Embedded MCore
Development Guide

..u|||||||HH|MW“|||||||...

Green Hills

*SOFTWARE.INC. -

MULTI 2000 Release

UNIX" windows’

Copyright © 1983-1999 by Green Hills Software, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission from Green Hills Software, Inc.

DISCLAIMER

GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software, Inc.

reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation
of Green Hills Software, Inc. to notify any person of such revision or changes.

Green Hills Software and the Green Hills logo are trademarks, and MULTI is a registered trademark, of Green Hills
Software, Inc.

System V is a trademark of AT&T.

Sun is a trademark of Sun Microsystems, Inc.

UNIX and Open Look are registered trademarks of UNIX System Laboratories.

ColdFire is a registered trademark of Motorola, Inc.

DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.

4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.

X and X Window System are trademarks of the Massachusetts Institute of Technology.

Motif is a trademark of Open Software Foundation, Inc.

Microsoft is a registered trademark, and Windows, Windows 95, and Windows NT are trademarks of Microsoft
Corporation.

All other trademarks or registered trademarks are property of their respective companies.

Revision History

Revision Release Date | Location of Revision(s)

PubID: D13B-11299-89NG
Timestamp:December 10, 1999 10:34 am
Embedded MCore Devel opment Guide

CONTENTS

Preface

About this Manual
Typographical Conventions
What This Manual Covers

Introduction
Components of the Tool set

Building An Executable Program

How to Build a Program for Use with the MULTI Debugger
The Compiler Driver

How to Build a C Executable Program

How to Build a C++ Executable Program

How to Build Programs with C and C++ Modules

The Toolset

How to Compile and Link an Executable Program
Green Hills MCore Cross Compilers

The MCore Macro Assembler, asmcore

Object Module Librarian, ax

The MCore Linker, elxr

Header Files

Support Routines and Libraries

Debugging and Running the Program

The MCore Processor
MCore Characteristics
Compiler Output Format
Register Usage

Structure Packing

P-1
P-1
P-2
P-2

10
11
13

15
16
19
19
20
20
20
21
22

23
24
25
25
26

Green Hills Software Inc.

CONTENTS

Cdlling Conventions 27
Interrupt Processing in C and C++ 29
Embedded Features 31
Program Sections 32
Putting Datainto ROM 32
Reducing Program Size 34
Using Linker Switches 35
Producing S-Record Output 35
Multiple-Section Programs 36
Renaming Text Sections 37
Japanese Automotive C 38
Debug Formatting 41
Basic Debug Formatting Information 42
Benefits of .dbo Files 42
Backwards Compatibility 42
How to Use DWARF 43
Controlling Generation of the .dnm File 43
ELF Files 45
Rel ocatable and Executabl e File Organization 46
32-bit ELF Data Types 47
ELF Header 47
ELF Identification 50
Sections 52
Symbol Tables 59
String Tables 62
Program Headers 63

Embedded MCore Development Guide

CONTENTS

8 Compiler Driver Options 65
M Core-Specific Options 66
Driver Options Specific to the Assembler 66
Library Options 66
Driver Options Specific to the ELXR Linker 67
Genera Options 68
Data Allocation Options 73
Debugging Options 75
Optimization Options 76
Run-time Error Checking Options 87
Ada Compiler Options 88
C Preprocessor Options 89
C and C++ Preprocessor Options 89
C Compiler Options 20
C++ Compiler Options 95
FORTRAN Language Compiler Options 109
9 Macro Assembler 119
Macro Assembler Characteristics 120
Command Line Options 120
Using the Driver 122
Macro Assembler Syntax 123
Expressions 127
Labels 129
10 Macro Assembler Directives 131
Listing of Macro Assembler Directives 132
Characteristics of Specific Directives 134

Green Hills Software Inc.

CONTENTS

11 MCore Macro Assembler Reference 145
Register Set 146
Addressing Modes 147
Macro Expansion 151
Alphabetical List of MCore Instructions 152
12 The Librarian 157
Description 158
Command Line Options 158
Examples 160
13 The ELXR Linker 161
Command Line Options 162
Program Entry Point 163
Section and Memory Maps 164
Expressions 165
Section Attributes 166
Green Hills Specific Linker Features 168
Porting Guide from other linkers 170
14 Utility Programs 171
The gcompare Utility Program 172
The gdump Utility Program 175
The dfile Utility Program 177
The gfunsize Utility Program 178
The ghexfile Utility Program 179
The ghide Utility Program 182
The gmemfile Utility Program 183
The gnm Utility Program 184
The grun Utility Program 187
4 Embedded MCore Development Guide

CONTENTS

The gsize Utility Program 189
The gsrec Utility Program 190
The gstack Utility Program 196
The gstrip Utility Program 197
The gsymdump Utility Program 198
The gtune Utility Program 200
The gversion Utility Program 202
15 Runtime Environment and Library Organization205
Introduction 206
Multiple Language Runtime Support 207
MCore Library Structure 207
Linker Directives Files 207
How to Create a Customized Linker Directives File 208
Special Sectionsin Linker Directives Files 208
Source Files Available for Customization 212
Incorporating Your Changesinto the Libraries 217
16 MCore Simulator 219
The MCore Simulator Command Line Options 220
The Simulator asa MULTI Debugger Target 220
ROM Mode 221
Unsupported Features 222
A Enhanced asm Facility A-1
Introduction A-2
Definition of Terms A-2
asm Macros A-3
M Core asm procedures A-7
Writing asm Macros A-9

Green Hills Software Inc.

CONTENTS

Viewpathing
Theory of Operation
Limitations
Environment Variables

C Runtime Libraries

Built-in Functions

Reentrancy

libansi.a data structures and functions
libind.a functions

Less Buffered 1/0

Index

11
12
13
13

Embedded MCore Development Guide

Preface

About this Manual

This manual describes the Green Hills cross
development tools for the M Core family of

mi croprocessors. Cross devel opment means using one
computer system, called the host, to write, compile,
and debug programs for execution on a different
computer system, called the target. The Green Hills
cross development products are available for many
different hosts and many different operating systems.
The examples in this manual apply to a UNIX
environment on a Sun workstation; usersin other
environments should make the appropriate
adjustments. The required adjustments are generally
obvious; exceptions are explained in the
accompanying text.

This manual aso presumes that Green Hills products
areinstaled in the directory /usr/green. If thisis not

the case, substitute the correct directory and placeitin
your path.

Typographical Conventions

Typographical Conventions

Convention Example Description

bold text -noansi name of program, command, directory, or file
bold characters in quotes “A” name to enter as shown, without quotes
courier setenv TMPDIR samples of code, or instructions to enter

italic text in a command line

-0 filename

place-holder for user-supplied information

square brackets, []

.macro name [lisf

encloses optional commands or terms

square brackets [] around
boldface default

Specifies char as
signed [default].

command or option is the default

What This Manual Covers

For example, in the command description

ccmcor e [-cpu=processor] filename

the command ccmcor e should be entered as given, the -cpu=processor is
optional with the appropriate cpu option replacing processor, and the
appropriate file name replacing the word filename.

Chapter

Provides

1. Introduction

Overview of components and toolset operation

2. Building an Executable Introduction to the Compiler Driver

3. The Toolset How the compiling, linking, and debugging tools work

4. The MCore Processor Description of the MCore target environment

5. Embedded Features Special requirements for embedded developers

6. Debug Formatting How to use .dbg files

7. ELF Files Organization of Executable and Linking Format files

8. Compiler Driver Options Description of all the compiler options

9. Macro Assembler How to use the MCore macro assembler

10. Macro Assembler Directives Explanation of all the MCore macro assembler directives
11. MCore Macro Assembler Reference MCore addressing modes and instruction formats

12. The Librarian How to use the librarian

13. ELXR How to use ELXR

14. Utility Programs Description of all supported and unsupported utilities

15. Runtime Environment and Library Structure of the Green Hills runtime environment and how to

Organization

modify and customize it

16.

The MCore Simulator

How to use MULTI with the Simulator

Green Hills Software, Inc.

Chapter

Provides

App. A, Enhanced asm Facility

Introducing assembly language instructions into C code

App. B, Viewpathing

A hierarchical method for searching multiple directories for
input files

App. C, C Runtime Libraries

Listings of the Green Hills C Library

P-3

Embedded MCore Development Guide

Introduction

This chapter contains:
« Components of the Tool set

Thismanual is the primary documentation for MCore cross development. Listed here are
various tools you will need, how they relate to each other, and how those features are unique
to cross devel opment.

Components of the Toolset

The complete Green Hills MCore cross development tool set includes the
following components.

Compiler Drivers

A compiler driver is a program which invokes the other components of
the tool set to process a program. There is a separate compiler driver for
each source language. The drivers use command line arguments and
source file extensions to determine which compiler or assembler to
invoke for each source file, then sequence the resulting output through
the subsequent linker and conversion utilities, relieving the user of the
burden of invoking each of these toolsindividualy.

Compiler sEach Green Hills optimizing compiler is a combination of a
language-specific front end, a global optimizer, and a target-specific
code generator. Green Hills provides compilersfor five languages: Ada,
C, C++, FORTRAN, and Pascal, including al major dialects. All
languages for atarget use the same subroutine linkage conventions. This
allows modules written in different languages to call each other. The
compilers generate assembly language.

Assembler The relocatable macro assembler translates assembly language
statements and directives into arelocatable object file containing
instructions and data.

LibrarianThe Librarian combines object files created by the Assembler or
Linker into alibrary file. The linker can search library filesto resolve
internal references.

Linker The Linker combines one or more EL F object modulesinto asingle ELF
relocatable object file or executable program.

Debugger The MULTI Debugger is awindowing source level debugger that
debugs programs written in Ada, C, C++, FORTRAN, Pascal, and
assembly language. MULTI can debug a program being executed by a
simulator or by atarget.

Simulator The Simulator is a program which executes on the host system and
simulates the execution of the MCore instructions.

5 Embedded MCore Development Guide

Components of the Tool set

ROM Monitor

The ROM Monitor is a program which resides on atarget system and
which interfaces with the MULTI Debugger to enable it to download
programs to that target and debug them.

Green Hills Software, Inc. 6

2

Building An
Executable Program

This chapter contains:

» How to Build a Program for Use with the MULTI
Debugger

e The Compiler Driver

« How to Build a C Executable Program

» How to Build a C++ Executable Program

e How to Build Programs with C and C++ Modules

How to Build a Program for Use with the MULTI Debugger

You can create an executable program by compiling source files written in a high-level
language such as Ada, C, C++, or FORTRAN into assembly code, assembling assembly
language files into object files, and linking together these object modules with object module
libraries, into an executable program.

To simplify this task and coordinate many diverse programs and files, Green
Hills provides a program for each language called the compiler driver. This
chapter describes the Green Hills compiler driver and provides instructions and
examples for building your executable program and debugging it with the
MULTI Debugger.

How to Build a Program for Use with the MULTI Debugger

Green Hills MULT]I provides a powerful source level debugger. To take
advantage of the MULTI Debugger, use the -G option when building the
executable program. This option causes the Green Hills compilers to place
extensive information regarding variables, data types, and sourcefilesinto
auxiliary debug file information that MULTI uses (see Chapter 6, “Debug
Formatting”).

The-G option may appear anywhere on the driver command line when source
files are compiled and also when object files are linked, as shown in this
example:

% ccmcore -G filel.c file2.c -o program
% multi program
MULTI also supports debugging of optimized code; you can use3togption

with optimization enabled, although for best debugging results, the optimizer
should be disabled.

The Compiler Driver

Starting with source files written in you can build an executable program in one
command line, using the Green Hills compiler drivers C or C++.

Green Hills Software, Inc. 8

The compiler driver performs three major functions:
« Compiles source language files

« Assembles assembly language files

» Linkstogether object files and libraries

You can invoke the driver from the command line. The driver callsthe
appropriate compiler with the correct default options. By default, the driver uses
the linker to link in object files from the appropriate libraries.

The compiler driver for each languageis:

ccmcoreC compiler driver
cxmcor eC++ compiler driver

The driver beginswith alist of input files and looks at the extension of each
filename to determine the file types and what compilation steps to perform on
that file. For example, afilewith a.c extension isa C sourcefile, and afilewith
a.f or .for extension isa FORTRAN source file. Each file needs to be compiled
with the appropriate language compiler, assembled, and then linked. Source
files of different languages can be included within the same executable. See the
-language option in the Mixing Languages chapter in either the Green HillsC
or FORTRAN User's Guiddsr more information.

The syntax for the compiler driver command is:
driver_name [options] filename(s)
driver_namd@ he name of the driver for the language that you are using.

optiondRepresent any combination of compiler driver options. These options
may be placed either before or after filename(s)n the command line.

filename(s)Represents the source file or files you wish to compile, assemble, or
link. A space is required between each filename.

To build executable programs, support routines in the form of libraries and
startup files are often needed in addition to the routines that you have provided.
These support routines often perform tasks such asinterfacing with an operating
system. By default, the compiler driver will include the appropriate libraries and
startup files based on the languages, target processor, and compatibility modes
specified when compiling and linking.

Embedded MCore Development Guide

How to Build a C Executable Program

The compiler driver recognizes certain filename extensions listed in the
following table. It determines each file type from the extension and processes
the file accordingly.

Extension Assumed file type
.ada .adb .ads Ada source file

.c C source file

.cxx .C .cpp .cc C++ source file

i C++ templates information file

.f for FORTRAN source file

.0 object file

.a library file

.S assembly language file

.mco assembly language file with C preprocessor directives
.inf Inline and dependency intermediate files

.dbo, .dba, .dlo, .dla, .dnm | Debug information

How to Build a C Executable Program

To build an executable from a C source file called demo.c, enter the following
command:

% ccmcore demo.c))))
The driver recognizes demo.c asavalid C source file by its .c extension and

invokes the C compiler. The compiler produces an assembly codefile, whichis
then sent to the assembler, which produces an object file which is sent to the
linker and linked with the appropriate libraries selected by the driver.

If no errors occur, an ELF format executable file called a.out is created in the
current directory. You can rename the output file with the -o compiler driver
option.

You can rename the output file with the -o option. For example:

_ % ccmcore demo.c -0 demo _ _
This command creates an ELF format file called demo in the current directory.

The filename must immediately follow the -o option.

When asingle source file is compiled and linked, all intermediate files are
deleted.When more than one file is given to the driver, any object filesthat are

Green Hills Software, Inc. 10

created in the process are not deleted. Thisis convenient when only one of the
files must be recompiled. For example, suppose that you compile several files:

% ccmcore demo.c filel.c file2.c
You then discover that demo.c must be modified. After editing demo.c, you

can build the executable with this command:

% ccmcore demo.c filel.o file2.0
Sincefilel.c and file2.c have not been modified, it is possible to use the object

modulesfilel.o and file2.0 created by the previous compilation.

Assembly source files may be input to the compiler driver if the name of thefile
ends with .s. For example:

% ccmcore demo.s
For assembly sourcefiles, the compiler driver first invokes the assembler, then

the linker produces the file a.outin the current directory.

If you use the -c option, the compiler driver stops after creating an object filefor
each source file on the command line. The following command line produces
two relocatable object modules, called demo.o and file.o, in the current
directory:

_ % ccmcore -c demo.c file.s . _ _
If only one object fileis created, you can use the -0 option with the -c option to

rename the object file. The new name must contain the suffix .0. For example,
the following command line creates the relocatabl e object module newdemo.o
in the current directory:

% ccmcore -¢c demo.c -0 newdemo.o
The compiler driver links relocatable object modules into an executablefile. If

all of the names of the input files to the driver end in.o, the compiler driver
invokes the linker only. The following command line links the demo.o, filel.o,
and file2.0 object modules with the necessary startup code and librariesto
produce the file a.out:

% ccmcore demo.o filel.o file2.0

How to Build a C++ Executable Program

To build an executable from a C++ source file called demo.cxx, enter the
following command:

_ % cxmcore demo.cxx ' _ '
The driver recognizes demo.cxx as avalid C++ source file by its.cxx extension

and invokes the C++ compiler. The compiler produces an assembly code file,
which is then sent to the assembler, which produces an object file. The object

n Embedded MCore Development Guide

How to Build a C++ Executable Program

fileisthen sent to the linker and linked with the appropriate libraries sel ected by
the driver.

If no errors occur, an ELF format executable file called a.out is created in the
current directory. You can rename the output file with the -o compiler driver
option. For example:

% cxmcore demo.cxx -0 demo _ _
Thiscommand creates an EL F format executablefile called demoin the current

directory. Thefilename must immediately follow the -o option. When asingle
source fileis compiled and linked in thisway, all intermediate .sand .ofilesare
deleted.

When more than onefileis given to the driver, any object files that are created
in the process are not deleted. Thisis convenient when only one of the files
must be recompiled. For example, suppose that you compile several files:

% cxmcore demo.cxx filel.cxx file2.cxx
You then discover that demo.cxx must be modified. After editing demo.cxx,

you can rebuild the executable with this command:

_ _ 9% cxmcore demo.cxx filel.o file2.0 _
Since filel.cxx and file2.cxx have not been modified, it is possible to use the

object modulesfilel.o and file2.0 created by the previous compilation.

Assembly source files may be input to the compiler driver if the name of thefile
ends with .s. For example:

% cxmcore demo.s o
For assembly source files, the compiler driver first invokes the assembler and

then the linker to produce the file a.outin the current directory.

If the -c option is used, the compiler driver stops after creating an object file for
each source file from the command line. The following command line produces
two relocatable object modules, called demo.o and file.o, in the current
directory:

% cxmcore -c demo.cxx file.s
If only one object fileis created, you may use the -0 option with the -c option to
rename the object file. The new name must contain the suffix .0. For example,
the following command line creates the rel ocatable object module newdemo.o
in the current directory:

_ % cxmcore -C demo.cxx -0 newdemo.o .
The compiler driver links relocatable object modules into an executablefile. If

all of the names of the input files to the driver end in.o, the compiler driver
invokes only the linker. The following command line links the demo.o, filel.o,

Green Hills Software, Inc. 12

and file2.0 object modules with the necessary startup code and libraries to
produce the file a.out:

% cxmcore demo.o filel.o file2.0

How to Build Programs with C and C++ Modules

Itis possible to combine both C and C++ modules into a single program. You
should use the C++ driver, cxmcor e, to build any executables containing
modules written in C++. The C++ driver is designed to handle the specia
requirements for linking C++ programs.

13 Embedded MCore Development Guide

How to Build Programs with C and C++ Modules

Green Hills Software, Inc. 14

The Toolset

This chapter contains:

How to Compile and Link an Executable Program
Green Hills MCore Cross Compilers

The MCore Macro Assembler, asmcore

Object Module Librarian, ax

The MCore Linker, elxr

Header Files

Support Routines and Libraries

Debugging and Running the Program

How to Compile and Link an Executable Program

The MULTI Builder controls the compiling, assembling, and linking. It depends on many
other tools to perform its tasks. These tools include executable programs, support files, and
libraries.

How to Compile and Link an Executable Program

Figure 1 illustrates the flow of files through the tool chain when the MULTI
Builder isinvoked. The builder first calls the appropriate compiler for each
source file and produces an assembly code file. The builder then invokes the
assembler to produce an ELF object file. The builder then invokes the linker to
produce an ELF executable file. MULTI can debug this ELF executable file.
Figure 2 illustrates the C++ compilation procedures.

Green Hills Software, Inc. 16

Figurel Flow of Source Files Through the Tool Chain

Object Library
Modules Files

Language Source File
(Ada95, C, C++, FORTRAN,
Pascal)

Language Compiler

Assembly Language File
(.sextension)

Macro Assembler

Object Module
(.0 extension)

Executable program
a.out

17

Embedded MCore Development Guide

How to Compile and Link an Executable Program

4 N

-
C++ Source

C++ Front End

> C Code
C Compiler
Assembly Code /
Some compilers generate
object files directly.
Assembler
Y
Object File
Repeat until all templates Template Prelinker
areinstantiated.
Linker
Executable 4//
Ix resolves
constructors/destructors
Munch internally.
Y

\(Final Executable)
\ J

Figure2 C++ Compilation Process

Green Hills Software, Inc. 18

Green Hills MCore Cross Compilers

The Green Hills M Core Cross Compilers are an integrated family of highly
optimizing compilers. Each compiler is a combination of alanguage-specific
front end, aglobal optimizer, and a target-specific code generator. The
compilers use compatible subroutine calling conventions. This alows modules
written in different |anguages to be mixed. The output file from any of the
compilersis an assembly codefile.

Green Hills provides compilers for Ada, C, C++, FORTRAN, and Pascal. Each
compiler supports the major dialects of the associated language.

The MCore Macro Assembler, asmcore

While programs executing on a processor are capable of very powerful

functions and can work with complex data structures, processors themselves
understand only binary sequences of “machine code” and operate only on
binary sequences of data. The machine code forms sequences of instructions
for the processor to perform; the data is manipulated by these instructions.

Since humans have difficulty working with such binary sequences, each
processor type has a human-readable “assembly language.” Usually, there is a
one-to-one correspondence between each assembly language instruction and its
equivalent machine code form.

This assembly language typically supplies not only a textual representation for
each instruction, but also a set of “directives” where the programmer can give
instructions to the assembler itself. Directives specify data types, generate data
values, specify alignment requirements for the machine code or data, and so on.

The MCore Macro Assemblasmcor e takes the assembly language statements
and directives of the MCore assembly language program presented to it and
translates them into the equivalent MCore processor machine code and data
formats. The resulting file produced is an object file, or object module. See
Chapter 9, “Macro Assembler”, for more information.

Usually, the linker is able to resolve all external references and produce a
“fully-linked” output module which is made executable by the operating
system. Alternately, if instructed to do so, the linker may simply combine
several object modules into a bigger object module, perhaps still with some
unresolved references.

The linker is usually instructed to link object modules together with one or more
“libraries.” A typical library contains a large number of object modules of its

19

Embedded MCore Development Guide

Object Module Librarian, ax

own. The linker extracts from the library only those modules which it needsin
order to resolve the externa references in the object modules presented to it.
Libraries are useful for providing commonly used modules in an easily
accessible format.

Object Module Librarian, ax

The Green Hills MCore Librarian program combines object modules created by

the Assembler or Linker into a library file. See Chapter 12, “The Librarian”, for
more information. The linker can search library files for components to resolve
internal references. A module from a library is only included in a program when
it is referenced in the program.

The MCore Linker, elxr

The linker for the MCore toolset &xr for ELF.

The MCore linker takes one or more object modules and combines them into a
single executable output module. The relocation section of each given module
“resolves” its external text and data references with the module(s) containing
the required text and data. See Chapter 13, The ELXR Linker, for more
information.

Header Files

Green Hills provides header files for use with C and C++ source files. These
files are accessed by placing #iaclude directive in the source file. When the
compiler seegincludefile, it first searches in the directory containing the
source file, then in the directories specified with-theption, and finally in the
default directories.

For C, the default directories are:

/usr/green/mcore/include
/usr/green/ansi
The contents dusr/green/ans shown below.

assert.h ctype.h errno.h float.h inline.h ghcxx.h interrup.h
interrupt.h | limits.h locale.h math.h setjimp.h signal.h stdarg.h
stddef.h stdio.h stdlib.h string.h strings.h time.h varargs.h

Green Hills Software, Inc.

20

For C++, the default directories vary depending on the C++ modein use.

Support Routines and Libraries

To build executable programs, special support routines are often needed in
addition to the routines you provide. These support routines often perform tasks
which cannot be done by the user, such asinterfacing with the underlying
operating system. These routines are kept in libraries.

In addition to libraries, other special files are required by an executable
program, such as the startup file and the default linker directivefile. The
compiler driver automatically specifies these files and libraries when invoking
the linker, unless the option -nostdlib is specified. This option does not add any
default startup files or libraries to the linker command line.

Startup File

Libraries

When linking a program, the compiler driver normally specifies a startup file

such as crt0.0 before any user specified object files or libraries. Thisfile

contains a function named _start which is the default entry point for the

program. The _start function performsinitialization and then invokes main().
Please see Chapter 15, “Runtime Environment and Library Organization”, for
more information.

See Appendix C, “C Runtime Libraries”, for a list of functions included in the
libraries below.

ANSI C Library, libansi.a

The functions documented in the ANSI C Standard are contained in this library
andlibind.a, described below. After all user files and libraries on the command
line, libansi.a should always be listed. Onlioind.a should appear after

libansi.a.

Language Independent Library, libind.a

All transcendental math functions, suctsasandsqgrt, are in thdibind.a
library. In addition, low-level support routines and system service functions are
here. This library should always be the last file on the command line.

21

Embedded MCore Development Guide

Debugging and Running the Program

Debugging and Running the Program

Once you have created an executable, the next steps are to debug and run the
program. Green Hills MULTI development environment provides a
source-level debugger used with programs executing on an actual target or
executing on asimulated target.

MULTI Debugger

The MULTI Debugger is part of the MULTI Software Devel opment
Environment. MULTI runs on the host machine while the application to be
debugged is running either under the M Core Simulator, the ROM Monitor, or
on atarget system interfaced through an In-Circuit Emulator Server.

Simulator

The Green Hills M Core Simulator is a program that executes on the host and
simulates the execution of the M Core microprocessor at the instruction level.

In-Circuit Emulator Server

The ICE Server is aprogram which runs on the host computer with MULTI and
actsasan intermediary between MULTI and an in-circuit emulator connected to
the host. The ICE Server translates debugging requests, transmits them to the
emulator, and returns the responses from the emulator in aformat recognizable
to MULTI.

Green Hills Software, Inc. 22

The MCore
Processor

This chapter contains:
» MCore Characteristics
e Compiler Output Format
» Register Usage
» Structure Packing
« Cdling Conventions
« Interrupt Processing in C and C++

MCore Characteristics

This chapter describes the M Core target environment.

MCore Characteristics

The MCore processor has the characteristics shown in the following table:

Characteristic Description

Memory addressing Byte-addressed with 32-bit addresses.

Bit numbering Bit O is least-significant bit.

Byte ordering Big endian by default. The most significant byte of a
multi-byte value is stored at the lowest address.

Stack alignment 8-byte alignment.

Floating-point format IEEE 754 format (32 and 64 bits) with the most
significant byte at the lowest address.

Character encoding ASCII.

C/C++ bit field allocation starts at most-significant bit.

C/C++ maximum bit field size Four or fewer bytes.

C/C++ struct, union, array Aligned to the maximum alignment of any of its

alignment components.

The following tables list the data type alignments for C, C++, and FORTRAN.

C/C++ Data Type Size Alignment
int 32 32

long 32 32

long long 64 64

* 32 32

short 16 16

char 8 8

float 32 32

double 64 64

long double 64 64
unsigned 32 32
unsigned char 8 8
unsigned short 16 16

enum (default) 32 32

enum (option) 8,16, 32 varies
FORTRAN Data Type Size Alignment
REAL 32 32
REAL*8 64 32

Green Hills Software, Inc. 24

FORTRAN Data Type Size Alignment
DOUBLE PRECISION 64 32
CHARACTER

INTEGER*1 8 8
INTEGER*2 16 16
INTEGER 32 32
LOGICAL*1 8 8
LOGICAL*2 16 16
LOGICAL 32 32
COMPLEX 64 32
COMPLEX*8 64 32
COMPLEX*16 128 32
DOUBLE COMPLEX 128 32

Compiler Output Format

By default, the output of the compiler is MCore Assembly Language.

Register Usage

There are 16, 32-bit general purpose registers which can be used for both
integer values and single-precision floating point values. There are also a set of
control registers. The registers are shown in the following tables:

Register Name(s) Usage

r0 Stack pointer

rl Scratch register

r2-r3 Parameter registers, return value
r4-r7 Parameter registers

r8-r13 Permanent registers

rl4 Permanent register, frame pointer
rl5 Link pointer

Registersrl-r7, r15 are volatile; their contents may be destroyed by afunction
call. Registersr0, r8-r14 are non-volatile; they will be preserved acrossfunction
cals.

Name Usage

PSR Processor status register

25 Embedded MCore Development Guide

Structure Packing

Name Usage

VBR Vector base register

EPSR, FPSR, Exception shadow registers
EPC, FPC

SS0-SS4 Supervisor storage registers
GCR Global control register

GSR Global status register

PC Program counter

Structure Packing

The Green Hills compilers aways allocate fields of a structure in the order
specified in the declaration. It may be necessary for the compiler to insert one or
more bytes of padding to ensure that afield begins at an offset from the
beginning of the structure which isamultiple of the alignment of that field. The
alignment of afield is determined by its type. The maximum alignment of a
field is eight bytes. This alignment appliesto fields of type double, long
double, and long long. Fields of typefloat, int, and long, and pointer types
have four byte alignment. Fields of type short have two byte alignment and
fields of type char have one byte alignment.

Packing is a feature which reduces the maximum padding the compiler inserts
between fields in order to gain storage-efficient data structures. If astructureis
packed to two bytes, then each field has a maximum alignment of two bytes,
and at most one byte of padding will be inserted between fields. The structure
itself will aso have a maximum alignment of two bytes.

The command line options -Zp1, -Zp2, and -Zp4 specify the default packing in
bytesfor al structures.

In addition, #pragma pack() controls the packing of an individua structure.
The pragma must appear before the beginning of the declaration which lists the
fields of the structure. The pragma should not be used inside of a structure
declaration. If 1, 2, or 4 appear between the (), the packing in effect changes
until the next #pragma pack(). If anumber is not present between the (),
packing resets to the default.

Example:

struct s {
char c;
inti, j;
}a

Green Hills Software, Inc. 26

#pragma pack(2)
struct s x;
struct s2 {
char c;
inti, j;
1b;
#pragma pack()
struct s2 y;
The size of a and x are both 12. Three bytes of padding appear between field ¢

and field i. #pragma pack(2) did not affect the declaration of X, since struct s
was aready declared.

The size of b and y are both 10. One byte of padding appears between field ¢
and fieldi. #pragma pack() did not effect the declaration of y, since struct s2
was aready declared.

Be aware that the use of #pragma pack may generate structuresin which some
of the fields are impossible or inefficient to access. The programmer assumes
responsibility for avoiding access to misaligned fields, which may cause fatal
compile-time errors or other serious problems.

Calling Conventions

A procedure, subroutine, or function call is assumed to destroy the contents of
all registers except r8 through r 14 unless #pragma ghsinterrupt is used.

Arguments

Call arguments are evaluated first from left to right, then the remaining non-call
arguments are evaluated from left to right.

In C and C++, each scalar argument is extended to a 32-bit value after itis
evaluated unless the corresponding formal parameter has a floating point type
and, in C and C++, an ANSI prototypeisvisible. In this case, the argument is
converted into either a 32-bit or 64-bit floating point value according to the
formal parameter.

In C and C++, each floating point argument is extended to a 64-bit val ue after it
is evaluated, unless the corresponding formal parameter is either single
precision floating point or integer type and, in C and C++, an ANSI prototypeis
visible. If the formal parameter is single precision, the argument is converted to
a 32-hit floating point value. If the formal parameter is scalar, the argument is
converted to a 32-hit scalar value.

Any further type conversion is performed upon entry to the called procedure.

27

Embedded MCore Development Guide

Calling Conventions

Arguments are assigned stack offsets from left to right. The first argument is
always at offset zero. The size of the first argument is rounded up to amultiple
of four bytes and added to its offset to determine the offset of the second
argument. If the second argument requires 8-byte alignment and its offset woul d
not otherwise be amultiple of eight bytes, its offset isincreased by four bytes.
Thisisrepeated until offsets have been assigned to al arguments. If the
argument areais larger than 24 bytes, then a space large enough to hold this
argument area less 24 bytes is present on the stack immediately before the call.

In general, the arguments are allocated to the stack according to their stack
offset unlessit is possible to place them in registers.

Arguments with offsets 0 through 20 will be placed in registersr2 through r7,
respectively. Thusin C and C++, scalar, pointer, and floating point arguments
are eligible to passin registers, aswell as some structures and unions.

A varargsfunctionin K&R only hasva_alist asits arguments, and they are all
considered to be passed in memory. Therefore on entry to avarargs function, all
the parameter registers (r 2 through r 7) are first saved on the stack so that all
arguments can be accessed from the stack.

For astdargs function in ANSI, all arguments starting from." are considered

to be passed on the stack. On entry to a stdargs functiord, i in one of the
parameter registersZ throughr7), then that register plus all parameter
registers following it are first saved on the stack, so that all arguments starting
from “...” can be accessed from the stack.

For astdargs function (as described in the MCore Applications Binary
Interface), if the address of any of the parameters is taken, all of the parameter
registers are saved on the stack. This is for compatibility with legacy code that
assumes that all parameters &dargs function are passed in memory.

A call to a procedure, subroutine, or function uslesr ar jsr instruction which
saves the return address in the system regisfetA return uses thes
pseudo-instruction.

Return Values

Return values that are up to 32 bits in size are returne?] gign- or
zero-extended to 32 bits for scalar types smaller than 32 bits. Return values that
are between 32 and 64-bits in size are passed in the registe?/pir

In C and C++, to call a function which returns any type not passable in register
(e.g. structures), the address of a temporary of the return type is passed by the
caller inr2. The function returns the structure value by copying the return value
to the address pointed to by this register before returning to the caller.

Green Hills Software, Inc. 28

In FORTRAN, to call aFUNCTION which returnsa COMPLEX, DOUBLE
COMPLEX, or CHARACTER value, the address of atemporary of the return
typeispassed inr2. If aFUNCTION returnsaCHARACTER value, then the
size of the temporary, in bytes, is passed in r3. The subroutine or function
returns the value by copying he return val ue to the address pointed to by r2 on
entry.

Frame Pointer

If -gais specified on the command line, aframe pointer will be set upinri4 for
use by a symbolic debugger. This option isrequired for runtime error checking
and graph profiling. Thisis not part of the MCore ABI.

Accesses to parameters or local stack storage are aways made relative to the
stack pointer, r0, even if aframe pointer is set up.

Interrupt Processing in C and C++

Interrupt functions on the M Core use different calling conventions than normal
functions. Specificaly:

 Interrupt functions must return using the r t e instruction rather than the
rt s instruction, and

« Normal functions are permitted to destroy the contents of certain temp
registers. If the caller wishes to save the contents of these registers, it must
be done by the caller before calling the function. Interrupt functions are not
permitted to destroy the contents of those registers.

You can make the compiler follow these conventions for a particular function in
C or C++ by inserting the #pr agma. ghs i nt er rupt instruction
immediately after the opening curly brace.

Alternatively, the keyword __interrupt may be placed at the beginning of a
function definition:

__interrupt void func(void)
Non-interrupt routines only save and restore permanent registers used, but an

interrupt routine also saves and restores any temporary registersif they are
used. If an interrupt routine has afunction call, then all temporary and
permanent registers will be saved, even if they are not used in the interrupt
function.

29

Embedded MCore Development Guide

Interrupt Processing in C and C++

Green Hills Software, Inc. 30

Embedded Features

This chapter contains:
e Program Sections
» Putting Datainto ROM
» Reducing Program Size
« Using Linker Switches
« Producing S-Record Output
« Multiple-Section Programs
« Renaming Text Sections
« Japanese Automotive C

Program Sections

Japanese Automotive C Symbolic memory-mapped 1/O Embedded devel opers have many
special requirements for controlling how data and code are arranged and accessed.

Program Sections

Program sections are labeled collections of program objects. The simplest
program sections are .text, .data, .rodata, and .bss. The .text section holds
program code. The .data section holds external variables with explicitly
initialized values such asint i=1;. The.rodata section holds compiler generated
constants and read-only variables. The .bss section holds variables which are
not explicitly initialized. In most systems, the runtime or operating system
initializes the .bss section to all zeros. This zero initidization is required by the
C and C++ languages.

The compiler assigns various data and text objects to the appropriate sections at
compile-time. The linker’s job is to collect all data for each named section and
to locate that section in memory. In doing this, it is guided by a user-supplied or
default linker section map. The section map specifies the desired location of
each section and also the order of the sections in the final output file.

In addition to the above sections, you can create sections and assign them to
specific regions of memory. You can also assign variables to the user-defined
sections. You have the flexibility to position variables and other program
objects in memory.

The linker provides definitions for several symbols which, if referenced and not
defined, are given certain addresses corresponding to the final image. These
symbols are constructed by prepending the stringghsbegin and_ _ghsend

to the name of each section in the final image, with any period (.) in the section
names changed to underscores (_). For example, for a section temdte
symbols__ghsbegin_text and__ghsend_text would revert to the virtual start

and end addresses of that section, respectively.

Putting Data into ROM

The embedded features package includes facilities for various data items to be
put into ROM. The assumption is that the program text is in ROM, so these
features are designed to put specified data items with the program text.

Green Hills Software, Inc. 32

Putting Initialized Data into ROM

A program located in ROM may need to initialize RAM memory upon
power-up or restart. If the program needs to have RAM variables that are
initialized to specified values, proper steps must be taken to set up those
variables at startup. Normally, executable files created by the linker consist of
instructionsin .text, initialized datain .data, and zero-initialized datain .bss.

Since all memory variables arein sections, they areinitialized one entire section
at atime. There are three ways that sections are initialized, depending on the
type of section. Read-only sections have all of their initial values in the
executable file. The contents of this section are downloaded to the target viathe
debug server or the contents are burned into ROM. Read-write sections are
initialized by creating aread-only section which is a copy of the read-write
section. Thisread-only section isinitialized as described above. Then, during
program startup, the contents are copied from the read-only image to the
read-write section in RAM.

Zero-initialized sections (.bss sections) areinitialized to zero during program
startup. All variablesin these sections have been implicitly initialized to zero.

The new ROM linker directives files make these actions largely automatic. By
using the Green Hills startup code, a program can be put into ROM, and still
have initialized variables (whose values are automatically copied from ROM to
RAM at program startup time). In addition, its bss sections are automatically
cleared, so that .bss variables start proper initialization to zero. “Linker
Directives Files” on page 207 provides more information.

How to Copy Data Sections from ROM to RAM and Clear .bss
(zero-initialized data)

The Green Hills startup code automatically clebss sections and copies

ROM to RAM; however, you can customize this, using the following pointers:
_ _ghsbinfo_clear

_ _ghseinfo_clear

___ghsbinfo_copy

__ghseinfo_copy

These pointers reference tisecinfo section which contains addresses
specifying the areas of memory that need to be copied or cleared. For further
information on customizing, on copying ROM to RAM, and to see the code that
does the copy or clear, refer to “ind_crt0.c” on page 213.

33 Embedded MCore Devel opment Guide

Reducing Program Size

Verifying Program Integrity
One use of the __psinfo structure is to checksum sections in memory to verify
that they have not changed from the state in which they were created by the
linker. For this purpose, the linker cal culates a CRC checksum for each
F_TEXT or F_DATA section of non-zero length, and storesit as the last four
bytes of the section. Upon initidization, itispossibleto scanthe __psinfo table
sections of thistype, calculate the same CRC on all but the last four bytes, and
then compare the result to the stored CRC. A match indicates that the program
has the same byte values in memory that it had when the linker created the
executable file.

Reducing Program Size

One concern of developers of embedded systemsis program size. Given the
limitations on the amount of ROM available in typical embedded systems, it is
desirable to make programs as small as possible. The Green Hills compiler
allows you to create smaller executable files under certain conditions.

Removing Floating-Point Libraries

Large executable files can be the result of library routines which cause code
related to floating point operations to be linked in. This can occur even if your
program does not use floating point variables.

A prime example of thisisthe printf function. Since printf alows various
formatting options for floating point values, which are the %f, %e, and %g
switches, using printf causes floating point handling code to be loaded even if
these particular options are not used. This may add considerable size to the
executable program.

The -fnone switch to the driver is designed to avoid this problem. This switch
means that the user program is not using floating point operations. This alows
the driver to load special versions of printf and other library functions that do
not use any floating point code.

The -fnone switch has two effects. The compiler will give afatal error for any
floating point constant and for any use of the reserved words float and double.
This prevents any floating point value or operation from appearing in the C
source code. At link time, the linker searches a specid library which has
non-floating point versions of library functions before searching the regular
libraries. If any of these functions are used, the non-floating point versions are
loaded in place of the floating point ones.

Green Hills Software, Inc. 34

The compiler attempts to position certain program variablesin order to
minimize the space for padding between variables. Global and external
variables are not éigible for this optimization because of the possibility that
other modules may make assumptions about their order. Such variables are
generally allocated in the order in which they are declared in the source file.
However, static variables (both local to functions and of file scope) may be
rearranged by the compiler in order to reduce padding space.

The compiler classifies these variables into three categories based on size:
single byte variables, larger variables (which are the size of an integer register
or less), and variables larger than an integer register. The variablesfrom thefirst
category are allocated, then the second, and the third. Collecting variabl es of
similar sizes together reduces the need for padding.

You can increase opportunities for this optimization by liberal use of static
variables wherever possible.

Specifying Program Start Address

The linker normally uses the address of the global symbol -start asthe start
address for the user program. The driver supports an option, -entry=sym, to
specify an aternate start address.

For example, use the symbol newstart as the program start address with a
command line:

% ccmcore -entry=newstart file.c

Using Linker Switches

The linker, elxr, has many switches for embedded system development. When
using the driver, linker-specific switches must be preceded by -Ink= to be
effective. This causes the switches to be passed to the linker unchanged. Please
see “Command Line Options” on page 162 for more information.

Producing S-Record Output

The utility prograngsrec creates Motorola S-record format files from ELF
executable files. See Chapter 14, “Utility Programs” for more information.

Embedded MCore Development Guide

Multiple-Section Programs

Multiple-Section Programs

In embedded programming, it is sometimes necessary to place certain variables
in specific memory regions. For example, there may be different kinds of RAM
memory available, some fast and some slow, and selected variables need to be

placed into the fast RAM. The Green Hills C compiler and linker allow you to

achieve thisand similar goals by grouping variables into program sections and

positioning them as desired in memory.

To group program variables and position them in memory, it is necessary to
assign a named section to each desired memory region using a linker section
map. In addition, information is provided in the program source files to show
which variables go into which sections. Thisis done using the section pragma,
with the following syntax:

#pragma ghs section[secttype="sectname"[,secttype="sectname...]
The square brackets enclose optional material, and the ... indicates that the

preceding square-bracketed material repeats zero or more times.

sectname is the user-defined section name, eight letters or lessin length, and by
convention starts with a period{f. The worddefault may be used in place of
any sectname. While normal section names are specified in quotes, the word
default is not.

secttype tells which kind of data item is affected by the pragma, and may be one
of the following:

text Program text.

data Initialized variables.

bss Zero-initialized variables.
rodataConstant variables and/or strings.

Each occurrence of the section pragma specifies a mapping of data types to
section names. Each section pragma leaves mappings from earlier pragmas in
place except for those which it explicitly overrides. Specifgiagult in place

of a quoted section name removes any mapping for that partecttse. The
statement removes all mappings and restores the section-assignment rules to
their initial state:

#pragma ghs section
Mappings affect variables at the point where they are defined. Each variable’s

placement to its section is determined by the mapping in the source file. This
places different variables to different sections by interspersing section pragmas
among the variable declarations. For each variable, the compiler determines
which section it would normally fall into and then checks whether variables of

Green Hills Software, Inc. 36

that type have a mapping. If so, the section specified in the mapping isused in
place of the default.

For example, consider the following line of C code:

int foo=3;

In this example the variable foo is normally placed into the .data section
because it isinitialized to an explicit value. However, if thisline of code were
preceded by the following, then the variable foo is placed in the section
.mydata instead:

#pragma ghs section data=".mydata"
Here is how three different variables might be assigned to three different

sections:

#pragma ghs section data=".datal"
int x1 = 0;

/* Assign x1 to section .datal */
#pragma ghs section data=".data2"
int x2 = 0;

/* Assign x2 to section .data2 */
#pragma ghs section data=".data3"
int x3 = 0;

/* Assign x3 to section .data3 */
#pragma ghs section data=default

/* Now we are back to default rules */

This alocates variable x1 to section .datal, x2 to .data2, and x3 to .data3.

Renaming Text Sections

You can rename a text section, but there are somerestrictions. You can rename a
text section only once per program source file, before the very first functionin
the sourcefile.

For example, the following source file places the function f oo() into the text
section .mytext:

#pragma ghs section text=".mytext"
void foo(void)

}
The following examples show incorrect usage:

Bad Example 1

#pragma ghs section text=".mytext"
void foo(void)

}

37 Embedded MCore Development Guide

Japanese Automotive C

#pragma ghs section text=".mytext2"
/* wrong: can only have one pragma to rename */
[* text section */

void bar(void)

}

Bad Example 2
void foo(void)
%
#pragma ghs section text=".mytext"

/* wrong: must use pragma before the first function */
void bar(void)

}

Japanese Automotive C

Japanese Automotive C is a set of extensionsto ANSI C used by Japanese
automobile manufacturers. For compl ete specifications, refer to the
C-Language Specification for Automotive Control (Proposal) by Toyota Motor
Corp., July 29, 1993.

Japanese Automotive C generally conforms to the principles of 1SO 9899,
equivalent to the ANSI X 3.159-1989 standard, with the exception of the
“Implementation-defined Behavior” specification of Annex G.3 in ISO 9899.
Japanese Automotive C modifies, or extends, this specification to support
portability. The method by which it extends the “Implementation-defined
Behavior” conforms to the “Common Extension” section of ISO 9899, found in
Annex G.5.

To select this version of C, click tlepanese Automotive C box in the C
options window of the MULTI Builder window. Alternately, enter the
-japanese_automotive_c command line option.

Selecting Japanese Automotive C enables the following command line options:
-pragma_asm_inline
Enables#pragma asm, #pragma endasm, #pragma inline.
-unsignedchar
Specifies typechar as unsigned.
-unsignedfield

Green Hills Software, Inc. 38

Specifiesthat a bit field whose type is char, short, int, or long has an
unsigned value.

-noshortenum
Specifies that enumerated types are integers.
-asmwar nPrintsawarning for each __asm() statement.

-noasmPrevents the compiler from recognizing asm as a keyword in other
modes, alowing avariable or function named asm to be declared.

Normally, in strict ANSI C mode, it isafatal error to declare a bit field with
basetype other than int, signed int, or unsigned int. Japanese Automotive C
makes this legal, even though it isaminor violation of the ANSI standard.

For example,

struct {
char b:3;
char c:5;

) S;
When the above code is compiled with -ANSI, the following error occurs:

"x.c", line 3: lllegal type for bit field
"x.c", line 4: lllegal type for bit field
When the code is compiled with -ANSI -japanese_automotive c, no error or

warning occurs.

Interrupt Functions

A function may be declared to be an interrupt function by prepending the
__interrupt keyword to the function definition. The compiler will generate
codefor thisfunction that will save al the registersthis function uses, including
theregistersthat are normally destroyable across function calls. These functions
are intended to be used to handle hardware interrupt and exception conditions;
since these events are not part of the normal program flow using a non-interrupt
function may modify registers, resulting in incorrect behavior of the interrupted
routine. These functions should be of void type and should take no arguments.

Example:
__interrupt void handle_clock_interrupt(void)

clock_ticks = clock_ticks + 1;

39 Embedded MCore Devel opment Guide

Japanese Automotive C

#pragma ghs interrupt
Putting #pragma ghs interrupt before afunction definition is equivalent to
declaring the function with the __interrupt keyword.

#pragma intvect
For all CPU processors, selecting Japanese Automotive C also enables:

#pragma intvect function integer_constant

The purpose of this pragmais to establish interrupt vectors. The compiler
arranges for the address of the named function to be placed in memory at the
address specified by integer _constant using a.or g directive to the assembler.

Thisfeature is only supported when using a Green Hills assembler and is not
available in binary code generation mode.

The compiler does not check to seeif function has been declared in thefile, or if
itisalega function of any kind. The compiler also does not verify that
integer_constant isalegal or unique address.

Selecting Japanese Automotive C also resultsin the following caveat: in the
case of apointer being cast to an integer, if the pointer and the integer are the
same size, no dataislost. If the pointer is cast to asmaller integer, then the data
is reduced from the upper bit.

Also, for some CPU processors, selecting Japanese Automotive C enables
several built-in functions to control interrupts:

void __Dl(void);
Disables dl interrupts.
void __El(void);

Enables al interrupts.
void _set_il(int n);
Setsinterrupt level to n.

Green Hills Software, Inc. 40

Debug Formatting

This chapter contains:

Basic Debug Formatting Information
Benefits of .dbo Files

Backwards Compatibility

Controlling Generation of the .dnm File

Basic Debug Formatting Information

Green Hills tools support a proprietary debug format, called .dbo files. Thesefilesare
generated by the compiler or assembler and have the same name as the object file, but with
the suffix changed from .o to .dbo.

Basic Debug Formatting Information

To debug a program with MULTI or a debugger from another vendor, the
compiler or assembler must generate information indicating source line
numbers and variabl e data types. The options -g or -G can be passed to the
compiler to generate this debug information. These options are also availablein
the MULTI Builder’'sFile Options window, labeledebug Level. The
selectionPlain corresponds teg, and the selectiokl ULTI corresponds teG.

Before a program can be debugged with MULTI,db&nk utility program
collects the information in thebo files into a.dnm and.dla file. The Builder
or Driver usually invokesdblink just after the program is linked. However, if
MULT]I is debugging a programrog, MULTI looks for prog.dnm in the same
directory. If MULTI doesn't findprog.dnm, it invokesdblink to create the file.

dblink uses the symbol table information in the executable program to find all
of the.dbofiles. If the.dbo files have been movedblink might not be able to
locate them. In this case, the option may be passdllitak to indicate

additional directories where thebo files may be found:

-dbopath=dir[;dir][;dir][...]

This option is rarely needed and should only be usadlihk indicates that
.dbo files are not found.

Benefits of .dbo Files

The information contained in thabo file is more extensive than that contained

in any previous debug format supported by MULTI. Because debug information
is not contained in the object files, link time is greatly decreased without
increasing thelblink time substantially.

Backwards Compatibility

In the new mode, debug information is only contained indhe files and in
the.dnm and.dla file. There is no debug information in the executable
program. Therefore, any utilities which depend on reading debug information

Green Hills Software, Inc. 42

will not work. Also, the default behavior will no longer work with debuggers
provided by other vendors.

How to Use DWARF

Users can ask the compilers to generate both .dbo files and DWARF debug
information. Thisis recommended for users who have utilities which read the
debug information in the object files aswell as for users who use both the
MULTI Debugger along with other source debuggers. To generate both .dbo
files and DWARF debug information in an ELF environment, select Output
dual debug formatsin the Advanced Optionswindow, or enter -dual_debug
when using the command line driver.

By default, only the .dbo fileis generated. However, if -dual_debugis
specified, both DWARF and .dbo files are generated. Thismode is provided for
compatibility with third party tools that read DWARF debug information. Even
if -dwarf is specified, only the .dbo files are actually used by MULTI to debug
the program. Use of the -dwarf option will not improve debugging in any way
and will slow down assembly and link-time by increasing the size of assembly
and object files significantly. See Debugging Options in the Compiler Driver
Options chapter, for more information.

Controlling Generation of the .dnm File

By default, dblink isinvoked after the program islinked if Debug Level is
Plain or MULTI and .dbo filesarein use, or if Debug Level isMULTI and
.dbo files are not in use.

Three command line options control the invocation of dblink by the driver:
-nodnm
Prevents the invocation of dblink after linking the program.

-nonodnm
Forces the invocation of dblink after linking the program.

-dnm
Invokes dblink on an executable that has already been linked.

Two additional command line options control whether the executable has its
symbols stripped after dblink isinvoked. The executable is never stripped
unless the Builder links the program and invokes dblink:

43

Embedded MCore Development Guide

Controlling Generation of the .dnm File

-strip
Forces the program to be stripped (by the gstrip utility) after dblink is
run.

-nostrip
Prevents the program from being stripped after dblink is run.

By default, the program will only be stripped with -G -nodbo.

Green Hills Software, Inc. 44

ELF Files

This chapter contains:

Rel ocatable and Executable File Organization
32-bit ELF Data Types

ELF Header

ELF Identification

Sections

Symbol Tables

String Tables

Program Headers

Rel ocatable and Executable File Organization

ELF stands for Executable and Linking Format. This chapter explains the organization of
ELF files of al types. Sections of this chapter have been reproduced with permission from
UNIX System Laboratories, Inc. For additional information about ELF files, please see
System V Application Binary Interface, 1993, UNIX System Laboratories, Inc., published by
Prentice-Hall, Inc.

An ELF file can be arelocatable object file or an executablefile. A relocatable
object file holds program code and data and is suitable for linking with other
object files. An executable fileis a file which holds programs suitable for
execution. ELF files are created by the compiler, assembler, and linker.

Relocatable and Executable File Organization

The following two tables show the organization of both types of ELF files,
rel ocatabl e object files and the executable files:

Relocatable File Executable File

ELF header ELF header

Program header table Program header table

optional

Section 1 Segment 1

Section n Segment 2

Section header table Section header table
optional

An ELF header resides at the beginning of an ELF object file or executablefile
and serves as the table of contents of thefile. All other dataand tablesin the
file may appear in any order. Sections hold the bulk of object file information
for the linking view, such as instructions, data, symbol table, and relocation
information.

An ELF executable file must have a program header table. A relocatable ELF
file does not need one. The program header table tells the system how to load
the program.

A section header table contains information describing the file's sections. Every
section has an entry in the table; each entry gives information such as the
section name and section size. Relocatable files to be linked must have a section
header table.

Green Hills Software, Inc. 46

32-bit ELF Data Types

The ELF object file format supports 32-bit architectures with 8-bit bytes. It
must be modified for 64-bit architectures. Object files represent some control
data with a machine-independent format, making it possible to identify object
filesand interpret their contents. Part of an object file uses the encoding of the
target processor, regardless of the machine on which the file was created:

Type Name Size Alignment Purpose

EIf32_Addr 4 4 Unsigned program address
Elf32_Half 2 2 Unsigned medium integer
Elf32_Off 4 4 Unsigned file offset
EIf32_Sword 4 4 Signed large integer
ElIf32_Word 4 4 Unsigned large integer
unsigned char 1 1 Unsigned small integer

Tablel Object File Types

All data structures that the object file format defines follow the usual size and
alignment guidelines for the relevant class. If necessary, data structures contain
explicit padding to ensure 4-byte alignment for 4-byte objects, to force structure
sizesto amultiple of 4. Data also have suitabl e alignment from the beginning of
the file. For example, a structure containing EIf32_Addr will be aligned on a
4-byte boundary within the file.

For portability, ELF data structures use no bit fields.

ELF Header

Some object file control structures can grow, because the ELF header contains
their actual sizes. If the object file format changes, a program may encounter
control structures that are larger or smaller than expected. An ELF header is set
by the following C structure declaration:

#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
EIf32_Half e_machine;
EIf32_Word e_version;

47

Embedded MCore Development Guide

Elf32_Addr e_entry;
EIf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
EIf32_Half e_ehsize;
EIf32_Half e_phentsize;
Elf32_Half e_phnum;
EIf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;
} Elf32_Ehdr;

e_identThefirst bytes mark the file as an object file and provide
machine-independent data with which to decode and interpret the file’s

contents.

e_typeldentifies the object file type. Possible types are:

Name Value | Meaning
ET_NONE 0 No file type
ET_REL 1 Relocatable file
ET_EXEC 2 Executable file
ET_LOPROC 0xff00 | Processor-specific
ET_HIPROC Oxffff Processor-specific

e_machineSpecifies the target architecture for an individual file:

Name Value Meaning
EM_NONE 0 e_machine
EM_SPARC 2 Sun SPARC
EM_386 3 Intel 80386
EM_68K 4 Motorola 68000
EM_88K 5 Motorola 88000
EM_486 6 Intel 80486

EM_ MIPS 8 MIPS

EM_960 19 Intel 80960
EM_PPC 20 Power PC
EM_V800 36 NEC V800 series
EM_FR20 37 Fujitsu FR20
EM_RH32 38 TRW RH32
EM_MCORE 39 Motorola MCORE

Green Hills Software, Inc.

EM_ARM 40 ARM

EM_ALPHA 41 Digital Alpha
EM_SH 42 Hitachi SH
EM_TRICORE 44 Siemens TriCore
EM_MIPS_X 51 MIPS-X
EM_COLDFIRE 52 Motorola ColdFire
EM_MMA 54 Fujitsu MMA

e versionldentifies the object file version.

Name Value | Meaning
EV_NONE 0 Invalid version
EV_CURRENT 1 Current version

The value 1 signifiesthe original file format; extensions will create new
versions with higher numbers. The value of EV_CURRENT, though
given as 1 above, will change as necessary to reflect the current version
number.

e_entryGives the virtual address to which the system first transfers control
upon starting the process. If the file has no associated entry point, this
member holds zero.

e _phoffProgram header table’s file offset in bytes. If the file has no program
header table, it holds zero.

e _shoffSection header table’s file offset in bytes. If the file has no section
header table, this field holds zero.

e_flagsProcessor-specific flags associated with the file. Flag names take the
form EF_machine_flag.

e _ehsizeELF header size in bytes.

e phentsizeSize in bytes of one entry in the file’s program header table; all
entries are the same size.

e_phnumNumber of entries in the program header table. The product of
e _phentsize ande_phnum gives the table’s size in bytes. If a file has no
program header table, phnum holds the value zero.

e _shentizeSection header’s size in bytes. A section header is one entry in the
section header table; all entries are the same size.

e_shnumNumber of entries in the section header table. The product of
e _shentsize ande_shnum gives the section header table’s size in bytes.
If a file has no section header taldeshnum holds the value zero.

49

Embedded MCore Development Guide

ELF Identification

e _shstrndxSection header table index of the entry associated with the section
name string table. If the file has no section name string table, this
member holds the value SHN_UNDEF.

ELF Identification

ELF provides an object file framework to support multiple processors, multiple
data encodings, and multiple classes of machines. To support this object file
family, the initial bytes of the file specify how to interpret the file, independent

of the processor on which the inquiry is made and independent of the file’s
remaining contents.

The initial bytes of an ELF header, and an object file, correspond ¢oi themt
member. The identification indexes are tabulated below:

Index Name Value Purpose

El_MAGO 0 File identification
El_MAG1 1 File identification
El_MAG2 2 File identification
El_MAG3 3 File identification
El_CLASS 4 File class

EI_DATA 5 Data encoding
El_VERSION 6 File version

EI_PAD 7 Start of padding bytes
EI_NIDENT 16 Size of e_ident[]

These indexes access bytes that hold the following values:

El_ MAGOtoElI MAG3
A file's first four bytes identify the file as ELF:

Name Value Position

ELFMAGO ox7f e_ident[El_MAGO]
ELFMAG1 ‘E’ e_ident[EI_MAG1]
ELFMAG2 L e_ident[EI_MAG2]
ELFMAG3 ‘F e_ident[EI_MAG3]

Green Hills Software, Inc. 50

El_CLASSThe next byte, e _ident[EI _CLASS], identifies the file’s class, or

capacity:
Name Value Meaning
ELFCLASSNONE 0 invalid class
ELFCLASS32 1 32-bit objects
ELFCLASS64 2 64-bit objects

The file format is portable among machines of various sizes, without
imposing the sizes of the largest machine on the smallest. Class
EL FCLASS32 supports machines with files and virtual address spaces
up to 4 Gigabytes. It uses the basic types defined above.
ClasseEL FCLASS64 is reserved for 64-bit architectures. Its appearance
here shows how the object file may change, but the 64-bit format is
otherwise unspecified. Other classes are defined as necessary, with
different basic types and sizes for object file data.

El_DATAByte e ident[El_DATA] specifies the data encoding of the
processor-specific data in the object file. The encodings are:

Name Value Meaning
ELFDATANONE 0 Invalid data encoding
ELFDATA2LSB 1 See below
ELFDATA2MSB 2 See below

Other values are reserved and are assigned to new encodings as
necessary.

ElI_VERSION

Byte e ident[El _VERSION] specifies the ELF header version number.
Currently, this value must i&V_CURRENT, as explained above for
e version.

El_PADThis value marks the beginning of the unused bytesigent. These
bytes are reserved and set to zero; programs that read object files should
ignore them. The value &_PAD changes if currently unused bytes are
given meanings.

EncodingEL FDATAZ2L SB specifies 2's complement values, with the least
significant byte occupying the lowest address. EncoBingDATA2M SB
specifies 2's complement values, with the most significant byte occupying the
lowest address.

51

Embedded MCore Development Guide

Sections

Sections

Section Headers

An object file's section header table lets you locate all the file's sections. The
section header table is an arraftff32_Shdr structures. A section header table
index is a subscript into this array. The ELF headdnoff gives the byte offset
from the beginning of the file to the section header tabinum tells how
many entries the section header table containse ahentsize gives the size in
bytes of each entry.

Sections contain all information in an object file except the ELF header, the
program header table, and the section header table. Object file sections satisfy
several conditions:

Every section in an object file has exactly one section header describing it.
Section headers may exist that do not have an associated section;

Each section occupies one contiguous (possibly empty) sequence of bytes

within a file;

Sections in a file may not overlap. No byte in a file resides in more than one

section;

An object file may have inactive space. The various headers and the sections
might not account for every byte in an object file. The contents of the

inactive space are unspecified.

A section header has the following structure:

typedef struct {
Elf32_Word
EIf32_Word
EIf32_Word
EIf32_Addr
Elf32_Off
EIf32_Word
Elf32_Word
EIf32_Word
EIf32_Word
Elf32_Word

} EIf32_Shdr;

sh_name;
sh_type;
sh_flags;
sh_addr;
sh_offset;
sh_size;
sh_link;
sh_info;

sh_addralign;

sh_entsize;

Green Hills Software, Inc.

52

sh_nameSpecifies the name of the section. Its value is an index into the section
header string table section, giving the location of a null-terminated
string.

sh_typeCategorizes the section’s contents and semantics. See SHF_GHS_ABS
for more information.

sh_flagsSections support 1-bit flags that describe miscellaneous attributes.

sh_addrlf the section appears in the memory image of a process, this structure
gives the address at which the section’s first byte should reside.
Otherwise, the field contains zero.

sh_offsetGives the byte offset from the beginning of the file to the first byte in
the section.

sh_sizeGives the section’s size in bytes. Unless the section type is
SHT_NOBITS, the section occupieh_size bytes in the file. A section
of typeSHT_NOBI TS may have a non-zero size, but it occupies no
space in the file.

sh_linkHolds a section header table index link, whose interpretation depends
on the section type.

sh_infoHolds extra information, whose interpretation depends on the section
type.
sh_addralign

Some sections have address alignment constraints. For example, if a
section holds a doubleword, the system may need to ensure doubleword
alignment for the entire section. That is, the valughohddr must be

equal to 0, modulo the value gf_addralign. Currently, only 0 and

positive integral powers of two are allowed. Values 0 and 1 mean the
section has no alignment constraints.

sh_entsizeSome sections hold a table of fixed-size entries, such as a symbol
table. For such a section, this gives the size in bytes of each entry. This
structure contains zero if the section does not hold a table of fixed-sized
entries.

Special Section Indexes

Symbol table entries index the section table througlsttrsandx field. See
“Symbol Tables” on page 59.

Name Value
SHN_UNDEF 0
SHN_COMMON -14
SHN_ABS 15

53

Embedded MCore Development Guide

Sections

| SHN_GHS_SMALLCOMMON -256

SHN_UNDEF

A meaningl ess section.
SHN_COMMON

Common, or .bss symbols are allocated space in this section.
SHN_ABS

Contents of the section are absolute values; they are not affected by
rel ocation.

SHN_GHS SMALLCOMMON
Not available for all processors. Similar to SHN_COMMON, but for a
limited number of small variables.

Section Types
A section header’sh_type specifies the section’s semantics:

Name Value
SHT_NULL
SHT_PROGBITS
SHT_SYMTAB
SHT_STRTAB
SHT_REL
SHT_RELA
SHT_NOBITS

| A © W N | O

SHT NULL
Marks the section header as inactive. It does not have an associated
section. Other members of the section header have undefined values.

SHT_PROGBITS
Holds information defined by the program that created the ELF file,
whose format and meaning are determined solely by the program.

SHT_SYMTAB
Holds a symbol table. An object file may have only one section of this
type, but this restriction may be relaxed in the future. It provides symbols
for link editing, though it may also be used for dynamic linking. As a
complete symbol table, it may contain many symbols unnecessary for
dynamic linking.

Green Hills Software, Inc. 54

SHT_STRTAB
Holds a string table. An object file may have multiple string table
sections.

SHT_REL
Holds rel ocation entries without explicit addends, such astype
ElIf32_Rel for the 32-bit class of object files. An object file may have
multiple rel ocation sections.

SHT_RELA
Holds relocation entries with explicit addends, such astype EIf32_Rela
for the 32-bit class of object files. An object file may have multiple
rel ocation sections.

SHT_NOBITS
Occupies no space in the file but otherwise resembles
SHT_PROGBITS.

Section Attribute Flags

A section header’sh_flags holds 1-bit flags that describe the section’s
attributes.

Name Value Abbreviation
SHF_WRITE 0x1 w=writable
SHF_ALLOC 0x2 a=allocated
SHF_EXECINSTR Ox4 e=executable
SHF_GHS_ABS 0x400 b=bits
SHF_MCORE_NOREAD 0x80000000 N/A

SHF WRITE

~ Contains data that should be writable during process execution.

SHF_ALLOC
Occupies memory during process execution. Some control sections do
not reside in the memory image of an object file, this attribute is off for
those sections.

SHF _EXECINSTR
Contains execution machine instructions.

SHF _GHS ABS
Indicates that these sections are to have an absolute, non-relocatable
address.

SHF_MCORE_NOREAD
Indicates that these sections are not readable, but may be executable.

55

Embedded MCore Development Guide

Sections

Two structuresin the section header, sh_link and sh_info, hold specid
information, depending on section type:

sh_type sh_link sh_info

SHT_REL The section header index of the The section header index

SHT RELA associated symbol table of the section to which the

- relocation applies.
SHT_SYMTAB The section header index of the One greater than the
associated string table. symbol table index of the

last local symbol (binding
STB_LOCAL.)

other SHN_UNDEF 0

Section Names

Section names beginning with aperiod (.) are reserved from general use by
application programs, although application programs may use these sections if
their existing meanings are satisfactory. Application programs may use names
without the leading period to be certain of avoiding conflicts with predefined
section names.

Frequently Used Sections

Some sections hold program and control information. Sectionsin the following
list have predefined meaning, with the indicated types and attributes.

Name Type Attributes

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE
.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE
.relname SHT_REL see below

.relaname | SHT_RELA see below

.rodata SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB none

.strtab SHT_STRTAB see below

.symtab SHT_SYMTAB see below

text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.bss Holds uninitialized data that contributes to the program’s memory image.
The system initializes the data with zeros when the program begins to

run.

.data Holds initialized data that contributes to the program’s memory image.
.relname

.relanameBoth these sections hold relocation information. If the file has a
loadable segment that includes relocation, the sections’ attributes include

Green Hills Software, Inc.

56

the SHF_ALLOC hit; otherwise, that bit will be off. Conventionally,
name is supplied by the section to which the relocations apply. A
rel ocation section for .text has the name .rel .text or .rela.text.

.rodataRead-only data area. Similar to the .data section, but comprised of
constant data.

.shstrtabHolds section names.

.strtabHolds strings, most commonly the strings that represent the names
associ ated with symbol table entries. If the file has aloadable segment

that includes the symbol string table, the section’s attributes include the
SHF_ALLOC bit; otherwise, that bit will be off.

.symtabHolds a symbol table. If the file has a loadable segment that includes
the symbol table, the section’s attributes includestHE_AL L OC bit;
otherwise, that bit will be off.

text Holds the text, or executable instructions, of a program.

Some sections are specific to Green Hills ELF, listed on the next page. Target
processors may support some or all of these sections.

Name Type Attributes

.syscall SHT_PROGBITS SHF_EXECINSTR + SHF_ALLOC
.secinfo SHT_PROGBITS SHF_ALLOC

fixaddr SHT_PROGBITS SHF_ALLOC

fixtype SHT_PROGBITS SHF_ALLOC

.sdabase SHT_NULL SHF_ALLOC

.sdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE
.zdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE
.Sbss SHT_PROGBITS SHF_ALLOC + SHF_WRITE
.zbss SHT_PROGBITS SHF_ALLOC + SHF_WRITE
.heap SHT_NOBITS SHF_ALLOC + SHF_WRITE
.stack SHT_NOBITS SHF_ALLOC + SHF_WRITE

.syscallA program code section to support the Green Hills system call
mechanism.

.secinfoA table created by the linker describing actions to be taken on sections
as they are loaded for program execution (sections to be cleared, copied
from ROM to RAM, etc.)

fixaddr

fixtypeTables created by the compiler for Position Independent Code (PIC) and
Position Independent Data (PID) static pointer adjustments to be made
when the program is loaded for execution.

57

Embedded MCore Development Guide

Sections

.sdabaself not in PID mode, the runtime system initializes the Small Data Area
(SDA) base register to be the address of this section.

.sdata

.zdata Small data area, similar to the .data section but of limited size and more
quickly addressed.

.sbss

.zbss Small data area, similar to be the .bss section but of limited size and
more quickly addressed.

.heap Section describing the area of memory for dynamic allocations through
malloc and related functions.

.stack Section describing the area of memory that the program stack will
occupy.

Relocation Types

Relocation is the process of connecting symbolic references with symbolic
definitions. For example, when a program calls a function, the associated call
instruction must transfer control to the proper destination address at execution.
Relocatable files must have information that describes how to modify their

section contents, thus allowing executable files to hold the right information for

a process’ program image. Relocation entries contain this information. In the
code below, the second example is preferred:

typedef struct {
EIf32_Addr r_offset;
Elf32_Word r_info;

} EIf32_Rel;

typedef struct {

EIf32_Addr r_offset;

EIf32_Word r_info;

Elf32_Sword r_addend;
} EIf32_Rela;

r_offsetGives the location at which to apply the relocation action. The value is
the byte offset from the beginning of the section to the storage unit
affected by the relocation.

r_info Gives both the symbol table index with respect to which the relocation

must be made, and the type of relocation to apply information for a
process’ program image. For example, a call instruction’s relocation

Green Hills Software, Inc. 58

entry, holds the symbol table index of the function being called. You may

find the following macros helpful when reading from or writing to the

r_infofield:

#define ELF32_R_SYM() ((i) >> 8)

#define ELF32_R_TYPE(i) ((unsigned char) (i))

#define ELF32_R_INFO(s,t) (((s)<<8) + (unsigned char) (t))
r_addendSpecifies a constant value used to compute the final valueto be stored

into the relocatable field.

A relocation section references two other sections: asymbol table and a section

to modify. The section headesls_info andsh_link specify these relationships.
Relocation entries for different object files have slightly different interpretations
for r_offset:

« Inrelocatable files;_offset holds a section offset. The relocation section
itself describes how to modify another section in the file. Relocation offsets
designate a storage unit within the second section.

« In executable files,_offset holds a virtual address. To make these files’
relocation entries more useful for the dynamic linker, the section offset (file
interpretation) gives way to a virtual address (memory interpretation).

Symbol Tables

The symbol table of an ELF object file holds information to locate and relocate
a program’s symbolic definitions and references. A symbol table index is a
subscript into this array. Index 0 both designates the first entry in the table and
serves as the undefined symbol index. The contents of the initial entry are
specified below. A symbol table entry has the following format:

typedef struct {
Elf32_Word st_name;
EIf32_Addr st_value;
EIf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
EIf32_Half st_shndx;

} EIf32_Sym;

st_nameHolds an index into the object file’'s symbol string table, which holds
the character representations of the symbol names. If the value is
non-zero, it represents a string table index that gives the symbol name.
Otherwise, the symbol table entry has no name.

59 Embedded MCore Devel opment Guide

Symbol Tables

st_valueGives the value of the associated symbol. Depending on the context,
this may be an absolute value, an address, etc.

st_sizeMany symbols have associated sizes. For example, a data object’s size is
the number of bytes contained in the object. This holds 0 if the symbol
has no size or an unknown size.

st_infoSpecifies the symbol’'s binding attributes and type, explained in the
symbol binding and symbol type sections below. The values and
meanings are defined below:

st_other Currently holds 0 and has no defined meaning.

st_shndxEvery symbol table entry is “defined” in relation to some section; this
holds the relevant section header table index. Some section indexes
indicate special meanings. See “Special Section Indexes” on page 53 for
more information.

Symbol Binding
A symbol’s binding determines the linkage visibility and behavior.

Name Value
STB_LOCAL 0
STB_GLOBAL 1
STB_WEAK 2
STB_LOPROC 13
STB_HIPROC 15

STB_LOCAL
Local symbols are not visible outside the object file containing their
definition. Local symbols of the same name may exist in multiple files
without interfering with each other.

STB_GLOBAL
Global symbols are visible to all object files being combined. One file’s
definition of a global symbol will satisfy another file’s undefined
reference to the same global symbol.

STB_WEAK
Weak symbols resemble global symbols, but their definitions have lower
precedence.

Green Hills Software, Inc. 60

STB_L OPROC through STB_HIPROC
Valuesin thisinclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement explains

Symbol Type

them.
A symbol's type provides a general classification for the associated entity:
Name Value
STT_NOTYPE 0
STT_OBJECT 1
STT_FUNC 2
STT_SECTION 3
STT_FILE 4
STT_LOPROC 13
STT_HIPROC 15
STT_NOTYPE
This symbol’s type is not specified.
STT_OBJECT
The symbol is associated with a data object, such as a variable, and array,
and so on.
STT_FUNC

The symbol is associated with a function or other executable.

STT_SECTION
The symbol is associated with a section. Symbol table entries of this
type exist primarily for relocation and normally h&&EB_L OCAL
binding.

STT_FILE
Conventionally, this symbol names the source file associated with the
object file. A file system haSTB_L OCAL binding, its section index is
SHN_ABS, and it precedes the otHg&FB_L OCAL symbols for the file,
if it is present.

STB_L OPROC throughSTB_HIPROC
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement explains
them.

61

Embedded MCore Development Guide

Sring Tables

Symbol Values

Symbol table entries for different object file types have slightly different
interpretations for the st_value member:

» Inrelocatablefiles, st_value holds alignment constraints for a symbol
whose section index is SHN_COMM ON.

« Inrelocatablefiles, st_value holds a section offset for a defined symbol.
Thatis, st_valueisan offset from the beginning of the section that st_shndx
identifies.

« Inexecutablefiles, st_value holdsavirtual address. To make these symbols
more useful for the dynamic linker, the section offset (file interpretation)
gives way to avirtual address (memory interpretation) for which the section
number isirrelevant.

Although the symbol table values have similar meanings for different object
files, the information allows efficient access by the appropriate programs.

String Tables

String tabl e sections hold null-terminated character sequences or strings. The

object file uses these strings to represent symbol and section names. An empty

string table section is permitted; its section headr’size contains zero.

Non-zero indexes are invalid for an empty string table. If the string table is not
empty, you can reference a string as an index into the string table section. The
first byte, which is index zero, holds a null character. Likewise, a string table’s
last byte holds a null character to ensure null termination for all strings. A string
whose index is zero, specifies either no names or a null name, depending on the
context.

A section header’sh_name holds an index into the section header string table
section, as designed by theshstrndx structure of the ELF header. The
following figures show a string table with 25 bytes and the strings associated
with various indexes:

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 \0 n a m e \0 \0 \ a r
10 i a b | e \0 a b | e
20 \0 \0 X X \0

Green Hills Software, Inc. 62

The string table indexes are;

Index String

0 none

1 name

7 Variable
11 able

16 able

24 null string

A string table index may refer to any byte in the section. A string may appear
more than once; references to substrings may exist, and a single string may be
referenced multiple times. Unreferenced strings are al so allowed.

Program Headers

An ELF executable file’s program header table is an array of structures, each
describing a segment or other information the system needs to prepare the
program for execution. An object file segment contains one or more sections.
Program headers are defined only for executable files. A file specifies its own
program header size with the ELF headerjshentsize ande_phnum.

typedef struct {
Elf32_Word p_type;
EIf32_Off p_offset;
EIf32_Addr p_vaddr;
EIf32_Addr p_paddr;
Elf32_Word p_filesz;
EIf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} EIf32_Phdr;

p_typeThe kind of segment this array element describes and how to interpret
the array element’s information.

p_offsetOffset from the beginning of the file at which the first byte of the
segment resides.

p_vaddr Address at which the first byte of the segment resides in memory.
p_paddr This field is currently unused and is set to zero by the linker.

63

Embedded MCore Development Guide

Program Headers

p_fileszZNumber of bytesin the file image of the segment; it may be zero.
p_memszNumber of bytesin the memory image of the segment; it may be zero.
p_flagsFlags relevant to the segment.

p_alignL oadabl e process segments must have congruent values for p_vaddr
and p_offset, modulo the page size. This structure gives the value to
which the segments are aligned in memory and in thefile. Values0 and 1
mean no alignment is required. Otherwise, p_align should be a positive,
integral power of 2, and p_vaddr should equal p_offset, modulo
p_align.

Green Hills Software, Inc. 64

Compiler Driver
Options

This chapter contains:

M Core-Specific Options

Driver Options Specific to the Assembler
Library Options

Driver Options Specific to the ELXR Linker
Genera Options

Data Allocation Options

Debugging Options

Optimization Options

Run-time Error Checking Options

Ada Compiler Options

C Preprocessor Options

C and C++ Preprocessor Options

C Compiler Options

C++ Compiler Options

FORTRAN Language Compiler Options

MCore-Specific Options

The Green Hills compiler supports compiler driver options that are mostly host-independent.
Most of the options are case sensitive. The compiler driver generates awarning for any
unrecognized option. It processes the options on the command line in the order listed. For any
conflicting options, the later option overrides the earlier option.

MCore-Specific Options

-fsingleSpecify code generation using hardware single-precision floating point
instructions.

-cpu=m200Specifies code generation for the M Core m200 core processor.
-cpu=m300Specifies code generation for the M Core m300 core processor.

Driver Options Specific to the Assembler

-asm=options
Passes the specified options to the assembl er.
-list[=file] Enables source listing. This option may be used in two ways.
-list Listing is saved to afile with the same name as the
source file, but with a .lst extension.
-list=fileListing is saved to file of the specified name.

If nofileis specified, the listing will be written to afile with the same
name as the object file being created, but with a.lst extension. For
example, foo.s becomes foo.lst.

Library Options

-Ldirectory The compiler driver passes this option to the linker to specify the
directory to search for libraries. Thereisno space between theL and the
directory.

-Iname The compiler driver passes this option to the linker to add alibrary to the
link command. (This option is the lowercase letter “I".) The variable
name represents the abbreviated notation for the libraries, which is
generally derived by removing thib prefix and the filename extension.
For example;lm adds théibm.a library to the link command. There is
no space betwedrandname.

This option must follow the input source files to resolve any undefined
symbols and must be ordered to resolve any undefined symbols in the

Green Hills Software, Inc. 66

specified library already defined in another library. When you list
multiple -l options, the libraries are linked in command line order
prepended to the default library list.

-nofloation
Set thedriver tolink in libnoflt.a, a special version of the ANSI library in
which floating point 1/O is not required. The I/O routines in thislibrary
does not contain instructions for floating point support and are much
shorter.

-nostartfiles
Supresses the inclusion of crt0.o from the standard library.

-nostdlib
Do not link in the standard libraries. Do not use the standard startup file.

Driver Options Specific to the ELXR Linker

-entry=sym
The address of the symbol sym specifiesthe program’s entry point. If sym
is specified as adash (-entry=-), then no entry point is passed to the
linker.

-Ink=[link_option]
Passes the specified linker options (see Command Line Options) to the
linker command line. The option is passed to the linker in approximately
the position as it appears on the driver command line. By putting the
filename on the driver command line, you can pass a.Ink file to the
linker. For example:

% ccmcore hello.c hello.Ink

If no option is specified after -Ink=, then the default option to the linker
will be suppressed until the necessary option is provided to the linker.
[default]

-locatedprogram
Forces the default behavior whichisto link object filesinto an
executable program. Alternate options include -relprog, -relobj,
-archive, and -shared, all of which combine object files using either an
archiver or linker but do not produce an executable program. [default]
-map=mapfile is displayed on the standard outpuit.

-map=filemapfileis saved to file of the specified name.

67

Embedded MCore Development Guide

General Options

-relobj
Generates arelocatable object file instead of an executable file. The
resulting file is suitable for being passed as input to another run of the
linker.

-sec {info}
Thisentire option, including everything between the braces {}, is passed
unchanged to the linker.

-srec
Generates a Motorola S-record output file aswell asa COFF or ELF
executable. See the utility gsrec for more information.

-relprog
Retains relocation information in the output file. The resulting fileis
suitable for execution, or it may be passed as input to another run of the
linker to allow further relocation of the program.

There are three major differences between -relobj and -relprog:
« -relobj does not give errors for undefined symbols, but -relprog does.
« -relobj does not allocate common variables, but -relprog does.

« -relprog relocates all references to functions and variables so that the
program can be executed.

-sreconly
Generates only a Motorola S-record output file. The output filenameis
specified with a-o filename option. If oneis not provided, a.run will be
used.

Suppresses linker warning diagnostics.

General Options

-#
Displays each command line to call the compiler, assembler, linker, etc.
for processing the input files, without invoking the tools. Same as
-dryrun.

@file

Invokes the driver to read options from the named file, separated by
spaces, tabs and newlines. All other charactersin thefile are literal.
Note that linker directive files should be passed to the linker by using a
known suffix, such as.Ink or .Ix, rather than using the @ syntax.

Green Hills Software, Inc. 68

-archive

Invokesthelibrarian to generate an archive instead of invoking the linker
to generate an executable program. This option must be used with the -o
filename option, and the suffix of the output filename must be .a. For
example:

% ccmcore foo.c -archive -o libfoo.a

-C

Generates only arelocatable object file for each source input file with a
filename of filename.o.

-dryrun

Displays the command line to call the compiler, assembler, linker, etc.
for processing the input files, without invoking them. Seealso -v and -#.

-errmax=n

Limits the number of error messages the compiler prints before quitting
to n. The default is 100 and the minimum is two.

-fnone

-Help

-help

Emits an error when the source file makes use of the floating point. This
option also implies -nofloatio. See “Reducing Program Size” on page
34.

Displays a list of files opened by &mnclude directive. The output goes
to stderr rather tharstdout. This option corresponds to the following:
click onOptions, click Advanced..., selectShow Headers.

Displaysto the standard error a detailed list of the compiler driver
optionsto the standard output. The compiler driver ignores all other
arguments.

Displays a list of most of the compiler driver options to the standard
output. The compiler driver ignores all other arguments.

The-1- option effects the waginclude "file.h" and

#include <system.h are handled. For example, if bafinclude

directives appear in source.c afiftere andlthere are both on the
command line, then the compiler first searches for file.h in the directory
containing source.c. Then, it will search in 'here’, and 'there’. The
compiler with search for system.h in 'here’, and 'there’ only.

69

Embedded MCore Development Guide

General Options

If the-I- option is added to the command line like this:

-Ihere -I- -Ithere
then the compiler will search for file.h in 'here’, and 'there’, and the
compiler will search for system.h in 'there’ only.

-I- causes the compiler to search for files specified with ™" in all of the
directories listed with -Idir on the command line, but not in the directory
containing the source file. Furthermotie,causes the compiler to

search for files specified with <> only in the

directories listed withldir _after_ thel- option on the command line.

Use the| option to avoid a fundamental problem with thieclude " "
directive. In large programming projects, you may make local copies of
either source files or header files. If you have a local copy of a header
file but do not have a local copy of all source files that include that
header file with #include " ", then the local header file will not always be
used. To solve this:

« Never usefinclude " ", but always uséincludefile instead.

¢ Use thel- option. Oncel - appears anywhere on the command line, the
#include " option will never cause the compiler to look in the directory
containing the source file. Instead, the compiler will look only in the
directories listed on the command line, in the following order:
1) Local directories
2) Non-local directories containing both source and header$: @)tion
4) Any directories which may be referenced with#elude <>.

« NOTE: It may be necessary to list some directories both before and after the
-I- option in order to ensure that the proper header file is found in all cases.

-keeptempfiles
Does not delete temporary files after they are used, includingfites.
If you want to generate thefile in the current directory and not have it
deleted, use thes option. Equivalent to MULTI Builder’s “Keep Temp
Files” option in the Advanced Options window.

-language=cxx

-language=fortran
Informs the driver of all of the languages which are in use in the program
being linked. This option may be specified once for each language. The
driver always assumes that at least some files are written in C or
assembly language, but it needs to know if any files contain C++ or
FORTRAN in order to select the correct libraries and perform any
special processing at link time. If C++ or FORTRAN source files appear

Green Hills Software, Inc. 70

on the command line, the driver automatically sets this option. If only
object files and libraries are on the command line, this option is required.

-ident=string

Passes the arbitrary string, string, to the object file. Thisisthe same as
using #pragmaident " string" in C. This can be used to place the date of
the sourcefile in the object file.

-0 filename

Names the output file of the current driver command. In the simplest
case, the linker output file will be named filename. If another fileis
generated from the linker output file, such as an S-Record file, the -0
determines the name of the other file aswell. If only one sourcefileis
named, -0 can be used with either the -S or -c option to name the output
of the compiler or assembler. The driver enforces certain suffixes for
some types of output files.

-object_dir=foobar

foobar is a directory, often a subdirectory of the current working
directory. The driver puts object filesthere, along with assembly listings,
debug information files, inliner files, and other intermediate files which
have the same basename as the object file but with a different suffix.
Note that the output of the linker and the output of the archiver is never
put into object_dir.

-passsour ce

When used with -S, it interleaves your original source code with the
generated assembly code. Not every line of the original source code will
appear in the output.

-Pg
Generates code to collect extended profiling information for use with
MULTI. This option functions similarly to the -p option, except that a
call graph report can be produced with the additional information.
-prefixed_msgs

Inserts the words WARNING and ERROR before every warning and
error message encountered during compilation. The following Utility
Programs support this option: gbincmp, gnm, gstrip, gsrec, and
mtrans.

--prelink_objects

Causes the driver to invoke the C++ prelink utility to instantiate
templates but not to invoke the linker or archiver. The effect issimilar to
-c inthat only object files are created, but no link is performed. The
difference isthat the object files contain all template instantiations
required by this set of object files. Therefore, they can be linked later

71

Embedded MCore Development Guide

General Options

without concern for template requirements. --prelink_obj ects should not
be used with any options that prevent the linker from running, such as
-E, -P, -S, or -c, nor with the option -template=no_auto_instantiation,
which prevents running prelink.

-S
Produces only an assembly file from the source file. For each source
language file specified, compile the file into an assembly language
output file. The default output filename is basename.s unless -0 is used.

-stderr=file
Redirects all warning and error messages into the named file.

-shared
Produce a shared object instead of an executable.

-syntax
Checks syntax but does not generate code.

-T
Truncates all symbol names to eight characters for compatibility with
older UNIX compilers and linkers that require this option. This option
may affect debugging symbolslonger than eight characters.

-V
Causes various programs to print their copyright banner and version
number as they are invoked.

-V

Displays the compiler driver command lines to invoke the compiler,

assembler, and/or linker asthey are executed. See aso -dryrun and -#.
-Wx,args

Passes options argsto the tool specified by the x argument as foll ows.

The following list describes valid values for x. The first value in the list

is the number zero, not the uppercase letter “O”.

0 All compilers

Compiler but not inliner
Librarian

C compiler

FORTRAN compiler
Assembler

Linker

— o MmO N

Green Hills Software, Inc. 72

S Linker
Like-WI, but places arguments before any filesin the link line.
See -Ink=.
-w
Suppresses compiler warning diagnostics.

-Y x,directory
Specifies the directory containing the executabl e designated by the x
option. Valid options are as follows, with the first argument in the list
being the number zero, not the uppercase letter “O”:

0 Contains the compiler executable.

I The default directory to search féinclude files. The compiler
driver will not search the standard Green Hills include directories.

Specifies the linker’s primary search directory.

Contains the startup module or modules suatr so.

The secondary default library search directory for the linker.
Contains the assembler executable.

Contains the linker executable.

- 9 C »n

Data Allocation Options

-autoregister
Enables automatic allocation of local variables to registéis.isthe
default.

-globalreg=n
nis a number from 0 to 4. Arguments-ghobalreg= must be positive
decimal integers. If this option is used, then the new, formerly illegal
syntax is now valid:

register int i; /* file scope implies global */

However register staticint i is still illegal, because it can cause a
possible register numbering problem when compiling multiple source
files.

73

Embedded MCore Development Guide

Data Allocation Options

The type of global register variable can be any datatype T, including
struct and union, subject to the following restrictions:

« sizeof(T) lessthan or equal to sizeof (register), usually 4 bytes,
« sizeof(T) must be apower of 2 (sizeof(T) =1, 2, 4, 8),

« no floats or doubles within type T if type T isastruct or union,
e noarrayswithintype T if type T isastruct or union,

« theglobal register variable must not be explicitly initialized,

» theaddress of aglobal register variable should never be taken.

For example,

register int x;
.r.é.turn &x;

On the MCore, the 4 registers 8, 9, 10, 11 are allocated, in that order, up
to n<=4 registers, to hold the new global register variables. The MCore
ABI designates all of these as permanent (non-volatile) registers, so they
are saved and restored by library routines which use them.

These 4 registers are initialized to zero by the startup module. The
program can depend on this, since it is necessary for ANSI C
conformance.

You must use the same n for -globalreg=n for all compilationswhich are
to be linked together.

Itisan error to put aglobal variableinto aregister in one compilation but
not into the same register in another compilation. You must be consistent
across compilations.

If you want to share the same global register variables across
compilations, consider placing them into asingle include file, whichis
always included first in all compilations. This ensures absolute
consistency of order and association of a variable with a given register,
and vice versa.

Green Hills Software, Inc. 74

MULTI works properly with both local (automatic) and global register
variables, even if they are structs or unions.

Restrictions:
1. Nolibrary callbacks. A routine which is called by alibrary
routine cannot reliably access aglobal register variable, since
the contents of the particular register may have been saved by
the library routine and the register used for something else.
2. Nointerrupt routines. A routine which is called by an interrupt
routine may have interrupted alibrary routine, which leadsto
the same restriction for the same reason given above.

You can work around these limitations by licensing the complete C
runtime library source from Green Hills and recompiling the entire
library with -globalreg=n.

-noautor egister
Disables automatic allocation of local variablesto registers.

-nooverload
Does not allocate more than one variable to aregister or afunction.

-overload
Allocates more than one variable to a register. During debugging, this
option should be turned off by -nooverload. [default]

Debugging Options

-G
In default mode (without -nodbg), -G causes the compiler to generate
debug information in a .dbg file that corresponds to the object file
produced by the compilation. See Chapter 6, “Debug Formatting”, for
more information on .dbg files. When using MULT]I as the Debugger, it
is strongly recommended to use the default -G mode.

When using thenodbg option,-G causes the compiler to generate
extended debug information as DWARF 1.1 stabs. When usdauiipg it
is recommended to usg rather thanG.

In default mode (withouinodbg) -g causes the compiler to generate
debug information in adbg file that corresponds to the object file
produced by the compilation. See Chapter 6, “Debug Formatting”, for

75 Embedded MCore Development Guide

Optimization Options

more information on .dbg files. When using MULT] as the Debugger, it
is strongly recommended to use the default -g mode.

When using the -nodbg option, -g causes the compiler to generate
DWARF 1.1 stabs.

-nodbg

Do not use Green Hills proprietary debug information; instead use
DWAREF style debugging information with ELF.

-dual_debug

Use both the Green Hills proprietary debug information and the alternate
form.

Optimization Options

-0

Enabl es the general optimizations such as peephole optimization,
common subexpression elimination, pipeline instruction scheduling,
dead code elimination, tail recursion and static address elimination.
Option qualifiers are also available to target specific types or areas of
code for improved performance: -OA, -Ol, -OL, -OM, and -OS. When
you select any of these suboptions, the compiler automatically enables
the basic -O optimization. You can specify any combination of
optimizations in any order with asingle -O option. For example,
-OLMA isequivaentto-O -OL -OM -OA. If you use-O in conjunction
with -ansi or -ANSI, the compiler driver automatically setsthe-OM
option.

Allocates more temporary registersto expression evaluation and fewer to
other purposes. The -OE option should be used with programs that have
intensive numeric calculations:

rho=exp(-Pl*cft/q)+(2*PI*cft*sqrt(1-0.25/q/q));

In statements such as the one above, it is desirable to have enough
registers available to hold the result of all intermediate calculations. The
-OE option isintended to make more registers available for this purpose.
If code does not have intensive numeric computations, the temporary
registers will not be needed and thus the -OE option will have the
detrimental effect of reducing the number of registers available for other
purposes.

Green Hills Software, Inc. 76

Algorithmic

-OA
Enables a gorithmic optimizations. Applies algebraic transformations
such as associativity. In some cases, the compiler generates instructions
that ignore overflow, underflow, or round-off. Due to the delicate nature
of these transformations and the relatively rare opportunity for
significant improvement, -OA is not recommended for general use.

Following is an example of C source code and the equivalent code the
compiler produces with the -OA option enabled. The following source
code:

if (i-5 < 0) printf("%d\n", i);

with algorithmic optimization becomes:

if (i < 5) printf("%d\n”, i);

An example of when -OA may produce an unexpected result would be if
the variablei is within five of itslowest bound. i-5 “wraps around” and
thus is greater than zero, even thougtarts out as a negative number,
less than five.

Inlining

Enables automatic inlining for all input source files. The compiler inlines
each function which it determines is appropriate for inlining.

This is disabled in C++.

Inlining is also performed when a function is called from a file which
does not contain its declaration or when the function call appears before
the declaration in the same file. This kind of inter-module inlining
requires two passes of the compiler.

For example, when compiling the following source modules:

% ccmcore -Ol main.c progl.c prog2.c

The compiler is invoked twice for each of the three source modules.
First, the compiler processes each source file to produce an inline file
designated by anf extension. Then the compiler processes each source
using the original source files and the thieéfiles.

a4 Embedded MCore Development Guide

Optimization Options

Functions declared with the __inline keyword (in C and Pascal), the
inline keyword (in C++), and OPTIONS/INLINE in FORTRAN are
aso inlined. Thisworks even if -Ol isnot thrown. There are afew
propertiesto be aware of. First, these functions are assumed to be of
static scope; therefore, they are not exported or available to beinlined in
other modules. Second, these functions must be defined in the module
before they are called or included in other inline function; otherwise the
callerslocated before the function definition will not be able to inline
them. Third, these functions are not output in closed form if they were
successfully inlined by all their callers.

Sincethe__inline keyword defines a static function, afunction declared
in asingle module with the __inline keyword cannot beinlined into
multiple modules. However, there are two techniques that can be used to
inline afunction into multiple modul es, even when the compiler chooses
not to do so automatically. The first is that the function can be declared
with __inline near the top of each module where it is used; this process
can be made easier by putting the__inline function into afilethat is
included by each source module that needs it. The second is to use the
-Ol =funcname option, described below, without the use of the __inline
keyword. Users may also consider using the -OD=funcname option in
conjunction with this second technique.

-Ol =routines
Inlines the functions listed on the command line and any functions
specifically marked for inlining. No automatic inlining is done. For
example, when compiling the following source code:

% ccmcore -Ol=sub main.c progl.c prog2.c

The compiler inlines the routine sub() when called, along with callsto
any routines specifically marked for inlining.

Example 1
ac.inta) { return1;}
b.c.intb() { return 2; }

c.c. externint &), b(); int c() { return a() + b(); }

occmceore-Ol acb.cc.c

Green Hills Software, Inc. 78

a() and b() will be inlined automatically because of -Ol.
a() and b() will both aso be output in their defining modules.

occmceore-Ol=aa.ch.cc.c
a() will beinlined automatically because of -Ol =a.
b() will not be inlined because -Ol was not thrown.
Both a() and b() will be output in their defining modules.
occmceore-Ol=a-OD=aa.cb.cc.c
a() will beinlined automatically because of -Ol=a
b() will not be inlined because -Ol was not thrown.
a() will not be output in closed form, but b() will.
o ccmceore-Ol=a -0l -OD=aa.ch.cc.c
a() will beinlined automatically because of -Ol=a
b() will be inlined automatically because -Ol was thrown.
a() will not be output in closed form, but b() will.
Example 2:
ac
int a very_big_function()

{

I* lots of code in here, not shown for brevity... */
return O,

int b()

Embedded MCore Development Guide

Optimization Options

{

return 2;

b.c:

externint a(), b();
__inlineint c()
{

return 3;

int d()
{

return a_very big function() + b() + c();

}

occmeore-Ol a.cb.c:

a very_big_function() will not be inlined even though -Ol is
thrown because the compiler deemsit to be too large.

b() will be output because -Ol is thrown and it is small.

¢() will beinlined because it was declared with _inlinein the
same module as the caller.

a very _big function() and b() will be output in closed form in
module a. ¢() will not be output in closed form because it
declared with __inline and it was was successfully inlined
everywhere.

o ccmceore-Ol=a very big_function a.c b.c:

a very_big_function() will be inlined because of
-Ol=a_very_big_function

Green Hills Software, Inc. 80

b() will not be inlined because -OI was not thrown

¢() will beinlined because it was declared with __inlinein the
same module as the caller.

a very big function() and b() will be output in closed formin
module

a. ¢() will not be output in closed form.

occmceorea.cb.c:

a very_big_function() and b() will not be inlined because -OlI
was not thrown.

c() will beinlined because it was declared with __inlinein the
same module as the caller.

a very_big_function() and b() will be output in closed formin
module a. ¢() will not be output in closed form.

Loop Optimization

-OL
Enables loop optimizations. With this optimization, the compiler
concentrates most of its resources to optimizing code in the innermost
loopsin your source files. Therefore, this option is most effective for
code containing many loop structures which are executed frequently.
This optimization includes strength reduction, loop invariant analysis,
and loop unrolling. Where code size isapriority, you can disable loop
unrolling. Also, you can increase the maximum number of times the
loop isunrolled. See the other optionsin this section.

-OL =routines
Performs | oop optimization only for the functions listed on the command
line. For example, the following command line specifies loop
optimization only for the function sub:

% ccmcore -OL=sub main.c progl.c prog2.c

-OLB
Increases maximum for loop unrolling from 4 to 8 times and applies
unrolling to larger loops than usual.

81

Embedded MCore Development Guide

Optimization Options

Memory

Space

-Ounroll8

Increases maximum for loop unrolling from 4 to 8 times. Thisoption
requires the -OL option.

Enables memory option. Thisoptionisequivaent to -O except it allows
the optimizer to assume that memory locations do not change, except by
explicit stores, and are not affected by any external sources.

This compile-time option is not safe in applications where memory is
externally affected, such asin device drivers, operating systems, and
shared memory. This option isalso not safe in anon-virtual memory
environment when interrupts are enabled.

This option isenabled automatically when -O is used with either -ansi or
-ANSI. Thevolatile keyword explicitly indicates any objects which

may change without the compiler’s knowledge or control. If for some
reason you cannot use the volatile keyword, you can use the
-Onomemory option, which disables memory optimization while
enabling otherO optimizations.

Specifies a list of functions whose code generation may be skipped
during the compilation phase, thereby reducing code space. For example:

-OD=foo,bar

specifies that the compiler should not generate code for the funfdons
andbar. This can be useful if a postprocessing tool determines that these
functions are never called.

The-OD option can also be useful with inlining. For example:

-Ol =foo,bar -OD=foo,bar

specifies thatoo andbar will be inlined where ever they are called and
because of that, the actual code generation for the functions may be
omitted. If for some reason a function listed could not be inlined at one

Green Hills Software, Inc. 82

of the call sites, the linker will not be able to resolve the missing symbol,
resulting in alink-time error.

Example 1
ac.inta) { return1;}
b.c:intb() { return 2; }
c.c.externint &), b(); int c() { returna() + b(); }

occmceore-Ol acb.cc.c

a() and b() will be inlined automatically because of -Ol.
a() and b() will both aso be output in their defining modules.

occmceore-Ol=aa.ch.cc.c

a() will beinlined automatically because of -Ol =a.

b() will not be inlined because -Ol was not thrown.

Both a() and b() will be output in their defining modules.
occmceore-Ol=a-OD=aa.cb.cc.c

a() will beinlined automatically because of -Ol=a

b() will not be inlined because -Ol was not thrown.

a() will not be output in closed form, but b() will.
o ccmceore-Ol=a -0l -OD=aa.ch.cc.c

a() will beinlined automatically because of -Ol=a

b() will be inlined automatically because -Ol was thrown.

a() will not be output in closed form, but b() will.

Example 2:

Embedded MCore Development Guide

Optimization Options

a.c:

inta very big_function()

{

I* lots of code in here, not shown for brevity... */
return O,

int b()
{

return 2;

b.c:

externint a(), b();
__inlineint ¢()
{

return 3;

int d()
{

return a_very_big function() + b() + c();

}

occmceore-Ol a.cb.c:

a very_big function() will not be inlined even though -Ol is
thrown because the compiler deemsit to be too large.

b() will be output because -Ol isthrown and it is small.

Green Hills Software, Inc. 84

c() will beinlined because it was declared with __inlinein the
same module as the caller.

a very_big_function() and b() will be output in closed formin
module a. () will not be output in closed form because it
declared with __inline and it was was successfully inlined
everywhere.

o ccmcore -Ol=a very big_function a.cb.c:

a very big function() will be inlined because of
-Ol=a_ very_big_function
b() will not be inlined because -Ol was not thrown

c() will beinlined because it was declared with __inlinein the
same module as the caller.

a very _big function() and b() will be output in closed formin
module

a. c() will not be output in closed form.

occmceorea.chb.c:

a very_big_function() and b() will not be inlined because -OlI
was not thrown.

¢() will beinlined because it was declared with __inlinein the
same module as the caller.

a very_big function() and b() will be output in closed formin
module a. c() will not be output in closed form.

Enabl es space optimizations. This option invokes al the basic
optimizations except those that would increase the code size. The
compiler generates smaller code, with potential for decreased
performance. -OS implies-Onostrcpy. If -OSiis specified, callsto

85

Embedded MCore Development Guide

Optimization Options

strepy() will not be inlined. Inlining strepy() takes more space but can
improve program speed. -OS disables loop unrolling (-OL).

Disables the -OS option when both -OS and -OT are on the command
line and -OS is before -OT.

Optimization Control (-Ono)

The options beginning with -Ono disable certain optimizations. Each enables
the same general optimizations specified by the -O option but turns off a
specific optimization enabled by -O.

-Onoconstprop
Disables propagation of constant expressions. Constant propagation is
the replacement of one or more variables with constants over a portion of
a variable’s lifetime in which the variable’s value is known and does not
change.

-Onocse
Disables common subexpression elimination.

-Onomemory
Disables memory optimizations.

-Onominmax
For use with C and C++. Suppresses the optimization generating special
code for minimum, maximum, and absolute value expressions of the
form:

i<p?i:j
i>p2i:j
(i<0)?-i:i

-Onopeep
Disables peephole optimizations.
-Onopipeline
Disables instruction resequencing for pipelined architectures.
-Onostrcpy
For use with C and C++. Suppresses optimizations generating inline
code forstrcpy() andstrcmp() with constant arguments.

-Onotailrecursion
Disables tail recursion, a general optimization enabled with the -O
option. In a recursive procedure, tail recursion optimization replaces the

Green Hills Software, Inc. 86

procedure call with a branch instruction and eliminates the return
statement.

-Onounroall
Disables loop unrolling, a part of the -OL optimization. If -OL isnot
specified, -Onounroll isthe same as-O. If -OL is specified, all loop
optimizations except unrolling are performed.

Run-time Error Checking Options

-check=options
Generates various run-time checks. optionsis either asingle option or a
comma-separated list of options (no spaces allowed) from the following
list.
These options are not valid in FORTRAN.

all
Turnson al checks.

assignbound
Checks the value in the range of the type when assigning avalueto a
variable or field which isa small integral type such as abit field.

bounds
Checks array bound indices.

memory
Causes the compiler to generate extra code to verify every load or store
involving apointer which may point to memory returned by malloc() and
itsrelated functions. This option also causes a special version of those
library routines to be linked.

(This option differs from -check=alloc because -check=alloc
only links the special library, but does not cause the compiler to
generate extra code.)

The verification is performed by reading the memory location to
which the pointer points and comparing the contents to a special
value. If the memory contains the special value, alibrary routine,
__ptrchk(), is caled with the address of the memory location. If
that address is not within the set of legal addresses currently
allocated to the program by malloc, a runtime error will occur.

This check is effective for detecting use of pointers which have
been incremented past an allocated buffer.

87

Embedded MCore Development Guide

Ada Compiler Options

nilder ef
Generates an error message for dereferences of null pointers.

switch
Generates awarning if the case/switch expression does not match any of
the case labels. This does not apply when a default case label is used or
when the case statement is enclosed in an if-then construct.

usevariable
Generates a warning message during compilation of afunction
containing any local variables that are read before being written.

watch
Allowsthe MULTI debugger to set up one fast watchpoint. See the
watchpoint command in the MULTI Reference Manual.

zerodivide
Generates an error message indicating that adivide by zero occurred and
then terminates the program execution.

To turn off any of these options, simply precede the option with no. You
can also use thisto turn on every option except the indicated flag. For
example, to turn on all checks except zer odivide, enter:

-check=al | , nozer odi vi de

The following table lists output error messages when the run-time error
checking isenabled. Run-time error checking requires additional code, which
increases the size and reduces the speed of the program, but the convenience of
automatic checking can be very valuable during debugging.

Some messages are considered fatal errors and cause the program to exit with
the specified status. Other messages are warnings and will not cause the
program to terminate. However, these warnings can change the eventual exit
status.

Ada Compiler Options

For options specific to Ada, refer to the Green Hills Ada 95 User’'s Guide and
Compiler Reference

Green Hills Software, Inc. 88

C Preprocessor Options

-include filename
Include the source code of the indicated file at the beginning of the
compilation. This can be used to establish standard macro definitions,
etc. The filenameis searched for in the directories on the include search
list.

-Xincludenever
Ignores all #include directives.

-Xincludeonce
If afilename appearsin more than one #include directive during asingle
compilation, it skips all of the directives except the first one.

-Xnocpperror
During preprocessing, linesinside of false #if, #elif, #ifdef, #ifndef are
ignored with the exception that awarning or error is given for lines
beginning with # which do not contain legal preprocessor directives.
This option suppresses these warnings and errors.

-Xnopragmawarn
Suppresses warnings for errors in #pragma which are recognized by the
compiler and are incorrect.

-Xredefine
Suppresses the warning or error which is normally given when two
#define directives have different val ues for the same preprocessor
symbol.

C and C++ Preprocessor Options

-C
Includes comments in the preprocessor output. The default isto strip
comments from the output.

-Dname
Defines the argument name for the preprocessor with a default value of
one. Thisis equivalent to placing the following at the top of the first
source file, #define name 1.

-Dname=string
Defines the argument name for the preprocessor with the value of string.
Thisis equivalent to placing the following at the top of the sourcefile,
#define name string. There is no space between D and name.

89 Embedded MCore Devel opment Guide

C Compiler Options

-E
Invokes the compiler as a preprocessor and places the preprocessed file
output on the standard output. Thisis useful for debugging preprocessor
meacros and include files.

-P

Similar to the -E option. Invokes the compiler as a preprocessor but
writes the output to a file which has the name of the input file with its
suffix changed to .i.

-Uname
Undefines the preprocessor symbol name. Equivalent to placing #undef
name at the top of the source file. This option removes any predefined
compiler symboals.

Prevents the compiler from defining any symbols. Normally, the
compiler defines a set of default symbols automatically. Seealso -I, -I-,
and -H under General Options.

C Compiler Options

-ANSI
Sets the compiler in Strict ANSI mode. Strict ANSI modeis 100%
compliant with the ANSI X 3.159-1989 standard and does not allow any
non-standard constructs.

-ans
Sets the compiler in Permissive ANSI compatibility mode. This mode
supportsthe language features of the ANSI X 3.159-1989 standard, while
allowing certain useful, but non-compliant, constructsin an ANSI C
framework.

-column=n
Setsthe length of aline for error messages and warnings to n characters.
The default line length is 80. The compiler will break up errors and
warningsinto multiple lines, inserting anew line and tab between words.
If the length of a single word (such as a filename or symbol name)
exceeds the maximum line length, then that word will appear alone on a
line, but will not betruncated to fit on theline. If the length is set to zero,
then errors and warnings will not break into separate lines regardless of
their length. Line lengths less than 40 are ignored.

-noansi
Equivalent to -Xt.

Green Hills Software, Inc. 20

-asmwarn
Prints awarning for every asm statement encountered. Thisisthe
default.

-noasmwarn
Prevents the compiler from printing warning messages for asm
statements.

-k+r

Interprets the source code as the C version documented in Kernighan &
Ritchie, first edition, and compatible with the portable C compiler
(PCC). See also -noansi.

-gnu_c
Supports Gnu extensions, such as #import, zero size arrays, compound
statements as part of expressions, inline functionsand the __inline__
keyword. Thisisthe default in C. Ignored for C++.

-nognu_c
Does not alow Gnu C extensions. Thisisthe default in C++. Ignored for
C++.

-shortenum
Allocates enumerated types to the smallest storage possible.

-noshortenum
Does not allocate enumerated types to the smallest storage
possible.[default]
-shortwchar
Specifies the size of the type wchar_t in ANSI C and C++ as 2 bytes.
-noshortwchar
Specifiesthe size of type wchar _t in ANSI C and C++ as 4 bytes.
[default]
-signedchar
Specifiestype char as signed.
-unsignedchar
Specifies type char as unsigned. [default]
-signedfield
Specifies a bit-field whose type is signed and isinterpreted as a signed
quantity.
-unsignedfield
Specifies all bit-fields as an unsigned quantity. Thisis the default. If the
ANSI type declaration signed is used, then that bit-field is signed even if
the program is compiled with the -unsignedfield option.

91

Embedded MCore Development Guide

C Compiler Options

-signedwchar
Specifiestype wchar_t in ANSI C and C++ as signed. [default]

-unsignedwchar
Specifiestype wchar_t in ANSI C and C++ as unsigned.

-signedptr
Specifies pointers and addresses as signed.

-unsignedptr
Specifies pointers and addresses as unsigned. [default]

-T
Truncates all symbol names to eight characters for compatibility with
older UNIX compilers and linkers.

-tmp=dir
Causes temporary filesto be placed in the directory specified by dir
instead of /tmp. Thisisuseful if /timp ison asmall file system which
might run out of disk space during compiles with inlining or template
processing. On Win32, the default temporary directory is the current
directory. Thisis also set with the TMPDIR environment variable. For
example:

setenv TMPDIR /usr/tmp

-Xa
Selects Permissive ANSI compatibility mode. Equivalent to -ansi.
-Xansiopeq
Uses ANSI rulesfor ++ and *=in K&R C. Thisisturned off by the
-Zansiopeq option.
-Xc
Selects Strict ANSI compatibility mode. Equivalent to -ANSI.
-Xconcatcomments
Allows /* *[as concatenation in K&R C. Thisoption may be turned off
with the -Zconcatcomments option.

-Xinitextern
Allows variables declared, with the extern storage class in afunction, to
accept initial values. Inthe K+R mode, this normally gives awarning
and in ANSI C mode, it normally isillegal.

-Xjapanese_automotive ¢
Enables a set of extensionsto ANSI C used by Japanese automobile
manufacturers. This option implies -Xpragma_asm_inline.

Green Hills Software, Inc. 92

-Xneedprototype
Generates afatal error if afunction is referenced or called but no
prototype is provided for that function. Thisis an extensionto ANSI C
and shows that the prototypes exist for al functions.

-Xwantprototype
Generatesawarning if afunction isreferenced or called but no prototype
isprovided for that function. Thisisan extension to ANSI C and shows
that the prototypes exist for all functions.

-Xnoalias
Adds noalias keyword to C. This option may be turned off with the
-Znodlias option.

-Xnoasm
asm inline directiveis not recognized. The __asm directiveis
recognized; only the asm directive without leading underscoresis
affected by this switch. Thisswitchis enabled with -ANSI. See also
-[noJasmwarn.

-Xnooldfashioned
Does not recogni ze old-fashioned syntax for initializing variables such
as int i 5, and for assignment operators such as =+, =-,and =*.
-Znooldfashioned turns off this option. If thisoption is not enabled
when compiling in non-ansi mode, the old-fashioned syntax is accepted
with awarning message. When compiling in non-ansi mode or using
-Xnooldfashioned in K& R mode, old-fashioned initializations give the
error:

expected: '=" got: constant
and an equal sign followed by the symbols are recognized as two
separatetokens: +-* /% & |~ << >>, Thisresultsin asyntax error for
thesymbols: +/ % |~ << >> but is correct for the following symbols
which arelegal unary operatorsinC: -* &.

For example when not compiling in ANSI mode, -Xnooldfashioned is
required to correctly compile the following lines since no space appears
after the equal sign:

inti, *p;
i =-3;
p =&i;
i =*p;

By default, this option is disabled.

Embedded MCore Development Guide

C Compiler Options

-Xpragma_asm_inline
Enables the following pragmae: #pragma asm, #pragma endasm, and
#pragmainline.

-Xs
Equivalent to -k+r.

-Xdashsashcomments
Allows C++ style/ / comments.

-Xt
Selects amode of ANSI C compatibility similar to AT&T C Issue 5.0
transition mode supporting function prototypes and the new ANS
keywords signed and volatile in anon-ANSI environment.

-Zansiopeq
Does not use ANSI rulesfor ++ and *=in K&R C. This option is turned
off with the option -Xansiopeg.

-Zconcatcomments
Does not allow /* */ as concatenation in K&R C. This option is turned
off with the option -X concatcomments.

-Znoalias
Turns off the -Xnoalias option.

-Znooldfashioned
Turns off the -Xnooldfashioned option.

Compile-Time Error Checking

These options control various forms of error checking performed during
compilation.

-strict=comperr
Generates compile-time errors for division by constant zero, overflow of
constant expressions, assignment of a constant to a variable where the
constant value is outside the range of the variable, passing a constant to a
parameter where the constant val ue is outside the range of the parameter,
and constant array index outside of the array bounds.

-gtrict=compwarn
Provides warnings for unused variables, wrong pragmae, unknown
pragmae, and overflow of constant expressions.

-strict
Same as -strict=compwarn plus -strict=comperr. Also performs
parameter count checking.

Green Hills Software, Inc. 94

-STRICT=COMPERR
Same as -strict=comperr, plus gives an error for any use of afunction
without an ANSI C prototype.
STRICT=COMPWARN
Same as -strict=compwar n, plus gives awarning for any use of a
function without an ANSI C prototype.
-STRICT
Same as -strict, plus gives an error for any use of afunction without an
ANSI C prototype. Also performs parameter count checking.
-strict=nocompwarn
Turns off -strict=compwarn.
-STRICT=noCOMPWARN
Turns off -STRICT=COMPWARN.
-strict=nocomperr
Turns off -strict=comperr.

-STRICT=noCOMPERR
Turns off -STRICT=COMPERR.

C++ Compiler Options

--alternative tokens

--no_alternative tokens
Enables or disables recognition of alternative tokens. These are tokens
that make it possible to write C++ without the use of the{,},[,], # &, |,
A, and ~ characters. The aternative tokens include the operator
keywords (such as and, bitand, etc.) and digraphs. Default is
--no_alternative tokens.

--array_new_and_delete
--no_array_new_and_delete
Enables or disables support for array, new, and delete. Defaultis
--array_new_and_delete.
-asmwarn
Prints awarning for every asm statement encountered. [default]
-noasmwarn
Prevents the compiler from printing warning messages for asm
Statements.

95

Embedded MCore Development Guide

C++ Compiler Options

--bool

--no_bool
Enables or disables recognition of bool. When bool is enabled, the
preprocessor symbol _BOOL is defined, allowing code to determine
when atypedef should be used to define the bool type. Defaultis--bool.

-dotciscxx
Interprets al files ending with .c as proper C++ sourcefiles.

--early_tiebreaker

--late tiebreaker
Selects the way that tie breakers, or cv-qualifier differences, apply in
overload resolution. In early tie breaker processing, the tie breakers are
considered at the same time as other measures of the goodness of the
match of an argument value and the corresponding parameter type. In
late tie breaker processing, tie breakers are ignored during the initial
comparison, and are considered only if two functions are otherwise
equally good on all arguments; the tie breakers can then be used to
choose one function over another. The default is--early_tiebreaker.

--enum_overloading

--no_enum_overloading
Enables or disables support for using operator functions to overload
built-in operations on enum-typed operands. The default is
--enum_overloading.

--exceptions

--no_exceptions
Enables or disables support for exception handling. Default is
--no_exceptions.

--explicit

--no_explicit
Enables or disables support for the explicit specifier on constructor
declarations. Default is--explicit.

--extern_inline

--no_extern_inline
Enables or disables support for inline functions with external linkage.
When inline functions are alowed to have external linkage as required
by the standard, then extern and inline are compatible specifierson a
non-member function declaration; the default linkage when inline
appears aloneis external (i.e., inline means extern inlineon
non-member functions); and an inline member function takes on the
linkage of its class, which isusually external. However, when inline

Green Hills Software, Inc. 96

functions have only internal linkage as specified by the ARM, then
extern and inline are incompatible; the default linkage when inline
appearsaoneininterna (i.e., inline means static inline on non-member
functions); and inline member functions have internal linkage no matter
what the linkage of their class. Default is --extern_inline.
-gnu_c
Supports Gnu extensions, such as#import, zero size arrays, compound
statements as part of expressions, inline functionsandthe __inline_
keyword. Thisisthe defaultin C++.
-nognu_c
Does not alow Gnu C extensions. Thisis the default in C.
--implicit_extern_c type conversion
--no_implicit_extern_c_type conversion
Enables or disables an extension to permit implicit type conversion in
C++ between a pointer to an extern C function and a pointer to an
extern C++ function. Defaultis--implicit_extern_c_type_conversion.
--inlining
Enables areasonable level of function inlining. [default]
--inlining_unless_debug
Enables areasonable level of function inlining, unless symbolic debug
information is requested. If symbolic debug information is requested,
then the effect is the same as specifying the --no_inlining option.
--keep_gen_c
The C++ sourceisfirst translated into a C source file beforeit is
compiled. Thisfile hasa.ic extension and is normally deleted after
compilation. This option causes the .ic file to not be del eted.
--long_lifetime_temps
--short_lifetime_temps
Selects the lifetime for temporaries. Short lifetimes refer to the end of
full expression. Long lifetimes refer to the earliest of end of scope, end
of switch clause, or next label. Short lifetimes are standard C++, and
long lifetimes are what cfront uses; the cfront compatibility modes select
long lifetimes by default.
--max_inlining
Enables an aggressive level of function inlining.
--max_inlining_unless_debug
Enables an aggressive level of function inlining, unless symbolic debug
information is requested. If symbolic debug information is requested,
then the effect is the same as specifying the --no_inlining option.

97

Embedded MCore Development Guide

C++ Compiler Options

--multibyte chars

--no_multibyte chars
Enables or disables processing for multibyte character sequencesin
comments, string literals, and character constants. M ultibyte encodings
are used for character sets like the Japanese Shift-JIS. Default is
--no_multibyte chars.

--namespaces

--N0_namespaces
Enabl es or disables support for namespaces. Default is --namespacesfor
C++, --no_namespaces for Embedded C++.

--no_forced zero initialization
Does not force global, uninitialized variables to be initialized to zero.
This may saveinitialized data section space for embedded programs.

--no_inlining
Disables inlining of function calls. This may be a useful option for
debugging C++ code.

--old_for_init

--new_for_init
Controls the scope of a declaration in afor-init statement. The old
cfront/pre-ANSI compatible rule means the declaration isin the scope to
which the for statement itself belongs. The new ANSI standard
conforming rules, in effect, wrap the entire for statement in its own
implicitly generated scope. Default is --old_for_init.

--pack_alignment=align
Sets the default alignment for packing classes and structs to align, which
must be a power-of-2 value. The specified alignment is the default
maximum alignment for nonstati c data members; it can be overridden by
a#pragma pack directive.

--restrict

--no_restrict
Enables or disables recognition of therestrict keyword. Default is
--no_restrict.

--rtti

--no_rtti
Enables or disables support for Runtime Type Information (RTTI).
Features enabled/disabled are dynamic_cast, and typeid. Defaultis
--rtti for C++, --no_rtti for Embedded C++.

Green Hills Software, Inc. 98

-shortenum
Allocates enumerated types to the smallest storage possible.

-noshortenum
Does not attempt to allocate enumerated types to the smallest storage
possible. [default]

-shortwchar
Specifies the size of the type wchar_t in ANSI C and C++ astwo bytes.

-noshortwchar
Specifies the size of type wchar _t in ANSI C and C++ as four bytes.
[default]

-signedchar
Specifiestype char as signed.

-unsignedchar
Specifies type char as unsigned. [default]

-signedfield
Specifies a bit-field whose type, signed, is interpreted as a signed
guantity.

-unsignedfield
Specifies all bit-fields as an unsigned quantity. [default] If the ANS
type declaration signed is used, then that bit-field is signed even if the
program is compiled with the -unsignedfield option.

-signedptr
Specifies pointers and addresses as signed.

-unsignedptr
Specifies pointers and addresses as unsigned. [default]

-signedwchar
Specifiestypewchar_t in ANSI C and C++ as signed. [default]

-T
Truncates all symbol names to eight characters for compatibility with
older UNIX compilers and linkers.

-tmp=dir
Causes temporary filesto be placed in the directory specified by dir
instead of /tmp. Thisisuseful if /tmp ison asmall file system which
might run out of disk space during compiles with inlining or template
processing. On Win32, the default temporary directory is the current
directory. Thisis also set with the TMPDIR environment variable. For
example:

99

Embedded MCore Development Guide

C++ Compiler Options

setenv TMPDIR /usr/tmp

-unsignedwchar
Specifiestype wchar _t in ANSI C and C++ as unsigned.

--using_std

--no_using_std
Enables or disables implicit use of the std namespace when standard
header files areincluded. Default is--no_using_std.

--wchar_t_keyword

--no_wchar_t_keyword
Enables or disables recognition of wchar_t as akeyword. Default is
--wchar_t_keyword.

-Xnoasm
asm inline directiveis not recognized. The __asm directiveis
recognized; only the asm directive without leading underscoresis
affected by this switch. This switchis enabled with -ANSI. Seeaso
-[noJasmwarn.

-Xwantprototype
Generatesawarning if afunction isreferenced or called but no prototype
isprovided for that function. Thisisan extensionto ANSI C and shows
that the prototypes exist for all functions.

-Xneedprototype
Generates afatal error if afunctionis referenced or called but no
prototype is provided for that function. Thisis an extensionto ANSI C
and shows that the prototypes exist for al functions.

C++ Compatibility Options

--anachronisms

--no_anachronisms
Enables or disables anachronisms. The default is--no_anachronisms.

--cfront_2.1

21
Enables compilation of C++ with compatibility with cfront version 2.1.
This causes the compiler to accept language constructs that, while not
part of the C++ language definition, are accepted by the AT& T C++
Language System (cfront) release 2.1.

Green Hills Software, Inc. 100

--cfront_3.0

-3.0
Enables compilation of C++ with compatibility with cfront version 3.0.
This causes the compiler to accept language constructs that, while not
part of the C++ language definition, are accepted by the AT& T C++
Language System (cfront) release 3.0. This option also enables
acceptance of anachronisms.

--edl

--ecle
Enabl es extended Embedded C++. Adds templates, namespaces,
mutable, new style casts enabled and the Standard Template Library
(STL) to Embedded C++.

--old_for_init

--new_for_init

Controls the scope of a declaration in afor-init statement. The old
cfront/pre-ANSI compatibl e rule means the declaration isin the scope to
which the for statement itself belongs. The new ANSI standard
conforming rules, in effect, wrap the entire for statement in its own
implicitly generated scope. Default is --new_for _init.
--strict_warnings
--std
Enabl es strict Standard mode, which provides diagnostic messages when
non-Standard features are used, and disables features that conflict with
Standard C++. Standard violations will be issued as warnings.

--strict

--STD
Enabl es strict Standard mode, which provides diagnostic messages when
non-Standard features are used, and disables features that conflict with
Standard C++. Standard violations will be issued as errors.

C++ Library Selection Options

--eel

Engages extended Embedded C++ library without exceptions.
--ecle

Engages extended Embedded C++ library with exceptions.
--¢el

Engages Embedded C++ library without exceptions.
--ele

Engages Embedded C++ library with exceptions.

101

Embedded MCore Development Guide

C++ Compiler Options

--stdl

Engages Standard C++ library without exceptions.
--stdle

Engages Standard C++ library with exceptions.

Error Message Options

--brief_diagnostics

--no_brief_diagnostics
Enables or disables amode in which a shorter form of the diagnostic
output isused. When enabled, the original source lineis not displayed
and the error message text is not wrapped when too long to fit on asingle
line.

--diag_suppress tags

--diag_remark tags

--diag_war ning tags

--diag_error tags
Overridesthe normal error severity of the specified diagnostic messages.
The message(s) may be specified using a mnemonic error tag, or using
an error number.

--display_error_number
Displays the error message number in any diagnostic messages that are
generated. The option may be used to determine the error number to be
used when overriding the severity of a diagnostic message.

--for_init_diff_warning

--no_for_init_diff_warning
Enables or disables awarning that is issued when programs compiled
under the new f or -i ni t scoping rules would have had a different
behavior under the old rules. Default is--for_init_diff_warning.

--no_use before set warnings
Suppresses warnings on local automatic variables that are used before
their values are set. The compiler’s algorithm for detecting such uses is
conservative and is likely to miss some cases that an optimizer with
sophisticated flow analysis could detect; thus, implementation might
suppress the warnings from the compiler when optimization has been
requested but permit them when the optimizer is not being run.

--remarks
Issues remarks, which are diagnostic messages milder than warnings.

Green Hills Software, Inc. 102

--Nno_warnings
Suppresses warnings. Errors are still issued.
--wrap_diagnostics
--no_wrap_diagnostics
Enables or disables a mode in which the error message text is not
wrapped when too long to fit on asingle line. Default is
--wrap_diagnostics.

Listing Options
--list Ifile(For C++ only.) Generates raw listing information in the filelfile. This
information can generate a formatted listing. The raw listing file

contains raw source lines, information on transitions into and out of
includefiles, and diagnostics generated by the compiler. Each line of the
listing file begins with a key character that identifies the type of line, as
follows:

N
X

R, W,

Normal line of source; the rest of the line is the text of the line.

Expanded form of anormal line of source; the rest of thelineis
thetext of theline. Thisline appears following the N line, and
only if the line contains non-trivia modifications. Comments are
considered trivial modifications, macro expansions, line splices,
and trigraphs are considered non-trivial modifications.

Line of source skipped by a #if or the like; the rest of thelineis
text. The#else, #elif, or #endif that endsa skip ismarked with an
N.

Indication of achangein source position. The line has a format
similar to the # line-identifying directive output by cpp, as
follows:

L line-number filename key

Where key is either 1 for entry into an includefile, or 2 for exit
from an include file, and omitted otherwise. Thefirst linein the
raw listing fileisalways an L line identifying the primary input
file. L linesarealso output for #line directives (key isomitted). L
lines indicate the source position of the following sourcelinein
theraw listing file.

E,orC
Indication of adiagnostic. Theline hasthe form:

Sfilename line-number column-number message-text

103

Embedded MCore Development Guide

C++ Compiler Options

where Siseither R for remark, W for warning, E for error, and C
for catastrophic error. Errors at the end of file indicate the last
line of the primary source file and a column number of zero.
Command line errors are catastrophes with an empty filename
(") and aline and column number of zero. Internal errors are
catastrophes with position information as usual, and message text
beginning with internal error . When a diagnostic displaysalist,
such as al the contending routines when thereis ambiguity on an
overloaded call, theinitial diagnostic lineis followed by one or
more lines with the same overall format. Thisformat is a code
letter, filename, line number, column number, and message text,
but the code letter isthe lowercase version of the code letter in the
initial line. The source positionin such linesisthe same asthat in
the corresponding initial line.

--xref xfile
Generates cross referenceinformation in thefile xfile. For each reference
to an identifier in the source program, aline of the form:

symbol-id name X file line-num column-num
iswritten. X iseither D for definition, d for declaration (that is, a
declaration that is not a definition), M for modification, A for address
taken, U for used, C for changed (but actually meaning “used and
modified in a single operation” such as an increméhfpr any other
kind of reference, oE for an error in which the kind of reference is
indeterminate.symbol-id is a unique decimal number for the symbol.
The fields of the above line are separated by tab characters. (For C++

only.)

Precompiled Header Options

--create_pch file
If other conditions are satisfied, creates a precompiled header file with
the specified name. This option has no effect if the optiase_pch or
--pch appears after it on the command line. (For C++ only.)

--pch
Automatically uses and/or creates a precompiled header file. This option
has no effect if the option --use_pch or --create_pch appears after it on
the command-line. (For C++ only.)

--pch_dir dir
Specifies the directory in which to search and/or creates a precompiled
header file. This option may be used with any of the other PCH options.
(For C++ only.)

Green Hills Software, Inc. 104

--pch_messages

--no_pch_messages
Enabl es or disables the message display that a precompiled header file
was created or used in the current compilation. Default is
--pch_messages. (For C++ only.)

--use_pch file
Uses a precompiled header file of the specified name as part of the
current compilation. This option has no effect if the option --pch or
--create_pch appears after it on the command-line. (For C++ only.)

Template Options

-archive
Just like the --prelink_objects option, except an archiveis created. The
library name must be specified with the -o option. (For C++ only.)

--auto_instantiation
--no_auto_instantiation
-template=auto
-template=noauto

Enables or disables automatic instantiation of templates. Default is
--auto_instantiation. (For C++ only.)

--distinct_template_signatures

--no_distinct_template signatures
Controls whether the signatures for template functions can match those
for non-templ ate functions when the functions appear in different
compilation units. Default is --no_distinct_template signatures. (For
C++only)

--guiding_decls

--no_guiding_decls
Enables or disables recognition of “guiding declarations” of template
functions. A guiding declaration is a function declaration that matches an
instance of a function template but has no explicit definition (since its
definition derives from the function template).

For example:
template <class T> void f(T) { ...}
void f(int);

When regarded as a guiding declaratfgimt) is an instance of the
template; otherwise it is an independent function for which a definition

105 Embedded MCore Devel opment Guide

C++ Compiler Options

must be supplied. If -no_guiding_decls is combined with
--old_specializations, a specialization of a non-member template
function is not recognized. It istreated as a definition of an independent
function. Default is--guiding_decls. (For C++ only.)

--implicit_include

--no_implicit_include
Enables or disables implicit inclusion of source files as a method of
finding definitions of template entities to be instantiated. Default is
--implicit_include. (For C++ only.)

--implicit_typename

--no_implicit_typename
Enables or disablesimplicit determination, from context, whether a
template parameter dependent nameis atype or anontype. Default is
--implicit_typename. (For C++ only.)

--instantiation_dir=directory
When --one_instantiation_per_object is used, this option can be used to
specify the directory into which the generated object files should be put.
The default instantiation directory is ./template_dir.

--nonstd_qualifier_deduction

--no_nonstd_qualifier_deduction
Controls whether nonstandard template argument deduction should be
performed in the qualifier portion of a qualified name. With this feature
enabled, atemplate argument for the template parameter T can be
deduced in contexts like A<T>::B or T::B. The standard deduction
mechanism treats these as nondeduced contexts that use the val ues of
template parameters that were either explicitly specified or deduced
elsewhere. The default is--no_nonstd_qualifier_deduction.

--one_instantiation_per_abject
Puts each template instantiation in this compilation (function or static
data member) in a separate object file. The primary object file (the object
file corresponding to the original source file) contains everything elsein
the compilation, i.e. everything that isn’'t an instantiation. Having each
instantiation in a separate object file is useful and recommended when
creating libraries, because it allows you to pull in only the instantiations
that are needed, thus reducing code size. This is also essential if two
different libraries include some of the same instantiations to avoid
multiple defined symbol problems.

Green Hills Software, Inc. 106

--old_specializations

--no_old_specializations
Enabl es or disables acceptance of old style template specializations; that
is, specializations that do not use the template<> syntax. Default is
--old_specializations. (For C++ only.)

--prelink_objects
Causes the driver to invoke the C++ prelink utility to instantiate
templates, but not to invokethelinker or archiver. The effect issimilar to
invoking the driver with -c in that only object files are created, but no
link is performed. The differenceis that the object files contain al
template instantiations required by this set of object files. Therefore, they
can be linked later without concern for template requirements. This
option should not be used with any options that prevent the linker from
being run, such as-E, -P, -S, or -c, nor with the option
-template=noauto (or --no_auto_instantiation) which prevents prelink
from being run. This option is used by the clear make process (For C++
only.).

-tmode
Controls instantiation of external template entities. Externa template
entities are external (i.e., non-inline and non-static) template functions
and template static data members. The instantiation mode determines
the template entities for which code should be generated based on the
template definition. (For C++ only.)

all Instantiates all template entities whether or not they are used.

local Instantiates only the template entities that are used in this
compilation, and force those entities to be local to this
compilation.

none Instantiates no template entities. [default]

used Instantiates only the template entities that are used in this
compilation.
--typename
--no_typename
Enables or disables recognition of typename. Default is --typename.
(For C++ only.)

107

Embedded MCore Development Guide

C++ Compiler Options

Virtual Table Control Options

--force_vtbl
Forces definition of virtual function tables where the heuristic used by
the compiler provides no guidance in deciding on definition of virtual
function tables. See --suppress vtbl. (For C++ only.)

--suppress_vtbl
Suppresses definition of virtual function tables where the heuristic used
by the compiler provides no guidance in deciding on definitions of
virtual function tables. Thevirtua function tablefor aclassisdefinedin
acompilation if the compilation contains a definition of the first
non-inline non-pure virtual function of the class. For classesthat contain
no such function, the default isto define the virtual function table (but to
defineit asalocal static entity). This option suppresses the definition of
the virtual function tables for such classes, and the --force_vtbl option
forces the definition of the virtual function table for such classes.
--force_vtbl differsfrom the default behavior in that it does not force the
definition to belocal. (For C++ only.)

Thefollowing table lists single dash equivalents for double dash optionsthat are
not documented in this manual.

Double Dash Options Single Dash Options
--comments -C

--compile -C

--debug -g
--define_macro name=string -Dname=string
--dependencies -Make
--driver_debug -dryrun
--error_limit num -errmax=num
--include_directory -1

--instantiate mode -tmode
--library_directory dir -Ldir
--no_code_gen -syntax
--no_line_commands -P
--no_warnings -w

--optimize -0

--output -0
--preprocess -E
--signed_chars -signed_char
--undefine_macro name -Uname

Green Hills Software, Inc.

108

Double Dash Options Single Dash Options

--unsigned_chars -unsigned_char

--version -V

FORTRAN Language Compiler Options

-C
Generates code that checks for correct array subscripting at run-time.
This option slows program execution.

-bigswitch
Allowslarge computed GOT O statements by forcing the compiler to use
a 32-hit offset. The default is a 16-bit offset, whichis smaller and faster
but failsif any of the labelsistoo far away.

-nobigswitch
Uses a 16-hit offset which does not allow large computed GOTO
statements.[default]

-d_line

Compileslinesstarting with d, D, x, or X. The defaultisto treat them as
comments. This option enabl es debugging statements.
-dod
Enables the DoD FORTRAN extensions. Thisisimplied by -vms.
-nodod
Disables recognition of the DoD FORTRAN extensions. The DoD
extensions are also part of the VM S FORTRAN extensions enabled by
-vms.

-extend_source
Extends source to interpret columns 1 through 132 instead of 1 through

72.

-i2
Setsthetypefor INTEGER to INTEGER*2. The default is
INTEGER*4.

-i4

Setsthetypefor INTEGER to INTEGER*4.[default]

-namelist
Enablesthe IBM and VM S compatible NAMELI ST extensionsin
FORTRAN. These extensions are enabled by the -vms option, and so this
option is only needed when -novmsis active.

109

Embedded MCore Development Guide

FORTRAN Language Compiler Options

-nonamelist
Disablesthe IBM and VM S compatible NAMEL I ST extensionsin
FORTRAN. These extensions are enabled by default by the -vms
option.

-onetrip
Executes at least one iteration of every DO loop. By default, when the
lower bound index of a DO loop is greater than the upper bound index,
the compiler does not execute the DO loop, for compatibility with the
ANSI FORTRAN-77 standard. Thisoptionisrequired for some older
FORTRAN-66 programs to operate properly.

-save
Allocates al local variables to permanent memory, equivalent to coding
SAVE at the start of every subroutine or function for compatibility with
older FORTRAN compilers. With this option, variables retain their
values between calls to subroutines or functions. [default]

-nosave
Allocates local variables to registers or stack, equivalent to coding
IMPLICIT AUTOMATIC (A-Z) at the start of every subroutine or
function. Programs compiled with this option are compliant with ANS
FORTRAN-77 and in some cases execute more quickly.

Does not convert uppercase user-supplied variables to lowercase. By
default, FORTRAN is not case sensitive and all FORTRAN names are
converted to lowercase. The compiler and library both assume that this
trandation is performed. This option accesses variables defined in C as
uppercase. However when you use this option, all FORTRAN keywords
must be in lowercase, making the compiler incompatible with the ANSI
FORTRAN-77 standard.

Makes “undefined” the default data type for undeclared variables,
equivalent to codingMPL1CIT UNDEFINED(A-Z) at the top of the
source file.

-vms
Selects VMS compatibility modelefault]

-novms
Selects UNIX F77 FORTRAN compatibility mode.

Green Hills Software, Inc. 110

Alphabetical List of Options

Symbols
68

Numerics

2.1 100
3.0101

A

alternative_tokens 95
anachronisms 100
ANSI 90

ansi 90

ansiopeq 92

archive 69, 105
array_new_and_delete 95
asm 66

asmwarn 91, 95
auto_instantiation 105
autoregister 73

B

bigswitch 109
bool 96
brief_diagnostics 102

C

C 89,109

c 69

cfront 2.1 100
cfront_3.0 101
check 87

column 90
concatcomments 92
create pch 104

D

D 89

d_line 109
diag_error 102
diag_remark 102
diag_suppress 102
diag_warning 102

m

Embedded MCore Development Guide

display_error_number 102
distinct_template_signatures 105
Dname= 89

dod 109

dotciscxx 96

dryrun 69

dua_debug 76

E

E 90
early_tiebreaker 96
el 101

ecle 101

e 101

ele 101

entry 67
enum_overloading 96
errmax 69
exceptions 96
explicit 96
extend_source 109
extern_inline 96

F

fnone 69
for_init_diff_warning 102
force vtbl 108

fsingle 66

G

G 75

g75

globalreg 73
gnu_c 91,97
guiding_decls 105

H

H 69
Help 69
help 69

Green Hills Software, Inc.

12

|

I- 69

i2 109
i4 109
ident 71

implicit_extern_c_type conversion 97

implicit_include 106
implicit_typename 106
include 89

includenever 89
includeonce 89

initextern 92

inlining 97
inlining_unless_debug 97
instantiation_dir 106

J

japanese_automotive ¢ 92

K
k+r 91

keep_gen_c 97
keeptempfiles 70

L

L 66

| 66

language=cxx 70
language=fortran 70
late_tiebreaker 96

list 66,103

Ink 67

locatedprogram 67
long_lifetime_temps 97

M

max_inlining 97
max_inlining_unless_debug 97
multibyte_chars 98

N
namelist 109

113

Embedded MCore Development Guide

namespaces 98

needprototype 93, 100
new_for_init 98, 101
no_aternative_tokens 95
no_anachronisms 100
no_array_new_and_delete 95
no_auto_instantiation 105
no_bool 96

no_brief _diagnostics 102
no_distinct_template_signatures 105
no_enum_overloading 96
no_exceptions 96

no_explicit 96

no_extern_inline 96
no_for_init_diff_warning 102
no_forced_zero_initialization 98
no_guiding_decls 105
no_implicit_extern_c_type conversion 97
no_implicit_include 106
no_implicit_typename 106
no_inlining 98

no_multibyte chars 98
no_namespaces 98
no_nonstd_qualifier_deduction 106
no_old_specidizations 107
no_pch_messages 105
no_restrict 98

no_rtti 98

no_typename 107

no_use before set warnings 102
no_using_std 100

no_warnings 103
no_wchar_t_keyword 100
no_wrap_diagnostics 103
noalias 93

noansi 90

noansiopeq 94

noasm 93, 100

noasmwarn 91, 95
noautoregister 75

nobigswitch 109
noconcatcomments 94
nocpperror 89

nodbg 76

nodod 109

nofloatio 67

nognu_c 91,97

nonamelist 110

Green Hills Software, Inc.

114

nonodias 94
nonooldfashioned 94
nonstd_qualifier_deduction 106
nooldfashioned 93
nooverload 75
nopragmawarn 89
nosave 110
noshortenum 91, 99
noshortwchar 91, 99
nostdlib 67,71
novms 110

O

076

o071

OA 77

object_dir 71

OD 82

OE 76

ol 77

Ol= 78

OL 81

OL= 81

OLB 81
old_for_init 98, 101
old_specidlizations 107
OM 82
one_instantiation_per_object 106
onetrip 110
Onoconstprop 86
Onocse 86
Onomemory 86
Onominmax 86
Onopeep 86
Onopipeline 86
Onostrcpy 86
Onotailrecursion 86
Onounroll 87

0S 85

OT 86

Ounroll8 82
overload 75

P

P 90
pack_alignment 98

115

Embedded MCore Development Guide

passsource 71

pch 104

pch_dir 104
pch_messages 105

pg 71
pragm_asm_inline 94
prefixed_msgs 71
prelink_objects 71, 107

R

redefine 89
relobj 68
relprog 68
remarks 102
restrict 98
rtti 98

S

ST72

save 110

sec 68
short_lifetime_temps 97
shortenum 91,99
shortwchar 91, 99
signedchar 91,99
signedfield 91, 99
signedptr 92,99
signedwchar 92,99
dashcomment 94

srec 68

sreconly 68

STD 101

std 101

stderr 72

stdl 102

stdle 102

STRICT 95

strict 94, 101
STRICT=COMPERR 95
strict=comperr 94
STRICT=COMPWARN 95
gtrict=compwarn 94
STRICT=noCOMPERR 95
strict=nocomperr 95
STRICT=noCOMPWARN 95

Green Hills Software, Inc.

116

strict=nocompwarn 95
strict_warnings 101
suppress _vtbl 108
syntax 72

T

T 72,92,99

t 107

template=auto 105
template=noauto 105
tmp 92,99
typename 107

U

U 90,110

U- 90

u 110

unsignedchar 91,99
unsignedfield 91,99
unsignedptr 92, 99
unsignedwchar 92, 100
use_pch 105
using_std 100

\Y,

V 72
v 72
vms 110

w

W 72

w 68,73
wantprototype 93, 100
wchar_t_keyword 100
wrap_diagnostics 103

X

Xa 92
Xc 92
xref 104
Xs 94
Xt 94

g

Embedded MCore Development Guide

Y 73

Green Hills Software, Inc.

118

Macro Assembler

This chapter contains:
» Macro Assembler Characteristics
» Command Line Options
e Usingthe Driver
« Macro Assembler Syntax
» Expressions
e Labels

Macro Assembler Characteristics

Macro Assembler Characteristics

The Macro Assembler translates ASCI| files containing assembly language
instructions into binary files containing relocatable, linkable object code.

The featuresinclude:

e UNIX V.4 ELF object files

« Very long identifiers (up to 4096 characters)

« Relocatable object modules

« Optional source and generated code listings

« Macro, repeat block, and conditional assembly directives
» Freeform assembly input format

« Full symbolic debugger support

Command Line Options

Note: The recommended way to call the assembler isto use the driver to call
the assembler. Do not call the assembler directly.

The syntax for the Macro Assembler is.

asmcore [options] [input_files]

The Macro Assembler combines each specified ASCII input_file and produces a
single output object module.

Asan option, alisting is written to the standard output file. A number of options
may be specified except where the default is not to perform the function enabled
by the option.

-9 Outputs line number debug information. Thisalows MULTI to

debug assembly code. This should only be used for hand-coded
assembly language files; compiler-generated assembly language files
have their own debug information.
-help Prints a help message.
-Idir Searchesdirectory dir for files specified in .include directives.
-list[,[pagelength][,pagewidth][=][fil €]
Enables the source listing. A page length and page width can be
specified for the sourcelisting. If either value is omitted, the defaults are

Green Hills Software, Inc. 120

used. If only one comma and one value are used (e.g. -list,80=fo0), that
value will be the page length and the default page width isused. The
default page length is 64, and the default page width is 132.

If =is specified but file is not specified, then the listing is displayed on
the standard output. If =fileis specified, then thelisting iswritten to file.
If neither = nor file are specified, then the listing file iswritten to afile
with a.lst extension, replacing the current extension (e.g. .9).

For example:

-list Savelisting to .Ist file with default page length and
linesize.

-list,80Save listing to .Ist file with page length of 80 and
linesize.

-list=traxSave listing to file trax with default page length and
linesize.

-list,,110Save listing to .Ist file with default page length and
line size of 110.

-list,,110=trax
Save listing to file trax with default page length
and line size of 110.

-list= Display listing on standard output with default

page length and line size.
-nogenDisables source listing of macro expansions.

-ofile Setsthe name of the output module to file. The default is the name of the
assembly language file with a .o extension. For example, foo.0 is
produced for foo.s.

-r Prints alisting of symbol namesin a phabetical order.

-ref Printsafull cross reference of the symbolsin alphabetical order,
including the symbol name, type, file and line defined, and file and line
of each usage.

-V Printsthe Macro Assembler version number to the standard output.

Example:

The following Macro Assembler command line produces an object file
example.o with DWARF 1.1 line number debugging information from the
assembler source file example.s.

% asmcore -g example.s -0 example.o

121 Embedded MCore Development Guide

Using the Driver

Using the Driver

The driver, ccmcore, may be used to invoke the assembler and linker. This has
severa advantages over direct use of the assembiler, including the invocation of
the preprocessor on the assembly file, if it endsin .mco. This alows you take
advantage of preprocessor facilities, such as#include and #define, which are
not normally available to the assembly language programmer. Assembly
language files generally have one of two suffixes, either .sor .mco. The
preprocessor will only be invoked on the files ending in .mco. The generd
format to use the driver with an assembly fileis:

% ccmcore options foo.mco o
To pass options to the macro assembler, you must use one of two special driver

options. Otherwise, the driver interprets the information, and it is not passed to
the assembler:

-asm=assembler_option

-Wa, assembler_options

Only one option is used with each -asm. Multiple -asm options can be used on
oneline. Multiple options can be listed after -Wa. They must be separated by
commas.

For example:

_ % ccmcore -g -Wa,-ref,-r calc.mco -o calc
In this example, the options -ref and -r are sent to the macro assembler. The

preprocessor isinvoked on the assembly file calc.mco. An executable, calc, is
produced.

% ccmcore -asm=-ref -asm=-r stack.s -0 stack
In this example, the preprocessor is not called because the assembly file endsin

.Sinstead of .mco. The options -ref and -r are passed to the macro assembler.
An executable file, stack, is produced.

At times, the assembly language output of a high-level language is required,
often for perusal, and so that alterations can be made before assembly. To do
this, use the driver command with the -S option:

% ccmcore -S main.c _ _
This causes the C compiler to compile main.c and place the assembly language

output in the file main.s.

Green Hills Software, Inc. 122

Macro Assembler Syntax

Character Set

The Macro Assembler recognizes the standard ASCII character set, consisting
of upper and lowercase letters (A-Z, az), digits (0-9), and a group of specia
characterslisted in the table below. The Macro Assembler also recognizes the
ASCII control characters signifying carriage return, new line, form feed,
vertical tab, and horizontal tab.

Character Name Character Name
single quote " double quote

(left parenthesis) right parenthesis
blank % percent

- minus sign + plus sign
colon ! exclamation mark
comma \ backslash
decimal point * asterisk

& ampersand _ underscore

~ tilde vertical bar

= equals sign n carat

< less than > greater than

/ slash $ dollar sign

@ at sign # number sign

; semicolon

Identifiers

Identifiers, or symbols, are composed of letters, digits, and the specia
characters: decimal point or underscore. Thefirst character of an identifier must
be alphabetic or one of these two specia characters. Upper and lowercase
letters are distinct; the identifier abc is not the same as the identifier ABC.
Charactersin reserved symbols, such as directives, machine instructions, and
registers, are also case sensitive.

Examples:
The following table shows some valid and invalid identifiers:

Identifier Validity
*star Invalid (may not start with *)
123test Invalid (may not start with digit)

123 Embedded MCore Development Guide

Macro Assembler Syntax

Reserved Symbols

Identifier Validity

f-ptr Invalid (hyphen not allowed)
_hello Valid

LABEL Valid

test4 Valid

The following identifiers are part of the fundamental assembly language. These
symbols and their meanings are shown in the table below. Identifiersin both
upper and lower cases are reserved.

Identifier Meaning

r0 - r15 Integer registers
cr0 - cr3l control registers
psr status register

gbr global base register
sp stack pointer (r15)
vbr vector base register

epst, fpsr, epc, fpc

exception shadow registers

$s00-ss4 supervisor storage registers

gcr global control register

gsr global status register

pc program counter
Constants

Macro Assembler constants may be numeric, character, or string constants.

Numeric Constants

A sequence of digits defines a numeric constant. By default, constants arein

decimal or floating point format, although this can be changed by adirectivein
asourcefile. However, constants can be specified in hexadecimal, octal, binary
by preceding the number with one of the special prefixes on the following page:

Type Prefix Example
hexadecimal 0x 0xbOb
octal 0 0747
binary Ob 0b110011

All integer constants are assigned 32-bit two’s complement values.

Green Hills Software, Inc.

124

String Constants

Some directives take a string constant as one or more of their arguments. A
string constant consists of a sequence of characters enclosed in double quotes
("). A string constant can contain any ASCII character including ASCII null,
except newline. The null character is not appended to strings by the Macro
Assembler, asitisin C or C++.

Character Constants

A character constant can be used in any location where an integer constant is

needed. A character constant consists of the following itemsin this order:

either a single ASCII character or a single quote character (*), a backslash
character (\), one of the value escape characters, and a single quote character (*).
A character constant is considered equivalent to the ASCII value of the
character or escape sequence. For example, the character caisstant

equivalent to the decimal integer 97, and the character colrstamtquivalent

to the decimal integer 13 (see table on the following page).

Character Escape Sequences

Character and string constants consists of ASCII characters. The ASCII
backslash\j is used within character and string constants to escape the
guotation marks and to specify certain control characters symbolically. A
backslash followed by any non-escape character is equivalent to that character
(e.g-\a is equivalent t@ since\a is not an escape sequence).

Escape Character ASCII Value
\0 null 0 (0x0)
\b backspace 8 (0x8)

\t horizontal tab 9 (0x9)
\n newline 10 (OxA)
\v vertical tab 11 (0xB)
\f formfeed 12 (0xC)
\r return 13 (0OxD)
\nnn octal value nnn

\ single quote 39 (0x27)
\" double quote 34 (0x22)
\\ backslash in a constant or string | 92 (0x5c)

Source Statements

A Macro Assembler source statement consists of a series of fields, delimited by
spaces and/or horizontal tab. The general format of a statement is:

125

Embedded MCore Development Guide

Macro Assembler Syntax

[label] operator arguments[comments]

Label Field

The label field is optional. When specified, it startsin column oneand is
terminated by the first white space character or line terminator detected. The
last character of the label field must be a colon. More than one label may be
associated with a given statement line, but aline may consist of no more than
one label field.

The label is used to associate a memory location or constant value with the
symbolic label name. Labels may have the same names as instructions and
directives.

Operator Field

The operator field starts with the first non-white space character after the
optional label field and isterminated by the first white space character or line
terminator encountered after the operator. An operator isany symbolic opcode,
directive, or macro call.

Argument Field

The argument field starts with the first non-white space character following the
operator field, and ends with a line terminator or the beginning of a comment
field. Arguments are entered to the opcode or directive or are macro call
specified.

Comment Field

The comment field is optional and begins with adouble slash (//) or a pound
sign (#). Ignore all charactersto the right of the comment character until the end
of theline.

Continuation Lines
The Macro Assembler does not support continuation lines.

White Space
White space consists of spaces, form feeds, and horizontal tabs.

Line Terminators

Assembly input lines are terminated by a semicolon, line feed, form feed, or a
carriage return.

Green Hills Software, Inc. 126

Expressions

Assignment Statements

An expression is assigned to a symbol by an assignment statement in one of the
following general forms:

symbol =[:] expr

symbol .equ expr
.set symbol, expr
The expression specifies any addressing mode, which is generated when the
symbol becomes an instruction operand. An assignment by = defines alocal
constant, and an assignment by =: additionally specifies that the symbol is
global.

For example:

a=1 # a local constant
Xyz =: 123 # a global constant
Both .equ and .set work similarly to =, with the difference that .equ only allows

you to assign an expression to a symbol once while .set allows you to reassign
to the same symbol multiple times.

For example:

.set 7 stack # set stack to be 7 (legal)
.set 8 stack # reset stack to be 8 (legal)
chair .equ 9 # set chair to be 9 (legal)

sofa .equ8 # set sofato be 8 (legal)

chair .equ5 #try to set chair to be 5 (illegal)

An expression is either absolute or relocatable. See “Expression Types” on page

128 for more information about absolute or relocatable expressions.

Scalar Expression Operators

A number of operators are available to form expressions. The operators are
listed below. The typanary indicates that the function is recognized when the

operator has only a right operamiary indicates that the operator has two
operands, one to the left of the operator and one to the right.

Operator Type Description

unary BITWISE NOT operator

unary Negation

binary Subtraction

binary Addition

binary Multiplication

binary Division

127

Embedded MCore Development Guide

Expressions

Operator Type Description

% binary Modulus

& binary BITWISE AND operator

A binary BITWISE EXCLUSIVE OR operator

binary BITWISE OR operator
== binary Equality (O or 1)
1= binary Inequality (0 or 1)

>>=< <= binary Signed compares (0 or 1); greater than, greater than or
equal, less than, less than or equal

UGT, UGE, ULT, binary Unsigned compares (0 or 1); greater than, greater than or

ULE equal, less than, less than or equal
<<,>> binary Shift left and shift right

USHR binary Unsigned shift right (shift 0 into high bit)
ROTR, ROTL binary Rotate right and rotate left

The following table lists the operators in decreasing order of precedence.The
binary operators are associative from left to right:

Operators

~and - (unary)

* 1, %, <<, >>, USHR, ROTR, and ROTL

+ and - (binary)

=, .equ, ==, 1=, <, >, <=,, >=, ULT, UGT, ULE, and UGE
&

| and ~

Expressions are grouped with matching square brackets|].

Expression Types
The primary expression types are:

manifest
If the value of an identifier or expression is computed by the Macro
Assembler when encountered, it is amanifest value.

absolute
If the value of an identifier or expression is computed by the Macro
Assembler during assembly, it isabsolute. Essentially, any absolute
valueis amanifest value with the exception of an absolute value derived
from the difference between two relocatable values in the same section.

Green Hills Software, Inc. 128

guoted string
A C-style character string delimited by double quotesisused in
conjunction with a number of Macro Assembler directives. All string
“escape” sequences defined in the C language, suof@asnewline,
are allowed. These sequences are described in “Character Escape
Sequences” on page 125.

relocatable
A relocatable expression or identifier assigns a value relative to the
beginning of a particular section. These values are not determined at
assembly time. All label identifiers are relocatable values.

undefined
If an identifier is unassigned, its value cannot be determined until link
time. This is an undefined external.

Type Combinations

Labels

The constant types are combined with all operators, except where a relocatable
type was made immediate or absolute. Constant types and relocatable types are
combined only by the following:

+ If one operand is constant, the result is the type of the other operand.

- If the second operand is constant, the result is the type of the other. If
both operands are selected from the same one of the types text, data, or
bss relocatable, then the result is a constant which is the difference of the

addresses.
Examples:
4 # constant
4*(5+6) # constant
label # relocatable

A statement optionally begins with one or more labels. Each label is either a
named label or a temporary label.

Named Labels

Named labels are identifiers followed by one or two colon characters. Labels
defined with one colon are not referenced outside the source module. A second
colon specifies that the label is made visibly external to the source file that it is
in, instead of being local to that file.

129

Embedded MCore Development Guide

Labds

Temporary Labels

Temporary labels consist of a non-zero digit followed by a colon. Any number
of these labels can be present, even if the value of the constant repeats. A
referenceto atemporary label consists of the label’s constant value expressed as
adecimal number followed immediately, with no space, by anf or b. This
reference refers to the nearest statement with the same numeric label either
forward of the reference, not including the current source line, specifying an f,
or backward from the reference, including the source line, specifying ab.
Matching labels in the non-specified direction are not referenced, even if they

are closer.

Example

1: bra Ib # infinite loop
nop # delay slot

Green Hills Software, Inc. 130

10

Macro Assembler
Directives

This chapter contains:
« Listing of Macro Assembler Directives
« Characteristics of Specific Directives

Listing of Macro Assembler Directives

Macro Assembler directives and specification of instructions are specified in asimilar way.
Directives control options of the Macro Assembler or format and generate data for the code
segments. Certain directives establish or ater the definitions of symbols.

The Macro Assembler directives are symbols with atype of directive and a
predefined value specifying the particul ar directive. Both directives and
instructions appear between labels and operands. The Macro Assembler assigns
a specific type to such predefined symbols and searches only for thistype
between labels and operands. Therefore, labels can have the same names as
instructions and directives.

Listing of Macro Assembler Directives

ALIGNMENT:
.align Adjusts location counter to a boundary

DATA INITIALIZATION:

.byte Storesvaluesin successive bytes

.short Store valuesin successive 16-bit words

Jdong Storesvaluesin successive 32-bit words

.doubleStores values as successive 64-bit |EEE-754 floating point
float Storesvalues as successive 32-bit IEEE-754 floating point
.ascii Quoted string stored in successive bytes

.asciz Quoted string stored in successive bytes (null-terminated)
.space Zero n bytes of storage

fill Produces n elements with a given value and size
JiteralsForces adump of all accumulated literals

.dent Stores string in a section called .comment

SECTION CONTROL:

text Specifies text segment

.data Specifies data segment

et Controls instruction reordering
.sectionSpecifies named segment

Green Hills Software, Inc. 132

.previousUndoes the most recent .section
.org Specifies absolute segment

SYMBOL DEFINITION:
.exportExternal identifier
.importExternal identifier
.commCommon block

.bss Local identifier
.weak Weak symbols
JcommLocal common block

FILE INCLUSION:
.includelncludes header file

MACRO DEFINITION:
.macroDefines a macro

.endm Ends macro definition
.exitm Exits from current macro

REPEAT BLOCKS:
rept Repeats the following statements
.endr Ends repeat block

CONDITIONALS:

JAf Enters a conditional block

.else Conditional block alternative

eseif Alternative plusnew conditional test
.endif Ends conditional block

LISTING FORMAT:

.war ningEmits warning messages

.nowar ningDoes not emit warning messages

Jist Turnslisting on. Thisisthe default.

.nolist Turns listing off

.gen Turnslisting of macro generation on. Thisisthe default.
.nogenTurns listing of macro generation off

133

Embedded MCore Development Guide

Characteristics of Specific Directives

.gect Putsaform feed (Control-L) into the output listing

title Putsatitle at the top of each page in the output listing
.subtitlePuts a subtitle at the top of each page in the output listing
.sbttl Putsasubtitle at the top of each page in the output listing

Characteristics of Specific Directives

Alignment
.align man-expr, value
This directive advances the location counter to an addressing boundary
specified by the manifest expression (constant expression) man-expr. The
boundary is 1, 2, 4, or 8 bytes corresponding to a man-expr of 0, 1, 2, or 3. The
location counter advancesto the boundary specified by the manifest expression.

Asthe location counter advances, the segment is filled with zeros or with the
given value.

Data Initialization
.byte man-expr,man-expr, ...
.short man-expr,man-expr, ...
Jong man-expr,man-expr, ...
.doubl e flt-expr flt-expr, ...
float flt-expr,flt-expr, ...
.ascii quoted-string, quoted-string, ...
.asciz quoted-string, quoted-string, ...
Skip man-expr
.space man-expr
.offset man-expr
fill - man-expr,man-expr,man-expr
.adent g-string
These directives evaluate expressions and produce successive values of the
specified type in the assembly output.

.byte Computes the values of the supplied manifest expressions and produces
successive bytes. The manifest expressions must be in the range -128 to
255 (-128 to 127 or 0 to 255).

Green Hills Software, Inc. 134

.short Computes the values of the manifest expressions and produces

successive 16-bit words. The manifest expressions must be in the range
-32768 to 32767.

Jong Computes the values of the expressions and produces successive 32-bit

guantities. The expressions are absol ute expressions, rel ocatable
expressions or undefined externals. The actual values of relocatable and
undefined externals are supplied at link-time. The value of each
expression must be in the range -2147483648 to 2147483647 or 0 to
4294967295.

.doubleComputes the values supplied by the floating point expressions and

produces successive 64-bit | EEE-754 floating point val ues. Each floating
point expression must be in double-precision range.

float Computes the values supplied by the floating point expressions and

produces successive 32-bit | EEE-754 floating point val ues. Each floating
point expression must be in single-precision range.

.ascii Evaluates a C-style string enclosed in double quotes () and produces

successive bytes. The delimiting double quote characters and terminating
null are discarded.

.asciz Evaluates a C-style string enclosed in double quotes (") and produces

successive bytes. Only the delimiting double quote characters are
discarded.

.skip nGenerates n bytes of zero data.

.gpace Alternate name for .skip.

fill n,s,vGenerates n values of size s bytes and value v.

Jiter alsCause the accumulated literal table for the Irw, jsri, and jmpi:

instructions for the current section to be emitted.

ident Thisdirective stores the C-style string specified in g-string into a section

named .comment in the object file. The delimiting double-quote
characters are eliminated and the string is null terminated. A common
use for the ident directive isto store version and revision information in
the object module.

Section Control

text

.data

.Set

.section "name","attr"

135

Embedded MCore Development Guide

Characteristics of Specific Directives

.previous

.using

.0rg man-expr

These directives direct assembly output into the specified section.

text Directs assembly output into the text segment.
.data Directs assembly output into the data segment.

.set This controls whether instruction reordering will be done by the
assembler. The MCore architecture contains hazards, sequences of
instructions which lead to indeterminate results.

.sectionThis directive directs assembly output into the section called name. The
section name should be followed by a string using one of the listed
combinations of the letters a, b, x, and w. a meansthat the section should
have memory allocated for it, that is, not be used solely for debugging or
symbolic information. b means the section will have BSS semantics.
Although normal data directives, such as.word and .bytearealowed in
a.bss section, al of the values specified in those directives are discarded
by the assembler. Instead, in the ELF output file, the assembler records
only the size of the section. The contents of the section are omitted.
When the section is downloaded to the target, space is alocated for the
section, but no datais downloaded to this section. Instead, the
application isresponsible for initializing al bytesin the section to zero.
b isused by the compiler for uninitialized variables in the Zero Data
Areaand any uninitialized variables in arenamed section. x indicates
that the section will contain executable code. w indicates that the section
will bewritable. If none of these letters are specified, then none of the
corresponding attributes will be set. Setting no attributes is appropriate
only for sections containing debugging or other information not intended
to be part of the final linked file. Sections which are intended to be part
of thefinal linked output should have at |east the a attribute. Once
attributes have been set they may not be respecified. Due to limitations
in the debug file formats, only one section per source file (counting the
text sectioniif it is used) may have the x attribute, if debugging is
intended.

Here are afew examples using the .section directive:

.section .mytext, ax

Green Hills Software, Inc. 136

creates a section called .mytext with allocate and execute attributes.

.section .data2, a

creates a section called .data2 with the all ocate attribute.

.previousChanges the active section back to the one in use before the most
recent .section directive..or gDirects assembly output into an absolute
section which starts at address man-expr. The section is given a name
equal to the eight-character hex representation of that address.

Symbol Definition
.bss ident,man-expr[,man-expr]
.comm ident,man-expr[,man-expr]
.lcomm ident,man-expr[,man-expr]
.weak ident
.exportident
.mportident
These directives define the type and value of the identifier ident.

.bss Same as.comm except ident is not exported.

.exportCauses the identifier ident to be visible externally. If the identifier is
defined in the current program, this directive allows the linker to resolve
references by other programs. If the identifier is not defined inthe
current program, the Macro Assembler resolves it externally.

.commCauses the specified identifier ident to be visible externally. The
identifier is assigned to a common area of man-expr bytesin length. The
linker assigns space for the identifier in the bss section if ident is not
defined by another relocatable object file. The optional man-expr
specifies the variable alignment in bytes.

JcommSame as .comm except ident is not exported.
.weak Makesthe symbol weak. Linker setsits value to zero if the ident cannot
be located.

.mportSame as .export. It is common for .export to make symbols defined in
the current module be externally visible, while .import explicitly
declares symbols defined in other modules. The assembler does not
require this usage, however.

137 Embedded MCore Development Guide

Characteristics of Specific Directives

File Inclusion
.includefile

Causesthe insertion of file at the location of this directive. Thefile will be
searched first in the current working directory and then in any other directories
specified by the -I command line option. See “Command Line Options” on
page 120.

Macro Definition
.macro name [list]
[.exitm]
.endm

The .macro directive enters a macro definition. Assembly statements are
collected until a matchingndm directive is processed. The following is an
example of how to invoke a macro:

.macro trythis parm1
Iwz r1,parm1*2 (r4)
.endm

.macro log_and parm1 parm2
Iwz parm1, parm2 (r4)
.endm

text

trythis 16

log_and r1, 0
log_andrl, 2
generates:

Iwz r1,32(r4)

Iwz r1,0(r4)

Iwz r1,2(r4)

A macro definition assigns a name and a local parameter list to a sequence of

assembly statements. The parameter list consists of identifiers separated by
commas or white space. The name space of macro names is distinct from the
names of other user defined symbols.

After a matchingendm directive is processed, the Macro Assembler
recognizes the name of the macro and substitutes the saved assembly
statements. This procedure invokes the macro and is knomaces
expansion.

Actual parameters are supplied when the macro is invoked, and there must be
the same number of actual parameters as there are identifiers in the parameter
list of the macro definition.

The.endm directive must be the first symbol on its line; no labels are permitted.

Green Hills Software, Inc. 138

During macro expansion, all references to a parameter of the definition are
replaced by the corresponding actual parameter. The >< concatenation operator
may be used to concatenate two parameters or a parameter with asymbol. The
resulting assembly statement is not scanned for further parameter matches. If
one macro calls another, the parameters of the first invocation are hidden from
that of the inner one.

A macro may contain macro definitions. In this case the inner definitionis
processed only when the macro islater expanded. Macros may not call
themselves recursively.

During macro expansion, if a.exitm directive is encountered, expansion of the
macro is terminated. Typically, this directive would be placed within a .if
directive structure to allow for conditional premature termination of the macro
expansion.

When amacro isinvoked, the name of the macro appearsin thelisting. The
expansion of the macro and the correspondingly generated object code are then
listed. The directive can be used to disabl e the listing of the macro expansion.
See “Listing Format” on page 141 for more information.

Repeat Block
.rept expr
.endr
This directive specifies a block of assembly statements which repedimes.

The block of instructions is repeategr times. The expression must be

constant. Repeat blocks may occur within repeat blocks. In this case the inner
repeat block is expanded once for each expansion of the next outer block. The
repeat count of an inner block is evaluated at each expansion of the inner block.

The .endr directive must be the first symbol on its line; no labels are permitted.

Repeat blocks may be contained within macro definitions, or definitions within
blocks, but no other overlap is possible.

Conditional Assembly
It expr
[.esg]
[.endif]
It expr

139 Embedded MCore Devel opment Guide

Characteristics of Specific Directives

[.elsaf expr]
endif

The .if directive specifies ablock of assembly statements which are to be
assembled only if expr isnon-zero. The reverse condition applies to the .else
block, and the reverse of the condition plus a new condition appliesto an .el seif
block.

The expr isevaluated. It must be constant and defined within Pass 1. If its value
is non-zero, the block of statementsis assembled normally. Otherwise, the
generation of code, the definition of symbols and |abels, and the processing of
directivesis suppressed until a matching .endif is processed.

The .else directive may be used to reverse the condition and begin assembling
statements only if the matching .if was false. The .elseif directiveis equivaent
to a.elsefollowed by asecond .if, except that only one .endif will berequired to
terminate the block.

Conditional blocks may occur within conditional blocks.

The conditional block isalways listed, but no object code listing will appear for
blocks which are not assembled.

Symbolic Debugging and Revision Tracking
file g-string
In
These directives are used for symbolic debugging.

file Storesasource filename, g-string, into the object file symbol table. The
g-string filename must be from 1 to 255 charactersin length and
delimited by double quotes.

In Thisdirective creates aline number table entry in the object file,
associ ating the line number, line-no, with a particular memory location,
optionally specified by address. If no address is specified, the current
location in the current section is used.

Symbol Attribute Operations

The .def and .endef directive pair is used to create a symbol table entry for the
specified identifier and to associate one or more attributes with that identifier.
The general format for an .def/.endef is:
def identifier

.... (one or more attribute assignment operations)

.endef

Green Hills Software, Inc. 140

If the .def/.endef pair defines afunction name, a second .def/.endef pair, which
assigns a storage class of -1, must immediately follow the function definition
set. This allows the Macro Assembler to calculate function size for use with
other tools.

The following attribute assignment operators may be specified within an
.def/.endef pair:

.dim The .dim pseudo-op indicates that the identifier is an array. Each
dimension of the array is specified by a manifest expression man-expr,
the total number of dimensions being defined by the number of
comma-delimited man-expr values supplied.

Jine The.line pseudo-op is used to associate a line number, man-expr with the
identifier. In this case the identifier specified by .def should be a block
symbol. The maximum number is 4.

.scl The .scl pseudo-op associates a storage class, specified by man-expr with
the identifier. The special storage class value of -1 isused to indicate the
physical end of afunction.

.Size The .size pseudo-op associates the size specified by man-expr with the
identifier. If theidentifier isabit field, the sizeis specified in bits.
Otherwise the size is assumed to be in bytes.

tag The .tag pseudo-op associates the identifier with a structure, union or
enumeration named string.

type The .type pseudo-op associates the C language type specified by
man-expr with the identifier.

wval The.val pseudo-op assigns the value of expr to the identifier. The
expression expr determines the section with which the identifier will be
associated, and may be either an absol ute expression, arelocatable
expression or an undefined external. If expr is.val, then the current text
section location is assigned.

Listing Format

.warning

.nowarning
.nolist[.macro][.rept][.if][.includ€][.list]
Jist[.macro][.rept][.if][.include][.list]
.gen

.nogen

.gect

title “title”

141

Embedded MCore Development Guide

Characteristics of Specific Directives

.subtitle “ subtitle”
.sbittl “ subtitle”

These options control the format of the informational text listing produced by
the assembler. They do not affect the object code generated.

.warningCauses warnings to be emitted to standard error outpui.
.nowarningCauses warnings to not be emitted to standard error outpuit.

The following options will only be effective if the source listing has been
enabled with the -list or -| command line options.

.nolist Without any arguments, thiswill turn off listing for the sections
following this directive until a corresponding .list directiveis
encountered at which point listing will be reactivated.

.nolist . macro

Identical to .nogen This causes al macros in the sections following this
directive to not be expanded in the source listing. Macro expansion
listing can be reactivated with a .list . macro or a.gendirective.

.nolist .reptDoes not expand all repeat blocks in the sections following this
directive in the source listing. Repeat block expansion listing can be
reactivated with a.list .rept directive.

.nolist .ifCauses the listing of only the branch in conditional blocks (.if ...) for
which code is generated. The full conditional block listing can be
reactivated with a .list .if directive.

.nalist .include
Does not display include files in the sections following this directive in

the source listing. Include file listing can be reactivated with a .list
.include directive.

.nolist .listDoes not display all .list and .nolist directivesin source listings. The
Jist directive listing can be reactivated with a list .list directive.

Jist Without any arguments, this turns on listing for the sections following
this directive. Thisisintended to counteract a previously given .nolist
directive.

Jist .if Controls printing of al .if .else .endif directives and the lines skipped
dueto falseif expressions.

Jist .macroThisisidentical to.gen Thisfully expands all macrosin the source
listing. This can counteract a previously given .nolist .macrodirective.

Jist .over Controls printing of lines with so much binary output that they
overflow onto multiple lines.

Green Hills Software, Inc. 142

Jist .reptControls printing the .rept directive itself. This fully expands all

repeat blocksin the sourcelisting. This can counteract apreviously given
.nolist .macro directive.

Jigt .if Listsal branches of conditional blocks (.if ...) in the source listing. This

isintended to counteract a previously given .nolist .if directive.

Jist .includeDisplays include filesin the source listing. Thisisintended to

counteract a previously given .nolist .include directive.

Jist .listControls printing the .list directivesitself. Thisisintended to

counteract a previously given .nolist .list directive.

.gen ldentical to .list .macro.

.nogenldentical to .nolist .macro.

.gect Putsaformfeed (L) into the output listing.

title Causes atitle, given by the specified string, to be included at the top of

each page of the source listing.

.subtitleCauses a subtitle, given by the specified string, to be included at the

top of each page of the source listing.

.sbttl Identical to .subtitle.

143

Embedded MCore Development Guide

Characteristics of Specific Directives

Green Hills Software, Inc. 144

11

MCore Macro
Assembler
Reference

This chapter contains:
* Register Set
* Addressing Modes
e Macro Expansion
» Alphabetical List of MCore Instructions

Register Set

This chapter gives detailed information on the M Core addressing modes and instruction
formats, with a complete al phabetical listing of all MCore instructions. Numerous examples
are provided. The processor-specific information in this chapter supplements the more general
information provided by the MCore Macro Assembler chapter.

Whileit isintended as a useful reference for the programmer wishing to write
and maintain Green Hills M Core Macro Assembler code, it does not cover these
topics exhaustively. For additional information, please refer to the MCore
Programming Manual which also covers other related topics such as a detailed
description of the instruction set and trap handling.

Register Set

There are two types of registers, general registers and control registers,
explained below.

General Registers

There are 16 general purpose registers, each 32 bitswide. They are used to hold
source operand data and computation results. Although only r0 has a special
function at the hardware level, a convention has been established whereby the
following M Core general registers have reserved functions at the software

level:
Register Name(s) Usage
r0 Stack pointer
rl Scratch register
r2-r3 Parameter registers, return value
r4-r7 Parameter registers
r8-r13 Permanent registers
rl4 Permanent register, frame pointer
rl5 Link pointer

The jsr instruction overwrites the contents of register r 15 with the return
address generated by the call. However, the contents of r15 may aso be
overwritten by software if required.

Green Hills Software, Inc. 146

Control Registers
There are 32 control registers, each 32-bits wide:

Name Usage

PSR Processor status register
VBR Vector base register

EPSR, FPSR, Exception shadow registers
EPC, FPC

SS0-Ss4 Supervisor storage registers
GCR Global central register

GSR Global status register
CR13-CR31 Reserved

Control registers can be loaded and stored from viathe mfcr and mtcr,
respectively. For adetailed description of the purpose of each of these registers,
please refer to the MCore Programming Manual .

Addressing Modes

Introduction
All the addressing modes offered by the M Core processor are supported, and

are summarized below:

Addressing Mode Notation Example
No arguments rts

Register regl absrl

Two registers regl,reg2 add r2,r3
Register with 5-bit immediate regl,imm5 sub r0,16
Register with 7-bit immediate regl,imm7 movi r4,100
Control register regl,creg2 mfer r2,crl

Register indirect with 4-bit displacement

regl,(reg2,disp4)

Id.w r3,(r0,16)

Register list regl-reg2, (reg3) stm r2-r15,(r0)
Immediate Indirect [disp8] Irw r1,[100]
Branch displacement displ1 bt-16

Register with 4-bit negative displacement regl,disp4 loopt r2,-8

Key:

regl, reg2 are general purpose registers

cregl isacontrol register

147

Embedded MCore Development Guide

Addressing Modes

immb5 isan unsigned 5-bit value

imm7 isan unsigned 7-bit value

disp4 isasigned or unsigned 4-bit displacement value
disp8 isan unsigned 8-hit displacement value
displlisasigned 11-bit displacement value

Each of these addressing modes is explained below.

Every MCoreinstruction is two bytes (16 bits), including those instructions
containing immedi ate data.

In line with the RISC architecture, there are relatively few instructions and
usually few addressing modes which apply to any given one. Also, agiven
addressing mode applies to the instruction as awhole (in contrast to some
architectures which alow different addressing modes to be specified for each
operand). The result is very quick and easy instruction decoding, so the lack of
complex instructions and addressing modes is more than compensated for by
the attendant increase in performance.

The values in the example boxes are al in hexadecimal, except that xx means
“don't care what value is present”. 32-bit values are written as four 8-bit bytes.

Example:

r2: DE AD CO DE
r3: XX XX XX XX
DEADBOAC: XX XX XX XX
DEADBOBO: CO0 1D BE EF
DEADBOB4: XX XX XX XX
This indicates that registe® holds the value OXDEADCODE, we do not care

what valuer 3 holds (it holds arbitrary data), the four bytes of memory starting
at address OxdeadbObO hold the value OxCO1DBEEF, and the four-byte words
above and below each hold arbitrary data.

No Arguments
These instructions do not take any arguments.

Example:
rts

Register
These instructions use the same register as the source and destination.

Green Hills Software, Inc. 148

Example:

absrl
This computes the absolute value of the contents of register r 1 and stores the
result in register r1.

Two Registers

Theseinstructions have two register fieldsto specify one or two source registers
and one destination register for the instruction.

Example:

add r2,r3
This adds the contents of register r 3 to register r2 and storesthe result in
register r2.

Example:

mov r2,r14
This copies the contents of register r 14 to register r 2. r 14 remains unchanged.

Register with 5-bit Immediate

This addressing mode has a 5-bit immediate field as the first source operand
while one register field specifies both the second source operand and the
destination.

Example:

sub r0,16
This subtracts 16 from the value in register r0 and stores the result back in r0.

Register with 7-bit Immediate

The movi instruction has a 7-bit immediate field as a source operand and a
register field as the destination.

Example:

movi r4,100
This storesthe value 100 in register r4.

Control Register

These instructions copy data between the general registers (r0-r 15) and the
control registers (cr0 to cr31).

149 Embedded MCore Development Guide

Addressing Modes

Example:
mfcr r2,crl))
This copies the contents of control register cr1 to general register r2.

mitcr r3,cr0))
This copies the contents of general register r 3 to control register crO.

Register Indirect with 4-bit Scaled Displacement

This addressing mode adds the contents of register regl to the scaled unsigned
immediate disp4 to form an address. The Id instructions load the data at that
address to the register reg2. The st instructions store the contents of register
reg2 to that address.

Example:

Id.w r3,(r0,16)

This copies to register r 3 the 32-bit data at the memory address calcul ated by
adding 16 to the contents of register r0. The immediate value 16 must be a
multiple of 4 because thisis a4-byte load instruction.

Register List

This addressing mode specifies a contiguous set of registers to transfer to or
from the memory location pointed to by the contents of register regl.

Example:

stm r12-r15,(r0)))
This storesregistersr12, r13, r 14, and r 15 in ascending memory locations

starting at the address stored in register rO.

Scaled 8-bit Immediate Indirect

This addressing mode uses a 32-bit word pointed to by a PC-relative address as
a source operand. The address is computed by adding the unsigned 8-bit
immediate field, scaled by four, to the value of PC+2. The lower two bits of this
address are then masked to Q0.

Irw r1,[100]
This loads 32-bit word at address PC+2+100 and stores the result in register r 1.

Scaled 11-bit Branch Displacement

This addressing mode computes a branch address by adding the sign-extended
displacement value disp11, scaled by two, to the address PC+2.

Green Hills Software, Inc. 150

Example:

bt -16
Thisinstruction branches to the address PC+2-16 if the condition code bit is set.

Register with 4-bit Negative Displacement

The loopt instruction uses this addressing mode to specify aregister to store a
loop counter and a branch address formed by subtracting the 4-bit displacement,
scaled by two, from the address PC+2.

Example:

loopt r2,-8

Thisinstruction branches to the address PC+2-8 if the loop counter in register
r2isnot zero.

Macro Expansion

The MCore Macro Assembler supports several macro expansions as specified
in the MCore Applications Binary Interface. These macros are described bel ow.

clrc Clearsthe condition code bit. Equivalent to:
cmpne r0,r0

cmplei rd,nCompare if the signed value in rd isless than or equal to the
constant n. nis alowed to have the values 0 through 31. Equivalent to:
cmplti rd,n+1

cmpls rd,rsCompare if the unsigned value in rd islower or the same as the
unsigned value in rs. Equivalent to:
cmphs rs,rd

cmpgt rd,rsCompare if the signed value in rd is greater than the signed valuein
rs. Equivalent to:
cmplt rs,rd

jbsr labellf the address of the label is between -2048 and +2046 bytes away,
this expands to:

bsr label
Otherwise:

jsri label
jbr labellf the address of the label is between -2048 and +2046 bytes away, this

expands to:

br label
Otherwise:

jmpi label

151

Embedded MCore Development Guide

Alphabetical List of MCore Instructions

jbf labellf the address of the label is between -2048 and +2046 bytes away, this
expands to:

bf label
Otherwise:

bt 1f
jmpi label
1
jbt labellf the address of the label is between -2048 and +2046 bytes away, this
expands to:

bt label
Otherwise:

bf 1f
jmpi label
1.

neg rd Negat& thevaluein rd. Equivaent to:

rsubi rd,0

rotlc rd,1Rotates the value in rd left by one bit. The carry bit is rotated into the
least significant bit while the most significant bit that was rotated out is
saved in the carry bit. Equivalent to
addc rd,rd

rotri rd,immRotates the valuein rd right by the number of bits specified inimm.
Equivalent to:
rotli rd,32-imm

rts Returnsfrom subroutine. Equivalent to:
jmp r15

setc Setsthe condition code bit. Equivalent to:
cmphs r0,r0

tstle rdTest for a negative or zero value in the register rd. Equivalent to:
cmplti rd,1

tstlt rdTest for a negative value in the register rd. Equivalent to:

btsti rd,31
tstne rdTest for anon-zero value in the register rd. Equivalent to:

cmpnei rd,0

Alphabetical List of MCore Instructions

Instruction Description Operands Opcode(hex)
abs absolute value regl 0le0
addc unsigned add with carry regl,reg2 0600
addi unsigned add with immediate regl,immb5 2000

Green Hills Software, Inc. 152

Instruction Description Operands Opcode(hex)
addu unsigned add regl,reg2 1c00
and logical AND regl,reg2 1600
andi logical AND with immediate regl,imm5 2e00
andn logical AND NOT regl,reg2 1f00
asr arithmetic shift right regl,reg2 1a00
asrc arithmetic shift right by 1 bit regl 3a00
asri arithmetic shift right immediate regl,imm5 3a00
belri bit clear immediate regl,imm5 3000
bf branch if false displ1l e800
bgeni bit generate immediate regl,imm5 3200
bgenr bit generate register regl,reg2 1300
bkpt breakpoint - 0000
bmaski bit mask generate immediate regl,imm5 2c00
br unconditional branch disp11 f000
brev bit reverse regl 00f0
bseti bit set immediate regl,imm5 3400
bsr branch to subroutine disp11 800
bt branch if true displ1l €000
btsti bit test immediate regl,imm5 3600
clrf clear if condition false regl 01d0
clrt clear if condition true regl 01c0
cmphs compare for higher or same regl,reg2 0c00
cmplt compare for less than regl,reg2 0d00
cmplti compare with immediate for less than regl,imm5 2200
cmpne compare for not equal regl,reg2 0f00
cmpnei compare with immediate for not equal regl,imm5 2a00
decf decrement if condition false regl 0090
decgt decrement and compare greater than regl 0la0
declt decrement and compare less than regl 0180
decne decrement and compare not equal regl 01b0
dect decrement if condition true regl 0080
divs signed divide regl,ri 3210
divu unsigned divide regl,rl 2cl0
doze enter doze mode - 0006
ff1 find first one regl 00e0
incf increment if condition false regl 00b0
inct increment if condition true regl 00a0
ixh index halfword regl,reg2 1d00
153 Embedded MCore Devel opment Guide

Alphabetical List of MCore Instructions

Instruction Description Operands Opcode(hex)
iXw index word regl,reg2 1500
jmp jump regl 00c0
jmpi jump indirect [disp8] 7000
jsr jump to subroutine regl 00do
jsri jump to subroutine indirect [disp8] 700
Id.b load unsigned byte regl,(reg2,disp4) a000
Id.h load unsigned halfword regl,(reg2,disp4) c000
ld.w load word regl,(reg2,disp4) 8000
Idm load multiple registers regl-rl15,(r0) 0060
Idg load register quadrant r4-r7,(regl) 0040
loopt decrement and loop regl,disp4 0400
Irw load PC-relative word regl,[disp8] 7000
Isl logical shift left regl,reg2 1b00
Islc logical shift left by 1 bit regl 3c00
Isli logical shift left immediate regl,immb5 3c00
Isr logical shift right regl,reg2 0b00
Isrc logical shift right by 1 bit regl 3e00
Isri logical shift right immediate regl,immb5 3e00
mfcr move from control register regl,creg2 1000
mov logical move regl,reg2 1200
movf move if condition false regl,reg2 0a00
movi move immediate regl,imm7 6000
movt move if condition true regl,reg2 0200
mtcr move to control register regl,creg2 1800
mult multiply regl,reg2 0300
mvc move carry bit to register regl 0020
mvcv move inverted carry bit to register regl 0030
not logical NOT regl 01f0
or logical OR regl,reg2 1e00
i return from fast interrupt - 0003
rotli rotate left immediate regl,imm5 3800
rsub reverse subtract regl,reg2 1400
rsubi reverse subtract with immediate regl,imm5 2800
rte return from exception - 0002
sextb sign extend byte regl 0150
sexth sign extend halfword regl 0170
st.b store byte regl,(reg2,disp4) b000
st.h store halfword regl,(reg2,disp4) dooo
Green Hills Software, Inc. 154

Instruction Description Operands Opcode(hex)
stw store word regl,(reg2,disp4) 9000
stm store multiple registers reg1-r15,(r0) 0070
stop enter stop mode - 0004
stq store register quadrant r4-r7,(regl) 0050
subc unsigned subtract with carry regl,reg2 0700
subi unsigned subtract with immediate regl,imm5 2200
subu unsigned subtract regl,reg2 0500
sync synchronize CPU - 0001
trap trap to operating system imm2 0004
tst test with zero regl,reg2 0e00
tstnbz test for no byte equal to zero regl 0190
wait wait for interrupt - 0005
xor logical exclusive OR regl,reg2 1700
XSr extended shift right regl 3800
xtrbO extract high order byte rl,reg2 0130
xtrbl extract byte 1 rl,reg2 0120
xtrb2 extract byte 2 rl,reg2 0110
xtrb3 extract low order byte rl,reg2 0100
zextb zero extend byte regl 0140
zexth zero extend halfword regl 0160

155 Embedded MCore Development Guide

Alphabetical List of MCore Instructions

Green Hills Software, Inc. 156

12

The Librarian

This chapter contains:
» Description
¢ Command Line Options
« Examples

Description

Thelibrarian combines object modul es created by the Assembler or Linker into alibrary file.
Below are the command line options and examples to understand this function.

Description

ax [options] archive-file input-files
The ax command creates library archives of .0 object filesfor use by the linker.

By convention, archives of object files for use by the linker are given the
extension .a. The linker can search such library archives and extract only those
object fileswhich are needed to provide definitions of undefined symbols. This
provides a convenient way to make a number of object files available to the
linker while linking in only those which are necessary.

There are two important features supported for version 1.8.9:

1. Filenames longer than 15 characters are now fully supported by ax and by
al Green Hills tools which operate on archives. Thisis accomplished by
storing the full name of the file in a hidden member of the archive called //.
The filename field of the archive header for the file with along name will
have an entry of the form /nnn where nnn is adecimal integer representing
an offset into the // file where the entire filename can be found.

2. A table of contents, also known as a symbol table, is now generated by ax
whenever the archive is modified by either thed or r option. Thistable of
contentsis stored in the form of a hidden file named / which is aways the
first filein the archive. In 1.8.8 the granlib utility was provided to generate
thistable of contents, but in 1.8.9, the granlib utility is no longer needed,
because this operation isintegrated within ax. The new optionssand S are
provided to force or prevent the creation of atable of contents.

The Ix linker supports archives with or without a table of contents, but the
table of contentsis necessary for the -rescan option to Ix to have any effect.
Future linkers will require the table of contentsin order to process an
archive.

Command Line Options

The command line ax help prints the following:

Green Hills Software, Inc. 158

ax d[eSv] archivefiles...
Deletes named files from an archivefile.

ax r[ceSv] archivefiles...
Replaces (or adds) named filesin an archive file. Any archive copies of
the named files are deleted and new contents of the files are added to the
archive. It is not necessary for the file to have previously been in the
archive. If the archive file did not previously exist, it will be created and
awarning message printed (unless option c is aso specified).

ax t[esv] archive[files...]
List filesin the archive. Without v, thisjust lists the names of the files.
With v, the list includes file sizes and dates.

ax x[ev] archive[files...]
Extracts named files from an archive file. The archive will be searched
for the specified filenames and the named files will be created and
written with the contents of the archived files. The archive is not altered
by this command.

ax g[ev] archivefiles...
Quickly appends named files to the end of the archive. q is similar to the
r option except that the files will always be added to the end of the
archive, rather than replacing any existing version of the file with the
new version. This command will be unsupported in the near future.

ax p[ev] archive [files]

Prints files to standard output.

These letters may be used with primary option letters as shown above. Options

must all appear as one string without spaces:

C Suppress warning for creation of archive if it doesn'’t exist.

e Prefix messages wWitBRROR or WARNING. Equivalent to the driver
option -prefixed_msgs, described in Chapter 8, “Compiler Driver
Options”.

s Used with t to regenerate table of contents.

S Suppress generation of table of contents.

% Verbose mode.

Note: If aminussign (-) is used as a prefix to the first option in the ax
command, it is silently ignored. For example:

ax -rv libx.a file.o
isthe same as

ax rv libx.a file.o

159

Embedded MCore Development Guide

Examples

Examples

To create alibrary archivefile of object modules suitable for input to the linker,
acommand may be used such as:

ax cr libmystuff.a myfilel.o myfile2.0 myfile3.0
To add another object module to the existing library archive:

ax r libmystuff.a myfile4.o
To delete an object module from the existing library archive:

ax d libmystuff.a myfile4.o
To replace an object module in the existing library archive:

ax r libmystuff.a myfile3.o o _
To extract two object modules from the existing library archive:

ax x libmystuff.a myfilel.o myfile2.0
To append two object filesto an existing library:

ax ¢ libmystuff.a add1.0 add2.o o .)
To print the table of contents of the existing library archive using verbose mode:

ax tv libmystuff.a
If the archive file consisted of three object files, foo.bar, bar.o, and etc.o, the

previous command would produce:

rw-rw----111/24 110 Mon Jun 22 09:43:14 1992 foo.0
rw-rw----111/24 141 Mon Jun 22 15:05:41 1992 bar.o
rw-rw----111/24 141 Mon Jun 22 09:47:22 1992 etc.o

To extract asingle fileinto a different name, the p option may be used:

ax p libmystuff.a foo.o > newfoo.o))
The v option must not be used with p because the filename, foo.o, will also be

written to standard output.

Note: Thedriver option -archive to the compiler driver is closely related to the
ax command (it invokes ax). See “General Options” on page 68 for more
information about thearchive command.

Green Hills Software, Inc. 160

13

The ELXR Linker

This chapter contains:
« Command Line Options
» Program Entry Point
+ Section and Memory Maps
« Expressions
» Section Attributes
« Green Hills Specific Linker Features
« Porting Guide from other linkers

Command Line Options

Command Line Options

Option Processing

Single-letter options may be followed by an argument with or without
whitespace, or following an =. Example: the following are equivalent:

-oargument
-o=argument
-0 argument

In the case of ambiguity between a single-letter option with an appended
argument, and a multiple-letter option, the multiple letter option takes
precedence. Use either of the other single-letter option forms when required.

Multiple-letter options may be preceded by one or two dashes; an argument
must be separated by an = or given as the following argument. Example: the
following are equivalent:

-option=argument
-option argument

Options

@commandfile (aliases: -Tcommandfile)

Additional options are read from file commandfile. Within the command file,
the pound sign (#) marks the remainder of that line as a comment.

-A file (aliases: -R)

Read in symbol names and addresses only from object file file. The object file's
contents will not be relocated or included in the output. Thisis useful when
one linker image must refer to symbols which are located in another separately
linked image.

-a
Causes the output file to be rel ocatabl e and executable. Relocation is
performed, and final link steps are performed (such as C++ constructors
creation, common allocation, and special symbol creation), but rel ocation
information is retained in the output file. Implies -r.

Some of the final link steps, including but not limited to: C++ constructors and
special symbols, are not guaranteed to have relocations, and thus may not be
valid if the outfile file isloaded at a different address.

Green Hills Software, Inc. 162

Program

-checksum/-nochecksum (default: -nochecksum)
Add a 4-byte checksum to the end of every program section. The algorithm
used is astandard 32-bit CRC using polynomial 0x10211021.

-e symbol
The program’s entry point is set to the address of symbol. See Program Entry
Point.

-sections{ ...} (diases: -sec, SECTIONS)
Specifies a section map. See Section and Memory Maps.

-L directory

Add directory to those searched for libraries specified by -I; may be repeated.
All -L options on the command-line will be processed before any -I options.
Directories will be searched in the order which they appear on the
command-line.

-Iname
Look for libname.a in directories specified by -L.

-memory { ...} (aiasess MEMORY)
Specifies amemory map. See Section and Memory Maps.

-r
Causes the output file to retain relocation information. The output file may be
used as an input file in further link steps. Implies -undefined. See aso -a.

-undefined
Causes elxr to not check for undefined symbol references. Any undefined
symbolswill be given an address of 0. See also -a.

Entry Point

There are severa ways to specify the program entry point. The following list
shows (in descending order of precedence) how elxr sets the entry point:

« -esymbol command-line option, if present
« thevalue of the symbol _start, if present

« thevalue of the symbol start, if present

« thevaueof the symbol _main, if present
 thevalue of the symbol main, if present
 thezero address

163

Embedded MCore Development Guide

Section and Memory Maps

Section and Memory Maps

Section Definition
A section map is formatted as follows:

SECTIONS {

secname [start_expression] [attributes] : [{ contents }]

Only secname and the : (colon) are required. All other entries may be omitted.
All sectionsin input files which participate in memory layout must be
referenced in the section map.

start_expression

The value of this expression is used as the starting address of this section. If
omitted, the section starts at the current address. In either case, the starting
address is further modified to fit alignment constraints of the subsections
included by contents.

attributes
Any number of attributes from the Section Attributes, below, may be specified.

{ contents}
Any number of section inclusion commands and expressions may be specified.

Section inclusion commands are of the form filename(secname), which directs
that the section secname from filename should be included. filename may be
replaced by * to specify sectionsin al files not specifically mentioned.

If '{’, contents, and '}’ or if "{ contents}" are omitted, the linker includes
sections named secname from all files, asif { *(secname) } had been entered.
To avoid this, specify an empty section asfollows: { }.

Expressions may be used to create or modify the value of any symboal. If a
non-existent symbol is assigned a value, that symbol is created relative to that
section.

The special symbol . (dot) may be referred to in expressions; it evaluates to the
current position, which is the offset from the beginning of the section. An
assignment increasing the value of dot will add padding at the current position.
An assignment decreasing the value of dot will result in an error.

Green Hills Software, Inc. 164

All assignments to any symbol are section relative; the numbersinvolved are
offsets from the start address of the section. See the ABSOLUTE function to
get an address.

Depending on the target and the enabled optimizations, program layout may
occur multiple times. Therefore you should avoid using expressions which
depend on the number of evaluations. If necessary, you may use the expression
final () to ensure that an expression is eval uated during the final layout only.

Example:

To set the low bit of asymbol func if the symbol already exists:

text : { isdefined(func) ? (func +=1) : 0; } /*incorrect, may increment multiple
times */

text : { final(isdefined(func) ? (func += 1) : 0); } /* correct */

Expressions

The following functions are recognized during expression evauation. Their
names are case-insensitive.

absolute(expr)
Given a section-relative offset value, absolute returns the absolute
address by adding the address of the containing section to value. It isan
error to use absolute outside of a section contents section.

addr (section)
Returns the memory address of the section named section.

sizeof (section)
Returns the current size of the section name section.

align(expr)
Returns the current position (') aligned to a value boundary. Thisis
equivalent to:

(- +expr-1) & ~(expr -1)

pack_or_align(expr)
Thisis generally only used as the start_expression for a section map. It
returns the current position (.) aligned such that the section will not span
apage boundary of size value. Thisis equivalent to:

(- % value) + sizeof(this_section) > value ? align(value) : .

165

Embedded MCore Development Guide

Section Attributes

min(valuel,value?)

max(valuel,value?)
Returns the minimum or maximum, respectively, of the two values
supplied.

error(" string")
Generates alinker error, displaying string, as well asthe current section’s
name and address, and the current section offset.

isdefined(symbol)
Returns 1 if aglobal symbol exists and is defined, O otherwise.

final (finalexpression [,earlyexpression=0])

Section Attributes

ABS
Setsaflag in the output file that indicates this section has an absolute
address, and should not be moved. Program loaders and other utilities
that mani pul ate the output image should not include this section in any
movement related to position independent code or data.

CLEAR, NOCLEAR
Sets or removes the clear attribute of this section. If the clear attributeis
present, an entry is made in the Runtime Clear Table, which is often used
by startup code to initialize memory regions to a particular value.

The clear attributeis set by default for any section that includesa COMMON or
SMALLCOMMON section, which are by default included by .bss and .sbss,
respectively.

Examples:

bss: /* defaults to { *(.bss) *(COMMON) } - which implies CLEAR */
.sbss NOCLEAR : /* defaults to { *(.sbss) *(SMALLCOMMON)}, but will now
not have a clear entry */
.mysbss NOCLEAR : {filel.o0(SMALLCOMMON) } /* disables default clearing
*/
.stack CLEAR PAD(0x1000) : [* this section will now have a clear
entry */
PAD (expr)
pad(expr)
The linker will place value bytes of padding at the beginning of this
section. Thisis equivalent to specifying padding at the beginning of the
section contents.

The following two examples are equivalent:

Green Hills Software, Inc. 166

.stack PAD(0x10000) : {}
.stack : {. += 0x10000; }

ROM (section)
This section becomes a ROMmabl e copy of section. This section inherits
the attributes and data of section, while section is modified to reserve
address space only (asif it were al padding with no data). Anentry is
made in the Section-Info section to allow startup code to copy this
section fromthis section (ROM) to section (RAM). See Runtime Copy
Table. It isan error to specify section contents for a ROM section, or to
have multiple sections ROMming the same section.
MIN_SIZE(expr)
Instructs the linker to possibly pad to ensure that this section is at least
size bytesin length.

Example:

.stack MIN_SIZE(0x400) : { ... } /* equivalent to the following: */

stack : { =max(.,0x400); }

MIN_ENDADDRESS(expr)
Instructs the linker to possibly pad to ensure that this section extends to
at least address.

Example:
.stack MIN_ENDADDRESS(0x10000) : { ...} /* equivalent to the following: */
stack : { = max(ABSOLUTE(.),0x10000) - ADDR(.stack); }
MAX_SIZE(expr)
Indicates that an error should be generated if this section exceeds size
bytesin length during final layout.

Example:
.stack MAX_SIZE(0x4000) : { ... } /* equivalent to the following: */
.stack : { ... final(. > 0x4000 ? ERROR("section limit exceeded") : O; }
MAX_ENDADDRESS(expr)
Indicates that an error should be generated if this section extends beyond
address during final layout.

Example:

.stack MAX_ENDADDRESS(0x10000) : { ... } /* equivalent to the following: */
.stack : {... final(ABSOLUTE(.) > 0x10000 ? ERROR("section limit exceeded")
:0;}

167

Embedded MCore Development Guide

Green Hills Specific Linker Features

Green Hills Specific Linker Features

Section-Info Section (.secinfo)

The .secinfo section contains special tables which contain information needed
by startup code to clear sections (Runtime Clear Table), and copy sections from
ROM to RAM (Runtime Copy Table).

Runtime Clear and Copy Tables

These two tables are contained within the .secinfo section; the Clear tableis
bounded by the symbols ___ghsbinfo_clear and __ghseinfo_clear, while the
Copy table is bounded by the symbols___ghshinfo_copy and __ghseinfo_copy.
The tables each contain zero or more records detailing the action to be taken at
startup. By default, the Green Hills C runtime will perform .bss clearing and
ROM copying based on this table without user intervention. The remainder of
this section only needs to be referred to if you want to override these default
actions.

The clear structureis asfollows:

void *base; /* pointer to base of memory to clear */
int value; /* value to initialize with (generally zero) */
size_t length; /* number of bytes to clear */

These values are appropriate to be passed directly into the memset() routine
within the C runtime library. The default clear codein the C runtime thusis as
follows:

extern rodata_ptr __ghsbinfo_clear, __ghseinfo_clear;

void **b = (void **) __ghsbinfo_clear;
void **e = (void **) __ghseinfo_clear;

while (b I=¢) {
void * t; [* target pointer */
ptrdiff_t ' /* value to set *
size_t n; /* set n bytes */

t = (char *)(*b++);

v = *((ptrdiff_t *) b); b++;
n =*((size_t *)b); b++;
memset(t, v, n);

}
}
The copy structureis as follows:

void *dest; /* pointer to base of memory to copy to */
void *src; /* pointer to base of memory to copy from */

Green Hills Software, Inc. 168

size_t length; /* number of bytes to copy */

These values are appropriate to be passed directly into the memcpy() routine
within the C runtime library. The default copy code in the C runtimeisas
follows:

extern rodata_ptr __ghsbinfo_copy, __ghseinfo_copy;

void **b = (void **) __ghsbinfo_copy;
void **e = (void **) __ghseinfo_copy;

while (b I=¢e) {
void * t; [* target pointer */
void * s; /* source pointer */
size_t n; [* copy n bytes */

t = (char *)(*b++);

s = (char *)(*b++);

n = *((size_t *) b); b++;
memcpy(t, s, n);

}

}
The actual implementation of the above two routines for your CRT can be found
in libsrc/ind_crt0.c in your Green Hills distribution, and differs dlightly for
PIC/PID support on some targets.

Begin and End of Section Symbols

When the linker is performing final symbol resolution for a non-relocatable
output file, certain undefined symbol names are recognized as referring to
memory addresses in the final section map. These symbol names are
constructed by prepending the strings___ghsbegin and _ _ghsend to the name of
each section in the output file, with any period (.) charactersin the section
names changed to underscores (). For a section named .text the symbols
__ghsbegin_text would resolve to the virtual address of the start, and
__ghsend_text to the virtual address of the end, of that section.

Example
For this section map:

{
.text 0x100000

.data 0x300000
. bss1 0x400000
. bss

169 Embedded MCore Devel opment Guide

Porting Guide from other linkers

And this program:
mai n. c:
extern char _ _ghsbegin_bss1[], _ _ghsend_bss1[], _
_ghsbegi n_bss[];
mai n() {
menset (_ _ghsbegi n_bss1, 0, _ _ghsend_bssl -

_ _ghsbegi n_bss1);
_ _ghsbegi n_bss[0] = Oxff;
}

If the size of section .bss1 is 0x100, then the linker will resolve
_ _ghsbegin_bss1 to be 0x400000, _ _ghsend_bssl to be 0x400100, and
__ghsbegin_bss to be 0x400100.

Porting Guide from other linkers

LX

Section Attributes:
size() use max_size() instead (sizeis retained for compatibility)
limit() use max_endaddress() instead

Section Renaming:
Use curly braces:

IX style:

.newtext : filel.o(.text) file2.o0(.text) ;
elxr style:

.newtext : { filel.o(.text) file2.o(.text) }

Green Hills Software, Inc. 170

14

Utility Programs

The gcompare Utility Program

The assembler Tool Chain contains more than 20 useful Utility Programs, including
functional replacements for the standard UNIX utilities dump, hide, nm, size, and strip. All
Utility Programs work with files generated by any Green Hills development tools.

ELF/BSD ELF/BSD
Utility (E)tlj:éEtSFDiles ijéct _ E'xe(/:utable Function

Library Files Files
gbincmp Yes Yes Yes Compare two binary files.
gcompare Yes Yes Yes Compare space or time performance.
gdump Yes™ Yes™ Yes™ Like UNIX dump; dump/disassemble a file.
dfile Yes Yes Yes Like UNIX file; describe the file type.
gfunsize Yes Yes Yes Print function’s code size.
ghexfile No No Yes® Convert an ELF or COFF to TEXHEX.
ghide Yes No No Hide global symbols in an object file.
gmemfile No No Yes® Generate binary image suitable for loading.
gnm Yes Yes Yes Like UNIX nm: print object file information.
grun No No Yes Execute in batch mode.
gsize Yes Yes Yes Like UNIX size: print section sizes.
gsrec No No Yes Convert to Motorola S-record format.
gstack No No No Compute the stack size for each task.
gstrip No No Yes Like UNIX strip: remove symbol/debug

information.

gsymdump No No No Dump a .dbg or .sym file.
gtune No No Yes Automatically tune a program.
gversion No No Yes Print version date and time information.
gwhat No No No Like UNIX what.
gzero No No Yes Zero out proprietary data.

" No BSD support.
* For selected BSD targets only.
~ Supports COFF but not BSD.

The gcompare Utility Program

The Green Hillsgcompar e Utility Program compares the code size of two input
filesand printsareport. Aninput file can be an ASCI| text file, an object file, an

Green Hills Software, Inc.

172

Usage

object filelibrary, or an executablefile. If aninput fileisatext file, it consists of
linesin the following format:

namel numberl
name2 number2

Each name/number pair is onits own line, separated by blanks or tabs.

If aninput fileis an object file, an object library file, or an executable file,
gcompare automatically runs gfunsize -gcompare -all (or another command
specified by the -x option) to produce atext file to compare.

You can mix all input file types with no restrictions, including files for different
target CPUs.

The gcompar e utility first reads both input files. For any name which does not
exist in both files, gcompare prints awarning, unless -w is specified. For each
name which existsin both files, gcompar e compares the code size of the old
and new numbers. If the old number isworse (larger isworse unless -i is
specified) gcompare writes aline to the output report file containing the name,
old number, new number, and percentage by which the new number is better.

For example:
main 32 28 -14%

To use gcompare, enter:

gcompar e [options] oldfile newfile
where

optionsgcompar e options, listed on the following page.
oldfile First input file.

newfileSecond input file.

The gcompar e options include:

-help Display information about all options.
-i Invert comparison. With -i, larger is better. Without -i, smaller is better.

-r Print a 2-column report, with comparisons sorted both from worst to best
and from best to worst.

-l Print a report, with comparisons sorted from worst to best.

173

Embedded MCore Development Guide

The gcompare Utility Program

-L Format for 132 column landscape mode. Default is 80 column portrait
mode.

-v Verbose mode. Print all comparisons. Without -v, only print comparisons
for which newfile is worse than oldfile.

-w Suppress warnings.

-x cmdSpecify the command to execute on anon-ASCII input file. The default
-x command is:

-x “gfunsize -gcompare -all”

-Z Do not show cases where files are the same.

If the-r, -, or -v options are used, all comparisons are shown, regardless of the
result of the comparison. With -r, two reports are shown side by side in two
columns. The left column is sorted best first, and the right column is sorted
worst first.

Sample -r output:

linpack.188.0.s vs linpack.188.0S.a linpack.188.0S.a vs linpack.188.0.a
WORSE by: 4172 | 3746 11% BETTER by: 3726 | 4172 | 10%
linpack.o:_daxpy 152 112 -36% | linpack.o:_dscal 34 34 0%
linpack.o:_matgen | 342 258 -33% | linpack.o:_epslon 20 20 0%
linpack.o:_dgesl 294 240 -23% | linpack.o:_idamax | 72 72 0%
linpack.o:_dgefa 524 442 -19% | linpack.o:_dmxpy 1516 | 1598 | 5%
linpack.o_main 1136 | 1052 -8% linpack.o:_main 1052 | 1136 | 7%
linpack.o:_dmxpy 1598 | 1516 -5% linpack.o:_dgefa 442 524 16%
linpack.o:_idamax | 72 72 0% linpack.o:_dgesl 240 294 18%
linpack.o:_epslon 20 20 0% linpack.o:_matgen | 258 342 25%
linpack.o:_dscal 34 34 0% linpack.o:_daxpy 112 152 26%

The output, especialy in -r mode, can require many columns. The -L option
formats the gcompare output for 132 columns instead of the default 80
columns. On aUNIX system, use the command Ipr -L to print the resulting
report in landscape mode.

Green Hills Software, Inc. 174

The gdump Utility Program

The gdump Utility Program formats and prints information about a BSD or
ELF object file, object library file, or executable file, including:

« theBSD or ELF file header
« program headers

 section headers

e (optiona) symbol tables

» (optional) relocation sections
« (optional) .plt section

e (optional) .got section

» (optiona) .dynamic section

Usage
To use gdump, enter:

gdump [optiong] filename

where
optionsgdump options, listed below.
filenameBSD or ELF file.

BSD File Options

Options when using gdump with BSD format filesinclude:
-help Display information about all options.

-C Print section contents.

-h Print file header.

-r Print relocation entries.

-S Print symbol table.

ELF File Options
Options when using gdump with ELF format files include:

-asm Print text sections as pure assembly language (see aso -ytext).
-dwarfPrint DWARF information only.

175 Embedded MCore Development Guide

The gdump Utility Program

-full Dump everything except section contents (see -ysec).

-help Display information about all options.

-load Print ELF header summary.

-map Print section summary.

-N Only print information as indicated by -y options.

-raw If -ysec, dump text sectionsin hexadecimal format, not disassembly.

-sx/nx Attempt/do not attempt shorter C++ demangling.

-sym Use symbol names, not numbers, in relocation output.

-vl Print DWARF version 1. Thisisthe default.

-v2 Print DWARF version 2. Thisversion is not well supported.

-verify_checksum
Indicates to gdump that all non-empty, alocated sections have a4 byte
checksum generated by the GHS linker. The content of each sectionis

compared against the existing checksum and if they do not match, both
will be printed.

-print_checksum
Prints the checksum for each appropriate section. If
-verify_checksum is also specified, checksums are assumed to exist and
-print_checksum prints them for those sections where the checksum is
found to be correct. If the -verify_checksum option is not specified,
checksums are assumed non-existent in the section and cal cul ates them,
using all bytesin the section.

-yd/-nd
Print/do not print DWARF debug information.

-ydynamic/-ndynamic
Print/do not print dynamic linkage information.

-yg/-ng
Print/do not print global offset table.

-yh/-nh
Print/do not print ELF header information.

-yl/-nl
Print/do not print DWARF line number information.

-yr/nr
Print/do not print relocation information.

-yp/-np
Print/do not print procedure linkage table.

Green Hills Software, Inc. 176

The gfile

-ys-ns
Print/do not print symbol table information.

-ysec/-nsec

Print/do not print section contents.
-ysh/-nsh

Print/do not print section header information.
-ystr/-nstr

Print/do not print string table information.
-yr/-nr

Print/do not print relocation information.
-ytext

Print contents of text sections only.

Utility Program

The dfile Utility Program issimilar to UNIX file. The gfile Utility printsthefile
type of each filename argument. It may al so display additional information. For
example, if amachine supports both Big and Little Endian data ordering, then
for an object file, object file library, or executable file, dfile displays the
machine type and byte order. For unrecognized object files, dgfile prints
unknown machinetype.

Usage
To use dfile, enter:
dfile [-help] filenamel [filename2 . . .]
where
-help Display information about all options.
filenameFilename argument(s), separated by white space.
Examples
Example 1
Thereis an executable file named a.out in the current working directory. This
executable was created by the Green Hills Tool Chain for an SH (Super Hitachi)
CPU. Running gfile on a.out produces the following:
dfile a.out
177 Embedded MCore Development Guide

The gfunsize Utility Program

a.out: SH big endian

Example 2
The current host system is a SPARC workstation running the Solaris 2.x
operating system, which uses the ELF format for executable files:

dfile /bin/od
/bin/od: SPARC big endian executable ELF

The gfunsize Utility Program

Usage

The gfunsize Utility Program prints the code size of one or more named
functions or al functionsin an ELF object file, object library file, or executable
file. For ELF, the code size of each function is part of the ELF symbol
information.

M Core does not always give useful sizes because of literal pools. The compiler
does not emit literals after every function, but defers emitting literalsfor aslong
as possible so that duplicate literals can be merged.

To use gfunsize, enter:

gfunsize [options| filename

where

optionsgfunsize options, listed below.
filenameName of the ELF file.

The gfunsize optionsinclude:

-help Display information about all options.

-all Print the code sizes of all functions. Thisis the default.
-func=namePrint code sizes of the specified function(s).

-addr Print function(s) addresses.

-hex Print function code sizes and addresses in hexadecimal.
-sectnum=n Only recognize functionsin section number n.
-sect=nameOnly recognize functionsin section name.

-gcompar ePrint the output in aformat suitable for use asinput to the
-gcompar e Utility Program.

Green Hills Software, Inc. 178

-w Suppress warnings.
-file Print filename before each function.

-nounder scores
Strip leading underscores from function names.

The ghexfile Utility Program

Usage

The ghexfile Utility Program converts an ELF or COFF executablefile to an
extended Tektronix hexadecimal (TEXHEX) output file.

To use ghexfile, enter:
ghexfile [options] input_file
where

optionsghexfile options, listed bel ow.
input_fileName of ELF or COFF executable file to be converted.
The ghexfile options include:

-help Display information about all options.

-cmd file
When -cmd is specified, the converter takes the command input from the
given filename. -cmd options may be nested up to 4 levels deep. More
than one -cmd option may appear on the command line. Command files
are processed in the order in which they are encountered. C-style
comments are accepted in the command input. Comments begin with
"[*" and are terminated with "*/".

-length n
The -length option sets the maximum length of a TEKHEX block. The
argument n must be a minimum of 40 and a maximum of 252. Any
values outside of this range will cause an error message to be displayed.
The default maximum size of a TEKHEX block is 80 bytes.

Thereisacertain number of bytes of overhead for each TEKHEX block.
Larger block sizes require less blocks in the TEKHEX file, thus reduces
the overhead and speeds up the time it takes to download thefile.

-nodata
The option -nodata causes ghexfile to not output data blocks. The
symbol formatter was used in the past to produce a TEKHEX file

179

Embedded MCore Development Guide

The ghexfile Utility Program

containing symbols only. The option -nodata exists for backwards
compatibility with the symbol formatter.

-nolocals
Do not emit local symbols to the TEKHEX output file. Local symbols
are useful when debugging but extend download time. This hasthe same
function as the linker map file switch -I.

-o filename
The -o option sets the name of the TEKHEX output file. If -o isnot
specified on the command line, the output filename is formed by
removing the path and the extension of the ELF or COFF input file and
adding the extension .tek. For example:

ghexfile /tmpffile.cfe
produces the TEKHEX output file named file.tek

-old
Produce output similar to what is produced by the linker with the -k
option. Limit TEKHEX data blocksto 42 bytes per block. Limit
TEKHEX symbol blocks to contain one symbol per block.

-skip name
The -skip option with a section name, will not translate datain the
specified section. |If the section that you specify isnot in the ELF or
COFF input file, the switch has no effect. If you want to skip more than
one section, you must enter the command once for each section. For
example: -skip .text -skip .data2

-y
The -y option suppresses printing the ghexfile banner.

To produce COFF, run the linker with the -z option. The TEKHEX support

which existsin the linker with the -k option is till available, but cannot be used

with linker directives nor COFF input files.

Features of ghexfile

The functionality of ghexfile is similar to the support in the linker and the
symbol formatter, but not identical. Several new features have been added to
make this utility more useful. Major featuresinclude:

« Control over the length of a TEKHEX block. In the linker, TEKHEX data
blocks are limited to 42 bytes. In ghexfile, the maximum bytes per block
can be specified using the command option -length. The default is 80 bytes
per block. The maximum bytes per block is 252. The minimum number of
bytes per block is40. Thereisa certain amount of overhead for each
TEKHEX block. Larger block sizes require less blocks in the TEKHEX

Green Hills Software, Inc. 180

file, and thus reduces the overhead and speeds up the time it takes to
download the application.

Multiple symbols per block: The symbol formatter was limited to a block
size of 80 thus could place several symbolsin each symbol block. The
symbol blocks produced by ghexfile can be up to 252 bytes, and thus
contain 3 times as many symbols as the symbol formatter and many times
more than the linker. The linker only emitted one symbol per symbol block
resulting in delays caused by excessive overhead in downloading TEKHEX
filesto emulators.

Option not totrandatedata: Some users download data as S Records and
symbols as TEKHEX. The symbol formatter was used to produce a
TEKHEX file containing symbols only. The option -nodata exists for
backwards compatibility with the symbol formatter.

Local symbol control: To reduce download time there is an option to not
emit local symbolsto the TEKHEX output file. Local symbols are useful
when debugging, however they extend download time. This has the same
function as the linker map file switch -I.

Local symbolsin the TEKHEX output file arefully supported. By
default, any local symbolsinthe ELF or COFF input file will be converted
to TEKHEX local symbols. Loca symbols are present in the ELF or COFF
output files produced by the Green Hills compilersin ELF or COFF mode.

For assembly language source files, the assembler does not output local
symbolsto the object file by default (68K COFF only). If the user needs
local symbols from assembly language source files, the options -g and
-O:DLOCAL must be specified on the command line when assembling.

For example:

a30 file-g-O:DLOCAL=file.asm
Unlimited number of symbolsper file: Thereis no limitation on the number

of symbolsin the TEKHEX output file. Inthe symbol formatter, alarge
number of symbols caused symfmt to fail.

User friendly command interface: On UNIX systems, thereisa UNIX-like
command syntax. The command options have meaningful names, and as a
result, are easier to remember. The -help option will display the command
syntax and a summary of the command options with a brief description.

Option not to trandate datain a section: Many users require the ability to
discard datain asection. Linker directives can be used to discard datain a
section. In some cases, users do not need to download all section data, but

181

Embedded MCore Development Guide

The ghide Utility Program

want to avoid doing multiple links, particularly with large applications. The
-skip option avoids trand ating datain the given section.

The ghide Utility Program

The ghide Utility Program modifies the symbol table of an object file to convert
all global symbolsto loca symbols, except for a specified retain list of global
symbols which remain global.

Usage
To use ghide, enter:
ghideretain_list object_file

where
-help Display information about all options.

retain_listFile containing symbol names separated by white spaces, which are
spaces, tabs, or new line characters.

object_file Output of an assembler or linker. 1t may be either rel ocatable or not
relocatable, but it should contain a symbol table, otherwise ghide will
have no effect.

The ghide Utility Program modifies the symbol table of file object_file so that
al global symbolsin object_file not listed in retain_list become local. The
retain_list file contains the global symbolsin object_file to be retained.

Example

An embedded application system consists of a kernel and several application

tasks, all developed independently. Some global functionsin the kernel are for
kernel use only. Other global kernel functions can be called from the application
tasks. First the kernel is linked into a single file using the linkegption to
retain relocation information. Theghideis run on the kernel using a list of the
functions which should remain visible to the application tasks. Finally, the
application tasks are linked with the kernel file, producing a complete
executable file. The use ghide ensures that only the desired global symbols
in the kernel are visible to the application tasks. This also prevents duplicate
symbol errors in the linker if any application should happen to have a global
symbol with the same name as an internal kernel-only function.

Green Hills Software, Inc. 182

The gmemfile Utility Program

Usage

The gmemfile Utility Program reads afully linked COFF or ELF executable
and produces a binary image of the final executable asit would appear in
memory. This binary image fileis suitable for raw download to a target.

To use gmemfile, enter:
gmemfile [options] executable file
where
executable file isthename of the COFF or EL F executablefromwhich
you wish to generate a download image.
The gmemfile options include:
-help
Display information about all options.

-0 filename
Specifies the output filename. If this option is not given, the output will
be written to a filename similiar to the executable file, with the suffix
".bin" added (or substituted if executable fileincludesa"." suffix
aready). For example, "foo" becomes "foo.bin", and "a.out" becomes
"abin".

Use ELF section headersinstead of ELF program headers. Appliesonly
to ELF files.

Write trailing zero-filled sections (e.g., ".bss")

Uninitialized Segments (ELF only)

A segment identified by an ELF program header, which isallocated in the final
executable image, but which contains no initialized datais defined by the ELF
standard to contain all zeros. The actual clearing of this portion of memory

must be performed by the loader, the operating system, or the executable’s
runtime (e.g., crt0). Itis also legal for a segment to be partially initialized. The
remaining uninitialized portion of a segment must likewise be filled in with
zeros.

By default, trailing uninitialized segments are omitted from the binary image
file generated bgmemfile. This can be a big savings in both download time

183

Embedded MCore Development Guide

The gnm Utility Program

and filesize. However, if your application depends on these segments being
zeroed, and no other facility will clear these segmentsfor you (e.g., crtO or your
target operating system), you may specify the -z option to include trailing zeros
in your binary image file.

For example, if your program image looks like this:

00000000
00001000 read-ont y
00002000 segment
00003000 read-write
segment
uninitialized
segment
= NS
FFFFFFFF /T/

Then without -z, the output file will look like this:

read-only segment

read-write segment

And with -z, the output file will look like this:

read-only segment

read-write segment

uninitialized segment
(all zeros)

The same type of truncation will occur if the last segment is only partially
initialized.

The gnm Utility Program

The gnm Utility Program prints the symbol table of an ELF object file, object
library file, or executable file created by the Green Hills development tools.

Usage
To use gnm, enter:

Green Hills Software, Inc. 184

gnm [optiong] [files]

where

-help Display information about all options.
options gnm options for ELF are listed below.
files Name(s) of ELF file(s).

ELF File Options
Options when using gnm with ELF format files include:

-a Prints special symbols which are normally suppressed.

-h Does not print headers.

-l Prints an asterisk (*) after symbol type for WEAK symbols (-p mode
only).

-n Sorts output by symbol name.

-0 Prints value and size of symbolsin octal.

-p Three column output format.

-r Prepends filename to each line of output.

-u Prints undefined symbols only.

Y Sorts output by symbol value.

-X Prints value and size of symbols in hexadecimal.

-V Printsgnm version.

Default Output Format

By default, a seven column listing is produced similar to the following:

Index | Value Size Type Bind Other | Shndx Name
37 0x00000100 | 0x00000098 | FUNC | GLOBL | O text _ _start
205 0x00000ed0 | 0x00000000 | FUNC | GLOBL | O .syscall _ _dotsyscall

Index Position of symbol in the symbol table.
Value The value or address of the symbol.
Size Size of the symbol (e.g. a4-byte integer would show a size of four)
Type One of the following:
NOTY Typeless symbal.
FILE Filename symboal.
SECT Section name symbol.

185

Embedded MCore Development Guide

The gnm Utility Program

OBJT Data symbol.

FUNCCode symbol.
Bind One of the following:

LOCL Local symboal (e.g. C/C++ dtatic).

GL OBGloba symbol.

WEAKWeak glabal symbol (value resolvesto zero if undefined).
Other Reserved field, generally zero.
Shndx The name of the section where symboal is defined, for example:

text Code-defined in the .text section.

.data Data-defined in the .data section.

ABS No section (e.g. afilename symbol).

COM M ONCommon variable whose section is not yet determined.
Name Symbol name.

Alternate 3 Column Output Format with -p

The alternate output format has only three columns and is provided for
backwards compatibility with tools which can read only thisformat. Thiseasily
parsable format is enabled with the -p option:

00000000 T __start
~U__ _dotsyscall _
The first column is the value or address of the symbol. The second column is

the kind of symbol as shown in the following table. The third column is the
name of the symbol.

External absolute.

Local absolute.

External zeroed data.

Local zeroed data.

Common variable (same as B except not yet assigned to a section).
Externa initialized data.

Local initialized data.

Externa initialized SDA.

Local initialized SDA.

External zeroed SDA.

Local zeroed SDA.

n ne @ 200c Y >

Green Hills Software, Inc. 186

T External text.
t Local text.
] External undefined.

In -p mode, it is not possible to accurately describe all sections and all storage
classes. In particular, user-defined SDA symbols and all other symbolsin
special sections are shown with letters SDA = GgSs.

The grun Utility Program

The grun Utility Program remotely executes a program using a MULTI debug
server to control the execution environment.

Usage
To use grun, enter:
grun [options] dbserv_cmd -- program [arguments]
where

optionsSpecific grun options, listed below.
dbserv_cmdName of aMULTI debug server.
- Double dash separates debug server name from program name.
programName of executable program.
argumentsOptional program command line arguments.
The grun optionsinclude:
-help
Display information about all options.

-text addr
Specifies addr as the starting address of the program’s text (code). This
is appropriate for Position Independent Code (PIC) programs.

-data addr
Specifiesaddr as the starting address of the program’s data. This is
appropriate for Position Independent Data (PID) programs.

-stack addr
Specifiesaddr as the initial value for the program’s stack pointer.

187 Embedded MCore Development Guide

The grun Utility Program

-detach
Causes grun to immediately terminate after downloading the program to
the target system. grun usually engages in communication with the
debug server before exiting, which may halt an executing target
program. This switch is frequently used with various target monitors or
Boot ROMswhen the program being downloaded will take the control of
the target system and terminate the target monitor.

-download

Causes the program to be downloaded, but does not start it running.
-pro

Like -profile, but also trandates the profiling data.
-profile

Executes the target program with profiling enabled.

The grun utility downloads and starts the executable program, subject to the
options above. If the -bail flag is specified, grun exitsimmediately after
starting the program. Otherwise, grun waits for target program completion
before exiting. grun will wait until 20 minutes with no 1/O. After that time, or if
grun isinterrupted by the user, it halts the target program and exits. While grun
isrunning, its standard input and output are copied to and from the executing
program, redirecting the program’s /O to the user’s terminal.

Green Hills Software, Inc. 188

The gsize Utility Program

The gsize Utility Program analyzes ELF object files, object library files, or
executable files, and for each file displays the size of each section in bytes. If
more than one file is named, or if an object library is named, gsize prints the
name of the file, with the section name and total s for each section.

Usage
To use gsize, enter:
gsize options filename
where options include:
-help
Display information about all options.
-table
Prints the output in a dightly different format.
-nototals
Suppresses the summary information.
-all
Causes empty sections and unallocated sections to be displayed.
filename
The file name of an ELF object file, object file library, or executablefile.
189 Embedded MCore Devel opment Guide

The gsrec Utility Program

The gsrec Utility Program

The gsrec Utility Program converts an ELF executable file into a Motorola
S-record format file. Motorola S-Records are an ASCI | representation of binary
data. Many simulators, In-Circuit Emulators (ICEs), PROM programmers and
debuggers use S-Records as a program download format.

S-Record Output Format

An S-record file contains ASCI| text which can be displayed or edited. There
are ten kinds of S-records, numbered from SO to S9:

e An S0 header record which identifies the program.
« A number of data records which represent the binary datain the program.

» An S5 data count record which contains the count of datarecordsinthe S
record file.

« A termination record which contains the address to begin execution of the
program.

Not al S-record reader programs behave the same way. Some programs require
certain types of datarecords. Some target environments do not accept S5 data
count records and some reguire certain types of termination records. Options
are provided to handle many of these cases.

Usage
Tousegsrec, enter:
gsrec [options] input_file [-0 srec_fil€]
where

optionsgsr ec options, listed below.

Green Hills Software, Inc. 190

input_fileName of ELF executable file to be converted.
-0 srec_file-o option and a name for the S-record format file.
The gsrec optionsinclude:
-help
Display information about all options.
-auto
Determine byte order from the file header. Thisis the default.
-B
Input fileis Big Endian.
-L
Input fileis Little Endian.
-bytes n
Set the maximum count of unpaired data bytes/records (min 4, max 28).
The default is 28.

-e addr

Set entry point in the termination record to given address.
-end addr

End address in object file.
-eol cr

Tells gsrec to terminate each record with a\r character.
-eol crif

Tells gsrec to terminate each record with a\r\n combination. Thisis the
default in Windows.

-eol If
Tells gsrec to terminate each record with a\n character. Thisisthe
default in UNIX.

-filllnln2v

Fill memory from address .n1 to address n2 with the one byte value v.

fill2n1n2v
Fill memory from address n1 to address n2 with the two byte value v.

-fill4nln2v
Fill memory from address n1 to address n2 with the four byte value v.
-interval n[:m]
Place only those data bytes from the input file which occur within the
specified interval in the output file. Legal values for n are 1 through 8.
The default is one, indicating that every bytewill be output. If an mvalue

191

Embedded MCore Development Guide

The gsrec Utility Program

is specified, it tells how many bytes will be output for each interval. For
example, 4:2 outputs two consecutive bytes of every four.

-noS5
Does not produce an S5 block count record.

-o filename

Specifies the output filename. If this option is not given, the S-record will be
sent to standard output.

-romaddr addr
Start addressin ROM to place data. The default isthe same address asin

theinput file.
-S1
Produces S1 data records (16-bit addresses).
-S2
Produces S2 data records (24-bit addresses).
-S3
Produces S3 data records (32-bit addresses). Thisisthe default.
-S5

Produces an S5 record. Thisis the defaullt.
Produces an S5 record with a 16-bit address.
Produces an S7 end record (32-bit entry point. Thisisthe default.
Produces an S8 end record (24-bit entry point).
Produces an S9 end record (16-bit entry point).
-Kip s

Does not output data for section s.

-start addr
Starts address in object file for outputting when -interval is used.

Green Hills Software, Inc. 192

Data Record

A datarecord contains the address where the datais |oaded, followed by the
dataitself. There are 3 varieties of datarecords. S1, S2, and S3. The only
difference between the data recordsis the size of the load address as follows:

» S3records contain 32-bit |oad addresses. Thisis the defaullt.

« S2 datarecords contain 24-bit load addresses. Use the option -S2 to get S2
data records.

« Sl datarecords contain 16-bit load addresses. Use the option -S1 to get S1
data records.

By default an S5 data count record is emitted. If your S-record loader does not
understand S5 records, use the option -noS5 to avoid outputting an S5 data
count record.

Termination Record

A termination record contains the entry point, the address where program
execution begins. There are 3 types of termination records. S7, S8, and $9.

« The S7 record contains a 32-bit entry point. Thisis the default.

e The S8 record contains a 24-bit entry point. Use the -S8 option to get S8
records.

» The S9 record contains a 16-bit entry point. Use the -S9 option to get S9
records.

Some S-record readers will only accept data records up to acertain length. The
option -bytes size can be used to set the maximum length of the data records.

If you forget to specify the entry point address when linking, -e address can be
used to set the entry point to the given address.

Data Splitting

In some hardware implementations, the width of the bus differs from the width
of the PROMs. Depending on how the bus and PROMs are connected, it may
be necessary to store even bytesin one PROM and odd bytesin another PROM.
The technique of dividing the datainto even and odd bytes, or worse, is called
data splitting.

Data splitting can be done in gsrec using afew options. The -start option
specifies the starting address of the data in the object input file to output to the
S-record output file. The -end option specifies the last address of datain the
object input fileto output. The -interval option specifies the distance between

193

Embedded MCore Development Guide

The gsrec Utility Program

bytesin theinput file to output. A value of 2 for -interval outputs every other
byte. Sometimesit is necessary to rel ocate the data to address zero in the
S-record output file for programming PROMS. The -romaddr option specifies
the start address of the data bytes in the S-record output file. Examples’5 and 6
illustrate separating even and odd bytes into two different S-record files.

Examples
All of the examplesin this section use the following program file:

file progl
sections:

1: .text, address: 0x1000, size: 0x100

2: .data, address: 0x2000, size: 0x200

3: .bss, address: 0x3000, size: 0x200 (No Load Section)
4. .data2, address: 0x4000, size: 0x200

The program was linked using the following command:

Ix -TOx1000 myprog.o -0 progl
Given arelocatable input file myprog.o, this command causes the linker to
create aprogram file called progl with a .text base address of 0x1000.

Example 1

gsrec progl]]) .

gsrec trandates the datain the input file progl and writes the S-records to the
standard output. Since the contents of section .bss are not loaded, no S-records
are output for its data.

Example 2

gsrec -S1 -S9 progl -0 progl.run

gsrec trandates the datain the input file progl and writes the S-records to the
specified output file, progl.run. Datais output as Sl records which have a
16-bit address space. The start address is output as an S9 record which has
16-bit address space.

Example 3

gsrec -start 0x1000 -end 0x1080 prog1l -o progl.run
gsrec translates the datain the input file progl starting at address 0x1000 and

ending at address 0x1080 to the output file, progl.run.

EXAMPLE 4
gsrec -start 0x1000 -end 0x1080 -romaddr 0 progl -o progl.run

Green Hills Software, Inc. 194

gsrec translates the datain the input file progl starting at address 0x1000 and
ending at address 0x1080, relocates the data starting at address zero, and
copies the resulting S-records to the output file progl.run.

Example 5

gsrec -start 0x1000 -end 0x1080 -romaddr O -interval 2 progl

gsrec trand ates the even data bytes in the input file progl starting at address
0x1000 and ending at address 0x 1080, relocates the datato start at address
zero, and copies the resulting S-records to the standard output.

EXAMPLE 6

gsrec -start 0x1001 -end 0x107F -romaddr O -interval 2 progl

gsrec trand ates the odd data bytes in the input file progl starting at address
0x1001 and ending at address 0x 107F, relocates the datato start at address
zero, and copies the resulting S-records to the standard output.

Example 7

gsrec -start 0x1002 -end 0x107F -romaddr O -interval 4:2 progl

gsrec trand ates two out of every four data bytesin the input file progl starting
at address 0x 1002 and ending at address Ox 107 F, relocates the data to start at
address zero, and copies the resulting S-records to the standard outpui.

195

Embedded MCore Development Guide

The gstack Utility Program

The gstack Utility Program

Usage

Example

The gstack Utility Program analyzes a program to report the maximum stack
size each task may need during execution and the call chain which would
produce this maximum stack size.

The gstack utility relies on information produced by the Green Hills compilers
and by the mtrans program. See the MULTI Reference Manual for adescription
of mtrans.

To produce the information required for gstack, al files comprising the
program must be compiled with -G.

To use gstack, enter:

gstack [prog | prog.sym | prog.dnm]
where

prog
prog.sym
prog.dnmName of the executable file.

The gstack options include:

-a Add functions or connections to the call graph. -a funl:fun2, fun3 adds
funl, fun2, fun3 to the call graph with fun2 and fun3 being callers of
funil.

-c funcPrint all callers of func.

-f func=si zeSpecify or change function stack frame size.

-g Print the call graph.

A Print al functions and frame sizes.

-s funcPrint the maximum stack size for the program starting with func.
-u Print al functions who have no callers.

-help Print information on al options.

For thefile test.c:

Green Hills Software, Inc. 196

Caveats

main()f { igt grr[lOOO];fun1();fun0();fun2();
fun0() l{Jrf]unil’.(); fun3(); }

fun1() {intarr[20]; fun2(); fun3(); }

fun2() {intarr[10]; fun3 (); }

fun3() {}

% ccmcore test.c -G -Xstaticcalls
% gstack a.out main

Task main 4136 byte stack produced by the call chain of:

Framesize Function
4004 main
4 fun0O
84 funl
44 fun2

« gstack cannot work if there are potential direct or indirect recursive callsin
the program, as it cannot predict how many times the recursion will occur.
gstack will print awarning messageif it detects a possible recursion in the
call graph.

« gstack prints awarning messageif it detects acall to afunction for which
thereis no stack frame size information, or for which thereis no call
information. Both of these situations might be caused by compiling the
function without using the -G option, or the function may be an assembly
language routine.

e gstack does not understand function calls through pointers. No warning is
printed.

» gstack cannot differentiate between static functions of the same name from
different files.

The gstrip Utility Program

The gstrip Utility Program can remove line number, symbol table, and debug
information from an ELF executable file to reduce its file size on disk.

Thegstrip utility processes executable files created by the Green Hills Software
linker as well as those created by some native linkers.

197

Embedded MCore Development Guide

The gsymdump Utility Program

Usage
To use gstrip, enter:
gstrip [options] filename
where
optionsgstrip ELF options, listed bel ow.
filenameName of executablefile.

ELF File Options
Options when using gstrip with ELF format files include:

-help
Display information about all options.
-l
Strips line number information only; do not strip the symbol table or
debug information.
-V
Prints the version number of gstrip to standard error output.
-X

Does not strip the symbol table; debugging and line number information
may be stripped.

The gsymdump Utility Program

The gsymdump Utility Program prints symbolic debug information from a
.dbg file or a.sym file to the standard output.

The Green Hills compilers can create files with the file extension .dbg. These
.dbg files contain the symbolic debug information for the object file with the
corresponding basename (cookie.dbg contains the symbolic debug information

Green Hills Software, Inc. 198

for file cookie.0). The mtrans Utility Program reads .dbg files and produces
.sym files, which are read by the MULTI Debugger.

Usage
To use gsymdump, enter:
gsymdump [options] [object-file.dbg] | executable.sym
where
options gsymdump options, listed below.
object_file.dbg
Name of file with symbolic debug information.
executable.sym
Name of fileto be read by MULTI Debugger.
The gsymdump options include:
-help
Display information about all options.
-C
Perform internal consistency checks.
-C
Perform internal consistency checks, but ignore warnings.
-da
Dump raw auxiliary table.
-dc
Dump static call information.
-dd
Dump the #define table.
-df
Dump the file name table.
-dh
Dump the .sym file header.
-dp
Dump the proc table.
-ds
Dump the symbol table.
-dt
Dump the typedef table.
199 Embedded MCore Devel opment Guide

The gtune Utility Program

-dx
Dump the section table.
-nx
Do not demangle C++ names.
-X
Shorten long C++ demangled names.
-V
Perform internal consistency checks only. Do not display symbol
information.
-V

Same as -v, but ignore warnings.

If no options are specified, then all of the above information will be displayed
with the exception of an auxiliary table. C++ names will be demangled.

The gtune Utility Program

The Green Hills gtune Utility Program can tune your program automatically. It
generates compiler optionsto inline functions that are only called once and to
delete functions that are never called.

gtune uses cross reference information produced by the compiler and stored in
.dbg and .sym files. In order for the compiler to produce this information, you

Green Hills Software, Inc. 200

Usage

Example

must either compile your source code with the -G options on the compiler
command line. gtune requires debugging to be turned on.

To use gtune, enter:
gtune executable[.sym] [-help] [-a] [-k func] ... [tune.opt]
where

executable.symExecutable file name and suffix for the .sym file associated with
it.

-help
Display information about all options.

-a
Considers all functionsin tuning output, regardless of whether the call
graph information exists for each function.

-k func
Does not include func in tuning the output.

tune.opt
Writes tuning output to file tune.opt, or to stdout if tune.opt is not
specified.

-t
Do not inline functions.

The gtune output file has lines of the form:

-Ol=funcl (inline function funcl)

-OD=funcl (deletes the out-of-line copy of function funcl)
-OD=func2 (deletes function func2)

The output fileisin aformat suitable to be used as input to the compiler driver,
as @tune.opt. The @ character tells the compiler driver to expand tune.opt as
if the contents of the file had been explicitly entered on the compiler command
line.

Filetest.c

void unused() { printf (“nobody calls me\n”); }

void unused_also() { printf (“nobody calls me either\n”); }

int inline_me_too() { return 7; }

int inline_me() { return 6 + inline_me_too(); }

main() { printf (“%d\n”, inline_me()); }

First, compile the program with call graph information, by entering:

201

Embedded MCore Development Guide

The gversion Utility Program

% gcc -G test.c
Then, run gtune to produce the options for the compiler optimizer, by entering:

% gtune a.out tune.opt)
The contents of tune.opt will be:

-Ol=inline_me_too

-OD=inline_me_too

-OD=unused_also

-OD=unused

-Ol=inline_me

-OD-=inline_me _ _ _

Now compile the program using the information generated by gtune, by
entering:

% gcc test.c @tune.opt

As aresult, the functions unused and unused_also are deleted from the
program, since they are never referenced. The functionsinline_me and
inline_me_too are compiled inling, that is, no call is made, since only one call
is made to each of these functions. The out-of-line copy of each of these
functionsis deleted.

The gversion Utility Program

Usage

The gversion Utility Program extracts and prints date and time information
from an executablefile. By default, gver sion prints out the revision date and the
rel ease date of the program.

To use gversion, enter:
gversion [-all] [dlot#] [filel] [file?] ...
where
-all
Print all non-zero dates, marked [0Q]..[9].

slot#
Single digit number of dlot to print. The default isto display al time
slots. In the examples on the following page, since ccommcor e only has
onetime dot set and the otsarefilled in increasing numerical order, the
command gversion 0 ccommcor e yields the same result as gversion
ccommcor e which is

ccommcore: Green Hills Software, release 1.8.8

Green Hills Software, Inc. 202

ccommcore: Revision Date Fri Dec 19 13:14:29 1997

However, if asked to print the value of slot 1 which is unstamped,
gversion will display an appropriate error message:

ccommcore: Green Hills Software, release 1.8.8
ccommcore has not been time stamped
ccommcore: [m] Fri Dec 19 13:14:30 1997

Note that gversion will display the file modification date for
informational purposes when no valid time stamp corresponding
to the slot requested can be found.

In -all mode, each date will be preceded by a digit in square brackets called a
time stamp. The Revision Dateis preceded by [0] and the Release Dateis
preceded by [6]. For example,

lusr/green/Ix: [0] Thu Jul 06 22:48:50 1996

/usr/green/Ix: [6] Mon Aug 14 14:32:11 1996

/usr/green/Ix: Revision Date Thu Jul 11 21:45:45 1996

lusr/green/Ix: Release Date Mon Oct 7 07:47:37 1996

The Revision Date reflects the date of the last modification of the source code

that was used to build the program. The Release Date is the date that the
particular tape or disk image containing the program was created. All programs
on the same tape should have the same Release Date.

Example 1

gversion /usr/green/Ix
/usr/green/Ix: Revision Date Thu Jul 11 21:45:45 1996
lusr/green/Ix: Release Date Mon Oct 7 07:47:37 1996

Example 2

gversion all /usr/green/gversion
lusr/green/Ix: [0] Thu Jul 06 22:48:50 1996
/usr/green/Ix: [6] Mon Aug 14 14:32:11 1996
The gversion options include:

-help
Display information about all options.

-date
Print the value as a date string. Thisisthe default.

gversion ccommcore
ccommcore: Green Hills Software, release 1.8.8
ccommcore: Revision Date Fri Dec 19 13:14:29 1997

203

Embedded MCore Development Guide

The gversion Utility Program

-value
Print the value without converting to date. For example:

gversion -value ccommcore

ccommcore: Green Hills Software, release 1.8.8
ccommcore: 882566069
ccommcore:
ccommcore:
ccommcore:
ccommcore:
ccommcore:
ccommcore:
ccommcore:
ccommcore:
ccommcore:

©O©OO~N®OUIEWN RO

-mtime
Always print the file modification date. This option must be used with
-all. For example:

gversion -mtime -all ccommcore
ccommcore: Green Hills Software, release 1.8.8

ccommcore: [0] Fri Dec 19 13:14:29 1997
ccommcore: [m] Fri Dec 19 13:14:30 1997
-nomtime

Never print the file modification date.
-quiet

Suppress errors for unstamped files.

gversion foo
foo cannot be time stamped

gversion -quiet foo

Green Hills Software, Inc. 204

15

Runtime
Environment and
Library Organization

This chapter contains:
 Introduction
« Multiple Language Runtime Support
* M¢CoreLibrary Structure
e Linker Directives Files
» How to Create a Customized Linker Directives File
» Specia Sectionsin Linker Directives Files
« Source Files Available for Customization
» Incorporating Your Changesinto the Libraries

Introduction

This chapter describes the basic structure of the Green Hills runtime environment and how to
modify and customize it. This chapter also describes changes from previous versions of the
Green Hills tool set.

Introduction

In an embedded environment, runtime support requirements differ, depending
on the application and target configuration. For example, if user C code calls
high level /O routines such as printf, scanf, or malloc, then low-level system
call routineswrite, read, and sbrk need to be implemented, perhaps with
modifications appropriate to your specific hardware environment. Green Hills
provides a default implementation for these interfaces which work with the
Green Hills target environments; for example, Green Hills instruction set
simulators, ROM monitors, or real-time operating systems.

The Green Hills version 1.8.9 cross development library system includes two
low-level libraries, libsys.a and libarch.a. The libsys.a library contains

low-level system routines which implement memory initialization and system

calls. Thelibsys.a library automates the function of copying sections of a

program’s initialized data from ROM to RAM. It automatically relocates
initializers which are runtime located (PIC/PID). TiHzar ch.a library contains

utility routines specific to a particular architecture; for examipbay ch.a

might include an integer divide routine to be used by the compiler system when
a processor architecture does not specify an integer divide instruction. The
startup modulegrt0.0, performs some basic initializations.

The source code titbsys.a andcrt0.o is fully contained in a separate directory,
libsrc, under the usual installation directory (for examfle;/green) of a

Green Hills cross development distribution. This directory also contains
example project build files to build these libraries using the MULTI
Development Environment. This source code, as well as the low-level library
object modules themselves, are a guide for development of an embedded
system.

While these object modules and object libraries enable you to get up and
running quickly under the initial default Green Hills configuration, you may
want to omit or modify these low-level interfaces for a particular system. Also,
not all functions contained in the libraries have default implementations; a few
routines, such as fstat, are entry points for user-supplied implementations, if
needed.

Green Hills Software, Inc. 206

Multiple Language Runtime Support

The Green Hills C Library implements all the standard ANS!I C library
functions. For acomplete list of these supported functions, please refer to the
Appendix. The libraries for other Green Hills languages, C++, Ada,
FORTRAN, and Pascal provide full support for those languages, including:

« ANSlandK&RC
 ANS| C++ and EC++

+ MILSTD FORTRAN DaD supplement to ANSI X3.9-1978 with VMS
FORTRAN extensions

e |SO Pasca Level 1
« Ada9s

MCore Library Structure

Each Green Hills cross devel opment toolset includes a set of runtime library
directories that are located beneath the main install directory. For example, if
your main install directory is/usr/green (or on a PC, C:\green), then you may
have a set of library directories /usr/green/directname, where directname can
be:

mcoreMCore ELF
mcore_sdMCore ELF with single precision hardware floating point.

The compiler driver option -fsingle changes the library directory from mcore
to mcore_sd.

Linker Directives Files

The linker directives file contains a description of the program sections. The
following example linker directives file will be referred to in the descriptions
that follow:

-Sec

text

.syscall
.secinfo
fixaddr

fixtype
.rodataalign(4):

207

Embedded MCore Development Guide

How to Create a Customized Linker Directives File

.romdata ROM(.data):
.romsdata ROM(.sdata):
.sdabase align(4) :

.sbss

.sdata

.rosdata

.data

.bss :
.heapalign(4) pad(0x100000):
.stackalign(4) pad(0x80000):

How to Create a Customized Linker Directives File

Itisstrongly suggested that you consult the existing default linker directives
examples provided in thetarget library directories of the distribution. When you
do not specify alinker directivesfile for a program build, these default
directives fileswill be used. The default linker directives filenames are:

default.InkUsed for normal, absolutely-located programs
pic.Ink Appropriate for PIC (Position Independent Code) programs
pid.InkAppropriate for PID (Position Independent Data) programs
picpid.InkAppropriate when using both PIC and PID

Not al target library directories will contain all of these linker directivesfiles,
although default.Ink existsin the default target library directory for all targets.
A suggested method for customizing alinker directivesfileisto copy the
default link map and make appropriate changes to it, such as altering the
addresses of text and data, specifying additional user-defined sections, changing
the sizes of the stack (via .stack) and heap (via .heap) aress, specifying
different sections to be placed in ROM, and removing unnecessary sections.
Before removing a section from the linker directivesfile, please read the
following section on Special Sections. Starting from a default section map
reduces the risk of failing to include a required section.

Special Sections in Linker Directives Files

Several sections must reside in the linker directivesfile for proper operation. A
list of these sections, a brief description of their functions, and an indication of
when they might not be needed follows. More detailed descriptions are located
throughout the rest of this chapter and in the libsr ¢ source code.

Green Hills Software, Inc. 208

.heap Specifiesthe size and location of the runtime heap. It is required when

using the Green Hills runtime libraries for dynamic memory allocation.
A reference to the predefined linker symbol

_ _ghsbegin_heap which denotes the beginning of the .heap sectionis
located in the ind_heap.o module of the libsys.a library. If the Green
Hills runtime libraries are not being used at all, then the .heap section
can be omitted. Otherwise, failure to include a .heap section in the linker
directive specification when the program uses dynamic memory
alocation (i.e. when those library modules handling this feature are
linked in with the program) will cause one or more linker errors such as
the following:

[elxr] error: undefined: ’__ghsbegin_heap’ referenced in

'lusr/green/mcore/libsys.a(ind_heap.o)’

The Green Hills runtime libraries ensure that the dynamic memory
allocation will not overrun the specified .heap area by returning an error
code from sbrk which, in turn, will cause malloc() and other memory
allocation routines to return aNULL pointer. User code should aways
check for erroneous return values when calling dynamic memory
allocation routines. Also, the Green Hills sbrk() routine, located in
ind_heap.c, can be customized to avoid use of the .heap section.

.sdabaseRequired when not using PIC/PID. Essentialy, for all hormal,

absolutely located programs, the .sdabase section MUST occur in the
linker directivesfiles. The Green Hills debug serverswill likely have to
initialize a PID/SDA base register before execution of anormal program
can begin. Debug serverswill initialize this base register with the address
of the .sdabase section (a dummy, zero-sized section). Failure to include
an .sdabase section will cause the base register to be left uninitialized
and many programsto fail. If the target does not support PID or SDA, or
if customized user code startup code sets up the base register, then the
.sdabase may not be needed but should still be included for
completeness. The .sdabase section is typically located just prior to the
start of the sections that make up the SDA (typically the small data area
consists of the .sdata and .sbss sections). When small data areais being
used, location of the .sdabaseis critical since only small offsets from the
SDA base register are typically allowed for addressing data within the
SDA. If datain the SDA resides too far from the .sdabase section, a
linker relocation overflow error will result. If SDA is not being used,
then location of the .sdabase may not be significant since PID references
generally allow afull 32-bit offset from the base register.

209

Embedded MCore Development Guide

Soecial Sectionsin Linker Directives Files

.Stack This section specifies your intended stack area and size, although thereis
no general mechanism for ensuring that the stack stay within the limits
specified by the .stack section. Green Hills startup code (when running
in standalone mode) and debug servers will initialize the initial stack
pointer of a process based on this .stack section. When building
programs to run under an operating system which does not alow
user-specification of the stack area, an empty .stack section can still be
included in the section map in order to resolve referencesin the startup
code. Thereferenceto the .stack areain the Green Hills startup code
(crt0.0) is used only when programs execute standalone, that is, not
downloaded and run with the MULTI Debugger. Use of the .stack
section in the startup code is also customizeabl e by editing and
rebuilding the crt0.mco assembly module. The Green Hills debuggers
also alow theinitia stack pointer to be specified differently with each
download of a program viathe special _INIT_SP variable; use of
_INIT_SP supersedes use of a.stack section to locate theinitial stack
pointer.

.romdata

.romsdataSection names beginning with .romXXX reference sections that are
the shadow copies of initialized data sections for romming code (and
hence have ROM () directives as well). Many of the Green Hills
default.Ink section maps use ROM sections even though the entire
program may be downloaded to RAM, alowing you to see examples of
how to specify ROM sections. When the linker seesa ROM directive, it
will create acopy of the RAM section that is readonly and hence
rommable. Then, the Green Hills startup code (ind_crt0.c) will
automatically copy the data from the .romXXX section to the XXX
section as needed when copying initialized data from ROM to RAM.

If the ROM linker directives are used, but the Green Hills automatic
ROM-RAM initialization code is not desired (i.e. custom ROM-RAM
copy code is used), then you should ensure that the ROM-RAM copy
mechanisminind_crt0.c is disabled by modifying or deleting that code.

If no ROM-RAM copying of code is necessary at al, then the .romXXX
sections can be omitted from the section map.

The .romXXX names are a convention used in the default section maps.
Names can be arbitrary. The ROM () directives provide the automatic
romming capability. You can find the actual code that accomplishes the
automatic ROM copying by looking in theind_crtO.c file.

.syscall Text section containing runtime library code for Green Hills emulation
of system calls. Thisis arommable section since it contains only text.

Green Hills Software, Inc. 210

When using the Green Hills runtime libraries for system call emulation,
thissectionis required. The .syscall source code (assembly) islocated in
thefileind_dots. When system call emulation is not being handled by
the .syscall mechanism, use of the .syscall code in this module can be
removed from the program (by customizing the libsys.a library which
contains the .syscall code), or adummy .syscall section can be included
in the section map to prevent it from being appended to the end of the
section map by thelinker. If the .syscall sectionisempty, it should be | eft
out of the section map.

.secinfoThisis aspecia section output by the Green Hills linker. It contains

information on the section layout of programs. The startup code in
libsys.a (ind_crt0.c) uses this information to determine which sections
need to be cleared (bss sections) and which need to be copied (ROM
sections). Thisis aread-only and thus a rommable section. Failure to
include this section in the link map will cause the linker to append it to
the end of the section map. There are three flags that can be used here. x
means executable, a means allocate it to be downloaded, and w means
writable. For example:

.section “.far”, “aw”

.section “.bar”, “ax”

Consult theind_crtO.c file for further documentation on the automatic
copy/clear feature.

.rodataMany of the Green Hills compilers will place readonly data (such as

data declared with the C const specifier and string constants) into a
read-only section called .rodata. The convention used in the default
linker directivesfilesisto place .rodata with other rommable sections.
Failure to include a.rodata section in the section map may cause the
linker to append it to the end of the section map.

With the exception of .rodata and the .romXXX ROM sections, the special
sections described above are created for and maintained by the Green Hills
runtime environment system. You should not explicitly add to them. Contents of
these sections are generated by one of the following methods:

compiler (.fixtype, .fixaddr)

linker (.secinfo)

runtime library code (.syscall)

linker directives (.sdabase,.stack, .heap)

21

Embedded MCore Development Guide

Source Files Available for Customization

Any attempt to explicitly place text or data into these special sections will
produce undefined and potentially fatal results. When creating custom named
sections, you must take care to not use any of the names of these special
sections.

More detailed descriptions of the functionality corresponding to the extended
linker directives and special sections can be found in the next section, Source
Files Available for Customization, as well as in the source code located in the
libsrc directory.

Source Files Available for Customization

With the Green Hills runtime libraries, you need to customize just afew low-
level source files and routines to implement or enhance the runtime
environment for a particular hardware system. A description of each file
follows. Each sourcefile, including files with only assembly language, are fully
commented to provide more detailed documentation.

The linker directives files, which specify the location and, sometimes, the size
of program sections, are also improved. Some of the improved functionality in
the low-level libraries require use of some of these linker directives.

crt0.mco

The startup module crt0.mco is assembled from a small architecture-specific
assembly language file and contains only aminimal amount of codeto setupaC
program environment before calling into a high level language C function. This
minimal assembly codeislocated in afunction named _start, the default entry
point for programs in the Green Hills environment. On program startup, an
initial system call is made to determine whether a Green Hills debug agent (or
debug server) is controlling execution of the program (as opposed to the
program running standalone, without being connected to a debug server). If the
system call is successful, some required register initialization is assumed to
have been accomplished by the debug server; otherwise the code in crt0.mco
may do some more initialization. The source code in crt0.mco should be
consulted since the actual register manipulation varies widely across different
architectures.

The most commonly required register initialization is that of the processor stack
pointer, since avalid stack is generally required before a high level language
can be called. Most crt0.0 modul es reference the special symbol
__ghsend_stack when initializing the stack pointer. __ghsbegin_sectionand _
_ghsend_section, where section is the name of your section preceded by an

Green Hills Software, Inc. 212

underscore () and not a period (.), are special linker-defined symbols which
reference the respective start and end of each user program section.

The .stack section is an improved method for specifying the location of the
runtime stack. You can place a .stack section into the linker directivesfile to
specify the location and size of the runtime stack. The Green Hills startup code
sets up the stack pointer to point to the end of this section if the stack grows
downward. Otherwise the stack pointer iswritten with the address of the start of
the .stack section. You can change the location or size of the stack by changing
the linker directivesfile.

Green Hills debug servers automatically detect the existence of the .stack
section and automatically initialize the stack pointer. An example .stack section
specified in the preceding example directivesfileis:

.heap align(16) pad(0x100000) :

.stack align (16) pad(0x80000):
This specifies that the stack starts on the first 16-byte aligned address following

the .heap section in memory. Also, the stack is configured to be 0x80000 bytes
insize.

Using the .stack to specify the stack configuration permits stack checking code
isto be easily built into a program; code need only compare the current value of
the stack pointer register with the value of _ _ghshegin_stack
to determine whether the available stack areais exhausted.

Finaly, _start callsthefunction__ghs_ind_crt0, the architecture-independent
startup routine located in libsys.a.

ind_crt0.c

As described above, this module contains machi ne-independent startup code. In
particular, ind_crt0.c clears the uninitialized data sections (.bss and .sbss, if
present), and copies initialized data sections from their location in ROM to their

final location in RAM. Whether a program requires this ROM to RAM copy
depends on the use of the linker directivesfile for that program. In the example
linker directives file above, the ROM directives specify that the sections

.romdata and .romsdata are “shadow” or ROM copies of the actuddta

section in RAM. The ROM sections are copied to RAM by the startup code in
this module. You do not have to write code to clear or copy sections at startup;
ind_crt0.0 does it automatically. Thed_crt0.c module should be customized
and rebuilt should you want to do this initialization without the aid of the
library.

213 Embedded MCore Development Guide

Source Files Available for Customization

When your program requires PIC/PID, theind_crt0.0 module will relocate
initialized pointers to any position independent object. For example, consider
the following C code:

extern int foo();

int (*ptr)() = &foo;

This declares a global function pointer which isinitialized to the address of the
function f 0o. This declaration is not valid with other compilers when utilizing
position independent code because the address of f 0o isunknown at link-time
and hence unresolvable by the linker/loader. Green Hills, however, supports
this. The compiler emits a small amount of data which describes each relocated
initialization in the program. For example, when compiling for PIC, the
compiler generates data to inform ind_crt0.0 that the initializer of the variable
pt r requires aruntime modification specifying the runtime location of the
program’s code, as desired. Aftad_crt0.o finishes, all initialized pointers
contain valid runtime addresses.

Finally, ind_crt0.c calls into the user code, that isnain().
ind_call.mco

ind_dots.mco

These modules contain architecture-specific language and handle lowest level
system call capability. The routine ghs syscall is called from various system

call routines, such agpen, close, read andwrite. The__ghs syscall routine
transfers control to a special address, the start address of the spsH|

section (see the earlier linker directives example.).

Debug servers or monitors can key in this special address to accomplish the
emulation of system calls in the Green Hills environment. For example, many
MULTI debug servers set a special breakpoint on this address; then, when the
breakpoint is encountered during execution, the debug server knows that a
system call occurred. The arguments are then retrieved and the system call is
emulated on the host by the debug server. This mechanism provides a more
generic system call interface and brings system call capability to some targets
where this functionality was previously unavailable.

ind_mcpy.c

ind_mset.c

These modules contain the C runtime library functimesncpy andmemset.
They are needed to clear and copy data sections during initialization. You can

Green Hills Software, Inc. 214

modify and change these routines if desired. For some architectures, either or

both of these functions are provided in assembly code. On other architectures,
high level C functions are used and compiled into the libsys.a library with the
highest optimization level.

ind_mcnt.mco
ind_gcnt.mco
ind_bcnt.c
ind_mprf.c

ind_gprf.c

These modul es provide profiling support. Two routines are used:

__ghs _mcount for call count profiling and _ _ghs_gcount for call graph
profiling. Themoduleind_bcnt.c containsthe profiling routine, __ghs_bcount,
which handles calls that are emitted by the compiler to implement code
coverage analysis. Theind_mprf.c and ind_gprf.c modules contain routines
that accomplish profiling functions such as starting a profiling timer (only on
certain processors) and writing profile data to disk.

ind_heap.c
The ind_heap.c module contains the dynamic memory allocation routines, in

particular the system call routine sbrk. The .heap section specifiesthe location,
size, and alignment of the heap in the linker directivefile.

For example, in the preceding linker directives example, the heap sectionis
specified as follows:

bss :
.heap align(16) pad(0x100000) :
.stack align(16) pad(0x80000) :

This specifies that the heap starts on the first 16-byte aligned address following
the .bss section in memory and is0x100000 bytesin size. The .stack section
then follows the heap area. The pad directive instructs the linker that the heap is
uninitialized on startup. This directive enables you to place the runtime heap
anywherein memory; the runtime library automatically allocates heap memory
where you place this section.

215 Embedded MCore Development Guide

Source Files Available for Customization

In addition, the ability to hardcode a size for the heap assures you that the
program does not use more heap memory than desired or expected. Attempting
to allocate memory at an address which is higher than that specified by the size
in the linker directive will cause sbrk to fail and return an error value.

ind_io.c
ind_io.c,ind_gmtm.c, ind_sgnl.c, ind_stat.c, ind_time.c, ind_exit.c,
ind_tmzn.c, ind_renm.c, and ind_syst.c contain abasic set of UNIX-like
operating system routines. Each routine is documented to show the function it
performs and the values it returns. These routines allow the linker to resolve an
operating system’s symbols, referenced by the Green Hills runtime libraries.
Theind_io.c system routines most likely to be needed for a basic UNIX-like
implementation are:

int open(const char *filename, int mode, . . .);

int creat(const char *filename, int prot);

int close(int fno);

int read(int fno, void *buf, int size);

int write(int fno, const void *buf, int size);

int unlink(char *name);

void _exit(int code);

These system calls enable the embedded system program to open, read, write,
and close files. In many embedded systems, this basic support is not required.
For example, on some systems, the application never ends and hence does not

need an exit routine.

Other system calls, enabling a more robust interface and used in the default
Green Hills runtime environment, include:

int brk(void *addr);

void *sbrk(int size);

long Iseek(int fno, long offset, int end);

int fcntl(int fno, int cmd, int arg);

int getpid(void);

int isatty(int fno);

void _enter(void);

The_enter routine is called at startup and can be used as a separate routine to
initialize the I/O system, initialize caching options, etc. Also, a few of the above
listed routines only provide rudimentary support; you should consult the
implementation before using them. Many of the Green Hitlsio.c and

related system call modules filter down to calls to the generic system call

interface routine, _ghs syscall, described above.

Green Hills Software, Inc. 216

ind_exit.c
_enter Called up at startup and is used as a separate routine to initialize the 1/O
system, initializing caching options, etc.

_ghs_at_exitRegisters functions that need to be called upon _exit (similar to
the ANSI atexit().)

_exit Calls cleanup routines registered by the program via

___ohs_at_exit() or atexit() and allows the program to terminate
gracefully viaan exit system call.

FORTRAN Runtime Support

The system routines needed specifically for FORTRAN are tabul ated below.
These routines are used by the Green Hills FORTRAN runtime library, libf.a.
Descriptions of the routines are in the noted source files.

Source File Routine
ind_trnc.c int truncate(const char *path, int length);
ind_stat.c int fstat(int fno, struct stat *statptr);

int stat(char *name, struct stat *statptr);

Other Low-Level Functions

Source File Routine
ind_gmtm.c struct tm *gmtime(const time_t *timer);
ind_sgnl.c int raise(int sig);

void (*signal(int sig, void (*func)(int)))(int);
unsigned int ualarm(unsigned int value, unsigned int interval);
unsigned int alarm(unsigned int seconds);

ind_stat.c int access(char *name, int mode);

ind_time.c time_t time(time_t *tptr);
int times (struct tms *buffer);

ind_tmzn.c struct tm *localtime(const time_t *timer);
void tzset(void);
int__gh_timezone(void);

ind_renm.c int rename(const char *old, const char *new);

ind_syst.c int system(const char *string);

Incorporating Your Changes into the Libraries

Included in each M Core library directory isadefault.bld file to help you
recompile and replace the customized object modules. For example, after

217 Embedded MCore Development Guide

Incorporating Your Changesinto the Libraries

changing directories into one of the target library directories, do the following
steps:

1

2.

Create a subdirectory objs, if it has not already been created.

Rename or remove thefile (libsys.a or crt0.0) that you wish to rebuild. It
might be useful to keep the old file around as a backup.

Run multi. It should open up on default.bld.

Remove the unused libghs.bld from project by single clicking on it and
hitting the remove button, if this has not aready been done.

Enter either the libsys or crtO project with adouble click.
Click on build. Thelibrary should be built.

If you rebuilt crt0.0, it should be copied from out of the objs subdirectory
back into the target directory. On UNIX systems, you may, instead, create a
symbolic link with In -s objg/crt0.o.

Consult the MULTI Reference Manual on using the Builder to change options
and rebuild. Options should be changed with care, as some of them are required
for proper operation. For example, the default.bld project causes the
preprocessor symbol EMBEDDED to be defined when compiling; this symbol is
required for some modulesin the libraries. Under default.bld, the subproject
libsys.bld buildsthe libsys.a library and crt0.bld builds the startup module,
crt0.0. Thelibghs.bld project should be ignored.

Green Hills Software, Inc. 218

16

MCore Simulator

This chapter contains:

The MCore Simulator Command Line Options
The Simulator asaMULTI Debugger Target
ROM Mode

Unsupported Features

The MCore Smulator Command Line Options

You can use simmcor e as a standalone simul ator to run MCore programs or useit asa
debugging target with MULTI to interactively debug M Core programs. See the MULTI
Reference Manual for more information on the MULTI Debugger.

The MCore Simulator Command Line Options

Command Line Options
You can run the simulator from the command line using the following syntax:

simmcore [options] image-file _
where image-fileis an ELF style executablefile.

The simmcor e options include:
-help
Prints the options list.
-fpu
Enables hardware floating point support.
-ieee
Enables | EEE-style operating mode with floating point exception
handling.
-V
Print version of simulator.

The Simulator as a MULTI Debugger Target

The simulator can be used in conjunction with MULTI to interactively debug
programs that may be difficult to debug. Invoking the simulator either from the
command line or asaresult of the MULTI remote command, will bring up two
other windows, one labeled TARGET and the other labeled | N/OUT.

The IN/OUT window iswhere al output to stdout goes, and all input from
stdin comes from. This separates communication with the remote process from
communication with the simulator itself.

The TARGET window provides an interface to the simulator. Target commands
provide a comprehensive view of the internal state of the simulated processor.
Some of these commands are only useful in the simulator's ROM mode. The

Green Hills Software, Inc. 220

commands currently available in the MCore simulator are listed in the table

found below.
Command Meaning
help Show all of commands with their brief descriptions.
reset Reset processor manually.
softreset Send soft reset signal to processor.
intr num Send interrupt num to processor.
fintr num Send fast interrupt num to processor.
show timing Show number of cycles executed.
zerotime Reset cycle time counter.
timer count int Send interrupt int every count cycles.
alloc addr size Allocate Size bytes of memory starting at address addr in memory.

All of these commands can also be reached from the MULTI Debugger
command pane by using the target command.

OS Simulation Mode

The simulator is able to deal with number of system calls. The following table
lists these system calls.

exit close stat link

read access fstat unlink
write creat brk getpid
open Iseek time alarm

A large portion of library functions use a combination of these calls to achieve
their goal. These system calls are unavailable to you in ROM simulation mode.

ROM Mode

ROM mode was added to the Green Hills simulators to facilitate creation of
embedded programs for real-time systems. The MCore simulator in ROM mode
will not simulate various system calls available in OS simulation mode. | nstead,
only the minimum hardware is simulated, such as the CPU and memory
systems.

In ROM mode the executable is loaded into simulator memory using the
physical addresses specified in the object file instead of virtual addresses. Then
execution begins at the address stored in the vector table (0x0), asif the CPU

221 Embedded MCore Development Guide

Unsupported Features

were just turned on. Thus, the object file acts like programmable ROM where
your system code can reside.

Other features of ROM mode:
» Exception handling isleft to the user.

« All memory pages are alocated on use. No segmentation faults are
generated.

« No arguments are passed to the running program.

« Stack can be set anywhere desired by user (the value stored at 0x4 is used
initially).

ROM modeis useful for writing and testing exception handlers and parts of an
operating system. Also, you will haveto write at least some start-up code in
pure assembly language since this mode gives you such a bare-bones processor.

Unsupported Features

The simulator does not support the following hardware features:
 instruction pipelining for external memory
« low power mode

 instruction timings

Green Hills Software, Inc. 222

A

Enhanced asm
Facility

This appendix contains:
 Introduction
» Definition of Terms
« asmMacros
e MCore asm procedures
« Writing asm Macros

Introduction

Introduction

Although the ability to write portable code is one reason for using the C
language, sometimesit is necessary to introduce machine-specific assembly
language instructions into C code. This need arises most often within operating
system code that must deal with hardware registers that would otherwise be
inaccessible from C. The asm facility makesit possible to introduce this
assembly code.

In earlier versions of C, theasm facility included alinethat looked like acall on
the function asm, which took one argument, a string:

asm("assembly instruction here");
Unfortunately this technique has shortcomings when the assembly instruction

needs to reference C language operands. You have to guess the register or stack
location into which the compiler would put the operand and encode that

location into the instruction. If the compiler’s allocation scheme changed, or,
more likely, if the C code surrounding taem changed, the correct location for
the operand in thasm would also change. You'd have to be aware that the C
code would affect thasm and change it accordingly.

The new facility presented here is upwardly compatible with old code, since it
retains the old capability. In addition, it allows you to defise macros that
describe how machine instructions should be generated when their operands
take particular forms that the compiler recognizes, such as register or stack
variables.

Although this enhanceabm facility is easier to use than before, you are
strongly discouraged from using it for routine applications because those
applications will not be portable to different machines. The primary intended
use of theasm facility is to help implement operating systems in a clean way.

The optimizer ¢cmcore -O) may work incorrectly on C programs that use the
asm facility, particularly when thasm macros contain instructions or labels

that are unlike those that the C compiler generates. Furthermore, you may need
to rewriteasm code in the future to maximize its benefits as new optimization
technology is introduced into the compilation system.

Definition of Terms

asm macr oAn asm macro is the mechanism by which programs use the
enhancedsm facility. Theasm macros have a definition and uses. The
definition includes a set of pattern/body pairs. Each pattern describes the

Green Hills Software, Inc. 2

storage modes that the actual arguments must match for the asm macro
body to be expanded. The uses resemble C function calls.

storage mode

The storage mode, or mode, of an asm macro argument is the
compiler’s idea of where the argument can be found at run-time.
Examples are “in a register” or “in memory.”

patternA pattern specifies the modes for each of the arguments afran
macro. When the modes in the pattern all match those of the use, the
corresponding body is expanded.

asm macro body

Theasm macro body, orbody, is the portion of code that will be

expanded by the compiler when the corresponding pattern matches. The
body may contain references to the formal parameters, in which case the
compiler substitutes the corresponding assembly language code.

asm Macros

The enhancedsm facility allows you to define constructs that behave
syntactically like static C functions. Eaabm macro has one definition and

zero or more uses per source file. The definition must appear in the same file
with the uses (or b#included), and the samasm macro may be defined
multiply (and differently) in several files.

Theasm macro definition declares a return type for the macro code, specifies
patterns for the formal parameters, and provides bodies of code to expand when
the patterns match. When it encountergaam macro call, the compiler

replaces uses of the formal parameters by its idea of the assembly language
locations of the actual arguments as it expands the code body. This constitutes
an important difference between C functions asd macros. Arasm macro

can therefore have the effect of changing the value of its arguments, whereas a
C function can only change a copy of its argument values.

The use of amasm macro look exactly like normal C function calls. They may
be used in expressions and they may return values. The argumenésito an
macro may be arbitrary expressions, except that they may not contain uses of
the same or othe&sm macros.

When the argument to an asm macro is a function name or a structure contained
in memory, the compiler generates code to compute a pointer to the structure or
function, and then resulting pointer is used as the actual argument of the macro.
Structures contained in registers are passed directly to the function. Addresses

3 Embedded MCore Devel opment Guide

asm Macros

are loaded into atemporary variable before being passed along; these will
usually be alocated to aregister. The following example shows how passing
addresses work:

Example
asm void makel10(addr)

{
%reg addr
lir3, 10
stw r3, O(addr)
%nearmem addr
Iwz r4, addr
lir3, 10
stw r3, 0(r4)
%error

void func()

int i, array[10];
makel0(&i);
makel0(array);
makel0(&array[3));

Definition
The syntactic descriptions that follow are presented in the style used in “C
Language Compilers.” The syntactic clastyps-specifier, identifier, and
parameter-list have the same form as in that chapter. A syntactic description
enclosed in square brackefs [) is optional, unless the right bracket is
followed by+. A + means “one or more repetitions” of a description. Similarly,
* means “zero or more repetitions.”

asm macro:
asm [type-specifier]identifier ([parameter-list])

[storage-mode-specification-line
asm-body] *
}

An asm macro consists of the keywoadm, followed by what looks like a C
function declaration. Inside the macro body there are one for more pairs of
storage-mode-specification-line(s) (patterns) and correspondiagm-body(ies).

If the type-specifier is other than void, thesm macro should return a value of
the declared type.

storage-mode-specification-line:
% [storage-mode [identifier [, identifier]*]; 1+

Green Hills Software, Inc. 4

A storage-mode-specification-line consists of asingle line (no continuation
with\ ispermitted) that begins with %and contains the names (identifier(s))
and storage mode(s) of the formal parameters. Modes for all formal parameters
must be given in each storage-mode-specification-line (except for error). The %
must be the first character on aline. If an asm macro has no parameter-list, the
stor age-mode-specification-line may be omitted.

Storage Modes

These are the storage modes that the compiler recognizesin asm macros.

treg A compiler-selected temporary register.

ureg A C register variable that the compiler has allocated in a machine
register.

farmemA location in memory that cannot be accessed with asingle load
instruction. These may need to be broken up into multiple load

instructions, and the steps for doing this may depend on the compilation
mode.

near memA location in memory that can be accessed with a single load
instruction (such as nearby stack variables or variablesin a small data
area).

reg Atregorureg.

con A compiletime constant.

mem A mem operand matches any allowed machine addressing mode, with
the exception of reg and con.

lab A compiler-generated unique label. The identifier(s) that are specified as
being of mode lab do not appear as formal parameters in the asm macro
definition, unlike the preceding modes. Such identifiers must be unique.
Example:

asm void check_for_bit_set(r)

{

%reg r %lab endlab
b_if not_bit_set r, endlab
software_trap

endlab:

Y%error

}
void check_status(int i, int j)

/* Using the macro twice would cause the "endlab" */
/* label to be defined twice if it was not specified

5 Embedded MCore Development Guide

asm Macros

/* as a unique label */
check_for_bit_set(i);
check_for_bit_set(j);

}

error Generate acompiler error. This mode exists to alow you to flag errors
at compile timeif no appropriate pattern exists for a set of actua
arguments.

farsprel A location on the stack that istoo far away to be accessed in asingle
instruction.

Note: For an asm macro that does not take any arguments, use a blank storage
mode (%).

asm Body

The asm body represents (presumed) assembly code that the compiler will
generate when the modes of all of the formal parameters match the associated
pattern. Syntactically, the asm body consists of the text between two pattern
lines (that begin with %) or between the last pattern line and the } that ends the
asm macro. C language comment lines are not recognized as such in the asm
body. Instead they are simply considered part of the text to be expanded.

Formal parameter names may appear in any context in the asm body, delimited
by non-al phanumeric characters. For each instance of aformal parameter in the
asm body the compiler substitutes the appropriate assembly language operand
syntax that will access the actual argument at run time. As an example, if one of
the actual arguments to an asm macro is x, an automatic variable, astring like
4(%fp) would be substituted for occurrences of the corresponding formal
parameter. An important conseguence of this macro substitution behavior is that
asm macros can change the value of their arguments. This differs from standard
C semantics.

For lab parameters a unique label is chosen for each new expansion.

If an asm macro is declared to return avalue, it must be coded to return avalue
of the proper type in the machine register that is appropriate for the
implementation.

An implementation restriction requires that no line in the asm body may start
with %.

The MCore compiler also supports the following primitives in the body of an
asm statement.

% SPOFF(m)

Green Hills Software, Inc. 6

Given that mis of the farsprel storage class, this expandsto an integer

containing its offset from the stack pointer.
Example:

%farsprel m

Irw r3, %SPOFF(m)
add r3,r0

Id.w r3,(r3,0)

MCore asm procedures

#include <stdio.h>
asm int mulword(a,b)

%con a %con b
Irw r2,a
Irw r3,b
mult r2,r3

%con a %reg b

Irw r2,a
mult r2,b
%reg a %con b
Irw r2,b

mult r2,a
%reg a %reg b

mov r2,a

mult r2,b
%con a Y%nearmem b

Id.w r2,b

Irw r3,a

mult r2,r3
%nearmem a %con b

Id.w r2,a

Irw r3,b

mult r2,r3
%nearmem a %nearmem b

Id.w r2,a

Id.w r3,b

mult r2,r3
%con a %farsprel b

Irw r2,%SPOFF(b)

addu r2,r0
Id.w r2,(r2,0)
Irw r3,a

mult r2,r3
%farsprel a %con b

Irw r2,%SPOFF(a)

addu r2,r0

Id.w r2,(r2,0)

Embedded MCore Development Guide

MCore asm procedures

Irw r3,b

mult r2,r3
%farsprel a %farsprel b

Irw r2,%SPOFF(a)

addu r2,r0

ld.w r2,(r2,0)

Irw r3,%SPOFF(b)
addu r3,r0

Id.w r3,(r3,0)

mult r2,r3
%farmem a %farmem b

Irw r2,a
ld.w r2,(r2,0)
Irw r3,b
ld.w r3,(r3,0)
mult r2,r3
%error
short x = 30;
shorty = 2;
intz=10;
func()

int tmpl = x, tmp2 =y;

int ztmp = z;

return mulword(10,20) + mulword(tmpl1,tmp2) + mulword(ztmp,30) +
mulword(ztmp,ztmp) + mulword(10,ztmp) + mulword(X,y);

func()

int tmpl = x, tmp2 =y;
int ztmp = z;
return mulword(10,20) + mulword(tmpl1,tmp2) + mulword(ztmp,30) +
mulword(ztmp,ztmp) + mulword(10,ztmp) + mulword(x,y);
}

func2()
int tmpl = x, tmp2 =y;
int ztmp = z;
return (10*20) + (tmp1*tmp2) + (ztmp*30) +
(ztmp*ztmp) + (10*ztmp) + (x*y);
main()

if (func() != func2())

printf("ASMPROC FAIL: %d (wrong) !'= %d (correct)\n",func(),func2());

return O;

Green Hills Software, Inc.

Writing asm Macros

Here are some guidelines for writing asm macros.

1

Know the implementation. You must be familiar with the C compiler and
assembly language with which you are working. You can consult the
Application Binary Interface for your machine for the details of function
calling and register usage conventions.

Observe register conventions. You should be aware of which registersthe C
compiler normally uses for scratch registers or register variables. An asm
macro may alter scratch registers at will, but the valuesin register variables
must be preserved. You must know in which register(s) the compiler returns
function results.

Handle return values. asm macros may “return” values. That means they
behave as if they were actually functions that had been called via the usual
function call mechanismasm macros must therefore mimic C's behavior in
that respect, passing return values in the same place as normal C functions.
Float and double results sometimes get returned in different registers from
integer-type results. On some machine architectures, C functions return
pointers in different registers from those used for scalars. Finally, structs
may be returned in a variety of implementation-dependent ways.

Cover all cases. Thesm macro patterns should cover all combinations of
storage modes of the parameters. The compiler attempts to match patterns in
the order of their appearance in & macro definition.

If the compiler encounters a storage mode of error while attempting to find a
matching pattern, it generates a compile time error for that partezmar
macro call.

5.

Beware of argument handlingsm macro arguments are used for macro
substitution. Thus, unlike normal C functioasm macros can alter the
underlying values that their arguments refer to. Altering argument values is
discouraged, however, because doing so would make it impossible to
substitute an equivalent C function call for #sen macro call.

asm macros are inherently non-portable and implementation-dependent.
Although they make it easier to introduce assembly code reliably into C
code, the process cannot be made foolproof. You will always need to verify
correct behavior by inspection and testing.

Embedded MCore Development Guide

Writing asm Macros

7. Debuggerswill generally have difficulty with asm macros. It may be
impossible to set breakpoints within the inline code that the compiler
generates.

8. Because the optimizers are highly tuned to the normal code generation
sequences of the compiler, using asm macros may cause optimizers to
produce incorrect code. Generally speaking, any asm macro that can be
directly replaced by a comparable C function may be optimized safely.
However, the sensitivity of an optimizer to asm macros varies among
implementations and may change with new software releases.

Green Hills Software, Inc. 10

Viewpathing

This appendix contains:
» Theory of Operation
e Limitations
» Environment Variables

Theory of Operation

Viewpathing is asimple, lightweight implementation of workspaces. This feature gives our
tools a hierarchical method for searching multiple directories for requested input files. For
example, with this feature the compiler could first ook in the current developer’slocal source
directory for a sourcefile, then, in the development group’s group source directory, and
finally, in amulti-group global source directory.

Theory of Operation

When aviewpath is specified, by means of the environment variable NVPATH,
thetoolstreat al input filenames as viewpath-relative. To create a
viewpath-relative filename, the tools first determine the difference between the
first element of the NVPATH variable and the current working directory. For
example, if NVPATH=/ 1: / 2: / 3 and your current working directory is

/ 1/ subdi r/ , then the differenceissubdi r/ .

This difference is appended to each node in the viewpath, in order to generate
the path prefix to append to the relative filename provided to the tool. In the
previous example, if thetool isgivensrc/fil e. ¢, thenthesearched
locations will be, in order:

[1/subdir/src/file.c
[2/subdir/src/file.c
[3/subdir/src/file.c

For effective viewpathing, the developer must run al tools from a current
working directory which is a subdirectory of the first element in the NVPATH,
referred to astheroot node.

Undesirable behavior may result if “.” is specified asritwt node.

Viewpathing does not affect the locations of output files. All temporary files
will be unaffected and all other output files (such as executables, object files,
etc.) will be created relative to theot node.

If a file located in a directory down the viewpath, for example, in the 2nd or 3rd
node, is opened for modification, such as adding files to an archive or editing a
text file, then the original file will first be copied into a location relative to the
root node. Then, it will be opened for modification. In this way, a developer’s
modification will not affect the development group's files.

Green Hills Software, Inc. 12

Limitations

When creating afile for output in the root node, the required intermediate
directories will not be created in the root node, even if the corresponding
directory path existsin anode down the viewpath.

Environment Variables

Example

The following environment variables control viewpathing behavior of the tools.
These environment variables must be set to a non-null value to take effect.

NV PAT HEnable viewpathing and should be a colon separated list of
pathnames.

GHS VP_DEBUG
Enabl e the output of diagnostic information from programs that use
viewpathing.

GHS VP_NONE
Disable viewpathing, even if NVPATH is set.

GHS VP_SLOW

Disable a performance optimization where files which are opened for
creation and not updating are not copied down the viewpath if they
aready exist.

This example requires three existing empty directories:

/test/local
ltest/group
ltest/global
</test>: pwd
[test
</test>: Is -Ag *
global:
total 2
-rw-rw-r-- 1 green 7 Feb 11 15:56 filel.c
group:
total 2
-rw-rw-r-- 1 green 15 Feb 11 15:58 file2.c
local:
total 2
-rw-rw-r-- 1 green 34 Feb 11 15:55 file3.c
</test>: cd local
</test/local>: setenv NVPATH "/test/local:/test/group:/test/global”

13

Embedded MCore Development Guide

Environment Variables

</test/local>: setenv GHS_VP_DEBUG 1
</test/local>: ax crv archive.a filel.c file2.c file3.c

ax: info: Viewpathing support is ON (FAST).
ax: info: Adding viewpath node 1: /test/local
ax: info: Adding viewpath node 2: /test/group
ax: info: Adding viewpath node 3: /test/global
a-filel.c

ax: info: Located file: /test/global/filel.c

a - file2.c

ax: info: Located file: /test/group/file2.c

a - filed.c

</test>: cd ..
</test>: Is -Ag *

globall:

total 2

-rw-rw-r-- 1 green 7 Feb 11 15:56 filel.c
group/:

total 2

-rw-rw-r-- 1 green 15 Feb 11 15:58 file2.c
local/:

total 4

-rw-rw-r-- 1 green 246 Feb 11 16:05 archive.a
-rw-rw-r-- 1 green 34 Feb 11 15:55 file3.c

</test>: cd local
</test/local>: ax tv archive.a

ax: info: Viewpathing support is ON (FAST).

ax: info: Adding viewpath node 1: /test/local

ax: info: Adding viewpath node 2: /test/group

ax: info: Adding viewpath node 3: /test/global
rw-rw-r-- 4025/28 7 Feb 11 15:56 1998 filel.c
rw-rw-r-- 4025/28 15 Feb 11 15:58 1998 file2.c
rw-rw-r-- 4025/28 34 Feb 11 15:55 1998 file3.c

</test/local>: echo "Completely new and larger file 1" > filel.c
</test/local>: Is -Ag

total 6

-rw-rw-r-- 1 green 246 Feb 11 16:05 archive.a
-rw-rw-r-- 1 green 32 Feb 11 16:09 filel.c
-rw-rw-r-- 1 green 34 Feb 11 15:55 file3.c

</test/local>: ax r archive.a filel.c

ax: info: Viewpathing support is ON (FAST).
ax: info: Adding viewpath node 1: /test/local
ax: info: Adding viewpath node 2: /test/group
ax: info: Adding viewpath node 3: /test/global

</test/local>: ax tv archive.a

ax: info: Viewpathing support is ON (FAST).

ax: info: Adding viewpath node 1: /test/local

ax: info: Adding viewpath node 2: /test/group

ax: info: Adding viewpath node 3: /test/global
rw-rw-r-- 4025/28 32 Feb 11 16:09 1998 filel.c
rw-rw-r-- 4025/28 15 Feb 11 15:58 1998 file2.c
rw-rw-r-- 4025/28 34 Feb 11 15:55 1998 file3.c

Green Hills Software, Inc. 14

C

C Runtime Libraries

This appendix contains:
 Built-in Functions
+ Reentrancy
« libansi.adata structures and functions
« libind.afunctions
* LessBuffered I/0

Built-in Functions

To use the Green Hills C Library, the user needs a standard Green Hills compiler license.
Under this license, unlimited distribution of programs linked with the Green Hills C Library
object code is permitted without charge. However, distribution of the Green Hills C Library
source code or object code is not permitted.

Built-in Functions

The Green Hills C and C++ compilersimplement certain built-in functions. A C
or C++ built-in function name begins with two underscores. __. A built-in
function is recognized by the compiler asaspecial function. It usually generates
optimized inline code, often using specia instructions which do not correspond
to standard C and C++ operations.

__MULUH, __MULSH

__CLZz32

C and C++ function prototype:
extern unsigned int __MULUH(unsigned int a, unsigned int b);
externsignedint MULSH(signedinta, signedint b);

The __MULUH(a,b) built-in function takes as arguments two 32-bit unsigned
integers and returns the high 32-bit half of their 64-bit unsigned product. This
built-in function generates inline code for most targets.

The __MUL SH(a,b) built-in function takes as arguments two 32-bit signed
integers and returns the high 32-bit half of their 64-bit signed product.

The __MULUH and __MUL SH built-in functions generate inline code for the
following targets:

MIPS PowerPC 960 TriCore
V800 486 Sparc

C and C++ function prototype:
externunsigned int __CLZ32(unsigned int a);

The __CLZ32(a) built-in function takes a 32-bit integer argument and returns
the count of leading zeros, which is a number from 0 to 32.

Green Hills Software, Inc. 2

The __ CLZ32 built-in function generates inline code for the following targets:

’ PowerPC ‘ 960 | TriCore | MCore ‘

DI, __El
C and C++ function prototype:

externvoid __DI(void);/* disable interrupts */

externvoid __El(void);/* enable interrupts */
The __DI() built-in function disables interrupts.
The __EI() built-in function enables interrupts.

These two built-in functions can be used together as a pair to bracket a critical
section of code which must not be interrupted.

The DIl and __EI built-in functions generate inline code for the following

targets.
MIPS PowerPC
SH V800
TriCore FR
MCore

For targets other than those listed, the __DI() and __EI() are undefined in the
library.

Reentrancy

A reentrant function can be interrupted, suspended, and called again, then
resumed from its suspended state. Generally, reentrant functions do not writeto
global variables or local static data structures, and call only other reentrant
functions.

In the tables on the following pages, the code letters listed below are used to
identify the reentrancy of the library functions:

Y Function is reentrant
N Function is not reentrant
I Function does I/O; for most purposesit is not reentrant.

3 Embedded MCore Devel opment Guide

libansi.a data structures and functions

E Function writesto the global variable errno, otherwiseis reentrant. It
may be possible to modify the library source so writingto errnoisa
reentrant operation. See the functions

__gh_set_errno() and __gh_get_errno(). The complete source codeis
libsrc/ind_errn.c.

libansi.a data structures and functions

Variable Source Module Declaration

_CTYPE ccctype.c unsigned char _CTYPE]]

sys_errlist ccsyserr.c char *sys_errlist[]

tolower ccctypel.c short _tolower_[]

toupper ccctypel.c short _toupper_]]

Function ’\S/I%Lérlﬁi Reentrant? | Arguments/Return Value

abort ccabort.c Y void abort(void)

abs ccabs.c Y int abs(int x)

asctime cestrftm.c N char *asctime(const struct tm *t)

_assert ccassert.c | ?(oic; _assert(const char *problem, const char *filename, int

ine

assert ccassert.c | void assert(int value)

atexit ccatexit.c N int atexit(void (*func)(void))

atof ccatof.c Y double atof(const char *str)

atoi ccatoi.c Y int atoi(const char *str)

atol ccatol.c Y long atol(const char *str)

bcmp ccbcmp.c Y bcmp(char *b1, char *b2, int length)

bcopy cchcopy.c Y bcopy(char *from, char *to, int n)

bsearch ccbsrch.c Y void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *))

bufcpy ccbufcpy.c Y bufcpy(char *to, char *from, int n)

bzero cchzero.c Y bzero(char *pt, int n)

calloc cccalloc.c N void *calloc(size_t num, size_t size)

cfree cccfree.c N void cfree(char *item)

clearerr ccclrerr.c | void clearerr(FILE *file)

clearn ccclearn.c Y void clearn(int n, char *pt)

clock ccclock.c Y clock_t clock(void)

Green Hills Software, Inc. 4

Function ’\S/I%I:jrlﬁ: Reentrant? | Arguments/Return Value

ctime ccctime.c N char *ctime(const time_t *timer)

difftime ccdifftm.c Y double difftime(time_t timel, time_t time0)

div ccdiv.c Y div_t div(int number, int denom)

___docvt | ccdocvt.c Y internal use only

_doprnt cevprintf.c | int _doprnt(const char *format, va_list args, FILE *stream)

_doscan ccscanf.c | _doscan(const char *format, va_list args, FILE *stream)

ecvt ccecvt.c N char *ecvt(double value, int ndig, int *decpt, int *sign)

eprintf cceprntf.c | int eprintf(const char *format, ...)

execl ccexecl.c Y int execl(const char *name, const char *args, ...)

execle ccexecle.c Y int execle(const char *name, const char *args, ...)

execv CCexecv.c Y int execv(const char *name, char *const *argv)

exit ccexit.c N void exit(int val)

fabs ccfabs.c Y double fabs(double x)

fclose ccfclose.c | int fclose(FILE *file)

fevt ccecvt.c N char *fcvt(double value, int ndig, int *decpt, int *sign)

feof ccfeof.c Y int feof(FILE *stream)

ferror ccferror.c Y int ferror(FILE *stream)

fflush ccfflush.c | int flush(FILE *file)

ffs ccffs.c Y int ffs(int i)

fgetc ccfgetc.c | int fgetc(FILE *file)

fgetpos ccfgetps.c | int fgetpos(FILE *file,fpos_t *pos)

fgets ccfgets.c | char *fgets(char *str, int n, register FILE *file)

_filbuf ccfilbuf.c | _filbuf(register FILE *file)

filln ccfilin.c Y void filln(int n, char *pt, int fill)

_flsbuf ccflsbuf.c | _flsbuf(int ch, FILE *file)

fdopen ccfopen.c | FILE *fdopen(int fno,const char *mode)

fopen ccfopen.c | FILE *fopen(const char *name, const char *mode)

fprintf ccprntf.c | int fprintf(FILE *stream, const char *format, ...)

fputc ccfputc.c | int fputc(int ch,FILE *file)

fputs ccfputs.c | int fputs(const char *str,FILE *file)

fread ccfread.c | size_t fread(void *ptr,size_t size,size_t nitems,FILE *file)

free ccmalloc.c N void free(void *ptr)

freopen ccfopen.c | FILE *freopen(const char *name, const char *mode,
FILE *file)

frexp ccfrexp.c Y double frexp(double value, int *eptr)

frexpf ccfrexpf.c Y float frexpf(float value, int *eptr)

fscanf ccscanf.c | int fscanf(FILE *stream, const char *format, ...)

Embedded MCore Development Guide

libansi.a data structures and functions

Source

Function Module Reentrant? | Arguments/Return Value
fseek ccfseek.c | int fseek(FILE *stream, long int offset, it ptrname)
fsetpos ccfsetps.c | int fsetpos(FILE *file,const fpos_t *pos)
ftell ccftell.c | long ftell(FILE *stream)
fwrite ccfwrite.c | size_t fwrite(const void *ptr,size_t size,size_t nitems,
register FILE *file)
gevt ccgevt.c N char *gcvt(double value, int ndig, char *buf)
getc ccgetc.c | int getc(FILE *f)
getchar ccgetchr.c | int getchar(void)
getenv ccgetenv.c Y char *getenv(char *np)
getl ccgetl.c | long getl(FILE *file)
gets ccgets.c | char *gets(char *str)
getw ccgetw.c [int getw(FILE *file)
index ccindex.c Y char *index(const char *str, const char ch)
isalnum ccfuncs.c Y int isalnum(int c)
isalpha ccfuncs.c Y int isalpha(int c)
iscntrl ccfuncs.c Y int iscntrl(int c)
isdigit ccfuncs.c Y int isdigit(int c)
isgraph ccfuncs.c Y int isgraph(int c)
islower ccfuncs.c Y int islower(int c)
isprint ccfuncs.c Y int isprint(int c)
ispunct ccfuncs.c Y int ispunct(int c)
isspace ccfuncs.c Y int isspace(int c)
isupper ccfuncs.c Y int isupper(int c)
isxdigit ccfuncs.c Y int isxdigit(int c)
labs cclabs.c Y long labs(long x)
Idexp ccldexp.c E double Idexp(double value, int exp)
Idexpf ccldexpf.c E float Idexpf(float value, int exp)
Idiv ccldiv.c Y Idiv_t Idiv(long int number, long int denom)
localeconv | cclocale.c Y struct Iconv *localeconv(void)
longjmp cesetjmp.xxx | Y void longjmp (jmp_buf envy, int val)
(xxx is the
target)
malloc ccmalloc.c N void *malloc(size_t size)
mblen ccmblen.c Y int mblen(const char *s, size_t n)
mbstowcs | ccmbsweces.c Y size_t mbstowcs(wchar_t *pwcs, const char *mbs, size_t n)
mbtowc ccmbtowce.c Y int mbtowc(wchar_t *pwec, const char *s, size_t n)
memchr ccmemchr.c Y void *memchr(const void *s, int ¢, size_t n)
memcmp ccmememp.c | Y int memcmp(const void *s1, const void *s2, size_t length)

Green Hills Software, Inc. 6

Source

Function Module Reentrant? | Arguments/Return Value
memmove | ccmemmov.c | Y void *memmove(void *s1, const void *s2, size_t n)
mktemp ccmktemp.c N char *mktemp(char *str)
mktime ccmktime.c Y time_t mktime(struct tm *timeptr)
modf ccmodf.c Y double modf(double value, double *iptr)
on_exit ccatexit.c N int on_exit(void (*func)(void), char * arg)
perror ccperror.c | void perror(const char *str)
printf ceprintf.c | int printf(const char *format, ...)
putc ccputc.c | int putc(int ch, FILE *f)
putchar ccputchr.c | int putchar(int ch)
putl ccputl.c | long putl(long I, FILE *file)
puts ccputs.c | int puts(const char *str)
putw ccputw.c | putw(int w, FILE *file)
gsort ccqsort.c Y void gsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *))
rand ccrand.c N int rand()
realloc ccmalloc.c N void *realloc(void *old, size_t new_size)
remove ccremove.c | int remove(const char *filename)
rewind ccrewind.c | void rewind(FILE *stream)
rindex ccrindex.c Y char *rindex(const char *str, const char ch)
scanf ccscanf.c | scanf(const char *format, ...)
setlocale cclocale.c Y char *setlocale(int category, const char *locale)
setbuf ccsetbuf.c N void setbuf(FILE *stream, char *buf)
setjimp cesetjmp.xxx | Y int setjmp (jmp_buf env)
(xxx is the
target)
setlinebuf | ccsetlbf.c N int setlinebuf(FILE *stream)
setvbuf ccsetvbf.c N int setvbuf(FILE *stream, char *buf, int mode, size_t size)
sprintf cesprntf.c E int sprintf(char *s, const char *format, ...)
srand ccrand.c N void srand(int val)
sscanf ccscanf.c N int sscanf(const char *str, const char *format, ...)
strcat ccstreat.c Y char *strcat(char *s2, const char *strl)
strchr cestrehr.c Y char *strchr(const char *str, int ch)
stremp ccstremp.c Y int strcmp(const char *strl, const char *str2)
strcoll ccstreol.c Y int strcoll(const char *s1, const char *s2)
strcpy ccstrepy.c Y char *strcpy(char *s2, const char *strl)
strespn ccstresp.c Y size_t strcspn(const char *s1, const char *s2)
strerror ccstrerr.c Y char *strerror(int errnum)

Embedded MCore Development Guide

libansi.a data structures and functions

Function I\SA%liirlfIZ Reentrant? | Arguments/Return Value
stritime ccstritm.c Y size_t stritime(char *start, Size_t maxsize, const char *format,
const struct tm *timeptr)
strindex cestridx.c Y int strindex(char *str, char *sub)
strlen ccstrlen.c Y size_t strlen(const char *str)
strncmp ccstrnem.c Y int strncmp(const char *strl, const char *str2, register int n)
strncpy cecstrnep.c Y char *strncpy(char *s2, char *strl, register int n)
strpbrk ccstrpbr.c Y char *strpbrk(const char *s1, const char *s2)
strrchr cestrreh.c Y char *strrchr(const char *str, int ch)
strrindex ccstrrdx.c Y int strrindex(char *str, char *sub)
strsave ccstrsav.c N char *strsave(char *str)
strspn ccstrspn.c Y size_t strspn(const char *s1, const char *s2)
strstr cestrstr.c Y char *strstr(const char *str, const char *sub)
strtod ccstrtod.c E double strtod(const char *str, char **endptr)
strtok ccstrtok.c N char *strtok(char *s1, const char *s2)
strtol cestrtol.c E long strtol(const char *str, char **ptr, register int base)
strtoul ccstrtul.c E unsigned long strtoul(const char *str, char **ptr,
register int base)
strxfrm cestrxfm.c Y size_t strxfrm(char *s1, const char *s2, size_t n)
swab ccswab.c Y swab(char *from, char *to, int nbytes)
tmpfile cctmpfil.c | FILE *tmpfile(void)
tmpnam cctmpnam.c N char *tmpnam(char *s)
tolower ccfuncs.c Y int tolower(int c)
toupper ccfuncs.c Y int toupper(int c)
ungetc ccungetc.c | int ungetc(int ch,FILE *file)
vfprintf ccvprntf.c | int vfprintf(FILE *stream, const char *format, va_list args)
viscanf ccscanf.c | viscanf(FILE *stream, const char *format, va_list args)
vprintf ccfprntf.c | int vprintf(const char *format, va_list args)
vscanf ccscanf.c | vscanf(const char *format, va_list ap)
vsprintf ccsprntf.c | int vsprintf(char *s, const char *format, va_list ap)
vsscanf ccscanf.c | vsscanf(const char *str, const char *format, va_list ap)
wcstombs | ccwesmbs.c Y size_t westombs(char *s, const wchar_t *pwcs, size_t n)
wctomb ccwctomb.c Y int wctomb(char *s, wchar_t wchar)

Green Hills Software, Inc.

libind.a functions

Function ,\Sﬂglg:li Reentrant? Arguments/Return Value

acos indacos.c E double acos(double x)

acosf indacosf.c E float acosf(float arg)

acosh indacosh.c E double acosh(double x)

asin indasin.c E double asin(double x)

asinf indasinf.c E float asinf(float arg)

asinh indasinh.c E double asinh(double x)

atan indatan.c E double atan(double x)

atan2 indatan2.c E double atan2(double y, double x)
atan2f indatn2f.c E float atan2f(float y, float x)

atanf indatanf.c E float atanf(float x)

atanh indatanh.c E double atanh(double x)

cabs indcabs.c E double cabs(struct complex z)
ceil indceil.c Y double ceil(double x)

cos indcos.c Y double cos(double f0)

cosf indcosf.c Y float cosf(float fO)

cosh indcosh.c E double cosh(double x)

coshf indcoshf.c E float coshf(float x)

erf inderf.c Y double erf(double x)

erfc inderf.c Y double erfc(double x)

exp indexp.c E double exp(double x)

expf indexpf.c E float expf(float x)

fabs indfabs.c Y double fabs(double x)

floor indfloor.c Y double floor(double x)

fmod indfmod.c Y double fmod(double x,double y)
gamma indgamma.c E double gamma(double x)
_gh_va_arg indvaarg.c Y char *_gh_va_arg(p, align, regtyp, size)
hypot indhypot.c E double hypot(double x,double y)
isinf indisinf.c Y int isinf(double x)

isnan indisnan.c Y int isnan(double x)

jo indbessl.c E double jo(double x)

j1 indbessl.c E double j1(double x)

jn indbessl.c E double jn(int n,double x)

log indlog.c E double log(double x)

log10 indlog.c E double log10(double x)

log10f indlogf.c E float log10f(float x)

9 Embedded MCore Devel opment Guide

Less Buffered I/O

Function ,\SA?)LJS"Z Reentrant? Arguments/Return Value

logf indlogf.c E float logf(float x)

matherr inderr.c Y int matherr(struct exception *ex)

memcpy ccmemcpy.c Y void *memcpy(void *s1, const void *s2, size_t n)

memset ccmemset.c Y void *memset(void *s, int c, size_t n)

pow indpow.c E double pow(double x, double y)

powf indpowf.c E float powf(float x, float y)

rmatherr inderr.c Y int rmatherr(struct rexception *ex)

_rnerr indrnerr.c N int _rnerr(int num, int linenum, char *str, void *ptr, void
*al, void *as, void *a3, void *a4, void *a5, int len);

sin indsin.c Y double sin(double f0)

sinf indsinf.c Y float sinf(float fO)

sinh indsinh.c E double sinh(double x)

sinhf indsinhf.c E float sinhf(float arg)

sqrt indsqrt.c E double sqgrt(double f0)

sqrtf indsqrtf.c E float sqrtf(float fO)

tan indtan.c E double tan(double x)

tanf indtanf.c E float tanf(float arg)

tanh indtanh.c E double tanh(double x)

tanhf indtanhf.c E float tanhf(float x)

yo0 indbessl.c E double yO(double x)

yl indbessl.c E double y1(double x)

yn indbessl.c E double yn(int n, double x)

Less Buffered 1/0

The Green Hills ANSI C library includes a Sandard /O Package, abbreviated

stdio.

stdio includes formatted I/O using printf and scanf, character 1/O using getc

and putc, plus other features.

In traditional implementations, all 1/O performed in stdio is buffered

automatically.

In embedded programming there is a constant trade-off between space and
performance. Buffering improves performance by increasing the average

number of characters written per system call. However, buffering occupies
space for the code to manage the buffers, aswell as for buffers themselves.

Green Hills Software, Inc.

10

If 1/O istotally unbuffered, every character read or written requires a system
call. A benefit of thismode isthat I/O is never delayed until the buffer isfull or
lost in abuffer if the application exits abnormally.

If 1/O is buffered in the traditional manner, several kilobytes of code are added
to the application, because the stdio package invokes malloc and various other
routines to manage the buffering.

The Less Buffered 1/0 mode in which the Green Hills ANSI C library is built
provides a reasonable compromise between full buffering and unbuffered /0.

Rather than allocate a permanent buffer for each file, which isused aslong as
thefileis open, Less Buffered |/O performs buffering within each of the
following routines:

fwrite
fputs
puts
printf
fprintf
sprintf
vprints
vfprintf
vsprintf

Thus, during asingle call, any characters, which are written to one of these
functions, will be buffered. In thisway, one function call will often require only
one output system call. Once the function completes, all characters are written
to the file. No characters are ever left in a buffer after the function call,
eliminating the risk that output will be lost, and eliminating the need to flush
buffers when afileis closed or the program exits.

No input routines are buffered in any way by the Less Buffered I/O method.
Files are not closed upon program termination, except as noted below.

The program may enablefull buffering of either input or output by calling either
setbuf() or setvbuf(). In this case, characters are only written to a buffered file
when the buffer isfull, or fflush() or fclose() iscalled. Upon normal termination
of the program, if setbuf() or setvbuf() has been called at any time, then all
open files will be flushed and then closed.

Embedded MCore Development Guide

Less Buffered I/O

All files perform in exactly the same manner, whether they are opened by
default (stdin, stdout, and stderr) or opened by using fopen().

Green Hills Software, Inc. 12

13

Embedded MCore Development Guide

| ndex

Symbols

-# option 68
#pragma ghsinterrupt 40

#pragma ghs section directive 36

#pragmaintvect 40
#pragma pack directive 26
.aextension 10, 158
aligndirective 132,134
.ascii directive 132,135
.asciz directive 132, 135
.bss directive 137
.bss program section 32
.bytedirective 132, 134
.C extension 10
.c extension 10
.cc extension 10
.comm directive 133, 137
.cpp extension 10
.Cxx extension 10, 11
.data directive 132, 136
.data program section 32
.dbo files 42
.def directive 140
.dim operator 141
.dnm files 42

generation of 43
.double directive 132, 135
.dsect directive 133
.gect directive 134
.gect option 143
.esedirective 133,139
.elseif directive 133, 140
.endef directive 140
.endif directive 133, 139, 140
.endm directive 133, 138
.endr directive 133,139
.equ operator 127
.exitm directive 133
.extern directive 133
f extension 10
filedirective 140
fill directive 132
float directive 132, 135
for extension 10
.gen directive 133,143
.globl directive 137
.heap directive 209

. extension 10

.ident directive 132, 135
if directive 133,139

i extension 10

.import directive 133, 137
.include directive 133, 138
.inf extension 10

Jcomm directive 133, 137
Jine operator 141

Jist directive 133, 142
Jiteralsdirective 132, 135
Jong directive 132

.macro directive 133, 138
.nogen directive 133, 143
.nolist directive 133, 142
.nowarning directive 133, 142
.0 extension 10

.org directive 133,137
.previous directive 133, 137
.Ramsgate 210

.rept directive 133,139
.rodata directive 211
.romdata directive 210
.sextension 10

.sbttl directive 134, 143
.scl operator 141

.Sdabase directive 209
.secinfo directive 211
.secinfo program section 33
.section directive 132, 136
.Set directive 132,136

.Set operator 127

.short directive 135

.Size operator 141

.skip directive 135

.§pace directive 132, 135
Sack 210

.str directive 135

.subtitle directive 134, 143
.sym files, printing information from 198
.syscall directive 210

.tag operator 141

text directive 132,136
.text program section 32
Ltitle directive 134, 143
.type operator 141

.using directive 137

Green Hills Software, Inc.

| ndex

.val operator 141

.warning directive 133, 142
.weak directive 133, 137

@file 68

_ _interrupt keyword 39
__CLZ32 built-in function C-2
__DI built-in function C-3

__El built-in function C-3
__ghsbegin symbol 32,169
__ghsbinfo_clear 33
__ghsbinfo_copy 33
__ghseinfo_clear 33
__ghseinfo_copy 33

__ghsend symbol 32,169
__MULSH built-in function C-2
__MULUH built-in function C-2
__psinfo 34

_start function 21

Numerics
32-bit ELF data types 47

A

absolute expressions 128
Adalanguage
compiler driver options for 88
addressing modes 147
alignment directives 132,134
--anachronisms option 100
ANSI C
library 21
-ANSI option 39,90, 93
-ansi option 90
-ansiopeg option 92
-archive option 69, 105, 160
archives
adding or replacing filesin 159
deleting filesfrom 159
examples of creating and using 160
extracting files from 159
generating 69
argument field 126
--array_new_and_delete option 95
asm facility A-1
asm inline directive, ignoring 93, 100
-asm option 66, 122

-asmwarn option 39, 91, 95
assembler 5,119
command line options for 120
compiler driver options for 66
directivesfor 19, 132
invoking with compiler driver 122
listings 141
passing options to compiler driver 122
assembly language 123
assignment statements 127
character set for 123
comments 126
constants for 124
continuation lines 126
escape sequences for 125
expression types 128
expressions 127
generating from sourcefile 72
identifiersfor 123
interleaving with source code 71
labels 129
line terminators 126
operators 127
source statement syntax 125
type combinations 129
assignment statements, assembler 127
--auto_ingtantiation option 105
-autoregister option 73
ax librarian 20, 158, 207, 212
See Also librarian

B

-bigswitch option 109
binary 127
--bool option 96
--brief_diagnostics option 102
building an executable 7
from both C and C++ 7,13
from C 10
from C++ 11
built-in functions C-2
_CLz32C-2
_ MULSH C-2
_ MULUH C-2

-2

Using MULTI with amonserv, v. 1.8.9

| ndex

C

C default directories 20
C language
ANSI conformance 90
building an executable 10
combining with C++ 7,13
compiler driver options for 90
header filesfor 20
interrupt processing 29
Kernighan & Ritchie conformance 91
preprocessor options 89

reentrant functionsin runtime libraries C-3

run-timelibraries C-1
-C option 89, 109
-coption 11,12, 69
C++
compatibility options 100
C++ language
building an executable 11
combining with C 7, 13
compiler driver options for 95
header filesfor 20
interrupt processing 29
making compiler driver aware of 70
preprocessor options 89
C++ library options 101
calling conventions 19, 27
interrupt functions 29
cfront
options 100
character constants 125
character set for assembler 123
-check option 87
COFF files
converting to S-records 68, 190
coff2sr utility 35
coff2tek
length 179, 183
nodata 179
nolocals 180
0 180
old 180
y 180
-column option 90
command file
@file 68
command line

displaying without invoking 68

for assembler 120

for compiler driver 9, 66

for ghincomp utility 173

for gcompare utility 172

for gdump utility 175

for dfile utility 177

for gfunsize utility 178

for ghide utility 182

for gnm utility 184

for grun utility 187

for gsize utility 189

for gsrec utility 190

for gstrip utility 197

for gsymdump utility 198

for gtune utility 200

for librarian 158, 207,212

gstack utility 196

gversion utility 202

library 158, 159
comments, in assembler source 126
compiler 5
compiler driver 5,8, 16, 220

command line options for 66

command line syntax 9

help on options 69

including linker switches 35

invoking assembler with 122
compile-time error checking options 94
-concatcomments option 92
conditional assembly directives 139
conditionals directives 133
conditions, section headers 52
constants, in assembler 124
continuation lines, in assembler 126
coof2tek 180
copyright banner, generating 72
-cpu=m200 option 66
-cpu=m300 option 66
--create_pch option 104
cross compilers 19
customi zed linker directivesfiles 208

D

-D option 89
-d_line option 109

Green Hills Software, Inc.

| ndex

datainitiaization directives 132,134
data record 193
data splitting 193
dblink utility program 42
debug formatting 41
debugger 5
debuggers. See MULTI debugger
debugging
compiler driver options for 75
removing information with gstrip
utility 197
symbolic 140
debugging and running the program 22
--diag_error option 102
--diag_remark option 102
--diag_suppress option 102
--diag_warning option 102
difference between relocatable and executable
files 46
directives, assembler 19
directives, macro assembler 132
--display_error_number option 102
--distinct_template_signatures option 105
-dod option 109
-dotciscxx option 96
driver. See compiler driver
-dryrun option 69
-dua_debug 43
-dual_debug option 76
-dwarf option 43
DWARF, using debug information 43

default sections for 56
file header structure 47
object and image file organization 46, 58
relocation directoriesfor 58
section headers for 52
string table 62
symbol table 59
using gstrip utility with 198
embedded development 32
and multiple-section programs 36
and ROM 32
linker switchesfor 35
producing S-record output 35
program sectionsand 32
reducing program size 34
-entry= 35, 67
--enum_overloading option 96
-errmax option 69
error message options 102
error messages 108
in assembler listing 142
line length for 90
maximum number of 69
run-time 88
standard error files 69
escape sequences, in assembler 125
exception handling 96
executablefile 46
executables
building 7
building from both C and C++ 7,13
building from C 10
building from C++ 11

E reducing size of 34
E 89 specifying directory for 73
-E option 90 expressions, in assembler 127,128
e entry 49 -extend_source option 109
e _phentsize 63 --extern_inline option 96
e _phnum 63
e _shentsize 52
e _shnum 52 F
e_shoff 52 file header
--early_tiebreaker option 96 of ELF object files 47
--eel option 101 fileinclusion directives 133, 138
--eele option 101 file organization, relocatable and executable 46
ELF datatypes 47 floating point
ELF files 45 1/O, disabling 67
converting to S-records 68, 190 libraries, disabling 69
-4 Using MULTI with amonsery, v. 1.8.9

| ndex

libraries, removing 34

library 21
-fnone option 34, 69
--for_init_diff_warning option 102
--force_vtbl option 108
FORTRAN compiler options 109
FORTRAN language

making compiler driver aware of 70

UNIX F77 compatibility 110

VMS compatibility 110
FORTRAN run-time support 217
-fsingle option 66

G

-G option 8,42, 75
-g option 42,75
gcompare utility 172
gdump utility 175
general options 68
general registers 146
generating debug information 42
dfile utility 177
gfunsize utility 178
ghexfile 172
ghexfile utility 179
ghide utility 182
GHS VP_DEBUG 13
GHS_VP_NONE 13
GHS VP _SLOW 13
-globalreg=n option 73
gmemfile 172
gmemfile utility 183
gnm utility 184
-gnu_c option 91, 97
grom utility 33
grouping program variables 36
grun utility 187
gsize utility 189
gsrec utility 190

command line options for 179, 183
gstack utility 196
gstrip utility 197
gsymdump utility 198
gtune utility 200
--guiding_decls option 105
gversion utility 202

H

-H option 69
header files 20
-Help option 69
-help option 69, 120

-1 option 20, 69, 120, 138
-i2 option 109
-i4 option 109
-ident option 71
identifiers 123
in assembler 123
image files
in ELF format 46,58
--implicit_extern_c_type_conversion option 97
--implicit_include option 106
--implicit_typename option 106
include files 20
directivefor 20, 133,138
directory for assembler 120
search method for 69
-include option 89
-includenever option 89
-includeonce option 89
-initextern option 92
initialized data, in ROM 33
inlining input source files 77
--inlining option 97
--inlining_unless_debug option 97
--instantiation_dir= option 106
interrupt functions 39
interrupt processing 29
interrupt vectors 40

J

Japanese Automotive C 38
-japanese_automotive_c option 38, 92

K

-k+r option 91
--keep_gen_c option 97
-keeptempfiles option 70

Green Hills Software, Inc.

| ndex

L

-L option 66
-l option 66
label field 126
labels, in assembler 129
language independent library 21
-language option 70
--late_tiebreaker option 96
less buffered I/0 C-10
libansi.a
ANSI Clibrary 21
data structures C-4
libind.a
functions C-9
language independent library 21
librarian 5,20
command line options 158
g 159
r 159
x 159
examples of using 160
generating archives with 69
See Also archives
libraries 21
libraries and support routines 21
library
compiler driver options for 66
libsrc 206
libsys.a 206
line terminators
in assembler source statements 126
linker 5,16, 20, 220
compiler driver options for 67
default section map 32
ELF optional header output 63
switchesfor 35
symbolsfor 32
linker directives 207
--list option 103
-list option 66, 120
listing format directives 133, 141
listing options 103
-Ink option 35,67
-locatedprogram. See -relprog, -relobj, -archive,
-shared. 67
--long_lifetime_temps option 97
loop unrolling 81

disabling 87
Ix linker 20
See Also linker

M

macro assembler 5
macro assembler syntax 123
macro assembler. See assembler
macro definition directives 133, 138
macro expansion 138
macros, defining 138
manifest expressions 128
math library 21
--max_inlining option 97
--max_inlining_unless_debug option 97
memory options 82
Motorola S-record output 35, 68
mtrans utility program

output used by gsymdump utility 198
MULTI debugger 8,22,24

compiler driver options for 75
--multibyte_chars option 98
multiple-section programs 36

N

named labels 129
-namelist option 109
namespaces
options 98

--namespaces option 98
near and far function calls 40
-needprototype option 93, 100
--new_for_init option 98, 101
--no_anachronisms option 100
--no_array_new_and_delete option 95
--no_auto_ingtantiation option 105
--no_bool option 96
--no_brief_diagnostics option 102
--no_distinct_template_signatures option 105
--no_enum_overloading option 96
--no_extern_inline option 96
--no_for_init_diff_warning option 102
--no_forced_zero_initiaization option 98
--no_guiding_decls option 105
--no_implicit_extern_c_type_conversion

option 97

-6

Using MULTI with amonserv, v. 1.8.9

| ndex

--no_implicit_include option 106
--no_implicit_typename option 106
--no_inlining option 98
--no_multibyte chars option 98
--No_namespaces option 98
--no_nonstd_qualifier_deduction option 106
--no_old_specializations option 107
--no_pch_messages option 105
--no_restrict option 98

--no_rtti option 98

--no_typename option 107
--no_use_before_set_ warnings option 102
--no_using_std option 100
--no_warnings option 103
--no_wchar_t_keyword option 100
--no_wrap_diagnostics option 103
-noalias option 93,94

-noansi option 90

-noansiopeq option 94

-noasm option 39, 93, 100
-noasmwarn option 91, 95
-noautoregister option 75
-nobigswitch option 109
-noconcatcomments option 92, 94
-nocpperror option 89

-nodbg option 76

-nodod option 109

-nofloatio option 67, 69

-nogen option 121

-nognu_c option 91, 97
-nonamelist option 110

-nonodias option 93,94
-nonooldfashioned option 93, 94
-nonosym option 43
--nonstd_qualifier_deduction option 106
-nooldfashioned option 93,94
-nooverload option 75
-nopragmawarn option 89

-nosave option 110

-noshortenum option 39, 91, 99
-noshortwchar option 91, 99
-nostartfiles option 67

-nostdlib option 21, 67

-nostrip option 44

-nosym option 43

-novms option 110

numeric constants 124

NVPATH 12,13

O

-0 10
-O option 76
-ooption 10,11, 12,69, 71,121
-OA option 77
object file types 47
object files
in ELF format 46, 58
printing size of with gfunsize utility 178
relocatable, generating 69
object module librarian 20
-object_dir option 71
-OD option 82
-Ol option 77
-Ol= option 78
-OL option 81
-OL= option 81
-OLB option 81
--old_for_init option 98, 101
--old_specializations option 107
-OM option 82
--one_instantiation_per_object option 106
-onetrip option 110
-Ono option 86
-Onoconstprop option 86
-Onocse option 86
-Onomemory option 82, 86
-Onominmax option 86
-Onopeep option 86
-Onopipeline option 86
-Onostrcpy option 86
-Onounroll option 87
operator field 126
operators
type combinationsand 129
optimization
algorithmic 77
compiler driver options for 76
controlling with compiler driver options 86
inlining 77
loop unrolling 81
space 82
optimizing compilers 19
-OS option 85

Green Hills Software, Inc.

| ndex

-OT option 86
-Ounroll8 option 82
-overload option 75

P

-P option 90
--pack_alignment= option 98
packing, structure 26
padding between fields 26
Pascal language
making compiler driver aware of 70
-passsource option 71
--pch option 104
--pch_dir option 104
--pch_messages option 105
-pg option 71
pipelined architectures
disabling instruction resequencing 86
-pragma_asm_inline option 38, 94
precompiled headers
options 104
--prelink_objects option 71, 107
preprocessor options
for C 89
for Cand C++ 89
program headers 63
program sections
begin and end symbolsfor 169
for embedded development 32
user-defined 32
program start address 35
program variables, grouping 36

Q

quoted string expressions 129
R

-r option 121

RAM, placing variablesin 36
recursion, tail 86
-redefine option 89

reentrant functions, in C runtime libraries C-3

-ref option 121
register usage 25
-relobj option 68

relocatable expressions 129
relocatable object file 46
relocatable object module 11,12
relocation directories

for ELF object files 58
relocation types 58
-relprog option 68
--remarks option 102
renaming output file 10, 12
repeat block directives 133, 139
reserved symbols 124
--restrict option 98
revision tracking 140
ROM monitor 6
ROM, putting datain 32
RTTI 98
--rtti option 98
run-time environment and library

organization 205
run-time error checking options 87
run-timelibraries C-1

S

-Soption 72
-save option 110
-sec option 68
section attribute flags 55
section control directives 132,135
section header conditions 52
section header table 46
section maps 32
section names 56
section pragma 36
section types 54
sh_flags 55
-shared 72
shared object

producing, see -shared 72
--short_lifetime_temps option 97
-shortenum option 91, 99
-shortwchar option 91, 99
-signedchar option 91,99
-signedfield option 91,99
-signedptr option 92,99
-signedwchar option 92,99
simulator 5
size of program, reducing 34

-8

Using MULTI with amonserv, v. 1.8.9

| ndex

skip 180
-dashcomment option 94
source code
interleaving with assembly code 71
source files for customization 212
source listing, from assembler 120
special section indexes 53
-srec option 68
-sreconly 68
-sreconly option 68
S-records 35, 68
converting from ELF or COFF files 190
output from gsrec utility 190
standard error, list of filesto 69
standard 1/0 package C-10
-start 35
-start option 193
startup file 21
--STD option 101
--std option 101
stdio C-10
-STRICT option 95
--strict option 101
-gtrict option 94, 95
--strict_warnings option 101
string constants 125
string table
in ELF object files 62
-strip option 44
structure packing 26
support routines and libraries 21
--suppress_vtbl option 108
-sym option 43
symbol binding 60
symbol definition directives 133, 137
symbol table
entries for identifiers 140
in ELF object files 59
modifying with ghide utility 182
symbol type 61
symbol values 62
symbolic debugging 140
symbolic debugging directives 140
symbols
external, hiding with ghide utility 182
truncating names of 72
-syntax option 72

system registers 147

T

-T option 72,92,99

-t option 107

tail recursion, disabling 86
template options 105
-template=auto option 105
-template=noauto option 105
temporary labels 130
termination record 193
-tmp option 92,99

type combinations 129
--typename option 107

U

-U option 90,110

-U- option 90

-u option 110

unary 127

undefined expressions 129
unreferenced strings 63
-unsignedchar option 38,91, 99
-unsignedfield option 38,91, 99
-unsignedptr option 92,99
-unsignedwchar option 92, 100
--use_pch option 105
--using_std option 100

utility programs 171

Vv

-V option 72,121
-v option 72
variables
compiler driver options for allocating 73
local, automatic alocation 73
placement of for embedded development 36
positioning to minimize padding 35
version number
generating from assembler 121
generating from compiler driver 72
viewpathing 11
virtual tables 108
-vms option 110

Green Hills Software, Inc.

| ndex

void __ DI built-in function 40
void __El built-in function 40
void _set il built-in function 40
volatile keyword 82

W

-W option 72

-w option 68,73

-Waoption 122
-wantprototype option 93, 100
warnings, suppressing 73
--wchar_t_keyword option 100
white space 126
--wrap_diagnostics option 103

X

-Xaoption 92
-Xc option 92
--xref option 104
-Xsoption 94
-Xt option 94

Y
-Y option 73

Z

-Zpl option 26
-Zp2 option 26
-Zp4 option 26

I-10 Using MULTI with amonsery, v. 1.8.9

	Embedded MCore Development Guide
	Embedded MCore Development Guide
	Contents
	About this Manual
	Typographical Conventions
	What This Manual Covers

	1 Introduction
	Components of the Toolset

	2 Building An Executable Program
	How to Build a Program for Use with the MULTI Debugger
	The Compiler Driver
	How to Build a C Executable Program
	How to Build a C++ Executable Program
	How to Build Programs with C and C++ Modules

	3 The Toolset
	How to Compile and Link an Executable Program
	Green Hills MCore Cross Compilers
	The MCore Macro Assembler, asmcore
	Object Module Librarian, ax
	The MCore Linker, elxr
	Header Files
	Support Routines and Libraries
	Startup File
	Libraries
	ANSI C Library, libansi.a
	Language Independent Library, libind.a

	Debugging and Running the Program
	MULTI Debugger
	Simulator
	In-Circuit Emulator Server

	4 The MCore Processor
	MCore Characteristics
	Compiler Output Format
	Register Usage
	Structure Packing
	Calling Conventions
	Arguments
	Return Values
	Frame Pointer

	Interrupt Processing in C and C++

	5 Embedded Features
	Program Sections
	Putting Data into ROM
	Putting Initialized Data into ROM
	How to Copy Data Sections from ROM to RAM and Clear .bss (zero-initialized data)
	Verifying Program Integrity

	Reducing Program Size
	Removing Floating-Point Libraries
	Specifying Program Start Address

	Using Linker Switches
	Producing S-Record Output
	Multiple-Section Programs
	Renaming Text Sections
	Bad Example 1
	Bad Example 2

	Japanese Automotive C
	Interrupt Functions
	#pragma ghs interrupt
	#pragma intvect

	6 Debug Formatting
	Basic Debug Formatting Information
	Benefits of .dbo Files
	Backwards Compatibility
	How to Use DWARF
	Controlling Generation of the .dnm File

	7 ELF Files
	Relocatable and Executable File Organization
	32-bit ELF Data Types
	ELF Header
	ELF Identification
	Sections
	Section Headers
	Special Section Indexes
	Section Types
	Section Attribute Flags
	Relocation Types

	Symbol Tables
	Symbol Binding
	Symbol Type
	Symbol Values

	String Tables
	Program Headers

	8 Compiler Driver Options
	MCore-Specific Options
	Driver Options Specific to the Assembler
	Library Options
	Driver Options Specific to the ELXR Linker
	General Options
	Data Allocation Options
	Debugging Options
	Optimization Options
	Algorithmic
	Inlining
	Loop Optimization
	Memory
	Space
	Optimization Control (-Ono)

	Run-time Error Checking Options
	Ada Compiler Options
	C Preprocessor Options
	C and C++ Preprocessor Options
	C Compiler Options
	Compile-Time Error Checking

	C++ Compiler Options
	C++ Compatibility Options
	C++ Library Selection Options
	Error Message Options
	Listing Options
	Precompiled Header Options
	Template Options
	Virtual Table Control Options

	FORTRAN Language Compiler Options

	9 Macro Assembler
	Macro Assembler Characteristics
	Command Line Options
	Example:

	Using the Driver
	Macro Assembler Syntax
	Character Set
	Identifiers
	Examples:

	Reserved Symbols
	Constants
	Numeric Constants
	String Constants
	Character Constants
	Character Escape Sequences

	Source Statements
	Label Field
	Operator Field
	Argument Field
	Comment Field
	Continuation Lines
	White Space
	Line Terminators

	Expressions
	Assignment Statements
	Scalar Expression Operators
	Expression Types
	Type Combinations
	Examples:

	Labels
	Named Labels
	Temporary Labels
	Example

	10 Macro Assembler Directives
	Listing of Macro Assembler Directives
	ALIGNMENT:
	DATA INITIALIZATION:
	SECTION CONTROL:
	SYMBOL DEFINITION:
	FILE INCLUSION:
	MACRO DEFINITION:
	REPEAT BLOCKS:
	CONDITIONALS:
	LISTING FORMAT:

	Characteristics of Specific Directives
	Alignment
	Data Initialization
	Section Control
	Symbol Definition
	File Inclusion
	Macro Definition
	Repeat Block
	Conditional Assembly
	Symbolic Debugging and Revision Tracking
	Symbol Attribute Operations
	Listing Format

	11 MCore Macro Assembler Reference
	Register Set
	General Registers
	Control Registers

	Addressing Modes
	Introduction
	Example:

	No Arguments
	Example:

	Register
	Example:

	Two Registers
	Example:
	Example:

	Register with 5-bit Immediate
	Example:

	Register with 7-bit Immediate
	Example:

	Control Register
	Example:

	Register Indirect with 4-bit Scaled Displacement
	Example:

	Register List
	Example:

	Scaled 8-bit Immediate Indirect
	Scaled 11-bit Branch Displacement
	Example:

	Register with 4-bit Negative Displacement
	Example:

	Macro Expansion
	Alphabetical List of MCore Instructions

	12 The Librarian
	Description
	Command Line Options
	Examples

	13 The ELXR Linker
	Command Line Options
	Option Processing
	Options

	Program Entry Point
	Section and Memory Maps
	Section Definition
	Example:

	Expressions
	Section Attributes
	Green Hills Specific Linker Features
	Section-Info Section (.secinfo)
	Runtime Clear and Copy Tables
	Begin and End of Section Symbols
	Example

	Porting Guide from other linkers
	LX
	Section Attributes:
	Section Renaming:

	14 Utility Programs
	The gcompare Utility Program
	Usage

	The gdump Utility Program
	Usage
	BSD File Options
	ELF File Options

	The gfile Utility Program
	Usage
	Examples
	Example 1
	Example 2

	The gfunsize Utility Program
	Usage

	The ghexfile Utility Program
	Usage
	Features of ghexfile

	The ghide Utility Program
	Usage
	Example

	The gmemfile Utility Program
	Usage
	Uninitialized Segments (ELF only)

	The gnm Utility Program
	Usage
	ELF File Options

	Default Output Format
	Alternate 3 Column Output Format with -p

	The grun Utility Program
	Usage

	The gsize Utility Program
	Usage

	The gsrec Utility Program
	S-Record Output Format
	Usage
	Data Record
	Termination Record
	Data Splitting
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	The gstack Utility Program
	Usage
	Example
	Caveats

	The gstrip Utility Program
	Usage
	ELF File Options

	The gsymdump Utility Program
	Usage

	The gtune Utility Program
	Usage
	Example

	The gversion Utility Program
	Usage
	Example 1
	Example 2

	15 Runtime Environment and Library Organization
	Introduction
	Multiple Language Runtime Support
	MCore Library Structure
	Linker Directives Files
	How to Create a Customized Linker Directives File
	Special Sections in Linker Directives Files
	Source Files Available for Customization
	crt0.mco
	ind_crt0.c
	ind_call.mco
	ind_dots.mco
	ind_mcpy.c
	ind_mset.c
	ind_mcnt.mco
	ind_gcnt.mco
	ind_bcnt.c
	ind_mprf.c
	ind_gprf.c
	ind_heap.c
	ind_io.c
	ind_exit.c
	FORTRAN Runtime Support
	Other Low-Level Functions

	Incorporating Your Changes into the Libraries

	16 MCore Simulator
	The MCore Simulator Command Line Options
	Command Line Options

	The Simulator as a MULTI Debugger Target
	OS Simulation Mode

	ROM Mode
	Unsupported Features

	A Enhanced asm Facility
	Introduction
	Definition of Terms
	asm Macros
	Definition
	Storage Modes
	asm Body

	MCore asm procedures
	Writing asm Macros

	B Viewpathing
	Theory of Operation
	Limitations
	Environment Variables
	Example

	C C Runtime Libraries
	Built-in Functions
	_ _MULUH, _ _MULSH
	_ _CLZ32
	_ _DI, _ _EI

	Reentrancy
	libansi.a data structures and functions
	libind.a functions
	Less Buffered I/O

	Index

