/Tornado Environment

▲ Introduction to EC++

▲ Introduction to ESTL

▲ Getting started with EC++ and ESTL

▲ Standard C++

▲ GHS Solution

2. EC++/ESTL Features

” C++.
e
nd

. For
t a
 level

with.

rary

ds.
Described in this Chapter are the features of Embedded C++ (EC++) and Extended Standard
Template Libraries (ESTL).

HOW TO EFFECTIVELY USE GHS C++

The needs of C++ users vary widely, depending on a number of factors. These
factors involve such considerations as the target application, the target
environment, foreign libraries involved, compatibility with other C++
compilers, and the trade-offs programming teams make in regard to the C++
feature set and library support they require.

To meet such a diverse set of needs, GHS supports a concept of “scalable
The language level and library level is switch selectable, giving the user th
choice of everything from a small and efficient “Embedded C++” compiler a
library, to the power of the full ANSI draft “Standard” C++ language and
library.

The C++ language and library level do not necessarily need to be matched
example, a user may choose to program in Standard C++ but may feel tha
scaled back library suits their needs. The rule of thumb is that the language
must be at least as high as the library level, otherwise the compiler may
encounter features in the library header files that it isn’t authorized to deal

The EC++ library is the smallest, but least powerful. The Standard C++ lib
is the largest and most powerful. The ESTL library falls in between. For
embedded applications, choose the smallest library that will meet your nee

Allowable language/library combinations are:

Language Level Allowable Library Level

Standard C++ Standard C++ library, ESTL library,
EC++ library

ESTL ESTL library, EC++ library

EC++ EC++ library
44 Green Hills C++ User’s Guide, v. 1.8.9

How to Effectively Use GHS C++
A comparison between language levels:

In ESTL and EC++ all Standard C++ keywords are retained for upward
compatibility.

A comparison between library levels:

Note: The Standard and ESTL libraries are built within the STD namespace.
Since namespaces are not present in EC++, the EC++ library is not built in a
namespace.

Considerations for picking a language level.

Standard C++
The full ANSI draft Standard C++ language, including all the
latest features and changes. All of the features of Standard C++
are turned on by default, with the exception of exception
handling. Exception handling must be turned on explicitly, since
there is a code size and speed penalty to be paid even if EH
features are not used. Many individual C++ features can be turned

Standard C++ ESTL EC++

Fully ANSI draft
supported.

Removed from ANSI
draft C++:
-exception handling
-multiple inheritance
-virtual base classes

Removed from ANSI
draft C++:
-exception handling
-multiple inheritance
-virtual base classes
-templates
-namepsaces
-mutable keyword
-new-style casts

Standard C++ ESTL EC++

All ANSI draft support. Removed from ANSI
draft:
-exception handling
-localization
-environment

Removed from ANSI
draft:
-exception handling
-localization
-environment
-STL
-file operations
-wchar_t
-long double
Green Hills Software, Inc. 45

2. EC++/ESTL Features
off if desired (For example, the semantics of the for loop variable
definitions have changed in the ANSI draft causing an
incompatibility with some pieces of old code. In this case a user
may choose to turn on the option that causes the compiler to use
the old code for loop variable semantics). Of course one
advantage to using Standard C++ is that it is the language which
is described in newer C++ books, and that there is an actual
standard to define proper behavior.

ESTL A compromise language level, existing between ANSI draft C++
and Embedded C++. Aimed at large embedded applications, this
language offers all of the features of Standard C++ except for
those features that adversely effect code speed. These features are
exception handling, multiple inheritance and virtual base classes.
As with Standard C++, other features can be individually
controlled through fine-tuning options. Notable features such as
templates and namespaces are supported.

EC++ The smallest and most efficient version of C++. EC++ is a
standardized C++ variation designed for the needs of small
embedded applications. EC++ excludes language features deemed
expensive in terms of code space or speed, features that have poor
runtime characteristics for speed, features that have poor runtime
characteristics for some pieces of embedded code, and features
that are thought to be overly complex for the needs of a small
embedded applications. The result is a relatively simple and
efficient, yet powerful C++ language.

Considerations for picking a library level:

Standard C++
The full ANSI draft C++ library. As with the full Standard C++
language, this is the library that is described in C++ books. The
library is built around the standard template library (STL).

ESTL A scaled back version of the full ANSI draft library to meet the
needs of large embedded projects. The library is still based around
the STL, but has tossed out features which are thought to be not
useful in an embedded applications.

EC++ The smallest and most efficient C++ library. Heavily optimized
for smallest code and data size.
46 Green Hills C++ User’s Guide, v. 1.8.9

C++ in the Wind River VxWorks/Tornado Environment

ing
C++ IN THE WIND RIVER VXWORKS/TORNADO ENVIRONMENT

All libraries and thread-safe exception handling are supported.

Notes:

The Standard, ESTL, and EC++ libraries require that wchar_t be a keyword.
You may still select the type for wchar_t, but must not use the option that
removes it from the keyword (and fundamental type) list.

COMMAND LINE DRIVER OPTIONS:

Note: “EH” refers to Exception Handling.

INTRODUCTION TO EC++

WHAT IS EC++?

EC++ (Embedded C++) originated in Japan through the efforts of the follow
committee members:

EC++ language: --e

ESTL language: --ee

(ANSI) Standard C++ language: --std (ANSI violations are warnings)

(ANSI) Standard C++ language: --STD (ANSI violations are errors)

EC++ library (no EH): --el

EC++ library (with EH): --ele

ESTL library(no EH): --eel

ESTL library (with EH): --eele

(ANSI) Standard library (no EH): --stdl

(ANSI) Standard library (with EH): --stdle

Green Hills ADaC

Toshiba Plum Hall

Hitachi Dinkumware

NEC Cygnus
Green Hills Software, Inc. 47

2. EC++/ESTL Features
The purpose of EC++ is to create a stable, simple, and efficient version of
Standard C++, with the intent to produce an open standard in the future to be
used worldwide. EC++ is not a new language specification that will compete
with existing Standard C++. Rather, it is a pure subset for the practical user of
C++.

EC++ is designed to meet the needs of the embedded industry. The committee
members established the following guidelines for creating EC++. The subset
fulfills the particular requirements of embedded systems designs:

▲ Remove complex features and specifications while retaining as many
object-oriented features as possible.

▲ Avoid those features and specifications that do not fulfill the requirements of
embedded system design. Three major requirements of embedded system
designs are: 1) Avoiding excessive memory consumption, 2) Taking the
care not to produce unpredictable responses, and 3) Making code
ROMmable.

▲ Non-standard extensions to C++ should be avoided.

▲ The founders of the EC++ committee state: Our background is in the
semiconductor business. We mainly target 32-bit RISC MCU applications as
embedded systems. Although there are many applications using 4 or 8-bit
MCUs, we cannot address them. We feel that the basic features of C, or even
assembly language, are sufficient for these processors. On the other hand,
those systems are expandable using standard buses, such as VME or PCI,
are similar to those of PCs or workstations. We recognize that a full version
of Standard C++ is better than Embedded C++ for those application designs.

EC++ is similar to C++ (1990) except for the following conditions:

▲ Many small enhancements and clarifications are retained from ANSI C++

▲ Unused keywords are retained from ANSI C++ for upward compatibility

▲ A style guide is available, providing guidelines for using EC++ wisely

New additions to the ANSI C++ language have been made. One such feature is
mutable keyword. The mutable keyword allows the user to modify class
members even if the object has been declared const. These cannot be placed in
ROM. Previously, the object was placed in ROM, without the ability to
manipulate it.
48 Green Hills C++ User’s Guide, v. 1.8.9

Introduction to EC++
New-style casts force the programmer to be explicit about the type of cast being
performed. The new-style casts are self documenting, and force the user to be
aware when doing a dangerous cast. The EC++ committee felt the learning
curve to use the new-style casts was too steep to justify their benefit.

The following items are language elements which have poor runtime
characteristics and have not been included in EC++:

▲ Exception handling: It is difficult to estimate the time between when an
exception has occurred and control has passed to a corresponding exception
handler. It is also difficult to estimate memory consumption for exception
handling.

▲ Multiple inheritance and virtual base classes: Designing a class hierarchy
using multiple inheritance or recognizing the overall hierarchy of it and
using it correctly is difficult. The programs are less readable, less usable,
and more difficult to maintain.

▲ RTTI: Program size is a factor when supporting the runtime type
identification facility. To support the runtime type identification (RTTI)
facility, there is at least some program size overhead, because type
information for polymorphic classes is needed. The compiler automatically
generates the information, and it would be included in programs that do not
use the RTTI facility.

The following language elements are overly complex for embedded
programming and have not been included in EC++:

▲ Templates: Templates are complex items that increase the time of
compilation and cause unexpected code explosion. For these reasons,
templates have not been implemented in EC++.

▲ Namespaces: To avoid serious name conflicts, using a static member of a
class is recommended. This will prevent the need of using namespaces in the
first place.

EC++ LIBRARY FEATURES

The EC++ library is a subset of the ANSI C++ library. The EC++ library is
designed to meet the needs of the embedded industry. It is much smaller and
more efficient than the full standard C++ library.
Green Hills Software, Inc. 49

2. EC++/ESTL Features
The EC++ library represents a significant addition to the typical C library
supplied with an embedded compiler. For a close approximation of the
Embedded C++ library, see P.J. Plauger, The Draft Standard C++ Library,
Prentice-Hall, 1995.

▲ Iostreams operations are supported for cin and cout, using classes istream,
ostream, ios, and streambuf.

▲ String operations are supported for class string.

▲ Math functions are overloaded for both double and float, in both real and
complex modes.

The Embedded C++ library also benefits from a few additions:

▲ Input/output to strings makes sense even in an embedded environment
(header or the older header).

▲ Allocators for string objects can also make sense, if tailorable by the
programmer.

▲ If fopen and flcose work in the Standard C library, then the classes ifstream,
ofstream, and filebuf (in header fstream) are also powerful additions.

To enhance the EC++ library, the following features were removed:

▲ No templates implies no Standard Template Library, no templatized string,
complex, or iostreams classes.

▲ No exceptions implies no exception handling functions or classes.

▲ No runtime type identification implies no type_info class.

The library omits support for wide character input/output, locales, and long
double arithmetic, because they are seldom needed in embedded applications.

INTRODUCTION TO ESTL

WHAT IS ESTL?

ESTL (Extended C++ with the Standard Template Library) was created in a
joint effort by Green Hills Software and P.J. Plauger. Keep in mind that this is
not an official standard.

ESTL is a scalable C++ version which is simply a compromise between the
Standard C++ and EC++. Unlike EC++, it adds back features that are not costly
in size or speed such as the following:
50 Green Hills C++ User’s Guide, v. 1.8.9

Introduction to ESTL
▲ Templates

▲ Namespaces

▲ Mutable keyword

▲ Most new-style casts

However, the following are still eliminated from the Standard C++:

▲ Exception handling

▲ Multiple inheritance and virtual base classes

ESTL LIBRARY FEATURES

The ESTL library features include STL and namespaces. It complements EC++,
allowing the users to have the most out of the enhanced language.
Green Hills Software, Inc. 51

2. EC++/ESTL Features
GETTING STARTED WITH EC++ AND ESTL

To get started with EC++ or ESTL, go to the Options menu and select C++...
from the MULTI Builder window.

To select the desired C++ version, pull down the menu and select the following
items:

Note that ESTL (Extended Standard Template Libraries) is equivalent to
Extended Embedded C++ in the pull down menu options.
52 Green Hills C++ User’s Guide, v. 1.8.9

Standard C++
To select the desired C++ library, pull down the menu and select the following
items:

Note that ESTL (Extended Standard Template Libraries) is equivalent to
Extended Embedded C++ in the pull down menu options.

STANDARD C++

FEATURES

The key features of C++ are the following items:

▲ STL is built into the Standard library

▲ Exception handling

▲ Namespaces

▲ RTTI

▲ The library and headers are part of the standard

Due to the standards EC++ maintains, these features have been removed from
EC++ and its corresponding library.

ADDITIONAL INFORMATION

For more information about EC++, please visit the web site:

http://www.caravan.net/ec2plus

For more information about Standard C++, we recommend:

Stroustrup, The C++ Programming Language, Third Edition.
Green Hills Software, Inc. 53

2. EC++/ESTL Features
54 Green Hills C++ User’s Guide, v. 1.8.9

Chapter
3

MIXING LANGUAGES

3. Mixing Languages

r’s
and

e

hould

ce
a
ase.

 and

 with
 and
driver
river
 line.
HOW THE DRIVER BUILDS A MIXED LANGUAGE EXECUTABLE

With Green Hills compilers, you can mix and match C, C++, FORTRAN,
Pascal, and Ada routines in the same executable files, subject to certain
constraints.

The Green Hills drivers are compatible. This permits a C driver to compile a
FORTRAN module, and a Pascal driver to compile a C++ module. The driver
uses the input filename extension to determine the correct language, rather than
assuming that the name of the driver determines the source code language.

While completely interchangeable during compilation, the various drivers differ
during the link phase. To link an application the driver must determine all of the
languages in use, in order to know which libraries to include. The driver
assumes that every application has modules written in C and assembly
language, and further, that there is at least one module written in the drive
default language. If source files written in other languages are on the comm
line, as indicated by the file extension, then the driver recognizes that thos
languages exist in the application as well.

Therefore, mixing any one language with C is easy, as the driver always
assumes C is in use. In this case, the driver for the language other than C s
be used for linking the application, to assure the correct linkage.

To link two languages other than C into a single application, all of the sour
files are placed on the command line so the driver can compile and link in
single step. This assures giving the driver full information during the link ph

The most difficult case is where each module must be compiled separately
the link phase is done strictly from object files which come from several
different languages. In this case, it is best to use the driver for the language
the most complicated linkage requirements. Specifically, to link C, Fortran,
Pascal, use the Fortran driver and add the Pascal library at the end of the
command line. To link C, C++ and either Fortran or Pascal, use the C++ d
and place the Fortran or Pascal libraries at the end of the driver command

THE -LANGUAGE OPTION

The -language option facilitates mixing languages. It is written as:
56 Green Hills C++ User’s Guide, v. 1.8.9

Initialization of Libraries

the

ore
 this

 in a
/O
 the
ram
he
-language=language

where language is either cxx, fortran, or pascal. It is not necessary to specify
C.

The -language option tells the driver that files written in language are being
mixed with the default language. This option is specified once for each
language being mixed. It is not necessary to specify the driver’s default
language.

EXAMPLES:

Three precompiled object files, main.o, pigeon.o, and falcon.o, are written in
C, Pascal, and FORTRAN, respectively. The following command line tells
driver about all three languages when linking:

gfc -language=pascal main.o pigeon.o falcon.o

Here, the driver knows about FORTRAN because the FORTRAN driver is
being used (gfc). All drivers assume C, and the -language=pascal option
informs the driver about Pascal.

To link the same three modules with the C driver:

gcc -language=pascal -language=fortran main.o pigeon.o falcon.o

INITIALIZATION OF LIBRARIES

A multiple language application may need to perform input and output in m
than one language. With a little care to avoid conflicts between languages,
is fully supported. If input and output will always be performed on different
files by each language, then the initialization and deinitialization of each
language’s runtime routines is handled automatically by the main program
single language application. Therefore, if the application will only perform I
in one language other than C, then it is easy to write the main program for
application in that language. For more complex requirements, a main prog
may be written in C which performs the initialization and deinitialization of t
library runtime routines.
Green Hills Software, Inc. 57

3. Mixing Languages
A C MAIN() PROGRAM FOR C++

void main() {
 _main();/* must be first executable line */

 /* rest of main goes here */

 exit(0);/* must be last executable line */
}

A C MAIN() PROGRAM FOR FORTRAN

int _ _gh_argc;
char **_ _gh_argv;

extern void (*_ _gh_initrec)();
extern void (*_ _gh_uninitrec)();

int main(int argc, char **argv)
{
 _ _gh_argc = argc;
 _ _gh_argv = argv;

 if (_ _gh_initrec)
 _ _gh_initrec();

/* rest of main goes here */

 if (_ _gh_uninitrec)
 _ _gh_uninitrec();
 return(0);
}

A C MAIN() PROGRAM FOR PASCAL

void main(int argc, char **argv)
int argc;
char **argv;
{
 extern int __argc;
 extern char **__argv;
 __argc = argc;
58 Green Hills C++ User’s Guide, v. 1.8.9

Performing I/O on a Single File in Multiple Languages

tput
e best
In

t is
y

 files

put

 file.

nd

 __argv = argv;/* the 4 lines above must be first */

 /* rest of main goes here */

 __GHSexit(0);/* must be last executable line */
}

A C MAIN() PROGRAM FOR ADA

When using Ada, the user should use the Ada main program. The user should
NOT create a main program for Ada in C language. Ada initialization must be
performed by an Ada main program.

PERFORMING I/O ON A SINGLE FILE IN MULTIPLE LANGUAGES

Some applications benefit from performing input and output on a single file or
device from more than one language; an example is pre-opened files. In C, these
are stdin, stdout, and stderr. In C++, they are cin, cout, and cerr. In
FORTRAN, they are Units 5, 6, and 0 respectively. In Pascal, the first two files
are input and output, and the equivalent of C’s stderr cannot be used directly.

All languages have full access to these pre-opened files, and input and ou
can easily be mixed between the languages on these files. However, for th
results, a complete input or output operation is done in a single language.
FORTRAN, a single READ, WRITE, or PRINT statement is a complete
operation. In Pascal, a single read, readln, write, or writeln call is a complete
operation. In C, any call to a library function which performs input or outpu
a complete operation. If this rule is followed, all data will be output correctl
and in the intended sequence. The C library routine fflush() flushes the buffer of
the pre-opened files in all languages, except in C++. To flush one of these
in C++, use the notation file<<flush. For example, cout<<flush.

Performing input and output on a single file which is not preopened is more
difficult. It is possible to open the file once in each language and perform in
and output independently in each language. In many cases this would be
unacceptable, particularly when working with a device rather than a simple

It is possible to open a file in FORTRAN and subsequently perform input a
output on that file by using the FORTRAN library routines GETCHAN and
GETFD. The FORTRAN function GETCHAN takes a single argument which
is the Unit number of a FORTRAN file and returns a FILE* which can then be
Green Hills Software, Inc. 59

3. Mixing Languages
used with C library routines such as fprintf(), fread(), fwrite(), fflush(),
fseek(), fstat() and fputc(). Operations on such a file are compatible to the same
extent as the three pre-opened files.

The FORTRAN function GETFD takes a single argument which is the Unit
number of a FORTRAN file and returns an integer which can then be used with
lower level routines such as read(), write(), lseek(), and stat(). Because these
low level routines are not compatible with fprintf(), fread(), fwrite(), etc., their
use may conflict with the FORTRAN runtime routines.

There is currently no mechanism for performing input and output in C on a file
opened in Pascal.

NATIVE UNIX LIBRARIES VERSUS GREEN HILLS LIBRARIES

This section refers only to native UNIX users.

Although the combination of multiple languages in a single application is fully
supported, certain differences cannot be avoided between programs written
entirely in one language and those written in multiple languages, due primarily
to library selection.

The C and C++ languages use the native UNIX math and C libraries by default.
The FORTRAN and Pascal languages use the Green Hills math library. ANSI C
uses the Green Hills math and C libraries. This means that the combination of
FORTRAN and C will cause the entire application to use the Green Hills math
library, and the combination of ANSI C with C++ will cause the entire
application to use the Green Hills math and C libraries. Therefore, programs
written entirely in C or C++ may behave differently than otherwise identical
programs written partially in C or C++ and partially in FORTRAN or ANSI C.

CALLING A C ROUTINE FROM FORTRAN

This section shows how to call C subroutines from FORTRAN.
60 Green Hills C++ User’s Guide, v. 1.8.9

Calling a C Routine from FORTRAN
ARGUMENT PASSING

By default, all FORTRAN arguments are passed by reference. Therefore, each
parameter in the called C routine must be a pointer of the appropriate type. The
following table shows how arguments passed by FORTRAN are received by C:

FORTRAN CHARACTER types are a special case. When a C function
receives a CHARACTER argument by a FORTRAN routine, it receives not
only a pointer to the char variable, but also its length, as an int (not as an int *).
This int will appear at the end of the argument list. If more than one
CHARACTER parameter is passed, then an extra int for every
CHARACTER parameter will be passed at the end of the argument list, in the
order that the CHARACTER parameters are passed. The called C routine must
declare one extra variable of type int for every FORTRAN CHARACTER
argument passed in order to receive the information.

For example, a FORTRAN routine calls a C function with two CHARACTER
parameters and two INTEGER parameters:

FORTRAN Passes C Receives

REAL or REAL*4 float *

DOUBLE PRECISION or
REAL*8

double *

INTEGER or
INTEGER*4

long *

INTEGER*2 short *

INTEGER*1 signed char *

LOGICAL or
LOGICAL*4

long *

LOGICAL*2 short *

LOGICAL*1 signed char *

COMPLEX or
COMPLEX*8

struct complex {float realpart, imagpart} *

DOUBLE COMPLEX or
COMPLEX*16

struct dcomplex {double realpart, imagpart} *

CHARACTER signed char * and int (for length)

Table 3 Passing Arguments from FORTRAN to C
Green Hills Software, Inc. 61

3. Mixing Languages

mple,
CHARACTER A,B
INTEGER X,Y
CALL NAME(A,X,B,Y)
END

The C routine, then, is:

name_(char *a, int *x, char *b, int *y, int alen, int
blen)
{}

In this routine, the char *a points to CHARACTER A, int *x points to
INTEGER X, char *b points to CHARACTER B, int *y points to INTEGER
Y, int alen is the length of CHARACTER A, and int blen is the length of
CHARACTER B. The extra arguments, int alen and int blen, appear at the
end of the argument list in the order that their corresponding CHARACTER
parameters were passed (A is passed before B, so alen appears before blen).

Although FORTRAN CHARACTER string constants are null terminated,
CHARACTER variables are not. Thus, the character strings A and B in the
above example do not end with an extra 0. However, if the FORTRAN code
were changed to the following, the C code could remain the same:

CHARACTER A
INTEGER X,Y
CALL NAME(A,X,”this is a string”,Y)
END

The string “this is a string” will end in an extra zero. However, this 0 will not
be counted as part of the string length being passed. So, in the above exa
blen is 16, not 17.

RETURN TYPES

Called C functions may return values to FORTRAN routines.

SIMPLE RETURN TYPES

An int C function must be declared either as INTEGER (or INTEGER*4) or
LOGICAL (or LOGICAL*4) in the calling FORTRAN routine.
62 Green Hills C++ User’s Guide, v. 1.8.9

Calling a C Routine from FORTRAN
An ANSI C function which returns a float must be declared as REAL or
REAL*4 in the calling FORTRAN routine.

An ANSI C function which returns a double must be declared as DOUBLE
PRECISION or REAL*8 in the calling FORTRAN routine.

A non-ANSI C function which returns a float or double must be declared as
DOUBLE PRECISION or REAL*8 in the calling FORTRAN routine.

CHARACTER

Some implementations do not allow functions which return CHARACTER
types to be written in C. The following description applies only to those
implementations, such as Green Hills, which allow this.

A CHARACTER type may not be returned directly with a C return statement.
Instead, when a C function wants to return a FORTRAN CHARACTER result,
then two extra arguments are passed to the C function. These arguments appear
at the beginning of the argument list. The first argument in the C function must
be a char *. The character string to be returned should be placed where this
argument points. The second argument must be the maximum permitted length
of the character string. For example, for:

CHARACTER*9 NAME
CHARACTER*9 A
A=NAME()
PRINT*,A
END

the C function is:

void name_(char *c, int b)
{
 char d[]=”pigeon”;
 int i, len;
 len=strlen(d);
 if (len > b)
 len = b;
 for (i=0; i < len; i++)
 c[i] = d[i];
 for (i=len; i < b; i++)
Green Hills Software, Inc. 63

3. Mixing Languages
 c[i] = ‘ ‘;
}

In the FORTRAN routine, the function name is not called with any arguments.
Since the function is declared as a CHARACTER return type, two arguments
will be automatically passed. The C function receives these as a pointer to the
return location (char *c) and the length (int b) of the character string. The C
function does not use the return statement.

COMPLEX AND DOUBLE COMPLEX

Some implementations do not allow functions which return COMPLEX or
DOUBLE COMPLEX types to be written in C. The following description
applies only to those implementations, such as Green Hills, which do allow this.

COMPLEX (or COMPLEX*8) or DOUBLE COMPLEX (or
COMPLEX*16) types may not be returned with a C return statement. When a
function is declared to be of one of these types, then one extra argument is
passed to the C function. This argument will appear at the beginning of the
argument list. The C function must declare a special struct in which to put the
return information. The first argument in the C function must be a pointer to the
previously defined struct. Table 3 on page 3-61 lists the necessary struct
declarations for these two return types. For example, a FORTRAN routine
calling a C function with a COMPLEX return type:

COMPLEX A
COMPLEX COMP
A=COMP()
PRINT*,A
END

can have the C function:

struct complex {float realpart, imagpart;};

comp_ (c)
struct complex *c;
{
 c->realpart=1.9;
 c->imagpart=4.5;
}

64 Green Hills C++ User’s Guide, v. 1.8.9

Calling a C Routine from FORTRAN
In the FORTRAN routine, the function comp is not called with any arguments.
Since the function is declared as having a COMPLEX return type, one
argument will automatically be passed at the beginning of the argument list. The
C function receives this argument as a pointer to a struct to store the return
information in (struct complex *c). The C function does not use the return
statement.

ALTERNATE RETURNS

A FORTRAN routine may call a C function using the alternate return
conventions. The C routine would use the return statement in the same way a
FORTRAN using alternate returns would, except that instead of the FORTRAN
RETURN, the C program would use return 0. For example:

X = 9
Y = 3
CALL COMPARE(X,Y,*100,*200,*300)
PRINT*,’Illegal input’
GOTO 99
100 PRINT*,’X < Y’
GOTO 99
200 PRINT*,’X == Y’
GOTO 99
300 PRINT*,’X > Y’
GOTO 99
99 END

The C function could be:

compare_(a, b)
float *a, *b;
{
 if (*a < 0.0 || *b < 0.0)
 return 0;
 if (*a < *b)
 return 1;
 if (*a == *b)
 return 2;
 return 3;
}

Green Hills Software, Inc. 65

3. Mixing Languages

es to

If compare returns a 0 in the above example, the next line after the function call
will be executed. If 1 is returned, then line 100 will be the next line executed.

SYMBOL NAMING CONVENTIONS

FORTRAN is not case-sensitive and converts all characters (outside of
quotation marks) to lower case. In a FORTRAN program, the symbol names
FALCON, Falcon and falcon are all the same item. C is case-sensitive. In a C
program, the symbols FALCON, Falcon and falcon are three distinct
identifiers. So, only C functions whose names are all lower case are called,
unless FORTRAN routines are compile with a -U option, making FORTRAN
case-sensitive.

FORTRAN also appends an underscore (_) to each function name. To call a C
function from a FORTRAN routine, the name of the C routine must end in an
underscore. For example, instead of naming a C routine falcon(), it is named
falcon_(). This feature allows calling C routines from FORTRAN via an
interface routine. The next section explains this in detail.

CALLING C ROUTINES FROM FORTRAN

Because FORTRAN passes function arguments as pointers, it is not possible to
directly call pre-compiled C routines that haven’t been explicitly written for
FORTRAN. FORTRAN appends an underscore to the end of function nam
allow an interface routine of the same name. An interface routine could be
called from FORTRAN, and would then call the actual C routine with the
correct arguments.

For example, for the following pre-compiled C routine:

int add(int i, int j)
{
 return i + j;
}

it is not possible to call this routine from FORTRAN because i and j are not
pointers. However, with the following interface routine in C:

int add_(int *i, int *j)
{
 return add(*i, *j);
66 Green Hills C++ User’s Guide, v. 1.8.9

Calling a C Routine from FORTRAN
}

this routine can now be called from FORTRAN, which in turn calls the real add
routine. For example:

INTEGER ADD
I = ADD(4, 5)
END

COMMON BLOCKS

FORTRAN modifies the names of COMMON blocks. All capital letters are
converted to lowercase, but the character or characters appended to the name of
the common block differ, depending on the compilation mode.

In f77 compatibility mode, a single underscore is appended to COMMON block
names. Since this can cause name conflicts between subprogram names and
COMMON block names, in VMS compatibility mode, a dollar sign ($) is
appended instead.

The -Xvmscommonname option causes COMMON blocks to be named in the
VMS style, with a dollar sign appended. This option can be selected
independently of VMS compatibility mode. With this, f77 compatibility mode
can be used, and -Xvmscommonname can be specified on the command line to
name the COMMON block with a dollar sign suffix instead of an underscore.

The -Xvmscommonname is usually enabled in VMS compatibility mode.
However, f77 style names can be specified while in VMS compatibility mode
by specifying -Z608 on the command line.

An alternate form of VMS style names for environments do not allow dollar
signs in names. This is enabled with the -Xtwounderscore option and causes
two underscores to be appended to COMMON block names instead of one
dollar sign. The -Xtwounderscore option is ignored unless VMS style
COMMON block names are being generated. (-Xtwounderscore in f77 mode
can be used if -Xvmscommonname is specified.)
Green Hills Software, Inc. 67

3. Mixing Languages
CALLING A FORTRAN ROUTINE FROM C

This section shows how to call FORTRAN subroutines from C.

ARGUMENT PASSING

All FORTRAN parameters are passed by reference, so the corresponding
argument in the C call must be a pointer of the appropriate type. The table
below shows the argument type that C must pass to correspond to the
FORTRAN parameter.

Mode Switch Effect

f77 (default) block_

-Xvmscommonname block$

-Xvmscommonname
-Xtwounderscore

block_ _

VMS (default) block$

-Z608 block_

-Xtwounderscore block_ _

Table 4 COMMON Block Naming Conventions

C Passes FORTRAN Receives

float * REAL or REAL*4

double * DOUBLE PRECISION or
REAL*8

long * INTEGER or INTEGER*4

short * INTEGER*2

signed char * INTEGER*1

long * LOGICAL or LOGICAL*4

short * LOGICAL*2

char * LOGICAL*1

Table 5 Passing Arguments from C to FORTRAN
68 Green Hills C++ User’s Guide, v. 1.8.9

Calling a FORTRAN Routine from C
For example, to pass an integer variable a from C to FORTRAN, pass &a.

Passing a char argument to a FORTRAN function is a special case. The C
routine must pass not only a pointer to the char variable, but also its length, as
an int (not as an int *). This int must be passed as the last argument. If more
than one char is being passed by the C routine, then each one will have a
separate int associated with it. The ints must all appear at the end of the
argument list, in the same order that their corresponding chars appear. For
example:

extern int falcon_();
main()
{
 char *c1=”pigeon”;
 char *c2=”sofa sofa”;
 int extra=5;
 int len=falcon_(c1, c2, &extra, strlen(c1),
strlen(c2));
 printf(“%d\n”,len);
}

This C routine passes two CHARACTER parameters and one INTEGER
parameter to a FORTRAN function. It accomplishes this by passing five
arguments. The first two are pointers to chars being passed (c1 and c2), the
third is the int being passed (extra), and the last two are the lengths of c1 and
c2. The corresponding FORTRAN function is:

integer function falcon(a,b,x)
character*(*)a
character*(*)b
integer x

struct complex {float realpart, imagpart;} * COMPLEX or
COMPLEX*8

struct dcomplex {double realpart, imagpart;} * DOUBLE COMPLEX or
COMPLEX*16

char * and int CHARACTER

C Passes FORTRAN Receives

Table 5 Passing Arguments from C to FORTRAN
Green Hills Software, Inc. 69

3. Mixing Languages
falcon=len(a)+len(b)+x
end

RETURN TYPES

FORTRAN functions may return values to C routines.

SIMPLE RETURN TYPES

An INTEGER or (INTEGER*4) or LOGICAL (or LOGICAL*4)
FORTRAN function must be declared as int in the calling C routine.

A DOUBLE PRECISION or REAL*8 FORTRAN function must be declared
as double in the calling C routine. Since C usually promotes float return values
to double, a REAL return value may not be accessible in C. This is not true for
ANSI C, however.

CHARACTER

Some implementations do not allow functions which return CHARACTER
types to be called from C. The following description applies only to those
implementations which do allow this.

FORTRAN functions that have a CHARACTER return type are special cases.
A value is not actually returned to the calling C routine; instead, the C routine
must pass two extra arguments in which to store the return values. The first
argument passed must be a char * to point to the beginning of the return string.
The second argument must be an int that is the length of the char *. All other
normal arguments must follow these two. For example:

extern void falcon();
main()
{
 char buff[20];
 char xbuff[]=”pigeon”;

 falcon_(buff, sizeof(buff), xbuff,
sizeof(xbuff)-1);
 printf(“%s\n”, buff);
}

70 Green Hills C++ User’s Guide, v. 1.8.9

Calling a FORTRAN Routine from C
Here, two extra arguments are passed, both for a character string being passed.
The size of xbuff is passed as one short to remove the null character that C will
put at the end of the string. The return string will be stored in buff. The
FORTRAN is then:

character*20 function falcon(x)
character*(*) x
falcon=x // ’ sofa sofa’
end

This function appends a string to the input string (x), then passes back the new
string as the return value.

COMPLEX, COMPLEX*8, DOUBLE COMPLEX, COMPLEX*16

Some implementations do not allow functions which return COMPLEX,
COMPLEX*8, DOUBLE COMPLEX, or COMPLEX*16 types to be called
from C. The following description applies only to those implementations which
do allow this.

FORTRAN functions that have a COMPLEX (or COMPLEX*8) or
DOUBLE COMPLEX (or COMPLEX*16) return type are special cases. A
value is not actually returned to the calling C routine; instead, the C routine
must pass an extra argument in which to store the return value. The first
argument passed must be a pointer to a predefined struct of the correct type.
The return value will be stored in this struct. All other arguments must follow
this one. For example:

struct complex {float realpart, imagpart;};
extern void falcon();
main()
{
 struct complex comp;
 int x=5;

 falcon_(&comp, &x);
 printf(“%f + %fi\n”, comp.realpart,
 comp.imagpart);
}

Green Hills Software, Inc. 71

3. Mixing Languages
Here, the returned complex number is stored in comp, and x is an argument
being passed. The FORTRAN function is:

complex function falcon(x)
integer x
complex y
y=(0.0 , 2.3)
falcon=y+x
end

ALTERNATE RETURNS

The FORTRAN alternate return statements return the corresponding integer to
the calling C routine (the simple RETURN statement returns a 0 to C). The
calling C routine makes appropriate use of these return values. Use of a switch
statement is recommended. There should be a case label corresponding to each
valid alternate return, and a default case to handle all return values outside the
expected range. For example:

main()
{
 float x, y;
 int ret;

 x = 9;
 y = 3;
 ret = compare_(&x, &y);
 switch (ret)
 {
 default: printf("Illegal input\n");
 break;
 case 1: printf(“x < y\n”);
 break;
 case 2: printf(“x == y\n”);
 break;
 case 3: printf(“x > y\n”);
 break;
 }
}

72 Green Hills C++ User’s Guide, v. 1.8.9

Calling a FORTRAN Routine from C
The FORTRAN function would be:

SUBROUTINE COMPARE(A,B,*,*,*)
IF (A .LT. 0.0 .OR. B .LT. 0.0) RETURN
IF (A .LT. B) RETURN 1
IF (A .EQ. B) RETURN 2
RETURN 3
END

SYMBOL NAMING CONVENTIONS

FORTRAN is not case-sensitive and will convert all characters to lower case. In
a FORTRAN program the symbol names FALCON, Falcon and falcon refer to
the same item. C is case-sensitive. In a C program, the symbols FALCON,
Falcon and falcon are three distinct identifiers. Compiling FORTRAN routines
with a -U option makes FORTRAN case-sensitive; otherwise, only C functions
with lower case names can be called.

FORTRAN also appends an underscore (_) to function names. To call a C
subroutine from a FORTRAN routine, the name of the C routine must end in an
underscore. For example, a C routine has to be named falcon_() instead of
falcon(). This feature allows calling pre-compiled C routines from FORTRAN
via an interface routine, explained in detail in the next section.

COMMON BLOCKS

FORTRAN modifies the names of COMMON blocks. All capital letters are
converted to lowercase, but when using a Green Hills FORTRAN compiler, the
character or characters which are appended to the name of the common block
differ depending upon the compilation mode.

In f77 compatibility mode, a single underscore is appended to COMMON block
names. Since this can cause name conflicts between subprograms and
COMMON blocks with the same name, in VMS compatibility mode, a dollar
sign ($) is appended.

The -Xvmscommonname option causes COMMON blocks to be named in the
VMS style, with a dollar sign appended. This option can be selected
independently of VMS compatibility mode. Thus, using f77 compatibility mode
and specifying -Xvmscommonname on the command line gives the
COMMON block a dollar sign suffix instead of an underscore.
Green Hills Software, Inc. 73

3. Mixing Languages
Normally, -Xvmscommonname is enabled in VMS compatibility mode.
However, f77 style names can be specified while in VMS compatibility mode,
by specifying -Z608 on the command line.

An alternate form of VMS style names for environments does not allow dollar
signs in names. This is enabled with the -Xtwounderscore option and causes
two underscores to be appended to COMMON block names instead of one
dollar sign. The -Xtwounderscore option is ignored unless VMS style
COMMON block names are being generated. (-Xtwounderscore can be used in
f77 mode by specifying -Xvmscommonname.)

CALLING A C ROUTINE FROM ADA

This section shows how to call C subroutines from Ada.

PRAGMA IMPORT

Pragma import specifies that a subprogram is written in some other language,
and the definition of that subprogram resides in a separate object module.
Pragma import is allowed at the place of a declarative item in a package
specification. The subprogram specification for which pragma import is given
must appear in the same compilation unit, with the optional link-name limited to
62 characters.

For example, to create a link to call C routine name in Ada, a package
specification has to first be created, containing the Ada declaration of the C
routine. The package specification C_LINK is:

Mode Switch Effect

f77 (default) block_

-Xvmscommonname block$

-Xvmscommonname
-Xtwounderscore

block_ _

VMS (default) block$

-Z608 block_

-Xtwounderscore block_ _

Table 6 COMMON Block Naming Conventions
74 Green Hills C++ User’s Guide, v. 1.8.9

Calling a C Routine from Ada
 PACKAGE C_LINK IS
 PROCEDURE Name ;
 PRIVATE
 pragma import(C, Name, ”name”) ;
 END C_LINK:
The corresponding C routine is:
 void name()
 {
 printf(“This routine is called from Ada”);
 }

ARGUMENT PASSING

Each parameter in the called C routine must be the appropriate type. The
following table shows how the arguments passed by Ada are received by C:

The previous example can pass an integer and float to the C routine; it is
modified to:

 PACKAGE C_LINK IS
 PROCEDURE Name(A_Integer: INTEGER; A_Float: FLOAT) ;
 PRIVATE
 pragma short(C, Name, “name”) ;
 END C_LINK:
The corresponding C routine is:
 void name(int a_integer; float a_float)
 {
 printf(“This routine is called from Ada”);
 printf(“This is an integer passed from Ada %d\n”, a_integer);
 printf(“This is a float passed from Ada %f\n”, a_float);

Ada Passes C Receives

INTEGER int

INTEGER long

SHORT_INTEGER short

CHARACTER char

BYTE_INTEGER char

FLOAT float

LONG_FLOAT double

Table 7 Passing Arguments from Ada to C
Green Hills Software, Inc. 75

3. Mixing Languages
 }

Function calls operate in the same manner as procedures. The Function types
must be compatible in C and Ada.

ARRAY AND STRING TYPES

For Static Ada Array Types, individual components must be structurally
compatible to the corresponding C variable. Dynamic Arrays, however, can be
passed from Ada to C using the address of the first element:

 Dynamic_Array(Dynamic_Array’First)’Address

In Ada, information is kept in the record regarding bounds of the array.

C strings are terminated by an ASCII null character, ASCII 16#00#. Passing a
string to C is much like passing a Dynamic Array, with the exception of
appending an ASCII null character to the end of the string.

For example, for an Ada string declared:

 My_String: STRING(1 . . 8);

To pass this to a C string:

 My_String(My_String’First)’Address

POINTERS AND ADDRESS TYPES

The address convention is identical for Green Hills Ada and C compilers.

CALLING AN ADA ROUTINE FROM C

This section shows how to call Ada subroutines from C.

PRAGMA EXPORT

Pragma Export applies a language-targeted naming convention to a section of a
Green Hills Ada program. This allows external access to Green Hills Ada
routines and data. Its form is:

pragma Export (convention-identifier, local-name, external-name)
76 Green Hills C++ User’s Guide, v. 1.8.9

Calling an Ada Routine from C
where symbol-form is the C language. See the Green Hills Ada 95 Language
User’s Guide and Reference Manual for more information on this feature.

For example, to create a link to call C routine name in Ada, a package
specification must first be created, containing the Ada declaration of the C
routine. The package specification, labeled Export_AdaCode, is:

 PACKAGE Export_AdaCode IS
 PRAGMA Names(C);
 PROCEDURE Name;
 PRAGMA Export(Ada);
 END Export_AdaCode;

 WITH Text_IO;
 PACKAGE BODY Export_AdaCode IS
 PROCEDURE Name IS
 BEGIN
 Text_IO.Put_Line(“This routine is called
from C”);
 END Name;
 END Export_AdaCode;

The corresponding C routine is:

 extern name();
 void callAdaRoutine()
 {
 name();
 }

When calling Ada Subprograms from a non-Ada task, Pragma SUPPRESS
ALL_CHECK is recommended if the Ada subprogram exists outside the Ada
Runtime; that is, the main program is not in Ada, or the Ada routine is an
Interrupt Service Routine, or ISR. Also, results of raising an exception are
undefined.

In addition, variables defined in C can be imported by using this method. From
the previous example, the variable global_variable can be imported from
C by declaring:

extern name();
Green Hills Software, Inc. 77

3. Mixing Languages
int global_variable; /* Global Variable used in Ada */
void callAdRoutine()
{
 global_variable= 1;
 name();
}

Then, in the Ada package specification:

PACKAGE Export_AdaCode IS
 Global_Variable : INTEGER;
 PROCEDURE Name;
 PRAGMA Import(Ada);
END Export_AdaCode;

This provides access to global_variable for any package body in
Export_AdaCode package specification.

ARGUMENT PASSING

Each parameter in the called Ada routine must be the appropriate type. The
following table shows how the arguments passed by C are received by Ada:

Continuing with the first example, the Ada routine can receive an integer and
float, modified to:

 PACKAGE Export_AdaCode IS
 PRAGMA Export(C);

C Passes Ada Receives

int INTEGER

long INTEGER

short SHORT_INTEGER

char CHARACTER

char BYTE_INTEGER

float FLOAT

double LONG_FLOAT

Table 8 Passing Arguments from C to Ada
78 Green Hills C++ User’s Guide, v. 1.8.9

Calling an Ada Routine from C
 PROCEDURE Name(A_Integer: INTEGER; A_Float:
FLOAT) ;
 PRAGMA Export(Ada);
 END Export_AdaCode;
 WITH Text_IO;
 PACKAGE BODY Export_AdaCODE IS
 PACKAGE Flt_IO IS NEW Text_IO.Float_IO(FLOAT);
 PACKAGE Int_IO IS NEW
Text_IO.Integer_IO(INTEGER);
 PROCEDURE Name (A_Integer:INTEGER: ALFloat:
FLOAT) IS
 BEGIN
 Text_IO.Put_Line(“This routine is called
from C”);
 Text_IO.Put(“This is an integer passed from
 C”);
 Int_IO.Put(A_Integer);
 Text_IO.New_Line;
 Text_IO.Put(“This is a float passed from
 C”);
 Flt_IO.Put(A_Float);
 Text_IO.New_Line;
 END Name;
 END Export_AdaCode;

The corresponding C routine is:

 extern name(int a_integer, float a_float);
 void callAdaRoutine()
 {
 int x;
 float y;
 x = 1;
 y = 10.0
 name(x,y);
 }

Function calls operate in the same manner as procedures. The function types
must be compatible in both Ada and C.
Green Hills Software, Inc. 79

3. Mixing Languages
ARRAY AND STRING TYPES

For Static Ada Array Types, individual components must be structurally
compatible to the corresponding C variable. Dynamic Arrays, however, can be
passed from Ada to C using the address of the first element:

Dynamic_Array(Dynamic_Array’First)’Address

In Ada, information is kept in the record regarding bounds of the array.

C strings are terminated by an ASCII null character, ASCII 16#00#. Passing a
string to C is much like passing a Dynamic Array, with the exception of
appending an ASCII null character to the end of the string.

For example, for an Ada string declared:

My_String: STRING(1 . . 8);

To pass this to a C string:

My_String(My_String’First)’Address

POINTERS AND ADDRESS TYPES

Address convention is the same for Green Hills Ada and C compilers.

INTERFACING PASCAL AND C

This section shows how to interface Pascal and C:

NAMING CONVENTIONS

By default, the names of Pascal external variables, procedures, and functions
are accessible from C functions linked with the Pascal program. External Pascal
names are accessed by using the same name in C. Green Hills Pascal is
case-sensitive by default; however, using the -s or -Xnocasesensitivity compile
time options make the Pascal compiler case-insensitive, causing it to convert all
uppercase character to lowercase. C is always case-sensitive.

When compiling with the -s or -Xappunderscore option (Strict ISO mode), the
names of Pascal external procedures and functions are changed by appending an
additional underscore (_). If this option is used, then to call the Pascal function
80 Green Hills C++ User’s Guide, v. 1.8.9

C Routines and Header Files In C++
Falcon from C means calling the function falcon_. This is the only function of
the -Xappunderscore option, while -s has many effects.

This option causes all of the C library functions provided with Pascal to become
inaccessible.

REDEFINING WRITE OR READ

If a Pascal program redefines the built-in procedure WRITE or READ, it must
be compiled with the -s option. The Green Hills C Run-time Library and the
UNIX C library use the names write and read (to which WRITE and READ
are translated by Pascal) for the basic I/O primitives. If the program redefines
these names, then very strange results (often infinite loops) occur. The -s
compile-time option translates these names to write_ and read_ instead, so no
redefinition will occur. However, under these options communication between
Pascal and C or the C Library becomes much more complicated.

C ROUTINES AND HEADER FILES IN C++

The C++ language allows much use of existing C code. Therefore, it is fairly
straightforward to call functions written in ANSI C from C++. The syntax of the
two languages is very similar and the use of header files has been continued in
C++.

By default, the names of functions are encoded or mangled in C++, whereas in
C, the names of functions are unchanged. C++ provides the extern specifier to
identify non-C++ functions so their names will not be mangled. Therefore, this
specifier, allows including ANSI declarations for any C functions and then
linking with the compiled C object code.

To specify a C declaration:

▲ Specify or declare functions individually. For example:

 extern “C” {
 int fclose(FILE *);
 FILE *fopen(const char *, const char *);
 }

 specifies that two functions with external C linkage are to be declared.
Green Hills Software, Inc. 81

3. Mixing Languages
 It is easy to include ANSI C in a C++ source. C++ requires prototyped
 declarations, as does ANSI C. It is not advisable to include non-prototyped
 declarations since they mean something different in C++. If they are used,
 any error messages may or may not point to the non-prototype declaration.

▲ Declare entire header files with extern. For example:

 extern “C” {
 #include <stdio.h>
 #include <string.h>
 }

 has the same effect on all the function declarations that appear in stdio.h and
 string.h as the previous example has on the two specific functions (fclose
 and fopen).

▲ If code contains both C and C++, then the extern statements can be placed
within #ifdef _ _cplusplus statements. This practice is common within
header files. For example:

 #ifdef _ _cplusplus
 extern "C" {
 #endif
 void assert(int);
 void _assert(const char *,const int
 ,const char *);
 #ifdef _ _cplusplus
 }
 #endif

USING C++ IN C PROGRAMS

Many features in the C++ language simplify complicated tasks, for most
languages. It makes little sense to attempt to call C++ from C in most cases,
since doing so would force the C programmer to do reproduce work performed
by the C++ compiler. The various implementations of C++ use different
mechanisms for implementing the following details, making porting of C
programs which call C++ more difficult.

Inclusion of C++ modules in C programs is not a trivial. C has no support for
any of the C++ extensions to the language. The C programmer must manually
perform some of the tasks automatically done by a C++ compiler. Some
82 Green Hills C++ User’s Guide, v. 1.8.9

Function Prototyping in C versus C++
knowledge of the internal mechanics and details of a C++ implementation is
necessary, as follows:

▲ Encoding of C++ names can be a problem. The C++ compiler encodes or
mangles function and class member names. Any C++ function or class
members called from a C program must be referenced by the encoded or
mangled names.

▲ The way member functions are handled by a C++ compiler must be known.
All member functions (except static member functions) have the special
object member pointer this inserted automatically as the first argument in
the parameter list. A C programmer must add the argument this manually
when calling any member functions from C.

▲ Special processing is needed to handle constructors and destructors for static
objects. On most systems the main module has special function calls
inserted to insure that all static constructor/destructor calls are made
properly. If main is not in a C++ module, then the C programmer must
manually include calls to _main in the C main module. The _main code is
contained in the C++ library and therefore must be linked into the final
executable.

▲ Finally, after the executable is produced, the postlink program must be run,
as is the case with any C++ executable. If no static objects are used in the
program, this step is not necessary. There are four global objects in the
iostream library: cout, cin, cerr, and clog. (Only cout and cin are in EC++
and ESTL.) If any of these objects are used in a program, the postlink
program must be run on the executable.

▲ Virtual functions are also handled automatically by a C++ compiler, but
involve additional coding to access or use them from a C environment.

FUNCTION PROTOTYPING IN C VERSUS C++

In ANSI C and C++, header files provide prototypes for library functions which
enforce a standard interface between the calling program and the called
function.

Function prototyping requires that the function declaration include the function
return type and the number and type of the arguments. When a prototype is
available for a function, the compiler is able to perform argument checking and
coercion on calls to that function. If a prototype is not available for a function
when it is called, ANSI C will behave like K&R C. The return type of the
Green Hills Software, Inc. 83

3. Mixing Languages
function is assumed to be int, and actual arguments will be promoted to ints,
longs, doubles, or pointers as appropriate. In C++, however, it is an error to call
a function which has not been declared with a prototype.

Another important difference between ANSI C and C++ is that a non-prototype
declaration of a function, such as:

char *function_name();

has no effect on the number and type of the arguments in ANSI C, but in C++ it
is understood as:

char *function_name(void)

which means that the function has no arguments at all. If the function
declaration occurs within the scope of an extern “C” declaration, the function
has non-C++ linkage and therefore cannot be overloaded. This means that if a
traditional K&R style declaration of a function appears in a header file and the
#include directive which accesses that header file is enclosed in extern “C” { } ,
then it will be impossible to redeclare that function with arguments.
84 Green Hills C++ User’s Guide, v. 1.8.9

Chapter
4

WRITING PORTABLE
CODE

4. Writing Portable Code

d

uires
ize.

y be

ic
The C++ language has been implemented by many vendors on a large collection of machines
and systems. One important reason for using C++ is to simplify the task of building and
maintaining software on multiple platforms. But not all features of the C++ language cater to
this goal. C++ intentionally provides features which behave differently on different systems.
For C++ programs to be truly portable, the programmer must be careful to avoid these
non-portable features of the language.

Certain differences between C++ compilers are vendor specific differences. If all of the C++
compilers you ever use come from a single vendor you can avoid these differences. Many
more of the differences however are particular to the processor and the operating system in
use. When porting between different platforms it may be impossible to avoid these
differences, except by careful coding.

COMPATIBILITY BETWEEN GREEN HILLS COMPILERS

All Green Hills C++ compilers follow the same interpretation of the C++
language, as described in this manual. There are a few features and options
which are not available in all Green Hills C++ compilers. These features and
options are described in the Development Guide for each compiler. To ensure a
C++ program is portable between all Green Hills C++ compilers, we
recommend using only those features and options described in this manual and
the texts mentioned in the preface. Command line options may also be needed
to adjust for differences between the default behavior of each Green Hills C++
compiler.

For information on compatibility with Green Hills compilers for other
languages, see Chapter 3, “Mixing Languages”.

WORD SIZE DIFFERENCES

Green Hills compilers are available on machines with 32-bit and 64-bit wor
size. Other C++ compilers have been written for machines with other word
sizes. Porting C++ programs between machines of different word sizes req
particular care because most primary data types can be effected by word s

RANGE OF REPRESENTABLE VALUES

The size of each basic numeric type controls the range of values which ma
represented by that type. The header files limits.h and float.h provide defined
symbols which represent the minimum and maximum values for all numer
86 Green Hills C++ User’s Guide, v. 1.8.9

Byte Order Problems
data types in C++. A portable program should use these symbols and never
depend on the use of values outside the allowed range.

If arithmetic operations cause overflow, underflow, or loss of precision, the
program may not detect the error or may behave differently on different
systems.

RELATIVE SIZES OF DATA TYPES

C++ places very weak requirements on the relative size of the basic types, but it
is not unusual for C++ programs to assume otherwise. For example, C++ only
requires that short be no larger than int and that int be no larger than long. It
would be legal for short, int, and long to all be the same size or for them all to be
different. With all 32-bit Green Hills C++ compilers short is 16 bits and int and
long are 32 bits. To assume int is twice as large as short, but the same size as
long is non-portable. With 64-bit Green Hills C++ compilers, short is 16 bits,
and int and long are either 32 or 64 bits. You can only be assured that long is not
smaller than int.

Another common non-portable assumption is that pointers are the same size as
int or long. Neither is guaranteed. With all 32-bit Green Hills C++ compilers,
pointers are 32 bits. But with 64-bit Green Hills C++ compilers, pointers may
be either 32 or 64 bits, independent of the size of int or long.

In C++, all integer constants have type int unless marked with a type suffix. In
certain cases the use of a plain integer constant instead of a long integer
constant can be non-portable.

BYTE ORDER PROBLEMS

Since the success of the IBM/360, byte machines have been more popular than
word machines. The advantage of byte machines is their efficient processing of
character data. The general acceptance of byte machines has led to easier
program portability between machines.

There is, however, one major portability problem between byte machines. The
first successful byte machine, the IBM/360, placed the most significant byte of
a multiple byte integer value at the lowest address. Many byte machines such as
MC68000, RS/6000, SH-7000, and SPARC have followed the IBM convention.
The second successful byte machine, the PDP-11, placed the least significant
Green Hills Software, Inc. 87

4. Writing Portable Code
byte of a multiple byte integer value at the lowest address. Intellectual
descendants of the PDP-11, such as the VAX, and i386/i486/Pentium and some
RISC processors, such as Clipper and V800, have followed the DEC
convention. These two groups seem to be so well entrenched that no agreement
on byte ordering is possible. A further complication arises because some
processors, such as the i960, M88000, PowerPC, R4000, and Weitek-XL
support both byte orders, although a given system is normally built to use only
one byte order.

Between machines with different byte ordering, programs which overlay
characters and integers in memory or which use character pointers to integer
variables and vice versa are often not portable.

Programs that declare a single variable with different integer types in different
modules may fail when ported to a machine with a different byte order.

ALIGNMENT REQUIREMENTS

Some systems will not load or store a 2 byte object unless that object is on an
even address. Other systems have a similar requirement for 4 or 8 byte objects.
Others may allow certain accesses, but require more time to perform them.
Therefore, alignment of data is both a matter of correctness and time efficiency.
Although increased alignment may improve performance, it also consumes
space, due to padding inserted to achieve alignment.

The alignment requirements on each system are chosen both to satisfy the
restrictions of the hardware and to achieve a reasonable balance between
performance and space. The alignment rules for each system differ and often are
not configurable. Therefore programs that make assumptions about the relative
position of data objects in memory or elements within classes or arrays are not
portable, even among the Green Hills C++ compilers.

The C++ language imposes these restrictions on size and alignment:

▲ The alignment of a class or array is equal to the maximum alignment
requirement of any of its members.

▲ The size of a class or array is always a multiple of the maximum alignment
requirement of any of its members.

▲ The offset of any member of a class or array is always a multiple of its
alignment requirement.
88 Green Hills C++ User’s Guide, v. 1.8.9

Classes and Bit Fields
▲ All dynamic memory allocation routines provided with the compiler will
return a pointer aligned to the maximum alignment for any object on that
machine.

All Green Hills C++ compilers also satisfy these principles:

▲ The stack is maintained on an alignment suitable for any object.

▲ Parameters and local variables are allocated on the stack according to their
alignment requirement.

▲ Local variables are arranged on the stack to avoid unnecessary padding due
to alignment.

If a program does not use integer arithmetic for pointer computations and
ensures that all general purpose memory allocation routines return maximally
aligned pointers, then all references to dynamically allocated memory will be
properly aligned.

CLASSES AND BIT FIELDS

The preceding issues of size, byte order, and alignment all effect the allocation
of data in memory. In particular, compound data structures such as classes, bit
fields and arrays are very much effected by them.

UNIONS

A union in C++ allows the same memory location to be accessed as more than
one type. This is inherently non-portable. Suppose a union consists of an integer
and an array of four characters. Whether the first element of the array is the
most significant part of the integer or the least depends on byte order. It is not
even certain that the integer and the array of character have the same size.

These problems increase when integer, floating point and pointer fields are
combined and are even more severe when structures or bit fields are members
of unions.

CLASSES

Green Hills C++ always allocates fields in a class in the order in which they are
declared.
Green Hills Software, Inc. 89

4. Writing Portable Code

ting

en to

The exact offset of each field from the base of the class depends on the size and
alignment of the field itself and of those which precede it. The offset of the first
field is always 0, but padding is inserted as necessary to satisfy the alignment
requirement of each subsequent field, and may also be added at the end of the
class to make its overall size a multiple of its alignment.

Any program which assumes the offset of a field within a class or which
assumes that certain fields in two different classes always have the same offset
are non-portable.

BIT FIELDS

The allocation of bit fields in a structure is very dependent on alignment rules.
In addition, the exact layout of bits within a bit field varies between systems and
cannot be assumed by a portable program.

CHARACTER SET DEPENDENCIES

Not all computer systems use the same characters. All computer systems
recognize letters, digits, and the standard punctuation characters. But there is
considerable variation among the less commonly used characters. Therefore,
programs which use the less common characters may not be portable.

Your Green Hills compiler uses the ASCII character set and the ASCII collating
sequence. Some language implementations use a different collating sequence,
such as EBCDIC.

Programs which manipulate character data, especially string sorting algorithms,
may be dependent on a particular character collating sequence. The collating
sequence is the order in which characters are defined by the implementation. If
one character appears before a second character in the collating sequence, then
the first character will be “less than”' the second character when they are
compared. In the ASCII collating sequence, the lowercase letters “a” to “z”
appear as the contiguous integer values 97 to 122 (decimal). In other colla
sequences, such as EBCDIC, the lowercase letters are not contiguous.

To make character and string sorting programs portable, care must be tak
avoid dependencies on the character collating sequence. If a program is
designed to operate with a collating sequence other than ASCII, it may be
90 Green Hills C++ User’s Guide, v. 1.8.9

Floating Point Range and Accuracy

ilers,
piler

iler.
necessary to modify string and character comparison code to operate with
ASCII.

FLOATING POINT RANGE AND ACCURACY

One of the most variable aspects of different machines is floating point
arithmetic, where the range, precision, accuracy and base can vary widely. This
can lead to many portability problems which can only be addressed numerically.
Your Green Hills compiler uses IEEE floating point representation.

OPERATING SYSTEM DEPENDENCIES

Programs which access operating system resources, such as files, by their
system names are often not portable. The file and I/O device naming
conventions vary greatly among computer systems. In order to write portable
programs it is necessary to minimize the use of explicit file names in the
program. It is best if these names can be input to the program when the
program is run.

If a program contains explicit file names it may be necessary to change them to
names acceptable to the target system. Refer to your target operating system
documentation for a description of legal file names for your environment.

ASSEMBLY LANGUAGE INTERFACES

Programs which use embedded assembly code or interface to external assembly
will require all of the assembly code to be redone when the program is
transported to a new machine.

EVALUATION ORDER

None of the language specifications fully specify the order in which the various
components of an expression or statement must be evaluated, and they disallow
computations whose results depend on which permitted evaluation order is
used. Many illegal programs have gone undetected because they have only
been compiled with one compiler. Since your Green Hills compiler’s
evaluation order may not be identical to the evaluation order of other comp
some of these illegal programs which operate as expected with another com
may not operate the same way when compiled with your Green Hills comp
Green Hills Software, Inc. 91

4. Writing Portable Code
Some language implementations may evaluate the arguments to a function from
right to left, others from left to right.

Expressions with side effects, such as subroutine, procedure, or function calls,
may be executed in a different order by your Green Hills compiler and other
compilers. When a variable is modified as a side effect of an expression and its
value is also used at another point in the expression, it is not defined whether
the value used at either point in the expression is the value before or after
modification. Different values for the same variable could potentially be used
at different places in the expression depending on the order the compiler chose
for evaluation.

The operators ++, --, +=, etc., may be executed in a different order by your
Green Hills compiler and other compilers.

Your Green Hills compiler may allocate some pointer variables not declared
register to registers. This may allow the compiler to generate more efficient
sequences for post increment operators than other compilers. These sequences
may involve incrementing at a different position in the statement than with
other compilers. In particular, statements of the form:

*p++ = expression involving p

often evaluate differently under PCC than they do with a Green Hills compiler.

A particular case of evaluation order dependency is the use of the ?: operator in
an expression which is an argument to a function call. Your Green Hills
compiler evaluates all question mark operators before any other arguments, and
keeps the result in temporary storage. PCC evaluates the ?: operator at its
position in the argument list. The call:

foo(b?i:i+i, i++)

will usually evaluate differently under PCC than under your Green Hills
compiler.

MACHINE-SPECIFIC ARITHMETIC

Certain arithmetic operators in C++ are intended to generate the most efficient
corresponding operation on the target machine. If all input values are within the
92 Green Hills C++ User’s Guide, v. 1.8.9

Illegal Assumptions about Compiler Optimizations

r.
expected range, the results are portable, but out of range values may give
different results on different systems.

SHIFT

The shift operators in C++ have this characteristic. If the right-hand operand is
negative or exceeds the number of bits in the left-hand operand the behavior is
undefined. In Green Hills C++ compilers, the operands will be given to the
hardware as if the operands were legal and the result depends entirely on the
hardware. Some systems accept a negative shift and reverse the direction of the
shift, but many do not. Shifting by more than the number of bits is the same as
shifting by 1 less than the number of bits on some systems, but on others it has
very different results.

If the left-hand operand of a right shift is signed, C++ does not require the
compiler to propagate the sign bit. That means a correct C++ compiler is
allowed to yield a positive number when right shifting a negative number by
one.

DIVISION

The division operator may round up or down when applied to signed integers if
one or both of them is negative. Division by 0 produces different results on
different machines.

The remainder operator always satisfies the rule

(a / b) * b + a % b == a

as long as b is not 0. Therefore if a or b is negative, the sign of the remainder
may or may not match the sign of the dividend, depending on the machine.

ILLEGAL ASSUMPTIONS ABOUT COMPILER OPTIMIZATIONS

Some programs illegally depend on the exact code that some particular
compiler generates. Such programs are particularly difficult to port to an
advanced optimizing compiler, such as your Green Hills compiler, because the
optimizer makes major changes in the code in order to make the program
smaller and/or faster. Described below are some of the most common illegal
assumptions made about code generation. Please familiarize yourself with the
optimizations described in Chapter 5, “Optimization”, before reading furthe
Green Hills Software, Inc. 93

4. Writing Portable Code

n

 in

ted

.

ions

.

ng
IMPLIED REGISTER USAGE

Some programs rely on the exact register allocation scheme used by the
compiler. Such programs are completely illegal, and will never transport
without modification.

For example, C++ programs that rely on register variables being allocated
sequentially to pass hidden parameters will not work. Hidden returns (i.e. using
return and expecting to return the value of the last evaluated expression) will
not work either.

MEMORY ALLOCATION ASSUMPTIONS

Memory is allocated by your Green Hills compiler in a different way than by
the industry’s standard compilers and other companies’ compilers. This ca
cause problems in porting programs which illegally depend on the memory
allocation peculiarities of other compilers:

▲ Some programs depend on the compiler allocating variables in memory
the order that they are declared. Your Green Hills compiler will not
necessarily allocate variables in the order of declaration.

▲ Some programs depend on knowing that the compiler will allocate all
variables even if they are not used. Your Green Hills compiler may not
allocate unused variables.

▲ Some programs depend on knowing that certain variables will be alloca
in memory. Your Green Hills compiler will allocate certain variables to
registers that the standard compilers would always allocate to memory

Programs compiled with your Green Hills compiler must not make assumpt
regarding the order or allocation of variables in memory (except where the
language standard specifies it).

MEMORY OPTIMIZATION RESTRICTIONS

READ THIS SECTION CAREFULLY IF YOU ARE PORTING SYSTEM
CODE OR APPLICATIONS THAT USE SHARED MEMORY OR SIGNALS

Using the command line option -OM will enable the compiler to assume that
memory locations do not change asynchronously with respect to the runni
program. In particular, when the compiler reads or writes some memory
94 Green Hills C++ User’s Guide, v. 1.8.9

Problems with Source Level Debuggers
location, it will assume that the same value is still there several instructions
later. To avoid the (potentially high) speed penalties involved in re-reading
memory, the compiler will attempt to find a copy of the value which is itself still
in a register, and use that instead.

This can easily cause problems for many parts of operating systems, device
drivers, memory mapped I/O locations, shared memory environments, multiple
process environments, interrupt driven routines, and when UNIX style signals
are enabled. In C++, general optimizations may be used as described in the next
section.

MEMORY OPTIMIZATION IN C++

An example of potential problems with memory optimizations is that many
UNIX device drivers need to use memory locations which are really I/O
registers that can change at any time. A typical example of a loop waiting for a
device register to change is:

while (!(*TSRADDR & (1 << TXSBIT)));

If memory optimizations are enabled while compiling this loop, the compiler
may generate code that reads the value pointed to by TSRADDR only once.
With -OLM, it is almost certain that this will be the case. When this happens,
the loop will execute either once or forever, depending on the value of the bit
when it is first tested, and the loop will be rendered either ineffective or fatal.

Depending on the situation, the compiler may be able to detect loops like the
above, and generate code that operates correctly even with -OM set. However,
if the loop body were to test more than one bit at the same address, the compiler
will contort the loop in an attempt to read memory as few times as possible.

The compiler assumes that you will use the volatile type qualifier when it is
available. This means that -O always implies -OM in C++. If, for some reason,
you are unable to use volatile, and this is a real problem, you can add the option
-Onomemory to your command line to force memory optimization off. Note
that -Onomemory also implies -O.

PROBLEMS WITH SOURCE LEVEL DEBUGGERS

This section describes various problems relating to source level debuggers.
Green Hills Software, Inc. 95

4. Writing Portable Code

. In
iler
k
s

res,
VARIABLE ALLOCATION

Once a variable is allocated to a register it will always reside in that register.
However, since other variables may share the register, it may not always contain
the current value of the variable. This may cause a source level debugger to give
incorrect results. If you ask for the value of a variable at a point outside the
range of its use, the compiler may have temporarily allocated that register for
some other purpose. Always check results just after they are assigned, or when
the current value is going to be used later. Near the end of a function most of the
local variables will no longer be in use, so it is more likely that the register has
been reallocated.

ADVANCED OPTIMIZATIONS

In general, Green Hills recommends that all optimizations be turned off if
source level debugging is to be performed. The following are examples of
specific problems that can be caused when optimizations are used in
conjunction with source level debuggers.

▲ The common subexpression elimination optimization causes the compiler to
try to precalculate expressions which are used more than once and save the
result in a register. During debugging, the programmer will not find the
expression itself, since it was evaluated and saved at an earlier time.

▲ Various loop and branch optimizations rearrange entire statements or blocks
of statements causing difficulties with source level debugging since there
will no longer be a direct correlation between source lines and executable
instructions.

PROBLEMS WITH COMPILER MEMORY SIZE

Your Green Hills compiler is an advanced optimizing compiler. It is much
better than the current generation of “optimizing” microprocessor compilers
accordance with its greater capability, it requires more memory. The comp
requires 1 megabyte of memory just for the program. It is designed to wor
best when 2 megabytes or more of memory are available. It will run in les
memory but with some degradation of performance or capability.

The compiler’s primary use of memory is for the program, static data structu
global declarations, parse trees, and generated machine code. Global
declarations consist of the global constant, type, variable, and function
96 Green Hills C++ User’s Guide, v. 1.8.9

Problems with Compiler Memory Size
declarations. Memory usage increases when large numbers of declarations are
included in a compilation. Even unused global declarations must be stored
throughout the compilation. If memory size problems exist, try to reduce the
size of the include files by including just the declarations that are needed.

Memory is also needed for basic blocks. Every possible branch creates a new
block. Machine generated programs with very large switch statements or a very
large number of small if statements may increase memory usage.

Your Green Hills compiler is a one pass compiler. That is, it reads the source
program only once. Each function is converted into a parse tree as it is read.
When the end of the function is reached, the optimizer is called with the parse
tree as input. The optimizer modifies the parse tree and then passes it on to the
code generator. The code generator produces an internal representation of the
machine code to be output for the function. Another optimization phase is then
called to modify this machine code. Finally the optimized machine code for the
function is output. After the machine code is output, the memory being used for
the parse tree and machine code is released for use in compiling the next
function.

The maximum memory usage for parse trees and machine code is determined
by the size of the largest function in the program. If memory size problems
exist, turn off the optimizer and reduce the size of the largest function. A
simple function of less than 100 lines should not cause memory size problems.
However, procedures which are more than 1000 lines, or contain very complex
statements, can require several megabytes of memory to compile.
Green Hills Software, Inc. 97

4. Writing Portable Code
98 Green Hills C++ User’s Guide, v. 1.8.9

Chapter
5

OPTIMIZATION

5. Optimization
Along with providing standard optimizations available with other compilers, the Green Hills
compiler supports an advanced set of optimizations. Among these optimizations are
specialized suboptions which allow you to target specific types and areas of code for
improved performance.

This Chapter describes the Green Hills compiler optimizations under three categories:

▲ Optimizations performed by default

▲ General optimizations enabled with the -O option

▲ Specialized optimizations enabled with the suboptions -OALMI

DEFAULT OPTIMIZATIONS

This section describes the optimizations that the compiler performs by default,
when no options are set:

▲ Constant Folding

▲ Register Allocation by Coloring

▲ Register Coalescing

▲ Loop Rotation

CONSTANT FOLDING

Constant folding optimization is performed when the compiler can determine at
compile-time that an expression is a constant. The compiler substitutes the
constant for any reference to the constant expression.

In these examples, the constant expression INT_MAX/2 with its value, 16383.

Examples:

Initial C source code:

#define INT_MAX 32767
short subr(){
 int x;
 x=INT_MAX/2;
 return(x); }
100 Green Hills C++ User’s Guide, v. 1.8.9

Default Optimizations
Optimized C source code:

short subr(){
 int x;
 x = 16383;
 return(x); }

REGISTER ALLOCATION BY COLORING

Register allocation by coloring is used to permanently maintain a selected set of
local scalar variables in registers based on their frequency of reference and their
lifetimes. During program compilation, the optimizer uses data flow analysis to
determine the lifetime of each variable. The register allocator also uses this
information to assign different variables within a function to the same register if
the lifetimes of the variables do not overlap. This increases the opportunity for
allocating variables to registers.

With the local variables preallocated to registers, the compiler can optimize the
code significantly, since additional memory load and store instructions are not
required to reference the variables.

In these examples, the variables a and b are both assigned to the same register
since their lifetimes do not overlap (note that the code could be optimized still
further, but is left as is to simplify the examples).

EXAMPLES:

Initial C source code:

int subr(x)
int x;
{
 int a,b;
 a=x;
 b=x*2;
 return b;
}

Green Hills Software, Inc. 101

5. Optimization
Optimized C source code:

int subr(x)
int x;
{
 int a;
 a=x;
 a=x*2;
 return a;
}

For small functions, the compiler maintains all local variables in registers.
Scalars generally are considered for register allocation unless their values are
accessed with the address operator (&). This optimization is disabled with the
-nooverload option.

REGISTER COALESCING

With register coalescing optimization, the optimizer uses the destination
register as a work register when evaluating the associated expression and
organizes the instruction sequence so the result ends up in the destination
register. This optimization eliminates the additional register-to-register copies
required when using a temporary register.

EXAMPLES:

Initial C source code:

int fun(a,b,c)
int a,b,c;
{
 int ret = a+b+c;
 return ret;
}

Optimized C source code:

int fun(a,b,c)
int a,b,c;
{
 return a+b+c;
}

102 Green Hills C++ User’s Guide, v. 1.8.9

General Optimizations Enabled with the -O Option
LOOP ROTATION

Loop rotation optimization refers to locating the termination test and a
conditional branch at the bottom of the loop. Therefore, the loop only processes
one branch instruction on each iteration. Most compilers place the termination
test and an unconditional branch at the top of the loop and an additional
unconditional branch at the bottom.

EXAMPLES:

Initial C source code:

int subr(i)
int i;
{
 while (i < 10)
 i *= i;
 return(i);
}

Optimized C source code:

int subr(i)
int i;
{
 goto L7;
 do {
 i *= i;
 L7:
 } while (i < 10);
 return(i);
}

In addition, if the compiler can determine that the loop is executed at least one
time, the loop is entered at the top. If not, the compiler generates an
unconditional branch at the top of the loop to the termination test.

GENERAL OPTIMIZATIONS ENABLED WITH THE -O OPTION

General optimizations are enabled with the -O option. When -O is selected, all
of the following optimizations are performed:
Green Hills Software, Inc. 103

5. Optimization
▲ Pipeline Instruction Scheduling

▲ Static Address Elimination

▲ Peephole Optimization

▲ Common Subexpression Elimination

▲ Tail Recursion

▲ Dead Code Elimination

▲ Constant Propagation

Certain -O optimizations can be controlled with -Ono options, each of which
disables a specific -O optimization but enables all others. For example, the
-Onocse option enables all -O optimizations except for common subexpression
elimination. These options are described in the appropriate optimization
sections.

STATIC ADDRESS ELIMINATION

With static address elimination optimization, the optimizer assigns frequently
used static variables to registers within the scope of the function. This
optimization eliminates the loads and stores required with memory allocation.
It is enabled with the -OM option.

In these examples, the address of the static variable x is maintained in register.

EXAMPLES:

Initial C source code:

int subr(q)
int q;
{
 static int x=0;
 x++;
 q+=x;
 return(q);
}

104 Green Hills C++ User’s Guide, v. 1.8.9

General Optimizations Enabled with the -O Option
Optimized C source code:

int subr(q)
int q;
{
 static int x=0;
 register int x_ = x;
 x_++;
 q+=x_;
 x=x_;
 return(q);
}

Note that this optimization is performed not only for locally defined static
variables, but also for global variables, as shown in the following example:

Initial C source code:

int x = 0;

int subr(q)
int q;
{
 x++;
 q+=x;
 return q;
}

Optimized C source code:

int x=0;

int subr(q)
int q;
{
 register int x_ = x;
 x_++;
 q+=x_;
 x=x_;
 return(q);
}

Green Hills Software, Inc. 105

5. Optimization
PEEPHOLE OPTIMIZATION

Peephole optimization identifies common code patterns and replaces this code
with more efficient code patterns. This includes optimizations such as removal
of unreachable code, flow of control and algebraic simplifications. The
compiler only performs this optimization when local code analysis insures that
the results will be correct without further analysis of the surrounding code. This
optimization is disabled with the -Onopeep option.

EXAMPLES:

Initial C source code:

int subr(x,y,z)
int x,y,z;
{
 y = x;
 z = y;
 return z;
}

Optimized C source code:

int subr(x,y,z)
int x,y,z;
{
 return x;
}

COMMON SUBEXPRESSION ELIMINATION

Common subexpression elimination is performed when a previously calculated
expression is part of a later expression and none of the variable values in the
subexpression have changed. The optimizer retains the value of the
subexpression in a register for reuse. This optimization is disabled with the
-Onocse option.
106 Green Hills C++ User’s Guide, v. 1.8.9

General Optimizations Enabled with the -O Option
EXAMPLES:

Initial C source code:

int subr(x,y)
int x,y;
{
 int a, b;
 x += a+b;
 y += a+b;
 if (y < 0)
 return(y);
 return(x);
}

Optimized C source code:

int subr(x,y)
{
 int a, b, _v6;
 x+=(_v6=a+b);
 y+=_v6;
 if (y<0)
 return y;
 return x;
}

TAIL RECURSION

A procedure is considered tail recursive if the last statement executed is a
procedure call to itself followed by a return statement. This is sometimes
simply called a recursive procedure. Tail recursion optimization replaces the
procedure call with a branch instruction and eliminates the return statement.

EXAMPLES:

Initial C source code:

int sum(n)
int n;
{
 if (n <= 1
Green Hills Software, Inc. 107

5. Optimization
 return(1);
 else
 return(n+ sum(n-1));
}

Optimized C source code:

int sum(n)
int n;
{
 int _v3=0;
L1:
 if (n <= 1)
 return _v3+1;
 _v3 += n;
 _n--;
 goto L1;
}

DEAD CODE ELIMINATION

With dead code elimination, the optimizer does not generate assembly code for
statements computing values that are never used and therefore have no effect on
the program results.

In this example, the optimizer eliminates all code for processing the variable a
since it knows at compile-time that the variable a is zero and therefore any code
referencing it is not used.

EXAMPLES:

Initial C source code:

#define F0 0
#define F2 2
int subr(x)
int x;
{
 int a,b,c;
 a=F0*x;
 b=F2*x;
108 Green Hills C++ User’s Guide, v. 1.8.9

General Optimizations Enabled with the -O Option

oes

 return ((a)? a : b);
}

Optimized C source code:

int subr(x)
int x;
{
 int b;
 b=2*x;
 return(b);
}

CONSTANT PROPAGATION

Constant propagation is the replacement of one or more variables with constants
over the course of a variable’s lifetime if the variable’s value is known and d
not change during that lifetime. The following simple examples show code
optimized with constant propagation:

EXAMPLES:

C source code:

main()
{
 int i,a,b;
 a = 3;

 for (i=0;i<1000;i++)
 b += a; /* a is constant over the lifetime of the loop */
 printf("%d\n", b);
}

Optimized C source code:

main()
{
 int i,b;
 for (i=0; i<1000; i++)
 b+=3;
 printf(“%d\n”, b);
}

Green Hills Software, Inc. 109

5. Optimization
SPECIALIZED OPTIMIZATIONS SET WITH THE SUBOPTIONS -OLAMIS

The specialized optimizations are enabled using the -OL, -OA, -OM, -OI, or
-OS options. These optimizations enable the general optimization along with
the indicated suboptions. The optimizations provided by each option are as
follows:

-OL Loop Optimization:
Strength Reduction
Loop Invariant Analysis
Loop Unrolling

-OA Algorithmic Optimization
-OM Memory Optimization
-OI Inlining Optimization
-OS Size Optimization

You can combine these suboptions (L, A, M, I and S) in any order by appending
them to the -O option. For example, the -OLAMIS option turns on all
optimizations.

LOOP OPTIMIZATION WITH -OL

Loop optimization is selected with the -OL option. This option informs the
compiler that most computation is performed within the innermost loops.
Therefore, the compiler focuses most of the available machine resources on
optimizing that portion of code.

The following loop optimizations are performed:

▲ Strength Reduction

▲ Loop Invariant Analysis

▲ Loop Unrolling.

You can also list specific functions for this optimization using the following
syntax:

-OL=func1,func2,...,funcn

The -Onounroll and -Ounroll8 options can be used with -OL to affect loop
unrolling. See the section on Loop Unrolling, below.
110 Green Hills C++ User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMIS
STRENGTH REDUCTION

Strength reduction optimization is applied to arrays subscripted with the loop
index. Most compilers access the array element by multiplying the size of the
element by the loop index. The Green Hills compilers store the address of the
array in a register and add the size of the array element to the register on each
iteration of the loop.

EXAMPLES:

Initial C source code:

subr()
{
 int i;
 int q[4];
 for (i=0;i<4;i++)
 q[i]=i;
}

Optimized C source code:

subr()
{
 int i;
 int q[4];
 int *_ptr;
 for (i=0, _ptr=q; i<4; i++)
 *_ptr++ = i;
}

Strength reduction also applies to multiplying a loop invariant with the loop
index. The optimizer replaces a multiply instruction or a call to the mul()
library function with add and shift instructions.

LOOP INVARIANT ANALYSIS

Loop invariant analysis is used to enhance loop performance. Each loop is
examined for expressions or address calculations that do not change within the
loop. These computations are located outside the loop and their values are
stored in registers.
Green Hills Software, Inc. 111

5. Optimization
This optimization is particularly valuable for reducing the code generated to
access an element of an array when the array index does not change within the
loop.

EXAMPLES:

Initial C source code:

subr()
{
 int i,j;
 int q[4],p[4];
 for (i=3;i>=0;i--)
 q[i]=i;
 for (j=0;j<4;j++)
 p[j]=q[i];
}

Optimized C source code:

subr()
{
 int i,j;
 int q[4],p[4];
 int *_ptr;
 for (i=3; i>=0; i--)
 q[i] = i;
 for (j=0, _ptr = &q[i]; j<4; j++)
 p[j] = *_ptr;
}

LOOP UNROLLING

With loop unrolling optimization, the compiler duplicates the code in the
innermost loop up to a maximum of four times by default. This optimization
produces more straightline code, which removes much of the loop overhead in
testing for stop condition and branching. This allows better use of the register
allocator and more opportunity for instruction pipelining. It is most effective
when the innermost loop is relatively short causing minimal increase in code
size.
112 Green Hills C++ User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMIS
There are two options that can be used along with -OL to affect loop unrolling.
-Ounroll8 allows loops to be unrolled up to 8 times instead of the default
maximum of 4 times. -Onounroll disables loop unrolling but enables the other
-OL options.

The following simple examples use a constant loop size of 100 and a maximum
loop index of four to show the effect of this optimization.

EXAMPLES:

Initial C source code:

subr(a)
int a[];
{
 int i;
 for (i=0;i<100;i++)
 a[i]=i;
}

Optimized C source code:

subr(a)
int a[];
{
 int i;
 for (i=0;i<100;i+=4) {
 a[i]=i;
 a[i+1]=i+1;
 a[i+2]=i+2;
 a[i+3]=i+3;
 }
}

Calling the size of the loop n, suppose that n is large (auxiliary loop execution
time is negligible); then, the original loop takes n*(4 cycles per iteration) == 4n
cycles to complete. The unrolled loop takes n/4*(10 cycles per iteration) ==
2.5n cycles to complete. With n large, the unrolling has the effect of making the
loop execute in only 63% of the time required by the original loop.
Green Hills Software, Inc. 113

5. Optimization

 For

t
uld

s

r to
en
uld

hat

y
ALGORITHMIC OPTIMIZATION WITH -OA

These optimizations assume the program implements a portable algorithm
which is not affected by the limitations of finite hardware. For example, these
optimizations may apply algebraic properties such as associativity without
respect to the possibility of overflow, underflow, round-off, loss of precision, or
division by zero.

Furthermore, these optimizations assume that the algorithm never makes use of
the characteristics of two’s complement integer arithmetic or IEEE floating
point arithmetic beyond that implementation independent rules of ANSI C.
example, ANSI C states that the size of an int is implemenation defined and in
most environments supported by Green Hills compilers, an int is a 32-bit two’s
complement number. For example, any program that depends on an int having
exactly 32 bits, rather than 35 bits, or which depends on two’s complemen
arithmetic rather than signed magnitude or some other representation sho
NOT be compiled with -OA.

For example,

unsigned char c = -1;
if (c == 255)
 foo(); /* with -OA this might not be called */

signed char s = -127;
if (c - 5 > 0) /* note that c-5 yields 4 because of overflow */
 bar(); /* with -OA this might not be called */

In ANSI C, the include file “limits.h” provides implementation defined bound
of all integral types. Any code which depends on the result of an arithmetic
operation which exceeds these bounds should not be compiled with -OA.

Some programs achieve portability by intentionally forcing overflow in orde
determine the limitations of the hardware. The results of these tests are th
used to avoid overflow in the rest of the program. These overflow tests sho
NOT be compiled with -OA.

ALGEBRAIC ALGORITHMIC OPTIMIZATION

With some systems there is an additional type of algorithmic optimization t
can be enabled with the -X915 option (note that -OA must also be specified for
this to work). With this optimization, whenever the compiler finds a multipl
114 Green Hills C++ User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMIS

ge

 but
h the

 been
ted,
across an add, such as X*(Y+Z), where X is a constant, it will distribute the
multiply across the add, so our previous example would become: X*Y+X*Z.
Even though this actually increases the number of calculations performed (from
two to three) it can actually increase the speed of the calculation due to better
register usage on some systems.

MEMORY OPTIMIZATION WITH -OM

Memory optimization is enabled with the -OM option. This allows the
compiler to optimize repeated memory reads by placing the value in a register.
Subsequent read operations then refer to the register rather than the actual
memory location. With this optimization the compiler assumes that memory
locations only change with explicit store instructions and therefore are not
affected by any external sources.

It is therefore not recommended for applications in which memory could by
externally affected: device drivers, operating systems, and shared memory.
This also applies in a non-virtual memory environment when interrupts are
enabled.

The -OM option is automatically set with the -O option in full ANSI or 90%
ANSI mode (the -ANSI or -ansi options), since the volatile keyword is defined
to explicitly identify objects that may change without the compiler’s knowled
or control. If you wish to want to use -O without using -OM in one of these
modes, you may use the -Onomemory option. This option turns on -O, but
turns off memory optimization.

SPACE OPTIMIZATION WITH -OS

Space optimization is enabled with the -OS option. This tells the compiler to
perform all default and general optimizations that would increase efficiency
not greatly increase code size. For instance, if you compiled your code wit
optimization option -OSL, the compiler would omit the loop unrolling phase.

INLINING WITH -OI

The term “inlining” refers to the process of substituting the contents of a
function or subroutine in place of the call to that function or subroutine. The
resulting code is faster, since the overhead of a jump-to-subroutine call has
eliminated. Typically, a small function or subroutine that is frequently execu
Green Hills Software, Inc. 115

5. Optimization
but is called from only a few locations within the program, is the best candidate
for inlining. This way, the maximum benefit can be obtained by increasing
efficiency in high usage areas, while not significantly increasing program size.
This feature is currently supported with C++ with the following limitations:1)
the -OI=function-name style of inlining can’t be used with C++, and 2) the -OI
option can’t be used. C++ does all of the inlining that is built into the language.
In addition, there is a --max_inlining option which will be more aggressive in
inlining. See your release notes for more information.

The following program illustrates the basic principles of inlining. The main
program in this case contains a simple loop which calls the function sub(). The
call itself occurs only once in the program code, but the function is executed for
each iteration of the loop. The call is easily replaced by the routine code for sub
itself, eliminating both the need for parameter passing and the overhead of a
jump-to-subroutine. The reduced overhead per execution becomes a major
savings in program speed.

EXAMPLES:

Initial C source code:

_ _inline sub(x) {
 printf("x=%d\n",x);
 return;
}
main() {
 int i;
 for (i=1;i<10;i++)
 sub(i);
}

Optimized C source code:

 sub(x) {
 printf("x=%d\n",x);
 return;
 }
 main() {
 int i;
 for (i=1;i<10;i++)
 printf("x=%d\n",i);
116 Green Hills C++ User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMIS

ed.
s

s
d

f

r or
 }

Note that the code for sub has not been eliminated, although the main program
no longer contains a call to sub. The compiler generates code for each function,
whether or not it is inlined, so that it will be available to be called from other
modules and so that its address can be taken. While the size of the actual
generated code was not changed significantly, the execution speed of the main
program was improved by eliminating the jump-to-subroutine overhead.

USING THE INLINER

The Green Hills implementation of inlining is language independent within the
Green Hills family of compilers. Routines of one language may be freely
inlined into programs of another language. Also, inlining is performed across
modules: if a function foo() to be inlined is defined in one module but used in
several, the compiler will be able to inline foo() in all the modules in which it is
used.

For the sake of brevity, the word “function” in the following sections on
inlining is used to apply to FORTRAN subroutines as well.

SELECTING FUNCTIONS TO BE INLINED

There are three methods for selecting the functions to be inlined:

Manual Inlining
The _ _inline keyword may be inserted in the source code
immediately before the declaration of each function to be inlin
This is referred to as manual inlining. Manual inlining is alway
active even if no other optimizations or inlining methods have
been enabled.

Automatic Inlining
With automatic inlining, the compiler determines which function
will be inlined. Automatic inlining is selected with the comman
line option -OI.

Command Line Inlining
Command line inlining allows the user to specify the names o
certain functions to be inlined on the command line. This
resembles manual inlining in that the user determines whethe
Green Hills Software, Inc. 117

5. Optimization
not each function will be inlined. Command line inlining is
selected with the command line option -OI=name1,name2.

SINGLE-PASS AND TWO-PASS INLINING

Whenever a function is used in only one file, and is defined in that file before it
is used, and is manually marked for inlining with _ _inline, the function will be
inlined during the normal course of compilation. This is referred to as
single-pass inlining.

In order to inline a function which is not declared before it is used, or which is
called from a file other than the file in which it is declared, two-pass inlining is
required.

The command line options -OI and -OI= always enable two-pass inlining in
addition to determining the criteria for selecting the functions to be inlined.
Therefore, it may be necessary to specify the -OI or -OI= option to enable
two-pass inlining, even if every function is manually marked for inlining.

USING THE COMMAND LINE OPTIONS

-OI The -OI option indicates that automatic inlining should be
performed and that manual inlining should be performed in two
passes. The compiler will automatically select functions to be
inlined. In addition, each function which is manually marked with
_ _inline will be inlined, including those which are used before
they are declared in a file and those which are used in files in
which they are not declared. For example,

% gcc -OI main.c prog1.c prog2.c

will cause the compiler to be invoked twice for each of the three
source modules. First, each of the source files will be processed to
produce an inline file with a .inf extension. Then each source file
will be compiled again to produce an object file. On the second
pass, both the original source file and the three .inf inline files
will be used as input.

-OI=names The -OI=name option also indicates that command line inlining
should be performed and that manual inlining should be
performed in two passes. A list of names of functions to be inlined
118 Green Hills C++ User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMIS
may be specified after the -OI= option, separated by commas. In
addition, each function which is manually marked for inlining
with _ _inline will be inlined, including those which are used
before they are declared in a file and those which are used in files
in which they are not declared. If automatic inlining is also to be
performed the -OI option must be used as well.
The command line

% gcc -OI=sub,func main.c prog1.c prog2.c

will cause the functions sub() and func() to be inlined wherever
they are encountered, along with each function which is manually
marked for inlining with _ _inline.

-OI= The -OI= option without any arguments indicates that only
manual inlining should be performed in two passes.

TWO-PASS INLINING IMPLEMENTATION

When two-pass inlining is enabled, the compiler driver invokes the compiler
inliner once for each source module, creating an inline file for each module. All
of the functions in a single source file which are candidates for inlining are
stored in the corresponding inline file. The name of the inline file is formed by
taking the source filename and replacing the suffix with a .inf suffix.

Next, the compiler is invoked a second time for each source file. The original
source file along with all previously created .inf inline files will be used as
input. An object file will be generated for each source file, exactly as it would if
no inlining had been performed. The difference will be that certain calls to
functions will have been replaced with inline copies of those routines.
(Functions which are inlined will also have code generated for them, ensuring
full compatibility with conventional programming techniques.) Finally, all of
the object files will be linked normally.

INLINING OPTIMIZATION ENHANCEMENTS

Inlining is traditionally considered an optimization which increases program
size for the sake of improving program speed. Program size is increased
because a single function is generated in each place where it is called. Program
speed is improved because the branch-to-subroutine call is eliminated. In fact,
Green Hills Software, Inc. 119

5. Optimization
there are many ways in which inlining serves to reduce program size as well as
improve program speed. When a call is replaced by inlined code, the compiler
can usually avoid saving and restoring several registers before and after the call.
Parameters which normally must be passed on the stack to a called routine can
be accessed directly by the inlined routine in their original location.

Furthermore, because Green Hills compilers perform inlining before most
global optimizations, the process of inlining can significantly enhance the
opportunities for additional optimizations resulting in very efficient code.

For example, if one or more parameter values are constant, large portions of the
inlined routine may be reduced or eliminated at compile-time and loops which
normally execute a variable number of times may become constant.

Register allocation may improve because the overhead associated with a call is
eliminated. On most architectures, when a call to a routine exists within a
routine, the number of registers available for local variables and temporaries is
reduced. If all routine calls can be eliminated by inlining, the number of
registers available for variables and temporaries will be increased.

Pessimistic assumptions made by the compiler when compiling the caller may
not be necessary if no call is made. Normally the compiler must assume that
global variables may be changed when a call is performed. This prevents the
compiler from optimizing the values of expressions which contain global
variables across a call to a function. When the function is inlined, the call is
eliminated and the global variables may be optimized freely.

INLINING LIMITATIONS

The inlining optimization is subject to the following limitations:

▲ Source line number information related to inlined routines is deleted. When
executing a program under control of a source debugger, no source code will
be available for the inlined routine. Single stepping by source line will
cause the entire inlined call to be executed as a single statement. However,
you can debug the inlined call by stepping through the sequence of inlined
machine instructions at the point of the source-level call.

▲ Functions containing asm statements cannot be inlined.
120 Green Hills C++ User’s Guide, v. 1.8.9

Selecting Optimizations

his

ws

 to
▲ Routines written in assembly language cannot be inlined because they are
simply assembled to produce an object file. They cannot be processed by
the compiler inliner.

SELECTING OPTIMIZATIONS

This section provides a demonstration on using the Unix system profiling utility
to take full advantage of the specialized optimizations available with the Green
Hills Compiler to improve the performance of your application.

The information that is generated by the profiler is commonly used to identify
time-critical or inefficient code. This data is also very useful to select the
appropriate optimizations for your particular application and specifically to
identify functions for inlining and loop optimizations.

The system profiler produces a profile of your application which contains
statistics relative to each function. Using the -p compiler option results in an
executable containing calls to the system routine “monitor”. When your
executable is run, these calls keep track of each function's performance. T
raw data is written to a file called mon.out. The profile utility, prof, interprets
the data in mon.out and generates a formatted report. The following list sho
the categories of information in the report and what each category means.

%time percentage of total run-time spent within a function
cumsecs cumulative seconds spent for processing a function
#call number of times a function is called
ms/call time in milliseconds per function call
name function name

When your code is linked, the compiler driver uses special profiled libraries
generate your executable.
Green Hills Software, Inc. 121

5. Optimization
122 Green Hills C++ User’s Guide, v. 1.8.9

Appendix
A

IMPLEMENTATION
NOTES

A. Implementation Notes
IDENTIFIERS

Green Hills C++ reserves identifiers that contain a sequence of two underscores
for its own use. In addition, identifiers reserved in the ANSI C standard are also
reserved by Green Hills C++.

LINKAGE SPECIFICATIONS

Green Hills C++ supports linkage to C and C++.

The effect of a "C" linkage specification (extern "C") on a function that is not
a member function is that the function name is not encoded with the type
information, as is otherwise done for C++ functions. Member functions are not
affected by linkage specifications.

The C linkage specification (extern "C"), when applied to a non-function
declaration, has no effect.

CLASS MEMBERS

The Reference Manual states that the order of allocation of non-static data
members across access-specifiers is implementation dependent. Green Hills
C++ allocates non-static data members in declaration order.
A-2 Green Hills C++ User’s Guide, v. 1.8.9

Appendix
B

ERROR MESSAGES

B. Error Messages
The following is a list of error messages. List shows the error number and the error tag on the
same line, with the actual message for that error on the following line.

0001 LAST_LINE_INCOMPLETE

last line of file ends without a newline

0002 LAST_LINE_BACKSLASH

last line of file ends with a backslash

0003 INCLUDE_RECURSION

#include file “xxxx” includes itself

0004 OUT_OF_MEMORY

out of memory

0005 SOURCE_FILE_COULD_NOT_BE_OPENED

could not open source file “xxxx”

0006 COMMENT_UNCLOSED_AT_EOF

comment unclosed at end of file

0007 BAD_TOKEN

unrecognized token

0008 UNCLOSED_STRING

missing closing quote

0009 NESTED_COMMENT

nested comment is not allowed

0010 BAD_USE_OF_SHARP

“#” not expected here
B-2 Green Hills C++ User’s Guide, v. 1.8.9

0011 BAD_PP_DIRECTIVE_KEYWORD

unrecognized preprocessing directive

0012 END_OF_FLUSH

parsing restarts here after previous syntax error

0013 EXP_FILE_NAME

expected a file name

0014 EXTRA_TEXT_IN_PP_DIRECTIVE

extra text after expected end of preprocessing directive

0015 SOURCE_FILE_HAS_BAD_FORMAT

“xxxx” is not a file containing source text

0016 ILLEGAL_SOURCE_FILE_NAME

“xxxx” is not a valid source file name

0017 EXP_RBRACKET

expected a “]”

0018 EXP_RPAREN

expected a “)”

0019 EXTRA_CHARS_ON_NUMBER

extra text after expected end of number

0020 UNDEFINED_IDENTIFIER

identifier “xxxx” is undefined

0021 USELESS_TYPE_QUALIFIERS

type qualifiers are meaningless in this declaration
Green Hills Software, Inc. B-3

B. Error Messages
0022 BAD_HEX_DIGIT

invalid hexadecimal number

0023 INTEGER_TOO_LARGE

integer constant is too large

0024 BAD_OCTAL_DIGIT

invalid octal digit

0025 ZERO_LENGTH_STRING

quoted string should contain at least one character

0026 TOO_MANY_CHARACTERS

too many characters in character constant

0027 BAD_CHARACTER_VALUE

character value is out of range

0028 EXPR_NOT_CONSTANT

expression must have a constant value

0029 EXP_PRIMARY_EXPR

expected an expression

0030 BAD_FLOAT_VALUE

floating constant is out of range

0031 EXPR_NOT_INTEGRAL

expression must have integral type

0032 EXPR_NOT_ARITHMETIC

expression must have arithmetic type
B-4 Green Hills C++ User’s Guide, v. 1.8.9

0033 EXP_LINE_NUMBER

expected a line number

0034 BAD_LINE_NUMBER

invalid line number

0035 ERROR_DIRECTIVE

#error directive: xxxx

0036 MISSING_PP_IF

the #if for this directive is missing

0037 MISSING_ENDIF

the #endif for this directive is missing

0038 PP_ELSE_ALREADY_APPEARED

directive is not allowed -- an #else has already appeared

0039 DIVIDE_BY_ZERO

division by zero

0040 EXP_IDENTIFIER

expected an identifier

0041 EXPR_NOT_SCALAR

expression must have arithmetic or pointer type

0042 INCOMPATIBLE_OPERANDS

operand types are incompatible (“type” and “type”)

0044 EXPR_NOT_POINTER

expression must have pointer type
Green Hills Software, Inc. B-5

B. Error Messages
0045 CANNOT_UNDEF_PREDEF_MACRO

#undef may not be used on this predefined name

0046 CANNOT_REDEF_PREDEF_MACRO

this predefined name may not be redefined

0047 BAD_MACRO_REDEF

macro redefined differently

0048 MIXED_FUNCTION_OBJECT_POINTERS

cast between pointer-to-object and pointer-to-function

0049 DUPLICATE_MACRO_PARAM_NAME

duplicate macro parameter name

0050 PASTE_CANNOT_BE_FIRST

“##” may not be first in a macro definition

0051 PASTE_CANNOT_BE_LAST

“##” may not be last in a macro definition

0052 EXP_MACRO_PARAM

expected a macro parameter name

0053 EXP_COLON

expected a “:”

0054 TOO_FEW_MACRO_ARGS

too few arguments in macro invocation

0055 TOO_MANY_MACRO_ARGS

too many arguments in macro invocation
B-6 Green Hills C++ User’s Guide, v. 1.8.9

0056 SIZEOF_FUNCTION

operand of sizeof may not be a function

0057 BAD_CONSTANT_OPERATOR

this operator is not allowed in a constant expression

0058 BAD_PP_OPERATOR

this operator is not allowed in a preprocessing expression

0059 BAD_CONSTANT_FUNCTION_CALL

function call is not allowed in a constant expression

0060 BAD_INTEGRAL_OPERATOR

this operator is not allowed in an integral constant expression

0061 INTEGER_OVERFLOW

integer operation result is out of range

0062 NEGATIVE_SHIFT_COUNT

shift count is negative

0063 SHIFT_COUNT_TOO_LARGE

shift count is too large

0064 USELESS_DECL

declaration does not declare anything

0065 EXP_SEMICOLON

expected a “;”

0066 ENUM_VALUE_OUT_OF_INT_RANGE

enumeration value is out of “int” range
Green Hills Software, Inc. B-7

B. Error Messages
0067 EXP_RBRACE

expected a “}”

0068 INTEGER_SIGN_CHANGE

integer conversion resulted in a change of sign

0069 INTEGER_TRUNCATED

integer conversion resulted in truncation

0070 INCOMPLETE_TYPE_NOT_ALLOWED

incomplete type is not allowed

0071 SIZEOF_BIT_FIELD

operand of sizeof may not be a bit field

0075 BAD_INDIRECTION_OPERAND

operand of “*” must be a pointer

0076 EMPTY_MACRO_ARGUMENT

argument to macro is empty

0077 MISSING_DECL_SPECIFIERS

this declaration has no storage class or type specifier

0078 INITIALIZER_IN_PARAM

a parameter declaration may not have an initializer

0079 EXP_TYPE_SPECIFIER

expected a type specifier

0080 STORAGE_CLASS_NOT_ALLOWED

a storage class may not be specified here
B-8 Green Hills C++ User’s Guide, v. 1.8.9

0081 MULT_STORAGE_CLASSES

more than one storage class may not be specified

0082 STORAGE_CLASS_NOT_FIRST

storage class is not first

0083 DUPL_TYPE_QUALIFIER

type qualifier specified more than once

0084 BAD_COMBINATION_OF_TYPE_SPECIFIERS

invalid combination of type specifiers

0085 BAD_PARAM_STORAGE_CLASS

invalid storage class for a parameter

0086 BAD_FUNCTION_STORAGE_CLASS

invalid storage class for a function

0087 TYPE_SPECIFIER_NOT_ALLOWED

a type specifier may not be used here

0088 ARRAY_OF_FUNCTION

array of functions is not allowed

0089 ARRAY_OF_VOID

array of void is not allowed

0090 FUNCTION_RETURNING_FUNCTION

function returning function is not allowed

0091 FUNCTION_RETURNING_ARRAY

function returning array is not allowed
Green Hills Software, Inc. B-9

B. Error Messages
0092 PARAM_ID_LIST_NEEDS_FUNCTION_DEF

identifier-list parameters may only be used in a function definition

0093 FUNCTION_TYPE_MUST_COME_FROM_DECLARATOR

function type may not come from a typedef

0094 ARRAY_SIZE_MUST_BE_POSITIVE

the size of an array must be greater than zero

0095 ARRAY_SIZE_TOO_LARGE

array is too large

0096 EMPTY_TRANSLATION_UNIT

a translation unit must contain at least one declaration

0097 BAD_FUNCTION_RETURN_TYPE

a function may not return a value of this type

0098 BAD_ARRAY_ELEMENT_TYPE

an array may not have elements of this type

0099 DECL_SHOULD_BE_OF_PARAM

a declaration here must declare a parameter

0100 DUPL_PARAM_NAME

duplicate parameter name

0101I D_ALREADY_DECLARED

“xxxx” has already been declared in the current scope

0102 NONSTD_FORWARD_DEF_ENUM

forward-defined enum type is nonstandard
B-10 Green Hills C++ User’s Guide, v. 1.8.9

0103 CLASS_TOO_LARGE

class is too large

0104 STRUCT_TOO_LARGE

struct or union is too large

0105 BAD_BIT_FIELD_SIZE

invalid size for bit field

0106 BAD_BIT_FIELD_TYPE

invalid type for a bit field

0107 ZERO_LENGTH_BIT_FIELD_MUST_BE_UNNAMED

zero-length bit field must be unnamed

0108 SIGNED_ONE_BIT_FIELD

signed bit field of length 1

0109 EXPR_NOT_PTR_TO_FUNCTION

expression must have (pointer-to-) function type

0110 EXP_DEFINITION_OF_TAG

expected either a definition or a tag name

0111 CODE_IS_UNREACHABLE

statement is unreachable

0112 EXP_WHILE

expected “while”

0113 NONSTD_DEFAULT_ARG

this use of a default argument is nonstandard
Green Hills Software, Inc. B-11

B. Error Messages
0114 NEVER_DEFINED

entity-kind “entity” was referenced but not defined

0115 CONTINUE_MUST_BE_IN_LOOP

a continue statement may only be used within a loop

0116 BREAK_MUST_BE_IN_LOOP_OR_SWITCH

a break statement may only be used within a loop or switch

0117 NO_VALUE_RETURNED_IN_NON_VOID_FUNCTION

non-void entity-kind “entity” should return a value

0118 VALUE_RETURNED_IN_VOID_FUNCTION

a void function may not return a value

0119 CAST_TO_BAD_TYPE

cast to type “type” is not allowed

0120 BAD_RETURN_VALUE_TYPE

return value type does not match the function type

0121 CASE_LABEL_MUST_BE_IN_SWITCH

a case label may only be used within a switch

0122 DEFAULT_LABEL_MUST_BE_IN_SWITCH

a default label may only be used within a switch

0123 CASE_LABEL_APPEARS_MORE_THAN_ONCE

case label value has already appeared in this switch

0124 DEFAULT_LABEL_APPEARS_MORE_THAN_ONCE

default label has already appeared in this switch
B-12 Green Hills C++ User’s Guide, v. 1.8.9

0125 EXP_LPAREN

expected a “(“

0126 EXPR_NOT_AN_LVALUE

expression must be an lvalue

0127 EXP_STATEMENT

expected a statement

0128 LOOP_NOT_REACHABLE

loop is not reachable from preceding code

0129 BLOCK_SCOPE_FUNCTION_MUST_BE_EXTERN

a block-scope function may only have extern storage class

0130 EXP_LBRACE

expected a “{“

0131 EXPR_NOT_PTR_TO_CLASS

expression must have pointer-to-class type

0132 EXPR_NOT_PTR_TO_STRUCT_OR_UNION

expression must have pointer-to-struct-or-union type

0133 EXP_MEMBER_NAME

expected a member name

0134 EXP_FIELD_NAME

expected a field name

0135 NOT_A_MEMBER

entity-kind “entity” has no member “xxxx”
Green Hills Software, Inc. B-13

B. Error Messages
0136 NOT_A_FIELD

entity-kind “entity” has no field “xxxx”

0137 EXPR_NOT_A_MODIFIABLE_LVALUE

expression must be a modifiable lvalue

0138 ADDRESS_OF_REGISTER_VARIABLE

taking the address of a register variable is not allowed

0139 ADDRESS_OF_BIT_FIELD

taking the address of a bit field is not allowed

0140 TOO_MANY_ARGUMENTS

too many arguments in function call

0141 ALL_PROTO_PARAMS_MUST_BE_NAMED

unnamed prototyped parameters not allowed when body is present

0142 EXPR_NOT_POINTER_TO_OBJECT

expression must have pointer-to-object type

0143 PROGRAM_TOO_LARGE

program too large or complicated to compile

0144 BAD_INITIALIZER_TYPE

a value of type “type” cannot be used to initialize an entity of type “type”

0145 CANNOT_INITIALIZE

entity-kind “entity” may not be initialized

0146 TOO_MANY_INITIALIZER_VALUES

too many initializer values
B-14 Green Hills C++ User’s Guide, v. 1.8.9

0147 NOT_COMPATIBLE_WITH_PREVIOUS_DECL

declaration is incompatible with entity-kind “entity” (declared at line xxxx)

0148 ALREADY_INITIALIZED

entity-kind “entity” has already been initialized

0149 BAD_FILE_SCOPE_STORAGE_CLASS

a global-scope declaration may not have this storage class

0150 TYPE_CANNOT_BE_PARAM_NAME

a type name may not be redeclared as a parameter

0151 TYPEDEF_CANNOT_BE_PARAM_NAME

a typedef name may not be redeclared as a parameter

0152 NON_ZERO_INT_CONV_TO_POINTER

conversion of nonzero integer to pointer

0153 EXPR_NOT_CLASS

expression must have class type

0154 EXPR_NOT_STRUCT_OR_UNION

expression must have struct or union type

0155 OLD_FASHIONED_ASSIGNMENT_OPERATOR

old-fashioned assignment operator

0156 OLD_FASHIONED_INITIALIZER

old-fashioned initializer

0157 EXPR_NOT_INTEGRAL_CONSTANT

expression must be an integral constant expression
Green Hills Software, Inc. B-15

B. Error Messages
0158 EXPR_NOT_AN_LVALUE_OR_FUNCTION_DESIGNATOR

expression must be an lvalue or a function designator

0159 DECL_INCOMPATIBLE_WITH_PREVIOUS_USE

declaration is incompatible with previous “entity” (declared at line xxxx)

0160 EXTERNAL_NAME_CLASH

name conflicts with previously used external name “xxxx”

0161 UNRECOGNIZED_PRAGMA

unrecognized #pragma

0163 CANNOT_OPEN_TEMP_FILE

could not open temporary file “xxxx”

0164 TEMP_FILE_DIR_NAME_TOO_LONG

name of directory for temporary files is too long (“xxxx”)

0165 TOO_FEW_ARGUMENTS

too few arguments in function call

0166 BAD_FLOAT_CONSTANT

invalid floating constant

0167 INCOMPATIBLE_PARAM

argument of type “type” is incompatible with parameter of type “type”

0168 FUNCTION_TYPE_NOT_ALLOWED

a function type is not allowed here

0169 EXP_DECLARATION

expected a declaration
B-16 Green Hills C++ User’s Guide, v. 1.8.9

0170 POINTER_OUTSIDE_BASE_OBJECT

pointer points outside of underlying object

0171 BAD_CAST

invalid type conversion

0172 LINKAGE_CONFLICT

external/internal linkage conflict with previous declaration

0173 FLOAT_TO_INTEGER_CONVERSION

floating-point value does not fit in required integral type

0174 EXPR_HAS_NO_EFFECT

expression has no effect

0175 SUBSCRIPT_OUT_OF_RANGE

subscript out of range

0177 DECLARED_BUT_NOT_REFERENCED

entity-kind “entity” was declared but never referenced

0178 PCC_ADDRESS_OF_ARRAY

“&” applied to an array has no effect

0179 MOD_BY_ZERO

right operand of “%%” is zero

0180 OLD_STYLE_INCOMPATIBLE_PARAM

argument is incompatible with formal parameter

0181 PRINTF_ARG_MISMATCH

argument is incompatible with corresponding format string conversion
Green Hills Software, Inc. B-17

B. Error Messages
0182 EMPTY_INCLUDE_SEARCH_PATH

could not open source file “xxxx” (no directories in search list)

0183 CAST_NOT_INTEGRAL

type of cast must be integral

0184 CAST_NOT_SCALAR

type of cast must be arithmetic or pointer

0185 INITIALIZATION_NOT_REACHABLE

dynamic initialization in unreachable code

0186 UNSIGNED_COMPARE_WITH_ZERO

pointless comparison of unsigned integer with zero

0187 ASSIGN_WHERE_COMPARE_MEANT

possible use of “=” where “==” was intended

0188 MIXED_ENUM_TYPE

enumerated type mixed with another type

0189 FILE_WRITE_ERROR

error while writing xxxx file

0190 BAD_IL_FILE

invalid intermediate language file

0191 CAST_TO_QUALIFIED_TYPE

type qualifier is meaningless on cast type

0192 UNRECOGNIZED_CHAR_ESCAPE

unrecognized character escape sequence
B-18 Green Hills C++ User’s Guide, v. 1.8.9

0193 UNDEFINED_PREPROC_ID

zero used for undefined preprocessing identifier

0194 EXP_ASM_STRING

expected an asm string

0195 ASM_FUNC_MUST_BE_PROTOTYPED

an asm function must be prototyped

0196 BAD_ASM_FUNC_ELLIPSIS

an asm function may not have an ellipsis

0219 FILE_DELETE_ERROR

error while deleting file “xxxx”

0220 INTEGER_TO_FLOAT_CONVERSION

integral value does not fit in required floating-point type

0221 FLOAT_TO_FLOAT_CONVERSION

floating-point value does not fit in required floating-point type

0222 BAD_FLOAT_OPERATION_RESULT

floating-point operation result is out of range

0223 IMPLICIT_FUNC_DECL

function declared implicitly

0224 TOO_FEW_PRINTF_ARGS

the format string requires additional arguments

0225 TOO_MANY_PRINTF_ARGS

the format string ends before this argument
Green Hills Software, Inc. B-19

B. Error Messages
0226 BAD_PRINTF_FORMAT_STRING

invalid format string conversion

0227 MACRO_RECURSION

macro recursion

0228 NONSTD_EXTRA_COMMA

trailing comma is nonstandard

0229 ENUM_BIT_FIELD_TOO_SMALL

bit field cannot contain all values of the enumerated type

0230 NONSTD_BIT_FIELD_TYPE

nonstandard type for a bit field

0231 DECL_IN_PROTOTYPE_SCOPE

declaration is not visible outside of function

0232 DECL_OF_VOID_IGNORED

old-fashioned typedef of “void” ignored

0233 OLD_FASHIONED_FIELD_SELECTION

left operand is not a struct or union containing this field

0234 OLD_FASHIONED_PTR_FIELD_SELECTION

pointer does not point to struct or union containing this field

0235 VAR_RETAINED_INCOMP_TYPE

variable “xxxx” was declared with a never-completed type

0236 BOOLEAN_CONTROLLING_EXPR_IS_CONSTANT

controlling expression is constant
B-20 Green Hills C++ User’s Guide, v. 1.8.9

0237 SWITCH_SELECTOR_EXPR_IS_CONSTANT

selector expression is constant

0238 BAD_PARAM_SPECIFIER

invalid specifier on a parameter

0239 BAD_SPECIFIER_OUTSIDE_CLASS_DECL

invalid specifier outside a class declaration

0240 DUPL_DECL_SPECIFIER

duplicate specifier in declaration

0241 BASE_CLASS_NOT_ALLOWED_FOR_UNION

a union is not allowed to have a base class

0242 ACCESS_ALREADY_SPECIFIED

multiple access control specifiers are not allowed

0243 MISSING_CLASS_DEFINITION

class or struct definition is missing

0244 NAME_NOT_MEMBER_OF_CLASS_OR_BASE_CLASSES

qualified name is not a member of class “type” or its base classes

0245 MEMBER_REF_REQUIRES_OBJECT

a nonstatic member reference must be relative to a specific object

0246 NONSTATIC_MEMBER_DEF_NOT_ALLOWED

a nonstatic data member may not be defined outside its class

0247 ALREADY_DEFINED

entity-kind “entity” has already been defined
Green Hills Software, Inc. B-21

B. Error Messages
0248 POINTER_TO_REFERENCE

pointer to reference is not allowed

0249 REFERENCE_TO_REFERENCE

reference to reference is not allowed

0250 REFERENCE_TO_VOID

reference to void is not allowed

0251 ARRAY_OF_REFERENCE

array of reference is not allowed

0252 MISSING_INITIALIZER_ON_REFERENCE

reference entity-kind “entity” requires an initializer

0253 EXP_COMMA

expected a “,”

0254 TYPE_IDENTIFIER_NOT_ALLOWED

type name is not allowed

0255 TYPE_DEFINITION_NOT_ALLOWED

type definition is not allowed

0256 BAD_TYPE_NAME_REDECLARATION

invalid redeclaration of type name “entity” (declared at line xxxx)

0257 MISSING_INITIALIZER_ON_CONST

const entity-kind “entity” requires an initializer

0258 THIS_USED_INCORRECTLY

“this” may only be used inside a nonstatic member function
B-22 Green Hills C++ User’s Guide, v. 1.8.9

0259 CONSTANT_VALUE_NOT_KNOWN

constant value is not known

0260 MISSING_TYPE_SPECIFIER

explicit type is missing (“int” assumed)

0261 MISSING_ACCESS_SPECIFIER

access control not specified (“xxxx” by default)

0262 NOT_A_CLASS_OR_STRUCT_NAME

not a class or struct name

0263 DUPL_BASE_CLASS_NAME

duplicate base class name

0264 BAD_BASE_CLASS

invalid base class

0265 NO_ACCESS_TO_NAME

entity-kind “entity” is inaccessible

0266 AMBIGUOUS_NAME

“entity” is ambiguous

0267 OLD_STYLE_PARAMETER_LIST

old-style parameter list (anachronism)

0268 DECLARATION_AFTER_STATEMENTS

declaration may not appear after executable statement in block

0269 INACCESSIBLE_BASE_CLASS

base class “type” is inaccessible
Green Hills Software, Inc. B-23

B. Error Messages
0274 IMPROPERLY_TERMINATED_MACRO_CALL

improperly terminated macro invocation

0276 ID_MUST_BE_CLASS_OR_NAMESPACE_NAME

name followed by “::” must be a class or namespace name

0277 BAD_FRIEND_DECL

invalid friend declaration

0278 VALUE_RETURNED_IN_CONSTRUCTOR

a constructor or destructor may not return a value

0279 BAD_DESTRUCTOR_DECL

invalid destructor declaration

0280 CLASS_AND_MEMBER_NAME_CONFLICT

invalid declaration of a member with the same name as its class

0281 GLOBAL_QUALIFIER_NOT_ALLOWED

global-scope qualifier (leading “::”) is not allowed

0282 NAME_NOT_FOUND_IN_FILE_SCOPE

the global scope has no “xxxx”

0283 QUALIFIED_NAME_NOT_ALLOWED

qualified name is not allowed

0284 NULL_REFERENCE

NULL reference is not allowed

0285 BRACE_INITIALIZATION_NOT_ALLOWED

initialization with “{...}” is not allowed for object of type “type”
B-24 Green Hills C++ User’s Guide, v. 1.8.9

0286 AMBIGUOUS_BASE_CLASS

base class “type” is ambiguous

0287 AMBIGUOUS_DERIVED_CLASS

derived class “type” contains more than one instance of class “type”

0288 DERIVED_CLASS_FROM_VIRTUAL_BASE

derived class “type” has class “type” as a virtual base class

0289 NO_MATCHING_CONSTRUCTOR

no instance of constructor “entity” matches the argument list

0290 AMBIGUOUS_COPY_CONSTRUCTOR

copy constructor for class “type” is ambiguous

0291 NO_DEFAULT_CONSTRUCTOR

no default constructor exists for class “type”

0292 NOT_A_FIELD_OR_BASE_CLASS

“xxxx” is not a nonstatic data member or base class of class “type”

0293 INDIRECT_NONVIRTUAL_BASE_CLASS_NOT_ALLOWED

indirect nonvirtual base class is not allowed

0294 BAD_UNION_FIELD

invalid union member -- class “type” has a disallowed member function

0295 OVERLOADED_FUNCTION_TYPES_TOO_SIMILAR

cannot overload functions -- parameter types are too similar

0296 BAD_RVALUE_ARRAY

invalid use of non-lvalue array
Green Hills Software, Inc. B-25

B. Error Messages
0297 EXP_OPERATOR

expected an operator

0298 INHERITED_MEMBER_NOT_ALLOWED

inherited member is not allowed

0299 INDETERMINATE_OVERLOADED_FUNCTION

cannot determine which instance of entity-kind “entity” is intended

0300 BOUND_FUNCTION_MUST_BE_CALLED

a pointer to a bound function may only be used to call the function

0301 DUPLICATE_TYPEDEF

typedef name has already been declared (with same type)

0302 FUNCTION_REDEFINITION

entity-kind “entity” has already been defined

0303 OVERLOADED_FUNCTION_INCOMPATIBLE_TYPE

type does not match any instance of entity-kind “entity”

0304 NO_MATCHING_FUNCTION

no instance of entity-kind “entity” matches the argument list

0305 TYPE_DEF_NOT_ALLOWED_IN_FUNC_TYPE_DECL

type definition is not allowed in function return type declaration

0306 DEFAULT_ARG_NOT_AT_END

default argument not at end of parameter list

0307 DEFAULT_ARG_ALREADY_DEFINED

redefinition of default argument
B-26 Green Hills C++ User’s Guide, v. 1.8.9

tion
0308 AMBIGUOUS_OVERLOADED_FUNCTION

more than one instance of entity-kind “entity” matches the argument list:

0309 AMBIGUOUS_CONSTRUCTOR

more than one instance of constructor “entity” matches the argument list:

0310 BAD_DEFAULT_ARG_TYPE

default argument of type “type” is incompatible with parameter of type “type”

0311 RETURN_TYPE_CANNOT_DISTINGUISH_FUNCTIONS

cannot overload functions distinguished by return type alone

0312 NO_USER_DEFINED_CONVERSION

no suitable user-defined conversion from “type” to “ type” exists

0313 FUNCTION_QUALIFIER_NOT_ALLOWED

type qualifier is not allowed on this function

0314 VIRTUAL_STATIC_NOT_ALLOWED

only nonstatic member functions may be virtual

0315 UNQUAL_FUNCTION_WITH_QUAL_OBJECT

the object has type qualifiers that are not compatible with the member func

0316 TOO_MANY_VIRTUAL_FUNCTIONS

program too large to compile (too many virtual functions)

0317 BAD_RETURN_TYPE_ON_VIRTUAL_FUNCTION_OVERRIDE

type differs from base class virtual function by return type alone

0318 AMBIGUOUS_VIRTUAL_FUNCTION_OVERRIDE

override of virtual entity-kind “entity” is ambiguous
Green Hills Software, Inc. B-27

B. Error Messages
0319 PURE_SPECIFIER_ON_NONVIRTUAL_FUNCTION

pure specifier (“= 0”) allowed only on virtual functions

0320 BAD_PURE_SPECIFIER

badly-formed pure specifier (only “= 0” is allowed)

0321 BAD_DATA_MEMBER_INITIALIZATION

data member initializer is not allowed

0322 ABSTRACT_CLASS_OBJECT_NOT_ALLOWED

object of abstract class type is not allowed

0323 FUNCTION_RETURNING_ABSTRACT_CLASS

function returning abstract class is not allowed

0324 DUPLICATE_FRIEND_DECL

duplicate friend declaration

0325 INLINE_AND_NONFUNCTION

inline specifier allowed on function declarations only

0326 INLINE_NOT_ALLOWED

“inline” is not allowed

0327 BAD_STORAGE_CLASS_WITH_INLINE

invalid storage class for an inline function

0328 BAD_MEMBER_STORAGE_CLASS

invalid storage class for a class member

0329 LOCAL_CLASS_FUNCTION_DEF_MISSING

local class member entity-kind “entity” requires a definition
B-28 Green Hills C++ User’s Guide, v. 1.8.9

0330 INACCESSIBLE_SPECIAL_FUNCTION

entity-kind “entity” is inaccessible

0332 MISSING_CONST_COPY_CONSTRUCTOR

class “type” has no copy constructor to copy a const object

0333 DEFINITION_OF_IMPLICITLY_DECLARED_FUNCTION

defining an implicitly declared member function is not allowed

0334 NO_SUITABLE_COPY_CONSTRUCTOR

class “type” has no suitable copy constructor

0335 LINKAGE_SPECIFIER_NOT_ALLOWED

linkage specification is not allowed

0336 BAD_LINKAGE_SPECIFIER

unknown external linkage specification

0337 INCOMPATIBLE_LINKAGE_SPECIFIER

linkage specification is incompatible with previous “entity” (declared at line
xxxx)

0338 OVERLOADED_FUNCTION_LINKAGE

more than one instance of entity-kind “entity” has “C” linkage

0339 AMBIGUOUS_DEFAULT_CONSTRUCTOR

class “type” has more than one default constructor

0340 TEMP_USED_FOR_REF_INIT

value copied to temporary, reference to temporary used
Green Hills Software, Inc. B-29

B. Error Messages
0341 NONMEMBER_OPERATOR_NOT_ALLOWED

“operatorxxxx” must be a member function

0342 STATIC_MEMBER_OPERATOR_NOT_ALLOWED

operator may not be a static member function

0343 TOO_MANY_ARGS_FOR_CONVERSION

no arguments allowed on user-defined conversion

0344 TOO_MANY_ARGS_FOR_OPERATOR

too many arguments for operator function

0345 TOO_FEW_ARGS_FOR_OPERATOR

too few arguments for operator function

0346 NO_ARGS_WITH_CLASS_TYPE

nonmember operator requires an argument with class type

0347 DEFAULT_ARG_EXPR_NOT_ALLOWED

default argument is not allowed

0348 AMBIGUOUS_USER_DEFINED_CONVERSION

more than one user-defined conversion from “type” to “ type” applies:

0349 NO_MATCHING_OPERATOR_FUNCTION

no operator “xxxx” matches these operands

0350 AMBIGUOUS_OPERATOR_FUNCTION

more than one operator “xxxx” matches these operands:

0351 BAD_ARG_TYPE_FOR_OPERATOR_NEW

first parameter of allocation function must be of type “size_t”
B-30 Green Hills C++ User’s Guide, v. 1.8.9

0352 BAD_RETURN_TYPE_FOR_OP_NEW

allocation function requires “void *” return type

0353 BAD_RETURN_TYPE_FOR_OP_DELETE

deallocation function requires “void” return type

0354 BAD_FIRST_ARG_TYPE_FOR_OPERATOR_DELETE

first parameter of deallocation function must be of type “void *”

0355 BAD_SECOND_ARG_TYPE_FOR_OPERATOR_DELETE

second parameter of deallocation function must be of type “size_t”

0356 TYPE_MUST_BE_OBJECT_TYPE

type must be an object type

0357 BASE_CLASS_ALREADY_INITIALIZED

base class “type” has already been initialized

0358 BASE_CLASS_INIT_ANACHRONISM

base class name required -- “type” assumed (anachronism)

0359 MEMBER_ALREADY_INITIALIZED

entity-kind “entity” has already been initialized

0360 MISSING_BASE_CLASS_OR_MEMBER_NAME

name of member or base class is missing

0361 ASSIGNMENT_TO_THIS

assignment to “this” (anachronism)

0362 OVERLOAD_ANACHRONISM

“overload” keyword used (anachronism)
Green Hills Software, Inc. B-31

B. Error Messages
0363 ANON_UNION_MEMBER_ACCESS

invalid anonymous union -- nonpublic member is not allowed

0364 ANON_UNION_MEMBER_FUNCTION

invalid anonymous union -- member function is not allowed

0365 ANON_UNION_STORAGE_CLASS

anonymous union at global or namespace scope must be declared static

0366 MISSING_INITIALIZER_ON_FIELDS

entity-kind “entity” provides no initializer for:

0367 CANNOT_INITIALIZE_FIELDS

implicitly generated constructor for class “type” cannot initialize:

0368 NO_CTOR_BUT_CONST_OR_REF_MEMBER

entity-kind “entity” defines no constructor to initialize the following:

0369 VAR_WITH_UNINITIALIZED_MEMBER

entity-kind “entity” has an uninitialized const or reference member

0370 VAR_WITH_UNINITIALIZED_FIELD

entity-kind “entity” has an uninitialized const field

0371 MISSING_CONST_ASSIGNMENT_OPERATOR

class “type” has no assignment operator to copy a const object

0372 NO_SUITABLE_ASSIGNMENT_OPERATOR

class “type” has no suitable assignment operator

0373 AMBIGUOUS_ASSIGNMENT_OPERATOR

ambiguous default assignment operator for class “type”
B-32 Green Hills C++ User’s Guide, v. 1.8.9

0374 CONST_VOLATILE_NOT_ALLOWED

const or volatile qualifier is not allowed

0375 MISSING_TYPEDEF_NAME

declaration requires a typedef name

0377 VIRTUAL_NOT_ALLOWED

“virtual” is not allowed

0378 STATIC_NOT_ALLOWED

“static” is not allowed

0379 BOUND_FUNCTION_CAST_ANACHRONISM

cast of bound function to normal function pointer (anachronism)

0380 EXPR_NOT_PTR_TO_MEMBER

expression must have pointer-to-member type

0381 EXTRA_SEMICOLON

extra “;” ignored

0382 NONSTD_CONST_MEMBER

declaring a member constant is nonstandard

0384 NO_MATCHING_NEW_FUNCTION

no instance of overloaded “entity” matches the argument list

0385 DELETE_ALREADY_DECLARED

operator delete() may not be overloaded

0386 NO_MATCH_FOR_ADDR_OF_OVERLOADED_FUNCTION

no instance of entity-kind “entity” matches the required type
Green Hills Software, Inc. B-33

B. Error Messages
0387 DELETE_COUNT_ANACHRONISM

delete array size expression ignored (anachronism)

0388 BAD_RETURN_TYPE_FOR_OP_ARROW

“ type” is an invalid return type for “entity”

0389 CAST_TO_ABSTRACT_CLASS

a cast to an abstract class is not allowed

0390 BAD_USE_OF_MAIN

function “main” may not be called or have its address taken

0391 INITIALIZER_NOT_ALLOWED_ON_ARRAY_NEW

a new-initializer may not be specified for an array

0392 MEMBER_FUNCTION_REDECL_OUTSIDE_CLASS

member function “entity” may not be redeclared outside its class

0393 PTR_TO_INCOMPLETE_CLASS_TYPE_NOT_ALLOWED

pointer to incomplete class type is not allowed

0394 REF_TO_NESTED_FUNCTION_VAR

reference to local variable of enclosing function is not allowed

0395 SINGLE_ARG_POSTFIX_INCR_DECR_ANACHRONISM

single-argument function used for postfix “xxxx” (anachronism)

0397 BAD_DEFAULT_ASSIGNMENT

implicitly generated assignment operator cannot copy:

0398 NONSTD_ARRAY_CAST

cast to array type is nonstandard (treated as cast to “type”)
B-34 Green Hills C++ User’s Guide, v. 1.8.9

0399 CLASS_WITH_OP_NEW_BUT_NO_OP_DELETE

entity-kind “entity” has an operator newxxxx() but no operator deletexxxx()

0400 CLASS_WITH_OP_DELETE_BUT_NO_OP_NEW

entity-kind “entity” has an operator deletexxxx() but no operator newxxxx()

0401 BASE_CLASS_WITH_NONVIRTUAL_DTOR

destructor for base class “type” is not virtual

0402 NO_ACCESS_TO_CONSTRUCTORS

entity-kind “entity” has no accessible constructors

0403 MEMBER_FUNCTION_REDECLARATION

entity-kind “entity” has already been declared

0404 INLINE_MAIN

function “main” may not be declared inline

0405 CLASS_AND_MEMBER_FUNCTION_NAME_CONFLICT

member function with the same name as its class must be a constructor

0406 NESTED_CLASS_ANACHRONISM

using nested entity-kind “entity” (anachronism)

0407 TOO_MANY_PARAMS_FOR_DESTRUCTOR

a destructor may not have parameters

0408 BAD_CONSTRUCTOR_PARAM

copy constructor for class “type” may not have a parameter of type “type”

0409 INCOMPLETE_FUNCTION_RETURN_TYPE

function return type is incomplete
Green Hills Software, Inc. B-35

B. Error Messages
0410 PROTECTED_ACCESS_PROBLEM

protected entity-kind “entity” is not accessible through a “type” pointer or object

0411 PARAM_NOT_ALLOWED

a parameter is not allowed

0412 ASM_DECL_NOT_ALLOWED

an “asm” declaration is not allowed here

0413 NO_CONVERSION_FUNCTION

no suitable conversion function from “type” to “ type” exists

0414 DELETE_OF_INCOMPLETE_CLASS

delete of pointer to incomplete class

0415 NO_CONSTRUCTOR_FOR_CONVERSION

no suitable constructor exists to convert from “type” to “ type”

0416 AMBIGUOUS_CONSTRUCTOR_FOR_CONVERSION

more than one constructor applies to convert from “type” to “ type”:

0417 AMBIGUOUS_CONVERSION_FUNCTION

more than one conversion function from “type” to “ type” applies:

0418 AMBIGUOUS_CONVERSION_TO_BUILTIN

more than one conversion function from “type” to a built-in type applies:

0424 ADDR_OF_CONSTRUCTOR_OR_DESTRUCTOR

a constructor or destructor may not have its address taken

0425 DOLLAR_USED_IN_IDENTIFIER

dollar sign (“$”) used in identifier
B-36 Green Hills C++ User’s Guide, v. 1.8.9

0426 NONCONST_REF_INIT_ANACHRONISM

temporary used for initial value of reference to non-const (anachronism)

0427 QUALIFIER_IN_MEMBER_DECLARATION

qualified name is not allowed in member declaration

0428 MIXED_ENUM_TYPE_ANACHRONISM

enumerated type mixed with another type (anachronism)

0429 NEW_ARRAY_SIZE_MUST_BE_NONNEGATIVE

the size of an array in “new” must be non-negative

0430 RETURN_REF_INIT_REQUIRES_TEMP

returning reference to local temporary

0431 CFRONT_NONCONST_REF_INIT

const qualifier dropped in initializing reference to non-const

0432 ENUM_NOT_ALLOWED

“enum” declaration is not allowed

0433 QUALIFIER_DROPPED_IN_REF_INIT

initial value of reference has excess type qualifiers

0434 BAD_NONCONST_REF_INIT

initial value of reference to non-const has incorrect type

0435 DELETE_OF_FUNCTION_POINTER

a pointer to function may not be deleted

0436 BAD_CONVERSION_FUNCTION_DECL

conversion function must be a nonstatic member function
Green Hills Software, Inc. B-37

B. Error Messages
0437 BAD_TEMPLATE_DECLARATION_SCOPE

template declaration is not allowed here

0438 EXP_LT

expected a “<“

0439 EXP_GT

expected a “>”

0440 MISSING_TEMPLATE_PARAM

template parameter declaration is missing

0441 MISSING_TEMPLATE_ARG_LIST

argument list for entity-kind “entity” is missing

0442 TOO_FEW_TEMPLATE_ARGS

too few arguments for entity-kind “entity”

0443 TOO_MANY_TEMPLATE_ARGS

too many arguments for entity-kind “entity”

0444 NOT_A_TYPE_ARG

template parameter for a function template must be a type

0445 NOT_USED_IN_TEMPLATE_FUNCTION_PARAMS

entity-kind “entity” is not used in declaring the argument types of entity-kind
“entity”

0446 CFRONT_MULTIPLE_NESTED_TYPES

two nested types have the same name: “entity” and “entity” (declared at line
xxxx)2 (cfront compatibility)
B-38 Green Hills C++ User’s Guide, v. 1.8.9

0447 CFRONT_GLOBAL_DEFINED_AFTER_NESTED_TYPE

global “entity” was declared after nested “entity” (declared at line xxxx)2 (cfront
compatibility)

0449 AMBIGUOUS_PTR_TO_OVERLOADED_FUNCTION

more than one instance of entity-kind “entity” matches the required type

0450 NONSTD_LONG_LONG

the type “long long” is nonstandard

0451 NONSTD_FRIEND_DECL

omission of “xxxx” is nonstandard

0452 RETURN_TYPE_ON_CONVERSION_FUNCTION

return type may not be specified on a conversion function

0456 RUNAWAY_RECURSIVE_INSTANTIATION

excessive recursion at instantiation of entity-kind “entity”

0457 BAD_TEMPLATE_DECLARATION

“xxxx” is not a function or static data member

0458 BAD_NONTYPE_TEMPLATE_ARG

argument of type “type” is incompatible with template parameter of type “type”

0459 INIT_NEEDING_TEMP_NOT_ALLOWED

initialization requiring a temporary or conversion is not allowed

0460 DECL_HIDES_FUNCTION_PARAMETER

declaration of “xxxx” hides function parameter
Green Hills Software, Inc. B-39

B. Error Messages
0461 NONCONST_REF_INIT_FROM_RVALUE

initial value of reference to non-const must be an lvalue

0463 TEMPLATE_NOT_ALLOWED

“template” is not allowed

0464 NOT_A_CLASS_TEMPLATE

“ type” is not a class template

0466 FUNCTION_TEMPLATE_NAMED_MAIN

“main” is not a valid name for a function template

0467 UNION_NONUNION_MISMATCH

invalid reference to entity-kind “entity” (union/nonunion mismatch)

0468 LOCAL_TYPE_IN_TEMPLATE_ARG

a template argument may not reference a local type

0469 TAG_KIND_INCOMPATIBLE_WITH_DECLARATION

tag kind of xxxx is incompatible with declaration of entity-kind “entity”
(declared at line xxxx)

0470 NAME_NOT_TAG_IN_FILE_SCOPE

the global scope has no tag named “xxxx”

0471 NOT_A_TAG_MEMBER

entity-kind “entity” has no tag member named “xxxx”

0472 PTR_TO_MEMBER_TYPEDEF

member function typedef (allowed for cfront compatibility)
B-40 Green Hills C++ User’s Guide, v. 1.8.9

0473 BAD_USE_OF_MEMBER_FUNCTION_TYPEDEF

entity-kind “entity” may be used only in pointer-to-member declaration

0475 NONEXTERNAL_ENTITY_IN_TEMPLATE_ARG

a template argument may not reference a non-external entity

0476 ID_MUST_BE_CLASS_OR_TYPE_NAME

name followed by “::~” must be a class name or a type name

0477 DESTRUCTOR_NAME_MISMATCH

destructor name does not match name of class “type”

0478 DESTRUCTOR_TYPE_MISMATCH

type used as destructor name does not match type “type”

0479 CALLED_FUNCTION_REDECLARED_INLINE

entity-kind “entity” redeclared “inline” after being called

0480 VACUOUS_DESTRUCTOR_NAME_MISMATCH

destructor name does not match left operand of “->” or “.”

0481 BAD_STORAGE_CLASS_ON_TEMPLATE_DECL

invalid storage class for a template declaration

0482 NO_ACCESS_TO_TYPE_CFRONT_MODE

entity-kind “entity” is an inaccessible type (allowed for cfront compatibility)

0483 RETURN_TYPE_NOT_ALLOWED

a return type is not allowed

0484 INVALID_INSTANTIATION_PRAGMA_ARGUMENT

invalid instantiation pragma argument
Green Hills Software, Inc. B-41

B. Error Messages

lied
0485NOT_INSTANTIATABLE_ENTITY

entity-kind “entity” is not an entity that can be instantiated

0486COMPILER_GENERATED_FUNCTION_CANNOT_BE_INSTANTIATED

compiler generated function entity-kind “entity” cannot be instantiated

0487 INLINE_FUNCTION_CANNOT_BE_INSTANTIATED

inline function entity-kind “entity” cannot be instantiated

0488 PURE_VIRTUAL_FUNCTION_CANNOT_BE_INSTANTIATED

pure virtual function entity-kind “entity” cannot be instantiated

0489 INSTANTIATION_REQUESTED_NO_DEFINITION_SUPPLIED

entity-kind “entity” cannot be instantiated -- no template definition was supp

0490 INSTANTIATION_REQUESTED_AND_SPECIFIC_DEFINITION

entity-kind “entity” cannot be instantiated -- a specific definition has been
supplied

0491 NO_CONSTRUCTOR

class “type” has no constructor

0492 TEMPLATE_PARAM_ONLY_USED_IN_DEFAULT_ARGS

entity-kind “entity” must be used in a parameter without a default value in
entity-kind “entity”

0493 NO_MATCH_FOR_TYPE_OF_OVERLOADED_FUNCTION

no instance of entity-kind “entity” matches the specified type

0494 NONSTD_VOID_PARAM_LIST

declaring a void parameter list with a typedef is nonstandard
B-42 Green Hills C++ User’s Guide, v. 1.8.9

0495 CFRONT_NAME_LOOKUP_BUG

global entity-kind “entity” used instead of entity-kind “entity” (cfront
compatibility)

0496 REDECLARATION_OF_TEMPLATE_PARAM_NAME

template parameter “xxxx” may not be redeclared in this scope

0497 DECL_HIDES_TEMPLATE_PARAMETER

declaration of “xxxx” hides template parameter

0498 MUST_BE_PROTOTYPE_INSTANTIATION

template argument list must match the parameter list

0499 CONVERSION_TO_TYPE_NOT_ALLOWED

conversion function to convert from “type” to “ type” is not allowed

0500 BAD_EXTRA_ARG_FOR_POSTFIX_OPERATOR

extra argument of postfix “operatorxxxx” must be of type “int”

0501 FUNCTION_TYPE_REQUIRED

an operator name must be declared as a function

0502 OPERATOR_NAME_NOT_ALLOWED

operator name is not allowed

0503 SPECIFIC_DEF_MUST_BE_GLOBAL

class template specialization “entity” may not be declared in the current scope

0504 NONSTD_MEMBER_FUNCTION_ADDRESS

nonstandard form for taking the address of a member function
Green Hills Software, Inc. B-43

B. Error Messages
0505 TOO_FEW_TEMPLATE_PARAMS

too few template parameters -- does not match previous declaration

0506 TOO_MANY_TEMPLATE_PARAMS

too many template parameters -- does not match previous declaration

0507 TEMPLATE_OPERATOR_DELETE

function template for operator delete() is not allowed

0508 CLASS_TEMPLATE_SAME_NAME_AS_TEMPL_PARAM

class template and template parameter may not have the same name

0509 BAD_CONSTRUCTOR_NAME

“entity” cannot be used to designate constructor for entity-kind “entity”

0510 UNNAMED_TYPE_IN_TEMPLATE_ARG

a template argument may not reference an unnamed type

0511 ENUM_TYPE_NOT_ALLOWED

enumerated type is not allowed

0512 QUALIFIED_REFERENCE_TYPE

type qualifier on a reference type is not allowed

0513 INCOMPATIBLE_ASSIGNMENT_OPERANDS

a value of type “type” cannot be assigned to an entity of type “type”

0514 UNSIGNED_COMPARE_WITH_NEGATIVE

pointless comparison of unsigned integer with a negative constant

0515 CONVERTING_TO_INCOMPLETE_CLASS

cannot convert to incomplete class “type”
B-44 Green Hills C++ User’s Guide, v. 1.8.9

0516 MISSING_INITIALIZER_ON_UNNAMED_CONST

const object requires an initializer

0517 UNNAMED_OBJECT_WITH_UNINITIALIZED_FIELD

object has an uninitialized const or reference member

0518 NONSTD_PP_DIRECTIVE

nonstandard preprocessing directive

0519 UNEXPECTED_TEMPLATE_ARG_LIST

entity-kind “entity” may not have a template argument list

0520 MISSING_INITIALIZER_LIST

initialization with “{...}” expected for aggregate object

0521 INCOMPATIBLE_PTR_TO_MEMBER_SELECTION_OPERANDS

pointer-to-member selection class types are incompatible (“type” and “type”)

0522 SELF_FRIENDSHIP

pointless friend declaration

0523 PERIOD_USED_AS_QUALIFIER

“.” used in place of “::” to form a qualified name (cfront anachronism)

0524 CONST_FUNCTION_ANACHRONISM

non-const function called for const object (cfront anachronism)

0525 DEPENDENT_STMT_IS_DECLARATION

a dependent statement may not be a declaration

0526 VOID_PARAM_NOT_ALLOWED

a parameter may not have void type
Green Hills Software, Inc. B-45

B. Error Messages
0529 BAD_TEMPL_ARG_EXPR_OPERATOR

this operator is not allowed in a template argument expression

0530 MISSING_HANDLER

try block requires at least one handler

0531 MISSING_EXCEPTION_DECLARATION

handler requires an exception declaration

0532 MASKED_BY_DEFAULT_HANDLER

handler is masked by default handler

0533 MASKED_BY_HANDLER

handler is masked by previous handler for type “type”

0534 LOCAL_TYPE_USED_IN_EXCEPTION

use of a local type to specify an exception

0535 REDUNDANT_EXCEPTION_SPECIFICATION_TYPE

redundant type in exception specification

0536 INCOMPATIBLE_EXCEPTION_SPECIFICATION

exception specification is incompatible with that of previous entity-kind “entity”
(declared at line xxxx):

0537 PREVIOUS_EXCEPTION_SPECIFICATION_WAS_EMPTY

previously specified: no exceptions will be thrown

0538 OMITTED_IN_PREVIOUS_EXCEPTION_SPECIFICATION

previously omitted: “type”
B-46 Green Hills C++ User’s Guide, v. 1.8.9

0539 INCLUDED_IN_PREVIOUS_EXCEPTION_SPECIFICATION

previously specified but omitted here: “type”

0540 NO_EXCEPTION_SUPPORT

support for exception handling is disabled

0541 OMITTED_EXCEPTION_SPECIFICATION

omission of exception specification is incompatible with previous entity-kind
“entity” (declared at line xxxx)

0542 CANNOT_CREATE_INSTANTIATION_INFORMATION_FILE

could not create instantiation information file “xxxx”

0543 NON_ARITH_OPERATION_IN_TEMPL_ARG

non-arithmetic operation not allowed in nontype template argument

0544 LOCAL_TYPE_IN_NONLOCAL_VAR

use of a local type to declare a nonlocal variable

0545 LOCAL_TYPE_IN_FUNCTION

use of a local type to declare a function

0546 BRANCH_PAST_INITIALIZATION

transfer of control bypasses initialization of:

0548 BRANCH_INTO_HANDLER

transfer of control into an exception handler

0549 USED_BEFORE_SET

entity-kind “entity” is used before its value is set
Green Hills Software, Inc. B-47

B. Error Messages
0550 SET_BUT_NOT_USED

entity-kind “entity” was set but never used

0551 BAD_SCOPE_FOR_DEFINITION

entity-kind “entity” cannot be defined in the current scope

0552 EXCEPTION_SPECIFICATION_NOT_ALLOWED

exception specification is not allowed

0553 TEMPLATE_AND_INSTANCE_LINKAGE_CONFLICT

external/internal linkage conflict for entity-kind “entity” (declared at line xxxx)

0554 CONVERSION_FUNCTION_NOT_USABLE

entity-kind “entity” will not be called for implicit or explicit conversions

0555 TAG_KIND_INCOMPATIBLE_WITH_TEMPLATE_PARAMETER

tag kind of xxxx is incompatible with template parameter of type “type”

0556 TEMPLATE_OPERATOR_NEW

function template for operator new(size_t) is not allowed

0558 BAD_MEMBER_TYPE_IN_PTR_TO_MEMBER

pointer to member of type “type” is not allowed

0559 ELLIPSIS_ON_OPERATOR_FUNCTION

ellipsis is not allowed in operator function parameter list

0560 UNIMPLEMENTED_KEYWORD

“entity” is reserved for future use as a keyword

0561 CL_INVALID_MACRO_DEFINITION

invalid macro definition:
B-48 Green Hills C++ User’s Guide, v. 1.8.9

0562 CL_INVALID_MACRO_UNDEFINITION

invalid macro undefinition:

0563 CL_INVALID_PREPROCESSOR_OUTPUT_FILE

invalid preprocessor output file

0564 CL_CANNOT_OPEN_PREPROCESSOR_OUTPUT_FILE

cannot open preprocessor output file

0565 CL_IL_FILE_MUST_BE_SPECIFIED

IL file name must be specified if input is

0566 CL_INVALID_IL_OUTPUT_FILE

invalid IL output file

0567 CL_CANNOT_OPEN_IL_OUTPUT_FILE

cannot open IL output file

0568 CL_INVALID_C_OUTPUT_FILE

invalid C output file

0569 CL_CANNOT_OPEN_C_OUTPUT_FILE

cannot open C output file

0570 CL_ERROR_IN_DEBUG_OPTION_ARGUMENT

error in debug option argument

0571 CL_INVALID_OPTION

invalid option:

0572 CL_BACK_END_REQUIRES_IL_FILE

back end requires name of IL file
Green Hills Software, Inc. B-49

B. Error Messages
0573 CL_COULD_NOT_OPEN_IL_FILE

could not open IL file

0574 CL_INVALID_NUMBER

invalid number:

0575 CL_INCORRECT_HOST_ID

incorrect host CPU id

0576 CL_INVALID_INSTANTIATION_MODE

invalid instantiation mode:

0578 CL_INVALID_ERROR_LIMIT

invalid error limit:

0579 CL_INVALID_RAW_LISTING_OUTPUT_FILE

invalid raw-listing output file

0580 CL_CANNOT_OPEN_RAW_LISTING_OUTPUT_FILE

cannot open raw-listing output file

0581 CL_INVALID_XREF_OUTPUT_FILE

invalid cross-reference output file

0582 CL_CANNOT_OPEN_XREF_OUTPUT_FILE

cannot open cross-reference output file

0583 CL_INVALID_ERROR_OUTPUT_FILE

invalid error output file

0584 CL_CANNOT_OPEN_ERROR_OUTPUT_FILE

cannot open error output file
B-50 Green Hills C++ User’s Guide, v. 1.8.9

0585 CL_VTBL_OPTION_ONLY_IN_CPLUSPLUS

virtual function tables can only be suppressed when compiling C++

0586 CL_ANACHRONISM_OPTION_ONLY_IN_CPLUSPLUS

anachronism option can be used only when compiling C++

0587 CL_INSTANTIATION_OPTION_ONLY_IN_CPLUSPLUS

instantiation mode option can be used only when compiling C++

0588 CL_AUTO_INSTANTIATION_OPTION_ONLY_IN_CPLUSPLUS

automatic instantiation mode can be used only when compiling C++

0589 CL_IMPLICIT_INCLUSION_OPTION_ONLY_IN_CPLUSPLUS

implicit template inclusion mode can be used only when compiling C++

0590 CL_EXCEPTIONS_OPTION_ONLY_IN_CPLUSPLUS

exception handling option can be used only when compiling C++

0591 CL_STRICT_ANSI_INCOMPATIBLE_WITH_PCC

strict ANSI mode is incompatible with K&R mode

0592 CL_STRICT_ANSI_INCOMPATIBLE_WITH_CFRONT

strict ANSI mode is incompatible with cfront mode

0593 CL_MISSING_SOURCE_FILE_NAME

missing source file name

0594 CL_OUTPUT_FILE_INCOMPATIBLE_WITH_MULTIPLE_INPUTS

output files may not be specified when compiling several input files

0595 CL_TOO_MANY_ARGUMENTS

too many arguments on command line
Green Hills Software, Inc. B-51

B. Error Messages
0596 CL_NO_OUTPUT_FILE_NEEDED

an output file was specified, but none is needed

0597 CL_IL_DISPLAY_REQUIRES_IL_FILE_NAME

IL display requires name of IL file

0598 VOID_TEMPLATE_PARAMETER

a template parameter may not have void type

0599 TOO_MANY_UNUSED_INSTANTIATIONS

excessive recursive instantiation of entity-kind “entity” due to instantiate-all
mode

0600 CL_STRICT_ANSI_INCOMPATIBLE_WITH_ANACHRONISMS

strict ANSI mode is incompatible with allowing anachronisms

0601 VOID_THROW

a throw expression may not have void type

0602 CL_TIM_LOCAL_CONFLICTS_WITH_AUTO_INSTANTIATION

local instantiation mode is incompatible with automatic instantiation

0603 ABSTRACT_CLASS_PARAM_TYPE

parameter of abstract class type is not allowed

0604 ARRAY_OF_ABSTRACT_CLASS

array of abstract class is not allowed

0605 FLOAT_TEMPLATE_PARAMETER

floating-point template parameter is nonstandard
B-52 Green Hills C++ User’s Guide, v. 1.8.9

0606 PRAGMA_MUST_PRECEDE_DECLARATION

this pragma must immediately precede a declaration

0607 PRAGMA_MUST_PRECEDE_STATEMENT

this pragma must immediately precede a statement

0608 PRAGMA_MUST_PRECEDE_DECL_OR_STMT

this pragma must immediately precede a declaration or statement

0609 PRAGMA_MAY_NOT_BE_USED_HERE

this kind of pragma may not be used here

0610 NONOVERRIDING_FUNCTION_DECL

entity-kind “entity” does not match “entity” -- virtual function override
intended?

0611 PARTIAL_OVERRIDE

overloaded virtual function “entity” is only partially overridden in entity-kind
“entity”

0612 SPECIALIZATION_OF_CALLED_INLINE_TEMPLATE_FUNCTION

specific definition of inline template function must precede its first use

0613 CL_INVALID_ERROR_TAG

invalid error tag:

0614 CL_INVALID_ERROR_NUMBER

invalid error number:

0615 PARAM_TYPE_PTR_TO_ARRAY_OF_UNKNOWN_BOUND

parameter type involves pointer to array of unknown bound
Green Hills Software, Inc. B-53

B. Error Messages
0616 PARAM_TYPE_REF_ARRAY_OF_UNKNOWN_BOUND

parameter type involves reference to array of unknown bound

0617 PTR_TO_MEMBER_CAST_TO_PTR_TO_FUNCTION

pointer-to-member-function cast to pointer to function

0618 NO_NAMED_FIELDS

struct or union must declare at least one named field

0619 NONSTD_UNNAMED_FIELD

nonstandard unnamed field

0620 NONSTD_UNNAMED_MEMBER

nonstandard unnamed member

0621 FUNCTION_TYPE_IN_TEMPLATE_ARG

a function type cannot be used as a template argument

0622 CL_INVALID_PCH_OUTPUT_FILE

invalid precompiled header output file

0623 CL_CANNOT_OPEN_PCH_OUTPUT_FILE

cannot open precompiled header output file

0624 NOT_A_TYPE_NAME

“xxxx” is not a type name

0625 CL_CANNOT_OPEN_PCH_INPUT_FILE

cannot open precompiled header input file
B-54 Green Hills C++ User’s Guide, v. 1.8.9

n

der

e of
0626 INVALID_PCH_FILE

precompiled header file “xxxx” is either invalid or not generated by this versio
of the compiler

0627 PCH_CURR_DIRECTORY_CHANGED

precompiled header file “xxxx” was not generated in this directory

0628 PCH_HEADER_FILES_HAVE_CHANGED

header files used to generate precompiled header file “xxxx” have changed

0629 PCH_CMD_LINE_OPTION_MISMATCH

the command line options do not match those used when precompiled hea
file “ xxxx” was created

0630 PCH_FILE_PREFIX_MISMATCH

the initial sequence of preprocessing directives is not compatible with thos
precompiled header file “xxxx”

0631 UNABLE_TO_GET_MAPPED_MEMORY

unable to obtain mapped memory

0632 USING_PCH

“xxxx”: using precompiled header file “xxxx”

0633 CREATING_PCH

“xxxx”: creating precompiled header file “xxxx”

0634 MEMORY_MISMATCH

memory usage conflict with precompiled header file “xxxx”

0635 CL_INVALID_PCH_SIZE

invalid PCH memory size
Green Hills Software, Inc. B-55

B. Error Messages
0636 CL_PCH_MUST_BE_FIRST

PCH options must appear first in the command line

0637 OUT_OF_MEMORY_DURING_PCH_ALLOCATION

insufficient memory for PCH memory allocation

0638 CL_PCH_INCOMPATIBLE_WITH_MULTIPLE_INPUTS

precompiled header files may not be used when compiling several input files

0639 NOT_ENOUGH_PREALLOCATED_MEMORY

insufficient preallocated memory for generation of precompiled header file
(xxxx bytes required)

0640 PROGRAM_ENTITY_TOO_LARGE_FOR_PCH

very large entity in program prevents generation of precompiled header file

0641 CANNOT_CHDIR

“xxxx” is not a valid directory

0642 CANNOT_BUILD_TEMP_FILE_NAME

cannot build temporary file name

0643 RESTRICT_NOT_ALLOWED

“restrict” is not allowed

0644 RESTRICT_POINTER_TO_FUNCTION

a pointer or reference to function type may not be qualified by “restrict”

0645 BAD_DECLSPEC_MODIFIER

“xxxx” is an invalid __declspec attribute
B-56 Green Hills C++ User’s Guide, v. 1.8.9

0646 CALLING_CONVENTION_NOT_ALLOWED

a calling convention modifier may not be specified here

0647 CONFLICTING_CALLING_CONVENTIONS

conflicting calling convention modifiers

0648 CL_STRICT_ANSI_INCOMPATIBLE_WITH_MICROSOFT

strict ANSI mode is incompatible with Microsoft mode

0649 CL_CFRONT_INCOMPATIBLE_WITH_MICROSOFT

cfront mode is incompatible with Microsoft mode

0650 CALLING_CONVENTION_IGNORED

calling convention specified here is ignored

0651 CALLING_CONVENTION_MAY_NOT_PRECEDE_NESTED_DECLARATOR

a calling convention may not be followed by a nested declarator

0652 CALLING_CONVENTION_IGNORED_FOR_TYPE

calling convention is ignored for this type

0653 CALLING_CONVENTION_NOT_ALLOWED_FOR_TYPE

calling conventions may only be applied to function types

0654 DECL_MODIFIERS_INCOMPATIBLE_WITH_PREVIOUS_DECL

declaration modifiers are incompatible with previous declaration

0655 DECL_MODIFIERS_INVALID_FOR_THIS_DECL

the modifier “xxxx” is not allowed on this declaration

0656 BRANCH_INTO_TRY_BLOCK

transfer of control into a try block
Green Hills Software, Inc. B-57

B. Error Messages
0657 INCOMPATIBLE_INLINE_SPECIFIER_ON_SPECIFIC_DECL

inline specification is incompatible with previous “entity” (declared at line
xxxx)

0658 TEMPLATE_MISSING_CLOSING_BRACE

closing brace of entity-kind “entity” not found

0659 CL_WCHAR_T_OPTION_ONLY_IN_CPLUSPLUS

wchar_t keyword option can be used only when compiling C++

0660 BAD_PACK_ALIGNMENT

invalid packing alignment value

0661 EXP_INT_CONSTANT

expected an integer constant

0662 CALL_OF_PURE_VIRTUAL

call of pure virtual function

0663 BAD_IDENT_STRING

invalid source file identifier string

0665 ASM_NOT_ALLOWED

“asm” is not allowed

0666 BAD_ASM_FUNCTION_DEF

“asm” must be used with a function definition

0667 NONSTD_ASM_FUNCTION

“asm” function is nonstandard
B-58 Green Hills C++ User’s Guide, v. 1.8.9

)

0668 NONSTD_ELLIPSIS_ONLY_PARAM

ellipsis with no explicit parameters is nonstandard

0669 NONSTD_ADDRESS_OF_ELLIPSIS

“&...” is nonstandard

0670 BAD_ADDRESS_OF_ELLIPSIS

invalid use of “&...”

0671 CL_ALTERNATIVE_TOKEN_OPTION_ONLY_IN_CPLUSPLUS

alternative token option can be used only when compiling C++

0672 CONST_VOLATILE_REF_INIT_ANACHRONISM

temporary used for initial value of reference to const volatile (anachronism

0673 BAD_CONST_VOLATILE_REF_INIT

initial value of reference to const volatile has incorrect type

0674 CONST_VOLATILE_REF_INIT_FROM_RVALUE

initial value of reference to const volatile must be an lvalue

0675 CL_SVR4_C_OPTION_ONLY_IN_ANSI_C

SVR4 C compatibility option can be used only when compiling ANSI C

0676 USING_OUT_OF_SCOPE_DECLARATION

using out-of-scope declaration of entity-kind “entity” (declared at line xxxx)

0677 CL_STRICT_ANSI_INCOMPATIBLE_WITH_SVR4

strict ANSI mode is incompatible with SVR4 C mode

0678 CANNOT_INLINE_CALL

call of entity-kind “entity” cannot be inlined
Green Hills Software, Inc. B-59

B. Error Messages
0679 CANNOT_INLINE

entity-kind “entity” cannot be inlined

0680 CL_INVALID_PCH_DIRECTORY

invalid PCH directory:

0681 EXP_EXCEPT_OR_FINALLY

expected __except or __finally

0682 LEAVE_MUST_BE_IN_TRY

a __leave statement may only be used within a __try

0688 NOT_FOUND_ON_PACK_ALIGNMENT_STACK

“xxxx” not found on pack alignment stack

0689 EMPTY_PACK_ALIGNMENT_STACK

empty pack alignment stack

0690 CL_RTTI_OPTION_ONLY_IN_CPLUSPLUS

RTTI option can be used only when compiling C++

0691 INACCESSIBLE_ELIDED_CCTOR

entity-kind “entity”, required for copy that was eliminated, is inaccessible

0692 UNCALLABLE_ELIDED_CCTOR

entity-kind “entity”, required for copy that was eliminated, is not callable
because reference parameter cannot be bound to rvalue

0693 TYPEID_NEEDS_TYPEINFO

<typeinfo> should be included before typeid is used
B-60 Green Hills C++ User’s Guide, v. 1.8.9

0694 CANNOT_CAST_AWAY_CONST

xxxx cannot cast away const or other type qualifiers

0695 BAD_DYNAMIC_CAST_TYPE

the type in a dynamic_cast must be a pointer or reference to a complete class
type, or void *

0696 BAD_PTR_DYNAMIC_CAST_OPERAND

the operand of a pointer dynamic_cast must be a pointer to a complete class
type

0697 BAD_REF_DYNAMIC_CAST_OPERAND

the operand of a reference dynamic_cast must be an lvalue of a complete class
type

0698 DYNAMIC_CAST_OPERAND_MUST_BE_POLYMORPHIC

the operand of a runtime dynamic_cast must have a polymorphic class type

0699 CL_BOOL_OPTION_ONLY_IN_CPLUSPLUS

bool option can be used only when compiling C++

0700 BAD_STORAGE_CLASS_ON_CONDITION_DECL

invalid storage class for condition declaration

0701 ARRAY_TYPE_NOT_ALLOWED

an array type is not allowed here

0702 EXP_ASSIGN

expected an “=”

0703 EXP_DECLARATOR_IN_CONDITION_DECL

expected a declarator in condition declaration
Green Hills Software, Inc. B-61

B. Error Messages
0704 REDECLARATION_OF_CONDITION_DECL_NAME

“xxxx”, declared in condition, may not be redeclared in this scope

0705 DEFAULT_TEMPLATE_ARG_NOT_ALLOWED

default template arguments are not allowed for function templates

0706 EXP_COMMA_OR_GT

expected a “,” or “>”

0707 MISSING_TEMPLATE_PARAM_LIST

expected a template parameter list

0708 INCR_OF_BOOL_DEPRECATED

incrementing a bool value is deprecated

0709 BOOL_TYPE_NOT_ALLOWED

bool type is not allowed

0710 BASE_CLASS_OFFSET_TOO_LARGE

offset of base class “entity” within class “entity” is too large

0711 EXPR_NOT_BOOL

expression must have bool type (or be convertible to bool)

0712 CL_ARRAY_NEW_AND_DELETE_OPTION_ONLY_IN_CPLUSPLUS

array new and delete option can be used only when compiling C++

0713 BASED_REQUIRES_VARIABLE_NAME

entity-kind “entity” is not a variable name

0714 BASED_NOT_ALLOWED_HERE

__based modifier is not allowed here
B-62 Green Hills C++ User’s Guide, v. 1.8.9

0715 BASED_NOT_FOLLOWED_BY_STAR

__based does not precede a pointer operator, __based ignored

0716 BASED_VAR_MUST_BE_PTR

variable in __based modifier must have pointer type

0717 BAD_CONST_CAST_TYPE

the type in a const_cast must be a pointer, reference, or pointer to member to an
object type

0718 BAD_CONST_CAST

a const_cast can only adjust type qualifiers; it cannot change the underlying
type

0719 MUTABLE_NOT_ALLOWED

mutable is not allowed

0720 CANNOT_CHANGE_ACCESS

redeclaration of entity-kind “entity” is not allowed to alter its access

0721 NONSTD_PRINTF_FORMAT_STRING

nonstandard format string conversion

0722 PROBABLE_INADVERTENT_LBRACKET_DIGRAPH

use of alternative token “<:” appears to be unintended

0723 PROBABLE_INADVERTENT_SHARP_DIGRAPH

use of alternative token “%%:” appears to be unintended

0724 NAMESPACE_DEF_NOT_ALLOWED

namespace definition is not allowed
Green Hills Software, Inc. B-63

B. Error Messages
0725 MISSING_NAMESPACE_NAME

namespace name is required

0726 NAMESPACE_ALIAS_DEF_NOT_ALLOWED

namespace alias definition is not allowed

0727 NAMESPACE_QUALIFIED_NAME_REQUIRED

namespace-qualified name is required

0728 NAMESPACE_NAME_NOT_ALLOWED

a namespace name is not allowed

0729 BAD_COMBINATION_OF_DLL_ATTRIBUTES

invalid combination of DLL attributes

0730 SYM_NOT_A_CLASS_TEMPLATE

entity-kind “entity” is not a class template

0731 ARRAY_OF_INCOMPLETE_TYPE

array with incomplete element type is nonstandard

0732 ALLOCATION_OPERATOR_IN_NAMESPACE

allocation operator may not be declared in a namespace

0733 DEALLOCATION_OPERATOR_IN_NAMESPACE

deallocation operator may not be declared in a namespace

0734 CONFLICTS_WITH_USING_DECL

entity-kind “entity” conflicts with using-declaration of entity-kind “entity”
B-64 Green Hills C++ User’s Guide, v. 1.8.9

0735 USING_DECL_CONFLICTS_WITH_PREV_DECL

using-declaration of entity-kind “entity” conflicts with entity-kind “entity”
(declared at line xxxx)

0736 CL_NAMESPACES_OPTION_ONLY_IN_CPLUSPLUS

namespaces option can be used only when compiling C++

0737 USELESS_USING_DECLARATION

using-declaration ignored -- it refers to the current namespace

0738 CLASS_QUALIFIED_NAME_REQUIRED

a class-qualified name is required

0739 ARGUMENT_LIST_TYPES_ADD_ON

argument types are: (xxxx)

0740 OPERAND_TYPES_ADD_ON

operand types are: xxxx

0741 USING_DECLARATION_IGNORED

using-declaration of entity-kind “entity” ignored

0742 NOT_AN_ACTUAL_MEMBER

entity-kind “entity” has no actual member “xxxx”

0743 NONSTD_GLOBAL_QUALIFIER_ON_FRIEND_DECL

global-scope qualifier (leading “::”) on friend declaration is nonstandard

0744 MEM_ATTRIB_INCOMPATIBLE

incompatible memory attributes specified
Green Hills Software, Inc. B-65

B. Error Messages

be
0745 MEM_ATTRIB_IGNORED

memory attribute ignored

0746 MEM_ATTRIB_MAY_NOT_PRECEDE_NESTED_DECLARATOR

memory attribute may not be followed by a nested declarator

0747 DUPL_MEM_ATTRIB

memory attribute specified more than once

0748 DUPL_CALLING_CONVENTION

calling convention specified more than once

0749 TYPE_QUALIFIER_NOT_ALLOWED

a type qualifier is not allowed

0750 TEMPLATE_INSTANCE_ALREADY_USED

entity-kind “entity” (declared at line xxxx) was used before its template was
declared

0751 STATIC_NONSTATIC_WITH_SAME_PARAM_TYPES

static and nonstatic member functions with same parameter types cannot
overloaded

0752 NO_PRIOR_DECLARATION

no prior declaration of entity-kind “entity”

0753 TEMPLATE_ID_NOT_ALLOWED

a template-id is not allowed

0754 CLASS_QUALIFIED_NAME_NOT_ALLOWED

a class-qualified name is not allowed
B-66 Green Hills C++ User’s Guide, v. 1.8.9

0755 BAD_SCOPE_FOR_REDECLARATION

entity-kind “entity” may not be redeclared in the current scope

0756 QUALIFIER_IN_NAMESPACE_MEMBER_DECL

qualified name is not allowed in namespace member declaration
Green Hills Software, Inc. B-67

B. Error Messages
B-68 Green Hills C++ User’s Guide, v. 1.8.9

IndexIndex
A
Ada

C main() program 59
routine from C 76

ADaC 47
address types 76, 80
algebraic algorithmic optimization 114
algorithmic optimization 110, 114
alignment requirements 88
alternate returns 65, 72
anachronisms, acceptable 5
Annotated C++ Reference Manual, The 2
-ANSI 115
ANSI Standard C++ 2

limitations 4
argument passing

Ada and C 75
C and Ada 78
C and FORTRAN 61
FORTRAN and C 68

arithmetic
machine specific 92

ARM compliant C++ 2
array

new and delete enabled 36
types 76, 80

_ _ARRAY_OPERATORS 36
asm statement 37, 120
assembly code 37
assembly language interface 91
Atria, Inc. 25
automatic inlining 117
automatic instantiation 19, 25

B
bit fields 89
Bjarne Stroustrup 5
_BOOL 36
branch instruction 107
byte order 87

C
C++

alignment and size limitations 88
anachronisms 5

C main() program 58
data types 87
extensions 7
Green Hills 44
Green Hills with clearmake 25
header files 81
in C programs 82
language/library combinations

EC++ 44
ESTL 44
Standard C++ 44

language features 2
language levels 45
library levels 45
mangled string 40
memory optimization 95
namespaces 36
predefined symbols

_ _ARRAY_OPERATORS 36
_BOOL 36
_ _cfront 36
_ _c_plusplus 36
_ _EDG_IMPLICIT_USING_STD 36
_ _EMBEDDED_CXX 36
_ _EXCEPTION_HANDLING 36
__EXCEPTIONS 36
_ _ghs 36
_ _NAMESPACES 36
_ _PLACEMENT_DELETE 37
_ _RTTI 37
_ _STDC_ _ 37
_WCHAR_T 37

preprocessor information 36
utilities

decode 40
C++ Programming Language, Third Edition,

The 5, 53
#call 121
calling languages

Ada and C 76
C and Ada 74
C and FORTRAN 60, 66
FORTRAN and C 68

can_instantiate 22
cast, new-style 49
cerr 59, 83
.C file 18
Green Hills C++ User’s Guide, v. 1.8.9 I-1

Index
Cfront
2.1 2
3.0 2
compatibility mode 8, 10

_ _cfront 36
CHARACTER 61, 63, 70
character set dependencies 90
cin 59, 83
class 89

members A-2
template 16

ClearCase®, Atria Inc. 25
clearmake 25
clog 83
C main() program

Ada 59
C++ 58
FORTRAN 58
Pascal 58

command line driver options
EC++ 47
ESTL 47
Standard C++ 47

command line inlining 117
COMMON block 67, 73

naming conventions 68, 74
common subexpression elimination 104, 106
compilers

Green Hills 36, 86
memory size 96
optimizations 93

compile-time demand instantiation 25
COMPLEX 64, 71
COMPLEX*16 71
COMPLEX*8 71
conditional branch 103
constant folding 100
constant propagation 104, 109
constructors 39
constructors and destructors 83
cout 59, 83
_ _c_plusplus 36
_ _cplusplus 36
--create_pch 33
cross reference information 35
C routines 81

from Ada 74
from FORTRAN 60, 66

cumsecs 121
Cygnus 47

D
data type size 87
dead code elimination 104, 108
debuggers

source level 95
decode utility 40
demangled string 40
destination register 102
destructors 39
Dinkumware 47
division operators 93
do_not_instantiate 22
DOUBLE COMPLEX 64, 71
driver options 47

E
--e 47
EC++ (Embedded C++) 2, 47

getting started 52
language features 48
library features 49
limitations 49
more information

www.caravan.net/ec2plus 53
_ _EDG_IMPLICIT_USING_STD 36
--ee 47
--eel 47
--eele 47
--el 47
--ele 47
Ellis and Stroustrup 2
_ _EMBEDDED_CXX 36
error messages B-2
ESTL (Extended Standard Template

Libraries) 2, 50
getting started 52
language features 50
library features 51
limitations 51

evaluation order 91
_ _EXCEPTION_HANDLING 36
exception handling 36, 47, 49
_ _EXCEPTIONS 36
I-2 Green Hills C++ User’s Guide, v. 1.8.9

Index
explicit instantiation 26
extern 81

"C" A-2
directive 37

function and procedure naming 38

F
float.h header file 86
floating point range 91
FORTRAN

C main() program 58
COMMON 67, 73
COMMON block 67
naming conventions 66, 73
routine from C 68
type

CHARACTER 63, 70
COMPLEX 64, 71
COMPLEX*16 71
COMPLEX*8 71
DOUBLE COMPLEX 64, 71

VMS compatibility mode 67, 74

G
general optimizations 103
_ _ghs 36
global objects 40
Green Hills 47

C++ 44
C++ with clearmake 25
compiler 36
compiler compatibility 86
libraries 60

H
header files

C routines 81
.h file 18
Hitachi 47

I
I/O on single file in multiple languages 59
identifiers A-2

.ii file 20
illegal assumptions, compiler optimizations

implied register usage 94
memory allocation 94

#include directive 29
inefficient code

identifying with profiler 121
inlining 115, 117, 121

automatic inlining 117
command line inlining 117
limitations 120
manual inlining 117
optimization 110
optimization enhancements 119
single-pass and two pass 118
two-pass 119

input Pascal file 59
instantiate 22
instantiation

automatic 25
compile-time demand 25
explicit 26
pragma directives 22

instruction pipelining 112
interfacing Pascal and C 80
iostream 83

J
J16/WG21 Working Paper features 2

K
keyword

mutable 48
wchar_t 37

L
-language 56
language/library combinations 44
language executable 56
libraries

native UNIX vs. Green Hills 60
library 60

C++ 53
EC++ 49
Green Hills C++ User’s Guide, v. 1.8.9 I-3

Index
ESTL 51
initialization 57

limitations
alignment and size 88
ANSI Standard C++ mode 4
automatic instantiation 17
inlining 120
memory optimization 94

limits.h header file 86
linkage 37

specifications A-2
local scalar variables 101
loop

invariant analysis 110, 111
optimization 110, 121
rotation 103
unrolling 110, 112

M
machine-specific arithmetic 92
macro symbols

predefined symbols 36
_main module 83
manual inlining 117
memory optimization 110, 115

C++ 95
restrictions 94

memory size problems 96
mixed language executable 56
mon.out 121
ms/call 121
MULTI

starting EC++ or ESTL 52
multiple inheritance 49
multiple languages 59
mutable keyword 48

N
name 121
_ _NAMESPACES 36
namespaces 49

C++ 36
overview 27

naming conventions 73, 80
native UNIX libraries 60
NEC 47

new-style cast 49
nm utility program 40
--no_auto_instantiation 25, 26
non-local static objects 39
-nooverload 102

O
-O 95, 103, 115
-OA 110, 114
-OI 110, 115, 118
-OI= 118, 119
-OI=names 118
-OL 110, 113
-OLM 95
-OM 94, 104, 110, 115
-Onocse 106
-Onomemory 95, 115
-Onopeep 106
-Onounroll 110, 113
operating system dependencies 91
optimizations

advanced 96
compilers 93
default 100
inlining enhancements 119
loop invariant analysis 111
loop unrolling 112
specialized 110

order evaluation 91
-OS 110, 115
-OSL 115
-Ounroll8 110, 113
output Pascal file 59

P
-p 121
Pascal

C main() program 58
naming conventions 80
READ 81
WRITE 81

--pch 29, 33
--pch_dir 33, 34
PCH. See precompiled header. 29
peephole optimization 104, 106
pipeline instruction scheduling 104
I-4 Green Hills C++ User’s Guide, v. 1.8.9

Index
P.J. Plauger 50
_ _PLACEMENT_DELETE 37
placement delete 37
Plum Hall 47
pointer types 76, 80
post processing 39
pragmas 38

#pragma can_instantiate 39
#pragma do_not_instantiate 39
#pragma export 76
#pragma hdrstop 29, 39
#pragma import 74
#pragma instantiate 26, 39
#pragma no_pch 34, 39
#pragma once 39

precompiled headers 29
automatic processing 29
manual processing 33

limitations 33
overview 29
performance issues 34
#pragma 34
requirements 30

predefined symbols
C++ 36
_ _cplusplus 36

prof 121
profiler 121
prototypes for library functions 83

R
READ 81
recursive 107
register allocation by coloring 101
register allocator 112
register coalescing 102
register usage 94
resources

J16/WG21 Working Paper 2
The Annotated C++ Reference Manual

(ARM) 2
The C++ Programming Language, Third

Edition 5, 53
www.caravan.net/ec2plus 53
X3J16/WG21 Working Paper 27

restrictions

memory optimization 94
RETURN 65, 72
return types

alternate returns 65, 72
simple return types 62, 70

routines
Ada and C 76
C and Ada 74
C and FORTRAN 60, 66
FORTRAN and C 68

_ _RTTI 37
rtti 49
Runtime Type Identification code 37

S
-s 80, 81
scalable C++ 44
scalars 102
scalar variables 101
shift operators 93
single-pass inlining 118
size optimization 110
source level debuggers

problems 95
space optimization 115
Standard C++ 53

language features 53
more information

The C++ Programming Language,
Third Edition 53

static address elimination 104
static constructors and deconstructors 39
static constructors and destructors 83
static variables 104
--STD 47
--std 47
_ _STDC_ _ 37
stderr 59
stdin 59
--stdl 47
--stdle 47
stdout 59
straightline code 112
strength reduction 110, 111
string types 76, 80
Stroustrup, Bjarne 5, 53
Green Hills C++ User’s Guide, v. 1.8.9 I-5

Index
symbol naming 66, 73

T
tail recursion 104, 107
-tall 22
templates 49

automatic instantiation 17
code 25
implicit inclusion 24
instantiation 16
instantiation modes 21

-tall 22
-tlocal 22
-tnone 21
-tused 21

#pragma 22
specialization 21

termination test 103
The Annotated C++ Reference Manual

(ARM) 2
The C++ Programming Language, Third

Edition 5
The Draft Standard C++ Library 50
%time 121
-tlocal 22
-tnone 21, 26
Tornado environment 47
Toshiba 47
-tused 21, 25
two-pass inlining 118, 119
types

array and string 76, 80
data 87
pointer and address 76, 80

U
-U 73
unions 89
URL

www.caravan.net/ec2plus 53
--use_pch 33
utilities for C++ 40

V
values

representable range 86
variable allocation 96
virtual base classes 49
volatile keyword 95, 115
VxWorks environment 47

W
_WCHAR_T 37
wchar_t keyword 37, 47
Wind River environment 47
word size 86
WRITE 81
www.caravan.net/ec2plus 53

X
-X915 114
-Xappunderscore 80
-Xnocasesensitivity 80
--xref 35
-Xtwounderscore 67, 74
-Xvmscommonname 67, 73

Z
-Z608 67, 74
I-6 Green Hills C++ User’s Guide, v. 1.8.9

	Green Hills C++ User’s Guide
	Contents
	Preface
	About this Manual
	Typographical Conventions

	1 C++ Language Features
	Introduction
	Accepted Anachronisms
	Extensions Accepted in Normal C++ Mode
	Extensions Accepted in Cfront 2.1 Compatibility Mode
	Cfront Compatibility Mode Extensions

	Template Instantiation
	Automatic Instantiation
	Instantiation Modes
	Instantiation #pragma Directives
	Implicit Inclusion

	Using clearmake with Green Hills C++
	Automatic Instantiation
	Compile-Time Demand Instantiation
	Explicit Instantiation

	Namespace Support
	Precompiled Headers
	Automatic PCH Processing
	Manual PCH Processing
	Other Ways to Control PCH’s
	Performance Issues

	Cross Reference Information
	Preprocessor
	Predefined C++ Symbols

	asm Statement
	Linkage
	Pragmas
	Post Processing in C++
	C++ Utilities
	decode

	2 EC++/ESTL Features
	How to Effectively Use GHS C++
	C++ in the Wind River VxWorks/Tornado Environment
	Command line driver options:

	Introduction to EC++
	What is EC++?
	EC++ Library Features

	Introduction to ESTL
	What is ESTL?
	ESTL Library Features

	Getting Started with EC++ and ESTL
	Standard C++
	Features
	Additional Information

	3 Mixing Languages
	How the Driver Builds a Mixed Language Executable
	The -language Option
	Examples:

	Initialization of Libraries
	A C main() Program for C++
	A C main() Program for FORTRAN
	A C main() Program for Pascal
	A C main() Program for Ada

	Performing I/O on a Single File in Multiple Languages
	Native UNIX Libraries versus Green Hills Libraries
	Calling a C Routine from FORTRAN
	Argument Passing
	Return Types
	Simple Return Types
	CHARACTER
	COMPLEX and DOUBLE COMPLEX
	Alternate Returns

	Symbol Naming Conventions
	Calling C Routines From FORTRAN
	COMMON Blocks

	Calling a FORTRAN Routine from C
	Argument Passing
	Return Types
	Simple Return Types
	CHARACTER
	COMPLEX, COMPLEX*8, DOUBLE COMPLEX, COMPLEX*16
	Alternate Returns

	Symbol Naming Conventions
	COMMON Blocks

	Calling a C Routine from Ada
	Pragma Import
	Argument Passing
	Array and String Types
	Pointers and Address Types

	Calling an Ada Routine from C
	Pragma Export
	Argument Passing
	Array and String Types
	Pointers and Address Types

	Interfacing Pascal and C
	Naming Conventions
	Redefining WRITE or READ

	C Routines and Header Files In C++
	Using C++ in C Programs
	Function Prototyping in C versus C++

	4 Writing Portable Code
	Compatibility Between Green Hills Compilers
	Word Size Differences
	Range of Representable Values
	Relative Sizes of Data Types

	Byte Order Problems
	Alignment Requirements
	Classes and Bit Fields
	Unions
	Classes
	Bit Fields

	Character Set Dependencies
	Floating Point Range and Accuracy
	Operating System Dependencies
	Assembly Language Interfaces
	Evaluation Order
	Machine-Specific Arithmetic
	Shift
	Division

	Illegal Assumptions about Compiler Optimizations
	Implied Register Usage
	Memory Allocation Assumptions

	Memory Optimization Restrictions
	Memory Optimization in C++

	Problems with Source Level Debuggers
	Variable Allocation
	Advanced Optimizations

	Problems with Compiler Memory Size

	5 Optimization
	Default Optimizations
	Constant Folding
	Register Allocation by Coloring
	Examples:
	Register Coalescing
	Examples:
	Loop Rotation
	Examples:

	General Optimizations Enabled with the -O Option
	Static Address Elimination
	Examples:
	Peephole Optimization
	Examples:
	Common Subexpression Elimination
	Examples:
	Tail Recursion
	Examples:
	Dead Code Elimination
	Examples:
	Constant Propagation
	Examples:

	Specialized Optimizations Set with the Suboptions -OLAMIS
	Loop Optimization with -OL
	Strength Reduction

	Examples:
	Loop Invariant Analysis

	Examples:
	Loop Unrolling

	Examples:
	Algorithmic Optimization with -OA
	Algebraic Algorithmic Optimization

	Memory Optimization with -OM
	Space Optimization with -OS
	Inlining with -OI
	Examples:
	Using the Inliner
	Selecting Functions to be Inlined
	Single-Pass and Two-Pass Inlining
	Using the Command Line Options
	Two-Pass Inlining Implementation
	Inlining Optimization Enhancements
	Inlining Limitations

	Selecting Optimizations

	A Implementation Notes
	Identifiers
	Linkage Specifications
	Class Members

	B Error Messages
	0001 last_line_incomplete
	0002 last_line_backslash
	0003 include_recursion
	0004 out_of_memory
	0005 source_file_could_not_be_opened
	0006 comment_unclosed_at_eof
	0007 bad_token
	0008 unclosed_string
	0009 nested_comment
	0010 bad_use_of_sharp
	0011 bad_pp_directive_keyword
	0012 end_of_flush
	0013 exp_file_name
	0014 extra_text_in_pp_directive
	0015 source_file_has_bad_format
	0016 illegal_source_file_name
	0017 exp_rbracket
	0018 exp_rparen
	0019 extra_chars_on_number
	0020 undefined_identifier
	0021 useless_type_qualifiers
	0022 bad_hex_digit
	0023 integer_too_large
	0024 bad_octal_digit
	0025 zero_length_string
	0026 too_many_characters
	0027 bad_character_value
	0028 expr_not_constant
	0029 exp_primary_expr
	0030 bad_float_value
	0031 expr_not_integral
	0032 expr_not_arithmetic
	0033 exp_line_number
	0034 bad_line_number
	0035 error_directive
	0036 missing_pp_if
	0037 missing_endif
	0038 pp_else_already_appeared
	0039 divide_by_zero
	0040 exp_identifier
	0041 expr_not_scalar
	0042 incompatible_operands
	0044 expr_not_pointer
	0045 cannot_undef_predef_macro
	0046 cannot_redef_predef_macro
	0047 bad_macro_redef
	0048 mixed_function_object_pointers
	0049 duplicate_macro_param_name
	0050 paste_cannot_be_first
	0051 paste_cannot_be_last
	0052 exp_macro_param
	0053 exp_colon
	0054 too_few_macro_args
	0055 too_many_macro_args
	0056 sizeof_function
	0057 bad_constant_operator
	0058 bad_pp_operator
	0059 bad_constant_function_call
	0060 bad_integral_operator
	0061 integer_overflow
	0062 negative_shift_count
	0063 shift_count_too_large
	0064 useless_decl
	0065 exp_semicolon
	0066 enum_value_out_of_int_range
	0067 exp_rbrace
	0068 integer_sign_change
	0069 integer_truncated
	0070 incomplete_type_not_allowed
	0071 sizeof_bit_field
	0075 bad_indirection_operand
	0076 empty_macro_argument
	0077 missing_decl_specifiers
	0078 initializer_in_param
	0079 exp_type_specifier
	0080 storage_class_not_allowed
	0081 mult_storage_classes
	0082 storage_class_not_first
	0083 dupl_type_qualifier
	0084 bad_combination_of_type_specifiers
	0085 bad_param_storage_class
	0086 bad_function_storage_class
	0087 type_specifier_not_allowed
	0088 array_of_function
	0089 array_of_void
	0090 function_returning_function
	0091 function_returning_array
	0092 param_id_list_needs_function_def
	0093 function_type_must_come_from_declarator
	0094 array_size_must_be_positive
	0095 array_size_too_large
	0096 empty_translation_unit
	0097 bad_function_return_type
	0098 bad_array_element_type
	0099 decl_should_be_of_param
	0100 dupl_param_name
	0101 i d_already_declared
	0102 nonstd_forward_def_enum
	0103 class_too_large
	0104 struct_too_large
	0105 bad_bit_field_size
	0106 bad_bit_field_type
	0107 zero_length_bit_field_must_be_unnamed
	0108 signed_one_bit_field
	0109 expr_not_ptr_to_function
	0110 exp_definition_of_tag
	0111 code_is_unreachable
	0112 exp_while
	0113 nonstd_default_arg
	0114 never_defined
	0115 continue_must_be_in_loop
	0116 break_must_be_in_loop_or_switch
	0117 no_value_returned_in_non_void_function
	0118 value_returned_in_void_function
	0119 cast_to_bad_type
	0120 bad_return_value_type
	0121 case_label_must_be_in_switch
	0122 default_label_must_be_in_switch
	0123 case_label_appears_more_than_once
	0124 default_label_appears_more_than_once
	0125 exp_lparen
	0126 expr_not_an_lvalue
	0127 exp_statement
	0128 loop_not_reachable
	0129 block_scope_function_must_be_extern
	0130 exp_lbrace
	0131 expr_not_ptr_to_class
	0132 expr_not_ptr_to_struct_or_union
	0133 exp_member_name
	0134 exp_field_name
	0135 not_a_member
	0136 not_a_field
	0137 expr_not_a_modifiable_lvalue
	0138 address_of_register_variable
	0139 address_of_bit_field
	0140 too_many_arguments
	0141 all_proto_params_must_be_named
	0142 expr_not_pointer_to_object
	0143 program_too_large
	0144 bad_initializer_type
	0145 cannot_initialize
	0146 too_many_initializer_values
	0147 not_compatible_with_previous_decl
	0148 already_initialized
	0149 bad_file_scope_storage_class
	0150 type_cannot_be_param_name
	0151 typedef_cannot_be_param_name
	0152 non_zero_int_conv_to_pointer
	0153 expr_not_class
	0154 expr_not_struct_or_union
	0155 old_fashioned_assignment_operator
	0156 old_fashioned_initializer
	0157 expr_not_integral_constant
	0158 expr_not_an_lvalue_or_function_designator
	0159 decl_incompatible_with_previous_use
	0160 external_name_clash
	0161 unrecognized_pragma
	0163 cannot_open_temp_file
	0164 temp_file_dir_name_too_long
	0165 too_few_arguments
	0166 bad_float_constant
	0167 incompatible_param
	0168 function_type_not_allowed
	0169 exp_declaration
	0170 pointer_outside_base_object
	0171 bad_cast
	0172 linkage_conflict
	0173 float_to_integer_conversion
	0174 expr_has_no_effect
	0175 subscript_out_of_range
	0177 declared_but_not_referenced
	0178 pcc_address_of_array
	0179 mod_by_zero
	0180 old_style_incompatible_param
	0181 printf_arg_mismatch
	0182 empty_include_search_path
	0183 cast_not_integral
	0184 cast_not_scalar
	0185 initialization_not_reachable
	0186 unsigned_compare_with_zero
	0187 assign_where_compare_meant
	0188 mixed_enum_type
	0189 file_write_error
	0190 bad_il_file
	0191 cast_to_qualified_type
	0192 unrecognized_char_escape
	0193 undefined_preproc_id
	0194 exp_asm_string
	0195 asm_func_must_be_prototyped
	0196 bad_asm_func_ellipsis
	0219 file_delete_error
	0220 integer_to_float_conversion
	0221 float_to_float_conversion
	0222 bad_float_operation_result
	0223 implicit_func_decl
	0224 too_few_printf_args
	0225 too_many_printf_args
	0226 bad_printf_format_string
	0227 macro_recursion
	0228 nonstd_extra_comma
	0229 enum_bit_field_too_small
	0230 nonstd_bit_field_type
	0231 decl_in_prototype_scope
	0232 decl_of_void_ignored
	0233 old_fashioned_field_selection
	0234 old_fashioned_ptr_field_selection
	0235 var_retained_incomp_type
	0236 boolean_controlling_expr_is_constant
	0237 switch_selector_expr_is_constant
	0238 bad_param_specifier
	0239 bad_specifier_outside_class_decl
	0240 dupl_decl_specifier
	0241 base_class_not_allowed_for_union
	0242 access_already_specified
	0243 missing_class_definition
	0244 name_not_member_of_class_or_base_classes
	0245 member_ref_requires_object
	0246 nonstatic_member_def_not_allowed
	0247 already_defined
	0248 pointer_to_reference
	0249 reference_to_reference
	0250 reference_to_void
	0251 array_of_reference
	0252 missing_initializer_on_reference
	0253 exp_comma
	0254 type_identifier_not_allowed
	0255 type_definition_not_allowed
	0256 bad_type_name_redeclaration
	0257 missing_initializer_on_const
	0258 this_used_incorrectly
	0259 constant_value_not_known
	0260 missing_type_specifier
	0261 missing_access_specifier
	0262 not_a_class_or_struct_name
	0263 dupl_base_class_name
	0264 bad_base_class
	0265 no_access_to_name
	0266 ambiguous_name
	0267 old_style_parameter_list
	0268 declaration_after_statements
	0269 inaccessible_base_class
	0274 improperly_terminated_macro_call
	0276 id_must_be_class_or_namespace_name
	0277 bad_friend_decl
	0278 value_returned_in_constructor
	0279 bad_destructor_decl
	0280 class_and_member_name_conflict
	0281 global_qualifier_not_allowed
	0282 name_not_found_in_file_scope
	0283 qualified_name_not_allowed
	0284 null_reference
	0285 brace_initialization_not_allowed
	0286 ambiguous_base_class
	0287 ambiguous_derived_class
	0288 derived_class_from_virtual_base
	0289 no_matching_constructor
	0290 ambiguous_copy_constructor
	0291 no_default_constructor
	0292 not_a_field_or_base_class
	0293 indirect_nonvirtual_base_class_not_allowed
	0294 bad_union_field
	0295 overloaded_function_types_too_similar
	0296 bad_rvalue_array
	0297 exp_operator
	0298 inherited_member_not_allowed
	0299 indeterminate_overloaded_function
	0300 bound_function_must_be_called
	0301 duplicate_typedef
	0302 function_redefinition
	0303 overloaded_function_incompatible_type
	0304 no_matching_function
	0305 type_def_not_allowed_in_func_type_decl
	0306 default_arg_not_at_end
	0307 default_arg_already_defined
	0308 ambiguous_overloaded_function
	0309 ambiguous_constructor
	0310 bad_default_arg_type
	0311 return_type_cannot_distinguish_functions
	0312 no_user_defined_conversion
	0313 function_qualifier_not_allowed
	0314 virtual_static_not_allowed
	0315 unqual_function_with_qual_object
	0316 too_many_virtual_functions
	0317 bad_return_type_on_virtual_function_override
	0318 ambiguous_virtual_function_override
	0319 pure_specifier_on_nonvirtual_function
	0320 bad_pure_specifier
	0321 bad_data_member_initialization
	0322 abstract_class_object_not_allowed
	0323 function_returning_abstract_class
	0324 duplicate_friend_decl
	0325 inline_and_nonfunction
	0326 inline_not_allowed
	0327 bad_storage_class_with_inline
	0328 bad_member_storage_class
	0329 local_class_function_def_missing
	0330 inaccessible_special_function
	0332 missing_const_copy_constructor
	0333 definition_of_implicitly_declared_function
	0334 no_suitable_copy_constructor
	0335 linkage_specifier_not_allowed
	0336 bad_linkage_specifier
	0337 incompatible_linkage_specifier
	0338 overloaded_function_linkage
	0339 ambiguous_default_constructor
	0340 temp_used_for_ref_init
	0341 nonmember_operator_not_allowed
	0342 static_member_operator_not_allowed
	0343 too_many_args_for_conversion
	0344 too_many_args_for_operator
	0345 too_few_args_for_operator
	0346 no_args_with_class_type
	0347 default_arg_expr_not_allowed
	0348 ambiguous_user_defined_conversion
	0349 no_matching_operator_function
	0350 ambiguous_operator_function
	0351 bad_arg_type_for_operator_new
	0352 bad_return_type_for_op_new
	0353 bad_return_type_for_op_delete
	0354 bad_first_arg_type_for_operator_delete
	0355 bad_second_arg_type_for_operator_delete
	0356 type_must_be_object_type
	0357 base_class_already_initialized
	0358 base_class_init_anachronism
	0359 member_already_initialized
	0360 missing_base_class_or_member_name
	0361 assignment_to_this
	0362 overload_anachronism
	0363 anon_union_member_access
	0364 anon_union_member_function
	0365 anon_union_storage_class
	0366 missing_initializer_on_fields
	0367 cannot_initialize_fields
	0368 no_ctor_but_const_or_ref_member
	0369 var_with_uninitialized_member
	0370 var_with_uninitialized_field
	0371 missing_const_assignment_operator
	0372 no_suitable_assignment_operator
	0373 ambiguous_assignment_operator
	0374 const_volatile_not_allowed
	0375 missing_typedef_name
	0377 virtual_not_allowed
	0378 static_not_allowed
	0379 bound_function_cast_anachronism
	0380 expr_not_ptr_to_member
	0381 extra_semicolon
	0382 nonstd_const_member
	0384 no_matching_new_function
	0385 delete_already_declared
	0386 no_match_for_addr_of_overloaded_function
	0387 delete_count_anachronism
	0388 bad_return_type_for_op_arrow
	0389 cast_to_abstract_class
	0390 bad_use_of_main
	0391 initializer_not_allowed_on_array_new
	0392 member_function_redecl_outside_class
	0393 ptr_to_incomplete_class_type_not_allowed
	0394 ref_to_nested_function_var
	0395 single_arg_postfix_incr_decr_anachronism
	0397 bad_default_assignment
	0398 nonstd_array_cast
	0399 class_with_op_new_but_no_op_delete
	0400 class_with_op_delete_but_no_op_new
	0401 base_class_with_nonvirtual_dtor
	0402 no_access_to_constructors
	0403 member_function_redeclaration
	0404 inline_main
	0405 class_and_member_function_name_conflict
	0406 nested_class_anachronism
	0407 too_many_params_for_destructor
	0408 bad_constructor_param
	0409 incomplete_function_return_type
	0410 protected_access_problem
	0411 param_not_allowed
	0412 asm_decl_not_allowed
	0413 no_conversion_function
	0414 delete_of_incomplete_class
	0415 no_constructor_for_conversion
	0416 ambiguous_constructor_for_conversion
	0417 ambiguous_conversion_function
	0418 ambiguous_conversion_to_builtin
	0424 addr_of_constructor_or_destructor
	0425 dollar_used_in_identifier
	0426 nonconst_ref_init_anachronism
	0427 qualifier_in_member_declaration
	0428 mixed_enum_type_anachronism
	0429 new_array_size_must_be_nonnegative
	0430 return_ref_init_requires_temp
	0431 cfront_nonconst_ref_init
	0432 enum_not_allowed
	0433 qualifier_dropped_in_ref_init
	0434 bad_nonconst_ref_init
	0435 delete_of_function_pointer
	0436 bad_conversion_function_decl
	0437 bad_template_declaration_scope
	0438 exp_lt
	0439 exp_gt
	0440 missing_template_param
	0441 missing_template_arg_list
	0442 too_few_template_args
	0443 too_many_template_args
	0444 not_a_type_arg
	0445 not_used_in_template_function_params
	0446 cfront_multiple_nested_types
	0447 cfront_global_defined_after_nested_type
	0449 ambiguous_ptr_to_overloaded_function
	0450 nonstd_long_long
	0451 nonstd_friend_decl
	0452 return_type_on_conversion_function
	0456 runaway_recursive_instantiation
	0457 bad_template_declaration
	0458 bad_nontype_template_arg
	0459 init_needing_temp_not_allowed
	0460 decl_hides_function_parameter
	0461 nonconst_ref_init_from_rvalue
	0463 template_not_allowed
	0464 not_a_class_template
	0466 function_template_named_main
	0467 union_nonunion_mismatch
	0468 local_type_in_template_arg
	0469 tag_kind_incompatible_with_declaration
	0470 name_not_tag_in_file_scope
	0471 not_a_tag_member
	0472 ptr_to_member_typedef
	0473 bad_use_of_member_function_typedef
	0475 nonexternal_entity_in_template_arg
	0476 id_must_be_class_or_type_name
	0477 destructor_name_mismatch
	0478 destructor_type_mismatch
	0479 called_function_redeclared_inline
	0480 vacuous_destructor_name_mismatch
	0481 bad_storage_class_on_template_decl
	0482 no_access_to_type_cfront_mode
	0483 return_type_not_allowed
	0484 invalid_instantiation_pragma_argument
	0485 not_instantiatable_entity
	0486 compiler_generated_function_cannot_be_instantiated
	0487 inline_function_cannot_be_instantiated
	0488 pure_virtual_function_cannot_be_instantiated
	0489 instantiation_requested_no_definition_supplied
	0490 instantiation_requested_and_specific_definition
	0491 no_constructor
	0492 template_param_only_used_in_default_args
	0493 no_match_for_type_of_overloaded_function
	0494 nonstd_void_param_list
	0495 cfront_name_lookup_bug
	0496 redeclaration_of_template_param_name
	0497 decl_hides_template_parameter
	0498 must_be_prototype_instantiation
	0499 conversion_to_type_not_allowed
	0500 bad_extra_arg_for_postfix_operator
	0501 function_type_required
	0502 operator_name_not_allowed
	0503 specific_def_must_be_global
	0504 nonstd_member_function_address
	0505 too_few_template_params
	0506 too_many_template_params
	0507 template_operator_delete
	0508 class_template_same_name_as_templ_param
	0509 bad_constructor_name
	0510 unnamed_type_in_template_arg
	0511 enum_type_not_allowed
	0512 qualified_reference_type
	0513 incompatible_assignment_operands
	0514 unsigned_compare_with_negative
	0515 converting_to_incomplete_class
	0516 missing_initializer_on_unnamed_const
	0517 unnamed_object_with_uninitialized_field
	0518 nonstd_pp_directive
	0519 unexpected_template_arg_list
	0520 missing_initializer_list
	0521 incompatible_ptr_to_member_selection_operands
	0522 self_friendship
	0523 period_used_as_qualifier
	0524 const_function_anachronism
	0525 dependent_stmt_is_declaration
	0526 void_param_not_allowed
	0529 bad_templ_arg_expr_operator
	0530 missing_handler
	0531 missing_exception_declaration
	0532 masked_by_default_handler
	0533 masked_by_handler
	0534 local_type_used_in_exception
	0535 redundant_exception_specification_type
	0536 incompatible_exception_specification
	0537 previous_exception_specification_was_empty
	0538 omitted_in_previous_exception_specification
	0539 included_in_previous_exception_specification
	0540 no_exception_support
	0541 omitted_exception_specification
	0542 cannot_create_instantiation_information_file
	0543 non_arith_operation_in_templ_arg
	0544 local_type_in_nonlocal_var
	0545 local_type_in_function
	0546 branch_past_initialization
	0548 branch_into_handler
	0549 used_before_set
	0550 set_but_not_used
	0551 bad_scope_for_definition
	0552 exception_specification_not_allowed
	0553 template_and_instance_linkage_conflict
	0554 conversion_function_not_usable
	0555 tag_kind_incompatible_with_template_parameter
	0556 template_operator_new
	0558 bad_member_type_in_ptr_to_member
	0559 ellipsis_on_operator_function
	0560 unimplemented_keyword
	0561 cl_invalid_macro_definition
	0562 cl_invalid_macro_undefinition
	0563 cl_invalid_preprocessor_output_file
	0564 cl_cannot_open_preprocessor_output_file
	0565 cl_il_file_must_be_specified
	0566 cl_invalid_il_output_file
	0567 cl_cannot_open_il_output_file
	0568 cl_invalid_C_output_file
	0569 cl_cannot_open_C_output_file
	0570 cl_error_in_debug_option_argument
	0571 cl_invalid_option
	0572 cl_back_end_requires_il_file
	0573 cl_could_not_open_il_file
	0574 cl_invalid_number
	0575 cl_incorrect_host_id
	0576 cl_invalid_instantiation_mode
	0578 cl_invalid_error_limit
	0579 cl_invalid_raw_listing_output_file
	0580 cl_cannot_open_raw_listing_output_file
	0581 cl_invalid_xref_output_file
	0582 cl_cannot_open_xref_output_file
	0583 cl_invalid_error_output_file
	0584 cl_cannot_open_error_output_file
	0585 cl_vtbl_option_only_in_cplusplus
	0586 cl_anachronism_option_only_in_cplusplus
	0587 cl_instantiation_option_only_in_cplusplus
	0588 cl_auto_instantiation_option_only_in_cplusplus
	0589 cl_implicit_inclusion_option_only_in_cplusplus
	0590 cl_exceptions_option_only_in_cplusplus
	0591 cl_strict_ansi_incompatible_with_pcc
	0592 cl_strict_ansi_incompatible_with_cfront
	0593 cl_missing_source_file_name
	0594 cl_output_file_incompatible_with_multiple_inputs
	0595 cl_too_many_arguments
	0596 cl_no_output_file_needed
	0597 cl_il_display_requires_il_file_name
	0598 void_template_parameter
	0599 too_many_unused_instantiations
	0600 cl_strict_ansi_incompatible_with_anachronisms
	0601 void_throw
	0602 cl_tim_local_conflicts_with_auto_instantiation
	0603 abstract_class_param_type
	0604 array_of_abstract_class
	0605 float_template_parameter
	0606 pragma_must_precede_declaration
	0607 pragma_must_precede_statement
	0608 pragma_must_precede_decl_or_stmt
	0609 pragma_may_not_be_used_here
	0610 nonoverriding_function_decl
	0611 partial_override
	0612 specialization_of_called_inline_template_function
	0613 cl_invalid_error_tag
	0614 cl_invalid_error_number
	0615 param_type_ptr_to_array_of_unknown_bound
	0616 param_type_ref_array_of_unknown_bound
	0617 ptr_to_member_cast_to_ptr_to_function
	0618 no_named_fields
	0619 nonstd_unnamed_field
	0620 nonstd_unnamed_member
	0621 function_type_in_template_arg
	0622 cl_invalid_pch_output_file
	0623 cl_cannot_open_pch_output_file
	0624 not_a_type_name
	0625 cl_cannot_open_pch_input_file
	0626 invalid_pch_file
	0627 pch_curr_directory_changed
	0628 pch_header_files_have_changed
	0629 pch_cmd_line_option_mismatch
	0630 pch_file_prefix_mismatch
	0631 unable_to_get_mapped_memory
	0632 using_pch
	0633 creating_pch
	0634 memory_mismatch
	0635 cl_invalid_pch_size
	0636 cl_pch_must_be_first
	0637 out_of_memory_during_pch_allocation
	0638 cl_pch_incompatible_with_multiple_inputs
	0639 not_enough_preallocated_memory
	0640 program_entity_too_large_for_pch
	0641 cannot_chdir
	0642 cannot_build_temp_file_name
	0643 restrict_not_allowed
	0644 restrict_pointer_to_function
	0645 bad_declspec_modifier
	0646 calling_convention_not_allowed
	0647 conflicting_calling_conventions
	0648 cl_strict_ansi_incompatible_with_microsoft
	0649 cl_cfront_incompatible_with_microsoft
	0650 calling_convention_ignored
	0651 calling_convention_may_not_precede_nested_declarator
	0652 calling_convention_ignored_for_type
	0653 calling_convention_not_allowed_for_type
	0654 decl_modifiers_incompatible_with_previous_decl
	0655 decl_modifiers_invalid_for_this_decl
	0656 branch_into_try_block
	0657 incompatible_inline_specifier_on_specific_decl
	0658 template_missing_closing_brace
	0659 cl_wchar_t_option_only_in_cplusplus
	0660 bad_pack_alignment
	0661 exp_int_constant
	0662 call_of_pure_virtual
	0663 bad_ident_string
	0665 asm_not_allowed
	0666 bad_asm_function_def
	0667 nonstd_asm_function
	0668 nonstd_ellipsis_only_param
	0669 nonstd_address_of_ellipsis
	0670 bad_address_of_ellipsis
	0671 cl_alternative_token_option_only_in_cplusplus
	0672 const_volatile_ref_init_anachronism
	0673 bad_const_volatile_ref_init
	0674 const_volatile_ref_init_from_rvalue
	0675 cl_SVR4_C_option_only_in_ansi_C
	0676 using_out_of_scope_declaration
	0677 cl_strict_ansi_incompatible_with_SVR4
	0678 cannot_inline_call
	0679 cannot_inline
	0680 cl_invalid_pch_directory
	0681 exp_except_or_finally
	0682 leave_must_be_in_try
	0688 not_found_on_pack_alignment_stack
	0689 empty_pack_alignment_stack
	0690 cl_rtti_option_only_in_cplusplus
	0691 inaccessible_elided_cctor
	0692 uncallable_elided_cctor
	0693 typeid_needs_typeinfo
	0694 cannot_cast_away_const
	0695 bad_dynamic_cast_type
	0696 bad_ptr_dynamic_cast_operand
	0697 bad_ref_dynamic_cast_operand
	0698 dynamic_cast_operand_must_be_polymorphic
	0699 cl_bool_option_only_in_cplusplus
	0700 bad_storage_class_on_condition_decl
	0701 array_type_not_allowed
	0702 exp_assign
	0703 exp_declarator_in_condition_decl
	0704 redeclaration_of_condition_decl_name
	0705 default_template_arg_not_allowed
	0706 exp_comma_or_gt
	0707 missing_template_param_list
	0708 incr_of_bool_deprecated
	0709 bool_type_not_allowed
	0710 base_class_offset_too_large
	0711 expr_not_bool
	0712 cl_array_new_and_delete_option_only_in_cplusplus
	0713 based_requires_variable_name
	0714 based_not_allowed_here
	0715 based_not_followed_by_star
	0716 based_var_must_be_ptr
	0717 bad_const_cast_type
	0718 bad_const_cast
	0719 mutable_not_allowed
	0720 cannot_change_access
	0721 nonstd_printf_format_string
	0722 probable_inadvertent_lbracket_digraph
	0723 probable_inadvertent_sharp_digraph
	0724 namespace_def_not_allowed
	0725 missing_namespace_name
	0726 namespace_alias_def_not_allowed
	0727 namespace_qualified_name_required
	0728 namespace_name_not_allowed
	0729 bad_combination_of_dll_attributes
	0730 sym_not_a_class_template
	0731 array_of_incomplete_type
	0732 allocation_operator_in_namespace
	0733 deallocation_operator_in_namespace
	0734 conflicts_with_using_decl
	0735 using_decl_conflicts_with_prev_decl
	0736 cl_namespaces_option_only_in_cplusplus
	0737 useless_using_declaration
	0738 class_qualified_name_required
	0739 argument_list_types_add_on
	0740 operand_types_add_on
	0741 using_declaration_ignored
	0742 not_an_actual_member
	0743 nonstd_global_qualifier_on_friend_decl
	0744 mem_attrib_incompatible
	0745 mem_attrib_ignored
	0746 mem_attrib_may_not_precede_nested_declarator
	0747 dupl_mem_attrib
	0748 dupl_calling_convention
	0749 type_qualifier_not_allowed
	0750 template_instance_already_used
	0751 static_nonstatic_with_same_param_types
	0752 no_prior_declaration
	0753 template_id_not_allowed
	0754 class_qualified_name_not_allowed
	0755 bad_scope_for_redeclaration
	0756 qualifier_in_namespace_member_decl

	Index

