Debugging with MULTI® 2000

..|||||||||HHM||”||||||n...

Green Hills

*SOFTWARE . INC. -

Copyright © 1983-1999 ly Green Hills Software, Inc. All rightsreserved. No mrt of this publication may be reproduced,
storedin a etrieval system, or rangnitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permissionfrom Green Hills Software, Inc.

DISCLAIMER

GREEN HILLS SOFWARE, INC. MAKES NO REPRESENATIONS ORWARRANTIES WITH RESPECT TO THE
CONTENTSHEREOFAND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FORANY PARTICULAR PURPOSE Furthe, Green Hills Software, Inc.
reserves he rightto revise his publicationandto make danges fom time totimein the content hereof without obligation
of GreenHills Software, Inc. to notify any personof suchrevision or dhanges.

Green Hills Softwareand the Green Hillslogo are trademarks, and MULTI is aregistered trademark, of Green Hills
Software, Inc.

Sydem Vis a tademark of AT&T.

Suwnis a trademarlf Sun Microsystemsinc.

UNIX and Open Lookare registered trademarks of UNIX System Laboratories.

ColdFireisa registeredtrademark of Motorola, Inc.

DEC, VAX, and WIS are trademasof Digital Equipmer Corporation.

4.2BSD isa trademark of the Baard of Regents of he Unversity of California at Berkeley.

X and X Window System are trademerks of the Massahusetts Ingitute of Technology.

Motif is a trademark of Open Software Fomdation, Inc.

VelOSity and Integrity are rademarks of Geen Hlls Software, Inc.

Microsoftis a registered trademark, and Windows, Windows 95,Windows 9B, and Windows NT are rademarks of
Microsoft Corporation.

All other trademarks or egisteredtrademarks are property of their respective companies.

PubdD: M32U20NG

Time Samp: Fri Oct 22, 199

CONTENTS

Preface P-1
About the MULTI manuals P-2
Conventions P-2
1 Introduction to MULTI 1
Features 2
Embedded programming in MULTI 4
Running MULTI from the command line 5
Resources 9
2 Debugger GUI 11
Main debugger window 12
Debugger menus 22
Debugger toolbar 34
Pop-up menus 36
Generic debugger window features 39
Other window topics 42
3 Expressions, variables, and procedures 45
Evauating expressions 46
Viewing variables 48
Viewing memory addresses 49
Variablelifetime 50
Specia variables 51
Examining data 52
Wildcards o7
Procedure calls 58
System variables 60
Syntax checking 63

Green Hills Software Inc.

CONTENTS

Debugger commands
Debugger notations
Command groups

Debugger commands

The data explorer

The data explorer

Data explorer basics

View command

Related commands

Data explorer autosizing

Data explorer messages
Working with data explorers
Data explorer format menu

Data explorers with an infinite view
Updating data explorer windows

Run-time error checking
Run-time error checking
Run-time Error tab check boxes
Memory checking drop-down list
Finding memory leaks

The Profiler
Introduction to the profiler
Using the profiler
Profiling targets

The profdump command
The protrans utility

65
66
71
75

147
148
148
150
152
155
155
156
160
164
164

167
168
168
170
171

173
174
175
182
183
183

Debugging with MULTI 2000

CONTENTS

10

11

12

Browse window
Browse window
Dialog box for procedures

Memory view window

Opening a memory view window

Configuring a memory view window

Changing the address in a memory view window
Editing memory in amemory view window

Call stack window
Call stack window

Breakpoints window
Opening the Breakpoints window
Breakpoint types

Using the Breakpoints window

Tree browser

Opening atree browser

Using atree browser
Configuring tree browser colors

Index

187
188
197

199
200
201
202
203

205
206

209
210
210
211

215
216
218
222

Green Hills Software Inc.

CONTENTS

Debugging with MULTI 2000

Preface

This chapter contains:
« About the MULTI manuals

« Conventions

About the MULTI manuals

This manual systematically documents all the features and commands of the
MULTI debugger (“the debugger”) which are host and target independent. The
comprehensive index will help you locate the information you need.

For information about other components of MULTI, such as the Builder and
Editor, and information about configuring and customizing MULTI, refer to
Building and Editing with MULTI 2000.

For specific target systems, refer to bevelopment Guide for your target.

Conventions

Typographical conventions

Convention Example Description

italic text in a command line | -o filename place-holder for mandatory user-supplied
arguments

square brackets, [] .macro name [list] encloses optional commands, terms, or
arguments

square brackets [] around Specifies char as command or option is the default

boldface word “default” signed. [default]

menu > item > sub-item... File > Open... menu bar, menu items, sub-menu items...

Enter something Enter cc800 -S hi.c Type something AND press the Enter key.
Compare with “Type something” below.

Type something Type foo.c and press Type something WITHOUT pressing the Enter

Edit key. Compare with “Enter something” above.

For example, in the command description:
gcc [-processor] filename

the commandjcc should be entered as given, the woroktessor may
optionally be substituted with an appropriate option, and the fllendme
must be replaced with an appropriate file name.

P-2

Debugging with MULTI 2000

Conventions

GUI mode conventions

Themain MULTI windows in the Builder, Editor, and Debugger contain some
or al of the following regions:

Convention Description

source pane The portion of the window in which the source code is displayed.

status bar Displays information, such as the process state and the name of
the file being debugged.

command pane Area to enter commands and display results.

toolbar Contains buttons for commonly used commands.

GUI conventions

MULTI documentation assumes you have a working knowledge of your
operating system and its conventions, including its command-line and GUI
interfaces—for example, how to use a mouse and standard menus and
commands, and how to open, save, and close files, etc.

Convention Meaning

First mouse button Mouse buttons are numbered from the left. The first mouse
button is the left-most mouse button.

Shift+Click Hold down the Shift key while clicking a mouse button.

Ctrl+Click Hold down the Ctrl key while clicking a mouse button.

Check box conventions
There are two types of check boxes: two-way and three-way.
A two-way check box has two states: either enabled (with a check mark in it) or

not (when it's empty). For example, Config > Options > Colors tab > Build File
Coloring.

Green Hills Software, Inc. P-3

A three-way check box has three states (for example, Builder > Project >
Options > General tab > Automatically use MVC):

e Thefirst stateis On. The box hasaplussign (+), indicating that the option is
turned on, overriding any previous or inherited settings.

[* Show headers

« The second state is Off. The box contains aminus sign (-), indicating that
the option is turned off, overriding any previous or inherited settings.

= Show headers

« Thethird state is Default. The box is empty, indicating that the inherited
state, if any, isused.

I Show headers

P-4

Debugging with MULTI 2000

Chapter

Introduction to
MULTI

This chapter contains:
» Features
« Embedded programming in MULTI
¢ Running MULTI from the command line

» Resources

1. Introduction to MULTI

MULTI is a complete interactive software development environment for programs written in
Ada, C, C++, FORTRAN, and Pascal, aswell asin assembly language for each supported
target. Source code from these languages can be compiled and linked into a single executable
in virtually any combination.

NOTE: If you are upgrading from a previous version (1.8.9 or older) to 2.0,
DO NOT install your 2.0 releasein the same location asyour previous
(1.8.9 or older) release.

Features

Some of MULTI's powerful features include:

Debugging

A Source Level Debugger that supports mixed language debugging and all
C++ and Ada language constructs.

A Profiler that collects data, provides reports, annotates the source code to
find hot spots in your program, and provides mechanisms to feed
information back into the development process. See Chapter 7, “The
Profiler”.

Run-Time Error Checking for different classes of errors, implemented
with a combination of compiler checks, libraries, and debugger commands.
See Chapter 6, “Run-time error checking”.

Expression Evaluation to determine whether your expressions are correct.
See “Evaluating expressions” on page 46.

A Data Explorer to monitor variables and evaluate expressions during
debugging. See Chapter 5, “The data explorer”.

Memory Leak Detection to find chunks of memory that have been
allocated but are no longer used. See “Finding memory leaks” on page 171.

Conditional Breakpointsthat cause a breakpoint to be active under
conditions you specify. See “To make a breakpoint conditional” on page
211.

A graphicalAda 95 Type Inheritance andC++ Class Browser to delineate
the structure of your classes and of classes you inherit. See Chapter 8,
“Browse window”.

For more information on the following MULTI features, consult yBuirlding
and Editing with MULTI 2000 manual.

Debugging with MULTI 2000

Features

Project Management

e A Program Builder for creating, assembling, and controlling your
programming projects.

« A ProgressWindow to keep youinformed at all times asyou construct your
project.

Version Control

e Anautomatic Version Control System with features for managing revision
levels and program branches, and for tracking the origins of suspicious code.

e The capability to Merge Two or Three Versions of afile.
« Highlighted Diff Windows to see the difference between two files.
Editing

e A built-in Editor that is fully configurable, enhanced with special features
to support some of the advanced capabilities of MULTI.

Green Hills Software, Inc. 3

1. Introduction to MULTI

Embedded programming in MULTI

MULTI supports embedded devel opment for the 32- and 64-bit microprocessor

familieslisted in the following table:

Processor families supported by MULTI

680x0/683xx

ARM / Thumb

ColdFire

1960

MCore

MIPS

PowerPC

RH32

SPARC

SH

TriCore

V800

x86 / Pentium

Embedded programming is the programming of microprocessors which are
incorporated into an embedded product. PCs and Workstations are used as host
computers on which programs are edited and compiled. The programs are then
downloaded into atarget system to be debugged and executed.

MULTI interfaces to embedded targets by connecting to a debug server. The
debug server may reside on the same host as MULTI, or on any other host on
your network. The debug server communicates with the target under
development. Green Hills supplies servers for many common target systems

and real time operating systems:

e Instruction set smulators: Simulators can test programs before target
hardware is ready and are available for most processor models. Instruction
set simulators incorporate an integrated debug server as afront end.

« ROM Monitors: Monserv and the ROM monitor specific to your target
support basic debug features, host 1/0, a command window, and profiling.

Debugging with MULTI 2000

Running MULTI from the command line

« Emulation Probes: Available for In-Circuit Emulators and On-Chip
Debugging Probes. Emulator servers communicate with the probe using a
serial port, parallel port, or your network.

« ROM Emulator: NetROM provides debugging capabilities with only a
single connection to the ROM socket.

« RTOS (real-time operating system) servers. Available for several red
time operating systems including INTEGRITY from Green Hills Software,
ThreadX from Express Logic, OSE from Enea Systems, and V xWorks from
Wind River. RTOS servers use ethernet and serial communication to
communicate with a debug process running under the RTOS. Commands
from muLTi’s various debug windows are combined into a single command
stream by the RTOS server; the debug process interprets these messages and
performs the proper action on the appropriate task.

MULT]I allows you to use the same tools for both embedded and native
development. The same MULTI program can debug both native and embedded
code; the only difference is that MULTI uses a different host processor when
communicating with an embedded target.

Running MULTI from the command line

When you start MULTI, it attempts to use the host system windowing package
by default. If you start MULTI on a color monitor, it defaults to color. If you
start MULTI from a non-windowing monitor or if MULTI encounters problems
with the window interface, it comes up in non-GUI mode. If MULTI is
incorrectly coming up in non-GUI mode, check thatBh&PL AY environment
variable is set, or set it from the command line with-thisplay option.

If MULTI is in your path, then the command line syntax is:
multi [options] [filename]

If filenameis an executable program file that has had some (or all) of its
component modules compiled for debugging (with Green Hills compi@r’s

or-g options), then the Debugger starts up. For a list of command line options to
use when opening the Debugger, see “Command line options” on page 6.

If filename is a build file, then the Builder starts up with the build file loaded.
Note that some options are specific to the Debugger and are not applicable to
the Builder. If you specify a build file, it can either be a main project or a
subproject. To open a subproject directly with the inherited options from a

Green Hills Software, Inc. 5

1. Introduction to MULTI

particular main project, specify the main project name followed by the
subproject’s name in quotes. For example:

multi “main.bld sub. bl d"

This opens the subprojestb.bld, with the options inherited frommain.bld.

See the following table of examples.

How to open MULTI

Example Description

multi The Builder is invoked on the last build file that was
open.

multi default.bld The Builder is invoked on default.bld. If default.bld
is not found, MULTI will create it.

multi foo.bld The Builder is invoked on the file foo.bld. The build file
may be a main project or a subproject.

multi "parent.bld child.bld" The Builder is invoked on the subproject child.bld
directly with the inherited options from the main project
parent.bld.

multi a.out The Debugger is invoked on the executable a.out

multi -remote simppc The Builder is invoked, and is connected to the

simulator simppc. In this syntax, it is a function of the
debug server whether the Builder window or the
Debugger window is invoked. See the example below
with multi -remote 5emon.

multi -remote simppc a.out The Debugger is invoked on the executable a.out and
the Debugger is connected to the simulator simppc.

multi -remote 5emon The Debugger is invoked and is connected to the
debug server 5emon. In this syntax, it is a function of
the debug server whether the Builder window or the
Debugger window is invoked. See the example above
with multi -remote simppc.

multi foo.c The Editor is invoked on the file foo.c.

Command line options

When you start MULTI from the command line on an executable program file
(i.e. when you want to use the Debugger directly), then the following options
may be used. Some of these options should not be used when starting MULTI
on a build file, or when starting MULTI without a file.

-cfile
Reads configuration information from file.

6 Debugging with MULTI 2000

Running MULTI from the command line

-C corefile
Sets corefile. corefile is assumed to be a core image of objectfile.

-D
Ignores all currently specified alternate directories.

-data offset
Offsetsfor all data addresses. Thisis for position independent data. The
offset is entered in decimal by default. A hexadecimal number may be
specified by preceding the number with Ox. For example, 0x10000.

-dotciscxx
Treatsfilesending in .c as C++ filesinstead of C files.

-eentry
Specifies entry label. The default is main. In C++ mode, the entry must
be specified in such away that it may be demangled.

-E file
Tells MULTI to debug more than onefile. Use this option for each file
you wish to debug at the same time. For example, if you want to debug
foo, bar, and rin, then type:

multi foo -E bar -E rin

-help
Runs MULTI and opens the on-line help system with the MULTI
manual.

-1 directory
Names an alternate directory where files are searched for. Alternate
directories are searched in the order given. If afileisnot found in an
aternate, the current directory is searched.
-L[cpfC]
Sets language type (C, Pascal, FORTRAN, or C++ respectively). By
default, MULT]I uses the file name extension to determine the language.
-mfile
Usesfile as default specification file. See “Specification file” on page 8
for more information.

-nocfg
Does not read any of MULTI's .cfg files on startup.

-norc
Does not run any .rc files on startup.

Green Hills Software, Inc. 7

1. Introduction to MULTI

-noshared
Does not debug shared libraries.

-nosplash
Does not open the About banner. See “About MULTI...” on page 41 for
more information.

-p file
Startup with command playback frdite.

-P pid
Attaches to process with procesgid. This option is currently for
Solaris only.

-r file
Startup with commands recordingfite.

-Rfile
Startup with commands and output recordin{l®

-rcfile
Readdileas a command script when the first debugger window appears.
The file is read after the global and user script files.

-remote target
Attaches to remote debug server with naanget.

-text offset
Offsets for all text addresses. This is for position independent code. The
offset is entered in decimal by default. A hexadecimal number may be
specified by preceding the number withh For exampleQx10000.

Prints debugger version information.

Specification file

The specification file allows you to set up a default set of command line
arguments that may be used with any given executable you want to debug.
However, not all command line options are available for use in a specification
file. If you want a set of default arguments for each program, put the program
name at the beginning of a line followed by a space and then a set of command
line arguments. The arguments may be continued on the next line if the first
character in that line is a tab. When MULTI runs with-imeoption, the file

listed is checked and if there is an entry that matches the name of the executable
being debugged, then that list of command line arguments are used. For
example, a specification file namalbatross might look like this:

foo -norc -1 /usr/joebob -1 /usr/foodir

8 Debugging with MULTI 2000

Resources

bar -text 10000 -data 10000

If you then type:

mul ti -mal batross foo

thefilealbatrossis searched and the arguments found after foo are used. Thisis

equivalent to typing:
multi foo -norc -1 /usr/joebob -1 /usr/foodir
Resources

Toinstall MULTI, see the MULTI 2000 Installation & Licensing Guide.
This manual describes the features of the MULTI debugger.

The Building and Editing with MULTI 2000 manual describes the features of
the MULTI Development Environment other than the debugger.

The Quick Reference Card summarizes the most common Debugger and Editor
commands.

For assistance or additional information about the use of Green Hills Software,
contact our Technical Support:

North America Mountain/Pacific time, Australia, and New Zealand:
Tel: (805) 965-6044, Fax: (805) 965-6343

email: support-west@ghs.com

North America Eastern/Central time, South America:
Tel: (781) 862-2002, Fax: (781) 863-2633

email: support-east@ghs.com

Europe, Africa, India:

email: support-nl@ghs.com

Japan, Taiwan, and South Korea:

Tel: +81-3-3576-6805, Fax: +81-3-3576-0106

email: support@adac.co.jp

Green Hills Software, Inc. 9

1. Introduction to MULTI

10 Debugging with MULTI 2000

Chapter

Debugger GUI

This chapter contains:

Main debugger window

Debugger menus

Debugger toolbar

Generic debugger window features
Other window topics

2. Debugger GUI

This chapter shows you how to run and use the MULTI debugger (“the debugger”). It includes
a description of all the debugger buttons and menus. It is implied in these Chapters that the
program you're debugging has been built with Debugging Level set to MULTI (equivalent to

the-G compiler option).

Main debugger window

To open the debugger, do one of the following:
« From the Builder, click Debug#]).

« From the command line of your host system, start MULTI on a program
(e.g.multi a.out)

« From the command line of your host system, start MULT]I attaching to a
target where the program is already running.

12 Debugging with MULTI 2000

Main debugger window

The following shows the main debugger window:

Menu Bar

» File Debug Miew Browse Target Tooks Config Help
Tobr ——» I HF P H DR RAARQAL DR
14 1 { ;I
Break Dot 15 2 . two():
(green) He—3—p »
17
13 int fum, gum;
19 woid toll booth(int guit)
20 1 {
21 2 int wval:
Z2 3 int har[4]:
Current Line Point .
urrent Line Fointer 24 5 . wval = guit+45;
(blue arrow) 25—) = gum = val;
26 7 . har[0] = 22
Break Point 2; g * Eargg = ;Su
. . ar = ;
(red Stop sign) —e—to> @ bar[3] = 0O:
30 11 . ¥
Source Pane EE >
52 main()
. . . 33 1 i
FilereativeLine 54 2 int y:
numbers(lsleft7> 35 3 struct word data |
column) 36 4 struct word data *next;
. . 37 5 char *atart:
Proc-relative Line 35 & char *end;
numbers (2nd left 2=t] int len;
column) 40 5 } word, *next_word;
Program Counter 221—9&»
N = n i ",
(redarrow) Jemererd word.start Paradize Cafe": o
43 11 . word.next = next_word;
44 12 . word.end = "Foo!™;
45 13 - word. len = 7; LI
SatusBar - p = STOPPED File: [fon.c 7| Proc [tol_baoth =l |<::. =
MULTI> ;I
HULTI>]
Command Pane > J
-

Source pane

Figure 1 Main debugger window

Below the menu bar is the debugger tool bar, and below that is the source pane.

The source pane shows the source code which can bein C, C++, FORTRAN,

Pascal, Ada, or assembly language. When you're debugging, the source pane
normally displays the code where the program has stopped, indicated by the red
STOPPED arrow. There are several ways to change the source pane to view
other locations. For instance, you can click a procedure name in the source pane

Green Hills Software,

Inc.

13

2. Debugger GUI

to display source code for that procedure in the source pane. You can also use
the status bar (discussed below) to load a particular procedure or file into the
source pane.

When you right click anywhere in the source pane, a pop-up menu appears
which shows some information about the clicked object, and which shows alist
of operations you can perform. We will discuss the right-click pop-up menusin
a separate section later in this chapter.

In the debugger window, all key strokes go to the command pane (discussed
below), unless the focusisin the File or Procedure drop-down list boxes
(discussed below). Some key strokes affect the source pane; the following isa
list of the frequently used ones:

To do this Press

Scroll the source pane up by one page. PageUp

Scroll the source pane down by one page. PageDown
Scroll the source pane up by one line. Shift+UpArrow

Scroll the source pane down by one line.

Shift+DownArrow

Search forward in the source pane. Ctrl+f
Search backward in the source pane. Ctrl+b
Erase the current searched pattern if the debuggerisin Ctrl+u
incremental search mode.

Run the debugged program. F5
Step out of the current procedure. F9
Run to the next statement (skip over function call). F10
Run to the next statement (step into function call). F11

Go up one level on the stack call.

Ctrl+ + (plus sign)

Go down one level on the stack call.

Ctrl+ — (minus sign)

You can configure the functions for both the keystrokes and mouse clicks.

Breakdots

A breakdot () isasmall green dot. Breakdots appear directly to the left of
certain source lines. These dots indicate lines of source code that correspond to
executable instructions; you can set breakpoints on these lines. Lines without
breakdots are source lines which do not correspond to executable instructions
(for example, source lines that did not generate any instructions).

14

Debugging with MULTI 2000

Main debugger window

To set abreakpoint on a source ling, click the breakdot. See Chapter 11,
“Breakpoints window” for additional methods to set breakpoints.

You can define the color of these dots. The default color is green.

Breakpoint markers

A breakpoint €) is denoted by a small red stop sign. To set a breakpoint, click
a breakdot; the breakpoint marker will replace the breakdot. To remove a
breakpoint, click it; the breakpoint marker will revert to a breakdot.

Current line pointer

The current line pointe=) is a small blue arrow directly to the left of the
breakdots. The pointer is strictly a debugger tool, unrelated to the current
program counter (PC) of the program. Many debugger commands, such as the
breakpoint command, use the pointer as the default and these commands
execute at that location in the program. For example, the breakpoint corhmand
with no specified line number sets the breakpoint at the current line pointer
location. When a running program halts, the pointer is set to the line where the
program’s execution halts.

The current line pointer is always associated with source code; that is, it always
appears in the source pane whenever there is source code. If the source line at
the current line pointer disappears from the source pane due to scrolling, the
debugger will relocate the pointer to either the top or bottow source line in the
source pane.

Line numbers

Previous versions of the debugger (1.8.9 and earlier) only have one column of
line numbers on the left, and they are file-relative. This version of the debugger
continues to support file-relative line numbers. In addition, it now also supports
procedure-relative line numbers. You can configure the debugger to display
one, both, or none of them.

When both file-relative and procedure-relative line numbers are displayed, you
can choose which to display left-most with one of the following methods:

« Choose Config > Options... > Debugger tab, and use the check box: Use
procedure relative line number (vs. file relative).

e Use theconfigure command with the optioprocRelativeLines. That is:
» configure procRelativeLines true
» configure procRelativeLines false.

Green Hills Software, Inc. 15

2. Debugger GUI

dblink

See “Procedure-relative vs file-relative line numbers” on page 67.

Note: configuration options are not case sensitive, fhhosRelativeLines and
procrelativelines are the same option, but for clarity we psgcRelativeLines
here. (System variables are also not case sensitive.)

PC pointer / Highlighted line

The PC (program counter) pointe=s) is a larger red arrow with the word
STOPPED. When the program stops at some point in the code, the PC pointer is
directly over the breakdot for that line. The PC pointer indicates the position to
execute next if you performgn () or single step ("% or =H) command.

C++ Templates and Ada Generics

When debugging C++ templates or Ada generics, the source pane contains
some lines of source code with and without breakdots. Ada generic
instantiations introduce another physical source file, that of the source of the
generic, into the symbol table at the point of the instantiation. C++ template
instantiation may also introduce other physical source files into the symbol
table. That is, the symbol table for the current source file is fragmented by the
instantiation. If you encounter this problem, usedltcemmand to view

different procedures or tasks within a single piece of source. (See the command
eon page 101.)

The debugger only reads the symbolic debug information containédnn

and.dla symbol files.dblink is a utility that generates such symbol files. It
extracts the symbol table from the host system object code and translates it into
an independent representation that the debugger uses. The output files are the
name of the executable file, withdnm extension and alla extension

respectively. For exampla,out will generatea.dnm anda.dla.

If the existing.dnm file is older than the executable, or if tdem file was
previously generated on a different host machine, the debugger will open a
dialog box to ask you to choose whether to regenerate the symbolic debug
information. If you choose Translahlink will be launched to generate the
new symbolic debug information.

If you move or copy the executable to another location, be sure to also move or
copy the associatednm and.dla files. Then, either preserve the original time
stamps of the files, or make sure that the .dnm file has an earlier time stamp than
the executable’s.

16

Debugging with MULTI 2000

Main debugger window

Interlaced source view

The source pane may display either high level source code alone or source code
interlaced with disassembly instructions. The interlaced view shows you the
machine instructions that correspond to each source line.

To get an interlaced view, do one of the following:

+ Click the Assembly button (). This toggles between high level source
code only and interlaced view.

 Inthe command pane, enter _bDISPMODE:=1. To return to high level source
code only, enter _DISPMODE:=0. Here _DISPMODE is a debugger system
variable. See “Special variables” on page 51.

Assembly code view

When assembly code is displayed, the address, in hexadecimal, of each
assembly instruction is shown in the source pane. When the program stops at a
line in the high-level source code, the PC pointer is placed at the first assembly
instruction associated with the high-level source line. Not all high-level source
lines generate executable code.

To set a breakpoint on an assembly instruction, click the breakdot.

Assembly-only view

If no high-level source code is available or if the module was not compiled with
debugging information (th€5 or -g option in the compiler), the debugger will
display assembly code only.

When viewing only assembly code in the source pane, you can scroll through
all of memory in either direction. In this mode, you cannot drag the scroll
thumb. See “Infinite scrolling” on page 39 for more information.

Status bar
The status bar is between the source pane and the command pane:

STOFFED File: Ifoo.c j Proc: Itoll_booth j | " = |

It displays various state information about the currently debugged program. To
change the relative sizes of the source and command panes, drag the status bar
up or down.

The status bar, from left to right, consists of the Status, the File drop-down list
(“File:"), the Procedure drop-down list (“Proc:”), the Back button, and the
Forward button.

Green Hills Software, Inc. 17

2. Debugger GUI

Status

M essages about the state of the debugger appear in the Status section on the far
left of the status bar. Different messages will appear based on the priority of the
messages. Program state messages have the lowest priority, error messages are
next, and informational messages have the highest priority.

Program state message Description

NO PROCESS The program to debug has not started.

STOPPED The program being debugged is stopped.

RUNNING The program being debugged is currently executing.

DYING The program being debugged is hung up and killed

FORKING The debugged process is being forked (UNIX only).

EXEC'ING The debugged program performs an exec.

CONTINUING The program is preparing to begin execution.

Informational Message Description

SSrch: string The source pane is being searched with the incremental
search utility for the pattern string (see “Incremental
search” on page 40).

File drop-down list
The File drop-down list displays the base name of the current file:

File: Ifoo.c - l

If the file nameis only partially displayed or you want to see the full name of
the file, move the cursor over the drop-down list and the full name will appear
in atooltip after a short period of time.

To browse al the source filesin the program:
1. Open the File drop-down list (click the drop-down button).
2. Choose “Browse all source files in program...”

3. Choose from the “Source Files with Procedure” window that appears. See
also “Browse window for source files” on page 195.

The File drop-down list also contains up to ten of the most recently displayed
files in the source pane. They are sorted according to the time they were loaded
into the source pane, with the latest one at the top of the list. When you choose a

18 Debugging with MULTI 2000

Main debugger window

filefrom thislist, the debugger will load the file into the source pane, with the
current line pointer at the position when the file was last in the source pane.

Procedure drop-down list
The Procedure drop-down list displaysthe name of the current procedure;

Proc: Itoll_booth - l

If the procedure nameis only partially displayed, move the cursor over the
drop-down list and the full name will appear in atooltip after a short period of
time.

To browse al the procedures in the program:

1. Open the Procedure drop-down list (click the drop-down button).

2. Choose “Browse procedures in program...”

3. Choose from the “Procedures” window that appears.

To browse all the procedures in the current file:

1. Open the Procedure drop-down list (click the drop-down button).
2. Choose “Browse procedures in current file...”

3. Choose from the “Proceduresrrent_file” window that appears, where
current_file is the name of the current file.

See also “Browse window for procedures” on page 191.

The Procedure drop-down list also contains up to ten of the most recently
browsed procedures in the source pane. They are sorted according to the time
they were loaded into the source pane, with the latest one at the top of the list.
When you choose a file from this list, the debugger will load the file into the
source pane, with the current line pointer at the position when the procedure
was last in the source pane.

History navigation buttons

The debugger not only keeps a history of the objects shown in the source pane
according to time, but it also keeps a history of procedures according to your
browsing logic. To navigate the procedures according to your browsing logic,
press the Backs?) and Forwar=*() buttons on the status bar.

Green Hills Software, Inc. 19

2. Debugger GUI

Let's use an example to illustrate the two different orders, time versus browsing
logic, using the following program segment:

filel.c file2.c file3.c
current() son() grandchild()
{ { {
son(); grandchild(); foo();
daughter(); } }
}
daughter()
bar();
}

You do the following:

1. You are viewing “current” in the source pane.
2. Click “son” to examine it.

3. Click “grandchild” to examine it.

Now, the top of the procedure drop-down list and the browsing logic history
look like this:

Top of Proc drop-down list Browsing Logic History

grandchild grandchild
son son
current current
etc. etc.

So far, the two orders are the same.

Now, you do the following:

1. Click the Back button<=) to go from “grandchild” to “son”.
2. Click the Back button again to go from “son” to “current”.

3. Click "daughter” to examine it.

20 Debugging with MULTI 2000

Main debugger window

Now “daughter” is in the source pane. The two orders now look like this:

Top of Proc drop-down list Browsing Logic History

daughter daughter
current current
son etc.
grandchild

etc.

They are different; “son” and “grandchild” have been pruned from the browsing
logic list.

See alsondexnext on page 110 anichdexprev on page 110.

Command pane

The command pane accepts debugger commands for the process being
debugged and displays the output of those commands. It is directly below the
status bar. When the debugger window is the active window on your desktop,
all key strokes go into the command pane, unless the focus is on one of the
menus or one of the drop-down list boxes on the status bar. For a detailed
description of the debugger commands, see Chapter 4, “Debugger commands”.

The default prompt in the command paneMBLTI >
To change the prompt, do one of the following:
¢ Use theconfigure command with the optioprompt.

« Choose Config > Options... > Debugger Tab. Set the Command pane prompt
field.

The debugger keeps a history of all the debugger commands entered.
To execute a command from the history, do one of the following:
« Use the (exclamation point) command.

« Use the UpArrow and DownArrow keys to navigate through the history and
choose one to execute.

Green Hills Software, Inc. 21

2. Debugger GUI

Thefollowing isalist of often used keysin the command pane:

To do this Press

Bring the previous comand in history into the command buffer. UpArrow

Bring the next command in history into the command buffer. DownArrow
Scroll up the command pane. Ctrl+UpArrow
Scroll down the command pane. Ctrl+DownArrow

Clear the command buffer if the command pane has the focus. Ctrl+u

Thefollowing isalist of often used mouse clicks in the command pane:

To do this Do this

Copy a string onto the clipboard. left-click and drag
Paste the string in clipboard to the command buffer. middle-click
Paste the string in clipboard to the command buffer. right-click

Functions for both keys and mouse clicks are configurable. See also the
Configuration chaptersin the Building and Editing with MULTI 2000 manual.

Debugger menus

File menu

A menu item that isfollowed by an ellipsis (...) means additiona information is
reguired before the debugger can execute the operation. When you choose such
amenuitem, adialog box will prompt youto supply or confirmtheinformation.

Dimmed out menu items are those inapplicable in the current context. For
example, if the debugged program is running, the Go item in the Debug menu
will be dimmed out, because Go does not make sense in this context.

The following sections describe each of these menus.

NOTE: Spaces are not allowed in filenames. This restriction applies throughout
the entire MULTI development environment.

22

Debugging with MULTI 2000

Debugger menus

File menu (debugger)

Menu Item Description

Debug Program in Opens a dialog box which asks for the name of a program to

New Window... debug. A new debugger window will be brought up on that
program. The new debugged program'’s resource file (if any) will
be executed and the final debugging environment will be shared
by the new debugger and the existing debugger window(s). See
dbnew on page 96.

Debug Program... Similar to Debug Program in New Window..., except the current
debugger window will be used to debug the new program, and the
old program will be terminated. The new debugged program’s
resource file (if any) will be executed to establish the final
debugging environment. Any configuration changes made while
debugging the previous program will remain in effect unless
overridden.

Print... Opens the Print dialog box to print the current source file. Only
ASCII text is printed. The entire source file is printed, including
interlaced assembly code if that is the current display mode. If no
source file is available (that is, there is only assembly code), then
only the content of the source pane is printed.

Print Window... Opens the Print dialog box to print only the visible, ASCII contents
of the source pane.

Print to File... Similar to the Print... menu item, except the output is directed into
a text file.

Attachto Process... Attaches to a running process. See attach on page 80. This

command works only with a multi-tasking target and is grayed out
otherwise. It opens a new debugger window to debug the
specified task.

Detach from Closes the debugger but leaves the debugged process running.
Process See detach on page 99.
1,2,3,4 List the most recently debugged programs. To debug any of them

in the current debugger window, click it.

Close Debugger Closes the debugger window. If this is the last MULTI window,
MULTI itself also exits.

Exit All Closes all of MULTI's windows and exits.

Green Hills Software, Inc. 23

2. Debugger GUI

The Print dialog box contains the following items:

Print dialog box

Item

Description

Print To:

Choose between printing to the “Printer” or to a “File”.

Print Command

You should enter the command for printing a file on your operating
system (such as Ipr on Unix). You can set it with configure
command with the option printCommand. See configure on
page 92 and configurefile on page 93.

File Name If you choose “Print To File”, this is the output post-script file.

Browse If you choose “Print To File”, this button let you select the output
file.

Font Name From this drop-down list box, you choose from a list of available
fonts on your system matching the pattern “*-r-normal-*-m-*". You
can also type a font name into this field if it is not on the list.

Font size Choose the font size used for printing.

Print/Cancel Button

Let you perform/cancel the print request.

Others

Let you define paper size, orientation, and the number of columns
to print.

Debug menu

Debug menu (debugger)

Menu Item

Press

Description

Set Program
Arguments

n/a

Opens a dialog box to enter arguments for your program
when it runs. It allows you to control input and output
redirection to and from your program. See setargs on page
134 and r on page 127. See the table “Set Program
Arguments dialog box” below.

Go

= F5

Starts running a program which has not been started or
continues executing one which has stopped. This
command cannot be used to start tasks on VxWorks
systems. See runtask on page 130 for starting tasks on
these systems.

Restart

Starts running or restarts the currently debugged program
with preset arguments, if any. See the command r on page
127.

Halt

Halts the current program. See halt on page 107.

Kill Process

n/a

Kills the current program. See k on page 112.

24

Debugging with MULTI 2000

Debugger menus

Step "$ F11 | Executes single statements and steps into procedure calls.
See s on page 131.

Next =§| F10 | Executes single statements and steps over procedure calls.
See n on page 121.

Return F P9 Continues to the end of the current subroutine and stops in
the calling routine after returning to it. See cu on page 94.

Send Signal n/a Opens a dialog box to let you specify the signal name and
then sends a signal to the current program. For signal
names, see the | command with the z option. See | on page
113 (lowercase L).

Add Assertion n/a Opens a dialog box to let you specify a logic expression.

When you click OK, the debugger creates an assertion so
that whenever the logic expression becomes true, it stops
the running process and prints a message to indicate that
the assertion is hit. See a on page 77 and assert on page

79.
Set Watchpoint n/a Opens a dialog box to let you create a watch point. See
watchpoint on page 141.
Remove All n/a Removes all software breakpoints from the current
Breakpoints program.

The following table shows the components of the Set Program Arguments
dialog box:

Set Program Arguments dialog box

Item Description

Input File This is a file on the host system which will be used as input to your
program.

Output File This is a file on the host system which will capture output from

your program.

Programarguments These are the arguments passed to the debugged program the
next time you run it without specifying any arguments. For
example, if you click the Go or Restart button, or if you execute
the r command, etc. If you specify any arguments in the next
execution, for example through the r command, then the existing
arguments will be replaced by the new ones.

Run Click this button to run your program with the given arguments.

Set Click this button to set the given arguments as the default for this
session. See r on page 127.

Green Hills Software, Inc. 25

2. Debugger GUI

View menu

The following is the View > Nagivation sub-menu:

View menu (debugger)

Button and/or

Menu Item Meaning
command

Navigation n/a The Navigation sub-menu. See “View >
Navigation sub-menu” below.

Interlaced assem Toggles between source code only and

Assembly interlaced source with assembly code.

Breakpoints... breakpoints Opens the Breakpoints dialog box. See
Chapter 11, “Breakpoints window”.

Call Stack... §) callsview Opens a Call Stack window.

Local view $locals$ Opens a Local Variables window.

Variables...

Registers... regview Opens a Registers window.

Memory... @ memview Opens a dialog box for you to specify which
memory address to view, then brings up a
Memory View window for the address.

Find Memory findleaks Opens a window displaying information

Leaks... regarding memory allocations by the program
being debugged.

Profile... profile Opens the Profile window.

Tasks... taskwindow Opens the Task window.

Print n/a Opens a dialog box for you to specify an

Expression... expression to be printed.

View n/a Opens a dialog box for you to enter an

Expression... expression to evaluate.

List n/a The List sub-menu. See “View > List
sub-menu” below.

Source Path... n/a Opens the Source Path window. To change
the source path, make the edits and press OK.
To discard the changes, press Cancel.

Refresh Views update Refreshes all non-frozen data explorers,

including the Register windows, Memory View
windows, Call Stack windows, etc. (If a data
explorer is frozen, this command does not
update the window. See also “Title bar” on
page 148.)

Close All Views

@ viewdel

Closes all the data explorers, including the
Register windows, Memory View windows,
Call Stack windows, etc.

26

Debugging with MULTI 2000

Debugger menus

View > Nagivation sub-menu

Menu Item Press Description

UpStack B Views the procedure one higher on the call stack.
Ctrl+ +

DownStack B= Views the procedure one lower on the call stack.
Ctrl+ —

Current PC Views the procedure where the program is currently
stopped.

Upstack To Source n/a Views the first procedure higher on the call stack which
has source code. For example, you can use this feature
if you are stopped inside a library function with no
source code (such as printf), and you wish to return to
viewing your program.

Goto Location... n/a Opens a dialog box for you to specify a procedure or an
address; view the program at the specified location.

Green Hills Software, Inc. 27

2. Debugger GUI

The following isthe View > List sub-menu:

List sub-menu

Menu Item Description
Files Lists all the file names in the program.
Procedures Lists the basic information of all the procedures, such as their

names and addresses.

Mangled Procedures

List the mangled names and other basic information of all the
procedures.

Globals Lists the basic information of all the global variables, such as
their names and addresses.

Statics Lists all static variables.

Locals Lists all local variables for the procedure you are viewing (i.e.,

the procedure at the current line pointer) if the procedure is on
the stack.

Local Addresses

Lists the addresses of the local variables specified above.

Registers

Lists all registers.

Register Synonyms

Lists register synonyms.

Variables In Lists all parameters and local variables of the specified
Procedure... procedure if it is on the stack.
Defines Lists all defined macros.

MULTI Variables

Lists MULTI’s internal variables.

Processes Lists processes currently being debugged.
Signals Lists signals.
Assertions Lists assertions.

Breakpoints

Lists all breakpoints.

Dialog Boxes

Lists all dialog boxes.

Source Paths

Lists the directories where MULT]I looks for source files and
scripts.

Debugging with MULTI 2000

Debugger menus

Browse menu

Browse menu (debugger)

Menu Item Description

Procedures... Opens a Browse window to show all procedures of the program.
See “Browse window for procedures” on page 191.

Globals... Opens a Browse window to show all globals of the program. See
“Browse window for globals” on page 193.

Files... Opens a Browse window to show all source files of the program.
See “Browse window for source files” on page 195.

Classes... Opens a Tree Browser to show the the class hierarchy of the
debugged program. See Chapter 12, “Tree browser”.

Static Calls... Opens a Tree Browser to show the static calling relationships of

the current procedure, that is, the procedure at the current line
pointer, if any. See Chapter 12, “Tree browser”.

Dynamic Calls...

Opens a Tree Browser to show the dynamic calling relationships
of the current procedure, that is, the procedure at the current line
pointer, if any. See Chapter 12, “Tree browser”.

File Calls...

Opens a Tree Browser to show the reference relationships of the
current file. See Chapter 12, “Tree browser”.

Procedures In
File...

Opens a dialog box to let you specify a file name, then bring up a
Browse window to show all procedures in the file. See “Browse
window for procedures” on page 191.

Type...

Opens a dialog box to let you specify a type name, then bring up a
data explorer to show the structure of the type.

Green Hills Software, Inc.

29

2. Debugger GUI

Target menu

Target menu (debugger)

Menu Item Meaning

ConnecttoTarget... Opens a dialog box to let you specify the target to connect and the
corresponding parameters.

Disconnect from Disconnects from the current remote target debug server.

Target...

Show Target Displays remote target windows. These windows normaly appear

Windows upon connecting to the debugger server. They may be closed

without disconnecting from the debug server, in which case this
option will make them reappear.

12,34 List the most recently connected debug servers. To connect to
any of them, click it.

Load Program The Load Program sub-menu. See “Target > Load Program
sub-menu” below. Loads the debugged program into the target
system’s memory.

Refresh Section... Reloads the specified section of the current program: text, data,
or all into the target system’s memory.

10 Buffering Toggles buffering for the remote 1/O window.

Memory The Memory Manipulation sub-menu. See “Memory Manipulation

Manipulation sub-menu” below.

The following is the Target > Load Program sub-menu:

Load Program sub-menu

Menu Item Meaning

Load Program... Loads a program into the target systems’s memory.

Lists the most recently loaded programs. To load any of these

1,234 programs into the target system’s memory, click it.

30

Debugging with MULTI 2000

Debugger menus

The following is the Target > Memory Manipulation sub-menu:

Memory Manipulation sub-menu

Menu Item Meaning

Copy... Copies memory. The copy continues for the specified number of
sections of memory chunks. You can copy memory backwards or
forwards.

Fill... Fills the given sections of memory with the given value.

Find... Finds a value in memory. The search continues for the specified

number of sections of memory. Each memory value is bitwise
AND’ed with the mask before compared.

Compare... Compares memory. Specify the two starting memory locations to
compare, and the number of sections and chunks of memory to
compare. You can also specify the comparison operation: ==, >,
>=, <, <=, 1=,

Memory Load... Copies a section of memory from specified file.

Memory Dump... Dumps a section of memory to specified file.

Tools menu

Tools menu (debugger)

Menu Item Meaning

Builder... Opens the Builder window on the project for the current program.
If MULTI cannot find a project for the current program, it will bring
up a builder window on a new project.

Rebuild... Rebuilds the current program if the project for the program can be
located.

Editor... Opens an Edit File dialog box to let you select a file to open in an
Editor window.

Notes Opens an Editor window on a scratch file.

Search... Opens MULTI’s search window. See “Search dialog box for the

source pane” on page 41.

Grep... Launches the grep utility with the specified string. grep is a
program which searches files for a given string. The debugged
program’s source files and any other open files are searched.

Green Hills Software, Inc. 31

2. Debugger GUI

Config menu

Config menu (debugger)

Menu Item Meaning

Options... Displays the Options dialog box, which you use to change options
that affect the way the Debugger and other MULTI tools look and
behave. .

Save Configuration ~ Saves the current configuration into the default user configuration
as Default file, so that it will be automatically executed when MULTI starts in
the next session.

Clear Default Deletes the default user configuration file.

Configuration...

Save Opens a file chooser dialog box to let you specify a file and then
Configuration... save the current configuration in it.

Load Opens a file chooser dialog box to let you choose a file and then
Configuration... execute the configuration statements from it.

State The State sub-menu. See “State sub-menu” below.

32 Debugging with MULTI 2000

Debugger menus

The following is the Config > State sub-menu:

State sub-menu

Menu Item

Description

Show Command
History

Prints command history. MULTI keeps a history of all the
debugger commands. You can use the | command to execute a
command from the history. You can also use the UpArrow and
DownArrow keys to navigate through the history and choose one
to execute. You can use the h command to do the same thing.
See h on page 107.

Save State...

Saves the state of the debugger to the specified file. The saved
information includes remote connection and status, breakpoints,
assertions, and the source directories list. You can use the save
command to finish the same task. See save on page 132.

Restore State...

Restores the state of the debugger from the specified file. You can
use the restore command to achieve the same result. See
restore on page 129.

Commands+Qutput

Record Records commands into the specified file. You can get the same

Commands... result with the > command.

Record Records commands and their output into the specified file. You
achieve the same result with the >> command.

Stop Recording
Commands...

Stops recording comands. It's equivalent to the >c command. Use

this item to stop recording if it's started by “Record Commands...”.

Stop Recording

Stops recording comands and their output. It's equivalent to the

Commands+Qutput | >>c command. Use this item to stop recording if it's started by
“Record Commands+Output...”.

Playback Plays back commands recorded in the selected file. You can do
Commands... the same thing with the < command.

Green Hills Software, Inc.

33

2. Debugger GUI

Help menu

Help menu (debugger)

Menu Item Description

Debugger Help... Opens online help for the debugger.

Manuals Opens the “Manuals sub-menu”, which will display a list of
manuals appropriate to your version of MULTI. Choosing one of
these manuals will open the online help to the first page of that
manual.

About MULTI... Opens the About window. It contains the basic information about
MULT], such as its version, and copyright materials. To dismiss it,
click in it.

Debugger toolbar

The toolbar appears just below menu bar in the main debugger window. By
default, all buttons are shown asicons. If you prefer to use text button asin
previous versions of the debugger, do the following:

1. Choose Config > Options... > General Tab.
2. Disable (uncheck) the option “Use icons for buttons”.
3. Press OK.

All these buttons are programmable, except for Quit. You can define each
button’s name, the corresponding icon (optional), and its command string in any
of the following ways:

« Define them in a configuration file.

- Define them interactively during a debug session withd#iigbutton
command. Sedebugbutton on page 97.

« Choose Config > Options... > Debugger Tab > Configure Debugger
Buttons.

When you program a button, its new name (or icon) appears in the button, and
the command string goes to the command pane for execution when you click
the button. If no icon is specified, a character icon for the first character of the
button name will be used (if the buttons are displayed as icons).

By default, the debugger defines 20 buttons. You can change any of the default
buttons in a start up database or during run-time, except for Quit.

Debugging with MULTI 2000

Debugger toolbar

If you prefer the toolbar to be at the bottom of the debugger window instead of
at the top, do the following:

1. Choose Config > Options... > Debugger Tab.
2. Choose “Position of buttons” > Bottom.

The following table shows the default debugger buttons, their ID numbers, their
names, and their equivalent debugger commands (if any):

Debugger toolbar

Num. Button Command Description

1 3 Step 5 Executes one statement. If the statement is a procedure
call, it steps into the called procedure. When in interlaced
source/assembly mode, a machine instruction is executed
instead of a source statement.

2 =§{ Next n Executes until the next statement of the current function
(i.e. step over procedure calls). When in interlaced
source/assembly mode, a machine instruction is executed
instead of a source statement.

3 } Return cU Continues to end of procedure, and stops in the calling
procedure after returning to it.

4 = Go C Begins execution of the program. If the program is stopped,
it continues execution.

5 B Halt halt Interrupts program execution.

6 é Restart restart Restarts the program with the same arguments as before.

7 Reload debug Reloads the current executable.

8 Assem assem Toggles between displaying the source code only and
source interlaced source with assembly code.

9 @ PC E Shows the position at the current Program Counter.

10 B Upstack | E+ Views a procedure up one stack frame.

11 B= Downstk | E- Views a procedure down one stack frame.

12 @ Calls callsview Opens a window displaying a stack trace. See also
callsview on page 89 and Chapter 10, “Call stack window".

13 Stops breakpoints Opens the Breakpoints window to add and edit breakpoints.

14 @ Memory | memview O Opens Memory View window displaying memory starting at
address 0x0.

15 Regs regview Opens Register window displaying machine registers.

16 Locals view $local$ | Creates a data explorer displaying local variables.

Green Hills Software, Inc. 35

2. Debugger GUI

Debugger toolbar

Num. Button Command Description

17 @ Viewdel | viewdel Deletes all data explorers, Register windows, Call Stack
windows, Breakpoints windows, Memory View windows
and Browse windows.

18 Edit edit Opens an Editor window on the currently active procedure.

19 Builder | builder Invokes the Builder window.

None x Quit quit Quits MULT], but if the debugged program is being

debugged, MULTI gives you the choices of “Quit and kill
Process” and “Detach from process”. You may not
re-configure this button to perform another function, but you
can configure whether this button appears or not.

Pop-up menus

When you right click in the source pane, a pop-up menu appears:

. val = guit+5;
-b. o = o Buun To This Line
. bar[0] = 22: LEtanae FE e T Line
. bar[1] = 1: Inzert/Remove Breakpoint
* har[2] B 200; Eratile/Disatlz Breakpoint
* , bar[3] = 0: Breakpoint \Window
-
Tree Browser [Files)
main() -
{ Edit File
int w: Froperties

struct word dacs—
struct word data *next;

Thisisthe default behavior. If you have configured the right-click to perform
other functions, the pop-up menu will not appear.

This menu is context-sensitive, and depends on the object you click. Different
objects in the source pane have different corresponding pop-up menus. Some of
the menu items may be grayed out which meansthey are unavailable given the
context.

When we discuss the pop-menus below, we use the term “right-clicked line” to
refer to the source line where you've just right-clicked.

The pop-up menu has a title to show some basic information about the object.

36

Debugging with MULTI 2000

Pop-up menus

Pop-up menu for a procedure
When you right click a procedure, a pop-up menu appears with the following

items:;

Pop-up menu for a procedure

Menu Item

Description

Run To This Line

Runs the program to right-clicked line if there is executable code
there. Note: The debugger will set a special breakpoint there, but
there is no guarantee that the program will actually stop there,
because it is up to the program logic.

Change PC To This
Line

If the right-clicked line contains executable code and it is within
the same procedure in which the program is currently stopped,
changes the program counter to there.

Insert/Remove
Breakpoint

Toggles a breakpoint at the right-clicked line if there is executable
code there.

Enable/Disable
Breakpoint

If there is a breakpoint at the right-clicked line, toggles its status
(enabled or disabled).

Breakpoint Window

Opens the Breakpoints window. See Chapter 11, “Breakpoints
window”.

Go To Definition

If there is source code for the procedure, views the source code in
the source pane.

Browse Callers

Opens a browse window to show the callers of the procedure.

Browse Callees

Opens a browse window to show the callees of the procedure.

Tree Browser
(Procedures)

Opens a tree browser window to show the calling relationships of
the procedure.

Edit This Procedure

Opens an editor window on the procedure’s source file, if it's
available.

Edit File

If the current file is a source file, brings up an editor window on it.

Properties

Opens a dialog box to show the basic information about the
current file (e.g. its name, language type, the right click line
number, the current target), and the basic information about the
procedure (e.g. its size, address, and whether its scope is static or
global).

Pop-up menu for a variable

Even though the pop-up menu title shows different information for global
variables and local variables, they have the same pop-up menu options at

present.

Green Hills Software, Inc.

2. Debugger GUI

When you right click avariable, a pop-up menu appears with the following
items:

Pop-up menu for a variable

Menu Item Description
View Value Opens a data explorer to show the value of the variable.
Properties Opens a dialog box to show the basic information about the

current file (e.g. its name, language type, the right click line
number, the current target), and the basic information about the
variable (e.g. its size, address, and whether its scope is static or
global).

(other options) See “Pop-up menu for a procedure” on page 37.

Pop-up menu for atype
When you right click atype, apop-up menu appears with the following items:

Pop-up menu for a type

Menu Item Description
View Struct Opens a data explorer to show the structure.
Properties Opens a dialog box to show the basic information about the

current file (e.g. its name, language type, the right click line
number, the current target), and the basic information about the
structure.

(other options) See “Pop-up menu for a procedure” on page 37.

Pop-up menu for other objects

When you right click an object other than a procedure, a variable, or atype, a
pop-up menu appears with the following items:

Pop-up menu for other objects

Menu Item Description

Properties Opens a dialog box to show the basic information about the
current file (e.g. its name, language type, the right click line
number, the current target).

(other options) See “Pop-up menu for a procedure” on page 37.

38 Debugging with MULTI 2000

Generic debugger window features

Generic debugger window features

All debugger sub-windows support a base set of features and capabilities
including support to customize scroll bars. They include text selection for
copying text into the command pane as input to a button command, as well as
into other applications that support pasting, and incremental text searching
capabilities.

Scroll bars
To customize the mouse behavior in the scroll bar, do one of the following:

« Inthe command pane, use the mouse command.
« Usethe configure command with the mouse option.
« Inthe configuration file, use the mouse command.

See also mouse on page 119 and configur e on page 92.

Infinite scrolling

You can scroll through all of the target’s memory in a Memory View
window, or in the source pane when only assembly code is displayec |
such cases, the scrollbar will befinite scrolling mode. See Chapter 9,
“Memory view window” and “Assembly code view” on page 17 for
more information.

When the scrollbar is in infinite scrolling mode, the thumb is replaced

a diamond. The thumb is fixed in the center of the scroll bar and can —
be dragged. To scroll through memory, you may use the scroll arrow
scroll one line at a time, or click above or below the thumb to scroll ¢
page at a time.

Selecting text

In the source pane, left-click a word to select it. Drag your mouse ove .|
open or close parenthesis to select all the text in between, including the
close or open parenthesis.

You may find when selecting text, the debugger performs a command as soon as
you release the mouse button. To prevent the debugger from issuing the
command, hold down the Ctrl key while selecting text. Alternatively, you can
configure the debugger key bindings to prevent issuing commands.

You can select or highlight the text in the debugger and Editor windows to copy
to other windows. To select text in these windows, position the mouse at the

Green Hills Software, Inc. 39

2. Debugger GUI

beginning of the text, press the left button, and drag the mouse until the desired
text is highlighted. Click twice to select aword.

To deselect the current selection, click in an area without text.

You can also transfer your selection to other window applications that support
pasting, such as an xterm; however, different applications may behave
differently so consult their reference manuals. Generally, when you select text
in one window, any previously selected text is desel ected.

Incremental search

Theincremental search command searches awindow for a string. In the source
pane, the search starts at the current line pointer while in other windows the

search starts at the beginning or the end of the text currently displayed. To place

the debugger in search mode, type Ctrl+f for forward search or Ctrl+b for
backward search. The message “ SSrch” (Source pane Search) appears on the
left side of the status bar:

33rch: File: Ihello.c 'l Proc: Imain 'l | = = |

While in search mode, as text is typed, the pattern is matched in the window
searched, and the first occurrence of the match is highlighted. To find the next
or previous match, type Ctrl&fr Ctrl+b. The search wraps around the entire
buffer of displayed text. When it reaches the end or the beginning of the
window buffer, the debugger beeps to indicate it is about to wrap.

To end the search, press Enter or click the mouse. The string then becomes the
current selection. You can control case sensitivity wittchiggase command.
Seechgcase on page 91. The incremental search key strokes include:

Key presses for incremental search

To do this Press

Turn on incremental search, forward (After the initial search has Ctrl+f
been performed, it will advance to the next matching pattern.)

Turn on incremental search, backward (After the initial search has Ctrl+b
been performed, it will advance to back to a previous matching

pattern.)

Reset the search pattern Ctrl+u

End the search and make matched text the current selection Enter

Delete the last character in the search pattern Backspace
Place a character in the search pattern and discard control any character
characters

40 Debugging with MULTI 2000

Generic debugger window features

Example:

Your text is:

this is a string search.

Now, start a search through this string by typing Ctrl+f and the first character of
the search, say lettat.’Result: the character ‘in the word this' is
highlighted.

If you now type §, the two characters’*and ‘s’ in ‘this are highlighted.

To jump to the next occurrence of the pattésh press Ctrl+f again. This puts
the selection oni$ in the string.

To search next for the pattenm”, press Backspace to reset the search string to
‘i’. Now, type n’. The i’ and 'n’ in ‘string’ are highlighted.

To terminate the search, press Enter. This leaves you with the current selection.

Search dialog box for the source pane

To control searches in the source pane, bring up the search dialog box in one of
the following ways:

» Choose Tools > Search...

« In the command pane, entdralogsear ch

For example, to search for a string suchras:

1. Typetreein the search text field.

2. Click Find to search for the next occurrence of the string.

The toggle buttons in this window are the same as those in the Editor’s search
dialog box.

To initiate or repeat searches without the search dialog box, you can also use the
Ctrl+f or Ctrl+b key sequences in the command pane.

Variable lifetime debugging

Registerized variables are those such as function parameters or locals whose
values are represented solely within registers. When you refer to a registerized
variable outside of its scope (as defined by the compiler), the debugger displays
the message “Out Of Register Scope”, along with the value. Because the
variable is out of scope, this value is probably incorrect.

Green Hills Software, Inc. 41

2. Debugger GUI

Multiple .text section debugging

The debugger contains full support for multiple .text section debugging. The
debugger seamlessly debugs both C source and assembly files which contains
procedures located in a different text section.

You can load additional symbol information for a module while debugging.

Other window topics

Mouse clicks

You can customize the mouse operation within the debugger. The debugger
supports programming of up to five mouse buttons, and you can assign
commands for up to five clicks for each button. Examples:

For a 2-button mouse in source pane

Button

One Click

Two Clicks

Button 1 (left)

Selects the word that the
mouse is on and, if applicable,
prints its value.

Opens a data explorer window
on the object represented by
the word that the mouse is on.
See view on page 140.

Button 3 (right)

Opens a pop-up menu on the
clicked object.

No operation.

For a 3-button mouse in source pane

Button

One Click

Two Clicks

Button 1 (left)

Selects the word that the
mouse is on and, if applicable,
prints its value.

Opens a data explorer window
on the object represented by
the word that the mouse is on.
See view on page 140.

Button 2 (middle)

Sets a breakpoint at the line the
mouse is on.

Sets a temporary breakpoint on
the line where the cursor is and
continues the program.

Button 3 (right)

Opens a pop-up menu on the
clicked object.

No operation.

Note: if you configure the mouse operation for the right button, you may affect
the default behavior of the right-click pop-up menu.

42

Debugging with MULTI 2000

Other window topics

Kanji character support
MULTI fully supports the kanji character set.

To display Kanji characters appearing in source files, you must specify a Kanji
font such as k14, in your configure file.

Green Hills Software, Inc. 43

2. Debugger GUI

44 Debugging with MULTI 2000

Chapter

Expressions,
variables, and
procedures

This chapter contains:
« Evaluating expressions
« Viewing variables
« Viewing memory addresses
« Vaiablelifetime
» Specia variables
e Examining data
e Wildcards
» Procedurecalls
e Systemvariables
« Syntax checking

3. Expressions, variables, and procedures

Evaluating expressions

It is often useful to calculate the value of an expression while debugging. To
evaluate an expression, simply enter it into the debugger’s command pane. The
debugger will print the calculated value of the expression in the command pane.
If you want to watch the value of an expression, and have it reevaluated as you

ste

p through your program, you should use a data explorer instead. See also

Chapter 5, “The data explorer”.

When you construct your expressions, beware that:

If the expression begins the same way as a debugger command, put the
expression in parentheses () or explicitly usepthet command to
distinguish it from that command. For example, to look at the value of the
variablec, enter(c) orprint c. (Seeprint on page 123.) If you just entered
the debugger would execute theommand.

Expression Effect

(c) displays value of variable c
printc displays value of variable c
c executes the ¢ command

Do not press Enter in the middle of an expression. An expression is only one
line with an Enter at the end.

Comments begin with (forward slash + asterisk) and end with either a
new line or*/ (asterisk + forward slash).

If the program has not been started, then the expression may only contain
constants. After the program has started, the expression may contain
variables and procedure calls.

If the program is running, then the expression may only contain constants
and, if the system allows, global variables.

If the program has not been started and was linked against shared objects,
then expressions refering to procedures and variables located within these
shared objects may not be allowed.

In C++, the “*” and “->*" operators are not supported.
In C++, casts to reference types are not supported.

46

Debugging with MULTI 2000

Evaluating expressions

e In C++, the debugger never calls destructors.

e InC++, there arerestrictions on procedure calls and overloaded operator
calls. See “Procedure calls” on page 58 for more information.

« In Pascal, enclose set constructors in parentheses.

If you are debugging multi-language (e.g. mixed Ada and C++) applications,
use the syntax appropriate to the language of the source file that the debugger is
currently displaying.

Be careful when using expressions in the debugger that may be evaluated across
multiple languages (such as in button definitions). Language changes can cause
confusion with the operators. For example, in C, the assignment operator is one
equal sign£), and the equality comparison is tequal signs£=). In Ada and

Pascal, colon equaly) is the assignment operator, and one equal sigis (he
equality comparison.

The debugger always follows the operator definitions for the current language.
This can make definition of language-independent expressions difficult. In
order to overcome this problem, the debugger always recognizes the “colon
equal” (=) as the assignment operator (in addition to the correct operator in the
current language), and two equal signs (==) as the comparison operator. To
ensure that expressions are language-independent, these operators should be
used to implement features or capabilities (such as button definitions) that may
remain in operation over several source languages.

Language keywords

When the debugger evaluates expressions, it understands the following
keywords for the current source language:

Language Keywords

C char const double enum float int long short signed sizeof struct
union unsigned void volatile
(The ‘sizeof’ operator behaves the same way as in the C
language.)

C++ As above, plus:
class namespace

Ada abs and boolean character false float in int integer mod not null
or xor package real rem true

Fortran .AND. .EQ. .FALSE. .GE. .GT. .LE. .LT. .NE. .NOT. .OR.
.TRUE. character complex int integer logical real

Green Hills Software, Inc. 47

3. Expressions, variables, and procedures

Language Keywords

Pascal and boolean char chr false fiv in int integer mod nil not or ord
real true

Jovial ABCFPSUYV abs and bit boolean character eqv false int

integer mod not null or pointer real true xor

SL1 address bitoffset bitwidth byteoffset comment convert_to_int
convert_to_pptr convert_to_uptr int integer maxint nil no_op
offset ppoi ppointer pstructure size struct structure upoi
upointer ustructure wordoffset

Viewing variables

There are several different methods for viewing the value of variables,
including the following:

« Click the variable in the source pane.
« Double-click the variable in the source pane.

e Usethe print or examine commands. (See print on page 123 and examine
on page 104.)

« Enter the variable name in the command pane.

MULTI’s expression evaluator accepts the following forms of variable
notations. You can use them to unambiguously refer to a specific variable even
when there are other variables with the same name.

Note: Previous releases of MULTI did not support all of the following forms.

The following list describes the different methods for specifying variable names
and memory addresses. Note that an arbitrary variable €ailisclised in these
examples. Spaces before and after the ‘# symbol are optional, but the pair of
double quotes (*) around a file name is required. Local variables need to be
either static or within a procedure on the stack.

Viewing variables

Expression Meaning

fly Performs a scope search for the variable fly, starting at the
“stop point” in the current procedure and proceeding outwards.
Locals, local statics, and parameters are checked, then file
statics, globals, and special variables.

$fly Searches the list of special variables for $fly. See “Special
variables” on page 51.

48 Debugging with MULTI 2000

Viewing memory addresses

Viewing variables

Expression Meaning

fly Searches for a global named fly.

sfly Same as :fly.

num# fly Uses the nUM procedure on the call stack for the scope

search. Caution: if entered directly into the debugger, the
debugger will jump to line NUMinstead of what you intended.
To avoid this, use parentheses to enclose the expression at the
beginning of the command line. This is useful if you are
debugging a recursive procedure and multiple instances are
on the stack. You can then pick the instance and display the
value of the variable for that instance. See e on page 101.

“foo.c” # Proc ##
label # fly

Local variable fly in the lexical block at label label in
procedure proc in file foo.c .

proc ## label # fly

Local variable fly for block at label |abel in procedure proc.

stack_depth ## label
fly

Local variable fly in the lexical block at label label in
procedure at stack depth stack_depth.

“foo.c” # proc# fly

Local variable fly for procedure proc in file foo.c .

proc # fly

Local variable fly for procedure proc.

stack_depth # fly

Local variable fly for procedure at stack depth stack_depth.

stack_depth ## fly

Local variable fly for procedure at stack depth stack _depth.

“foo.c” #fly

Static variable fly in file foo.c .

. (period)

The period is a symbol that represents the result of the latest
expression.

Viewing memory addresses

Expression

Meaning

#line

Address of the code at line number lingin the current file.

“foo.c” # proc#line

Address of line line for procedure proc in file foo.c .

proc # line

Address of line line for procedure proc.

stack_depth # line

Address of line line for procedure at stack depth stack_depth.

“foo.c” # proc ## label

Address of label |abel for procedure proc in file foo.c .

proc ## label

Address of label /abel for procedure Proc.

Green Hills Software, Inc.

3. Expressions, variables, and procedures

Printing results of a complex statement
The results of a complex statement are not automatically printed. For example:

f oo
resultsin printing the value of the variable foo, whereas

{f oo}
does not. In thislatter case, you can use the print command to display the

value; that is

{print foo}
prints the value of f 0o0.

Variable lifetime

The Green Hills compilers augment the location description (register number,
stack offset, memory location, etc.) for user variables with lifetime information
which indicates when the value at the given location is valid.

When you use debugger commands (e.g. print or view) or data explorersto
evaluate expressions, you may see the following messages next to the value of
the expression:

Message Meaning

Uninitialized The value displayed may represent an uninitialized value.

Out of Register Scope The value displayed may be invalid because the location used
to store the value of this variable may have been reused by the
compiler to store the value of a temporary (or another)
variable.

Optimized Away The variable was optimized away by the compiler and does not
have any storage. No value will be displayed in conjunction
with this message.

Examples:

MULTI> print /d my_variable
my_variable = 0 << Uninitialized >>

MULTI> print /d my_variable
my_variable = 66952 << Out of Register Scope >>

MULTI> print /d my_variable
my_variable was optimized away

50

Debugging with MULTI 2000

Soecial variables

Special variables

The debugger maintains alist of special variables which are not a part of your
program, but can be used in the debugger asif they were. For example, you
could use a special variable in an expression that you evaluate in the debugger.
These special variables include machine registers (such as $r 1), debugger
internal variables (such as$_DISPMODE), and user defined variables (such as
$f00).

When the debugger is evaluating an expression and it finds a variable name
(such asresult), it first performs a scope search in the program to seeif the
variable exists. If the variable does not exist, then the list of special variablesis
searched. Variable names beginning with a dollar-Sg(stich as$result) are
assumed to be special variables.

User-defined special variables are of the same type as the last expression
assigned. For example, entering:

$mumble=3*4

creates the special varialfimumble, assigns it the value 12, and makes its
type integer. These variables are just like any other variables, except you may
not take the address meaningfully.

The processor’s registers are included as predefined variables. To find which
register names are available on your system, you can list the registers with the
| (lowercase ‘') command with theoption:

Ik |

Seel on page 113.

All registers act as integers of the correct size for the register. Special care
should be exercised when modifying the contents of registers while debugging
high-level code, since the results of these modifications can often produce
unpredictable effects.

Green Hills Software, Inc. 51

3. Expressions, variables, and procedures

The following special predefined variable is also included:

Message Meaning

$result Checks the return value of a procedure. This variable is a
long-integer type and is an alias for the register on the
processor architecture used for returning integers. On most
systems, this is also the register to return pointers. It may be
written to as well as read from. Caveat: this value is not
guaranteed to be correct; it depends on the return type of the
function and the processor architecture. The actual return
variable may be located elsewhere. As with any register, you
must be careful when you change its value.

Tolist all theother special variables, usethel (lowercase ‘L") with thesoption.

IE |

Seel on page 113.

Examining data

The following commands examine data. You can examine most items in the
source pane by double clicking them. See Chapter 5, “The data explorer”.

Variables

Variable names are represented exactly the same way they are named in the
program. The case sensitivity of the current source language is used when
evaluating expressions, but can be overridden with the “exprcasesensitivity”
configuration option.

To display the value of a variable in the debugger command pane, do one of the
following:

« Click the variable name in the source pane.

- Enter the variable name in the command pane using eithpritite
command or parentheses if necessary. (Be# on page 123.)

Expression formats
An expression formagxp_format is of the form:
[count]style[siz€]

wherecount is the number of times to apply the format styiée, andsize
indicates the number of bytes to format. Bathint andsize are optional. For

52 Debugging with MULTI 2000

Examining data

example, print/4d2 fly prints, starting at fly, four 2-byte numbersin decimal.
count defaults to one, and size defaults to the size of the type printed.

In addition to a number, size can be specified as one of the following values:

b One byte (byte-integer)
s Two bytes (short-integer)
| (lowercase L) Four bytes (long-integer)

These are appended to style. For example, print/xb fly prints a hex byte. The
formats which print numbers allow an uppercase version of the character to be
synonymous with appending the letter ‘I’ to lowercase. For exampl8y/O
prints a long octal, which is the same as tygnigt/ol fly.

The following values are available fsiyle:

Values for style

Format Meaning

a Prints a string using exp as the address of the first byte. This prints to the
first null character or 128 characters, whatever happens first. The Size value
forces printing of a given number of bytes, regardless of the occurrence of
null characters. For example, if the string “hello” is at location 0x40a8, then
to see the string, enter:

print/a *0x40a8
b Prints €Xp in decimal as 1 byte.
c Prints €Xp as a character.
d Prints €Xp in decimal.
e Converts eXp to the style [-]d.ddde+dd where there is one digit before the

radix character and the number after is equal to the precision specification
given for size. If size is not present, then the system default is used.

f Converts EXp to the decimal notation in the style [-Jddd.ddd where the
number of d's after the radix character is equal to the precision specification
given for SIZe. If SIZeis not present, then the system default is used. If Size
is explicitly zero, then no digits or radix characters are printed.

g €Xp prints in style d, in style f, or in style e. The style depends on the
converted value. Style e is used only if the exponent resulting from the
conversion is less than -4 or greater than the precision given for Size.
Trailing zeroes are removed from the result. A radix character appears only
if followed by a digit. This is the default for floats and doubles.

i Using the exp as an address, disassembles a machine instruction.

Green Hills Software, Inc. 53

3. Expressions, variables, and procedures

Values for style

Format Meaning

| (Uppercase ‘i) Using the €Xp as an address, disassembles a machine
instruction. If the address maps evenly to a line number in the source, it
prints the source line first. This allows you to see what the compiler
generated for a line of source. Using the mixed source/assembly mode in
the source pane is an easier way to view the same information. However,
this command may be useful if you want to save the information to a file. For
example:

>> tempfile

print/2001 myfunc

>>c

This sequence prints the first 200 instructions of the function, myfunc, and
saves the output to the file tempfile. See “Record and playback commands”

on page 73.

n Uses the “normal” format based on type. If no format is specified, this is the
default.

o Prints €Xp in octal.

p Prints the name of the procedure containing address €Xp, along with the

filename and the source line or instruction that addresses maps. If size is 1
(print/pb), only the procedure name will be printed. If size is 2 (print/ps),
only the filename and procedure name will be printed.

r Prints the bounds of a ranged type or variable of a ranged type suchas a C
bitfield or an Ada subrange.

S Prints a string using exp as a pointer to the first byte of the string. Same as
print /a *exp.

S Creates a formatted dump of a structure. This is the default for items of type
struct.

t The debugger shows the “type” of variable or procedure.

u Prints €Xp in unsigned decimal.

X Prints €Xp in hexadecimal.

Viewing expressions
To view previous memory, enter:
A [exp_format]

This causes the debugger to back up and display preceding memory location
based on the size and address of last item displayed. Uses a previous format if
exp_format is not supplied. This may not work if displaying instructions on a
machine with variable length instructions.

54 Debugging with MULTI 2000

Examining data

Eval

The eval command evaluates expressions, but does not display the results. This
is valuable when dealing with expressions which may refer to volatile memory
regions. For example, with the memory cache disabled (CACHE = 0),

print *(int *)address = val ue

will perform one write-memory and one read-memory access to the target and
will print the value of the expression, whereas

eval *(int *)address = val ue
will perform in one write-memory and no read-memory accesses and will not
print the value of the expression.

Examine

examine[/exp_format] exp

If exp isaprocedure name, then thisis equivalent to the e exp command. See e
on page 101.

If exp isanumber followed by ab, such as 3b, then the debugger moves to that
breakpoint.

In al other cases, this command isidentical to the print command (see below).

Print
print[/exp_format] exp
Displays the value of expression exp exactly using exp_format.

Examining line numbers

Through command parsing, you can specify procedure-relative versus
file-relative line numbers for the following examine commands. Note that the
configuration variable procRelativel ines controls whether the interpretation of
line numbers defaults to being procedure-relative or file-relative.

Examining line numbers

Expression Meaning

e 10 Examine line number 10 in current procedure of file.

e +10 Examine 10 lines from current position.

e 0x1234 Examine address 0x1234.

e proc#4 Examine (procedure-relative) line 4 of procedure proc.

Green Hills Software, Inc. 55

3. Expressions, variables, and procedures

Examining line numbers
Expression Meaning
e “foo.c'#4 Examine (file relative) line 4 of file foo.c.
e “foo.c"# Proc#4 Examine (procedure relative) line 4 of procedure proc in file
foo.c.
e (expression) Examine the address which is the value of the expression.
e ($ret()) Examine the return address of the current procedure.
ex Examine procedure list.
ez2b Examine breakpoint #2.
e2_ Examine call stack trace depth 2 (our caller’s caller).
C Labels:
C label
Expression Meaning

e “foo.c’# proc##label Examine C Label label in procedure proc in file foo.c .

e proc##label Examine C Label label in procedure proc.

e ##label Examine C Label label in current procedure.

Procedure-relative mode:

Expression Meaning

e proc#4 Examine (procedure-relative) line 4 of procedure proc.

File-relative (non-procedure-relative) mode:

Expression Meaning

e proc#4 Examine (file-relative) line 4 of file containing procedure proc.

56

Debugging with MULTI 2000

Wildcards

Language dependencies

In C++, when the debugger displays aclassit also displaysthe fieldsin al the
parents of that class, including virtual parents, if that information is available.
Static fields associated with a class are also displayed.

In Pascal and Ada, the debugger examines variant tags and only displays the
fields of arecord that are part of the current variant. If that information is not
available, al the fields are displayed.

Wildcards

A few commands specify wildcards for items such as procedure names. A
guestion-mark *?* matches any single letter while an asteriskor an at-sign
‘@' matches any number of letters so that, for exampl2; ™ matches all
names which are at least two characters long.

There are several different formats when referring to procedures in C++:

Expression Meaning

class::func(types) Wildcard characters may appear in both the class or the
func field, and the character ‘@’ may appear in the types
list to match an arbitrary number of arguments of arbitrary
types.

class::operator @(types) Matches all operators of the given class and types.

class::func Matches all members whose names match func of all
classes whose names match class, regardless of their
arguments.

class::operator op Matches all operators which match Op, and are either class
members or their first operand is indicated class.

:func Matches all functions that are not class members whose
names match func. Argument types are supplied to restrict
the match.

func Matches all functions, whether class members or not,
whose names match func.

When using a syntax includirgass::, all base classes offass are also
searched. Aside from that, there is no other notion of inheritance and this match
is purely syntactic.

Green Hills Software, Inc. 57

3. Expressions, variables, and procedures

Procedure calls

From the command pane, you can call procedures in your program if the
program being debugged has been compiled with the Debugging Level set to
MULTI (which should result in the program being linked with libmulti.a).

When you set Debugging Level to MULTI, and then do a build, the builder
automatically linksin alibrary caled libmulti.a. Thisis necessary for doing
procedure calls. If you are not using the builder, then to achieve the same result
do one of the following:

« Usethe build-time option -G
« Usethe build-time option -Imulti

When MULTI detects that libmulti.a was not linked in to the executable, and
you try to do a procedure call, it will give an error message saying that the
-Imulti is necessary.

Normally, every program calling a library function has a copy of that function
included in its executable.

Procedures are handled from within the expression evaluator. Therefore they
are accessed in expressions. For example;

‘ fly = AddArgs(1, 2) * 3: ‘

In C++, overloaded operators are called, provided they are not inlined, thus the
following expression:
‘ complex(1,2) + complex(2,3) ‘

is converted into the appropriate procedure calls. Constructors are called when
appropriate, again provided they are not inlined.

You can make a procedure call to any text label in the file being debugged. For
example, assume the procedure printf isreferenced in the program and thusthe
code for thisis on the target. Enter:

printf("Hello, %s\n", "world")

On many systems, it is necessary to print a new line before any of the
information appears.

58

Debugging with MULTI 2000

Procedure calls

To find out what procedures are available to be called, do alist procedures
command:

X

See (lower case L) | on page 113. To gain access to library routines for
debugging purposes that are not referenced anywhere in the program code, and
thus are not linked into the program image, add a dummy reference to the
program and recompile.

Caveats for procedure calls

Any breakpoints encountered during command window procedure
invocation are handled as usual.

Return values from procedures are not guaranteed to be correct if a
breakpoint is encountered during a procedure call.

If function prototype information is avail able, the debugger checks the
function prototype and converts each argument expression to the proper type
of the corresponding parameter. If it is not available, automatic promotion of
arguments and detection of invalid argumentsis not supported and you
should ensure that function arguments specified are compatible with the
function called.

When evaluating a C expression, the debugger invokes any compiled
function, with or without arguments, including both application and
operating system functions. However, an OS function on the target system is
only called if already linked into your program. You are responsible for
linking any system calls that are called from the command line into the
program.

In C++, or any other language with inlined procedures, a procedure only
inlined (so there is no stand-alone version of the procedure) may not be
called.

In C++, the expression evaluator is unable to disambiguate overloaded
procedure names. In this case, a dialogue will prompt you to identify which
function should be used.

In C++, default arguments are not inserted.

In C++, the class member oper ator (), the function call operator, and the
new and delete operator s are not supported.

Green Hills Software, Inc. 59

3. Expressions, variables, and procedures

System variables

There are a number of system defined variables. Modifying their values
changes the way the debugger operates. The following list contains the
currently defined system variables. To display the value of a system variable,
prepend adollar-sign to it (for example, SANSICMODE) and enter it in the
command pane.

System variables

Name

Meaning

ANSICMODE

Default value is 1 if main() is defined with a prototype such as main(void) or
main(int argc, char **argv). Otherwise, the default is O (zero).

If 0 (zero), expressions are evaluated as they are in K&R C. If 1, then they are
evaluated as in ANSI C. Generally, this affects how unsigned shorts,
unsigned chars and unsigned bit fields are coerced. By default in K&R, they
are coerced to unsigned int, whereas in ANSI they are coerced to int, thus
((unsigned short) 3)/ -3 yields different results in ANSI and K&R. The type of
sizeof is different, as is the interpretation of the op= operators in certain
obscure cases.

ARRAYPRINTMAX

Specifies the maximum number of array elements the debugger prints.

CONTINUECOUNT

If this is 0 or 1, the debugger will stop at the next breakpoint. If this is 2, the
debugger will stop at the second breakpoint reached by the program, and so
on. Use the c command to set its value. For example, to set it to 3, enter:

c @3

DEBUGSHARED

Enables/disables debugging of shared objects. Only relevant with targets that
support shared libraries like certain native UNIX platforms or advanced
embedded real-time operating systems.

DEREFPOINTER

Controls whether or not pointers are automatically dereferenced when
displayed by the print or examine commands.

DISNAMELEN Controls the length of symbols printed when associating program labels to
addresses in disassembly mode.
R_SIGNAL The signal number that caused the current program to stop.

SERVERTIMEOUT

How long (in seconds) MULTI will wait for a debug server to respond before
concluding that the server has failed. MULTI will prompt the user to close the
connection or keep waiting. If set to zero, MULTI will never time out waiting for
a debug server.

SIGNAL The signal number which is passed back to the target. This is zero if masked by
the signal handling code.
TASKWIND If zero, the task window (for multi-tasking targets) will be disabled.

VERIFYRESTART

Verifies attempts to restart the program by bringing up a confirmation dialog.

VERIFYHALT

Verifies halting a program before setting a breakpoint by bringing up a
confirmation dialog.

60

Debugging with MULTI 2000

System variables

System variables

Name Meaning

VIEWARRAYMAX Maximum number of array elements shown in a data explorer window by
default. More array elements can be viewed by changing the type of the array
in the data explorer type field.

System special variables beginning with an underscoaaé not normally
listed. They represent the internal state of the debugger. To see them, use the
| command with the option:

‘Is

See (lower case). on page 113.

System special variables

Name Meaning

_ASMCACHE When set to one (1) [default], the disassembly of program code in the
debugger window is done by reading data from the executable file, not from the
debugged program. This allows a faster disassembly print to the screen.
Setting _ASMCACHE to zero forces the debugger to read the text to be
disassembled from the debugged program, instead of the buffer or executable
file. If instruction memory is modified or destroyed, and _ASMCACHE is one,
then displays of disassembled instructions continue to show the original
unmodified instructions in the executable file. This is confusing since the
instructions actually executed are not those shown by the disassembly display.
Sometimes, when peculiar behavior occurs on the target system, such as the
program stops on an apparently valid instruction or it refuses to single step or
continue past a valid instruction, the instruction memory on the target system
has been corrupted. Try setting _ASMCACHE to zero and redisplaying the
assembly code. You may find invalid instructions at the point of failure. (You
may need to turn off assem mode and examine another part of the program,
turn assem mode back on, then return to the point of the entry to clear out the
debugger’s internal disassembly cache.)

_CACHE If non-zero, the debugger uses a cache for reading memory from the target.
The cache is invalidated every time the program state changes. This speeds up
remote debugging. See also eval on page 103.

_DATA Used for PID (position independent data) systems where the executable is
linked as if it were at one address while it runs at another. This variable is set to
the offset between the location at which the data segment resides and at which
it is linked. This is set on the command line with the -data option.

_DISPMODE Determines whether assembly code is interlaced with source code in the
source pane. See “Interlaced source view” on page 17.

Green Hills Software, Inc. 61

3. Expressions, variables, and procedures

System special variables

Name

Meaning

_ERRHALT

When the target encounters an exception, then if _ERRHALT is false, the
debugger will list the registers, execute any associated exception breakpoint
commands, then resume the target process. If TRUE, only the associated
commands are executed, leaving the target process halted. This variable
defaults to TRUE. See be on page 82, de on page 96, | on page 113
(lowercase ‘L) with the e and r options.

_INIT_SP

Tells the debugger the value of the stack pointer at program start up in certain
remote environments where this information is not available.

_LANGUAGE

Shows which expression evaluator is in use. 0 means C, 1 means Fortran, 2
means Pascal, 3 means C++, 4 means Ada, 5 means Jovial, 6 means SL1, 7
means Assembly, and 31 means auto-select based on the type of current file.

_LINES

This shows the number of lines displayed by the printwindow command by
default. See printwindow on page 124.

_NOTIFY

If this is non-zero, then you are notified when new children are forked, when
your program performs an exec, and when your program is stopped. This is off
by default.

_OPCODE

If non-zero, then disassembly mode displays the hexadecimal value of the
instruction. This does not work for 68K.

_TEXT

Used for PIC (position independent code) systems where the executable is
linked as if it were at one address, while it runs at another. This variable is set
to the offset between the location at which the text segment resides and links.
This is set on the command line with the -text option.

62

Debugging with MULTI 2000

Syntax checking

The following system special variables are read-only: .

Read-only system variables

Name Meaning

_BREAK The current breakpoint number.

_FILE The name of the current file.

_INTERLACE Indicates whether assembly code is displayed in the source window.
This is 1 (one) if there is assembly code currently displayed in the
source window, otherwise it is 0 (zero).

_LINE The current line number.

_MULTI_DIR The name of the directory that contains the MULTI executable..

_PID The process ID of the process, as reported by the debug server.

_PROCEDURE The name of the current procedure.

_PROCESS The MULTI defined program number of the current program.

_REMOTE Set to 1 (one) if the debugger is debugging a program on a remote
target. Otherwise, it is set to O (zero, for native debugging).

_SELECTION A string variable representing the current selection from the source
pane.

_STATE Process state. See “Process state” table below.

Process state:

Process state

1 =no child 2 = stopped 3 =running 4 = dying

5 = just fork’ed 6 = just exec’ed 7 = about to resume | n/a

Syntax checking

The syntax checking mechanism checks the validity of a command without
actually executing it and thus without requiring target interactions and without
changing the system settings.

The debugger command sc performs syntax checking. It can be used in two

different ways.

To check the syntax of a single command, enter:

sc “command”

Green Hills Software, Inc.

63

3. Expressions, variables, and procedures

To check the syntax of an entire script file and all nested files, enter:
sc < script_file_name
See sc on page 132.

Syntax checking is also automatically invoked whenever a breakpoint with an
associated command or condition is created. The bpsyntaxchecking
configuration option can be used to disable this automatic checking. The
validity of the commands associated with the breakpoint are checked in the
context that would exist if the breakpoint were hit. If a syntax error isfound in
the breakpoint command, a warning message is issued.

For example, entering the command:

sc "print abcdef"

will echo the error message:

Synt ax Checki ng: Unknown name "abcdef"

and entering the command:

b main { print abcdef; }

will echo the the error messages:

Synt ax Checki ng: Unknown name "abcdef"
Failed to set breakpoint owi ng to synt ax error.

64 Debugging with MULTI 2000

Chapter

Debugger
commands

This chapter contains:
« Debugger notations
« Command groups
« Debugger commands

4. Debugger commands

The MULTI debugger (“the debugger”) provides commands and features to debug your
program, ranging from window related commands to program execution commands. This
chapter describes all these commands in detail. The commands in this chapter are listed in
alphabetical order. You can execute them from the debugger command line window. Most of
these commands are also available from the debugger menus.

Debugger notations

Double quotes
Thisisapair of double quotes.

Format: “any_string”

Prints the string between the double quotes. The string can contain the standard
C language character escapes. For example, this can be used to print comments
in breakpoint commands.

%bp_label
Thisis abreakpoint label. It starts with the percent sign (%).

See “Breakpoint label” on page 68.

@bp_count
This is a breakpoint count. It starts with the at-si@n). (

See “Breakpoint commands” on page 71.

{ cmds}

This is a pair of curly braces that contain a list of commands. See “Command
list” on page 69.

Address expressions

An address_expression is a flexible MULTI command language construct
which allows many ways of referring to a location within your program.

66 Debugging with MULTI 2000

Debugger notations

Examples of address_expression’s using thee command:

Displaying variables

Expression Meaning

e 10 Examine line number 10 in current procedure or file.

e +10 Examine 10 lines from current position.

e 0x1234 Examine address 0x1234.

e proc2#4 Examine (procedure-relative) line 4 of procedure proc2.
e “file3"#4 Examine (file-relative) line 4 of file file3.

e “file3"#proc2#4

Examine (procedure-relative) line 4 of procedure proc2 in file
file3.

e (expression)

Examine the address which is the value of the expression.

e ($ret()) Examine the return address (exit point) of the current
procedure.

elb Examine breakpoint with id equal to 1.

e %bp_label Examine the location where breakpoint with label equal to
bp_label.

e2_ Examine stack level 2.

e “file3"#proc2##labeld Examine C Label label4 in procedure proc?2 in file file3.

e proc2##labeld Examine C Label label4 in procedure proc2.

e #tlabel4 Examine C Label label4 in current procedure.

e* Examine procedure list (wild card search).

Procedure-relative vs file-relative line numbers

The configuration optioprocRelativeLines controls whether or not a line
number given in address expressions is to be interpreted as file-relative or
procedure-relative. The default is to use procedure-relative line numbers.

Procedure relative:

Procedure-relative

Expression Meaning

e proc3#4 Examine (procedure-relative) line 4 of procedure proc3.

e4 Examine source code at line number 4 in the current procedure.
e#4 Examine source code at line number 4 in the current file.

Green Hills Software, Inc. 67

4. Debugger commands

File-relative (Non-procedure relative):

File-relative

Expression Meaning

e proc3#4 Examine (file-relative) line 4 of file containing procedure proc3.
(The line must exist within proc3).

ed Examine source code at line number 4 in the current file.

e#l Examine source code at line number 4 in the current procedure.

See “Line numbers” on page 15.

Breakpoint label

Theb commands for setting breakpoints (for exambldar, bx) accept
%bp_labdl as an argument to specify a name for the breakpoint.

For example:

b %foo main#24 ‘

This command sets a breakpoint labeled foo on line 24 of procedine

TheB, e, d, andtog commands can refer to breakpoint labels by using the
percent qualifier%).

For example:
Expression Meaning
d %foo Remove breakpoint labeled foo.
d %3 Remove breakpoint with ID = 3.
d main#4 Remove breakpoint on line 4 of main.
d Remove breakpoint on current line.

Breakpoint list and ranges

A breakpoint list is a comma separated listofjualified breakpoints. A
breakpoint range consists of two colon separated breakpoint® ahed
commands can refer to breakpoint ranges.

68 Debugging with MULTI 2000

Debugger notations

For example:

Expression Meaning

d %foo,%bar,%gamma Remove breakpoints labeled foo, bar, and gamma.

d %foo:%gamma Remove breakpoint foo through gamma.

d %1,%3:%5 Remove breakpoints with ID’s 1, 3, 4, and 5.

stacklevel

A call stack trace level isanumber followed immediately by an underscore; it
refersto the call stack level relative to the current procedure. For example, if the
procedure main() calls foo() which calls bar () which calls hum() and in the
debugger you are currently debugging hum(), then the following command:

‘el_

will change the current viewing location to bar (), because bar () isone (1) level
up from the current procedure hum(). And this command:

‘ez

will change the current viewing location to foo(), because foo() istwo (2) levels
up from the current procedure hum().

Command list
Many debugger commands, assertions, breakpoint commands, and so forth, are
given with alist of other commands to perform at specific times. You can use
C-style comments:

/* a C-style comment, between a forward_slash+asterisk and an asterisk+forward_slash. */

Theselists may span several linesif they are surrounded by curly braces{ }. If a
listis not surrounded by curly braces, then it is read to the end of theline. Curly
braces can contain other pairs of curly braces aslong asthey are all paired
correctly. These lists may be any combination of debugger commands separated

by semicolons;”. The syntax for expressions is the same as the C language,
with a few exceptions. See “Evaluating expressions” on page 46 for more

Green Hills Software, Inc. 69

4. Debugger commands

information. For example, the following command checks the value of some
global variables at a breakpoint:

{ "Global variable "; print /d fly; if var<9 {c} else {"error"} }

Thisfirst prints “Global variable ” followed by “fly = ” with the value of the
variable fly in decimal. If the value of variable fly isless than nine it continues
to run. Otherwise, it prints “error”.

Executing a command after a continue ({c}) is not supported. For example, do
not do this:

{if (var < 10) {c;} print var }

default search path

MULTI maintains a search path that it uses when locating user specified
filenames on the file system. The search path will always contain the current
directory (.) asitslast entry. To change this search path, do one of the following:

» Use the source command.

« Usethe-lI command line option to MULTI.

« From the main debugger menu, choose View > Source Path...

MULTI uses the default search path when locating the following types of files:
» sourcefiles

e script files

« object files

If adebugger command uses the default search path, it will be indicated in its
description.

See the -1 command line option to MULT]I in the Building and Editing with
MULTI 2000 manual.

Printing structs

In C and FORTRAN, the debugger uses a straightforward algorithm when
displaying a struct or a union. Since this may not be best for large or complex
structs, the debugger allows you to define your own display method. To do this,
include aroutine in your source code with the same name as the struct or union,
preceded by an underscore. This routine should take two arguments, which are
passed by the debugger: the address of the struct and the size parameter. The

70

Debugging with MULTI 2000

Command groups

default value is-1, and user passable values are O (zero) to intMax. For
example, if you have atype called struct FLY, then your own routine to dump
its contents must be named _FLY.

When you attempt to print the contents of a struct, the debugger checksto see if
aroutine isdefined for that struct. For example, if flyFirst isastruct of type
FLY and you enter print /n2 flyFirst, then the debugger first checksfor a
routine named _FLY. If there is no such routine, then the debugger uses its own
algorithm. However if you define such aroutine, then the debugger calls that
routine, passing a pointer to the struct and the size parameter.

If you define your own routine to print out a struct but prefer to use the
debugger’s own algorithm in a particular case, us&tf@mat. This format
works exactly the same as thdormat, except it overrides your custom
definition. See “Expression formats” on page 52 for more information. For
example, in the case mentioned above Witk andflyFirst, if you want to
print flyFirst using the debugger’s algorithm instead of the one defineklLivi
enterprint/N flyFirst

Command groups

Breakpoint commands

The debugger provides a number of commands for setting and removing
breakpoints. A breakpoint is associated with an address. A breakpoint may also
have a count. The program will stop when the breakpoint is encountered for
then-th time. To set breakpoints in GUI mode, see Chapter 11, “Breakpoints
window”. The count is set by adding @followed by the count number after

the breakpoint command, but before the command list. For example, the
following command sets a breakpoint with a count of four:

b @4

In all of the two letter breakpoint commands, if the second character is
uppercase (for exampla) instead obu), then the breakpoint is temporary
instead of permanent.

All of the commands containing an argume(ehjds}] may take an optional list
of commands that are executed when the breakpoint is hit. See “Command list”
on page 69.

Most of the breakpoint commands take an optional address expression which
specifies the location of the breakpoint. If an address is not specified in a

Green Hills Software, Inc. 71

4. Debugger commands

command it takes, the current line is used. See “Address expressions” on page
66.

Breakpoint commands

B on page 80

b on page 81

bA on page 81

ba on page 82

be on page 82

bg on page 83

bl on page 83

bi on page 83

bif on page 83

bpload on page 84

bpsave on page 84

bpview on page 84

bR on page 84

br on page 84

bt on page 86

bU on page 86

bu on page 86

bX on page 87

bx on page 87

Continue commands

Thecontinue commands(, c, cb, cu, cU) all set acontinue count. The

continue count is given by a numbeawum following an@ sign. This count
causes the debugger to stop atrttveth breakpoint that stops execution. Itis
important to note that only breakpoints which stop program execution are
counted. A conditional breakpoint whose condition is false or a breakpoint
whose commands resume program execution are not counted. The continue
count may be viewed with tteONTINUECOUNT system variable. See
“CONTINUECOUNT” on page 60.

72

Debugging with MULTI 2000

Command groups

These commands also take an optional line number. If given, atemporary
breakpoint is set at that line number. The breakpoint is removed as soon asit is
reached.

History commands

The debugger has a simple history mechanism that remembers the last 60

commands. This can re-examine long expressions. The history syntax has

changed from 1.8.9 MULTI. Where 1.8.9 used the ‘# character for history, 2.0
MULT]I uses the ‘' character, similar to most UNIX shells. Some history
examples:

History commands

Expression Meaning

h Shows the existing history.

1 Re-executes the last command.

! number Re-executes command number number.

1 string Re-executes the command starting with the given string.

~ Smart repeat of last command. This increments the last
command, if appropriate, before repeating it. For example,
if the last command displays a memory location, this
command increments the address displayed to show the
next location.

The following commands are repeated with a ~:

Any of the single step commands (s, si, S, Si).

Any command to display source lines.

The search commands / and ?.

The * command.

Any command to display memory.

= This command was used in 1.8.9 MULTI but has been
removed. Its behavior (smart repeating a command 10
times) can be accomplished by making an alias that uses ~
10 times in a row. See alias on page 78.

% Commands involving % were used in non-GUI mode in
1.8.9 MULTI. These are no longer supported.

Record and playback commands

The debugger contains a record and playback feature to recreate program states
for bugs requiring long setups. The files created are ASCII files, and can be
edited by hand later. Only debugger commands are recorded. However, if a GUI

Green Hills Software, Inc. 73

4. Debugger commands

action creates a debugger command, that command is recorded. Thisincludes
pressing any button in the debugger window or clicking in the source pane. The
target window commands and output cannot be recorded.

The record and playback commands are;

Record and playback commands

Expression Meaning

> file Sets command recordfile to the given file and turns on
command recording.

>(t|f|c) Turns command recording on (t), off (f), or closes command
recording file (c). If no argument is given, give current status.

>> file Sets screen output recordfile to the given file and turns on
screen output recording (recording commands and their
output).

>>(t|f|c) Turns screen output recording on (t), off (f), or closes screen
output recording file (c). If no argument exists, give current
status.

<file Starts command playback from the given file. The filename will

be searched for using the default search path. See “default
search path” on page 70.

<<file Starts command playback from the given file, using the single
stepping feature of playback. This command is not supported
in GUI mode. The filename will be searched for using the
default search path. See “default search path” on page 70.

Scripts may include other scripts, to a maximum script depth of 25.

Do not place any line beginning with > or < in the current record file. You can
override this by simply beginning the line with a space. Comments are
supported in command playback files, asin all debugger input, through the
standard C style comments (/* ... */). In addition, acomment is aways
terminated at the end of aline. Hence a/* (forward slash+asterisk) with no
closing match comments out the remainder of the line, but does not carry over
to the next line asin standard C. You may not play back from afile currently
open for recording or vice versa, as the result is undefined.

See also the -p and -R command line optionsto MULTI, in the Building and
Editing with MULTI 2000 manual.

Note: if you use the command-file” when the command recordfile is already
set, the old recordfile will be closed and all subsequent commands will be
recorded tdile. The command=> file” works similarly when the screen output
recordfile is already set.

74

Debugging with MULTI 2000

Debugger commands

Search path for scripts

The source file search path (as specified by the sour ce command) will be used
when searching for scripts for playback (the < command). See sour ce on page
136.

Search commands
See fsear ch on page 105, bsear ch on page 86, and dialogsear ch on page 100.
Searches wrap around the beginning and end of files and obey the current case

sensitivity setting. See chgcase on page 91. If astring is not given, the previous
oneis used.

Command Example Meaning

/[string] lextern Searches forward through the current file, from the line
after the current line, for string. In the example, the
cursor will jump forward to the word extern. You can
then find more occurrences of this word by repeatedly
entering the forward slash (/). In GUI mode, the fsearch
command works similarly to /, but also highlights String
in the source pane.

?[string] ?extern Searches backwards for string from the line before the
current line. In the example, the cursor will jump
backward to the word “extern.” You can then find more
occurrences of this word, going backwards, by
repeatedly entering the question mark (?). In GUI mode,
the bsearch command acts similarly to ?, but also
highlights string in the source pane.

Stack trace commands

The debugger provides the calls command and the callsview command for
listing a stack trace. In GUI mode, callsview opens up a new window with the
call stack trace. See calls on page 89, callsview on page 89, and Chapter 10,
“Call stack window”.

Debugger commands

I command
This command is obsolete. It is the exclamation point (!).
Used with the history commands. In 1.8.9 MULTI, this command was used to

invoke a shell. That use has been replaced bghiilecommand. Seghell on
page 134 and “History commands” on page 73.

Green Hills Software, Inc. 75

4. Debugger commands

+ command
Thiscommand isthe plussign (+).

Format: + [num]

Moves your current viewing position in the source numlines (one(1) if numis
not specified) towards the end of the file.

— command
This command is the minus sign (-).

Format:— [num]

Moves your current viewing position in the source numlines (one(1) if numis
not specified) towards the beginning of thefile.

/ command
This command is the forward slash (/).

Format: /[string]

Forward search for string (or the last string used if string is not specified). See
“Search commands” on page 75.

? command
This command is the questsion mark (?).

Format:? [string]

Backwards search for string (or the last string useirig is not specified).
See “Search commands” on page 75.

-> command
Format:-> menu_name

Opens the menmenu_name. Themenu command can be used to list all of the
available menu names, as well as to define new menusnéeeon page 119.
For example:

-> FileMenu

opens the File menu.

A command
Format: " pum] [format]

76 Debugging with MULTI 2000

Debugger commands

Back up num preceding memory location (based on size of last item displayed).

If numisnot specified, one (1) isused. If format is specified, that format is

used, otherwise the previous format is used. Note that backing up for

displaying instructions doesn’t work very well if the code has variable length
instructions.

For example, given an integer array containing square numbers, called
squar es, then the following two commands:

print squares[6]; ™ 3
might give the following output:

*0x21558: 36

*0x2114c: 9 16 25
A
Format:A [a| 9]
Sets the overall state of the assertions mecharlisaiis specified, activates it.
If sis specified, suspends it (note that suspended assertions continue to exist,
but are not “in use”). If nothing is specified, then toggles the state.
a

Format:a{ cmds}
(Also Format:a num modifier) Seea on page 78.
Creates a new assertion with the given commandniids.

Assertions are lists of commands that are executed before every statement. This
means that if there is even one active assertion, the program will be
automatically single-stepped. This has a significant impact on the debugger’s
speed of execution.

This is an example of an assertion:

a { if { (foo!=$foo) { $foo=foo;print /d foo; if (foo>9) {x} }}}

This command will create an assertion to report the changing value of some
global,f 0o, and stop if it ever exceeds some value. It uses a debugger special
variable to keep track of the old valuefafo.

Another example:

a { if (foo > (bar-9)*10) {A;x 1;c} else {bar —= 10} }

Green Hills Software, Inc. 77

4. Debugger commands

about

alias

This assertion checksthe condition. If itisfalse, bar isdecremented by 10. If it
istrue, assertions are suspended, assertion mode is exited, and the program
continues at normal speed. Without the number 1 after the x command, the ¢
command would not have been reached. See x on page 143.

There are some restrictions on using this command. Using local variablesis not
recommended since they will most likely go out of scope when a subroutineis
entered and can cause unspecified results. Assertions are also not recommended
when using shared libraries for similar reasons.

See also watchpoint on page 141.

Format: a num modifier
(Also Format: a{ cmds}) See a on page 77.

Modifies assertion numbered num. modifier can be one of:

Modifier Meaning

a Activates it.

d Deletes it.

S Suspends it. Suspended assertions continue to exist, but are not “in use”.

To list the current assertions, use the | command (lowercase L):

| a

See also info on page 111 and | on page 113 (lowercase L).

Format: about

In GUI mode, opens the About dialog box with information such as the current
version of MULTI. In non-GUI mode, echoes the same information to the
screen.

Format: alias|[stringl [string2]]

Translates stringl, when encountered in a command, into string2. stringl only
tranglates as a unit and not a part of alarger word. Substitution is only
performed once, so references to other aliases are ignored.

78

Debugging with MULTI 2000

Debugger commands

There are three forms of the alias command:

Modifier Meaning

alias Lists all aliases.

alias stringl Lists alias, if any, for string.

alias stringl string2 ~ Value of string2 becomes the alias stringl.

For example, entering:

alias sh showdef

allowsyou to type sh instead of showdef when using the showdef command.

apply
Note: Thisis a software-update command and may not be available on most
systems.
Format: apply dot_Q archive name|[source search_path]

Downloads the software update module and updates the debug information
symbol table with the information for the update. The update module will be
searched for using the default search path. When the debugger searches for
source files that contributed to the building of the update module, the
source_search_path, if specified, will be checked before the default search path.
See “default search path” on page 70.

dot_Q_archive_nameis an update archive file ending with.8" suffix.
source_search _path is a directory name. For example:

apply foo.Q /newsrc/foo/dirl

assem
Format:assem [on | off |tog]

Turns on/off the interlaced assembly displagsem on interlaces the
appropriate assembly instructions between the lines of source assdm off
shows just the source codassem or assem tog switches to the other display
mode.

assert
Format:assert logic_expression

Green Hills Software, Inc. 79

4. Debugger commands

attach

This command is a useful shortcut for the a command when a simple assertion
isdesired. (See a on page 77) An assertion is set that will stop the program if
logic_expression evaluates to true, and print out that the program was stopped
by logic_expression. For example:

assert foo >=0

isequivalent to:

a if (foo >= 0) {“Stopped by assertion: foo >= 0\n"; halt}

Format: attach pid [pr=num]

Thiscommand isfor attaching to a process running on an RTOS. This command
can also be used for native UNIX debugging (via unixserv). Note that unless
you are root, you can only debug your own native processes.

pid is the operating system’s process number of the process you attach to. If you
specify the optiongbr=num, then the process is placed in the debugger’s
internal process slot numbeum. If no process slot is specified, the process is
placed in the first empty slot.

Thedetach command detaches from a process.d&tach on page 99.

Lists all breakpoints. The output format is:

Arguments [address_expression | breakpoint_list]
address expression See "Address expressions” on page 66.

breakpoint_list See “Breakpoint list and ranges” on page 68.

ID bp label [location: |address |count: [flags commands

80

Debugging with MULTI 2000

Debugger commands

bA

For example;

MULTI> b main#5;

MULTI> b %my_bp_name main#6 { print "Here | am"; };
MULTI> b main #7 { print "main#7" };

MULTI> tog main#5

MULTI> B

0 main#5: 0x10204 count: 1 (inactive)

1 my_bp_name main#6: 0x01220 count: 1 <{ print "Here | am"; }>
2 main#8: 0x1022c count: 1 <{ print "main#7" }>

MULTI> B %my_bp_name:%2
1 my_pb_name main#6: 0x10220 count: 1 <{ print "Here | am"; }>

2 main#8: 0x1022c count: 1 <{ print "main#7" }>

See also | on page 113 with the b option.

Arguments [%bp_label] [@bp_count] [address_expression] [{cmds}]
%bp_label See “Breakpoint label” on page 68.
@bp_count See “@bp_count” on page 66.

address_expression See “Address expressions” on page 66.

{cmds} See “Command list” on page 69.

Sets a breakpoint at the specified location.

If aprocedure nameis specified, for example, b Fly, the breakpoint is not set at

the first machine instruction of the procedure, but rather at the first machine
instruction after the procedure’s stack set up code if any. This ensures that the
arguments and local variables of a procedure are read correctly when you stop
in that procedure. Use tlie command if you want to stop at the first machine

instruction. Sedi on page 83.

b is the same as thw command.

Seeba on page 82.

Green Hills Software, Inc.

81

4. Debugger commands

ba
Arguments [@bp_count] wild_card_proc [{ cmds}]
@bp_count See “@bp_count” on page 66.
wild_card_proc wild-card procedure names
{cmds} See “Command list” on page 69.

Sets a (temporary for bA, permanent for ba) breakpoint with commands. In
GUI mode, this command opens a dialog box listing all procedures that match
the wild card pattern wild_card_proc. Either pick some, al, or none of the
procedures listed.

backhistory

Gives the previous command in the command pane history list or the target
window history list. This command isintended to be bound to a key. (See
keybind on page 112.) By default, the debugger binds the UpArrow key to this
command.

backout
Note: Thisis a software-update command and may not be available on most
systems.
Format: backout dot_Q_archive name

This unloads the previously applied software update module and removes the
corresponding debug information from the debug information symbol table.
dot_Q_archive_name s an archive file ending with aQ” suffix. For example:

backout foo0.Q
The filename will be searched for using the default search path. See “default

search path” on page 70.

bat
This command is deprecated, usedheommand instead. See on page 132.

be
Format:be exception_number { cmds}
Adds a new breakpoint for the hardware excepsaeption_number. When
this exception is encountered, the commandiigts will be executed like

those for any other breakpoint. See alson page 96,0n page 113 (lowercase
L) with thee option, andog on page 138.

82 Debugging with MULTI 2000

Debugger commands

bg
Arguments [%bp_label] [@bp_count] [address _expression] [{ cmds}]
%bp_label See “Breakpoint label” on page 68.
@bp_count See “@bp_count” on page 66.
address expression See "Address expressions” on page 66.
{cmds} See “Command list” on page 69.
Setsaglobal breakpoint at the specified location.

bl
Thisislowercase b and uppercase i. This command has the same format and
arguments as the bi command. See bi on page 83.

bi
The bi and bl commands have the same formats and arguments:
Arguments [%6bp_label] [@bp_count] [address _expression] [{ cmds}]
%bp_label See “Breakpoint label” on page 68.
@bp_count See “@bp_count” on page 66.
address expression See “Address expressions” on page 66.
{cmds} See “Command list” on page 69.
Sets a (temporary for bl, permanent for bi) breakpoint on an instruction at the
location specified.
If alocation is not specified, then the address of the last item looked at with the
“/i” or “/1” display mode is used. For exampbeintf+0x12;bi sets a breakpoint
12 bytes into procedumg intf.
If a procedure name is specified, then the breakpoint is set on the first address of
the procedure.

bif
Arguments [%bp_label] [@bp_count] address_expression condition
%bp_label See “Breakpoint label” on page 68.
@bp_count See “@bp_count” on page 66.

address expression See “Address expressions” on page 66.

condition expression in the current language

Set a conditional breakpoint that will stoedndition evaluates to true.

Green Hills Software, Inc. 83

4. Debugger commands

bpload

bpsave

bpview

bR

br

Format: bpload filename

Loads breakpoints from the given file. You can also use the “load” button in the
Breakpoints window to achieve the same results. Sedptswe on page 84.

Format:bpsave filename [breakpoint_list]

Saves breakpoints to the given file. The breakpoints are generally preserved in
the form file#proc#line, to provide maximal portability between debug sessions.
You can also use the “save” button in the Breakpoints window to achieve the
same results.

For example, after a debug session, you issue the following command:
bpsave brkpts.| st

This saves the breakpoints to the file brkpts.Ist.
Later, you restart the debugger, and you issue the following command:

bpl oad brkpts. | st

This restores the breakpoints from the previous debug session. Sbplatgb
on page 84.

Arguments none
Button equivalent
Menu equivalent View > Breakpoints...

Opens the breakpoints windaomhich allows you to add, change, or delete
breakpoints. This window lists all software breakpoints, hardware breakpoints,
and signals. See Chapter 11, “Breakpoints window”.

Seebr on page 84.

br is identical to thdd commandbR is the same as thiecommand except that
it sets a temporary breakpoint. Seen page 81.

Debugging with MULTI 2000

Debugger commands

break

Format: break

Breaks out of loops created with the debugger while command. See while on
page 142.. For example:

while ($i<20) { $j+=$i; if ($j>50) {$j=50; break;}; $i++; }

In this case, if ($j>50) istrue, then the while loop will terminate regardless of

the vaue of ($i).

See also error on page 103.

breakpoints
This command is deprecated. See bpview on page 84.

browse

Format: browse objects

Allows you to browse through lists of objects. Below are the argumentsthat this
command accepts. If no arguments are given then proc is assumed.

browse command’s arguments

Argument

Meaning

files | filelist

A list of all the files in the program.

procs | procedures

A list of all the procedures in the program.

global | globals A list of all the global variables in the program.
classlist A list of all the classes in the program.
classes Opens a browser for classes.

calls | scalls [proc]

Opens a browser for static calls, optionally centered on the
procedure Proc, otherwise centered on the current procedure.

dcalls [proc]

Opens a browser for dynamic calls, optionally centered on the
procedure Proc, otherwise centered on the current procedure.

fealls [filg] The Static File browser, optionally centered on the file filg,
otherwise centered on the current file.

filename A list of all the procedures in the file filename.

classname A list of the data members and functions of class classname.

profile This use is deprecated. Use the profile command instead. See

profile on page 125.

For details on each of the browsers, see Chapter 8, “Browse window”.

Green Hills Software, Inc.

85

4. Debugger commands

bsearch
Format: bsearch string
Searches backward in the source pane for the previous occurrence of string and
highlightsit. If string is omitted, then the string used in the last fsearch,
bsearch, or incremental search isused. If it reaches the beginning of thefile, it
beeps and then resumes searching from the end. Thisisonly availablein GUI
mode. To search backward in non-GUI mode, use the ? command. See ?
command on page 76. See also dialogsearch on page 100. See “Search
commands” on page 75.
To search incrementally within the Target Window, press Chok+& forward
search, and use Ctrl+b for a backward search.

bt
Arguments [@bp_count] proc_name [{cmds}]
@bp_count See “@bp_count” on page 66.
proc_name procedure name
{cmds} See “Command list” on page 69.
Displays a message every time the specified procedure enters or exits, and
continues automatically. The message says whether the procedure exits or
enters. If it's an exit, the message gives the return value.

bU
Seebu on page 86.

bu
Arguments [@bp_count] [stacklevel] [{cmds}]
@bp_count See “@bp_count” on page 66.
stacklevel call stack trace level
{cmds} See “Command list” on page 69.

Sets a (temporary fdaU, permanent fobu) up-level breakpoint. The

breakpoint is set immediately after the return to the level specified by
stacklevel. (Note that you specify a numeric value $tacklevel, without any
underscore. For example) See “Stack trace commands” on page 75. If
stacklevel is not specified, then the breakpoint is set one level up from the
current procedure. For example, a common sequence after accidentally single
stepping into a procedure is

bU Enter c

86 Debugging with MULTI 2000

Debugger commands

bX

bx

build

builder

to set atemporary, up-level break and continue. The command cU accomplishes
the same idea.

See bx on page 87.

Arguments [%bp_label] [@bp_count] [address_expression] [{cmds}]
%bp_label See “Breakpoint label” on page 68.

@bp_count See “@bp_count” on page 66.

address_expression See “Address expressions” on page 66.

{cmds} See “Command list” on page 69.

If no arguments are specified, sets a (temporary for bX, permanent for bx)
breakpoint at the exit point of the current function. Thisisat apoint which ALL
returns of any kind will go through.

If acall stack trace level is specified, sets a breakpoint at the exit point of the

function at specified stack level. See “Stack trace commands” on page 75. If a
procedure name is specified, sets a breakpoint at the exit point of the procedure.
Note that both a stack level and a procedure are address expressions. See
“Address expressions” on page 66.

If cmds is specified, then the commands will be executed like those for any
other breakpoint.

For example:

bx foo
bx “foo.c"#a_routine

The first command sets a breakpoint at the exit point of procedure foo. The
second command sets a breakpoint at the exit point of the procedure a_routine,
which islocated in file foo.c.

Format: build [project_name]

Invokesthe MULTI build command to build project_name. If no project_name
is specified, the project that the current programisin is used.

Format: builder

Green Hills Software, Inc. 87

4. Debugger commands

Opensthe MULTI Builder. See the chapter on the Builder in the Building and
Editing with MULTI 2000 manual. See also createcontrol on page 93.

button
This command is deprecated. Use debugbutton. See debugbutton on page 97.
1.8.9 MULT]I users upgrading to 2.0 should note that the syntax for the
debugbutton command is different than it was for the button command.

C
Arguments [%bp_count] [ling]
%bp_count See “@bp_count” on page 66.
line line number
Button equivalent 3
Thisisthe capital C.
Continues a suspended program after a breakpoint or an interrupt. If the
program stops because of a signal, this command continues without the signal.
If lineis specified, set atemporary breakpoint on line line. See also cu on page
94,

Cc
Arguments [%bp_count] [ling]
%bp_count See “@bp_count” on page 66.
line line number
Continues a suspended program after a breakpoint or an interrupt. If the
program stops because of a signal, this command continues with or without the
signal based on the current signal handling specified for that signal by the
zignal command. See zignal on page 144. If lineis specified, set atemporary
breakpoint on line line. See also cu on page 94.

ca
Format: ca
Resumes a stopped actor. Actors are not supported by every target. Consult your
target'sDevelopment Guide for details specific to your target.

cag
Format: cag

88 Debugging with MULTI 2000

Debugger commands

Resumes a stopped actor set. Actor sets are not supported by every target.
Consult your Target Development Guide for details specific to your target.

calls
Arguments [maxdepth] [par | nopar] [pos | nopos] [local | nolocal]
%hame Name for the window
maxdepth The maximum visible depth of the call stack. If this is not
specified, the previously defined value is used. The default value
is 20, and the maximum value is 500.
par | nopar Show parameters passed to functions.
pos | nopos Show source positions of functions.
local | nolocal Show local variables used in functions.
Button equivalent)
Lists the stack trace where maxdepth specifies the maximum depth of the stack
you want to display. maxdepth has a default value of 20 and a maximum value
of 500. Other options let you to choose whether or not to display the
corresponding procedure’s parametgrar), source positionpos), or local
variables [ocal). The default choices are display parameter, display source
position, and do not display local variablpar(pos nolocal).
In GUI-mode, this information can be displayed in its own window with the
callsview command. Seeallsview on page 89.
callsview

Arguments [%name] [maxdepth] [par | nopar] [pos | nopos] [win | nowin]
[local | nolocal]

%hame Name for the window

maxdepth The maximum visible depth of the call stack. If this is not
specified, the previously defined value is used. The default value
is 20, and the maximum value is 500.

par | nopar Show parameters passed to functions.

pos | nopos Show source positions of functions.

local | nolocal Show local variables used in functions (only applicable with
nowin).

win | nowin Where to display the callstack. See description below.

Button equivalent 8)

This command lists all functions on the call stack. In GUI-mode, unt@gs

is specified, a window displaying the current stack trace is created (the “call
stack window”). At the beginning of the user’s debug session, this command
defaults tgpar poswin. However, subsequent calls to this command default to

Green Hills Software, Inc.

89

4. Debugger commands

the previous configuration of the call stack window. Thus, if you change a
setting for the call stack window viathe GUI, it will be remembered the next
time you open the call stack window. See Chapter 10, “Call stack window".

Cb
This is the capital ‘C’ with the lowercase ‘b’. Seeon page 90.

cb
Arguments [%bp_count] [ling]
%bp_count See “@bp_count” on page 66.
line line number
Continues and blocks the command line input. Signalsbf@ndCb are
handled as they are forandC, respectively. Seeon page 88. Use this
command in a playback file. No further processing of the playback file occurs
while the program is running. The debugger does not accept new commands
until it reaches a breakpoint or the program exits. You can interrupt this
command with the Esc key.
This command is helpful in non-GUI mode when a program needs to accept
input from routines likeyets() andscanf().

cf
Format:cf address _expression
Continues a halted process after changing the program counter to the value of
the specifiecaddress_expression. See “Address expressions” on page 66. The
following example installs a breakpoint at labelr of procedurd oo whose
action is to continue from the return point of the procedure, effectively skipping
the rest of the function and returning immediately. The address must be within
the current active procedure.

b foo##bar { cf ($ret()) }
As another example, the following command installs a breakpoint on line 12 of
procedure foo whose action is to continue from line 14 of procedure foo. This
will effectively skip lines 12 and 13 of procedure foo.
b foo#12 { cf foo#14; }
90 Debugging with MULTI 2000

Debugger commands

cfb
Format: cfb address expression

Continues a halted process after changing the program counter to the value of

the specified address_expression. See “Address expressions” on page 66. The
address must be within the current active procedure. This command blocks any
command inputs. You can interrupt this command with the Esc key.

chgcase
Format:chgcase [0 | 1]
Set the case sensitivity of text searclohgcase O sets searches to case

sensitive chgcase 1 sets searches to case insensitiigcase toggles the
current case sensitivity.

clearconfig
Format:clear config

Clears the user’s default configuration for MULTI (not only the debugger but
the entire development environment). See the Configuration Chapter for more
information.

comeback
Format: comeback

Used to bring back all of MULTI's windows after tigpaway command has
been used. Segaway on page 106comeback andgoaway are only useful
when MULTI is being controlled externally via something like a command
script.

compare
Format:compare [operation] srcl src2 length [size]

Compares two blocks of memory beginningrall andsrc2 and continuing for
length bytes. The compare operation is specifieajsration and the size of

Green Hills Software, Inc. 91

4. Debugger commands

the value to compare is specified by size. size is the number of bytesand is
either 1, 2, or 4. The default is4 if sizeisnot specified. operation may be:

operation Meaning

<= Less than or equal to

< Less than

>= Greater than or equal to
> Greater than

== Equal to

= Not equal to

If operation is not specified, then == (equality) is used.

If the comparison succeeds, the addresses are printed and the values are
compared.

The following example compares two overlapping arrays of six 4-byte integers.
Thefirst array startsat 0x1000 and the second at 0x1008. The compare
command displays only the results of comparisons that succeed:

compare >= 0x10000 0x10008 6 4

0x10000, 0x10008 : 2091264888, 2086935416
0x10004, 0x1000c : 2089100152, 945815572
0x10008, 0x10010 : 2086935416, 1279398274
0x10014, 0x1001c : 1207968893, 1099038740

completeselection

Format: completeselection

If the current selection isin the source pane, then this command extends the
selection so that it selects an entire word. For example, if the selection starts or
ends in the middle of aword, the entire word is selected. Also, it selects an
entire expression in parentheses. For instance, if the selection includes an
unmatched parenthesis, square bracket, or curly brace, then the selection
extends to the matching one.

configoptions

configure

This command is only supported in GUI mode. Opens the Options dial og box.

Format: configure config_item[=|:| Jvalue

92

Debugging with MULTI 2000

Debugger commands

Format: configure ?

This command changes the value of aMULTI configuration option. configure

? displaysalist of al itemsyou can configure. The config_item can be

separated from value by either an equal sign (‘=’), a colon ('), or a space ().
For example, to change MULTI's tab size to 9, enter:

configure tabsize=9

See the chapter on Configuration in Bwelding and Editing with MULTI 2000
manual.

configurefile

connect

copy

configurefilefile

Configuration options are read and set out fronfitkee This file must be in a
special format.

See als@aveconfigtofile on page 132.

Same as theemote command. Seeemote on page 128.

Format:copy src dest length [size] [direction]

Copies a block of memory téngth units of sizesize from src to dest. Thus, the
total size of memory copied ikefigth x size). If a size is not specified, it
defaults to the size of an integer. The direction of the copy is specified by
direction with either al (one) orforw for forward copying, or al (negative
one) orbackw for reverse copying. If no size is given, tHenw or backw
should be used for the direction to avoid confusion.

Reverse copying is the same as forward copying except the starting location of

the copy issrc+(length x size) and is decremented downdw. The destination
of the copy is also started ddst+(length x size) and decremented down dest.

createcontrol

Format:createcontrol

Same as thbuilder command. Sebuilder on page 87.

Green Hills Software, Inc. 93

4. Debugger commands

Cu
This is uppercase ‘C’ and uppercase ‘U’. $e®n page 94.

Cu
This is uppercase ‘C’ and lowercase ‘u’. $aeon page 94.

cuU
This is lowercase ‘c’ and uppercase ‘U’. $eeon page 94.

cu

Arguments [%bp_count] [line]
%bp_count See “@bp_count” on page 66.
line line number

This is all lowercase ‘cu’. If either continue commaak C is immediately
followed by either au’ or ‘U’, it sets an up-level breakpoint. The andCu
commands set a permanent breakpoint. dhandCU commands set a
temporary breakpoint. The breakpoint is set at the address where the current
procedure returns. Theel andcU commands handle signals like the

command (see on page 88); th€u andCU commands handle signals like the
C command (se€ on page 88).

For example, use this command if you have accidentally single-stepped into a
procedure you meant to step over, or you want execution to proceed to another
place further up the stack.

cvconfig
Format:cvconfig [% name] key [key [...]]

Configures the call stack track window. See Chapter 10, “Call stack window”.
The % name option specifies the call stack view window to configure. If the
name is omitted, the command configures the call stack view window that was
last created or configured. The cvconfig command is mainly useful for scripts
and most of the functions it provides are accessible directly from the memory
view window.

key can be one of two forms: stand-alone keys that don’'t have an assignment,
and assignment keys with an assignment. Note that the keys and values are case
insensitive.

94 Debugging with MULTI 2000

Debugger commands

The following are the stand-alone keys:

Stand-alone keys

Key Meaning

stop Freezes the call stack window.

refresh Unfreezes the call stack window.

help Opens online help for the call stack window.

par Shows parameters passed to the functions.

nopar Hides parameters passed to the functions.

pos Shows source position of functions.

nopos Hides source position of functions.

edit Opens an editor on the function currently selected in the window.

local Opens a data explorer with all of the locals of the function
currently selected in the window.

print Prints the call stack window.

quit Closes the call stack window.

The following are the assignment keys and their valid values:

Key values

Key

Meaning

name=newname

Renames the window as newname.

mdepth=depth

Sets the maximum depth of the call stack window to depth.

Selects the stack level numM within the call stack window.

‘object’ is a required argument and can be onk afg, ore.

Resumes a task, actor, or actor grdugsumes a task,resumes an actag,
resumes an actor group, amtesumes every actor. Actors are not supported by
every target. Consult your targePgvel opment Guide for details specific to

select=num
CX

Format: cx object

your target.
D

Format:D

Deletes all breakpoints.
d *

Format: d *

Green Hills Software, Inc.

95

4. Debugger commands

dbnew

dbprint

de

Opens adialog box listing all current breakpoints and deleting some, all, or
none of them.

Format: d [address_expression | breakpoint_list]

breakpoint_list breakpoint list. See “Breakpoint list and ranges” on page 68. See
“Address expressions” on page 66.

Note: The syntax for the command has changed from version 1.8.9 of
MULTI. It now accepts a command syntax very similar to that obthe
command. In particulad my_number will no longer delete the breakpoint with
id=my_number, but will delete the breakpoint on limey_number.

The d command deletes the breakpoiradaress expression or the list of
breakpoints specified ibreakpoint_list. If no arguments are given, the

breakpoint at the current line is removed. This command removes breakpoints
and all of their associated attributes; if you simply wish to temporarily disable a
breakpoint, see th®g command. Setg on page 138.

Format:dbnew [c | n]

Debug a different program. This command will bring up a file chooser to find
the new program. I is specified, the program is loaded into the current
debugger, replacing what is currently being debugged.isispecified (and by
default), the program is loaded in a new debugger. See aldelthg

command. Sedebug on page 97.

Format:dbprint [w | f]

Print the source currently being viewed in the debuggdrisi§pecified, print
the entire source file. i is specified (and by default), print only the source
that is presently visible in the debugger window.

Format:de exception_number

Removes the command associated with the specified exception. The debugger
associates “action clauses” with any general target exceptions.

See alsdoe on page 82 antbg on page 138..

96

Debugging with MULTI 2000

Debugger commands

debug

Format: debug [program_name] [core file] [pr=num]

Replaces one of the debugger’s existing internal program slots, givemby

with a new program to debug given fmpgram_name. If no program slot is

given, the current slot is used. If no new program is given, the current program’s
name is used. The program replaces what is currently in the debugger window.
The program to be replaced must halt first. All monitors and monitor windows
in GUI mode are deleted, and any child programs from that window which are
currently debugging are also killed.

If core fileis specified, then the program shows where it died. Otherwise, the
main routine is shown.

The filenames will be searched for using the default search path. See “default
search path” on page 70.

debugbutton

Format:debugbutton [num] [name] [[c=]command] [[i=]iconname]
[[h=]helpstring] [[t=]tooltip]

This command adds a new icon button to the debugger toolbar.

command, iconname, helpstring, andtooltip are all either single words, or
quoted strings. Quoted string are of the form:

“This is a quoted string.”

There are several forms of the command:

Form Meaning

debugbutton By itself, the command lists all the defined buttons. Note
that the quit button and the spacer before it are never
listed. Those buttons are special and can not be modified

or deleted.
debugbutton 0 Deletes all buttons (except the quit button and its spacer).
debugbutton numM Deletes the button numbered num.
debugbutton num name]...] Replaces the button numbered num
debugbutton name Deletes the button named name
debugbutton name...] If a button named nName exists, the button is replaced.

Otherwise a new button named nameis added to the end
of the debugger toolbar.

command is the command executed when the button is pressed. You may use
semicolons in the command to execute multiple commands. For example:
debugbutton printxy c="print x;print y".

Green Hills Software, Inc. 97

4. Debugger commands

iconname is the name of the icon associated with the button. If not specified,
then the first letter of the command name will be used as the icon for the button.

iconname may either be the name of one of MULTI’s built-in icons (see below
for how to obtain a list of these names), or it may be the filename of a bitmap
you have created yourself. If the filename is not an absolute filename, it is
assumed to be relative to the directory where MULTI is installed.

If you create your own bitmap file, it must end ilbmp extension and must be

in the uncompressed 16-color Windows Bitmap format. Other color depths are
not supported, and compressed bitmaps are not supported. An easy way to
create such bitmaps is to use the Paint accessory under Microsoft Windows, and
make sure you choose “16 Color Bitmap” in the “Save as type” drop-down list
box of the “Save As” dialog.

The built-in icons in MULTI are 20 pixels wide by 20 pixels tall, so your
buttons will look best if you also use this size for your custom bitmaps.

By default, the color light gray in your custom icons will become transparent.
You can specify additional color translations for your custom icon by appending
a string of the form “oldcolorl=newcolorl&oldcolor2=newcolor2” with a
guestion mark to the end of your bitmap filename. For example:

debugbutton Hello c="echo hello”
i="/home/user/hello.bmp?black=fg&dkgray=shadow&white=highlight” h="Say
hello”
You can use the following values for oldcolor and newcolor:
Oldcolor (R,G,B values) Possible values for newcolor
white (255,255,255) white (default)
highlight
ltgray (192,192,192) ltgray
transparent (default)
dkgray (128,128,128) dkgray (default)
shadow
black (0,0,0) black (default)
fg

To access the list of MULTI’s built-in icon names along with what they look
like, first open the Options dialog box by doing one of the following:

« Choose Config > Options...

« In the command pane, enteonfigoptions

98

Debugging with MULTI 2000

Debugger commands

define

detach

Then choose the Debugger tab, and click the button “Configure Debugger
Buttons...”.

helpstring is the help text that appears at the botton of the window when the
mouse moves over the button.

tooltip is the tooltip text that appears when you move your mouse over the
button and wait. If you do not specify a tooltip, the name of the button will be
used.

Format:define name([arguments]) {body}
Creates a macro inside the debugger.

name is the name of the macro followed by a set of arguments to pass to the
macro.

Thebody of the macro is a command list which may conifistatements and
while loops. Macros also return a value by usingrétarn command in the
body. (Seeaf on page 110yhile on page 142,eturn on page 130, and
“Command list” on page 69.)

The only local variables created in the macro are the given arguments. All other
variables refer to either a variable in your program or to debugger special
variables. See “Special variables” on page 51. The debugger searches the list of
arguments before the registers, special variables, or program variables. As a
result, if an argument in a macro has the same name as a register, you cannot
examine that register from within that macro.

A trace of the macro call stack is produced withrtteer otrace command. See
macrotrace on page 115. If an error occurs inside of a macro, a trace back is
printed, and all macros will clear off the stack.

For example, if you define the following macro:

define fly(batl, bat2) {return(batl + bat2)}
then enter:

fly(3,6)
The debugger displays:

9

Format:detach [pr=num]

Green Hills Software, Inc. 929

4. Debugger commands

dialog

The detach command quits the debugger. All breakpoints are removed before
detaching. The process number, num, refers to MULTI'’s internal process slot
number, not the operating system’s pid number for the process. If the process is
a child of the debugger, and not attached to in the first place, its parent process
id is set to one. If no process slot number is given, then the current process is
used. After a process is detached, the window associated with it disappears. See
alsoattach on page 80.

Format:dialog name

Opens a pre-defined dialog box nanmadhe. Dialog boxes are loaded into
MULT]I with the loaddialogfile command. Semaddialogfile on page 115. A
list of the currently defined dialog boxes are given by temmand (lowercase
‘L) with the D option:

I |

dialogsearch

dialogue

Format:dialogsear ch

Opens a dialog box which controls text or regular expression searching in the
debugger source pane. This dialog contains options for search direction and
case sensitivity. See alfgearch on page 105 anlolsearch on page 86. See
“Search commands” on page 75.

For a list of regular expressions, see “Search dialog box” iBuhding and
Editing with MULTI 2000 manual.

This command is deprecated. It has been replacelibing.

disconnect

dumpfile

Format:disconnect

Forces MULTI to close the current debug server connect. If no connection
exists, MULTI issues a warning.

Format: dumpfile

100

Debugging with MULTI 2000

Debugger commands

Dump thefile currently being viewed in the debugger into atext file. Thisis
useful when viewing interlaced source or pure assembly instructions. A file
chooser will appear to prompt for the name of the file to be dumped to.

E
Format: E [stack | +num | -num]
Shows or changes your current viewing location in the code. It has one of the
following forms:

Displaying variables

Expression Meaning

E Enters the procedure at the top of the stack. Equivalenttoe O_.

E stack Enters the procedure at stack number stack. Equivalent to the
e stack_ command.

E +num Increments location in stack by num, and enters that procedure. For
example, E +1 moves up one procedure on the stack. This is different
than E 1 which enters the procedure at stack number one.

E —-num Decrements location in stack by num, and enters that procedure. For
example, E —1 moves down one procedure on the stack. /

e

Format:e [address_expression]

If address expression is specified, it changes your current viewing location in
the code to that address expression. See “Address expressions” on page 66.

Green Hills Software, Inc. 101

4. Debugger commands

echo

edit

With no arguments, it prints your viewing location in the code. Here are several
examples of this command:

Displaying variables

Expression Meaning

e Shows current file, procedure, and line number. For example:
test.c:PrintLine:28

e (proc | file) Enters procedure proc or file file. If a wildcard pattern is used
while in GUI mode, then a dialog box appears allowing you to
choose from the matching procedures or files.

e stack_ Enters the procedure at call stack trace level number stack.
The stack number must be followed by an underscore “_". Use
the calls command to view the stack. See also “Stack trace
commands” on page 75.

e address_expression Enters the procedure at address specified by the address

expression.
e +offset Changes the viewing location to (current address + Offsat).
e —offset Changes the viewing location to (current address — Offset).
e numb Enters the procedure containing breakpoint number num. Use

the B command to view breakpoint numbers. (See B on page
80.) For example, e 1b enters the procedure containing
breakpoint number one.

Format: echo text

Echoes text to the command pane, taking out quotesif there are any. For
example, both of the following give the same resullt:

echo foo bar

echo “foo bar”

Thiscommand is preferable to print in cases where you don’'t want the text to
be evaluated. (See alpoint on page 123.)

Format:edit [address_expression]

Opens an Editor on the file and lineaokdress_expression. If no
address_expression is given, it uses the current viewing location in the code. An
exampleedit bar opens the Editor on the file containing the function bar, with

102

Debugging with MULTI 2000

Debugger commands

the cursor positioned at the beginning of the function bar. See “Address
expressions” on page 66.

editbutton

Format:editbutton [num] [name] [[c=]command] [[i=]iconname]
[[h=]helpstring] [[t=]tooltip]

This command adds a new icon button to the Editor toolbar. The syntax of this
command is identical to treeebugbutton command. (Sedebugbutton on
page 97.)

editfile
This command is deprecated. Use ¢tlg command. Seedit on page 102.

editview

Arguments editview [expr | proc | file]
expr an expression

proc procedure name

file file name

Either opens the MULT]I editor or a data explorer window, depending on the
arguments passed to it. You can bind this command to a mouse to create a
“smart” mouse click that either views or edits anything you click.

error

This command is deprecated. Instead, usditbak command to abort a while
loop, and theéeturn command to abort a macro. Seeak on page 85 and
return on page 130.

eval
Format:eval exp
exp is an expression in the current language.

This is similar to print, but does not echo the results. This should be used
instead of print when performing I/O accesses since printing the resufi of
may cause an extra read of the 1/0 address. For example,

eval (int *) Oxffffa0c0 = 0x123 ‘

Green Hills Software, Inc. 103

4. Debugger commands

examine

filedialog

If you are concerned about accessing I/0O memory, see also the system variable
_CACHE on page 61.

Format: examine [/format] exp

If expisaprocedure namethen thisis equivalent to e exp which will display the
named procedure in the source pane. If exp consists of <number>b then it will

cause MULTI to display that breakpoint. Otherwiseit is equivalent to print exp
which will evaluate the expression and print the result. See print on page 123. .

Format: f “ printf_style format”

Sets address printing format using printf style formatting specification. See any

C reference for more information on printf . If no argument exists, this defaults

to “%#Ix”, which prints the address in long hex. This is for viewing memory
addresses in decimal, octal, or some other format.

For example, entering:

‘ print a ‘

may by default give:

*0x21098: 5

You may get the address in octal instead by entering the following:

‘ f"0%0"; print a ‘

which will show:

*0410230: 5 ‘

All future addresses will also be in this format ufhts8 used again.

Format: filedialog [buttonlabel windowtitle]

This command opens a File Chooser and returns the name of the file that is
selected from the chooser. By default the button is labeled “Select” and the title

104

Debugging with MULTI 2000

Debugger commands

of the window is “Choose File”, but these may be changed withtttenl abel
andwindowtitle parameters.

filedialogue
This command is deprecated. $eedialog on page 104.

fill
Format:fill dest length [value] [size]

Performs raw memory initialization. Fills the block of memory beginning at
dest andlength units of sizesize long withvalue, or zero ifvalue is not
specified. This, the total size of memory filledlienfjth x size). size is the
number of bytes to placgluein, and is either 1, 2, or 4.dize is not specified,
the default is 4. Ifalue is larger tharsize, thenvalue is truncated.

You can interrupt this command with the Esc key.

find
Format:find src length value [size] [mask]

Searches memory startingsat for value of sizesize. sizemay be 1, 2, or 4
bytes, and defaults to the size of an integer. The search stopsangtarvalues
of the given size are checkedniésk is specified, then it is logicallxND’ed
with each memory location before comparing witue. Every match found is
listed on a separate line with the address of the match.

findleaks
Format:findleaks

Find memory leaks within a program that has been compiled with the proper
run-time error checking options. See “Finding memory leaks” on page 171 .

forwardhistory

Gives the next command in the command pane history list. This command is
intended to be bound to a key ($eybind on page 112). By default, MULTI
bounds the DownArrow key to this command.

fsearch
Format:fsearch string

Searches forward in the source pane for the next occurresténgf and
highlights it. Ifstring is omitted, then thetring used in the ladsearch,

Green Hills Software, Inc. 105

4. Debugger commands

bsearch, or incremental search isused. If it reaches the end of the file, it beeps

and then resumes searching from the beginning. This command is only

available in GUI mode. To search forward in non-GUI mode, use the

/ command (forward slash). See “Search commands” on page 75.. See also
dialogsearch on page 100.

To search incrementally within the Target Window, press Chok+& forward
search, and use Ctrl+b for a backward search.

g
Format:g line
This changes the program countetise becomes the next execution point.
You cannot set the next execution point to a line outside the current procedure
with this command.
getargs
Format:getar gs
Shows the current arguments that will be passed the next time the program runs.
Both getar gs andsetar gs are only applicable to the debugging of programs
which take arguments in the traditiomadi n(ar gc, ar gv) sense. The
setargs command sets the program arguments to be usedjeléreys
command prints the current program arguments. The following example shows
the use osetargs, getargs, andr:
MULTI> setargs abc def ghi
MULTI> getargs
abc def ghi
MULTI>
running 'a.out abc def ghi’
MULTI>
See alsaetargs on page 134.
goaway
Format: goaway
Used to hide all of MULTI's windows, including the debugger. These windows
can be brought back with tltemeback command. Seeomeback on page 91.
goaway andcomeback are only useful when MULTI is being controlled
externally via something like a command script.
106 Debugging with MULTI 2000

Debugger commands

grep
Format: grep [[-i] [-w] [-F] text]

This command searches all files edited and all files in MULT]I’s file list for the
string entered. The output from this command is put in a temporary window.
Double-clicking any of the lines in this window opens an Editor.

If text is specified, then that expression is used. Otherwise, the debugger will
prompt you for an expression. If theoption is specifiedgrep will search in a
case-insensitive way. If thev option is specifiedgrep will only find matches
which match as a whole word. If tHe option is specifiedyrep will treattext

as a fixed string to search for, rather than a regular expression.

This command works by running the GNjtep utility. For your convenience,

a copy of GNU grep is installed along with MULTI. However, GNU grep is not
part of MULTI and is not distributed under the same license as MULTI. For
more information about the GNU General Public License which GNU grep is
distributed under, refer to the file gnugrep.README, which is located in the
directory where MULTI is installed.

Format: H

When the process is halted, this command will give the signal which caused the
halt.

Format:h [depth]

Shows the previoudepth commands in the debugger’s command history.
depth must be between 0 and 61, and defaults to 10 if no value is given. See
“History commands” on page 73.

halt

Arguments [pr=num] [{ cmds }]
num program number

{cmds} See “Command list” on page 69.
Button equivalent]

Halts the program numbeum, or the current program iflum is not specified.
num corresponds to MULTI’s internal program number, and not the operating
system’s process ID number. The program halts without sending an interrupt,

Green Hills Software, Inc. 107

4. Debugger commands

allowing you to cleanly continue the program later. If cmds are specified, they
will be executed as soon as the process halts.

halta
Format: halta

Halt an actor. Actors are not supported by every target. Consult your target’s
Development Guide for details specific to your target.

haltag
Format: haltag

Halt an actor set. Actor sets are not supported by every target. Consult your
target'sDevelopment Guide for details specific to your target.

haltx
Format: haltx object

‘object’ is a required argument and can be onk afg, ore.

Halts a task, actor, or actor groagstops a tasla stops an actog stops an
actor group, and stops every actor. Actors are not supported by every target.
Consult your target'®evelopment Guide for details specific to your target.

hardbrk

Arguments [read] [write] [execute] [mask=num] exp[:num] [{cmds}] [delete=num
read attribute

write attribute

execute attribute

mask bit mask

exp memory address, variable, or pointer name

{cmds} See “Command list” on page 69.
delete attribute

Sets, clears, displays, enables, and disables hardware breakpoints, based on a
single address with attributes read, write and execute. These breakpoints are
implemented through direct hardware support and are only on some targets.
MULTI removes all hardware breakpoints when detaching from process.

One advantage to a hardware breakpoint is that you can set it on a specific
memory location. This causes a break when accessing that location, regardless
of what instruction the program is on.

108 Debugging with MULTI 2000

Debugger commands

When a hardware breakpoint is reached, a message displays the breakpoint
number and whether the break occurred on aread, write, or execute. For
example:

St opped by hardware break 1 on execute
Typing hardbrk by itself listsall currently set hardware breakpoints.

Any combination of read, write, and execute can be specified. read causesthe
break to occur when reading from the given address. write causes the break to
occur when writing to the given address. execute causes the break to occur if
the instruction stored at the given addressis executed. Often the break only
occurs after the read or write. read and write are used by default.

If mask=num s specified, then the bitwise complement of numis bitwise

AND’ed with all addresses involved. This can give a range of addresses. For
example, includingnask=0xf ignores the lower four bits of the given address.
In effect, this gives a range of 15 memory locations tomssk is set to zero

by default.

exp may be a memory address, variable, or pointer nammurtfis specified
afterexp, thennum bytes after the address is used. The default size is one byte
for memory locations, and the size of the object for variables.

If cmds is specified, the given commands will be executed each time the
hardware breakpoint is hit.

If delete=numis specified, then hardware breakpaioin is deleted. Use
hardbrk to get breakpoint numbers.

An error message appears if the target system cannot support the requested
breakpoint.

For example:

hardbrk read val
Stops on any read from variablal.

har dbr k mask=0xf 0x10000
Stops on any read or write to locatidix3 0000 to 0x1000f.

hardbrk wite *string:9
Stops on any write to the first nine bytes pointedtbing.

hardbrk del et e=2
Deletes breakpoint number two.

hardbrk val {"stopped on val ";c}

Green Hills Software, Inc. 109

4. Debugger commands

help

indexnext

indexprev

Prints stopped on val in the command window any time the variable val is
accessed.

har dbr k execute 0x100ff
Stops anytime when the instruction at address Ox100ff is executed.

Format: help [keyword]

Opens the help system to look for help on keyword. 1f no keyword is given,
brings up general help on the debugger. See Online Help System .

This command is obsolete. It has been replaced by the info command. Seeinfo
on page 111.

Format if exp {cmds} [else {cmds)]

exp an expression in the current language

{cmds} See “Command list” on page 69.

Thisisaconditional command execution. If the expression exp evaluatesto a
non-zero vaue, thefirst group of commandsis executed, else the second group,
if present. This command can be nested.

Arguments none

Button equivalent =

Changes the current viewing location in the code to the next item in Debugger’s
history list. See “History navigation buttons” on page 19.

Arguments none
Button equivalent <=

Changes the current viewing location in the code to the previous item in the
debugger’s history list. See “History navigation buttons” on page 19.

110

Debugging with MULTI 2000

Debugger commands

infiniteview

info

inspect

iobuffer

Format: infiniteview lvalue

Creates a view window that displays memory as an array of the basic type of
Ivalue with every line formatted to that type. The window can be scrolled in
either direction until you run out of memory. Some examples:

infiniteview $sp Displays the stack starting where at the stack pointer.
infiniteview $pc Displays the text segment starting at the program counter.

This effect can also be achieved by selecting Format > Infinite from the format
menu in anormal view window.

Format: info

Prints out the following information about the state of MULTI:
» Debugging status

» Corefile status

 Child program status

» Assertion status

« Output recording status

« Command recording status

» Case sensitivity status

Format: inspect [string]

This command is generally bound to a mouse click. See mouse on page 119
This opens a context sensitive menu on string, equivalent to the default
behavior of right-clicking string.

Format: iobuffer state

Disables or enables buffering for the remote in/out window. Buffering is
enabled by default. If buffering is enabled (on), then input to the remote infout
window is not sent to the target until a newline is encountered in the input
stream. If buffering is disabled (off), then every character is sent to the target as

Green Hills Software, Inc. 111

4. Debugger commands

isearch

soon as it istyped. Disabling the buffering in MULTI may cause problems on
some remote targetsif they expect input to buffer.

Format: isearch [+]wid=num

This command starts an incremental search in the window specified by num, the
window id number. If an incremental search is already active in that window,
then the current search string is searched again. Putting aplus sign (+) in the
command searchs forward. Thisis the default. Putting a minus sign (-) in the
command searchs backward.

This command should not be used from the command window. It should be
bound to akey with the keybind command, or to a mouse press with the mouse
command. See keybind on page 112 and mouseon page 119.

isearchadd

keybind

Format: isearchadd wid=num text

Addstext (no quotes) to the search string and continues an incremental searchin
the window pointed by num. The window must aready be in an incremental
search for this command to work.

This command should not be used from the command window. It should be
bound to akey with the keybind command, or to a mouse press with the mouse
command. See keybind on page 112 and mouseon page 119.

Format: k

Kills the current program. The process must be halted in order to be killed. To
access from the menus, choose Debug > Kill Process.

Format: keybind [location]
Format: keybind key[|modifiers][@location][=command]

This command is used to bind a key to acommand. This command is covered
in great detail in the Configuration Command List chapter. See dso
backhistory on page 82, forwardhistory on page 105, isearchon page 112,
and isearchaddon page 112.

12

Debugging with MULTI 2000

Debugger commands

Thiscommand was in 1.8.9 MULTI but has been removed. E will give the
same functionality. See E on page 101.

This command is the lowercase ‘L.
Format:| [option] [string]

This command lists most items. If no argument is given, then all locals and
parameters of the current procedure are listed. The following is a description of
the allowedoption values for this command:

Values for option

Value Meaning

@ Lists the addresses of local variables. If a String is specified, it is interpreted
as a procedure name and variables local to that procedure are listed. The
procedure must be on the stack. Equivalent to View > List > Local Addresses.

a Lists assertions. Equivalent to View > List > Assertions.

b Lists breakpoints. Identical to the B command. Equivalent to View > List >
Breakpoints. See also B on page 80.

d Lists the directories that will be searched for source. Identical to the source
command. Equivalent to View > List > Source Paths. See also source on
page 136.

D Lists all dialog boxes. Equivalent to View > List > Dialog Boxes.

e Lists the exceptions with breakpoints.

f Lists files. This command takes an optional prefix as the string argument. If

given, all files with string are displayed. Otherwise, all files are printed.
Equivalent to View > List > Files.

g Lists globals. This command takes an optional prefix as the string argument.
If given, all global variables starting with string are displayed. Otherwise, all
global variables are displayed. Equivalent to View > List > Globals.

m Lists procedures with their mangled names. This is identical to | p, except that
in C++ programs it also lists the mangled names of the procedures.
Equivalent to View > List > Mangled Procedures.

M Lists menus defined with the menu command. Equivalent to Config >
Functionality Settings... > General tab > Configure Menus. See also menu on
page 119.

p Lists procedures and their addresses. An asterisk (*) indicates that the

procedure has no debug information. This command takes wild cards. If a
filename is given as the String argument, then all procedures located in that
filename are listed. Equivalent to View > List > Procedures.

Green Hills Software, Inc. 113

4. Debugger commands

load

Values for option

Value Meaning
P Lists processes. Equivalent to View > List > Processes.
r Lists registers. This takes an optional prefix as the string argument. If given,

all registers starting with string are listed. Otherwise, all registers are listed.
Equivalent to View > List > Registers. See “View menu” on page 26 and
“regview” on page 128.

R Identical to | r if String is specified. Otherwise, it lists all register synonyms.
Equivalent to View > List > Register Synonyms.

S Lists special variables. This command takes an optional prefix as the string
argument. If given, all special variables starting with String are displayed.
Otherwise, all special variables are displayed. Equivalent to View > List >
MULTI Variables.

S Lists statics. This command takes either a filename or a prefix as the string
argument. If a filename is given, all static variables in that file are displayed. If
a prefix is given, all static variables in the current file starting with string are
displayed. Otherwise, all static variables in the program are displayed.
Equivalent to View > List > Statics.

T Lists tasks. Equivalent to View > Tasks.

t Lists typedefs. This command takes an optional prefix as the string
argument. If given, all typedefs starting with String are displayed. Otherwise,
all typedefs are displayed.

z Lists signals. Equivalent to View > List > Signals.
? Lists help on this command.
proc Lists all locals and parameters of the procedure Proc. If the procedure name

proc starts with an @, then the address of all locals and parameters are
printed. Proc must be on the stack. Equivalent to View > List > Locals and

View > List > Variables in Procedure.

Format: load filename

Loads the current program into the target system’s memory. For some targets
this is a rather long process, depending on the size of the program. An implicit
load is performed when executing a program for the first time. The program is
not started automatically. By defauliss is zeroed but this may depend on the
debug server.

If filename (for exampldoad a.out) is specified, the given file will be loaded to

the server instead of the image being debugged. Use this option with extreme
caution. MULTI will assume that the loaded file contains an adequate subset of
the current image, and will attempt to execute and debug it as such, without
attempting to download the current image as well.

14

Debugging with MULTI 2000

Debugger commands

The filename will be searched for using the default search path. See “default
search path” on page 70.

You can interrupt this command with the Esc key.

loadconfigfromfile
Format:loadconfigfromfile

Brings up a file dialog allowing the user to select a MULTI configuration file to
load into MULTI. See the Configuration Chapter for more information.

loaddialogfile
Format:loaddialodfile file

Loads dialog box descriptions from filiée. See alsalialog on page 100.

loaddialoguefile
This command is deprecated. $esddialogfile on page 115.

loadsym

Format:loadsym filename [text_offset [data_offset]]
Loads the debug symbols from the file specifiedilename and merges them
into the symbol table. If the optional text and data offset values are supplied

(text_offset anddata_offset, respectively) then the text and data addresses are
offset by the given values.

You can use this command in remote environments where new code, typically
position independent code, is loaded to the target at runtime. This command
does not load executable code from the given file to the target. For example:

| oadsym a. out 0x20000
You can load additional symbol information for a module while debugging.

The filename will be searched for using the default search path. See “default
search path” on page 70.

This command is obsolete; it has been replaced bp#pecommand. Semap
on page 116.

macrotrace
Format:macrotrace

Green Hills Software, Inc. 115

4. Debugger commands

Prints the stack of all presently executing macro commands. For example, with
the following macros:

define al() {return a2();}
define a2() {return a3();}
define a3() {rmacrotrace; return 42;}

then the following would be output if you enter al1() :

0 a3()
1 a2()
2 al()
42

See also define on page 99.

make
Format: make [string]

Executes the system command make and passes to it the arguments you supply
in string. If make succeeds, it kills the current process, removes al state
information, reloads the program you are currently debugging, and allows you
to continue debugging.

If you are using the MULTI Editor, then any changes you make are saved before
make starts. The output of make then appearsin a special window. You can
examine erroneous lines by clicking the appropriate error messages that appear
in this window.

map
Format: map

Prints the section address map for the current program.

mark

Thiscommand is obsolete. It wasin 1.8.9 MULTI, but has been removed. It has
been replaced by MULTI's automarking capability. See “History navigation
buttons” on page 19.

116 Debugging with MULTI 2000

Debugger commands

memdump

memload

Arguments [srec | raw] filename start length

srec Motorola S-Record

raw Raw binary data

filename The file to load into memory

start The starting address in memory to load.

length How many bytes of data to load into memory, starting at start.

Copies a section of memory to afile named name. start specifies the starting
addressin memory to copy, and length specifies the number of bytesto copy. If
srec is specified, then the file is stored in Motorola S-Record format. If srecis
not specified, then thefileis stored inaMULTI specific binary format.

Note: ThisMULTI specific binary format is platform specific. You should only
use memload to load the file from the same platform from which you saved the
file. See memload on page 117.

You can interrupt this command with the Esc key.

Arguments [srec | raw] [-wsiz€] filename [start [length]]

srec Motorola S-Record

raw Raw binary data

filename The file to load into memory

start The starting address in memory to load.

length How many bytes of data to load into memory, starting at start.

size The size in bytes of the individual memory writes. The value
must be 1, 2, or 4. The default is 1 byte. length must be a
multiple of Size.

If start and length are omitted, then the values specified when the file was
created isused. If srecis specified, then start and length are ignored, and the
fileisread as a Motorola S-Recordsfile. If srec isnot specified, then thefileis
read asa MULTI specific binary file created by memdump. See memdump on
page 117.

If raw is specified, load a binary file, starting at the first byte of thefile, and
continuing for length bytes. start must be specified. length defaults to the length
of the file, but may be overridden.

Green Hills Software, Inc. 117

4. Debugger commands

You can interrupt this command with the Esc key.

memread
Format: memread size addr

Performs a sized memory read from the target and prints the result. This
command is intended to be used to perform low-level writes to regions of
memory or memory-mapped 1/O registers. Thiscommand does not make use of
MULTI's memory cache and the read is performed immediately. SA&EHE
on page 61.

sizemust be 1, 2, or 4. The units are byteklr must be aligned correctly to the
nearessize bytes, and may consist of any expression that the debugger can
evaluate.

memview
Format:memview [% name] [@count] address

Thememview command opens a memory view window for interactively
displaying and modifying memory contents. This window starts at memory
addressddress (which can be specified by any expression in the current
language). By default, the window will open sized to show 64 bytes on the
screen; this can be changed by specifgmmt. Also, a title can be given to the
window by specifyingrame. For example:

‘ memview %Arguments @128 argv[0]

opens a memory view window titled “Arguments”, sized to show 128 bytes on
the screen, beginning with the address of argv[0]. See Chapter 9, “Memory
view window”.

memwrite
Format: memwrite size addr value

Performs a sized memory write to the target. This command is intended to be
used to perform low-level writes to regions of memory or memory-mapped I/O
registers. This command does not make use of MULTI's memory cache and the
write is performed immediately. Se€EACHE on page 61.

sizemust be 1, 2, or 4. The units are bytaddr must be aligned correctly to
the nearestize bytes. Bothaddr andvalue may consist of any expression that
MULTI can evaluate. Ifalueis larger than can fit igze bytes, it will be
truncated to fit.

118 Debugging with MULTI 2000

Debugger commands

menu
Format: menu [name] [{{label [‘rlabel’] cmd}}]
This command defines a menu to attach to a menu bar, MULTI button, mouse
button, or key from the keyboard. This command is covered in great detail in

the Configuration Command List chapter. See also | on page 113 (lowercase
‘L) with the M option.

monitor
Format:monitor [O | {cmds} | [num [{cmds}]]
Saves the command liginds to send to the debugger every time the program
stops. An unlimited number of monitors can be active at any time. However,

you should be careful when using this command, as the output is quite tedious if
your code stops frequently.

This command has five forms:

Form Meaning

monitor Lists all of the monitors in order.

monitor NUM Deletes monitor number NUM. This does not renumber the
current monitors so that if you have four monitors and delete
number 3, then the remaining three are numbered 1, 2, 4,
creating an “empty slot” where 3 was formerly located.

monitor {cmds} Inserts a monitor with the given command list in the first
available empty slot.

monitor num{cmds} Puts a monitor with the given command list in the nuM slot. It
replaces any existing monitor in that position.

monitor 0 Deletes all monitors.

mouse
Format:mouse [location]

Format:mouse button_num[AtOnce][*click click_num] [|modifiers]
[@location] [=command]

Defines the function of the mouse buttons. Seeialgect on page 111, and
isearch on page 112, andearchadd on page 112. This command is covered in
great detail in the Configuration Command List chapter.

mprintf
Format:mprintf(format_string, ...)

This command takes the same syntax as the C library printf() function, except
the%n format is not supported.

Green Hills Software, Inc. 119

4. Debugger commands

mvc

mvconfig

For example, given the following target code:

char * my_string = "hello world";
int ny_int = 10;
And with the following command:

mprintf("ny_string=\"%\" and (2*my_int+1)=%l",
my_string, 2*my_int+1);

The debugger will output:

ny_string="hello world" and (2*ny_int+1)=21

Format: mvc args

The args are passed to MULTI's version control for the file that is presently
displayed in the debugger. For example:

mvc co

would check the presently displayed file out of MULTI’s version control. See
the chapter on MULT]I version control for more details on mvc arguments.

Format:mvconfig [% name] key[=valug] [key[=valu€]] [...]

Configures a memory view window. (Thisrs/-config, notmvc-config.) See
Chapter 9, “Memory view window”.Th& name option specifies the memory
view window to configure. If the name is omitted, the command configures the
memory view window that was last created or configured. You may also
configure the defaults for the next memory view window to be created by using
%default as the name. The mvconfig command is mainly useful for scripts and
most of the functions it provides are accessible directly from the memory view
window.

120

Debugging with MULTI 2000

Debugger commands

The following key-value pairs are valid (note that the keys and values are case

insensitive):
Key Meaning
bpr=n Changes the number of bytes per row displayed. Valid values for n

are +, —, 4, 8, 16, 32, 64, or 128. The plus sign (+) increases the
bytes per row to the next higher setting. The minus sign (-)
decreases the bytes per row to the next lower setting. A number sets
the bytes per row to that number.

name=Newname Renames the window with the given new name.

endian=€ Sets the endianness mode. Valid values for € include big and lit or
little .

type=typestr Displays memory as the type specified by the type strings. This is
equivalent to setting the type pulldown to the specified position. See
the table below of valid values for typestr.

ascii= state Sets the state of the ASCII column. Valid values for state are on
(show the ASCII column), off (hide the ASCII column), and toggle
(switch the current state of the ASCII column to the opposite setting).

frozen= state Sets the frozen state of the window. Valid values for state are on
(freeze the window), off (unfreeze the window), and toggle (switch
the current freeze state of the window to the opposite setting).

quit Closes the memory view window.

Valid values for type=typestr include:

Valid values for typestr
Value Meaning
f float
fd double
un unsigned decimal integer of size n bytes. n=1,2,4,8
sh signed decimal integer of size n bytes. n=1,2,4,8
hn hexadecimal number of size n bytes. n=1,2,4,8
bn binary number of size n bytes. n=1,2,4,8
n
Format: n

Same as the S command. See S on page 131. .

Green Hills Software, Inc. 121

4. Debugger commands

new

ni

nl

note

Format: new program_name [pr=num] [core fil€]

Tells the debugger to open a new window to start debugging the program,
program_name, and put in MULTI’s internal program slot numbemaan. If
program_name is not specified, the current program name is usemunifis not
specified, MULTI puts the program in the first empty slot.A core file for the
new program may also be specified.

Format:ni

Same as th& command. Se8i on page 135.

This is lowercase ‘N’ and lowercase ‘L.
Format:nl

Same as th8 command. Se8l on page 135.

Format:note

Opens a “notes” file in a normal MULTI Editor window, to which you may add
you own free-form notes. This command takes no arguments. The file opened
is “.Notes”, located in the user’s home directory (~). If the notes file already
exists, it will be opened so you may edit or add to your previous notes. If the
file does not yet exist, it will be created once you save the new notes you have
made.

This is the uppercase ‘P’
Format:P [pr=num] [subcommand]

Used exclusively during multi-process debugging. If this command is given by
itself, it lists all process slots in use. This command sends the commands given
for subcommand to the process in MULTI's internal process slot nunrien.

For exampld® pr=1b toggles the state of theflag in process number one.

122

Debugging with MULTI 2000

Debugger commands

Thefollowing isalist of subcommands:

Sub-command Meaning

b Toggles breakpoint inheritance after forking. If true, children of the
current process inherit all breakpoints set at the time of the fork.

c Toggles flag causing children to be debugged. If true, children of the
current process are added to the list of processes under control of
MULTI.

e Toggles flag causing children to stop upon execution of the exec system

call. This acts as if a breakpoint were encountered at the first instruction
of routine main in the exec’d program.

f Toggles flag causing children to stop upon execution of the fork system
call. This acts as if a breakpoint were encountered immediately following
the fork. This normally means you are in the middle of the library routine

fork.
k Toggles flag causing tasks to be debugged.
t Toggles flag causing MULTI to stop upon task-creation.

After afork or exec of aprocess, MULTI prints a message indicating that this
has happened, provided that the system variable NOTIFY is set appropriately.
See _NOTIFY on page 62.

The following subcommands are deprecated in this version, and were left in for
compatibility purposes. The commands that supersede them are given.

Deprecated sub-commands

Sub-command Meaning

s num Sends signal nNumto the current process. Equivalent to the signal
command. See signal on page 135.

This is lowercase ‘P’. This is the same asghi@t command. Seprint on
page 123.

Note for users of 1.8.9 MULTI: The ‘p’ command in 1.8.9 version would print
the line you were on in non-GUI mode. The current ‘p’ command does not do
that any more. To get the functionality of the 1.8.9 version of the ‘p’ command,
use theprintline command. Seprintline on page 124.

pop
This command is obsolete. It was in 1.8.9. MULTI, but has been replaced by the
indexprev command. Semdexprev on page 110.

print
Format:print[/format] exp

Green Hills Software, Inc. 123

4. Debugger commands

Displays the value of exp exactly as the current language does with format. exp
can be any expression in the current language. See “Expression formats” on
page 52. See alsgho on page 102 angkamine on page 104.

printline
Format:printline [count [line]]
Printscount lines, starting at the line numHdamne. If count is not specified, one
line is printed. Mineis not specified, then the current line is the starting point.

The current line is updated to the last line printed after this command is
executed, which will change the source display if in GUI mode.

Simply typing a line number also proints out that line in non-GUI mode.

printsearch
Format:printsearch

Prints out the search string or indicates that there is no search string. If there is
a search string, it is printed within square brackets, so beginning and ending
whitespace can be seen. For example:

printsearch
may result with:

[foo]

meaning that the search string is the word foo preceeded by one space and
followed by two spaces. Séwarch on page 11ZXsearch on page 105,

bsearch on page 867 command on page 76, andcommand on page 76.

printwindow
Format:printwindow [line] [num]

This command is most useful in non-GUI mode. Prints a window ofrixt,
lines long, centered abolibe. The default value fanum is specified by the
system variable _LINES which defaults to 22. The defaulifieris the current
line. See “System variables” on page 60. The current line is indicated by a
greater-than sigrej in the left most print position. The current viewing position
is unchanged.

profdump
Format:profdump

Used to retrieve profiling information from a target prior to the program’s exit.
See Chapter 7, “The Profiler”.

124 Debugging with MULTI 2000

Debugger commands

profile
Format: profile
Opens the Profiler window. See Chapter 7, “The Profiler”.

profilegui
This command is obsolete It was in 1.8.9 MULTI, but has been replaced by the
profile command. Seprofile on page 125. .

profilemode
Format:profilemode command
Used to control a vast array of Profiler functionality, sucatading the
profiler, range analysisprocessing data, and much more. See Chapter 7, “The
Profiler” for all of the commands.

push
This command is obsolete. It was in 1.8.9 MULTI, but has been has been
replaced by thendexprev command. Semdexprev on page 110.

pwd
Format:pwd
Show MULTI’s current working directory.

Q
Format:Q [0[1]
This is the “quiet” commandQ 0 (zero) turns off quiet mode (its default),
Q 1 (one) turns on quiet mode, a@dalone toggles quiet mode. When the
debugger is in quiet mode, many commands are less verbose. For example,
when setting or toggling a breakpoint in quiet mode, the breakpoint will not be
echoed to the command pane.

q

Format:q

Green Hills Software, Inc. 125

4. Debugger commands

Thisisthe prompted quit command in non-GUI mode only. When prompted,
answer either:

Answer Meaning
n Cancels the exit request. This is the default.
S Saves breakpoints, assertions, and directory list to the file named
multistate and then exits.
y Exits MULTI.
gfst
Note: Thisis a software-update command and may not be available on most
systems.
Format: gfst
Lists the status of all applied and backed out modules.
quit
Format: quit [ask | force | now | all]
Quits the current debugger window. If thisisthe last program, and no control
panel is present, then MULTI quits. If you do not specify any arguments, you
will be prompted as to the disposition of any process you are attached to. You
may specify one of the following arguments to modify the behavior of the quit
command:
Option Meaning
ask Always confirms whether to exit if the PromptQuitDebugger
config option is true.
force or now Causes the debugged process to be killed without asking.
all Equivalent to the quitall command.
quitall
Format: quitall
Causes MULTI to quit without prompting the user.
R
Format: R
Runs a new target program with no arguments. If a program already exists,
terminate it. When debugging multiple programs, this causes re-running of the
126 Debugging with MULTI 2000

Debugger commands

Rb

rb

refresh

current program if and only if it isadirect child program of MULTI. Seedsor
on page 127.

Format: r arguments

Runs a new target program passing arguments, a space separated list, to the
program. If a program aready exists, terminates and restartsit. When
debugging multiple programs, this causes re-running of the current program if
and only if itisadirect child program of MULTI.

If no arguments are given, then the last ones given are used again. If no
previous run exists, no arguments are used.

arguments may contain <, >, >>, >&, or >>& to redirect standard in, standard

out, and standard error. Text between quotes, either single (*) or double (*),
are treated as a single argument. Eventually, the quotes are removed. If you are
runningcsh, then a~ expands the same way as the shell. However, other shell
processing is not done; no wildcards, pipes, and so forth.

For exampler fly 3, runs the program with the two argumeifiiygsand3.
See alsaetargs on page 134.

Format:Rb
Seerb on page 127.

Format:rb arguments

Similar to ther andR commands;b andRb run and block the command line
input until the program terminates, until it hits a breakpoint, or the target stops.
While using these commands, you can still perform all interactive operations
appropriate with a running program. There are useful when writing scripts that
control execution of a remote program. Wbeor Rb when you want to run

until you hit a breakpoint and then read the next line of a script file. See also the
Continue and Block commarth on page 90, on page 127, and on page

126.

Format:refresh section

Green Hills Software, Inc. 127

4. Debugger commands

registers

regview

remote

Reloads a section of the program into the target system’s mesedirgn may
be eitheitext, data, orall.

If text is specified, then the code sections of the debugged program reads from
the executable file and reloads into target memory.

If data is specified, then the global variables reset to their initial values.
Uninitialized global variables are set to zero.

If all is specified, then the entire program image reloads.

This command is not supported for all targets.

This command is deprecated. $egview on page 128.

Opens a data explorer window displaying all the registers. See Chapter 5,

Arguments none
Button equivalent

“The data explorer”. In non-GUI mode, the registers are echoed to the screen
instead of in a new window.

Format:remote [log[=filename] | nolog] debug_server [arguments]

Connects to a remote target before any debugging on that target is done. Remote
targets include simulators, emulators, and monitors. (Seealsect on page
93))

debug_server is the name of the debug server executable for the remote target.
This debug server is generally a program that controls the remote target device,
and must be designed for the target CPU that your are compiling your program
for. arguments are specific to each debug server; consult your debug server
documentation.

If log is specified, then a list of all transactions between MULTI and the debug
server is sent to standard error. If a filename is specifiedlafferthen the
transaction list is written to the named file instead of standard error. Generally,
the output of théog option is a debugging feature to aid customers who are

128

Debugging with MULTI 2000

Debugger commands

developing their own debug servers. remote log=filename may be specified
after having connected to a debug server.

remote nolog Stops logging and closes log file.

remote log Enables logging again.

restart

Arguments none

Button equivalent o

Identical to the R command when not used with remote debugging. (See R on
page 126.) When used with aremote system configuration, this command saves
alot of time when re-executing a program. Instead of completely reloading the
entire program, the debugger resets global variables, the program counter, and
the stack pointer to their initial values. Uninitialized global variables are set to
zero. Then the program begins execution.

restore
Format: restor e [filename]

Restores the state of the debugger from the file filename, or from the file
multistateif filenameisnot given. These files must have been created with the
save command. (See save on page 132.) If you are connected to a debug server
when using the save command and are not currently connected to the server,
then this command also reconnects you to that debug server.

The filename will be searched for using the default search path. See “default
search path” on page 70.

resume
Format:resume [address_expression|

This command is only for use within a breakpoint command list. (See
“Command list” on page 69.) It resumes program execution at the given
address_expression, after all the breakpoint commands have been executed. See
“Address expressions” on page 66. Ifatress expression is specified then

the address that the breakpoint is set at is used. For example, to skip over line 5
in your program, you could use the following, which will stop before line 5, and
then resume execution at line 6:

b 5 {resune 6}

Green Hills Software, Inc. 129

4. Debugger commands

return

rload

rom

rundir

runtask

resume will continue the program in the same manner that the breakpoint was
encountered. For example, if the program was performing an Sinstruction
when the breakpoint was encountered, the S command will be resumed.

Format: return [exp]

Returns from macro defined in MULTI. See define on page 99. If exp is given,
then exp is returned as the macro’s value. See eisor on page 103.

Format:rload [load_symbols] executable

Therload command loads an object module while debugging. The symbols for
the executableskecutable.dnm andexecutable.dla) are loaded only if
load_symbolsis set to 1. In addition, Ibad_symbolsis set to 1,bssis not

zeroed and the program is not started automatically.

The filename will be searched for using the default search path. See “default
search path” on page 70.

You can interrupt this command with the Esc key.

This is used for ROM debugging, which is not supported on all targets. Consult
your target'sDevel opment Guide for details specific to your target.

Format:rundir [dir]

This command changes the directory your program runsdir.ttf no
argument is given, then the current directory the program runs in is printed. This
command is only relevant to native debugging.

Format:runtask proc [args]

Works only for multitasking remote targets such as VxWorks. This is the
standard way to start a task on these systems.

130

Debugging with MULTI 2000

Debugger commands

proc is the name of any downloaded procedure, and argsisalist of space
separated arguments to pass to the procedure. Acceptable valuesfor args are;

+ decimal and hexadecimal numeric constants

 character constants

 string constants enclosed in double quotes

« names of global variables (the & operand does not work here)
« |/O redirection operators < and >

When debugging C++, proc may be the member function of a global object,
specified as object.function. If the requested function is ambiguous, a dialog
box presenting al optionsis displayed.

S
Arguments none
Button equivalent =
Menu equivalent Debug > Next
Keyboard equivalent F10
This is uppercase ‘'S’
Same as thecommand, but treats procedure calls as normal statements. Thus,
it steps over, instead of into, procedures. Seeratsopage 121 arglon page
131.
You can interrupt this command with the Esc key.
S
Arguments none
Button equivalent 3
Menu equivalent Debug > Step
Keyboard equivalent ~ F11

This is the lowercase ‘s’.

Single steps one statement. If you accidently step into a procedure you do not
care about, you can click the Return butt& (), which is the same as using the
cU command. SeeU on page 94.

You can interrupt this command with the Esc key.

Green Hills Software, Inc. 131

4. Debugger commands

save
Format: save [filename]

Saves the state of the debugger. This writes out the breakpoints, the assertions,
the source directory or directories as set by the source command, and the
remote debug server you are connected to, if any, to the file filename, or to
multistateif no filename is given on the command line. Thisfileisretrieved by
the restore command. See restore on page 129.

saveconfig
Format: saveconfig

This command will save out afile which MULTI will read each time it starts to
restore your configuration to the state it was in when you saved it.

saveconfigtofile
Format: saveconfigtofile

Similar to the saveconfig command, but lets you choose afile to save the
configuration into. (See saveconfig on page 132.) This can be useful in
conjunction with configur efile command. See configur efile on page 93.

sb
Format: sb<a|d|t|u><g]|e|t]a|s|n>[l]|i|p]|Xx] val [@count] [{cmds}]

(In ‘Format’ above, the angular bracket patrcontains arguments that must be
supplied.)

This command sets special breakpoints. These breakpoints are target specific.
Consult your target'’®evelopment Guide for more specific details.

In the first group of letters specifies any taskl, is on any attached tagkis on
the current task, andlis on any unattached task.

In the second group of letteesspecifies to stop the acteris stop every actor,
g is stop the actor group,is to notify,sis to stop the system, ahd to stop the
task.

In the third (optional) group of letteds(lowercase ‘L) indicates thaal is a
line numberj indicates thaval is an address, anqplandx are target specific.

SC
Format:sc [* command” | <filename]

132 Debugging with MULTI 2000

Debugger commands

Performs syntax checking on either a single command or an entire script file
and all nested script files. See “Syntax checking” on page 63.

The filename will be searched for using the default search path. See “default
search path” on page 70.

scrollcommand
Format 1:scrollcommand max [l |c] [pixels] [wid=num]|

Format 2:scrollcommand count [l | c] [pixels] [wid=num]

Scrolls the window indicated by the identification numingm by count, or to
themaximum, in the given direction. tount ormax are followed by, and by
default, the scroll is vertical arabunt corresponds to a number of lines. If
count or max are followed by &, then the scroll is horizontal aedunt
corresponds to a number of characterpiXés is also specified, then it scrolls
by that many additional pixels. Not all windows scroll on a per pixel basis;
some are constrained to full lines. Botiunt andpixels may be negative.

The window identification numbewum is obtained by using the special
sequenc&ow with either thenouse command or th&eybind command. If no
window identification number is supplied, the source window is used. See
mouse on page 119 ankieybind on page 112.

For example,

The following example scrolls the source pane one line towards the end of the
file:

scrol | command 1
This example scrolls the command pane backwards by two lines:

scrol | command -2 w d=-2
This scrolls the source pane three characters to the right:

scrol | command 3c
And both these commands scroll the source pane to the beginning of the code:

scrol | command - max
scrol | command -max| wid=-1
Seebsearch on page 86 anisearch on page 105.

Green Hills Software, Inc. 133

4. Debugger commands

setargs

setbrk

shell

Arguments [program_arguments]

Menu equivalent Debug > Set Program Arguments...

Sets the program arguments used with the next r command. (Seer on page
127.) If no arguments are specified, then no arguments are used. The arguments
are a space separated list. See also getar gs on page 106.

Format: setbrk [0Q]

Toggles the breakpoint set at the current line (pointed to by the current line

pointer) or the current address. The current address exists only in GUI mode

and specifies the line where the mouse was last clicked in an interlaced
text/assembly view. By setting one of the mouse’s click commarssiidk

(via themouse command), you can toggle a breakpoint on a line in the
debugger by clicking anywhere on the line rather than having to touch the break
dots at the side of the text. Smeuse on page 119.

This command has two forms:

Form Meaning

setbrk Toggles the break on the current line or the current assembly address in
interlaced source/assembly view.

setbrk O Sets a temporary breakpoint on the current line or current address and
executes the c command. (See ¢ on page 88.) Once reaching the
temporary breakpoint, the program halts and the debugger automatically
clears the breakpoint.

Format:shell cmds

Invokes a shell. [Emdsis present, then the given commands are executed and
immediately returned to the debugger. All windows are put in the background
until the commands are completely executed.

Before being passed to the shell, the command string folloshiglyjis

processed and all instances of the escape sequeBYAL {multi_command}

are replaced by the result of evaluatingjti_command. This is useful for
constructing dynamic arguments (that is, arguments that vary depending on
your current debugging context) to shell tools. For instance, to run a tool on the
current file, construct a command of the form:

shell toolname constant_args % EVAL{$ FILE}

134

Debugging with MULTI 2000

Debugger commands

showdef

showfds

Si

Si

signal

Sl

Format: showdef [namel [name2 [...]]]

Looks at each name on the line and attemptsto find a #define macro definition
for that name, then printsit out. Without arguments, it prints out the defined and
undefined macrosin the current file. Only enabled for programs built with
MULTI debug information.

Format: showfds

This command is only supported on Solaris. It usesthe Solaris fstat() function
to give information about al of the open file descriptors.

Format: Si
See si on page 135.

Format: s

The Si and s commands are similar to the S and s commands (see S on page
131and s on page 131), but cause the process to only advance by one machine
instruction. Furthermore, the stop-position is shown as a disassembled
instruction, not as a statement.

You can interrupt this command with the Esc key.

Format: signal signal [pr=num]|

Sendsthe signal signal to the process specified by num, or the current process if
num s not specified.

Thisis not supported for all target environments. Currently, only UNIX targets
support this command.

This is capital ‘S’ and lowercase ‘L.
Format:S

Seesl on page 136.

Green Hills Software, Inc. 135

4. Debugger commands

sl

source

stopif

This is lowercase ‘S’ and lowercase ‘L.
Format:d

The Sl ands commands are similar to tlssands commands (se® on page
131ands on page 131), but they cause the process to always advance by one
higher language instruction, even when viewing the interlaced assembly.

You can interrupt this command with the Esc key.

Format 1:source [num] [dir]
Format 2:source - dir

This command specifies directories that MULTI will search to find source files
for the debugged executable. Typsuyir ce by itself lists the current directories
that will be searched. tiumis specified, then the directory numbenreh in

the current source path is replaced by the new one givdir.liy the listed
directoriesnumis zero-based. You can specify multiple directories at once. If a
number is specified but no replacement directory is supplied, then the specified
entry will be deleted from the list.

source - dir discards the old directory list which is replaced with the one given
by dir.

Directory names may includeas an abbreviation for specifying your home
directory.

Format:stopif [file_relative_line_number] exp
exp is an expression in the current language.

Sets a conditional breakpoint at the line number specified. If a line number is
not specified, then use the current line number. The program breaks at this point
if the condition given irexp is true. For example, the following command stops
the debugger at line 20yfis equal to five:

stopif 20 y==5

If you omit the line number, then you should not have expressions beginning
with a number, otherwise it will be ambiguous. For example, the following
should not be done:

stopi f 5==

136

Debugging with MULTI 2000

Debugger commands

stopifi

syncolor

The debugger tries to set a breakpoint on line five that stops on the condition
(==y), which does not make sense. If you do this, enclose the expressionin
parentheses:

stopi f (5==y)
MULT]I will do limited syntax checking to be sure “y” exists, but the user needs
to use variables which exist.

See also “Procedure-relative vs file-relative line numbers” on page 67 and
“Address expressions” on page 66.

Format:stopifi [addr] exp
exp is an expression of the current language.
addr is either a procedure name or the address of an instruction.

Identical to thestopif command, except the breakpoint is placed on the machine
instruction at addreszldr. If addr is not specified, then the address of the last
item you saw with the/i” or “/1” display mode is use@ddr may also be a
procedure name, in which case the breakpoint is set on the first address of the
procedure.

Format: syncolor [0] [1] [a] [C] [K] [d] [n] [$] [c]

Set syntax coloring options.

Option Meaning
0 (zero) Turns off syntax coloring for all options.
1 Turns on syntax coloring for all options.

Toggles syntax coloring for all options.

Toggles syntax coloring for comments.

Toggles syntax coloring for language keywords.

Toggles syntax coloring for deadcode.

Toggles syntax coloring for numbers.

Toggles syntax coloring for string constants.

DRI RIE

Toggles syntax coloring for character constants.

For examplesyncolor OCk will turn on syntax coloring for only comments and
language keywordsyncolor 1d will turn on syntax coloring for everything
except deadcode. Without any argumesytacolor will echo the present state
of all options.

Green Hills Software, Inc. 137

4. Debugger commands

T
This command existed in 1.8.9 MULTI, but has been removed. To get the same
functionality, enter: callslocal. See calls on page 89.

t
This command is obsolete. It wasin 1.8.9 MULTI, but has been replaced by the
calls command. See calls on page 89.

target

Format: target string

Transmits commands to the target. Identical to xmit command. See xmit on
page 143.

targetwindow
Format: tar getwindow

Opens the Target and 1/0 windows used by some debug servers and simulators
for direct communication with the target. These windows open automatically
when you connect to a debug server. See Using the Builder section for more
information about these windows. For acommand line interface to these
windows, see xmit on page 143 and xmitio on page 143.

taskwindow
Format: taskwindow

Opens the Task Window which displays the current tasks that are run on an

embedded multi-tasking target, such asrtserv, vxserv, and tornserv. This

window contains columns of information about each of the tasks. The contents

of these columns differ depending on the target. See your tabgetpment

Guide for information specific to your target. Clicking on a task name will
automatically attach to and begin a debug session on any task (equivalent to the
commandattach tid. Seeattach on page 80).

tog
Format:tog [on|off|tog] [e exception_number | hbp hbp_id | [b]
[address_expression | breakpoint_list]]

Toggles the active status address_expression or a breakpoint. See “Address
expressions” on page 66.

138 Debugging with MULTI 2000

Debugger commands

Only existing breakpoints/hardware breakpoint/exceptions can be modified
with this command. If no such breakpoint/hardware breakpoint/exception
exists, an error message is displayed.

See also b on page 81, be on page 82, de on page 96, har dbrk on page 108.

unalias
Format: unalias string
Unassigns an alias. It disassociates string from its substitution. For example, if
you had aliased sh to showdef, then typing:
unal i as sh
unassigns sh.
update
Format: update[interval]
This command forces al currently open and non-frozen view and monitor
windows to be re-evaluated, halting the process, if necessary, to get the
information. If it halts the process, it will resume it after refreshing the
windows. This provides aquick and easy way to update your view windowsto
their current values without having to manually halt the process and then
resumeit.
If interval is specified, then MULTI will automatically do an update
approximately every interval seconds while the programisrunning. Thisisa
useful way to monitor the value of avariable continuously while the programis
running. To deactivate the automatic update, specify O for interval.
uptosource

Format: uptosource

Moves up the stack until it finds a procedure with source code, and shows the
corresponding source. Note this does not change the program counter or
execute any program instructions on the target.

Green Hills Software, Inc. 139

4. Debugger commands

view

This command creates a data explorer window to display an item. There are
several ways to open a data explorer window:

Form Meaning

view eXp Creates a view displaying the expression €Xp.

view type Creates a view displaying the type type.

view $locals$ Displays all local variables.

view filename Displays all procedures and any special variables in the file
filename.

view *address Creates a window displaying the contents of the given location in
memory. An asterisk (*) must be in front of the viewed address.

view expl,exp2,exp3 Creates a view displaying the multiple expressions.

See “View command” on page 150.

viewcommand

Format:viewcommand cmds [=y[,X]] [press|release] [wid=num]

This command is not meant to be used from the command line, but rather is
expected to be an argument to theuse or keybind command. See “View
command” on page 150.

viewdel
Format:viewdel
Closes all of the current view windows.

viewlist
Format: viewlist structptr nextptr [links]|
Bring up a number of items from a list type of structure, whetetptr is the
pointer to the structur@extptr is the name of the next pointer within the
structure, andinks is the number of items in the list to show (default value is
25). For example, given the following C code:
‘ struct S {int a; struct S *next; }; struct S *ptr; ‘
The commandiewlist ptr next 3 would bring up view windows on the first
three structures in this list. In this case,¥h@vlist command is equivalent to
entering:

view ptr; view ptr->next; view ptr->next->next;
140 Debugging with MULTI 2000

Debugger commands

wait

Thiscommand is obsolete. It wasin 1.8.9 MULTI, but has been replaced by the
printwindow command. See printwindow on page 124.

Thiscommand was in 1.8.9 MULTI but has been removed. To get the same
functionality, enter:

printwindow (1+_LINES/2)

See printwindow on page 124.

Format: wait

Blocks command processing until the program is halted. Thisisuseful in

playback files or breakpoint command lists. (See “Command list” on page 69.)
For example, if you want to step the program three times after a certain
breakpoint is encountered, but you don’t want to enllgek Sep, enter:

b {s; wait; s; wait; s}

This assures eadromand is complete before executing the next one. Since
Esc halts the process, it in effect cancels this command.

watchpoint

Format:watchpoint exp

Set a watchpoint on the address indicateexXpy which causes the program to
halt when the address is written do.

This command is implemented in one of three ways:

« On systems which support it (emulators, simulators, etc.) a hardware
breakpoint is set at the given address. (&ebrk on page 108.)

 If you compiled your program with theheck=watch option of the Green
Hills compiler then you may establish one watchpoint which will operate
fairly efficiently. (See the Builder chapter on how to set this.)

« Otherwise, the debugger will create an assertion to check when that address
changes value. This will slow down your program considerably.g®ee
page 77.)

Green Hills Software, Inc. 141

4. Debugger commands

while

window

Format: while (exp) {cmds}
exp is an expression in the current language.

This command list cmds continues to execute as long as exp evaluatesto a
non-zero value. Thisis similar to the whileloop in C. See “Command list” on
page 69.

You can interrupt this command with the Esc key.

Format:window [num] [{cmds}]

This command creates, deletes, lists, or changes the contents of a monitor
window. A monitor window captures the output of a command or command list.
See “Command list” on page 69. The commands are executed every time the
program stops, and the output of these commands is printed in the window.
There is a limit of 100 windows per program that are defined. The command list
may contain multiple commands separated by a semicplavltiple

commands must be surrounded by curly braces (for examipldow {calls;

B}). Monitor windows have the same standard window features as data explorer
windows.

This command has several forms:

Form Meaning
window Lists all existing windows and their assigned commands in order.
window num Deletes window number NUM. The number is displayed on the

window border. For example, window 1 is titled MONITOR 1,
therefore entering window 1 removes that window.

window {cmds} Creates a window displaying the results of given command list.

window num {cmds} Replaces the command list for monitor number NUMwith cmds.
The command list also changes by left-clicking the command’s
name in the window in the upper left hand corner.

window 0 Deletes all existing windows.

For example, the commandndow calls displays a stack trace. To change the
window to display the breakpoints, use the commaimdiow 1 B.

windowcopy

Format:windowcopy wid=num

Copies the current selection in the window specifiedly, its window
identification number, to the clipboard. Many commands that affect specific
windows require this window identification number. You can get this number

142

Debugging with MULTI 2000

Debugger commands

by using the special sequence % w as part of amouse or keybind command.
See mouse on page 119 and keybind on page 112. See “Other window topics”
on page 42.

windowpaste

Format:windowpaste wid=num

Takes the clipboard and places it in the input buffer of the window specified by
num, its window id number. This command is typically used as parhojiuese

or keybind command. Semouse on page 119 ankieybind on page 112. Note
that this slightly differs from thevindowspaste command in that this uses the
clipboard, where awindowspaste uses the selection. Seendowspaste on

page 143.

windowspaste

xmit

xmitio

Format:windowspaste wid=num

Takes the selection and places it in the input buffer of the window specified by
num, its window id number. This command is typically used as parhofiuese
orkeybind commands. Saaouse on page 119 arkkybind on page 112. Note
that this slightly differs from thevindowpaste command in that this uses the
selection, where asindowpaste uses the clipboard. Seéndowpaste on page

143.

This command was in 1.8.9 MULTI but has been removed. Udeathe
command instead. Séelt on page 107.

Format:xmit string

Transmits commands to the target. Identicabt@et command. Setrget on
page 138.

Format:xmitio string

Transmitsstring immediately to the remote debug server, if one exists, without
being processed any further by the debuggeng is sent exactly as typed,
meaning that no form of local substitutions will work such as aliases or local
symbol names. The commands available with the remote debug server are listed

Green Hills Software, Inc. 143

4. Debugger commands

in the manual for the particular remote debug server used. xmit has no effect
with some remote debug servers.

z
Thisisthe capital Z. Thiscommand is obsolete. It wasin 1.8.9 MULTI, but has
been replaced by the chgcase command. See chgcase on page 91.

z
Thiscommand is obsolete. It wasin 1.8.9 MULTI, but has been replaced by the
zignal command. See zignal on page 144.

zignal

Format: zignal [signal] [s] [i] [r] [b] [C] [Q] [c [{cmds}]]

Sets up the signal handling table. If signal is not specified, the “current” signal

is used. The optional flags are:

s Toggles stop. If stop is on, then the program stops execution when the
signal occurs.

i Toggles ignore. If ignore is on, then the debugger does not send the
signal to the process.

r Toggles report. If report is on, then a message displays every time the
signal occurs.

b Toggles bell. If bell is on, then a beep sounds every time the signal
occurs.

C Clears the signal by setting all four of the above flags to false.

Q Does not print the new state of the signal.

c The signal’s command list is setdnds and is executed every time the
signal is encountered. If no commands are supplied, any existing
commands are removed. If you wish to continue from a signal that has
commands, end the commad list with theommand (see on page 88).

Thel zcommand (sekon page 113) to list the current handling of signals. For

example, assuming a start up statedofi(t stop, don’t ignore, don'’t report,

no bell), the command z 14 srsetsthe dlarm clock signal to stop (but still don’t

ignore) and report it occurred, but don't beep. Doirzdl4 sr again toggles

these flags back to the other state. Daiig Csb, no matter what the previous

state of the signal, will set the alarm clock signattp (but stilldon’t ignore)

and beep, but don’t report .

144 Debugging with MULTI 2000

Debugger commands

WARNING: It is highly recommended that you do not tamper with the state of
the “breakpoint” signal.

Green Hills Software, Inc. 145

4. Debugger commands

146 Debugging with MULTI 2000

Chapter

The data explorer

This chapter contains:
» The data explorer
» Dataexplorer basics
« View command
» Related commands
- Dataexplorer autosizing
« Dataexplorer messages
« Working with data explorers
« Dataexplorer format menu
« Dataexplorerswith an infinite view
« Updating data explorer windows

5. The data explorer

The data explorer

The data explorer allows you to view one or more variables of any typein a
separate window and is one of MULTI's most powerful features. This window
can be moved around and resized. The data explorer updates the values of
variables each time the program stops.

To open a data explorer, do one of the following:
« Double-click a variable in the source pane.
« In the command pane, entgrew variable_name.

For more information on théew command, see “View command” on page
150.

Data explorer basics

Here is an example of a data explorer:

i int V=

i/1z234

Title bar

The title bar of a data explorer is active. Here is a description of the items on the
title bar from left to right:

Data explorer title bar

Iltem Meaning

name This is the name or address of the variable or variables displayed. In the above
example, i is the name of the data explorer. You can change the name. For
more information, see “Modifying values” on page 158.

type This is the type of the variable being displayed. In the above example, int
refers to the C type integer. You can change the type. For more information,
see “Modifying values” on page 158.

This is the Format button. When you click it, the data explorer Format menu
v appears. For a description of the menu items, see “Data explorer format menu”
on page 160

148 Debugging with MULTI 2000

Data explorer basics

Next to the down arrow is a bullet called the freeze dot. Clicking the bullet

. freezes and unfreezes the representation of the data explorer. In a frozen state,
a stop sign appears and the contents of the window are preserved. The window
] is no longer being updated, and you cannot change the contents. Once a

window is unfrozen (click the stop sign), it will be updated to reflect the current
state of the program.

Typing Ctrl+d in the window opens a duplicate window and freezes the original,
replacing the bullet with a stop sign. This is useful if you want to continue
execution and compare a future value of a variable to its current value.

The pop arrow pops the data explorer back up one level. This only occurs when
ll there are derived data explorers present. See also “Working with data
explorers” on page 156.

When you click the close button, this closes the data explorer window. You can
x| also press Ctrl+q in the window to close it.

Hot keys

You can access many of data explorer’s different formatting options via hot
keys, so an experienced user can quickly and easily control which information
is displayed and how it is displayed. See “Data explorer format menu” on page
160 for a list of formatting options and their hot keys.

Searching and selections

To search for a value or label in a data explorer, use Ctrl+f or Ctrl+b. The search
string will be displayed in the “name” area of the data explorer. See also
“Incremental search” on page 40.

Text can only be selected in a data explorer window using the search feature.
Selections cannot be made with the mouse unless the default mouse bindings
are removed. See also “Selecting text” on page 39.

Mouse bindings

Many mouse actions are bound to useful data explorer commands. See
“Working with data explorers” on page 156 for a list of mouse clicks and
behaviors.

Green Hills Software, Inc. 149

5. The data explorer

View command

The view command opens a data explorer to display an item. You can monitor
an item and modify it, if it is a changeable variable (as opposed to a constant).
The different items you can view are the following:

View items

Command Description

view expr Opens a data explorer displaying the given expression.

view type Opens a data explorer displaying the given type. This is useful
for viewing items in a structure or class.

view $locals$ Displays all local variables in the current scope.

view filename Displays all procedures and any special variables in the given
file.

view *address Opens a data explorer displaying the contents of the given
location in memory. An asterisk (*) must be in front of the
viewed address. See also “Data explorers with an infinite view”
on page 164.

Viewing multiple items

You can view several items at once in a data explorer by specifying a comma
separated list of items to the view command. For example, this command:

view fly, bat, cheese ‘

displays the three variabledly; bat, andcheese—in the same data explorer.

To view an individual variable from the list in the same window, click the
variable. To view an individual variable from the list in a new window,
double-click the variable. For a list of mouse clicks and behaviors, see
“Working with data explorers” on page 156.

Viewing structures

If the item being viewed is a structure, the data explorer will show each field of
the struct separately.

150 Debugging with MULTI 2000

View command

The following is a data explorer showing a struct. It was generated with the
command view my_tree

Ty _tree sStruct tree Ve

language 0x109d4 -> "English"™
word O0x109de —-> "green'

id 1

left 0x10al18 (&foo_tree)

right Ox10aZc (&har_ tree)

In this example, the data explorer value is*my tree, and itstypeisstruct tree,
which contains five fields: language, word, id, left, and right.

Fields are displayed in their natural format (except unexpanded fields that are
structures or arrays), pointers to smple items are tracked and the value of the
item pointed to is shown. By default, fields are highlighted whenever their
values change. See also “ShowChanges” on page 164.

Viewing arrays
If the item being viewed is an array, the data explorer will show each element of
the array separately.

The following is a data explorer window showing an array. It was generated by
the commandiew bat, wherebat is an array of 4 integers:

hat int [4] Ve
[0] 10
[1] zO
[2] 30
[3] 40

To display pointer or address types as arrays, do one of the following:
« Right-click the type field. In this example, thd [4].
« Click the Format button®)and choose MakeArray.

Each subsequent use of MakeArray will increase the size of the array displayed.
See also “Data explorer format menu” on page 160.

To view a char pointer (in C and C++) as an array, click the Format button
(')and choose View Alternate.

Green Hills Software, Inc. 151

5. The data explorer

Viewing disassembled code

Using a procedure name as the argument displays disassembled code. For
example, view procedure_name opens a frozen data explorer of the
disassembled code for that routine:

#0x000100d0 _ code [18] TED
0x100d0 lis rii, oOx01 ;I
0x100d4 addi ril, rii, OxS5d4
0x100d5 lis riz, Ox01

Ox100de stw rill, Ox=04(rilz)
Ox100e0 lis rio, 0Ox01

Ox100e4 addi rio, rio, 0x9de =l
Ox100e5 lis riz, 0Ox01

Ox100ec stw ri0, Ox=03(rlz)
0x100£0 lis riz, Ox01

Ox100£4 141 ro, 1

Ox100£5 stw r0, Oxalcirlz) LI

Viewing C++ classes

In C++, classes are displayed including base classes and virtual base classes.
Static fields are displayed inside square brackets. Members of anonymous
unions are displayed with a greater-than sign (>) preceding the member names.

Related commands

infiniteview
This command creates a data explorer with an “infinite” view at a specified
address. See “Data explorers with an infinite view” on page 164.

update

This command opens data explorer windows once or at a specified interval. See
“Updating data explorer windows” on page 164.

viewlist
This command provides a convenient way to view any number of elements of a
linked list. Its usage is:
viewlist structptr nextptr [links]

Wherestructptr is the name of the linked list heamxtptr is the name of the
element of the structure that points to the next link,lamkd is the maximum
number of links to follow. See “viewlist” on page 140.

152 Debugging with MULTI 2000

Related commands

viewdel

This command deletes all data explorer windows associated with the debugger.
It also deletes all memory view windows, call stack windows, and breakpoints
windows.

viewcommand

This command can be used to manipulate the data explorer. This command is
event driven and therefore is only useful for mouse or key bindings.

Format: viewcommand cmds [=y[,X]] [press|release] [wid=num]

Requests a data explorer, monitor, or remote window to perform some action.
The numisawindow identification number obtained by the %w command. See
“scrollcommand” on page 133 for more informationnom.

Much of the information needed for certaimwcommand’s is dynamic and
difficult to obtain, thus there are a few variables available which the debugger
will automatically assign whemdewcommand is run. They can be used to
dynamically assign some of these values:

Variables automatically assigned by the debugger

%m If the event is a mouse button press or release, this will be
replaced by the word press or release respectively.

%w This will automatically be replaced with the window manager
assigned identification number of the window in which the
event took place.

%X This will be replaced with the current mouse X-coordinant.
%y This will be replaced with the current mouse Y-coordinant.
Examples

viewcommand IncrField=%y,%x %m wid=%w

viewcommand Pop wid=%w

For more examples, choose Config > Options... > General tab > Mouse
Bindings... and look at the bindings in the Mouse Commands window.

The following is a list otmds:

Values for cmds

Beep The data explorer beeps to indicate an error. If no command matches
a press, this is the default.

Noop Does nothing. (Short for “No operation”.)

Green Hills Software, Inc. 153

5. The data explorer

EditType Opens a dialog box to change the type of data displayed in the data
explorer. This command needs a window number.

EditAddress Opens a dialog box to change the address displayed by the data
explorer. This command needs a window number.

AddVariable Opens a dialog box to change the variable(s) displayed by the data
explorer. This command needs a window number.

AddVarOrAdr Opens a dialog box to change either the variables or the address
displayed by the data explorer. This command needs a window
number.

EditField Opens a dialog box to change the value of a field, or element of an

array. This command needs a y value and a window number.

IncrField Increases the value of the field by the integer value one. This
command needs a window number, X, y, and a press/release field.

DecrField Decreases the value of the field by the integer value one. This
command needs a window number, X, y, and a press/release field.

MakeArray Changes the type of item displayed in an array of the current type. If
the current type is an array, it makes a bigger one. This command
needs a window number.

FindTypeAndCast For C++ only: determines the most derived type of current object,
casts the data explorer to that, and displays it. This command needs
a window number.

ViewField Changes the data explorer to look at a field. This command needs ay
value and a window number.

NewViewField Opens a new data explorer to look at a field. This command needs a
y value and a window number.

FormatMenu Opens the format menu. This command needs a window number and
a press/release field.

ToggleFreeze Toggles the data explorer between being frozen or not. This
command needs a window number.

Duplicate Opens another copy of this data explorer. This command needs a
window number.

DuplicateFreeze Opens another copy and freezes the current data explorer. This
command needs a window number.

CloseView Pops to a previous data explorer if it exists, or removes the data
explorer. This command needs a window number.

KillView Removes the data explorer. This command needs a window number.

PopView Pops to a previous data explorer. This command needs a window
number.

Help Pops up a small help window describing the behavior of the data
explorer.

154 Debugging with MULTI 2000

Data explorer autosizing

Data explorer autosizing

The debugger will try to pick reasonable and convenient values for certain data
explorer window sizes. In order they do not override user sizing, auto-sizing
will only occur when the data explorer is created and when the number of rows
changes.

The width and height of the window will be set to the best value between the
specified minimums and maximums. You may configure these minimums and
maximums in the Configuration Options dialog box (Choose Config >
Options...). For uniformity, the width minimum and maximum are both set to 40
characters, by default. The height ranges from 3 rows minimum to afunction of
the display height for the maximum.

The column divider will resize itself based on the length of the longest string in
the first column.

Data explorer messages

A number of messages may be displayed in the data explorer at various times.
Some warn that the data being displayed might be untrustworthy, others
describe why the data cannot be displayed.

Data explorer messages

Message Meaning

Infinite views must look The data explorer is in infinite view mode, but the variable is in
at memory, not registers a register. See also “Infinite” on page 163.

NaN Short for “not a number”. For floating-point variable types, the
value is not a legal representation of any number.

na The data is too complex to show on this line. To expand the
data to the current window, left-click the line. To show the data
in a new data explorer window, double-left-click the line.

No process No process is currently being debugged.

No symbols for this Debug symbol information does not exist for the current

procedure procedure.

Optimized away The variable does not exist because a compiler optimization
decided it was not necessary.

Original procedure not The original procedure in which the variable was in scope is no

on stack longer on the call stack. This message will only be displayed in

“evaluate in context” mode. See “In Context” on page 162.

Green Hills Software, Inc. 155

5. The data explorer

Out of register scope The variable was assigned to a register, but is no longer
assigned to any register. If the register has been overloaded, it
may now represent a different variable. The data explorer will
show the current value of the register along with this message,
but the value may now be meaningless.

Out of scope The variable no longer exists in the current lexical scope. The
data explorer will show the current value of the register along
with this message, but the value is most likely meaningless.

Process running The process being debugged is currently running, so no value
is known for the variable.

Uninitialized The variable has most likely not been assigned a value and
could be a random value in memory. The data explorer will
show the current value of the memory, but it is most likely
meaningless.

Unreadable memory For a pointer or address type, the debugger does not have
read access to the memory pointed to, or it does not exist.

Working with data explorers

Data Explorers are interactive, and are manipulated to display associated
information or to change the values of variables. Most of the mouse actions

listed below refer to the default bindings. The bindings have been provided
where applicable. To change the default mouse bindings, choose Config >
Options... > General tab and press the “Mouse Bindings...” button, or use the
mouse command from the debugger. ®®@ese on page 119.

Configuring the maximum complexity of displayed data

Depending on your target, it may be desirable to minimize reading data from the
target which has not been explicitly requested. Three configuration options are
provided to limit the complexity of information displayed in data explorer
windows. The~ormatStringM axL ength configuration option allows you to
specify a maximum length for the string representation of your data in the data
explorer window. Once the data accumulated reaches this length, no further
data will be read from the target for the display of that variable in the data
explorer window without pushing into it. TR@rmatStringM axDepth
configuration option allows you to specify how many levels of nested structures
the data explorer window attempts two display on one line. Nested structures
below this depth will have their values displayed as “< na >". Finally, the

L oadL ongArraysOnViewWinCreation configuration option allows you to
specify whether arrays of more than 1,000 elements will initially have all
elements displayed or only their first 1,000 elements.

156

Debugging with MULTI 2000

Working with data explorers

Changing views

Pushing views

To display more information on afield in a data explorer window, click the

desired field. This pushes the currently displayed data onto the window’s stack,
displaying the requested information. An up arr(t} () will appear to indicate
that this data explorer contains other view(s) on its stack. To return to the
previous data explorer view, click this arrow. In our “view my_tree” example
above:

Ty _tree sStruct tree Ve

language 0x109d4 -> "English"™

word O0x109de —-> "green'
id 1

left 0x10al18 (&foo_tree)
right Ox10aZc (&har_ tree)

When we click “language”, we get the item pointed to by “language” in the
same data explorer window:

*my_tree->language unsigned char [5] ¥ = 1‘

*my_tree-rlanguage "English"”

The default binding for this action is:

Mousel*Clickl@View=viewcommand ViewField=%y wid=%w ‘

Popping views
To return to the first window, click the Pop butt¢tl(). The Pop button may be
pressed once for each view that has been pushed.

New views

To open a new data explorer window to display a field, double click the field.
This leaves the original window unchanged. The view stack is not transferred,
so the new explorer will not have any views on its stack even if the original one
did.

The default binding for this action is:

Mousel*Click2@View=viewcommand NewViewField=%y wid=%w

Green Hills Software, Inc. 157

5. The data explorer

Modifying values

You can modify the information displayed in the data explorer window. Here
are the values you can modify:

« type of variable displayed
« valueof avariable

« name of variable displayed
« address of data displayed

Modifying the name or address

To change the name or address of the data being displayed, |eft-click the name

field. You cannot change addresses in frozen data explorers. If you are changing
the variable name, you can enter a comma separated list of items in this dialog

box to view multiple items at once.

The default binding for this action is:

Mousel*Clickl@Name=viewcommand AddVarOrAdr wid=%w

Modifying the type
To change the type of the data being displayed, left click the type field. You
cannot change typesin frozen data explorers.

The default binding for this action is:

Mousel*Clickl@ Type=viewcommand EditType wid=%w

Modifying the data

To increment the value of the datain afield, middle click the number to be
incremented. The value will be increased by the integer one.

To decrement the value of the datain afield, Shift middle click the number to
be decremented. The value will be decreased by the integer one.

To change adata value more generally, right click the data to be changed. A
dialogue box will pop up prompting you to type in anew value.

The default binding for this action is:

Mousel*Clickl@ Values=viewcommand EditField wid=%w

158

Debugging with MULTI 2000

Working with data explorers

Changing view style

To change the type into an array, right click the type field. If it isalready an
array, alarger array is created. Thisis useful for looking at items of unknown
size such as Ada unconstrained typed variables, C strings, or C++ virtual tables.

Right clicking the addressis only relevant in C++. If an object is examined
through a pointer to one of its base classes, then the actual type is hidden. With
multiple inheritance, its addressis also altered. The debugger attemptsto find
the actual type by looking up the name of the virtual table.

Note: to view a C or C++ char pointer as an array first use the ViewAlternate
command.

The default binding for this action is:

Mouse3*Click1@ Type=viewcommand MakeArray wid=%w

Default mouse bindings
The following are the default mouse clicks.

Default mouse clicks

Mouse Click Object Effect

left click * Freeze button | Toggles data explorer frozen state

left click X| Close button Closes the data explorer

left click W Format button | Opens the Format menu

left click Name field Edit the item(s) to be viewed

left click Type field Edit the type

right click Type field Makes the data explorer an array, or increases
the size of the current array

left click Data field Pushes the current view, showing the data
value

double left click Data field Opens a new data explorer showing the data
value

middle click Data field Increments the value in the field

shift+middle click | Data field Decrements the value in the field

left click Data field Edit the value in the field

Green Hills Software, Inc.

159

5. The data explorer

Data explorer format menu

To open the data explorer format menu, click the Format button (/&)on the title
bar.

A dot beside an option indicates it is currently set. Selecting an option toggles
its state. The following sections contain an explanation of each option. Hotkeys
are shown for options where they are available. You can type these hotkeys
anywhere in a data explorer window.

Display address or type

Show Address
Hotkey: S
The name field in the upper left corner of the data explorer will either display

the actual name of the viewed variable, or the address. This option toggles
between these two states.

Show Type
Hotkey: T

When you view multiple variables, classes, or structures, to display the type of
each member, choose Show Type.

Number bases

Thefollowing pertain to al types except string types (character pointers) which
are always displayed as quotes strings unless “View Alternate” is selected, in
which case they are displayed as an array of characters.

Natural

Hotkey: N

In natural mode all numbers are shown in their default state. If “Hexadecimal”
mode is selected, all numbers are shown in hexadecimal, otherwise addresses

are displayed in hexadecimal, characters in ASCII, and other numbers in
decimal.

Decimal
Hotkey: D

All numbers are displayed in base 10.

160 Debugging with MULTI 2000

Data explorer format menu

Hexadecimal
Hotkey: H
All numbers are displayed in base 16.

Binary
Hotkey: B

All numbers are displayed in base 2.

Octal
Hotkey: O
All numbers are displayed in base 8.

Alternate viewing methods

View Alternate
Hotkey: V

In addition to the standard way of displaying avalue, an alternate is available.
The definition of the alternate depends on the type of item displayed. For
example, an integer isalso displayed in hex, afield with an enum typeisaso
displayed in decimal. Character pointers, which are normally displayed as a
string, will be displayed as a character array. Other pointers have no aternate

display type.

Memory View
Hotkey: M

Opens aMemory View window for interactively displaying and modifying
memory contents. Thiswindow initially displays memory at the address
specified. See memview on page 118.

Make Array
Hotkey: A

Displays pointer and address types as an array. If the displayed item is already

an array, thiswill increase the size of the array displayed. Thiswill also be

executed by a mouse right-click on the type field of the data explorer window.

Note: character pointer types (in C and C++) must be in “view alternate” mode
to be viewed as an array, see View Alternate above.

Green Hills Software, Inc. 161

5. The data explorer

Evaluate sub-menu

Only one of these four can be selected at a time. Normally, “As Global” is used
for all expressions involving only global variables, “By Address” is used if the
expression is a static variable, and “In Context” is used for most others. If the
value to create the data explorer involves a procedure call, such as
“array[fly()]", then “By Address” is employed.

In Context

Hotkey: C

Every time the debugger is about to update the data explorer (for instance when
the target process hits a breakpoint) it reevaluates the expression named in the
title bar. It attempts to evaluate the expression in the same context where it was
first evaluated. For example, if a procedure is called since the data explorer was
created, the debugger walks up the stack until it finds a stack frame with the
right procedure and evaluates the expression there. If it cannot find such a stack
frame, it displays an error.

As Local
Hotkey: L

Similar to “In Context”, except it always evaluates to the current procedure at
the top of the stack.

As Global
Hotkey: G
The debugger reevaluates the expression, ignores all procedure scopes, and only

looks for variables in the global scope. This is useful if an expression involves
only global variables.

By Address
Hotkey: A

The debugger pays no attention to the expression, and instead uses the last valid
address for this data explorer to display the data. This is useful for examining
local variables before and afer they are in scope.

Format sub-menu
You can only select one of the following:

162 Debugging with MULTI 2000

Data explorer format menu

Advanced

Formatted

The data explorer shows the data according to the given type. Thisisthe normal
mode.

Type

Only thetypeinformation isdisplayed. In C++, alist of all member functions of
the typeisdisplayed. Left clicking amember function causes the source paneto
display that function. Warning: Inlined functions are not shown in the list.

Using the same “my_tree” example above, we choose Format > Type:

struct tree ¥ &3

unsigned char *language
unsigned char *word

int id

struct tree *left
struct tree *right

Infinite

The address of the viewed object displays memory in an infinitely scrollable
fashion, limited only by the memory of the machine. In this mode, the scroll
thumb is fixed in the center of the scrollbar. You can click above or below the
fixed scroll thumb, or on the scroll arrows, to scroll the windows.

*Ox00010a04 atruct tree [6] Ve

O0x10a04 {0x109d4 -> "English",0x109dc -> "greenﬂ:]
0x10&15 {0x0,0=x0,0,0x0,0x0}

Ox10&2c {0x0,0=x0,0,0x0,0x0}

O0x10a40 {0x10a04 |&dwany) -> ", 0xa,20,0xle,0xZ5
O0x10&a54 {0x0,0=x0,0,0x0,0x0} =
Ox10&a658 {0x0,0=x0,0,0x0,0x0}

0x10a7c {0x0,0x0, 1642232, 0x0,0x0}

Ox10a90 {0x0,0x0,0,0x0,0x0} -
1| | »

See also “Data explorers with an infinite view” on page 164.

Sub-menu

Expand Value

This indicates that pointers to simple items show what they point to (if in
readable memory), rather than displaying only the value of the pointer. Also,
simple arrays and structures show their first few elements. This option is on by
default.

Green Hills Software, Inc. 163

5. The data explorer

Open Pointer

If thisitem is selected, the data explorer automatically dereferencesall pointers.
Otherwise it displays the value of the pointer. This option is on by default.

ShowChanges

If thisitem is selected, then fields changing in the data explorer windows are
highlighted. This option is on by default.

Print

Thisitem will invoke the Print Dialog, allowing you to print the contents of the
window.

Make Default

If thisitem is selected, then the current setting of the items above will be the
default when the next data explorer is created. This command does not pertain
to the Format menu items. These settings are saved for the remainder of this
MULTI session only.

Reset Type
Resets the type field to the original setting if it has changed.

Refresh
Reloads the data explorer from memory, and redraws it.

Data explorers with an infinite view

infiniteview * address

Thisisamost identical to the view command. See “View command” on page

150. The difference is that this command opens a data explorer window to scroll
through all of memory, starting at the location specifie@diyress. The

memory address must be preceded by an asté)iskq get the same effect

with a normal data explorer, choose Format menu > Format > Infinite. See also
“Format sub-menu” on page 162.

Updating data explorer windows

Format:update [interval]

164 Debugging with MULTI 2000

Updating data explorer windows

This command forces al currently open and non-frozen data explorer and
monitor windows to re-evaluate, halting the process, if necessary, to get the
information. If the process halts, it resumes after refreshing the windows. This
provides a quick and easy way to update your data explorer windows to their
current values without having to manually halt the process and resume. This
feature may not work under all circumstances.

If interval is specified, then the debugger automatically updates data explorer
windows approximately every interval seconds while the program is running.
Thisisauseful way to monitor the value of a variable continuously while the
program is running. To deactivate the automatic update, specify interval to zero.

Green Hills Software, Inc. 165

5. The data explorer

166 Debugging with MULTI 2000

Chapter

Run-time error
checking

This chapter contains:
¢ Run-time error checking
« Run-time Error tab check boxes
« Memory checking drop-down list
¢ Finding memory leaks

6. Run-time error checking

MULTI provides run-time error checking for many different classes of program errors, using
acombination of compiler checks, special libraries, and debugger commands. You can enable
several run-time error checking capabilities in the Run-time Checking tab (or the -check=
build-time command line option). Building the program with run-time checking enabled
makes the error checking available to the debugger.

Run-time error checking

(Builder: Project > Options for Selected Files... > Run-time Error tab)

The Memory Checking drop-down list box at the top has four choices: Default,
None, Allocation, or Memory, explained below. Below thislist box isarow of
check boxes. Select the check boxes to enable the desired error checks. Most of
these checks occur at run-time, although some occur completely at compile
time, indicated below. To support the run-time checks, the compiler generates
extra code at compile time which will increase the size of the resulting program.

Run-time Error tab check boxes

The following are the check boxesin the Run-time Error tab.

Run-time Error tab check boxes

Check box

Description

Array Bounds

Checks array bound indexes. For constant indexes, this check
occurs at compile-time; for other expressions at run-time.
Equivalent to the -check=bounds build-time command line
option.

The error message is: “Array index out of bounds”

Assignment Bounds

When assigning a value to a variable or field which is a small
integral type such as a bit field, this checks if the value is within
the range of the type. Equivalent to the -check=assignbound
build-time command line option.

The error message is:
“Assignment out of bounds”
or

“Value outside of type”

NULL Dereference

Generates an error message for all dereferences of NULL
pointers. Equivalent to the -check=nilderef build-time
command line option. The error message is: “NULL pointer
dereference”

168

Debugging with MULTI 2000

Run-time Error tab check boxes

Run-time Error tab check boxes

Check box

Description

Case/Switch Statement

Generates a warning if the case/switch expression does not
match any of the case/switch labels. This does not apply
when using a default case/switch label. Equivalent to the
-check=switch build-time command line option.

The error message is: “Case/switch index out of bounds”

Divide by Zero

Generates an error message indicating a divide by zero.
Equivalent to the -check=zerodivide build-time command line
option. The error message is: “Divide by 0”

Unused Variables

Generates an error message at compile-time for declared
variables never used. Equivalent to the -check=usevariable
build-time command line option.

The error message is: “Unused variable”

Pascal Variants

Checks that the tag field of a variable declared as a variant
record type matches one of the case selectors in the record.
This applies only to Pascal. Equivalent to the -check=variant
build-time command line option.

The error message is: “Bad variant for reference”

Watchpoint

Enables the debugger’'s watchpoint command to create one
watchpoint without using an assertion. Equivalent to the
-check=watchpoint build-time command line option. See
“watchpoint” on page 141.

The error message is: “Write to watchpoint”

Return

Generates a warning if a non-void procedure ends without an
explicit return. For example, the following procedure generates
a warning when exiting:
int func() {
for (int x = 0; x< 10; x++) {
if (x == 10)
return x;
}
}

This option only applies to C and C++. Equivalent to the
-check=return build-time command line option.

The error message is: “No value returned from function”

Green Hills Software, Inc.

169

6. Run-time error checking

Memory checking drop-down list

(Builder: Project > Optionsfor Selected Files... > Runtime-Error tab > Memory
checking drop-down list)

Generall Optimization Runetime Error |Cnnfiguration

Memaom Checking: |Def
[~ Amray Bounds

Wone .
: Allocation
[Aszighment B b ermar

[~ MULL Dereference

Memory checking is not available for use on all systems. It is not supported for
use with an RTOS with non-standard memory allocation primitives.

Memory checking drop-down list

Item Description
Default Maintains the previous or inherited setting. Originally, the default is None.
None Disengages memory checking.

Allocation Checks for the following memory errors. Equivalent to the -check=alloc
build-time command line option. It also enables the debugger’s findleaks
command. See “Finding memory leaks” on page 171. To support this
allocation memory checking the program is linked with an instrumented
version of the malloc() library, usually located in the library libdbmem.a.

If the program attempts to free memory not previously allocated, this error is
reported:

“Attempt to free something not allocated”

If the program attempts to free memory already free, sometimes the
previous error message is reported here. Otherwise, this error is reported:
“Attempt to free something already free”

If the program attempts to allocate memory after various other errors
occurred, this error report appears:

“Malloc internals (free list?) corrupted”

Memory Generates an error message when the program tries to access memory that
is not yet allocated. Equivalent to the -check=memory build-time command
line option.

Compiling a source file with this level of checking will cause the generated

code to be both larger and slower. You may wish to link the application with
Allocation checking and only compile a few selected modules with Memory
checking.

This level of checking displays the appropriate Allocation error messages,

above, in addition to the following:

“Attempt to read/write memory not yet allocated”

170 Debugging with MULTI 2000

Finding memory leaks

Finding memory leaks

Command-line format: findleaks

If your program is built/linked with either allocation or memory level memory
checking, then this command finds chunks of memory that were allocated but
are not reachable by pointer in the application.

You must halt the process you are debugging to use this command, but invoke
the command before the process terminates. Often, thisis most easily
accomplished by setting a breakpoint on the last line of your program.

This command creates a window showing the following information for each
chunk of memory found:

« The address of the chunk of memory alocated.
» Thesize of the alocated block.

« The procedure and line number (or address) of the routine calling malloc
and the routine calling that routine and so on up to five levels.

If you click alinein this window, the debugger source pane display movesto
the procedure which called malloc, while double clicking a line shows the
procedure which called that one, and so on up to five clicks.

Green Hills Software, Inc. 171

6. Run-time error checking

172 Debugging with MULTI 2000

Chapter

The Profiler

This chapter contains:

Introduction to the profiler
Using the profiler
Profiling targets

The profdump command
The protrans utility

7. The Profiler

Introduction to the profiler

The MULTI profiler (“the profiler”) is a tool that gathers important data about
the execution of your program. This data can greatly improve the performance
of existing programs.

To compile a program with one or more of the profiling options:
1. From the Builder window, choose Project > Options for Selected Files...

2. Set the Performance Analysis and the Coverage Analysis drop-down list
boxes. They set the profiling options for the compiler.

The Performance Analysis drop-down list box contains the Functions and
Graph options mentioned below. These options are equivalent+o &nel-pg
compiler options. Coverage Analysis is equivalent to compiling withathe
compiler option.

Support for profiling and the steps necessary to collect profile data may vary
depending on your target environment. Please consult the Profiling Targets
section of this Chapter and your targ&®&velopment Guide for additional
target-specific information on using the profiler.

Execution time

During execution, the runtime environment collects samples of the program
counter (PC) at various times. The exact sampling mechanism is target-specific.
See “Profiling targets” on page 182. The resulting collection of PC data points
gives a profile of where the program spends its time. The profiler shows you
how much time is spent in:

« the program

« each function

« each basic block

« each source line

« each assembly instruction.

You may see large improvements in execution time by focusing and improving
small amounts of code corresponding to a large percentage of total execution
time. The compiler does not need to change your code to gather an execution
sampling.

174

Debugging with MULTI 2000

Using the profiler

Standard calls

Compiling with the Functions option places callsto specia profiling routinesin
your program to see how many times each function is called.

Call graph

Compiling with the Graph option also places callsin your program. It showsthe
number of calls made to each function, which “child” functions are called by
each “parent” function, and how many times each child is called.

To bring up a graphical representation of the call graph, do one of the following:
« In the command pane, enterowse dcalls
« Choose Browse > Dynamic Calls...

See also “Browsing dynamic calls, by function” on page 218.

Block coverage

Compiling with Coverage Analysis gathers a profile of basic block executions.
If a given basic block is executed zero times, then the group of instructions
making up this block is considered dead code for the given sample input where
the program runs. You may remove the dead code from the application or try to
discover if there is functionality missing from the application since it never
reaches the dead code.

Using the profiler

Before using the Profiler, you must do the following:
1. From the Builder window, choose Project > Options for Selected Files... .
2. Before you compile your program, choose the desired profiler options.

3. Before you run your program, open the debugger and start profiling. You can
do this one of two ways: either open the profiler window or in the command
pane, entemprofilemode start.

4. Let your program run at least once (or halt it and usertbElump com-
mand)before generating reports in the profiler. See “The profdump com-
mand” on page 183.

Note: Some targets require additional preparation to collect profiling data.

Green Hills Software, Inc. 175

7. The Profiler

To open the profiler window, do one of the following:

» Choose View > Profile...

« Inthe command pane, enter profile.

Let your program run at least once before generating profiler reports. This
allows MULTI to generate profile information files from the program’s
directory that the profiler can use.

The following are the menus in the profiler window.

File menu

Item

Description

Save Report...

Save the report currently in the profiling window to a file.

Append Report...

Append the report currently in the profiling window to a

pre-existing file.

Print Report...

Print the report currently in the profiling window.

The following shows the “Config > New Data” and the “Config > Data
Processing” sub-menu items and their command line equivalents:

Config menu

Item Description of Configuration Command
New Data > When a new set of profile data is profilemode add
Added to old processed, such as data from a new run of

the program, this new data will be added to

the old data. This is the default.
New Data > When a new set of profile data is profilemode replace
Replaces old processed, such as data from a new run of

the program, this new data will replace the
old data.

Data Processing >
Automatic

After a run completes, the new profile data
is automatically processed and stored in
the profile database. This is the default.

profilemode automatic

Data Processing >
Manual

After a run completes, the data must be
manually processed. Helpful if a program
is to be run multiple times prior to
analyzing profiling results.

profilemode manual

176

Debugging with MULTI 2000

Using the profiler

The following are the buttons in the profiler window and their command-line
equivalents, if any:

Profiler window buttons

Button Description of action Command

L Begin collecting profiling information. Bringing up the profilemode start
profiling window automatically executes this command.

8 Stop collecting profiling information. profilemode stop
Delete any existing profiling data. profilemode clear

B m

Displays in the debugger the percentage of time spent profilemode percent
in each source line, to the left of each source code line.
In assembly mode, it is the percentage of time spent on
each instruction. This is the default. (Note that "~0%"
means that line/instruction took very close to 0% of the
total execution time.)

@ Highlights "dead code", lines which were never profilemode
executed during the profiling run. This is only available | coverage
if the program was compiled with the Coverage option.

@ If the program was compiled with the Coverage option, profilemode count
then this displays in the Debugger the total number of
times each line (or instruction) is executed.

If the program was not compiled with the Coverage
option, but was compiled with either the Functions or
Graph options, then this displays in the Debugger (at
the beginning of each function) the number of times
each function was called.

If the program was not compiled with any of the
Coverage, Functions, or Graph options, then this view is

not available.
isplays in the profiler the Status Report. See “Status n/a
1= Displays in the profiler the Status R See “S /
report” on page 179.
|ﬂ} Displays in the profiler the Standard Calls Report. See n/a
“Standard calls report” on page 179.
||Q3 Displays in the profiler the Call Graph Report. See “Call | n/a
graph report” on page 180.
||£} Displays in the profiler the Summary of Coverage n/a
Information Report. See “Block coverage summary” on
page 181.
||£ Displays in the profiler the Detailed Coverage n/a
Information Report. See “Detailed block coverage” on
page 181.

Displays in the profiler the Source Lines Report. See n/a
“Source lines report” on page 182.

#’ Manually processes the profiling information. See profilemode
“Processing data” on page 178. process

Green Hills Software, Inc. 177

7. The Profiler

Ei Opens Range Analysis window. See “Range analysis” profilemode range
on page 178. addr1 addr2
Opens Dynamic Call Graph centered on the present browse dcalls
function being examined in the debugger. See
“Browsing dynamic calls, by function” on page 218.
[‘Qe, Dump the currently available profiling information from profdump
the target. See “The profdump command” on page 183.
X Close the profiler window. Note that this does not n/a
deactivate or in any other way affect the state of
profiling. You can configure whether or not to have this
button.

Processing data

To set the processing of datato manual, do one of the following:
e Choose Config > Data Processing > Manua
* Inthe command pane, enter: profilemode manual

When the processing of datais set to manual, to force processing of profiling
data, do one of the following:

+ Click the Process data button (| %).
« Inthe command pane, enter: profilemode process

When debugging natively, data processing is also used when first entering the
profiler to process mon.out, gmon.out files, etc. previously generated with the
program.

When debugging on an embedded target, the data processing is only used when
at least one run of the program is completed in the current profiler session. The
sampling data generated by the debug server, unlike mon.out, gmon.out files
etc. produced by the program itself, are internal to the profiler and are deleted
after processing. The profile data file written by the debug server also contains
information such as the target endianness which must be known by the profiler
in order to read the other profile data files such as mon.out. Thus, the profiler
cannot read in profile data generated during a different session.

Range analysis

Improving the performance of an application often requires isolation of small
portions of large subroutines, such as computationally intensive nested loops,
which account for the majority of the subroutine’s execution time.

After profile data becomes available, you can get profile information for a
particular section of code by clicking the Range Analysis bu . (

178

Debugging with MULTI 2000

Using the profiler

You may specify arange of hexadecimal addresses with these fields. When the
debugger displays the program in assembly mode, hexadecimal addresses are
located to the left of their corresponding instructions. You can click these
addresses to input the number into the range text fields, thereby giving a
convenient way to specify ranges.

When arange is specified in the text fields, click the Calculate Range button to
display the amount of time in seconds as well as a percentage of total execution
time for this range in the bottom of the Range Analysis window. If no range or

an inappropriate range is specified when you select the Calculate Range button,
the valid range of sampling addresses for the program is displayed in the Range
Anaysiswindow. The window can be dismissed by pressing the Close button.

To obtain Range Analysis from the debugger command pane, enter:

profilemode range start_addr end_addr

where start_addr and end_addr are the beginning and end of your range,
respectively. The result will appear in the debugger command pane.

The profiling reports

Six profile reports are available, depending on whether the appropriate data
exists. The reports generally consist of several columns of information, and a
status bar at the bottom of the report. Most of the columns can be sorted by
clicking the header. Clicking the same header again will sort in the opposite
direction. All of the columns can be resized by dragging the seperator to the | eft
or right. All of the columns can aso be moved around by dragging the header to
the appropriate location. Within each of the reports, clicking a function name
(or other program component) moves you to that location in the Debugger
source pane; a double click invokes an editing window. You can save, append,
or print any report from the File menu.

Status report

Thisisthe report that appears when you first open the profiling window. Itis
awaysavailable. It givesgenera information about profiling, such aswhat type
of data has been collected. The status bar indicates whether or not profiling is
active.

Standard calls report

This report gives a summary of program execution time per function. Itis
available when any type of program counter sampling is done such as mon.out
or gmon.out.

Green Hills Software, Inc. 179

7. The Profiler

Standard calls

Header

Meaning

Percent time

The percentage of the total program time spent in each
function.

Time The amount of time spent in each function. The status bar
indicates if this is measured in seconds or milliseconds

calls The number of times the function is called.

Time(ms)/call The number of milliseconds spent on each call to the function.
Note that this is always measured in milliseconds, regardless
of the contents of the status bar.

Function The name of the function.

Note that the percentages may not add to 100%, as the profiler only monitors

how much time is actually spent in the function.

Call graph report

This report gives a summary of program execution time per function, including
functions’ descendants. Descendants of a function are all routines called by that
function, and all routines called by those routines, and all routines called by
those routines, etc. This report is available when the program is compiled with
the Graph option angimon.out file(s) are created.

Call graph
Header Meaning
Function The name of the function.

Calls by Function

The routines called by the function. This lists each function
called by the function, and the percent of the total calls made
by this function to each of the listed routines.

Calls to Function

The routines that called the function. This lists all the routines
that called the function, and the percent of the total calls made
to this function by each of the listed routines.

Self Time The actual time spent in each function

Self % The percentage of total time spent in each function.

Child Time The actual time spent in the all of the children of each function
Child % The percentage of total time that the children of each function

represent

180

Debugging with MULTI 2000

Using the profiler

Self+Child Time The total time spent in each function including its children.
Self+Child % The percentage of total time spent in each function and its
children.

The status bar indicates if the times are listed in seconds or milliseconds.

Block coverage summary

The status bar gives a summary of the coverage of the entire program. It is
available when the program is compiled with the Coverage Analysis option on.

Block coverage summary

Header Meaning

Function The function names.

Blocks The number of basic blocks in each function.
% Covered The percentage of basic blocks executed.

The status bar gives asummary of the coverage of the entire program. For more
information about coverage within each function, see the Block Coverage
Detailed section below.

Detailed block coverage

This report gives the program code coverage per basic block. It is available
when the program is compiled with the Coverage Analysis option on.

Block coverage (detailed)

Header Meaning

Function The function names.

Address The starting address of each block.

Line Number The (file-relative) source line corresponding to each block.
Executions The number of times that block was entered.

Time The total time spent in each block.

% Total Runtime The percentage of total time spent in each block

The status bar indicates if the times are listed as seconds or milliseconds.

Green Hills Software, Inc. 181

7. The Profiler

Source lines report

Thisreport isalisting of all the source lines of the program, along with how
long each took to execute. A source lineisuniquely determined by the filename
and (file-relative) line number. Only lineswith positive times are displayed. The
time it takes to processthisreport is proportional to the size of the program and
hence may take longer for very large programs. This report is available when
any type of program counter sampling is done such as mon.out or gmon.out.

Source lines

Header Meaning

Filename The file that the source line is in.

Line Number The (file-relative) line number of the source line.

Function The function that the source line appears in.

Time The time spent on the given line. The status bar indicates if
this is displayed in seconds or milliseconds.

Profiling targets

You can use the Profiler with both remote and native targets. It works with
simulators, monitors, and emulators.

Profiling native targets

Profiling uses aregular interrupt, typically 60 Hz, to obtain the location of the
program counter.

Profiling with simulators

Profiling with a simulator is often much more accurate than native profiling.
Normally, profiling information is obtained by periodically halting the program
and recording the location of the program counter. This method is purely
statistical and is subject to errors. Besides knowing which instruction it is
simulating, a simulator also has a concept of how many machine clocks passed.
Thisinformation tells the length of each instruction. This gives exact profiling
information, subject to the accuracy of the simulator’s model of the target
processor.

182

Debugging with MULTI 2000

The profdump command

Profiling with monitors

When profiling, monitors use aregular interrupt, typically 60 hertz, to obtain
the location of the program counter. These samples are stored in an interna
buffer, the contents of which are sent to the host as soon asit isfull.

Profiling with emulators

When profiling, emulators provide a mechanism where trace information is
interpreted as profiling data. Depending on the emulator, this is done either
automatically or manually.

The profdump command

profdump

This command is primarily used when debugging a remote program that does
not terminate normally such as an operating system, since normally profiling
information is dumped upon exiting the program. This command &l so obtains
timing information prior to complete program execution.

To write and clear current timing buffers, do one of the following:
 Click the Profdump button (ﬂq).
 Inthe command pane, enter the command profdump

After the command executes, you must process the data (see “Processing data
on page 178). Because this command clears the buffers, subsequent uses of it
dump profile information not contained in the previous dump.

The protrans utility

Format:protrans options program

Green Hills Software, Inc. 183

7. The Profiler

Options:

Protrans options

Option Meaning

-a This switch adds the profile data for the current execution to the

summary profile. Without this switch, a new profile is generated
with each execution, overwriting the previous profile.

-q This switch suppresses message printing. Without this switch,
protrans prints a small message for each execution describing
the type of profile data found.

-m file Specifies file as a file containing calls profile data.
g file Specifies file as a file containing call graph profile data.
-b file Specifies file as a file containing coverage analysis profile data.

protransisautility that reads profile data produced when a program built for
profiling is executed. protrans accumulates profile data over multiple runs of a
program. protranstranslates the data into an intermediate format that the
profiler uses when displaying profile data.

The protrans utility is also used outside of the MULTI environment. Thisis
desirable if you want to automate the acquisition of large amounts of profile

data, and then use the profiler to display the data once al the runs are compl ete.
Suppose you have a program called dylan, built with some combination of

calls, call graph, and coverage profiling (see “Standard calls” on page 175,
“Call graph” on page 175, and “Block coverage” on page 175), and a sample
input to the progransampleinputl, sampleinput2, etc. Now, consider the
following csh shell script:

#l/bin/csh
foreach p (sampleinput*)
$RUN dylan $p
protrans -a -g dylan
end
rm -f mon.out gmon.out bmon.out

This script repeatedly runs tlglan program with the sample input and calls
theprotrans utility to read in the generated profile data for each execution. The
argumentdylan specifies the profiled program from the generated data. The
default isa.out.

After the script finishes, an intermediate profile data file is generated which
contains the summary profile. The intermediate file hgs@extension

appended to the program name if there is no current extension. Otherwise, the
.pro extension replaces the current extension. For example, the pridgtaah
generates the filly.pro. In the example above, the filiglan.pro is generated

in the same directory we are executing.

184 Debugging with MULTI 2000

The protrans utility

Now you can process the data (see “Processing data” on page 178) in the
debugger to read in the summary profile storedyimn.pro and then use the
various features of the Profiler to view the information.

The last line in the script above deletes any profile data files left around after
executions of the profiled program. Timon.out file is produced after running

a program built for calls profiling. See “Standard calls” on page 175 for more
information. Thegmon.out file is produced after running a program built for
call graph profiling. See “Call graph” on page 175 for more information. A
program can only produce one or the other of these two filbmah.out file is
produced after running a program built for coverage analysis (see “Block
coverage” on page 175); this type of profiling is either done alone or in
conjunction with either calls or call graph profiling. By default, ghetrans

utility looks for files with the names mentioned above. However, you can
specify certain data files farotrans.

Thus, the shell script is rewritten:

#l/bin/csh
foreach p (sampleinput*)
$RUN dylan $p
mv gmon.out gmon.$p
mv bmon.out bmon.$p
end
foreach p (sampleinput*)
protrans -q -a -m mon.$p -b bmon.$p dylan
rm -f mon.$p bmon.$p
end

The first loop rungslylan with the sample input and stores the generated data
files into uniquely named temporary files. The second loop thenpralisans

to read in the data from these files and produces a summary profilenThe
switch specifies a calls profile data file; tgeswitch specifies a call graph
profile data file; theb switch specifies a coverage analysis data file. You can
specify multiple files of a single profile data type with multiple uses of these
switches. For example:

‘ protrans -m mon.1 -m mon.2 -m mon.3 ...

When using the profiler to run a profiled program to collect the resulting data,
the actions oprotrans are transparent to you. The information in this section is
only provided for those who want to rpnotrans separately from MULTI.

Green Hills Software, Inc. 185

7. The Profiler

186 Debugging with MULTI 2000

Chapter

8

Browse window

This chapter contains:
Browse window
« Browse window for procedures
« Browse window for globals
Browse window for source files

- Diaog box for procedures

8. Browse window

This chapter shows you how to use the Browse window to explore procedures, globals, and
source files, and the Dialog box to choose procedures.

Browse window

The debugger provides a Browse window for browsing procedures, global
variables, and sourcefiles.

Object Wiew
BP I Procedure Name I Object File I Type I
* |left foo.o G
* main foo.o G
* |right foo.o o3
* |sort foo.o G
® |Sort_tree foo.o G
® |toll booth foo.o G
|

Once you have opened a browse window, you can change the object you're
browsing with the Object menu.

Browse window > Object menu

Browse window > Object menu

Item Description

Globals Browses all globals of the debugged program in the current
browse window.

Procedures Browses all procedures of the debugged program in the current
browse window.

Files Browses all source files of the debugged program in the current
browse window.

Print Prints the text contents of the current browse window.

Help Opens a browser for HTML file and show MULT!I’s online help for
browse window in it. You can navigate and search in the HTML
browser.

Close Closes the browse window.

The debugger provides a set of predefined filters in a browse window. For each
type of object, some of the predefined filters are applicable, while others are
grayed out. The debugger also enables by default some predefined filters for
your convenience when globals are first loaded into a browse window. You can
choose which objects to display by toggling the pre-defined filters, and/or by

188 Debugging with MULTI 2000

Browse window

defining filters yourself. User-defined filters are applied to the displayed object
names, which are always shown in the browse window.

Browse window > View menu

Browse window > View menu

Item Description

User-defined Filter Opens a dialog box so you can define your filters (see Filter
Dialog Box below).

Hide C++ VTBLs Enables or disables displaying Virtual Tables in C++ programs.
Applicable only to globals.

Hide C++ Type Enables or disables displaying Type Identifiers in C++

Identifiers programs. Applicable only to globals.

Hide C++ Type Info Enables or disables displaying Type Information in C++

programs. Applicable only to globals.

Hide C++ Initialization Enables or disables displaying Initialization names in C++

Names program. Applicable only to globals.

Hide C++ std::* Enables or disables displaying names matching pattern “std::*”
in C++ program. Applicable to globals and procedures.

Hide .* Enables or disables displaying names matching pattern “.*".
Applicable only to globals and procedures.

Hide _* Enables or disables displaying names matching pattern “_*".

Hide __* Enables or disables displaying names matching pattern “__*".

Hide Globals from Enables or disables displaying globals from shared library.

Shared Library

Hide Files without Enables or disables displaying source files which don’t contain

Procedure any procedures.

Hide Procedures Enables or disables displaying procedures which don’t have

without Source source code.

Hide Inlined Procedure Enables or disables displaying procedures which are inlined.

Hide Static Names Enables or disables displaying objects which are defined as
static. Applicable only to globals and procedures.

Hide Non-Static Enables or disables displaying objects which are not defined

Names as static. Applicable only to globals and procedures.

Other than User-defined Filter, all the other menu items are predefined filters,
and they affect the objects shown in the browse window only when they are
enabled.

Green Hills Software, Inc. 189

8. Browse window

User-defined Filter dialog box

From a browse window, to open the User-defined Filter dialog box, choose
View > User-defined Filter.

In the Show and Hide text fields, you can type in a set of patterns separated by a
space or semicolon.

The debugger uses the following algorithm to determine the set of objectsto
display in a browse window:

1. Determine the “base” set of objects in the browse window. When you first
open a browse window, the base set of objects are those that are initially
loaded in the browse window. (For example, if you enter the comménd
then the base objects are all the procedures whose names begin with the let-
terf. Another example: if you enter the commamdwse procs, then the
base objects are all the procedures.) After that, each time you use the Object
menu to change the object type to browse, the newly loaded objects now
become the new base set. (For example, you open a browsér avitbe
procs, the base set is now all the procedures. Now if you choose Object >
Globals, the base set is now all the global variables.)

2. Use the user-defined filters to select objects from the base object set, and
then remove those whose names match the user-defined hiding patterns. For
example, if the user-defined filters incluide as a selection pattern afath*
as a hiding pattern, then only those objects which come from the base object
set and whose names start watbut notfab will be selected.

3. Remove those specified by the enabled predefined filters.

Note: the base set is not affected by the View menu or any menu items under
the View menu. The View menu only affects what is displayed in the browse
window, depending what filters there are to operate on the base set. As noted
above, the base set does change if you use the Object menu to change the
objects to view.

The mouse clicks in the browse pane (just below the menu bar) are associated
with some actions. Right clicking in the browse pane or the column header area
opens a pop-up menu. The right click pop-up menu usually contains the
following information:

« The formats in which to display the names of the objects.
« Switches for showing and hiding some attributes of the objects.

« Actions applicable to the clicked object.

190

Debugging with MULTI 2000

Browse window

You can switch the relative positions of existing columns by dragging the
corresponding column header and dropping it at the desired position.

Object Wiew Object Wiew
EP I Procedure Mame I Object File I Tupe I EP I Ohiject File I Procedure MName I Type I
* |left foo.o G . foo.o left G
* main foo.o G . foo.o main G
* right foo.o G . foo.o right G
* |sort foo.o G . foo.o sort G
® |Sort_tree foo.o G . foo.o sort tree G
* toll booth foo.o G . foo.o|toll booth G
| |

To sort the objects according to a column, click the corresponding column
header.

Browse window for procedures
To open a browse window for procedures, do one of the following:

« From the debugger, choose Browse > Procedures...

« Inthe command pane, use the e command with a pattern. For example,
“ e f*ﬂ.

« In the command pane, entetowse procedures or browse procs.

« From the status bar of the debugger, open the Procedure drop-down list box,
and choose “Browse procedures in program...” or “Browse procedures in
current file...”.

« In a browse window for source file, double click a file or right click a file
and choose “Show procedures of File” from the pop-up menu.

- In the debugger source pane, right click a procedure and choose “Browse
Callers” or “Browse Callees” from the pop-up menu.

When you open a browse window, it may contain all the procedures in the
debugged program or a subset of all the procedures selected by certain criteria
(for example, a pattern, or “callers of a procedure”). But whenever you choose a
different object type and then choose Object > Procedures again, the browse
window will contain all procedures.

Green Hills Software, Inc. 191

8. Browse window

By default, a browse window for procedures shows four attributes of a
procedure. The following table lists al the attributes of a procedure which can
be shown in a browse window for procedures.

Procedure attributes

Attribute Information shown in column

Procedure Name The name or mangled name of the procedure, depending on what
kind of name is chosen.

BP If a breakpoint is set at the prologue address of the procedure, the
icon for the corresponding breakpoint type will be shown,
otherwise, a green dot is shown.

Object File The object file from which the procedure comes.

Source File The source file from which the procedure comes.

Module Name of the module from which the procedure comes, if any.
Library Name of the library from which the procedure comes, if any.
Address Address of the procedure.

Size Size of the procedure.

Type Gl if the procedure is an inlined non-static procedure;

Sl: if the procedure is an inlined static procedure;
G: if the procedure is a not-inlined non-static procedure;
S: if the procedure is a not-inlined static procedure.

A procedure’s information is displayed as follows:
- Grayed out if it has no source code.

« Displayed in the color for “dead code” in syntax coloring if it is an inlined
procedure.

« Displayed in the color for “comment” in syntax coloring if it is a static and
not fall in the above categories.

- Displayed in the normal foreground color otherwise.

The following table lists the operations when you click in the browse pane.

192 Debugging with MULTI 2000

Browse window

Mouse action Description

Left click Displays the clicked procedure in the debugger source pane. If
you click in the BP column, the debugger will either insert a
breakpoint at the clicked procedure if no breakpoint is there, or
remove the breakpoint there if one already exists. If it sets a
breakpoint at the procedure, it is at the first instruction after the
prologue, if any.

Double left click Opens an Editor window for the clicked procedure. If the clicked
procedure has no source code, the debugger will issue a beep as
a warning.

Right click Opens a pop-up menu. See “Pop-up menu for procedure” below
for detail.

Pop-up menu for a procedure

Menu Item Description
Name Shows normal (unmangled) names of procedures.
Mangled Name Shows mangled names of procedures.

Show in Debugger Loads the clicked procedure into the debugger source pane.

Show in Editor Opens an Editor window for the clicked procedure.

Show in Tree Opens a tree browser window to show the clicked procedure’s
Browser calling relationships.

(other options) Enables or disables displaying the corresponding attribute.

The following table lists the operations when you click a column header in the

browser pane:
Mouse action Function Description
Left click Sorts the objects according to the column (the order toggles).
Right click Opens a pop-up menu. The menu items’ functions are the same
as those specified in table "Pop-up menu for procedure" above.

Browse window for globals
To bring up a browse window for globals, do one of the following:

« From the debugger, choose Browse > Globals...

« Inthe command pane, enter: browse globals.

Green Hills Software, Inc. 193

8. Browse window

By default, a browse window for globals shows three attributes of a global
variable. The following table lists all the attributes of a global variable which
can be shown in a browse window for globals.

Procedure attributes

Attribute Information shown in column

Global Name The name or mangled name of the global variable, depending on
what kind of name is chosen.

Module Name of the module from which the global variable comes from, if
any.

Object File Name of the object file in which the global variable is defined if it is

static, or name of a object file in which the global variable is
defined or referred to if it is not static.

Library Name of the library from which the global variable comes from, if
any.

Address Address of the global variable.

Size Size of he global variable.

Type G: if the global variable is non-static;

S: if the global variable is static.

A global variable’s information is displayed as follows:
« Displayed in the color for “comment” in syntax coloring if it is static.
« Displayed in the normal foreground color otherwise.

The following table lists the operations when you click in the browse pane.

Mouse action Function Description

Left click Prints the global’s value in the command pane if applicable,
otherwise, the debugger issues a beep as a warning (for reasons
such as the process is running, etc.).

Double left click Opens a data explorer to show the global’s value if applicable,
otherwise, the debugger issues a beep as a warning (for reasons
such as the process is running, etc.).

Right click Opens a pop-up menu. See “Pop-up menu for a global” below for
details.

194 Debugging with MULTI 2000

Browse window

Pop-up menu for a global

Menu Item Description

Name Shows normal names for globals.

Mangled Name Shows mangled names for globals.

Print Value Prints the clicked global’s value in the command pane.
View Value Opens a data explorer for the clicked global.

(other options) Enables or disables displaying the corresponding attribute.

The following table lists the operations when you click a header column in the

browse pane:
Mouse action Function Description
Left click Sorts the objects according to corresponding column (the order
toggles).
Right click Opens a pop-up menu. The menu items’ functions are the same
as those specified in the table “Pop-up menu for a global” above.

Browse window for source files
To open a browse window for source files, do one of the following:

« From the debugger, choose Browse > Files...

« From the status bar of the debugger, open the File drop-down list box, and
choose “Browse all source files in program...”.

« In the command pane, enterowse files.
A source file’s information is displayed as follows:
« Grayed out if there is no procedure defined in the source file.

« Displayed in the normal foreground color otherwise.

Green Hills Software, Inc. 195

8. Browse window

The following table lists the operations when you click in the browse pane.

Mouse action Function Description

Left click Displays the clicked source file into the debugger source pane.

Double left click Opens a browse window to show the procedures defined in the
clicked source file if it is not grayed out, otherwise issues a beep
as a warning.

Right click Opens a pop-up menu, see “Pop-up menu for a source file” below.

Pop-up menu for a source file

Menu Item Description
Full Name Shows full names for source files.
Base Name Shows base names for source files.

Show Procedures Opens a browse window to show all procedures defined in the
of File source file.

Show in Debugger Displays the source file in the debugger source pane.

Show in Editor Opens an Editor window on the source file.
Show in Tree Opens a tree browser to show the reference relationships of the
Browser source file.

The following table lists the operations when you click a column header in the
browse pane;

Action Function Description

Left click Sorts the objects according to the corresponding column (the
order toggles).

Right click Opens a pop-up menu. The menu items’ functions are the same
as those specified in the table “Pop-up menu for a source file”
above.

196

Debugging with MULTI 2000

Dialog box for procedures

Dialog box for procedures

The dialog box for procedures is similar to a browse window for procedures
except for the following:

« Thedialog box ismodal. (A browse window is modeless.)

« Thedialog box does not let you change anything in the debugger until you
dismiss the dialog box.

« Thedialog box has an extra attribute column.
e Thedialog box has a set of buttons at the bottom.
The debugger opens the dialog box for procedures one of two ways:

¢ Case 1: In the command pane, you use the b command with a pattern as
parameter, for exampleb*”.

« Case 2: The debugger tries to resolve an overloaded procedure in a C++

program.
Object Wiew
Set breakpoints
Set BP? I BP I Procedure Name Object File I Type I
left foo.o G
mwain foo.o G
right foo.o o3
sort foo.o G
SOort_tree foo.o G
toll hooth foo.o G

ok | a1 | MNone | Cancell

The extra attribute column is always shown. This column header is one of two
different names depending on which way the dialog is opened. In Case 1, the
name is “Set BP?". In the Case 2, the name is Choice.

In Case 1, you can select multiple procedures. In Case 2, you can only select
one procedure. If you select a procedure, a check mark appears under the extra
attribute column.

Green Hills Software, Inc. 197

8. Browse window

The following table shows the buttonsin the dialog box.

Button Name Description
OK Accepts the current selection(s).
All Marks all procedures shown in the dialog box as selected. The

item is only applicable in Case 1.

None Marks all procedures shown in the dialog box as unselected. The
item is only applicable in Case 1.

Cancel Cancels what has been done in the dialog box and closes it.

198 Debugging with MULTI 2000

Chapter

Memory view
window

This chapter contains:
« Opening amemory view window
« Configuring a memory view window
« Changing the address in a memory view window

Editing memory in amemory view window

9. Memory view window

The Memory View window is useful for examining large buffers, strings, and other data that
do not display well in the normal data explorer. The window can be configured to display
memory in avariety of formats. Additionally, the memory may be modified from this

window.

Opening a memory view window

To open amemory view window, do one of the following:
« Click the Memory View button (&1}) on the tool bar.

e Choose View > Memory.

« Inadataexplorer, type m, or click the Format button (/%) and choose
Memory View... . Thiswill bring up a memory view window examining the

same memory location as the data explorer.

 Inthe command pane, use the memview command. See “memview” on

page 118.

[WEX DEC BIN FLT [1owe =]

vAE

Address: I

0x0001037c
0x00010354
0x0001038c
0x000103594
0x0001039¢c
0x000103=a4
0x000103ac

| |+.x |72

[- -
H 1]
0.3..... 30
H. m=. 45

ul=)

al
oo

1]
=1n]

oz

oo
33

33
oo

an

ic
S0

64
o1

7o

Jo
S0

=]
91

zZb

oo
o1

[Sa]
1]

Ob

oo
oo

oo
33

u

The memory view window consists of a memory pane and several controls
which configure how the contents of memory are displayed. In the memory
pane, there are three columns. The left column displays the address of memory
being viewed. The middle column displays the memory contents in ASCII
format. The right column displays the memory contents in a customized
format, based on the configuration you have currently selected. When the
memory view window is not stopped, it is updated every time the program
being debugged stops. Bytes in the memory view which have been changed
since the last time the program was stopped will appear highlighted.

200

Debugging with MULTI 2000

Configuring a memory view window

Configuring a memory view window

The first four buttons control the basic format of the memory display.

Call stack window tool bar
Button Display format
HEX hexadecimal
DEC decimal

BIN binary

FLT floating point

Click one of the buttonsto set the display to that format. The button will remain
depressed to show that the memory view is currently configured to that format.
By default, the memory view window appears in hexadecimal mode.

The size drop-down list box controls the unit size of the memory elements
displayed. For hexadecimal, decimal, and binary, the choices are: 1 byte, 2
bytes, 4 bytes, and 8 bytes. For floating point, the choices are single precision
and double precision. The default is 1 byte and single precision.

The signed button (¥4) affects decimal display only. It controls whether the
decimal display should show signed values or unsigned values. When the
button is depressed, the memory displays as signed vaues. When the button is
raised, the memory isdisplayed as unsigned values. There is no effect unlessthe
basic format is set to decimal. The default is unsigned.

The endian button (&) controls the endianness of the displayed memory.

There are two choices for endianness. In big endian mode, the most significant
byte isfirst and the least significant byteislast. In little endian mode, the least
significant byteisfirst, and the most significant byte islast. When the button is
depressed, the memory is displayed in big endian mode. When the button is
raised, the memory is displayed in little endian mode. Note that in 1 byte view,
endianness has no effect, since both modes are identical. The default is big
endian.

The ASCII button (#52) toggles the state of the ASCII column. The ASCII
column may be hidden or shown. When the button is depressed, the ASCI|
column is shown. When the button is raised, the ASCII column is hidden. The
default isto show the ASCII column.

The freeze button (@) controls the refreshing of the memory view window.
When the button is depressed, the contents of the window are frozen. This

Green Hills Software, Inc. 201

9. Memory view window

means that the window will not be updated when the memory contents change,
and will continue to display the same information until the window is unfrozen.
While the window isfrozen, several features are disabled. You may not edit the
contents of memory, scroll to adifferent memory location, or change the size of
the view. You can still change the display format, however. When the button is
raised, the window is unfrozen and will update normally. The default is
unfrozen.

The shrink (*%) and expand (#*) buttons control the width of each line of
memory. You may shrink the window to as few as 4 bytes per row, or expand
the window to as many as 128 bytes per row. The default is 8 bytes per row.

The print button (&2) allows you to print the contents of the memory view
window. Only the visible areawill be printed, so you should resize the window
and scroll to the correct location before printing.

The first memory view window will appear with the default settings for the
configuration options. Subsequent memory view windows will appear with the
same settings as the previous memory view window. You may also use the
mvconfig command to configure the memory view window and to change the
default settings of the memory view window. See “mvconfig” on page 120.

Changing the address in a memory view window

To change the address being viewed, enter an address or expression in the
Address text field. (Note that this does not work if you are editing memory. If
you are editing, click anywhere in the column of addresses to get out of editing
mode before entering an address expression.) The memory view window will
jump to the specified address and display it in the top row of the memory pane.
Note that the starting memory address will be aligned according to the number
of bytes per row. For example, if you entered 0x00010007, and the window is
currently displaying 8 bytes per row, the memory view will actually jump to
0x00010000.

Valid entries in the Address text field include an absolute address (0x10000), an
expression (pointer + 0x200), or a variable name (mybuffer). For absolute
addresses and expressions, the memory view jumps to the specified address.
For variable names, the memory view will behave differently depending on the
type of the variable. If the type is a pointer type (eg. pointer, array, function
name, string), the memory view will take the value of the pointer and show the
contents of the memory at that location. If the type is not a pointer type (eg.
integer, floating point, structure), the memory view will take the address of the
variable and show the contents of memory at that location. If the variable is

202

Debugging with MULTI 2000

Editing memory in a memory view window

being stored in aregister (and therefore does not reside in memory), the
memory view will reject the variable and not change the view.

You may also use the scrollbar to change the address being viewed. Because

the contents of memory are so large, the scrollbar is set to a special “infinite
mode”. In this mode the scroll thumb is deactivated and is fixed in the center of
the scrollbar. You may still scroll the window line by line or page by page. To
scroll one line at a time, click on the up or down scroll arrow. To scroll a page
at a time, click on the scrollbar above or below the scroll thumb. You may
scroll continuously by holding down the mouse button instead of releasing it.

Editing memory in a memory view window

To edit the contents of memory, do the following:
1. Click a row of memory you want to edit.

2. Choose the ASCII (middle) column to edit in ASCII or the formatted (right-
most) column to edit in the currently displayed format. The contents of the
row will appear in the textfield above the memory pane.

3. Edit the contents of the textfield.
4. Press Enter to write the contents back into memory.

The format you use to edit memory will be the same as the format of the column
selected. For example, if you clicked in the ASCII column, you must edit
memory as ASCII characters. If you are in hexadecimal 2-byte mode, and you
click the formatted column, you must edit memory as 2 byte hexadecimal
values.

A non-printing character is normally represented by a perjdad the ASCII

column. When editing in ASCII, however, non-printing characters are both
displayed and modified using a special backslash sequeméewherenn is

the hexadecimal value for the character. The backslash character has the special
sequence “\\’ (a double backslash).

When you edit the contents of the memory in the text field, you are allowed to
modify memory beyond the end of the current row. You can do this by simply
adding more values to the end. For example, if you are currently displaying 8
bytes per row, and you click in the ASCII column, you might see “abcdefgh” in
the textfield. If you change the contents to “1234567890”, you will not only
change the original 8 bytes from “abcdefgh” to “12345678", but you will also
change the next 2 bytes to “90".

Green Hills Software, Inc. 203

9. Memory view window

204 Debugging with MULTI 2000

Chapter

10

Call stack window

This chapter contains:
« Cdl stack window

10. Call stack window

This chapter shows you how to open a call stack window and how to use it.

Call stack window

To open acall stack window, do one of the following:

+ Click the call stack button (E1).

» Choose View > Call Stack... .

« Inthe command pane, use callsview. See callsview on page 89.

The following are the buttons on the toolbar.

Call stack window tool bar

Button Description

R Parameter Enables or disables displaying parameters in function calls.

= Position Enables or disables displaying the position of the function call,
that is, the filename, the file-relative and proc-relative line
numbers.

& Freeze Enables or disables refreshing the window.

Edit Opens an Editor window on the selected function if it has
source code.

Locals Opens a data explorer to show all the local variables of the
selected function.

& Print Prints the ASCII text contents of the call stack window.

X close Closes the call stack window. You can configure whether or not

to have this button.

To the far right of the toolbar is the “Max Depth” field, which defines the
maximum depth the debugger will display the calls stack. You can change it
according to your preference. For example, if you're debugging a program on a
very slow target and you only care about the first few levels of the call stack,
you can decrease the number so that the window is refreshed more quickly.

206 Debugging with MULTI 2000

Call stack window

Below the toolbar isthe call stack pane, where the call stack is displayed up to
the maximum depth. The following table lists the mouse and keyboard
operations in the pane:

To do this Do this

Display a function in the source pane. Click the function

Open an Editor window on a function. Double click the
function

Search forward in the call stack pane, if it has the focus (click Press Ctrl+f
in it to put focus there.)

Search backward in the call stack pane, if it has the focus (click | Press Ctrl+b
in it to put focus there.)

Reset the search pattern, if you are searching in the call stack | Press Ctrl+u
pane.

In a debugging session, whenever you change a call stack window’s attributes
(that is, displaying parameters, displaying location), the changes will affect
subsequently created call stack windows until you change them the next time.
You can also change these attributes withctloenfig command. Seevconfig

on page 94.

Call stack window and command-line function call

Suppose from the command pane, you make a function call into the debugged
program, and suppose the program is stopped before the function returns to you,
for example, because it hits a breakpoint. If you open a call stack window now,
you will see two parts in the call stack pane. The bottom part is the call stack
before you call the function, the top part is the call stack starting from the
function.

Caveat

At the beginning and end of every function is a region called the prologue and
epilogue. Inside this region of code, various registers may be saved and
restored, and the stack pointer may be modified. Full source-level debugging is
not possible within these regions. This is why no source level breakpoints are
displayed here. You may single step at the machine level through this code, but
you cannot trace the stack, or examine variables, or perform many other tasks
until you are outside this region.

Green Hills Software, Inc. 207

10. Call stack window

208 Debugging with MULTI 2000

Chapter

11

Breakpoints window

This chapter contains:
« Opening the Breakpoints window
« Breakpoint types
 Using the Breakpoints window

11. Breakpoints window

The Breakpoints window provides a graphical interface for examining and manipulating
various kinds of breakpoints.

Opening the Breakpoints window

To open the Breakpoints window from the debugger, do one of the following:
» Choose View > Breakpoints.
¢ From the command pane, enter the bpview command.

When you bring up the Breakpoints window, it will initially appear in software
breakpoint mode. (See “bpview” on page 84.)

Ereakpoints
0x10120 count: 1
main#i0: 0x10178 count: 1
SortHz: Ox10104 count: 1
¥ Active [Bel Show | Save...l Load...l Deletel Set I
Caunt: I Command: I

Condition: I
{+ Software Hardivare € Signal

Address expression: I "foo.c"H#toll_booth#t

Label: I

Breakpoint types

There are three kinds of breakpoints which can be examined and manipulated
with the Breakpoints window:

« Software breakpoints
« Hardware breakpoints
- Signals

To work with software breakpoints
Click the Software radio button.

This is the default type whenever the Breakpoints window appears.

210 Debugging with MULTI 2000

Using the Breakpoints window

To work with hardware breakpoints

Click the Hardware radio button. If hardware breakpoints are unavailable on the
current target, the Hardware radio button will be greyed out.

To work with signals

Click the Signals radio button. If signals are unavailable on the current target,
the Signals radio button will be greyed out.

Using the Breakpoints window

To toggle a breakpoint
Thisfunction is not available for Signals.

1. Choose the breakpoint from the list.
2. Click the Active check box.

To toggle whether a bell will sound when a breakpoint is hit
1. Choose the breakpoint from the list.

2. Click the Bell check box.

To change the count for a breakpoint
Thisfunction isonly available for Software breakpoints.

1. Choose the breakpoint from the list.
2. Typethe new count into the Count text field.
3. Click the Set button.

To change the list of commands associated with a breakpoint
1. Choose the breakpoint from the list.

2. Typethe new command list into the Command text field.
3. Click the Set button.

To make a breakpoint conditional
1. Choose the breakpoint from the list.

2. Typethe new condition into the Condition text field.

Green Hills Software, Inc. 211

11. Breakpoints window

3. Click the Set button.

To examine a breakpoint
Thisfunction isonly available for Software breakpoints.

1. Choose the breakpoint from the list.
2. Click the Show button.
This action can also be performed using the e command. See e on page 101.

To delete a breakpoint
Thisfunction is not available for Signals.

1. Choose the breakpoint from the list.
2. Click the Delete button.
This action can also be performed using the d command. See d on page 96.

To set a new software breakpoint
1. Choose the Software radio button.

2. Type the address expression where the breakpoint should be set into the
Address Expression text field.

3. Typethe count into the Count text field.

4. Type the command list into the Command text field.

5. Type the condition into the Condition text field.

6. Click the Set button.

This action can also be performed using the b command. See b on page 81.

To save the current list of software breakpoints to afile
1. Choose the Software radio button.

2. Click the Save button.
3. Choose afilename to saveto in the file chooser which appears.

This action can also be performed using the bpsave command.

To load a list of software breakpoints from afile
1. Choose the Software radio button.

212 Debugging with MULTI 2000

Using the Breakpoints window

2. Click the Load button.
3. Choose afilename to load from in the file chooser which appears.

This action can also be performed using the bpload command.

To set a new hardware breakpoint

1. Choose the Hardware radio button. Hardware breakpoints are not available
on some targets.

2. Type an expression into the Expression text field.
Type the address at which the breakpoint is to be set into the Address text field.

3. Type the size, in bytes, of the region on which the breakpoint is to be set into
the Size text field. The default depends on how the address to set the break-
point at was specified. If the name of a variable is given in the Expression
text field, the default size is the size of the variable. If an address is given in
the Address text field, the default size is one byte.

4. Type the mask to be applied to all addresses into the Mask text field. The
default is O.

5. Choose one of the Read, Write, Read/Write, and Execute radio buttons.

6. Type the command list into the Command text field. The default is no com-
mand list.

7. Type the condition into the Condition text field. The default is uncondi-
tional.

8. Click the Set button.

This action can also be performed with teedbrk command. See “hardbrk”
on page 108.

To change the actions performed when a signal is received
1. Choose the signal to be modified from the list.

2. Choose the desired combination of the Stop, Report, and Ignore check
boxes. Note that changes to these check boxes take effect immediately.

3. Type the condition into the Condition text field. The default is uncondi-
tional.

Green Hills Software, Inc. 213

11. Breakpoints window

4. Type the command list into the Command text field. The default is no com-
mand list.

5. Click the Set button.

This action can also be performed with the zignal command. See zignal on
page 144.

214 Debugging with MULTI 2000

Chapter

Tree browser

This chapter contains:
« Opening atree browser
« Using atree browser

12

12. Tree browser

The debugger tree browser is a graphical tool which allows you to examine the structure of

your program in several ways.

Opening a tree browser

To use atree browser, you must be debugging a program. You can open atree
browser in several ways, depending on what type of information you want to

view.

Browsing classes

To use atree browser to browse your class hierarchy, do one of the following:

» Choose Browse > Classes...

« Inthe debugger command pane, enter browse classes.

A window that looks something like this will appear:

Browsze Ewxpand Help

44 4 M E =
root classes: MyClass THyOtherSubclass
MySubcolass
MyStcruct
MyUnion

B MySubSubo lass

The children of the ‘root classeshode are all of your classes (including structs
and unions) which do not inherit from another class. A class which is a subclass
of another class is shown as a child of its parent class. Colors are used to
distinguish classes and structs, shown in one color, from unions, shown in

another.

To view the members in a class, do one of the following:

» Double-click the class.

« Right-click the class and choose Browse Members in Class.

Browsing static calls, by function

The tree browser can use information from your program’s symbol table to
show you which functions your functions call, or are called by. These are
potential, or “static”, paths solely based on the build-time symbol table of your

216

Debugging with MULTI 2000

Opening a tree browser

program, and not the actua run-time paths taken by your program during
execution.

To browse static calls by function, do one of the following:
» Choose Browse > Static Calls...
 Inthe debugger command pane, enter: browse scalls.

A tree browser will then start up centered on the function you are currently
looking at in the debugger source window.

To open a tree browser on a specific function, for example, foo:
« Ininthe debugger command pane, enter: browse scalls foo.

Color is used to provide information about the function represented by a given
node. Separate colors are used for functions with debug information, functions
without debug information, functions which may be recursive, and nodes used
to represent functions whose address is taken and may therefore be called via
function pointers.

To view afunction in the debugger source pane, click the function node.
To open an editor window on afunction, double-click the function node.

Both features are also available from the right-click menu.

Browsing static calls, by file

Besides being able to view the static call graph as functions, you can also view
it asfiles. Thiswill let you see the other source files whose functions are called
from a particular source file.

To browse static calls by file, do one of the following:
» Choose Browse > File Cdlls...
« Inthe debugger command pane, enter browse fcalls.

A tree browser will then open on the file you are currently looking at in the
debugger.

To dtart atree browser on a specific file, for example, foo.c:
 Inthe debugger command pane, enter: browse fcalls foo.c.

To view afilein the debugger, click its node. To edit afile, double-click its
node. Right-click afile node to bring up a menu which alows you to edit the
file, view the file in the debugger source pane, or browse alist of functionsin
thefile.

Green Hills Software, Inc. 217

12. Tree browser

Browsing dynamic calls, by function

The dynamic call graph uses profiling information to display which functions a
function actually called during run-time, unlike the static call graph which
shows potential calls.

To browse the dynamic call graph, do one of the following:
e Choose Browse > Dynamic Calls...
 Inthe debugger command pane, enter: browse dcalls.

« Toview aparticular function specified by function_name, in the debugger
command pane, enter: browse dcalls function_name.

This will only work if you have collected profiling information. See “Call
graph” on page 175.

Using a tree browser

Regardless of what kind of information you are using the tree browser to view,
the interface is basically the same.

Browse Expand Help

“4 4 r | B =

exXception &} runtime error failure
overflow error
Cange error

underflow error

Status bar—— |

t t 1

Ancestor of root node Root node Descendents of root node

The main part of the tree browser window is a tree graph. There is one node in
the graph which is the ‘root node’; it is the particular function (or other object)
which you are examining. The name of the root node is displayed in the title bar
of the tree browser window. You can expand ancestors (i.e. callers, if you are
looking at a function, or superclasses, if you are looking at a class) of the root
node towards the left, and descendents (callees, or subclasses) of the root node
towards the right. You may go as many levels as you want away from the root
node. However, if you wish to look at an ancestor of a descendent of the root
node, for example, you will need to reroot your graph. (See more on rerooting,
below.)

218 Debugging with MULTI 2000

Using a tree browser

To expand ancestors or descendents of a node, click the plus sign next to the
node. If thereis no plus sign, it means there is nothing you can expand. To
contract something you have expanded, click the minus sign.

If you wish to expand many things at once, there are four waysto do it, and they
are available from the Expand menu, or from the four purple expansion buttons
on the tool bar.

To expand al of the nodes on the descendent side of the graph, until there are no
more descendents, or until recursion is detected, do one of the following:

e Choose Expand > All Descendents.
« Click Expand All Descendents (**).

Note that performing this expansion on a large program may take an extremely
long time, and may yield unmanagable results anyway. To cancel thisoperation,
press Esc.

To do the similar expansion for the ancestor side of the graph, do one of the
following:

« Expand > All Ancestors
¢ Click Expand All Ancestors (44).

Perhaps more useful than expanding all the nodes is the ability to expand one
level of nodes.

To expand one more level of descendents, do one of the following:
» Choose Expand > One Level of Descendents.
« Click Expand Descendents One Level (*).

Thisis basically equivalent to clicking the plus sign on every node in the
descendent side of the graph.

To do the same thing to ancestors, do one of the following:
¢ Choose Expand > One Level of Ancestors.
« Click Expand Ancestors One Level (1 1).

Node operations

Each node is labeled with a short name which describeswhat it is. In C++, the
short name does not include class or namespace names which come before the
final double colon (::). To view the entire name, point the mouse cursor over
the node, and a tooltip will appear with the entire name.

Green Hills Software, Inc. 219

12. Tree browser

Rerooting

To view more information about a node, click it. Information about the node,
including its full name, will be displayed in the status bar of the tree browser
window. For certain types of nodes, such as function and file nodes, this will
also cause the source code for the node to be displayed in the debugger source
pane.

To open aright-click menu for a node, right-click it.

For example, the right-click menu for a function node will look something like
this:

Beroat
Fieroot in new window

Edit Function
Examine Function in Debugger

v calless

For a class node, its right-click menu will look something like this:

Beroat
Fieroot in new window

Browse Members in Class

v subclasses

The first two operations, Reroot and Reroot in New Window, are described in
the section on rerooting, below. The middle portion of the menu contains
various actions you can perform on the node; these actions vary depending on
the type of node, and are documented in the section on invoking the tree
browser, above. The bottom portion of the menu lists the type(s) of ancestors or
descendents a node may have, and allows you to select whether they are
expanded; thisis equivalent to the plus/minus box on the side of the node.

If thereisanode on the graph that you would like to make the root node (so that
you can examine both its ancestors and its descendents), you can reroot on that
node.

To reroot on anode, do one of the following:

+ Left-click the node and choose Browse > Reroot Selected Node.
« Right-click the node and choose Reroot.

« Middle-click the node.

Once you reroot on a node, everything which was previously in your window
disappears. However, your previous window contents are stored in a history
mechanism much like aweb browser.

220

Debugging with MULTI 2000

Using a tree browser

To access the history, do one of the following:
« Choose Browse > Back, or click Back (52).
« Choose Browse > Forward, or click Forward (=).

To reroot anode in a new window, rather than replacing the current window
contents, do one of the following:

« Left-click the node and choose Browse > Reroot Selected Node(s) in New
Window(s).

« Right-click the node and choose Reroot in New Window.

+ Double-middle click the node.

Window operations
To close atree browser:

Choose Browse > Close Window, or click Close (X). (You can configure
whether or not to have this button on the toolbar. See also “Display close (x)
buttons” on page 241.)

To open a new tree browser which has the exact same contents as an existing
tree browser, choose Browse > Clone Window.

For help on the tree browser:

Choose Help > Help.

Green Hills Software, Inc. 221

12. Tree browser

Configuring tree browser colors

A number of configuration options exist which allow you to control how nodes

of various types are displayed:

Foreground color
configuration option

Background color
configuration option

Node type

TBFunctionNormalFG

TBFunctionNormalBG

Functions in the static calls browser
with debugging information.

TBFunctionNolnfoFG

TBFunctionNolnfoBG

Functions in the static calls browser
without debugging information.

TBFunctionRecursiveFG | TBFunctionRecursiveBG |Functions which may be recursive in
the static calls browser.

TBFunctionAdrTakenFG |TBFunctionAdrTakenBG |Nodes representing the possibility of
calls to a function through a function
pointer.

TBDynNormalFG TBDynNormalBG Functions with debugging

information in the dynamic calls
browser.

TBDynNolInfoFG

TBDynNoInfoBG

Functions without debugging
information in the dynamic calls
browser.

TBFileNormalFG

TBFileNormalBG

Files with debugging information.

TBFileNoInfoFG

TBFileNoInfoBG

Files without debugging information.

TBClassUnionFG

TBClassUnionBG

Unions.

TBClassStructFG

TBClassStructBG

Classes and structs.

TBClassNolnfoFG

TBClassNolnfoBG

Types without debugging
information.

222

Debugging with MULTI 2000

| ndex

Symbo|3 _DISPMODE system variablél
_ERRHALT system variablé2
_FILE system variabl&3
_INIT_SP system variabl62
_INTERLACE system variablé3
_LANGUAGE system variabl&2
_LINE system variabl&3
_LINES system variablé2
_MULTI_DIR system variablés3
_NOTIFY system variabl&2

in relation to fork or exed23
_OPCODE system variabi2
_PID system variabl&3
_PROCEDURE system variab&3
_PROCESS system variabtd
_REMOTE system variabl6é3
_SELECTION system variablé3
_STATE system variablé3
_TEXT system variabl&2
{} command list delimiterst9
{ cmds } command list66
~ commandsee repeat command, smart

I command See repeat command

A command 54

... Seeellipsis

A command (caret}6

-> command (menuj6

- command (minusy6

+ command (plusy6

? command (question markp

/ command (slashj6

" " command66

command (obsolet&)3

variable search designatd®

$ variable search designat48

$result, special predefined variatia

% command (obsolet&ee percent sign com-
mand

%bp_label, debugger notatio66

%w key sequencé&33

* wildcard 57

. (period) last character seen designa@®r

.* operator46

.text section debugging2

/ search forward designat@b i

/**/ comment delimiters46, 69, 74 T;;nfr CS

: variable search designat4® in File menu (debugged3

:: variable search designat4® .
- command separat(ﬁgg in Target menu (debugge8p

< commandr4

<< commandr4 A
= command (obsoleté&ee repeat command . .
= operator47 -a compiler option
== operator47 GUI equivalent tol74
> command74 A, command77
menu equivalen83 a, command/7
->* gperator46 About MULTI...
>> command74 in debugger Help meng4
menu equivalen83 Ada language
? search backward designaitir generics16
? wildcard57 Add Assertion
@ sign, count numbef1, 72 in debugger Debug merzb
@ wildcard57 address _
@bp_count, debugger notatioB6 halting on write to141
_ASMCACHE system variablé1 viewing procedure a27
_BREAK system variabl&3 address expressiorté
_CACHE system variablé1 address map
_DATA system variableés1 printing 115

Green Hills Software, Inc.

| ndex

address_expression, debugger notation 66
AddVariable command

for viewcommand 154
AddVarOrAdr command

for viewcommand 154
aliascommand 78
Allocation, memory checking option 170
ANSICMODE system variable 60
apply command 79
Array Bounds check box

in Run-time Error tab 168
ARRAYPRINTMAX system variable 60
arrays

viewing in data explorer 151
Assem button

in debugger 35
assem command 79
assembly code 17

toggling between source-only and 26

viewed in debugger 17

viewing in data explorer 152
assembly-only view 17
Assertions

in debugger View > List sub-menu 28
assertions 77

activating 77

adding 25,77

exiting 143

listing 28

modifying, deleting, suspending 78
Assignment Bounds check box

in Run-time Error tab 168
attach command 80
attach to process 80
Attach to Process...

in debugger File menu 23

B

B command 80

b command 81

bA command 81

bacommand 82

backhistory command 82

backout command 82

bat command (deprecated)
see sh command 82

be command 82

Beep command
for viewcommand 153
beeping
in debugger while in incrementa search 40
bg command 83
bi command 83
bif command 83
binary
viewing datain 161
binding UpArrow key to 82
bl command 83
block coverage 175
block coverage detailed
in profiler 181
block coverage summary
in profiler 181
blue arrow 15
bpload command 84
bpsave command 84
bpview command 84
opening the breakpoints window 210
bR command 84
br command 84
braces{}
around command lists 69
bresk dot
in source pane 13
breakdots 14
breakpoint 15
changing the count of 211
clearing 15
command list associated with 211
commands for 71
conditional, setting 211
deleting 15, 95, 96, 212
examining in debugger 212
examining with the e command 212
hardware 210
hardware, setting 213
in source pane 13
labels 68
listing 28
lists 68
ranges 68
removing 15
restoring 84
saving 84
setting 15,81, 82,84

-2

Debugging with MULTI 2000

| ndex

setting on instruction 83
signals 210
software 210
software, setting 212
toggling 138,211
types of 210
breakpoint commands 72
breakpoint labels 68
breakpoint list 68
Breakpoints
in debugger View > List sub-menu 28
breakpoints button
in debugger 35
breakpoints command (deprecated) 85
breakpoints dialog box
opening 26
breakpoints window
opening 210
opening with command-line 84
screenshot of 210
Breakpoints...
in debugger View menu 26
browse command 85
Browse menu
in debugger 29
Browse menu (debugger) 29
browse window 188
for globals 193
for procedures 191
for source files 195
browsing
all proceduresin current file 19
all proceduresin program 19
classes 216
dynamic calls, by file 218
globals 188
objects 85
procedures 188
source files 18,188
static calls, by file 217
static calls, by function 216
bsearch command 86
bt command 86
bU command 86
bu command 86
build command 87
Builder button

in debugger 36
builder command 87
Builder...

in debugger Tools menu 31
button command (deprecated) 88
buttons

configuring 97

in main debugger window 34
bX command 87
bx command 87

C

C command 88
c command 88
-C command line option
to MULTI 7
-c command line option
to MULTI 6
C language
printing structs 70
C++ classes
viewing in data explorer 152
C++ language
C++ templates 16
casts not supported in expressions 46
destructors not called by debugger 47
operators not supported in expressions 46
viewing expressions 57
cacommand 88
cag command 88
call graph
opening from command line 175
call graph report
in profiler 180
call stack trace window
invoking 26
Call Stack...
in debugger View menu 26
Calls button
in debugger 35
callscommand 89
callstack view command 89
callsview command 89
case sensitivity 16
changing 91
in searches 91

Green Hills Software, Inc.

| ndex

of configuration options 16

of system variables 16
Case/Switch Statement check box

in Run-time Error tab 169
caveat

in debugging prologue and epilogue

code 207
Cb command 90
¢b command 90
cf command 90
cfb command 91
check 169
check box convention P-3
-check= option, GUI equivalent to
-check=alloc 170
-check=assignbound 168
-check=bounds 168
-check=memory 170
-check=nilderef 168
-check=return 169
-check=switch 169
-check=usevariable 169
-check=variant 169
-check=watchpoint 169
-check=zerodivide 169
-check=watchpoint option 141
chgcase command 40, 91
classes
browsing in debugger 216
Classes...
in debugger Browse menu 29
Clear Default Configuration
in debugger Config menu 32
Close All Views
in debugger View menu 26
close button
in data explorer 149
Close Debugger Window
in debugger File menu 23
CloseView command
for viewcommand 154
colors
syntax, configuring 137
comeback command 91
command list 66, 69
command pane P-3
in debugger 13,21
command prompt

configuring 21

in command pane 21
commands

conventions for P-2

debugger buttons 35
comments

in command lists 69

in debugger expressions 46
compare command 91
Compare...

in debugger Target > Memory Manipulation

sub-menu 31

completeselection command 92
conditional breakpoint

setting 211
Config menu (debugger) 32
configuration options 16

case sengitivity of 16
configure command 92
configurefile command 93
configuring

buttons 97

syntax colors 137
connect command 93
Connect from Target

in debugger Target menu 30
Connect to Target

in debugger Target menu 30
continue commands 72
CONTINUECOUNT system variable 60, 72
CONTINUING message

on status bar 18
conventions for this manual P-2
copy memory command 93
Copy...

in debugger Target > Memory Manipulation

sub-menu 31

count

for breakpoints 71
coverage analysis 175
createcontrol command 93
Ctrl+b key

in data explorer 149
Ctrl+f key

in data explorer 149
CU command 94
Cu command 94
cU command 94

-4

Debugging with MULTI 2000

| ndex

cu command 94
curly braces{}

around command lists 69
current line pointer 15

in source pane 13
Current PC

in debugger View menu 27
customizing See configuring
cveconfig command 94
cx command 95

D

d* command 95

D command 95

d command 96

-D command line option
to MULTI 7

data
viewing in alternate mode in data

explorer 161

-data command line option
to MULTI 7

data explorer 147
Advanced sub-menu 163
aternate view in 161
autosizing 155
close button in 149
Ctrl+b key in 149
Ctrl+f key in 149
data explorer window 148
Evaluate sub-menu 162
expandvaue 163
format menu 160
formatted, memory, type 162
formatted, memory,type 162
freeze dot in 149
freezing 149
frozen 149
hot keysin 149
infinite mode 163
infinite scrolling in 39
infiniteview 164
infiniteview command 152
make default 164
messages 155
modifying

address of data 158
name of variable 158
type of variable 158
value of variable 158
values 158

mouse bindings 159

mouse bindingsin 149

namein title bar of 148

opening
from the command pane 148
from the GUI 148

opening a new window on afield 157

openpointer 164

picture of 148

pop arrow in 149

popping views 157

pushing viewsin 157

refreshing 164

scroll barsin 39

searching in 149

selecting text in 149

showaddress 160

showchanges 164

showftype 160

stop signin title bar of 149

title bar 148

typeintitle bar of 148

unfreezing 149

up arrow in 149

update 164

update command 152

view command 150

viewcommand command 153

viewdel command 153

viewing
arrays 151
C++ classesin 152
datain aternate modein 161
datain binary 161
datain decima 160
datain hexadecimal 161
datain octal 161
disassembled codein 152
memory 161
multiple objectsin 150
pointer as array 151,161
structuresin 150

Green Hills Software, Inc.

viewlist command 152
dblink program 16
dbnew command 96
dbprint command 96
de command 96
Debug > Step 38
debug button 12
in debugger 12
debug command 97
Debug menu (debugger) 24
Debug Program in New Window...
in debugger File menu 23
Debug Program...
in debugger File menu 23
debugbutton command 97
debugger 12
buttons in main debugger window 34
closing 23
commands for 66
main window 12
multi-language applications 47
scroll barsin 39
searching source
searching source, in debugger 41
starting 12
system variables for 60
viewing specia variables 51
viewing variable values 48
debugger buttons
in main debugger window 34
debugger command
zignal 214
debugger notations 66
%bp_label, breakpoint label 66
@bp_count, breakpoint count 66
{ cmds}, command list 66
address_expressioin 66
stacklevel _ 69
debugger toolbar
changing location in window 35
debugging
multiple .text sections 42
variable lifetime 41
Debugging commands
default search path 70
debugging commands 72
I command 75
A command (caret) 76

-> command (menu) 76
- command (minus) 76
+ command (plus) 76
/ command (dlash) 76
" " command, printing text 66
A, assertion command 77
a, assertion command 77,78
address print format command 104
alias command 78
apply command 79
assem command 79
attach command 80
b command 81
B command, list breakpoints 80
bA command 81
ba command, using dialog box 82
backhistory command 82
backout command 82
bat command (deprecated) 82
be command 82
bg command 83
bi command
setting breakpoint 83
bif command 83
bl command
setting breakpoint 83
bpload command 84
bpsave command 84
bpview command 84
bR command 84
br command 84
breakpoints command 85
browse command 85
bsearch command, search backward 86
bt command, trace procedure 86
bU command 86
bu command 86
build command 87
builder command 87
button command (deprecated) 88
bX command 87
bx command, at procedure exit 87
¢ command 88
C command, continue unconditionally 88
cacommand 88
cag command 88
calls command 89
callsview command 89

Debugging with MULTI 2000

Cb command 90
cb command 90

cf command, continue from blocking

command 90

cfb command, continue from halted

process 91
chgcase command 91
comeback command 91
compare memory command 91
completesel ection command 92
configure command 92
configurefile command 93
connect command 93
continue command 72
copy memory command 93
createcontrol command 93
CU command 94
Cu command 94
cU command 94
cu command 94
cvconfig command 94
cx command 95
d* command 95
D command 95
d command 96
dbnew command 96
dbprint command 96
de command 96
debug command 97
debugbutton command 97
define command 99
detach command 99
dialog command

invoking dialog boxes 100
dialogsearch 41
dialogsearch command 100

dialogue command (deprecated) 100

disconnect command 100
dumpfile command 100
E command 101
e command

viewing code 101
echo command 102
edit command 102
editbutton command 103
editfile command 103
editview command 103

error command (deprecated) 103

eval command 103

examine command 104

filedialogue command (deprecated) 105

fill command 105

find command 105

findleaks command 171

fsearch command 105

getargs command 106

goto line command 106

grep command 107

halt command 107

halta 108

haltag 108

haltx 108

hardbrk 213

hardbrk command, hardware
breakpoints 108

help command 110

history commands 73

i command, information 110

1/0 buffer command 111

if command, if...else 110

infiniteview command 152

isearch command 112

isearchadd command 112

k command, kill 112

L command (deprecated) 113

| command, list 113

load command 114

loaddialogfile command 115

loaddial oguefile command
(deprecated) 115

loadsym command, load new debug
symbols 115

M command (obsolete) 115

macrotrace command 115

make command 116

mark command (obsolete) 116

memdump command, memory dump 117

memload command, memory load 117

memview command 118

menu command 119

monitor command 119

mouse command 119

mprintf 119

mvc command 120

Green Hills Software, Inc.

| ndex

mvconfig command 120

n command 121

new command 122

ni command 122

nl command 122

note command 122

P command 122

p command, print lines 123

pop command (obsolete) 123

print command 123

printsearch command 124

printwindow command 124

profdump 183

profdump command 124

profile command 125

profilegui command (obsolete) 125

profilemode command 125

protrans 183

push command (obsolete), go to next
mark 125

pwd command 125

Q command, quiet 125

gfst command 126

? command (question mark) 76

quit command, prompted quit 125

quit command, quit current process 126

quitall command, quit MULTI 126

r command, run 127

R command, run, no arguments 126

Rb command, run, do nothing else 127

rb command, run, do nothing else 127

record and playback commands 73

refresh command 127

refresh command (deprecated) 128

remote command, remote connect 128

restart command 129

restore command 129

return command, return from macro 130

rload command 130

rundir command, run directory 130

runtask command 130

scommand, single step 131

S command, step over procedures 131

save command 132

saveconfig command 132

saveconfigtofile command 132

sc command 132

scrollcommand command 133

setargs command, set arguments 134

setbrk command 134

showdef command, show defines 135

Si command 135

s command 135

signal command 135

source command 136

stack trace commands 75

stopif command, conditional
breakpoint 136

stopifi command, conditional breakpoint on
instruction 137

syncolor 137

t command (obsolete) 138

T command, stack trace 138

target command, send to remote server 138

targetwindow command 138

taskwindow command 138

unalias command 139

update command 139, 152

uptosource, move to procedure with
source 139

view command 140

viewcommand command 140, 153

viewdel command 140, 153

viewlist command 140, 152

W command (obsolete) 141

w command (obsolete) 141

wait command 141

watchpoint command, stop on address
change 141

while command, while loops 142

window command, monitor window 142

windowcopy command, window paste
clipboard 142

windowpaste command, paste selection 143

windowspaste command, paste
selection 143

X command, assertion 143

Xmitio command, send to remote
program 143

Z command (deprecated), case
sensitivity 144

Debugging Level

MULTI 58

DEBUGSHARED system variable 60
decimal

viewing datain 160

Debugging with MULTI 2000

| ndex

DecrField command

for viewcommand 154
default search path

in debugger 70
Default, memory checking option 170
define command 99
defined macros

listing 28
Defines

in debugger View > List sub-menu 28
Delete Views button

in debugger 36
deleting

breakpoints 95, 96
DEREFPOINTER system variable 60
descendants 180
detach command 99
Detach from Process

in debugger File menu 23
Dialog Boxes

in debugger View > List sub-menu 28
dialog boxes

listing 28
dialog command 100
diaogsearch

debugger command 41
dialogsearch command 100
dialogue command (deprecated) 100
diamond

on debugger scroll bar 39
disassembled code

interlaced with source code 17
disconnect command 100
DISNAMELEN system variable 60
DISPLAY 5
-display command line option

to MULTI 5
displaying See viewing
Divide by Zero check box

in Run-time Error tab 169
.dliasymbol file

for debugging 16
.dnm symbol file

for debugging 16
-dotciscxx command line option

to MULTI 7
DownStack

in debugger View menu 27
Downstk button

in debugger 35
dumpfile command 100
Duplicate command

for viewcommand 154
DuplicateFreeze command

for viewcommand 154
DYING message

on status bar 18
dynamic calls

browsing by file 218
Dynamic Calls...

in debugger Browse menu 29

E

e0

E command equivalent to 101
E command 101
e command 55, 66, 101

examining breakpoints 212
E command equivalent to 101
-E command line option

to MULTI 7
-e command line option

to MULTI 7
estack _command 101
echo command 102
Edit button

in debugger 36
edit command 102
EditAddress command

for viewcommand 154
editbutton command 103
EditField command

for viewcommand 154
editfile command 103
Editor...

in debugger Tools menu 31
EditType command

for viewcommand 154
editview command 103
ellipsis (...)

in menu item22
epilogue code

and caveat in debuggirizp7

Green Hills Software, Inc.

| ndex

equal sign command (obsolete) See repeat com-
mand
error checking 168
error command (deprecated) 103
errors
allocation 170
array bounds 168
assignment bounds 168
case/switch statements 169
divide by zero 169
exit without return 169
memory 170
null dereferences 168
Pascal variants 169
run-time error checking 168
unused variables 169
watchpoint 169
eval command 55, 103
examine command 55, 104
examining See viewing
exclamation mark (!) See repeat command
exclamation point See repeat command
EXEC’ING message
on status baf8
executable hal62
exp_format, expression formag
expression format exp_formag
expressions
evaluating46
in debugger command6
view formats for52
viewing 54
viewing using wildcard$7

F

f command104
File Calls...
in debugger Browse meri9
File drop-down list ("File:")18
on debugger status ba8d
File drop-down list box ("File:")
on debugger status bav
File menu (debugge2
filedialogue command (deprecatet5
filename
no spaces allowed?2
file-relative line numberd45, 67

Files
in debugger View > List sub-meri8
files
listing 28
Files...
in debugger Browse meri29
fill command 105
Fill...
in debugger Target > Memory Manipulation
sub-menu31
find command105
Find...
in debugger Target > Memory Manipulation
sub-menu31
finding
memory leaksl71
findleaks command 71
FindTypeAndCast command
for viewcommandl54
FORKING message
on status baf8
format button
in data exploren48, 151
format menu
in data explored48, 151, 160
FormatMenu command
for viewcommandl54
formats for expressions2
FORTRAN language
printing structs70
freeze dot
in data explorer49
fsearch command05
functions
stepping into25, 38
stepping out oR5
stepping ove25

G

-G
build-time option58

g commandl06

-G command line option
to the compilers

-g command line option
to the compilers

generic instantiations

1-10

Debugging with MULTI 2000

| ndex

for Ada 16
getargs command 106
Globals

in debugger View > List sub-menu 28
globals

listing 28
Globals...

in debugger Browse menu 29
Go

in debugger Debug menu 24
Go button

in debugger 35
Goto Location...

in debugger View menu 27
green dots 14
grep command 107
Grep...

in debugger Tools menu 31
GUI conventions P-3

H

h command 73

menu equivalent 33
Halt

in debugger Debug menu 24
Halt button

in debugger 35
halt command 107
halta command 108
haltag command 108
halted process

continuing 90, 91
haltx command 108
hardbrk command 108

in debugger 213
hardware breakpoint 210
hardware exception breakpoints 82, 96, 113
Help button

in debugger 35
Help command

for viewcommand 154
help command 110
-help command line option

to MULTI 7
Help menu

in debugger 34

Help menu (debugger) 34
hexadecimal

viewing datain 161
history commands 73
history navigation buttons

on debugger status bar 19
hot keys

in data explorer 149

i command 110
-I command line option

to MULTI 7
if...else command 110
incremental search 40
IncrField command

for viewcommand 154
infinite scrolling

in data explorer 39
infiniteview command 152
Input Filefield

in Set Program Arguments dialog box 25
instructions

stepping through 25, 38
Interlaced Assembly

in debugger View menu 26
interlaced source

toggling between assembly and 26
interlaced source view 17
iobuffer command 111
isearch command 112
isearchadd command 112

K

k command 112

kanji characters
viewing in debugger 43

keybind command 133

keyboard shortcuts 14
for debugging 14, 22
for navigating in command pane 22
for navigating in source pane 14
for searching in source pane 14,40, 41
for searching in Target window 86
searching in Target window 106

Green Hills Software, Inc.

| ndex

Kill Process

in debugger Debug menu 24
KillView command

for viewcommand 154

L

| command 113
L command (deprecated) 113
-L command line option
to MULTI 7
language keywords 47
left-click and drag
in command pane 22
libmulti.a 58
line numbers 14, 15,55
breakdots next to 14
in debugger 67
in source pane 13
memory address of 49
of program counter 16
viewing 15
line pointer 15
List
in debugger View menu 26
listing See also viewing
-Imulti
build-time option 58
load command 114
Load Configuration...
in debugger Config menu 32
Load Program
in debugger Target menu 30
loaddialogfile command 115
loaddialoguefile command (deprecated) 115
loading breakpoints 84
loadsym command 115
Local Addresses
in debugger View > List sub-menu 28
local variable addresses
listing 28
local variables
listing 28
Local Variables...
in debugger View menu 26
Locals
in debugger View > List sub-menu 28
Locals button

in debugger 35

M

M command (obsolete) 115
-m command line option
to MULTI 7
macrotrace command 115
main debugger window 12
make command 116
MakeArray command
for viewcommand 154
Mangled Procedures
in debugger View > List sub-menu 28
mangled procedures
listing 28
mark command (obsolete) 116
memdump command 117
memload command 117
memory
comparing 91
copying 93
leaksin 171
viewing contents of 140, 150
viewing from data explorer 161
viewing preceding memory location 54
Memory button
in debugger 35
memory checking commands
findleaks 171
Memory Checking drop-down list box
in Run-time Error Checking tab 168
Memory checking drop-down list box
in Run-time Error tab 170
Memory Dump...
in debugger debugger Target > Memory
Manipulation sub-menu 31
memory leaks
finding 171
Memory Load...
in debugger Target > Memory Manipulation
sub-menu 31
Memory Manipulation
in debugger Target menu 30
Memory, memory checking option 170
Memory...
in debugger View menu 26
memview command 118

1-12

Debugging with MULTI 2000

| ndex

menu bar
in debugger 13,22
menu command 119
in debugger 22
messages
in data explorer 155
middle-click
in command pane 22
monitor command 119
mouse
conventions for using P-3
customizing for debugger 42
using in debugger windows 42
mouse bindings
default 159
in data explorer 149
mouse command 119, 133
mprintf command 119
MULTI
command line options 6
Debugging Level 58
exiting 23,126
running from command line 5
multi debugger 12
MULTI Help...
in debugger Help menu 34
multi-language applications, debugging 47
mvc command 120
mvconfig command 120

N

n command 121
Navigation

in debugger View menu 26
new command 122
NewViewField command

for viewcommand 154
Next

in debugger Debug menu 25
next 122
Next button

in debugger 35
ni command 122
nl command 122
NO PROCESS message

on status bar 18

-nocfg command line option
to MULTI 7
None, memory checking option 170
Noop command
for viewcommand 153
-norc command line option
to MULTI 7
-noshared command line option
to MULTI 8
-nosplash command line option
to MULTI 8
note command 122
Notes
in debugger Tools menu 31
NULL Dereference check box
in Run-time Error tab 168

O

octal
viewing datain 161
Options menu item
in builder Config menu 32
Output Filefield
in Set Program Arguments dialog box 25

P

P command 122
p command 123
-P command line option
to MULTI 8
-p command line option
to MULTI 8
-p compiler option
GUI equivaent to 174
Pascal language
set constructorsin expressions 47
viewing expressions 57
Pascal Variants check box
in Run-time Error tab 169
percent sign command (obsolete) 73
-pg compiler option
GUI equivaent to 174
playback and record commands 73
Playback Commands...
in debugger Config > State sub-menu 33

Green Hills Software, Inc.

[-13

| ndex

pointer

viewing as array in data explorer 151
pointers

viewing as array in data explorer 161
pop command (obsolete) 123
pop-up menu

for aprocedure 37

for atype 38

for avariable 37

for other objects 38

in debugger source pane 36
PopView command

for viewcommand 154
print command 55, 123
Print Expression...

in debugger View menu 26
print lines 123
Print to File...

in debugger File menu 23
Print Window...

in debugger File menu 23
Print...

in debugger File menu 23
printing text

in command pane 66
printsearch command 124
printwindow command 124
procedure

pop-up menu for 37
procedure calls

in debugger 58
Procedure drop-down list ("Proc:")

on debugger status bar 19
Procedure drop-down list box ("Proc:")

on debugger status bar 17
procedure-relative line numbers 15, 55, 67
Procedures

in debugger View > List sub-menu 28
procedures

invoking in debugger 58

listing 28

stepping into 25, 38

stepping out of 25

stepping over 25
procedures in current file

browsing 19
Proceduresin Files...

in debugger Browse menu 29

proceduresin program
browsing 19
Procedures...
in debugger Browse menu 29
process
attaching to 80
halting 107
halting current 24
killing current 24
listing 28
sending signal to 25
process button, profiler 178
process data, profiler 178
Processes
in debugger View > List sub-menu 28
procRelativelines 15
configuration option 15
profdump debugger command 124, 183
profile
debugger command 176
profile command 125
Profile...
in debugger View menu 26
profilegui command (obsolete) 125
profilemode command 125
GUI equivalents 177
profiler 173
block coverage detailed 181
block coverage summary 181
call graph report 180
callsinformation 175
outside of MULTI 183
prerequisites for using 175
process button 178
process data 178
profdump command 183
profile prior to exit 183
range analysis 178
range button 178
report buttons 179
reports 179
source lines report 182
standard calls button 179
standard calls report 179
status report 179
status report button 179
profiler window
opening 176

1-14

Debugging with MULTI 2000

| ndex

profiling

native targets 182

with emulator 183

with monitor 183

with simulator 182
profiling programs that don’t exit83
Program arguments

in Set Program Arguments dialog bak
program countefl6

in source pand3
program statel8
programs

halting on write to addreskil
prologue code

and caveat in debuggirizp7
protrans

debugger commanti83
protrans utility

in profiler

profiler
protrans utility 183

protrans, utility183
push command (obsolet&p5
pwd commandl25

Q

Q commandl25
g commandl25
gfst commandl26
Quit button
in debugger36
quit commandl26
QuitAll
in debugger File men@3
quitall commandl26

R

R commandl26
r commandl27
-R command line option
to MULTI 8
-r command line option
to MULTI 8
R_SIGNAL system variablé0
range button, profiled78

Rb commandl27
rb commandl27
read-only system variableg3
Rebuild...

in debugger Tools mensl
record and playback command3
Record Command+Output...

in debugger Config > State sub-me3a
Record Commands...

in debugger Config > State sub-meBa
red STOPPED arrow6
refresh command27
Refresh Section...

in debugger Target mer20
Refresh Views

in debugger View men@6
refreshing

data explorerd 64
Register Synomyms

in debugger View > List sub-mer228
register synonyms

listing 28
Registers

in debugger View > List sub-mer28
registers

listing 28
registers command (deprecatd@B
Registers...

in debugger View men@é
Regs button

in debugger35
remote command28
-remote command line option

to MULTI 8
repeat commands
repeat command (1J3
repeat command (=), obsolet8
repeat command, smart (3
report buttons, profiled79
rerooting, in tree browse220
Restart

in debugger Debug mer24
Restart button

in debugger3s
restart command29
restore command29

menu equivalen83

Green Hills Software, Inc.

I-15

| ndex

Restore State

in debugger Config > State sub-menu 33
restoring breakpoints 84
restrictions

in filenames (no spaces allowed) 22
$result, specid predefined variable 52
Return button

in debugger 35
Return check box

in Run-time Error tab 169
return command 130
right-click

aprocedure 37

atype 38

avariable 37

in command pane 22

in debugger source pane 36

other objects 38
right-clicked line

pertaining to right-click pop-up menus 36
rload command 130
root class 216
Run button

in Set Program Arguments dialog box 25
rundir command 130
RUNNING message

on status bar 18
runtask command 130
run-time error checking 168
Run-time Error Checking tab 168
Run-time Error tab check boxes 168

S

S command 131
scommand 131
save command 132

menu equivalent 33
Save Configuration as Default

in debugger Config menu 32
Save Configuration...

in debugger Config menu 32
Save State

in debugger Config > State sub-menu 33
saveconfig command 132
saveconfigtofile command 132
saving breakpoints 84
sc command 132

scripts search path 75
scroll bars
diamond in 39
in data explorer 39
in debugger windows 39
scrollcommand command 133
search dialog box
for debugger source pane 41
search path 75
Search...
in debugger Tools menu 31
searching
in data explorer 149
in source pane. See keyboard shortcuts
in Target window. See keyboard shortcuts
strings 76
searching files
in debugger 75
incrementally 40
selected text
in debugger windows 39
selecting text
in debugger windows 39
semicolons(:)
command separator 69
Send Signal
in debugger Debug menu 25
SERVERTIMEOUT system variable 60
Set button
in Set Program Arguments dialog box 25
Set Program Arguments
in debugger Debug menu 24
setargs command 134
setbrk command 134
setting a breakpoint 81, 82, 84
setting up-level breakpoints 86
shell, commandsto 75
Show Command History
in debugger Config > State sub-menu 33
Show Target Window...
in debugger Target menu 30
showdef command 135
showing See viewing
Si command 135
si command 135
signal
sending to process 25
signal command 135

I-16

Debugging with MULTI 2000

| ndex

SIGNAL system variable 60
Signals

in debugger View > List sub-menu 28
signals 210

listing 28

sending to current program 25
software breakpoint 210
source code

interlaced with disassembled code 17

stepping through 25, 38
source command 136
sourcefiles

browsing in debugger 18
source lines report

profiler 182
source pane P-3,13

in main debugger window 13
Source Paths

in debugger View > List sub-menu 28
source paths

listing 28
SourcePath...

in debugger View menu 26
spaces

not alowed in filenames 22
specia variables

Presult 52

viewing value in debugger 51
specification file 8
SSrch message

on debugger status bar 18,40
Stack Trace commands

T 138
stack trace commands 75
stacklevel

debugger notation 69
standard calls report

in profiler 179
State

in debugger Config menu 32
static calls, browsing by file 217
static calls, browsing by function 216
Static Célls...

in debugger Browse menu 29
static variables

listing 28
Statics

in debugger View > List sub-menu 28
Status 18

on debugger status bar 18
status bar P-3,17

in debugger 13
status report

in profiler 179
Step

in debugger Debug menu 25, 38
Step button

in debugger 35
Step Out

in debugger Debug menu 25
Stop Recording Commands+QOutput...

in debugger Config > State sub-menu 33
Stop Recording Commands...

in debugger Config > State sub-menu 33
Stop sign 15

in data explorer 149

in debugger source pane 15
stopif command 136
stopifi command 137
STOPPED message

on status bar 18
Stops button

in debugger 35
structs

printing 70
structures

viewing in data explorer 150
subroutines

stepping into 25, 38

stepping out of 25

stepping over 25
syncolor command 137
syntax checking 63
system variables 16

case sengitivity of 16

in debugger 60

read-only 63

representing internal state of debugger 61

T

T command 138
t command (obsolete) 138
target command 138

Green Hills Software, Inc.

1-17

| ndex

Target menu
in debugger 30
Target menu (debugger) 30
targetwindow command 138
TASKWIND system variable 60
taskwindow command 138
template instantiation
for C++ 16
text buttons
configuring in debugger’s tool b&4
-text command line option
to MULTI 8
text, selecting in debugger windo\89
three-way check bof-3
tilda See repeat command, smart
tog commandl38
Toggle 10 Buffering...
in debugger Target mer0
ToggleFreeze command
for viewcommandl54
Toolbar P-3
toolbar
changing location in debugger wind®%
in debuggerl3, 34
Tools menu
in debugger31
Tools menu (debugger)
tree browser
opening216
two-way check boxP-3

Type...
in debugger Browse meri9

U

unalias command39
Unused Variables check box

in Run-time Error tat169
up arrow

in data explorer49
UpArrow key

bound to backhistory commar@2
update command39, 152
UpStack

in debugger View men@7
Upstack button

in debugger3s
UpStack To Source

in debugger View men@7
uptosource commanti39

\%

-V command line option
to MULTI 8
variable lifetime debugging1
variable lifetime information
in debuggeb0
variables
$result52
notations in debugget8
special51
viewing value 0f48, 52
variables in a procedure
listing 28
Variables In Procedure...
in debugger View > List sub-meri28
VERIFYHALT system variables0
VERIFYRESTART system variablé0
view commandl40
opening a data explordi50
View Expression...
in debugger View men@6
View menu
in debugger26
View menu (debugger26
VIEWARRAYMAX system variable61
viewcommand commanti0, 153
Viewdel button
in debuggei36
viewdel commandL40, 153
ViewField command
for viewcommandl54
viewing
arrays in a data explordsl
C++ classes in data explor#b2
data in alternate mode in a data
explorer 161
data, in binaryl61
data, in decimal60
data, in hexidecimal6l
data, in octall61
disassembled code in a data expldrg2
kanji in debugged3
line numbers in source pari®
memory addresse49

1-18

Debugging with MULTI 2000

| ndex

memory from adata explorer 161

multiple objectsin a data explorer 150

pointer as array in data explorer 161

structuresin adata explorer 150
viewlist command 140, 152

w

W command (obsolete) 141
w command (obsolete) 141
wait command 141
Watchpoint check box

in Run-time Error tab 169
watchpoint command 141
watchpoints

setting 141
while command 142
wildcards

for viewing expressions 57
window command 142
windowcopy command 142
windowpaste command 143
windows

conventionsfor P-3

identification numbers for 133
windowspaste command 143

X

X assertion command 143
x command 143
Xmitio command 143

Z

Z command (deprecated) 144
z, command 144
zignal command

in debugger 214

Green Hills Software, Inc.

[-19

| ndex

1-20 Debugging with MULTI 2000

	Debugging with MULTI® 2000
	Contents
	Preface
	About the MULTI manuals
	Conventions
	Typographical conventions
	GUI mode conventions
	GUI conventions
	Check box conventions

	1 Introduction to MULTI
	Features
	Embedded programming in MULTI
	Running MULTI from the command line
	Command line options
	Specification file

	Resources

	2 Debugger GUI
	Main debugger window
	Source pane
	Breakdots
	Breakpoint markers
	Current line pointer
	Line numbers
	PC pointer / Highlighted line
	C++ Templates and Ada Generics

	dblink
	Interlaced source view
	Assembly code view
	Assembly-only view

	Status bar
	Status
	File drop-down list
	Procedure drop-down list
	History navigation buttons

	Command pane

	Debugger menus
	File menu
	Debug menu
	View menu
	Browse menu
	Target menu
	Tools menu
	Config menu
	Help menu

	Debugger toolbar
	Pop-up menus
	Pop-up menu for a procedure
	Pop-up menu for a variable
	Pop-up menu for a type
	Pop-up menu for other objects

	Generic debugger window features
	Scroll bars
	Infinite scrolling

	Selecting text
	Incremental search
	Search dialog box for the source pane
	Variable lifetime debugging
	Multiple .text section debugging

	Other window topics
	Mouse clicks
	Kanji character support

	3 Expressions, variables, and procedures
	Evaluating expressions
	Language keywords

	Viewing variables
	Viewing memory addresses
	Printing results of a complex statement

	Variable lifetime
	Special variables
	Examining data
	Variables
	Expression formats
	Viewing expressions
	Eval
	Examine
	Print

	Examining line numbers
	C Labels:
	Procedure-relative mode:
	File-relative (non-procedure-relative) mode:

	Language dependencies

	Wildcards
	Procedure calls
	Caveats for procedure calls

	System variables
	Syntax checking

	4 Debugger commands
	Debugger notations
	Double quotes “ ”
	%bp_label
	@bp_count
	{ cmds }
	Address expressions
	Procedure-relative vs file-relative line numbers

	Breakpoint label
	Breakpoint list and ranges
	stacklevel_
	Command list
	default search path
	Printing structs

	Command groups
	Breakpoint commands
	Continue commands
	History commands
	Record and playback commands
	Search path for scripts

	Search commands
	Stack trace commands

	Debugger commands

	5 The data explorer
	The data explorer
	Data explorer basics
	Title bar
	Hot keys
	Searching and selections
	Mouse bindings

	View command
	Viewing multiple items
	Viewing structures
	Viewing arrays
	Viewing disassembled code
	Viewing C++ classes

	Related commands
	infiniteview
	update
	viewlist
	viewdel
	viewcommand

	Data explorer autosizing
	Data explorer messages
	Working with data explorers
	Configuring the maximum complexity of displayed data
	Changing views
	Pushing views
	Popping views
	New views

	Modifying values
	Modifying the name or address
	Modifying the type
	Modifying the data
	Changing view style

	Default mouse bindings

	Data explorer format menu
	Display address or type
	Show Address
	Show Type

	Number bases
	Natural
	Decimal
	Hexadecimal
	Binary
	Octal

	Alternate viewing methods
	View Alternate
	Memory View
	Make Array

	Evaluate sub-menu
	In Context
	As Local
	As Global
	By Address

	Format sub-menu
	Formatted
	Type
	Infinite

	Advanced Sub-menu
	Expand Value
	Open Pointer
	ShowChanges
	Print
	Make Default
	Reset Type
	Refresh

	Data explorers with an infinite view
	Updating data explorer windows

	6 Run-time error checking
	Run-time error checking
	Run-time Error tab check boxes
	Memory checking drop-down list
	Finding memory leaks

	7 The Profiler
	Introduction to the profiler
	Execution time
	Standard calls
	Call graph
	Block coverage

	Using the profiler
	Processing data
	Range analysis
	The profiling reports
	Status report
	Standard calls report
	Call graph report
	Block coverage summary
	Detailed block coverage
	Source lines report

	Profiling targets
	Profiling native targets
	Profiling with simulators
	Profiling with monitors
	Profiling with emulators

	The profdump command
	The protrans utility

	8 Browse window
	Browse window
	Browse window > Object menu
	Browse window > View menu
	User-defined Filter dialog box
	Browse window for procedures
	Browse window for globals
	Browse window for source files

	Dialog box for procedures

	9 Memory view window
	Opening a memory view window
	Configuring a memory view window
	Changing the address in a memory view window
	Editing memory in a memory view window

	10 Call stack window
	Call stack window
	Call stack window and command-line function call
	Caveat

	11 Breakpoints window
	Opening the Breakpoints window
	Breakpoint types
	To work with software breakpoints
	To work with hardware breakpoints
	To work with signals

	Using the Breakpoints window
	To toggle a breakpoint
	To toggle whether a bell will sound when a breakpoint is hit
	To change the count for a breakpoint
	To change the list of commands associated with a breakpoint
	To make a breakpoint conditional
	To examine a breakpoint
	To delete a breakpoint
	To set a new software breakpoint
	To save the current list of software breakpoints to a file
	To load a list of software breakpoints from a file
	To set a new hardware breakpoint
	To change the actions performed when a signal is received

	12 Tree browser
	Opening a tree browser
	Browsing classes
	Browsing static calls, by function
	Browsing static calls, by file
	Browsing dynamic calls, by function

	Using a tree browser
	Node operations
	Rerooting
	Window operations

	Configuring tree browser colors

	Index

