

Embedded MCore
Development Guide

MULTI 2000 Release

Copyright © 1983-1999 by Green Hills Software, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission from Green Hills Software, Inc.

DISCLAIMER
GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software, Inc.
reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation
of Green Hills Software, Inc. to notify any person of such revision or changes.

Green Hills Software and the Green Hills logo are trademarks, and MULTI is a registered trademark, of Green Hills
Software, Inc.
System V is a trademark of AT&T.
Sun is a trademark of Sun Microsystems, Inc.
UNIX and Open Look are registered trademarks of UNIX System Laboratories.
ColdFire is a registered trademark of Motorola, Inc.
DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.
4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.
X and X Window System are trademarks of the Massachusetts Institute of Technology.
Motif is a trademark of Open Software Foundation, Inc.
Microsoft is a registered trademark, and Windows, Windows 95, and Windows NT are trademarks of Microsoft
Corporation.
All other trademarks or registered trademarks are property of their respective companies.

Revision History

PubID: D13B-I1299-89NG
Timestamp:December 10, 1999 10:34 am
Embedded MCore Development Guide

Revision Release Date Location of Revision(s)

CONTENTS
Contents
Preface P-1
About this Manual P-1

Typographical Conventions P-2

What This Manual Covers P-2

1 Introduction 4
Components of the Toolset 5

2 Building An Executable Program 7
How to Build a Program for Use with the MULTI Debugger 8

The Compiler Driver 8

How to Build a C Executable Program 10

How to Build a C++ Executable Program 11

How to Build Programs with C and C++ Modules 13

3 The Toolset 15
How to Compile and Link an Executable Program 16

Green Hills MCore Cross Compilers 19

The MCore Macro Assembler, asmcore 19

Object Module Librarian, ax 20

The MCore Linker, elxr 20

Header Files 20

Support Routines and Libraries 21

Debugging and Running the Program 22

4 The MCore Processor 23
MCore Characteristics 24

Compiler Output Format 25

Register Usage 25

Structure Packing 26
Green Hills Software Inc. 1

CONTENTS
Calling Conventions 27

Interrupt Processing in C and C++ 29

5 Embedded Features 31
Program Sections 32

Putting Data into ROM 32

Reducing Program Size 34

Using Linker Switches 35

Producing S-Record Output 35

Multiple-Section Programs 36

Renaming Text Sections 37

Japanese Automotive C 38

6 Debug Formatting 41
Basic Debug Formatting Information 42

Benefits of .dbo Files 42

Backwards Compatibility 42

How to Use DWARF 43

Controlling Generation of the .dnm File 43

7 ELF Files 45
Relocatable and Executable File Organization 46

32-bit ELF Data Types 47

ELF Header 47

ELF Identification 50

Sections 52

Symbol Tables 59

String Tables 62

Program Headers 63
2 Embedded MCore Development Guide

CONTENTS
8 Compiler Driver Options 65
MCore-Specific Options 66

Driver Options Specific to the Assembler 66

Library Options 66

Driver Options Specific to the ELXR Linker 67

General Options 68

Data Allocation Options 73

Debugging Options 75

Optimization Options 76

Run-time Error Checking Options 87

Ada Compiler Options 88

C Preprocessor Options 89

C and C++ Preprocessor Options 89

C Compiler Options 90

C++ Compiler Options 95

FORTRAN Language Compiler Options 109

9 Macro Assembler 119
Macro Assembler Characteristics 120

Command Line Options 120

Using the Driver 122

Macro Assembler Syntax 123

Expressions 127

Labels 129

10 Macro Assembler Directives 131
Listing of Macro Assembler Directives 132

Characteristics of Specific Directives 134
Green Hills Software Inc. 3

CONTENTS
11 MCore Macro Assembler Reference 145
Register Set 146

Addressing Modes 147

Macro Expansion 151

Alphabetical List of MCore Instructions 152

12 The Librarian 157
Description 158

Command Line Options 158

Examples 160

13 The ELXR Linker 161
Command Line Options 162

Program Entry Point 163

Section and Memory Maps 164

Expressions 165

Section Attributes 166

Green Hills Specific Linker Features 168

Porting Guide from other linkers 170

14 Utility Programs 171
The gcompare Utility Program 172

The gdump Utility Program 175

The gfile Utility Program 177

The gfunsize Utility Program 178

The ghexfile Utility Program 179

The ghide Utility Program 182

The gmemfile Utility Program 183

The gnm Utility Program 184

The grun Utility Program 187
4 Embedded MCore Development Guide

CONTENTS
The gsize Utility Program 189

The gsrec Utility Program 190

The gstack Utility Program 196

The gstrip Utility Program 197

The gsymdump Utility Program 198

The gtune Utility Program 200

The gversion Utility Program 202

15 Runtime Environment and Library Organization205
Introduction 206

Multiple Language Runtime Support 207

MCore Library Structure 207

Linker Directives Files 207

How to Create a Customized Linker Directives File 208

Special Sections in Linker Directives Files 208

Source Files Available for Customization 212

Incorporating Your Changes into the Libraries 217

16 MCore Simulator 219
The MCore Simulator Command Line Options 220

The Simulator as a MULTI Debugger Target 220

ROM Mode 221

Unsupported Features 222

A Enhanced asm Facility A-1
Introduction A-2

Definition of Terms A-2

asm Macros A-3

MCore asm procedures A-7

Writing asm Macros A-9
Green Hills Software Inc. 5

CONTENTS
B Viewpathing 11
Theory of Operation 12

Limitations 13

Environment Variables 13

C C Runtime Libraries C-1
Built-in Functions C-2

Reentrancy C-3

libansi.a data structures and functions C-4

libind.a functions C-9

Less Buffered I/O C-10

Index I-1
6 Embedded MCore Development Guide

Preface
About this Manual

This manual describes the Green Hills cross
development tools for the MCore family of
microprocessors. Cross development means using one
computer system, called the host, to write, compile,
and debug programs for execution on a different
computer system, called the target. The Green Hills
cross development products are available for many
different hosts and many different operating systems.
The examples in this manual apply to a UNIX
environment on a Sun workstation; users in other
environments should make the appropriate
adjustments. The required adjustments are generally
obvious; exceptions are explained in the
accompanying text.

This manual also presumes that Green Hills products
are installed in the directory /usr/green. If this is not
the case, substitute the correct directory and place it in
your path.

Typographical Conventions
Typographical Conventions

For example, in the command description

ccmcore [-cpu=processor] filename

the command ccmcore should be entered as given, the -cpu=processor is
optional with the appropriate cpu option replacing processor, and the
appropriate file name replacing the word filename.

What This Manual Covers

Convention Example Description

bold text -noansi name of program, command, directory, or file

bold characters in quotes “A” name to enter as shown, without quotes

courier setenv TMPDIR samples of code, or instructions to enter

italic text in a command line -o filename place-holder for user-supplied information

square brackets, [] .macro name [list] encloses optional commands or terms

square brackets [] around
boldface default

Specifies char as
signed [default].

command or option is the default

Chapter Provides

1. Introduction Overview of components and toolset operation

2. Building an Executable Introduction to the Compiler Driver

3. The Toolset How the compiling, linking, and debugging tools work

4. The MCore Processor Description of the MCore target environment

5. Embedded Features Special requirements for embedded developers

6. Debug Formatting How to use .dbg files

7. ELF Files Organization of Executable and Linking Format files

8. Compiler Driver Options Description of all the compiler options

9. Macro Assembler How to use the MCore macro assembler

10. Macro Assembler Directives Explanation of all the MCore macro assembler directives

11. MCore Macro Assembler Reference MCore addressing modes and instruction formats

12. The Librarian How to use the librarian

13. ELXR How to use ELXR

14. Utility Programs Description of all supported and unsupported utilities

15. Runtime Environment and Library
Organization

Structure of the Green Hills runtime environment and how to
modify and customize it

16. The MCore Simulator How to use MULTI with the Simulator
Green Hills Software, Inc. P- 2

App. A, Enhanced asm Facility Introducing assembly language instructions into C code

App. B, Viewpathing A hierarchical method for searching multiple directories for
input files

App. C, C Runtime Libraries Listings of the Green Hills C Library

Chapter Provides
P-3 Embedded MCore Development Guide

1

Introduction
This chapter contains:

• Components of the Toolset

This manual is the primary documentation for MCore cross development. Listed here are
various tools you will need, how they relate to each other, and how those features are unique
to cross development.

Components of the Toolset

The complete Green Hills MCore cross development toolset includes the
following components.

Compiler Drivers

A compiler driver is a program which invokes the other components of
the tool set to process a program. There is a separate compiler driver for
each source language. The drivers use command line arguments and
source file extensions to determine which compiler or assembler to
invoke for each source file, then sequence the resulting output through
the subsequent linker and conversion utilities, relieving the user of the
burden of invoking each of these tools individually.

CompilersEach Green Hills optimizing compiler is a combination of a
language-specific front end, a global optimizer, and a target-specific
code generator. Green Hills provides compilers for five languages: Ada,
C, C++, FORTRAN, and Pascal, including all major dialects. All
languages for a target use the same subroutine linkage conventions. This
allows modules written in different languages to call each other. The
compilers generate assembly language.

AssemblerThe relocatable macro assembler translates assembly language
statements and directives into a relocatable object file containing
instructions and data.

LibrarianThe Librarian combines object files created by the Assembler or
Linker into a library file. The linker can search library files to resolve
internal references.

LinkerThe Linker combines one or more ELF object modules into a single ELF
relocatable object file or executable program.

DebuggerThe MULTI Debugger is a windowing source level debugger that
debugs programs written in Ada, C, C++, FORTRAN, Pascal, and
assembly language. MULTI can debug a program being executed by a
simulator or by a target.

SimulatorThe Simulator is a program which executes on the host system and
simulates the execution of the MCore instructions.
5 Embedded MCore Development Guide

Components of the Toolset
ROM Monitor

The ROM Monitor is a program which resides on a target system and
which interfaces with the MULTI Debugger to enable it to download
programs to that target and debug them.
Green Hills Software, Inc. 6

2

Building An
Executable Program
 This chapter contains:

• How to Build a Program for Use with the MULTI
Debugger

• The Compiler Driver

• How to Build a C Executable Program

• How to Build a C++ Executable Program

• How to Build Programs with C and C++ Modules

How to Build a Program for Use with the MULTI Debugger

rce

er

 one
You can create an executable program by compiling source files written in a high-level
language such as Ada, C, C++, or FORTRAN into assembly code, assembling assembly
language files into object files, and linking together these object modules with object module
libraries, into an executable program.

To simplify this task and coordinate many diverse programs and files, Green
Hills provides a program for each language called the compiler driver. This
chapter describes the Green Hills compiler driver and provides instructions and
examples for building your executable program and debugging it with the
MULTI Debugger.

How to Build a Program for Use with the MULTI Debugger

Green Hills MULTI provides a powerful source level debugger. To take
advantage of the MULTI Debugger, use the -G option when building the
executable program. This option causes the Green Hills compilers to place
extensive information regarding variables, data types, and source files into
auxiliary debug file information that MULTI uses (see Chapter 6, “Debug
Formatting”).

The -G option may appear anywhere on the driver command line when sou
files are compiled and also when object files are linked, as shown in this
example:

% ccmcore -G file1.c file2.c -o program
% multi program

MULTI also supports debugging of optimized code; you can use the -G option
with optimization enabled, although for best debugging results, the optimiz
should be disabled.

The Compiler Driver

Starting with source files written in you can build an executable program in
command line, using the Green Hills compiler drivers C or C++.
Green Hills Software, Inc. 8

The compiler driver performs three major functions:

• Compiles source language files

• Assembles assembly language files

• Links together object files and libraries

You can invoke the driver from the command line. The driver calls the
appropriate compiler with the correct default options. By default, the driver uses
the linker to link in object files from the appropriate libraries.

The compiler driver for each language is:

ccmcoreC compiler driver

cxmcoreC++ compiler driver

The driver begins with a list of input files and looks at the extension of each
filename to determine the file types and what compilation steps to perform on
that file. For example, a file with a .c extension is a C source file, and a file with
a .f or .for extension is a FORTRAN source file. Each file needs to be compiled
with the appropriate language compiler, assembled, and then linked. Source
files of different languages can be included within the same executable. See the
-language option in the Mixing Languages chapter in either the Green Hills C
or FORTRAN User’s Guides for more information.

The syntax for the compiler driver command is:

driver_name [options] filename(s)

driver_nameThe name of the driver for the language that you are using.

optionsRepresent any combination of compiler driver options. These options
may be placed either before or after filename(s) on the command line.

filename(s) Represents the source file or files you wish to compile, assemble, or
link. A space is required between each filename.

To build executable programs, support routines in the form of libraries and
startup files are often needed in addition to the routines that you have provided.
These support routines often perform tasks such as interfacing with an operating
system. By default, the compiler driver will include the appropriate libraries and
startup files based on the languages, target processor, and compatibility modes
specified when compiling and linking.
9 Embedded MCore Development Guide

How to Build a C Executable Program
The compiler driver recognizes certain filename extensions listed in the
following table. It determines each file type from the extension and processes
the file accordingly.

How to Build a C Executable Program

To build an executable from a C source file called demo.c, enter the following
command:

% ccmcore demo.c
The driver recognizes demo.c as a valid C source file by its .c extension and
invokes the C compiler. The compiler produces an assembly code file, which is
then sent to the assembler, which produces an object file which is sent to the
linker and linked with the appropriate libraries selected by the driver.

If no errors occur, an ELF format executable file called a.out is created in the
current directory. You can rename the output file with the -o compiler driver
option.

You can rename the output file with the -o option. For example:

% ccmcore demo.c -o demo
This command creates an ELF format file called demo in the current directory.
The filename must immediately follow the -o option.

When a single source file is compiled and linked, all intermediate files are
deleted.When more than one file is given to the driver, any object files that are

Extension Assumed file type

.ada .adb .ads Ada source file

.c .i C source file

.cxx .C .cpp .cc C++ source file

.ii C++ templates information file

.f .for FORTRAN source file

.o object file

.a library file

.s assembly language file

.mco assembly language file with C preprocessor directives

.inf Inline and dependency intermediate files

.dbo, .dba, .dlo, .dla, .dnm Debug information
Green Hills Software, Inc. 10

created in the process are not deleted. This is convenient when only one of the
files must be recompiled. For example, suppose that you compile several files:

% ccmcore demo.c file1.c file2.c
You then discover that demo.c must be modified. After editing demo.c, you
can build the executable with this command:

% ccmcore demo.c file1.o file2.o
Since file1.c and file2.c have not been modified, it is possible to use the object
modules file1.o and file2.o created by the previous compilation.

Assembly source files may be input to the compiler driver if the name of the file
ends with .s. For example:

% ccmcore demo.s
For assembly source files, the compiler driver first invokes the assembler, then
the linker produces the file a.outin the current directory.

If you use the -c option, the compiler driver stops after creating an object file for
each source file on the command line. The following command line produces
two relocatable object modules, called demo.o and file.o, in the current
directory:

% ccmcore -c demo.c file.s
If only one object file is created, you can use the -o option with the -c option to
rename the object file. The new name must contain the suffix .o. For example,
the following command line creates the relocatable object module newdemo.o
in the current directory:

% ccmcore -c demo.c -o newdemo.o
The compiler driver links relocatable object modules into an executable file. If
all of the names of the input files to the driver end in.o, the compiler driver
invokes the linker only. The following command line links the demo.o, file1.o,
and file2.o object modules with the necessary startup code and libraries to
produce the file a.out:

% ccmcore demo.o file1.o file2.o

How to Build a C++ Executable Program

To build an executable from a C++ source file called demo.cxx, enter the
following command:

% cxmcore demo.cxx
The driver recognizes demo.cxx as a valid C++ source file by its.cxx extension
and invokes the C++ compiler. The compiler produces an assembly code file,
which is then sent to the assembler, which produces an object file. The object
11 Embedded MCore Development Guide

How to Build a C++ Executable Program
file is then sent to the linker and linked with the appropriate libraries selected by
the driver.

If no errors occur, an ELF format executable file called a.out is created in the
current directory. You can rename the output file with the -o compiler driver
option. For example:

% cxmcore demo.cxx -o demo
This command creates an ELF format executable file called demo in the current
directory. The filename must immediately follow the -o option. When a single
source file is compiled and linked in this way, all intermediate .s and .o files are
deleted.

When more than one file is given to the driver, any object files that are created
in the process are not deleted. This is convenient when only one of the files
must be recompiled. For example, suppose that you compile several files:

% cxmcore demo.cxx file1.cxx file2.cxx
You then discover that demo.cxx must be modified. After editing demo.cxx,
you can rebuild the executable with this command:

% cxmcore demo.cxx file1.o file2.o
Since file1.cxx and file2.cxx have not been modified, it is possible to use the
object modules file1.o and file2.o created by the previous compilation.

Assembly source files may be input to the compiler driver if the name of the file
ends with .s. For example:

% cxmcore demo.s
For assembly source files, the compiler driver first invokes the assembler and
then the linker to produce the file a.outin the current directory.

If the -c option is used, the compiler driver stops after creating an object file for
each source file from the command line. The following command line produces
two relocatable object modules, called demo.o and file.o, in the current
directory:

% cxmcore -c demo.cxx file.s
If only one object file is created, you may use the -o option with the -c option to
rename the object file. The new name must contain the suffix .o. For example,
the following command line creates the relocatable object module newdemo.o
in the current directory:

% cxmcore -c demo.cxx -o newdemo.o
The compiler driver links relocatable object modules into an executable file. If
all of the names of the input files to the driver end in.o, the compiler driver
invokes only the linker. The following command line links the demo.o, file1.o,
Green Hills Software, Inc. 12

and file2.o object modules with the necessary startup code and libraries to
produce the file a.out:

% cxmcore demo.o file1.o file2.o

How to Build Programs with C and C++ Modules

It is possible to combine both C and C++ modules into a single program. You
should use the C++ driver, cxmcore, to build any executables containing
modules written in C++. The C++ driver is designed to handle the special
requirements for linking C++ programs.
13 Embedded MCore Development Guide

How to Build Programs with C and C++ Modules
Green Hills Software, Inc. 14

3

The Toolset
 This chapter contains:

• How to Compile and Link an Executable Program

• Green Hills MCore Cross Compilers

• The MCore Macro Assembler, asmcore

• Object Module Librarian, ax

• The MCore Linker, elxr

• Header Files

• Support Routines and Libraries

• Debugging and Running the Program

How to Compile and Link an Executable Program
The MULTI Builder controls the compiling, assembling, and linking. It depends on many
other tools to perform its tasks. These tools include executable programs, support files, and
libraries.

How to Compile and Link an Executable Program

Figure 1 illustrates the flow of files through the tool chain when the MULTI
Builder is invoked. The builder first calls the appropriate compiler for each
source file and produces an assembly code file. The builder then invokes the
assembler to produce an ELF object file. The builder then invokes the linker to
produce an ELF executable file. MULTI can debug this ELF executable file.
Figure 2 illustrates the C++ compilation procedures.
Green Hills Software, Inc. 16

Figure 1 Flow of Source Files Through the Tool Chain

Executable program
a.out

Assembly
Language

Files

Object
Modules

Library
Files

Assembly Language File
(.s extension)

Macro Assembler

Object Module
(.o extension)

Linker

Language Compiler

Language Source File
(Ada 95, C, C++, FORTRAN,
Pascal)
17 Embedded MCore Development Guide

How to Compile and Link an Executable Program
Figure 2 C++ Compilation Process

 C++ Source

C++ Front End

 C Code

 C Compiler

 Object File

 Assembly Code

 Assembler

 Executable

 Munch

 Repeat until all templates

 are instantiated.

Some compilers generate
object files directly.

lx resolves
constructors/destructors
internally.

 Template Prelinker

 Linker

 Final Executable
Green Hills Software, Inc. 18

ions
.

e is a
and its

 for
ive
 data
so on.

nts
nd
ta

e

ore

Green Hills MCore Cross Compilers

The Green Hills MCore Cross Compilers are an integrated family of highly
optimizing compilers. Each compiler is a combination of a language-specific
front end, a global optimizer, and a target-specific code generator. The
compilers use compatible subroutine calling conventions. This allows modules
written in different languages to be mixed. The output file from any of the
compilers is an assembly code file.

Green Hills provides compilers for Ada, C, C++, FORTRAN, and Pascal. Each
compiler supports the major dialects of the associated language.

The MCore Macro Assembler, asmcore

While programs executing on a processor are capable of very powerful
functions and can work with complex data structures, processors themselves
understand only binary sequences of “machine code” and operate only on
binary sequences of data. The machine code forms sequences of instruct
for the processor to perform; the data is manipulated by these instructions

Since humans have difficulty working with such binary sequences, each
processor type has a human-readable “assembly language.” Usually, ther
one-to-one correspondence between each assembly language instruction
equivalent machine code form.

This assembly language typically supplies not only a textual representation
each instruction, but also a set of “directives” where the programmer can g
instructions to the assembler itself. Directives specify data types, generate
values, specify alignment requirements for the machine code or data, and

The MCore Macro Assembler asmcore takes the assembly language stateme
and directives of the MCore assembly language program presented to it a
translates them into the equivalent MCore processor machine code and da
formats. The resulting file produced is an object file, or object module. See
Chapter 9, “Macro Assembler”, for more information.

Usually, the linker is able to resolve all external references and produce a
“fully-linked” output module which is made executable by the operating
system. Alternately, if instructed to do so, the linker may simply combine
several object modules into a bigger object module, perhaps still with som
unresolved references.

The linker is usually instructed to link object modules together with one or m
“libraries.” A typical library contains a large number of object modules of its
19 Embedded MCore Development Guide

Object Module Librarian, ax

for
lve

hen

to a
ule

ng

e

own. The linker extracts from the library only those modules which it needs in
order to resolve the external references in the object modules presented to it.
Libraries are useful for providing commonly used modules in an easily
accessible format.

Object Module Librarian, ax

The Green Hills MCore Librarian program combines object modules created by
the Assembler or Linker into a library file. See Chapter 12, “The Librarian”,
more information. The linker can search library files for components to reso
internal references. A module from a library is only included in a program w
it is referenced in the program.

The MCore Linker, elxr

The linker for the MCore toolset is elxr for ELF.

The MCore linker takes one or more object modules and combines them in
single executable output module. The relocation section of each given mod
“resolves” its external text and data references with the module(s) containi
the required text and data. See Chapter 13, The ELXR Linker, for more
information.

Header Files

Green Hills provides header files for use with C and C++ source files. Thes
files are accessed by placing the #include directive in the source file. When the
compiler sees #include file, it first searches in the directory containing the
source file, then in the directories specified with the -I option, and finally in the
default directories.

For C, the default directories are:

/usr/green/mcore/include
/usr/green/ansi
The contents of /usr/green/ansi shown below.

assert.h ctype.h errno.h float.h inline.h ghcxx.h interrup.h

interrupt.h limits.h locale.h math.h setjmp.h signal.h stdarg.h

stddef.h stdio.h stdlib.h string.h strings.h time.h varargs.h
Green Hills Software, Inc. 20

for

e

rary
nd

 are
For C++, the default directories vary depending on the C++ mode in use.

Support Routines and Libraries

To build executable programs, special support routines are often needed in
addition to the routines you provide. These support routines often perform tasks
which cannot be done by the user, such as interfacing with the underlying
operating system. These routines are kept in libraries.

In addition to libraries, other special files are required by an executable
program, such as the startup file and the default linker directive file. The
compiler driver automatically specifies these files and libraries when invoking
the linker, unless the option -nostdlib is specified. This option does not add any
default startup files or libraries to the linker command line.

Startup File
When linking a program, the compiler driver normally specifies a startup file
such as crt0.o before any user specified object files or libraries. This file
contains a function named _start which is the default entry point for the
program. The _start function performs initialization and then invokes main().
Please see Chapter 15, “Runtime Environment and Library Organization”,
more information.

Libraries
See Appendix C, “C Runtime Libraries”, for a list of functions included in th
libraries below.

ANSI C Library, libansi.a
The functions documented in the ANSI C Standard are contained in this lib
and libind.a, described below. After all user files and libraries on the comma
line, libansi.a should always be listed. Only libind.a should appear after
libansi.a.

Language Independent Library, libind.a
All transcendental math functions, such as sin and sqrt, are in the libind.a
library. In addition, low-level support routines and system service functions
here. This library should always be the last file on the command line.
21 Embedded MCore Development Guide

Debugging and Running the Program
Debugging and Running the Program

Once you have created an executable, the next steps are to debug and run the
program. Green Hills MULTI development environment provides a
source-level debugger used with programs executing on an actual target or
executing on a simulated target.

MULTI Debugger
The MULTI Debugger is part of the MULTI Software Development
Environment. MULTI runs on the host machine while the application to be
debugged is running either under the MCore Simulator, the ROM Monitor, or
on a target system interfaced through an In-Circuit Emulator Server.

Simulator
The Green Hills MCore Simulator is a program that executes on the host and
simulates the execution of the MCore microprocessor at the instruction level.

In-Circuit Emulator Server
The ICE Server is a program which runs on the host computer with MULTI and
acts as an intermediary between MULTI and an in-circuit emulator connected to
the host. The ICE Server translates debugging requests, transmits them to the
emulator, and returns the responses from the emulator in a format recognizable
to MULTI.
Green Hills Software, Inc. 22

4

The MCore
Processor
 This chapter contains:

• MCore Characteristics

• Compiler Output Format

• Register Usage

• Structure Packing

• Calling Conventions

• Interrupt Processing in C and C++

MCore Characteristics
This chapter describes the MCore target environment.

MCore Characteristics

The MCore processor has the characteristics shown in the following table:

The following tables list the data type alignments for C, C++, and FORTRAN.

Characteristic Description

Memory addressing Byte-addressed with 32-bit addresses.

Bit numbering Bit 0 is least-significant bit.

Byte ordering Big endian by default. The most significant byte of a
multi-byte value is stored at the lowest address.

Stack alignment 8-byte alignment.

Floating-point format IEEE 754 format (32 and 64 bits) with the most
significant byte at the lowest address.

Character encoding ASCII.

C/C++ bit field allocation starts at most-significant bit.

C/C++ maximum bit field size Four or fewer bytes.

C/C++ struct, union, array
alignment

Aligned to the maximum alignment of any of its
components.

C/C++ Data Type Size Alignment

int 32 32

long 32 32

long long 64 64

* 32 32

short 16 16

char 8 8

float 32 32

double 64 64

long double 64 64

unsigned 32 32

unsigned char 8 8

unsigned short 16 16

enum (default) 32 32

enum (option) 8, 16, 32 varies

FORTRAN Data Type Size Alignment

REAL 32 32

REAL*8 64 32
Green Hills Software, Inc. 24

Compiler Output Format

By default, the output of the compiler is MCore Assembly Language.

Register Usage

There are 16, 32-bit general purpose registers which can be used for both
integer values and single-precision floating point values. There are also a set of
control registers. The registers are shown in the following tables:

Registers r1-r7, r15 are volatile; their contents may be destroyed by a function
call. Registers r0, r8-r14 are non-volatile; they will be preserved across function
calls.

DOUBLE PRECISION 64 32

CHARACTER 8 8

INTEGER*1 8 8

INTEGER*2 16 16

INTEGER 32 32

LOGICAL*1 8 8

LOGICAL*2 16 16

LOGICAL 32 32

COMPLEX 64 32

COMPLEX*8 64 32

COMPLEX*16 128 32

DOUBLE COMPLEX 128 32

Register Name(s) Usage

r0 Stack pointer

r1 Scratch register

r2-r3 Parameter registers, return value

r4-r7 Parameter registers

r8-r13 Permanent registers

r14 Permanent register, frame pointer

r15 Link pointer

Name Usage

PSR Processor status register

FORTRAN Data Type Size Alignment
25 Embedded MCore Development Guide

Structure Packing
Structure Packing

The Green Hills compilers always allocate fields of a structure in the order
specified in the declaration. It may be necessary for the compiler to insert one or
more bytes of padding to ensure that a field begins at an offset from the
beginning of the structure which is a multiple of the alignment of that field. The
alignment of a field is determined by its type. The maximum alignment of a
field is eight bytes. This alignment applies to fields of type double, long
double, and long long. Fields of type float, int, and long, and pointer types
have four byte alignment. Fields of type short have two byte alignment and
fields of type char have one byte alignment.

Packing is a feature which reduces the maximum padding the compiler inserts
between fields in order to gain storage-efficient data structures. If a structure is
packed to two bytes, then each field has a maximum alignment of two bytes,
and at most one byte of padding will be inserted between fields. The structure
itself will also have a maximum alignment of two bytes.

The command line options -Zp1, -Zp2, and -Zp4 specify the default packing in
bytes for all structures.

In addition, #pragma pack() controls the packing of an individual structure.
The pragma must appear before the beginning of the declaration which lists the
fields of the structure. The pragma should not be used inside of a structure
declaration. If 1, 2, or 4 appear between the (), the packing in effect changes
until the next #pragma pack(). If a number is not present between the (),
packing resets to the default.

Example:

struct s {
 char c;
 int i, j;

} a;

VBR Vector base register

EPSR, FPSR,
EPC, FPC

Exception shadow registers

SS0-SS4 Supervisor storage registers

GCR Global control register

GSR Global status register

PC Program counter

Name Usage
Green Hills Software, Inc. 26

#pragma pack(2)
struct s x;
struct s2 {

 char c;
 int i, j;

} b;
#pragma pack()
struct s2 y;

The size of a and x are both 12. Three bytes of padding appear between field c
and field i. #pragma pack(2) did not affect the declaration of x, since struct s
was already declared.

The size of b and y are both 10. One byte of padding appears between field c
and field i. #pragma pack() did not effect the declaration of y, since struct s2
was already declared.

Be aware that the use of #pragma pack may generate structures in which some
of the fields are impossible or inefficient to access. The programmer assumes
responsibility for avoiding access to misaligned fields, which may cause fatal
compile-time errors or other serious problems.

Calling Conventions

A procedure, subroutine, or function call is assumed to destroy the contents of
all registers except r8 through r14 unless #pragma ghs interrupt is used.

Arguments
Call arguments are evaluated first from left to right, then the remaining non-call
arguments are evaluated from left to right.

In C and C++, each scalar argument is extended to a 32-bit value after it is
evaluated unless the corresponding formal parameter has a floating point type
and, in C and C++, an ANSI prototype is visible. In this case, the argument is
converted into either a 32-bit or 64-bit floating point value according to the
formal parameter.

In C and C++, each floating point argument is extended to a 64-bit value after it
is evaluated, unless the corresponding formal parameter is either single
precision floating point or integer type and, in C and C++, an ANSI prototype is
visible. If the formal parameter is single precision, the argument is converted to
a 32-bit floating point value. If the formal parameter is scalar, the argument is
converted to a 32-bit scalar value.

Any further type conversion is performed upon entry to the called procedure.
27 Embedded MCore Development Guide

Calling Conventions

ting

eter
that

s that

ister
y the
lue
Arguments are assigned stack offsets from left to right. The first argument is
always at offset zero. The size of the first argument is rounded up to a multiple
of four bytes and added to its offset to determine the offset of the second
argument. If the second argument requires 8-byte alignment and its offset would
not otherwise be a multiple of eight bytes, its offset is increased by four bytes.
This is repeated until offsets have been assigned to all arguments. If the
argument area is larger than 24 bytes, then a space large enough to hold this
argument area less 24 bytes is present on the stack immediately before the call.

In general, the arguments are allocated to the stack according to their stack
offset unless it is possible to place them in registers.

Arguments with offsets 0 through 20 will be placed in registers r2 through r7,
respectively. Thus in C and C++, scalar, pointer, and floating point arguments
are eligible to pass in registers, as well as some structures and unions.

A varargs function in K&R only has va_alist as its arguments, and they are all
considered to be passed in memory. Therefore on entry to a varargs function, all
the parameter registers (r2 through r7) are first saved on the stack so that all
arguments can be accessed from the stack.

For a stdargs function in ANSI, all arguments starting from “...” are considered
to be passed on the stack. On entry to a stdargs function, if “...” is in one of the
parameter registers (r2 through r7), then that register plus all parameter
registers following it are first saved on the stack, so that all arguments star
from “...” can be accessed from the stack.

For a stdargs function (as described in the MCore Applications Binary
Interface), if the address of any of the parameters is taken, all of the param
registers are saved on the stack. This is for compatibility with legacy code
assumes that all parameters to a stdargs function are passed in memory.

A call to a procedure, subroutine, or function uses a bsr or jsr instruction which
saves the return address in the system register r15. A return uses the rts
pseudo-instruction.

Return Values
Return values that are up to 32 bits in size are returned in r2, sign- or
zero-extended to 32 bits for scalar types smaller than 32 bits. Return value
are between 32 and 64-bits in size are passed in the register pair r2/r3.

In C and C++, to call a function which returns any type not passable in reg
(e.g. structures), the address of a temporary of the return type is passed b
caller in r2. The function returns the structure value by copying the return va
to the address pointed to by this register before returning to the caller.
Green Hills Software, Inc. 28

In FORTRAN, to call a FUNCTION which returns a COMPLEX, DOUBLE
COMPLEX, or CHARACTER value, the address of a temporary of the return
type is passed in r2. If a FUNCTION returns a CHARACTER value, then the
size of the temporary, in bytes, is passed in r3. The subroutine or function
returns the value by copying he return value to the address pointed to by r2 on
entry.

Frame Pointer
If -ga is specified on the command line, a frame pointer will be set up in r14 for
use by a symbolic debugger. This option is required for runtime error checking
and graph profiling. This is not part of the MCore ABI.

Accesses to parameters or local stack storage are always made relative to the
stack pointer, r0, even if a frame pointer is set up.

Interrupt Processing in C and C++

Interrupt functions on the MCore use different calling conventions than normal
functions. Specifically:

• Interrupt functions must return using the rte instruction rather than the
rts instruction, and

• Normal functions are permitted to destroy the contents of certain temp
registers. If the caller wishes to save the contents of these registers, it must
be done by the caller before calling the function. Interrupt functions are not
permitted to destroy the contents of those registers.

You can make the compiler follow these conventions for a particular function in
C or C++ by inserting the #pragma ghs interrupt instruction
immediately after the opening curly brace.

Alternatively, the keyword __interrupt may be placed at the beginning of a
function definition:

__interrupt void func(void)
Non-interrupt routines only save and restore permanent registers used, but an
interrupt routine also saves and restores any temporary registers if they are
used. If an interrupt routine has a function call, then all temporary and
permanent registers will be saved, even if they are not used in the interrupt
function.
29 Embedded MCore Development Guide

Interrupt Processing in C and C++
Green Hills Software, Inc. 30

5

Embedded Features
 This chapter contains:

• Program Sections

• Putting Data into ROM

• Reducing Program Size

• Using Linker Switches

• Producing S-Record Output

• Multiple-Section Programs

• Renaming Text Sections

• Japanese Automotive C

Program Sections

and
d or
of

 to
ed

 not
se

ction

o be
e
Japanese Automotive C Symbolic memory-mapped I/O Embedded developers have many
special requirements for controlling how data and code are arranged and accessed.

Program Sections

Program sections are labeled collections of program objects. The simplest
program sections are .text, .data, .rodata, and .bss. The .text section holds
program code. The .data section holds external variables with explicitly
initialized values such as int i=1;. The .rodata section holds compiler generated
constants and read-only variables. The .bss section holds variables which are
not explicitly initialized. In most systems, the runtime or operating system
initializes the .bss section to all zeros. This zero initialization is required by the
C and C++ languages.

The compiler assigns various data and text objects to the appropriate sections at
compile-time. The linker’s job is to collect all data for each named section
to locate that section in memory. In doing this, it is guided by a user-supplie
default linker section map. The section map specifies the desired location
each section and also the order of the sections in the final output file.

In addition to the above sections, you can create sections and assign them
specific regions of memory. You can also assign variables to the user-defin
sections. You have the flexibility to position variables and other program
objects in memory.

The linker provides definitions for several symbols which, if referenced and
defined, are given certain addresses corresponding to the final image. The
symbols are constructed by prepending the strings _ _ghsbegin and _ _ghsend
to the name of each section in the final image, with any period (.) in the se
names changed to underscores (_). For example, for a section named .text, the
symbols _ _ghsbegin_text and _ _ghsend_text would revert to the virtual start
and end addresses of that section, respectively.

Putting Data into ROM

The embedded features package includes facilities for various data items t
put into ROM. The assumption is that the program text is in ROM, so thes
features are designed to put specified data items with the program text.
Green Hills Software, Inc. 32

rs:

her
that
Putting Initialized Data into ROM
A program located in ROM may need to initialize RAM memory upon
power-up or restart. If the program needs to have RAM variables that are
initialized to specified values, proper steps must be taken to set up those
variables at startup. Normally, executable files created by the linker consist of
instructions in .text, initialized data in .data, and zero-initialized data in .bss.

Since all memory variables are in sections, they are initialized one entire section
at a time. There are three ways that sections are initialized, depending on the
type of section. Read-only sections have all of their initial values in the
executable file. The contents of this section are downloaded to the target via the
debug server or the contents are burned into ROM. Read-write sections are
initialized by creating a read-only section which is a copy of the read-write
section. This read-only section is initialized as described above. Then, during
program startup, the contents are copied from the read-only image to the
read-write section in RAM.

Zero-initialized sections (.bss sections) are initialized to zero during program
startup. All variables in these sections have been implicitly initialized to zero.

The new ROM linker directives files make these actions largely automatic. By
using the Green Hills startup code, a program can be put into ROM, and still
have initialized variables (whose values are automatically copied from ROM to
RAM at program startup time). In addition, its bss sections are automatically
cleared, so that .bss variables start proper initialization to zero. “Linker
Directives Files” on page 207 provides more information.

How to Copy Data Sections from ROM to RAM and Clear .bss
(zero-initialized data)

The Green Hills startup code automatically clears .bss sections and copies
ROM to RAM; however, you can customize this, using the following pointe

_ _ghsbinfo_clear

_ _ghseinfo_clear

_ _ghsbinfo_copy

_ _ghseinfo_copy

These pointers reference the .secinfo section which contains addresses
specifying the areas of memory that need to be copied or cleared. For furt
information on customizing, on copying ROM to RAM, and to see the code
does the copy or clear, refer to “ind_crt0.c” on page 213.
33 Embedded MCore Development Guide

Reducing Program Size
Verifying Program Integrity
One use of the _ _psinfo structure is to checksum sections in memory to verify
that they have not changed from the state in which they were created by the
linker. For this purpose, the linker calculates a CRC checksum for each
F_TEXT or F_DATA section of non-zero length, and stores it as the last four
bytes of the section. Upon initialization, it is possible to scan the _ _psinfo table
sections of this type, calculate the same CRC on all but the last four bytes, and
then compare the result to the stored CRC. A match indicates that the program
has the same byte values in memory that it had when the linker created the
executable file.

Reducing Program Size

One concern of developers of embedded systems is program size. Given the
limitations on the amount of ROM available in typical embedded systems, it is
desirable to make programs as small as possible. The Green Hills compiler
allows you to create smaller executable files under certain conditions.

Removing Floating-Point Libraries
Large executable files can be the result of library routines which cause code
related to floating point operations to be linked in. This can occur even if your
program does not use floating point variables.

A prime example of this is the printf function. Since printf allows various
formatting options for floating point values, which are the %f, %e, and %g
switches, using printf causes floating point handling code to be loaded even if
these particular options are not used. This may add considerable size to the
executable program.

The -fnone switch to the driver is designed to avoid this problem. This switch
means that the user program is not using floating point operations. This allows
the driver to load special versions of printf and other library functions that do
not use any floating point code.

The -fnone switch has two effects. The compiler will give a fatal error for any
floating point constant and for any use of the reserved words float and double.
This prevents any floating point value or operation from appearing in the C
source code. At link time, the linker searches a special library which has
non-floating point versions of library functions before searching the regular
libraries. If any of these functions are used, the non-floating point versions are
loaded in place of the floating point ones.
Green Hills Software, Inc. 34

The compiler attempts to position certain program variables in order to
minimize the space for padding between variables. Global and external
variables are not eligible for this optimization because of the possibility that
other modules may make assumptions about their order. Such variables are
generally allocated in the order in which they are declared in the source file.
However, static variables (both local to functions and of file scope) may be
rearranged by the compiler in order to reduce padding space.

The compiler classifies these variables into three categories based on size:
single byte variables, larger variables (which are the size of an integer register
or less), and variables larger than an integer register. The variables from the first
category are allocated, then the second, and the third. Collecting variables of
similar sizes together reduces the need for padding.

You can increase opportunities for this optimization by liberal use of static
variables wherever possible.

Specifying Program Start Address
The linker normally uses the address of the global symbol -start as the start
address for the user program. The driver supports an option, -entry=sym, to
specify an alternate start address.

For example, use the symbol newstart as the program start address with a
command line:

% ccmcore -entry=newstart file.c

Using Linker Switches

The linker, elxr, has many switches for embedded system development. When
using the driver, linker-specific switches must be preceded by -lnk= to be
effective. This causes the switches to be passed to the linker unchanged. Please
see “Command Line Options” on page 162 for more information.

Producing S-Record Output

The utility program gsrec creates Motorola S-record format files from ELF
executable files. See Chapter 14, “Utility Programs” for more information.
35 Embedded MCore Development Guide

Multiple-Section Programs

 one

to
as in

s to

le’s
is
mas

es
 of
Multiple-Section Programs

In embedded programming, it is sometimes necessary to place certain variables
in specific memory regions. For example, there may be different kinds of RAM
memory available, some fast and some slow, and selected variables need to be
placed into the fast RAM. The Green Hills C compiler and linker allow you to
achieve this and similar goals by grouping variables into program sections and
positioning them as desired in memory.

To group program variables and position them in memory, it is necessary to
assign a named section to each desired memory region using a linker section
map. In addition, information is provided in the program source files to show
which variables go into which sections. This is done using the section pragma,
with the following syntax:

#pragma ghs section[secttype="sectname"[,secttype="sectname"]...]
The square brackets enclose optional material, and the ... indicates that the
preceding square-bracketed material repeats zero or more times.

sectname is the user-defined section name, eight letters or less in length, and by
convention starts with a period (“.”). The word default may be used in place of
any sectname. While normal section names are specified in quotes, the word
default is not.

secttype tells which kind of data item is affected by the pragma, and may be
of the following:

text Program text.

data Initialized variables.

bss Zero-initialized variables.

rodataConstant variables and/or strings.

Each occurrence of the section pragma specifies a mapping of data types
section names. Each section pragma leaves mappings from earlier pragm
place except for those which it explicitly overrides. Specifying default in place
of a quoted section name removes any mapping for that particular secttype. The
statement removes all mappings and restores the section-assignment rule
their initial state:

#pragma ghs section
Mappings affect variables at the point where they are defined. Each variab
placement to its section is determined by the mapping in the source file. Th
places different variables to different sections by interspersing section prag
among the variable declarations. For each variable, the compiler determin
which section it would normally fall into and then checks whether variables
Green Hills Software, Inc. 36

that type have a mapping. If so, the section specified in the mapping is used in
place of the default.

For example, consider the following line of C code:

int foo=3;
In this example the variable foo is normally placed into the .data section
because it is initialized to an explicit value. However, if this line of code were
preceded by the following, then the variable foo is placed in the section
.mydata instead:

#pragma ghs section data=".mydata"
Here is how three different variables might be assigned to three different
sections:

#pragma ghs section data=".data1"
int x1 = 0;
 /* Assign x1 to section .data1 */
#pragma ghs section data=".data2"
int x2 = 0;
 /* Assign x2 to section .data2 */
#pragma ghs section data=".data3"
int x3 = 0;
 /* Assign x3 to section .data3 */
#pragma ghs section data=default
 /* Now we are back to default rules */
This allocates variable x1 to section .data1, x2 to .data2, and x3 to .data3.

Renaming Text Sections

You can rename a text section, but there are some restrictions. You can rename a
text section only once per program source file, before the very first function in
the source file.

For example, the following source file places the function foo() into the text
section .mytext:

#pragma ghs section text=".mytext"
void foo(void)
{
}

The following examples show incorrect usage:

Bad Example 1
#pragma ghs section text=".mytext"
void foo(void)
{
}

37 Embedded MCore Development Guide

Japanese Automotive C

.

 in

ions:
#pragma ghs section text=".mytext2"
/* wrong: can only have one pragma to rename */
/* text section */

void bar(void)
{
}

Bad Example 2
void foo(void)

{
}
#pragma ghs section text=".mytext"

/* wrong: must use pragma before the first function */
void bar(void)

{
}

Japanese Automotive C

Japanese Automotive C is a set of extensions to ANSI C used by Japanese
automobile manufacturers. For complete specifications, refer to the
C-Language Specification for Automotive Control (Proposal) by Toyota Motor
Corp., July 29, 1993.

Japanese Automotive C generally conforms to the principles of ISO 9899,
equivalent to the ANSI X3.159-1989 standard, with the exception of the
“Implementation-defined Behavior” specification of Annex G.3 in ISO 9899
Japanese Automotive C modifies, or extends, this specification to support
portability. The method by which it extends the “Implementation-defined
Behavior” conforms to the “Common Extension” section of ISO 9899, found
Annex G.5.

To select this version of C, click the Japanese Automotive C box in the C
options window of the MULTI Builder window. Alternately, enter the
-japanese_automotive_c command line option.

Selecting Japanese Automotive C enables the following command line opt

-pragma_asm_inline

Enables #pragma asm, #pragma endasm, #pragma inline.

-unsignedchar

Specifies type char as unsigned.

-unsignedfield
Green Hills Software, Inc. 38

Specifies that a bit field whose type is char, short, int, or long has an
unsigned value.

-noshortenum

Specifies that enumerated types are integers.

-asmwarnPrints a warning for each _ _asm() statement.

-noasmPrevents the compiler from recognizing asm as a keyword in other
modes, allowing a variable or function named asm to be declared.

Normally, in strict ANSI C mode, it is a fatal error to declare a bit field with
basetype other than int, signed int, or unsigned int. Japanese Automotive C
makes this legal, even though it is a minor violation of the ANSI standard.

For example,

struct {
 char b:3;
 char c:5;
) s;
When the above code is compiled with -ANSI, the following error occurs:

"x.c", line 3: Illegal type for bit field
"x.c", line 4: Illegal type for bit field
When the code is compiled with -ANSI -japanese_automotive_c, no error or
warning occurs.

Interrupt Functions
A function may be declared to be an interrupt function by prepending the
__interrupt keyword to the function definition. The compiler will generate
code for this function that will save all the registers this function uses, including
the registers that are normally destroyable across function calls. These functions
are intended to be used to handle hardware interrupt and exception conditions;
since these events are not part of the normal program flow using a non-interrupt
function may modify registers, resulting in incorrect behavior of the interrupted
routine. These functions should be of void type and should take no arguments.

Example:

__interrupt void handle_clock_interrupt(void)
{
 clock_ticks = clock_ticks + 1;
}

39 Embedded MCore Development Guide

Japanese Automotive C
#pragma ghs interrupt
Putting #pragma ghs interrupt before a function definition is equivalent to
declaring the function with the __interrupt keyword.

#pragma intvect
For all CPU processors, selecting Japanese Automotive C also enables:

#pragma intvect function integer_constant

The purpose of this pragma is to establish interrupt vectors. The compiler
arranges for the address of the named function to be placed in memory at the
address specified by integer_constant using a .org directive to the assembler.

This feature is only supported when using a Green Hills assembler and is not
available in binary code generation mode.

The compiler does not check to see if function has been declared in the file, or if
it is a legal function of any kind. The compiler also does not verify that
integer_constant is a legal or unique address.

Selecting Japanese Automotive C also results in the following caveat: in the
case of a pointer being cast to an integer, if the pointer and the integer are the
same size, no data is lost. If the pointer is cast to a smaller integer, then the data
is reduced from the upper bit.

Also, for some CPU processors, selecting Japanese Automotive C enables
several built-in functions to control interrupts:

void _ _DI(void);

Disables all interrupts.

void _ _EI(void);

Enables all interrupts.

void _set_il(int n);

Sets interrupt level to n.
Green Hills Software, Inc. 40

6

Debug Formatting
This chapter contains:

• Basic Debug Formatting Information

• Benefits of .dbo Files

• Backwards Compatibility

• Controlling Generation of the .dnm File

Basic Debug Formatting Information

 all

d
tion

on
Green Hills tools support a proprietary debug format, called .dbo files. These files are
generated by the compiler or assembler and have the same name as the object file, but with
the suffix changed from .o to .dbo.

Basic Debug Formatting Information

To debug a program with MULTI or a debugger from another vendor, the
compiler or assembler must generate information indicating source line
numbers and variable data types. The options -g or -G can be passed to the
compiler to generate this debug information. These options are also available in
the MULTI Builder’s File Options window, labeled Debug Level. The
selection Plain corresponds to -g, and the selection MULTI corresponds to -G.

Before a program can be debugged with MULTI, the dblink utility program
collects the information in the .dbo files into a .dnm and .dla file. The Builder
or Driver usually invokes dblink just after the program is linked. However, if
MULTI is debugging a program prog, MULTI looks for prog.dnm in the same
directory. If MULTI doesn’t find prog.dnm, it invokes dblink to create the file.

dblink uses the symbol table information in the executable program to find
of the .dbo files. If the .dbo files have been moved, dblink might not be able to
locate them. In this case, the option may be passed to dblink to indicate
additional directories where the .dbo files may be found:

-dbopath=dir[;dir][;dir][...]

This option is rarely needed and should only be used if dblink indicates that
.dbo files are not found.

Benefits of .dbo Files

The information contained in the .dbo file is more extensive than that containe
in any previous debug format supported by MULTI. Because debug informa
is not contained in the object files, link time is greatly decreased without
increasing the dblink time substantially.

Backwards Compatibility

In the new mode, debug information is only contained in the .dbo files and in
the .dnm and .dla file. There is no debug information in the executable
program. Therefore, any utilities which depend on reading debug informati
Green Hills Software, Inc. 42

will not work. Also, the default behavior will no longer work with debuggers
provided by other vendors.

How to Use DWARF

Users can ask the compilers to generate both .dbo files and DWARF debug
information. This is recommended for users who have utilities which read the
debug information in the object files as well as for users who use both the
MULTI Debugger along with other source debuggers. To generate both .dbo
files and DWARF debug information in an ELF environment, select Output
dual debug formats in the Advanced Options window, or enter -dual_debug
when using the command line driver.

By default, only the .dbo file is generated. However, if -dual_debug is
specified, both DWARF and .dbo files are generated. This mode is provided for
compatibility with third party tools that read DWARF debug information. Even
if -dwarf is specified, only the .dbo files are actually used by MULTI to debug
the program. Use of the -dwarf option will not improve debugging in any way
and will slow down assembly and link-time by increasing the size of assembly
and object files significantly. See Debugging Options in the Compiler Driver
Options chapter, for more information.

Controlling Generation of the .dnm File

By default, dblink is invoked after the program is linked if Debug Level is
Plain or MULTI and .dbo files are in use, or if Debug Level is MULTI and
.dbo files are not in use.

Three command line options control the invocation of dblink by the driver:

-nodnm
Prevents the invocation of dblink after linking the program.

-nonodnm
Forces the invocation of dblink after linking the program.

-dnm
Invokes dblink on an executable that has already been linked.

Two additional command line options control whether the executable has its
symbols stripped after dblink is invoked. The executable is never stripped
unless the Builder links the program and invokes dblink:
43 Embedded MCore Development Guide

Controlling Generation of the .dnm File
-strip
Forces the program to be stripped (by the gstrip utility) after dblink is
run.

-nostrip
Prevents the program from being stripped after dblink is run.

By default, the program will only be stripped with -G -nodbo.
Green Hills Software, Inc. 44

7

ELF Files
 This chapter contains:

• Relocatable and Executable File Organization

• 32-bit ELF Data Types

• ELF Header

• ELF Identification

• Sections

• Symbol Tables

• String Tables

• Program Headers

Relocatable and Executable File Organization

very

ection
ELF stands for Executable and Linking Format. This chapter explains the organization of
ELF files of all types. Sections of this chapter have been reproduced with permission from
UNIX System Laboratories, Inc. For additional information about ELF files, please see
System V Application Binary Interface, 1993, UNIX System Laboratories, Inc., published by
Prentice-Hall, Inc.

An ELF file can be a relocatable object file or an executable file. A relocatable
object file holds program code and data and is suitable for linking with other
object files. An executable file is a file which holds programs suitable for
execution. ELF files are created by the compiler, assembler, and linker.

Relocatable and Executable File Organization

The following two tables show the organization of both types of ELF files,
relocatable object files and the executable files:

An ELF header resides at the beginning of an ELF object file or executable file
and serves as the table of contents of the file. All other data and tables in the
file may appear in any order. Sections hold the bulk of object file information
for the linking view, such as instructions, data, symbol table, and relocation
information.

An ELF executable file must have a program header table. A relocatable ELF
file does not need one. The program header table tells the system how to load
the program.

A section header table contains information describing the file’s sections. E
section has an entry in the table; each entry gives information such as the
section name and section size. Relocatable files to be linked must have a s
header table.

Relocatable File Executable File

ELF header ELF header

Program header table
optional

Program header table

Section 1 Segment 1

. . .

Section n Segment 2

. . .

.

Section header table Section header table
optional
Green Hills Software, Inc. 46

32-bit ELF Data Types

The ELF object file format supports 32-bit architectures with 8-bit bytes. It
must be modified for 64-bit architectures. Object files represent some control
data with a machine-independent format, making it possible to identify object
files and interpret their contents. Part of an object file uses the encoding of the
target processor, regardless of the machine on which the file was created:

All data structures that the object file format defines follow the usual size and
alignment guidelines for the relevant class. If necessary, data structures contain
explicit padding to ensure 4-byte alignment for 4-byte objects, to force structure
sizes to a multiple of 4. Data also have suitable alignment from the beginning of
the file. For example, a structure containing Elf32_Addr will be aligned on a
4-byte boundary within the file.

For portability, ELF data structures use no bit fields.

ELF Header

Some object file control structures can grow, because the ELF header contains
their actual sizes. If the object file format changes, a program may encounter
control structures that are larger or smaller than expected. An ELF header is set
by the following C structure declaration:

Type Name Size Alignment Purpose

Elf32_Addr 4 4 Unsigned program address

Elf32_Half 2 2 Unsigned medium integer

Elf32_Off 4 4 Unsigned file offset

Elf32_Sword 4 4 Signed large integer

Elf32_Word 4 4 Unsigned large integer

unsigned char 1 1 Unsigned small integer

Table 1 Object File Types

#define EI_NIDENT 16

typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf32_Half e_type;

Elf32_Half e_machine;

Elf32_Word e_version;
47 Embedded MCore Development Guide

ELF Header

e’s

e_identThe first bytes mark the file as an object file and provide

machine-independent data with which to decode and interpret the fil
contents.

e_typeIdentifies the object file type. Possible types are:

e_machineSpecifies the target architecture for an individual file:

Elf32_Addr e_entry;

Elf32_Off e_phoff;

Elf32_Off e_shoff;

Elf32_Word e_flags;

Elf32_Half e_ehsize;

Elf32_Half e_phentsize;

Elf32_Half e_phnum;

Elf32_Half e_shentsize;

Elf32_Half e_shnum;

Elf32_Half e_shstrndx;

} Elf32_Ehdr;

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_LOPROC 0xff00 Processor-specific

ET_HIPROC 0xffff Processor-specific

Name Value Meaning

EM_NONE 0 e_machine

EM_SPARC 2 Sun SPARC

EM_386 3 Intel 80386

EM_68K 4 Motorola 68000

EM_88K 5 Motorola 88000

EM_486 6 Intel 80486

EM_ MIPS 8 MIPS

EM_960 19 Intel 80960

EM_PPC 20 Power PC

EM_V800 36 NEC V800 series

EM_FR20 37 Fujitsu FR20

EM_RH32 38 TRW RH32

EM_MCORE 39 Motorola MCORE
Green Hills Software, Inc. 48

e

o

he

s.
e_versionIdentifies the object file version.

The value 1 signifies the original file format; extensions will create new
versions with higher numbers. The value of EV_CURRENT, though
given as 1 above, will change as necessary to reflect the current version
number.

e_entryGives the virtual address to which the system first transfers control
upon starting the process. If the file has no associated entry point, this
member holds zero.

e_phoffProgram header table’s file offset in bytes. If the file has no program
header table, it holds zero.

e_shoffSection header table’s file offset in bytes. If the file has no section
header table, this field holds zero.

e_flagsProcessor-specific flags associated with the file. Flag names take th
form EF_machine_flag.

e_ehsizeELF header size in bytes.

e_phentsizeSize in bytes of one entry in the file’s program header table; all
entries are the same size.

e_phnumNumber of entries in the program header table. The product of
e_phentsize and e_phnum gives the table’s size in bytes. If a file has n
program header table, e_phnum holds the value zero.

e_shentizeSection header’s size in bytes. A section header is one entry in t
section header table; all entries are the same size.

e_shnumNumber of entries in the section header table. The product of
e_shentsize and e_shnum gives the section header table’s size in byte
If a file has no section header table, e_shnum holds the value zero.

EM_ARM 40 ARM

EM_ALPHA 41 Digital Alpha

EM_SH 42 Hitachi SH

EM_TRICORE 44 Siemens TriCore

EM_MIPS_X 51 MIPS-X

EM_COLDFIRE 52 Motorola ColdFire

EM_MMA 54 Fujitsu MMA

Name Value Meaning

EV_NONE 0 Invalid version

EV_CURRENT 1 Current version
49 Embedded MCore Development Guide

ELF Identification

e_shstrndxSection header table index of the entry associated with the section
name string table. If the file has no section name string table, this
member holds the value SHN_UNDEF.

ELF Identification

ELF provides an object file framework to support multiple processors, multiple
data encodings, and multiple classes of machines. To support this object file
family, the initial bytes of the file specify how to interpret the file, independent
of the processor on which the inquiry is made and independent of the file’s
remaining contents.

The initial bytes of an ELF header, and an object file, correspond to the e_ident
member. The identification indexes are tabulated below:

These indexes access bytes that hold the following values:

EI_MAG0 to EI_MAG3

A file’s first four bytes identify the file as ELF:

Index Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1 File identification

EI_MAG2 2 File identification

EI_MAG3 3 File identification

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_PAD 7 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]

Name Value Position

ELFMAG0 0x7f e_ident[EI_MAG0]

ELFMAG1 ‘E’ e_ident[EI_MAG1]

ELFMAG2 ‘L’ e_ident[EI_MAG2]

ELFMAG3 ‘F’ e_ident[EI_MAG3]
Green Hills Software, Inc. 50

t

es

ce

r.

hould
re

the
EI_CLASSThe next byte, e_ident[EI_CLASS], identifies the file’s class, or
capacity:

The file format is portable among machines of various sizes, withou
imposing the sizes of the largest machine on the smallest. Class
ELFCLASS32 supports machines with files and virtual address spac
up to 4 Gigabytes. It uses the basic types defined above.

Class ELFCLASS64 is reserved for 64-bit architectures. Its appearan
here shows how the object file may change, but the 64-bit format is
otherwise unspecified. Other classes are defined as necessary, with
different basic types and sizes for object file data.

EI_DATAByte e_ident[EI_DATA] specifies the data encoding of the
processor-specific data in the object file. The encodings are:

Other values are reserved and are assigned to new encodings as
necessary.

EI_VERSION

Byte e_ident[EI_VERSION] specifies the ELF header version numbe
Currently, this value must be EV_CURRENT, as explained above for
e_version.

EI_PADThis value marks the beginning of the unused bytes in e_ident. These
bytes are reserved and set to zero; programs that read object files s
ignore them. The value of EI_PAD changes if currently unused bytes a
given meanings.

Encoding ELFDATA2LSB specifies 2’s complement values, with the least
significant byte occupying the lowest address. Encoding ELFDATA2MSB
specifies 2’s complement values, with the most significant byte occupying
lowest address.

Name Value Meaning

ELFCLASSNONE 0 invalid class

ELFCLASS32 1 32-bit objects

ELFCLASS64 2 64-bit objects

Name Value Meaning

ELFDATANONE 0 Invalid data encoding

ELFDATA2LSB 1 See below

ELFDATA2MSB 2 See below
51 Embedded MCore Development Guide

Sections

he
e

tisfy

g it.

tes

 one

tions
Sections

Section Headers
An object file’s section header table lets you locate all the file’s sections. T
section header table is an array of Elf32_Shdr structures. A section header tabl
index is a subscript into this array. The ELF header e_shoff gives the byte offset
from the beginning of the file to the section header table; e_shnum tells how
many entries the section header table contains; and e_shentsize gives the size in
bytes of each entry.

Sections contain all information in an object file except the ELF header, the
program header table, and the section header table. Object file sections sa
several conditions:

• Every section in an object file has exactly one section header describin
Section headers may exist that do not have an associated section;

• Each section occupies one contiguous (possibly empty) sequence of by
within a file;

• Sections in a file may not overlap. No byte in a file resides in more than
section;

• An object file may have inactive space. The various headers and the sec
might not account for every byte in an object file. The contents of the
inactive space are unspecified.

A section header has the following structure:

typedef struct {

Elf32_Word sh_name;

Elf32_Word sh_type;

Elf32_Word sh_flags;

Elf32_Addr sh_addr;

Elf32_Off sh_offset;

Elf32_Word sh_size;

Elf32_Word sh_link;

Elf32_Word sh_info;

Elf32_Word sh_addralign;

Elf32_Word sh_entsize;

} Elf32_Shdr;
Green Hills Software, Inc. 52

ABS

ture

 in

ds

n

a
word

e

ol
This
ized
sh_nameSpecifies the name of the section. Its value is an index into the section
header string table section, giving the location of a null-terminated
string.

sh_typeCategorizes the section’s contents and semantics. See SHF_GHS_
for more information.

sh_flagsSections support 1-bit flags that describe miscellaneous attributes.

sh_addrIf the section appears in the memory image of a process, this struc
gives the address at which the section’s first byte should reside.
Otherwise, the field contains zero.

sh_offsetGives the byte offset from the beginning of the file to the first byte
the section.

sh_sizeGives the section’s size in bytes. Unless the section type is
SHT_NOBITS, the section occupies sh_size bytes in the file. A section
of type SHT_NOBITS may have a non-zero size, but it occupies no
space in the file.

sh_linkHolds a section header table index link, whose interpretation depen
on the section type.

sh_infoHolds extra information, whose interpretation depends on the sectio
type.

sh_addralign

Some sections have address alignment constraints. For example, if
section holds a doubleword, the system may need to ensure double
alignment for the entire section. That is, the value of sh_addr must be
equal to 0, modulo the value of sh_addralign. Currently, only 0 and
positive integral powers of two are allowed. Values 0 and 1 mean th
section has no alignment constraints.

sh_entsizeSome sections hold a table of fixed-size entries, such as a symb
table. For such a section, this gives the size in bytes of each entry.
structure contains zero if the section does not hold a table of fixed-s
entries.

Special Section Indexes
Symbol table entries index the section table through the st_shndx field. See
“Symbol Tables” on page 59.

Name Value

SHN_UNDEF 0

SHN_COMMON -14

SHN_ABS -15
53 Embedded MCore Development Guide

Sections

s.

is
ols

or
SHN_UNDEF
A meaningless section.

SHN_COMMON
Common, or .bss symbols are allocated space in this section.

SHN_ABS
Contents of the section are absolute values; they are not affected by
relocation.

SHN_GHS_SMALLCOMMON
Not available for all processors. Similar to SHN_COMMON, but for a
limited number of small variables.

Section Types
A section header’s sh_type specifies the section’s semantics:

SHT_NULL
Marks the section header as inactive. It does not have an associated
section. Other members of the section header have undefined value

SHT_PROGBITS
Holds information defined by the program that created the ELF file,
whose format and meaning are determined solely by the program.

SHT_SYMTAB
Holds a symbol table. An object file may have only one section of th
type, but this restriction may be relaxed in the future. It provides symb
for link editing, though it may also be used for dynamic linking. As a
complete symbol table, it may contain many symbols unnecessary f
dynamic linking.

SHN_GHS_SMALLCOMMON -256

Name Value

SHT_NULL 0

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_REL 9

SHT_RELA 4

SHT_NOBITS 8
Green Hills Software, Inc. 54

 do
or

le

le.
SHT_STRTAB
Holds a string table. An object file may have multiple string table
sections.

SHT_REL
Holds relocation entries without explicit addends, such as type
Elf32_Rel for the 32-bit class of object files. An object file may have
multiple relocation sections.

SHT_RELA
Holds relocation entries with explicit addends, such as type Elf32_Rela
for the 32-bit class of object files. An object file may have multiple
relocation sections.

SHT_NOBITS
Occupies no space in the file but otherwise resembles
SHT_PROGBITS.

Section Attribute Flags
A section header’s sh_flags holds 1-bit flags that describe the section’s
attributes.

SHF_WRITE
Contains data that should be writable during process execution.

SHF_ALLOC
Occupies memory during process execution. Some control sections
not reside in the memory image of an object file, this attribute is off f
those sections.

SHF_EXECINSTR
Contains execution machine instructions.

SHF_GHS_ABS
Indicates that these sections are to have an absolute, non-relocatab
address.

SHF_MCORE_NOREAD
Indicates that these sections are not readable, but may be executab

Name Value Abbreviation

SHF_WRITE 0x1 w=writable

SHF_ALLOC 0x2 a=allocated

SHF_EXECINSTR 0x4 e=executable

SHF_GHS_ABS 0x400 b=bits

SHF_MCORE_NOREAD 0x80000000 N/A
55 Embedded MCore Development Guide

Sections

ge.
to

e.

lude
Two structures in the section header, sh_link and sh_info, hold special
information, depending on section type:

Section Names

Section names beginning with a period (.) are reserved from general use by
application programs, although application programs may use these sections if
their existing meanings are satisfactory. Application programs may use names
without the leading period to be certain of avoiding conflicts with predefined
section names.

Frequently Used Sections

Some sections hold program and control information. Sections in the following
list have predefined meaning, with the indicated types and attributes.

 .bss Holds uninitialized data that contributes to the program’s memory ima
The system initializes the data with zeros when the program begins
run.

.data Holds initialized data that contributes to the program’s memory imag

.relname

.relanameBoth these sections hold relocation information. If the file has a
loadable segment that includes relocation, the sections’ attributes inc

sh_type sh_link sh_info

SHT_REL
SHT_RELA

The section header index of the
associated symbol table

The section header index
of the section to which the
relocation applies.

SHT_SYMTAB The section header index of the
associated string table.

One greater than the
symbol table index of the
last local symbol (binding
STB_LOCAL.)

other SHN_UNDEF 0

Name Type Attributes

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.relname SHT_REL see below

.relaname SHT_RELA see below

.rodata SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB none

.strtab SHT_STRTAB see below

.symtab SHT_SYMTAB see below

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR
Green Hills Software, Inc. 56

 the

es

get

ions
pied

 and
de
the SHF_ALLOC bit; otherwise, that bit will be off. Conventionally,
name is supplied by the section to which the relocations apply. A
relocation section for .text has the name .rel.text or .rela.text.

.rodataRead-only data area. Similar to the .data section, but comprised of
constant data.

.shstrtabHolds section names.

.strtabHolds strings, most commonly the strings that represent the names
associated with symbol table entries. If the file has a loadable segment
that includes the symbol string table, the section’s attributes include
SHF_ALLOC bit; otherwise, that bit will be off.

.symtabHolds a symbol table. If the file has a loadable segment that includ
the symbol table, the section’s attributes include the SHF_ALLOC bit;
otherwise, that bit will be off.

.text Holds the text, or executable instructions, of a program.

Some sections are specific to Green Hills ELF, listed on the next page. Tar
processors may support some or all of these sections.

.syscallA program code section to support the Green Hills system call
mechanism.

.secinfoA table created by the linker describing actions to be taken on sect
as they are loaded for program execution (sections to be cleared, co
from ROM to RAM, etc.)

.fixaddr

.fixtypeTables created by the compiler for Position Independent Code (PIC)
Position Independent Data (PID) static pointer adjustments to be ma
when the program is loaded for execution.

Name Type Attributes

.syscall SHT_PROGBITS SHF_EXECINSTR + SHF_ALLOC

.secinfo SHT_PROGBITS SHF_ALLOC

.fixaddr SHT_PROGBITS SHF_ALLOC

.fixtype SHT_PROGBITS SHF_ALLOC

.sdabase SHT_NULL SHF_ALLOC

.sdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.zdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.sbss SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.zbss SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.heap SHT_NOBITS SHF_ALLOC + SHF_WRITE

.stack SHT_NOBITS SHF_ALLOC + SHF_WRITE
57 Embedded MCore Development Guide

Sections

he

 is

n

.sdabaseIf not in PID mode, the runtime system initializes the Small Data Area
(SDA) base register to be the address of this section.

.sdata

.zdata Small data area, similar to the .data section but of limited size and more
quickly addressed.

.sbss

.zbss Small data area, similar to be the .bss section but of limited size and
more quickly addressed.

.heap Section describing the area of memory for dynamic allocations through
malloc and related functions.

.stack Section describing the area of memory that the program stack will
occupy.

Relocation Types
Relocation is the process of connecting symbolic references with symbolic
definitions. For example, when a program calls a function, the associated call
instruction must transfer control to the proper destination address at execution.
Relocatable files must have information that describes how to modify their
section contents, thus allowing executable files to hold the right information for
a process’ program image. Relocation entries contain this information. In t
code below, the second example is preferred:

r_offsetGives the location at which to apply the relocation action. The value
the byte offset from the beginning of the section to the storage unit
affected by the relocation.

r_info Gives both the symbol table index with respect to which the relocatio
must be made, and the type of relocation to apply information for a
process’ program image. For example, a call instruction’s relocation

typedef struct {

Elf32_Addr r_offset;

Elf32_Word r_info;

} Elf32_Rel;

typedef struct {

Elf32_Addr r_offset;

Elf32_Word r_info;

Elf32_Sword r_addend;

} Elf32_Rela;
Green Hills Software, Inc. 58

.
ons

ets

(file

ate

 and

s

e.
entry, holds the symbol table index of the function being called. You may
find the following macros helpful when reading from or writing to the
r_info field:

#define ELF32_R_SYM(i) ((i) >> 8)
#define ELF32_R_TYPE(i) ((unsigned char) (i))
#define ELF32_R_INFO(s,t) (((s)<<8) + (unsigned char) (t))

r_addendSpecifies a constant value used to compute the final value to be stored
into the relocatable field.

A relocation section references two other sections: a symbol table and a section
to modify. The section header’s sh_info and sh_link specify these relationships
Relocation entries for different object files have slightly different interpretati
for r_offset:

• In relocatable files, r_offset holds a section offset. The relocation section
itself describes how to modify another section in the file. Relocation offs
designate a storage unit within the second section.

• In executable files, r_offset holds a virtual address. To make these files’
relocation entries more useful for the dynamic linker, the section offset
interpretation) gives way to a virtual address (memory interpretation).

Symbol Tables

The symbol table of an ELF object file holds information to locate and reloc
a program’s symbolic definitions and references. A symbol table index is a
subscript into this array. Index 0 both designates the first entry in the table
serves as the undefined symbol index. The contents of the initial entry are
specified below. A symbol table entry has the following format:

st_nameHolds an index into the object file’s symbol string table, which hold
the character representations of the symbol names. If the value is
non-zero, it represents a string table index that gives the symbol nam
Otherwise, the symbol table entry has no name.

typedef struct {

Elf32_Word st_name;

Elf32_Addr st_value;

Elf32_Word st_size;

unsigned char st_info;

unsigned char st_other;

Elf32_Half st_shndx;

} Elf32_Sym;
59 Embedded MCore Development Guide

Symbol Tables

ize is
ol

his

3 for

s

e’s

wer
st_valueGives the value of the associated symbol. Depending on the context,
this may be an absolute value, an address, etc.

st_sizeMany symbols have associated sizes. For example, a data object’s s
the number of bytes contained in the object. This holds 0 if the symb
has no size or an unknown size.

st_infoSpecifies the symbol’s binding attributes and type, explained in the
symbol binding and symbol type sections below. The values and
meanings are defined below:

st_otherCurrently holds 0 and has no defined meaning.

st_shndxEvery symbol table entry is “defined” in relation to some section; t
holds the relevant section header table index. Some section indexes
indicate special meanings. See “Special Section Indexes” on page 5
more information.

Symbol Binding
A symbol’s binding determines the linkage visibility and behavior.

STB_LOCAL
Local symbols are not visible outside the object file containing their
definition. Local symbols of the same name may exist in multiple file
without interfering with each other.

STB_GLOBAL
Global symbols are visible to all object files being combined. One fil
definition of a global symbol will satisfy another file’s undefined
reference to the same global symbol.

STB_WEAK
Weak symbols resemble global symbols, but their definitions have lo
precedence.

Name Value

STB_LOCAL 0

STB_GLOBAL 1

STB_WEAK 2

STB_LOPROC 13

STB_HIPROC 15
Green Hills Software, Inc. 60

array,

s

e

lains
STB_LOPROC through STB_HIPROC
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement explains
them.

Symbol Type
A symbol’s type provides a general classification for the associated entity:

STT_NOTYPE
This symbol’s type is not specified.

STT_OBJECT
The symbol is associated with a data object, such as a variable, and
and so on.

STT_FUNC
The symbol is associated with a function or other executable.

STT_SECTION
The symbol is associated with a section. Symbol table entries of thi
type exist primarily for relocation and normally have STB_LOCAL
binding.

STT_FILE
Conventionally, this symbol names the source file associated with th
object file. A file system has STB_LOCAL binding, its section index is
SHN_ABS, and it precedes the other STB_LOCAL symbols for the file,
if it is present.

STB_LOPROC through STB_HIPROC
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement exp
them.

Name Value

STT_NOTYPE 0

STT_OBJECT 1

STT_FUNC 2

STT_SECTION 3

STT_FILE 4

STT_LOPROC 13

STT_HIPROC 15
61 Embedded MCore Development Guide

String Tables

 not
 The
le’s
ring
n the

le

ed
Symbol Values
Symbol table entries for different object file types have slightly different
interpretations for the st_value member:

• In relocatable files, st_value holds alignment constraints for a symbol
whose section index is SHN_COMMON.

• In relocatable files, st_value holds a section offset for a defined symbol.
That is, st_value is an offset from the beginning of the section that st_shndx
identifies.

• In executable files, st_value holds a virtual address. To make these symbols
more useful for the dynamic linker, the section offset (file interpretation)
gives way to a virtual address (memory interpretation) for which the section
number is irrelevant.

Although the symbol table values have similar meanings for different object
files, the information allows efficient access by the appropriate programs.

String Tables

String table sections hold null-terminated character sequences or strings. The
object file uses these strings to represent symbol and section names. An empty
string table section is permitted; its section header’s sh_size contains zero.
Non-zero indexes are invalid for an empty string table. If the string table is
empty, you can reference a string as an index into the string table section.
first byte, which is index zero, holds a null character. Likewise, a string tab
last byte holds a null character to ensure null termination for all strings. A st
whose index is zero, specifies either no names or a null name, depending o
context.

A section header’s sh_name holds an index into the section header string tab
section, as designed by the e_shstrndx structure of the ELF header. The
following figures show a string table with 25 bytes and the strings associat
with various indexes:

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 \0 n a m e \0 \0 V a r

10 i a b l e \0 a b l e

20 \0 \0 x x \0
Green Hills Software, Inc. 62

ch

ns.
wn

ret
The string table indexes are:

A string table index may refer to any byte in the section. A string may appear
more than once; references to substrings may exist, and a single string may be
referenced multiple times. Unreferenced strings are also allowed.

Program Headers

An ELF executable file’s program header table is an array of structures, ea
describing a segment or other information the system needs to prepare the
program for execution. An object file segment contains one or more sectio
Program headers are defined only for executable files. A file specifies its o
program header size with the ELF header’s e_phentsize and e_phnum.

p_typeThe kind of segment this array element describes and how to interp
the array element’s information.

p_offsetOffset from the beginning of the file at which the first byte of the
segment resides.

p_vaddrAddress at which the first byte of the segment resides in memory.

p_paddrThis field is currently unused and is set to zero by the linker.

Index String

0 none

1 name

7 Variable

11 able

16 able

24 null string

typedef struct {

Elf32_Word p_type;

Elf32_Off p_offset;

Elf32_Addr p_vaddr;

Elf32_Addr p_paddr;

Elf32_Word p_filesz;

Elf32_Word p_memsz;

Elf32_Word p_flags;

Elf32_Word p_align;

} Elf32_Phdr;
63 Embedded MCore Development Guide

Program Headers
p_fileszNumber of bytes in the file image of the segment; it may be zero.

p_memszNumber of bytes in the memory image of the segment; it may be zero.

p_flagsFlags relevant to the segment.

p_alignLoadable process segments must have congruent values for p_vaddr
and p_offset, modulo the page size. This structure gives the value to
which the segments are aligned in memory and in the file. Values 0 and 1
mean no alignment is required. Otherwise, p_align should be a positive,
integral power of 2, and p_vaddr should equal p_offset, modulo
p_align.
Green Hills Software, Inc. 64

8

Compiler Driver
Options
 This chapter contains:

• MCore-Specific Options

• Driver Options Specific to the Assembler

• Library Options

• Driver Options Specific to the ELXR Linker

• General Options

• Data Allocation Options

• Debugging Options

• Optimization Options

• Run-time Error Checking Options

• Ada Compiler Options

• C Preprocessor Options

• C and C++ Preprocessor Options

• C Compiler Options

• C++ Compiler Options

• FORTRAN Language Compiler Options

MCore-Specific Options

.

d
he
The Green Hills compiler supports compiler driver options that are mostly host-independent.
Most of the options are case sensitive. The compiler driver generates a warning for any
unrecognized option. It processes the options on the command line in the order listed. For any
conflicting options, the later option overrides the earlier option.

MCore-Specific Options

-fsingleSpecify code generation using hardware single-precision floating point
instructions.

-cpu=m200Specifies code generation for the MCore m200 core processor.

-cpu=m300Specifies code generation for the MCore m300 core processor.

Driver Options Specific to the Assembler

-asm=options

Passes the specified options to the assembler.

-list[=file]Enables source listing. This option may be used in two ways.

-list Listing is saved to a file with the same name as the

source file, but with a .lst extension.

-list=fileListing is saved to file of the specified name.

If no file is specified, the listing will be written to a file with the same
name as the object file being created, but with a .lst extension. For
example, foo.s becomes foo.lst.

Library Options

-Ldirectory The compiler driver passes this option to the linker to specify the
directory to search for libraries. There is no space between the L and the
directory.

-lname The compiler driver passes this option to the linker to add a library to the
link command. (This option is the lowercase letter “l”.) The variable
name represents the abbreviated notation for the libraries, which is
generally derived by removing the lib prefix and the filename extension
For example, -lm adds the libm.a library to the link command. There is
no space between l and name.

This option must follow the input source files to resolve any undefine
symbols and must be ordered to resolve any undefined symbols in t
Green Hills Software, Inc. 66

specified library already defined in another library. When you list
multiple -l options, the libraries are linked in command line order
prepended to the default library list.

-nofloation
Set the driver to link in libnoflt.a, a special version of the ANSI library in
which floating point I/O is not required. The I/O routines in this library
does not contain instructions for floating point support and are much
shorter.

-nostartfiles
Supresses the inclusion of crt0.o from the standard library.

-nostdlib
Do not link in the standard libraries. Do not use the standard startup file.

Driver Options Specific to the ELXR Linker

-entry=sym
The address of the symbol sym specifies the program’s entry point. If sym
is specified as a dash (-entry=-), then no entry point is passed to the
linker.

-lnk=[link_option]

Passes the specified linker options (see Command Line Options) to the
linker command line. The option is passed to the linker in approximately
the position as it appears on the driver command line. By putting the
filename on the driver command line, you can pass a .lnk file to the
linker. For example:

% ccmcore hello.c hello.lnk

If no option is specified after -lnk=, then the default option to the linker
will be suppressed until the necessary option is provided to the linker.
[default]

-locatedprogram
Forces the default behavior which is to link object files into an
executable program. Alternate options include -relprog, -relobj,
-archive, and -shared, all of which combine object files using either an
archiver or linker but do not produce an executable program. [default]

-map=mapfile is displayed on the standard output.

-map=filemapfile is saved to file of the specified name.
67 Embedded MCore Development Guide

General Options
-relobj
Generates a relocatable object file instead of an executable file. The
resulting file is suitable for being passed as input to another run of the
linker.

-sec {info}
This entire option, including everything between the braces {}, is passed
unchanged to the linker.

-srec
Generates a Motorola S-record output file as well as a COFF or ELF
executable. See the utility gsrec for more information.

-relprog
Retains relocation information in the output file. The resulting file is
suitable for execution, or it may be passed as input to another run of the
linker to allow further relocation of the program.

 There are three major differences between -relobj and -relprog:

• -relobj does not give errors for undefined symbols, but -relprog does.

• -relobj does not allocate common variables, but -relprog does.

• -relprog relocates all references to functions and variables so that the
program can be executed.

-sreconly
Generates only a Motorola S-record output file. The output filename is
specified with a -o filename option. If one is not provided, a.run will be
used.

-w
Suppresses linker warning diagnostics.

General Options

-#
Displays each command line to call the compiler, assembler, linker, etc.
for processing the input files, without invoking the tools. Same as
-dryrun.

@file
Invokes the driver to read options from the named file, separated by
spaces, tabs and newlines. All other characters in the file are literal.
Note that linker directive files should be passed to the linker by using a
known suffix, such as .lnk or .lx, rather than using the @ syntax.
Green Hills Software, Inc. 68

ory
-archive
Invokes the librarian to generate an archive instead of invoking the linker
to generate an executable program. This option must be used with the -o
filename option, and the suffix of the output filename must be .a. For
example:

% ccmcore foo.c -archive -o libfoo.a

-c
Generates only a relocatable object file for each source input file with a
filename of filename.o.

-dryrun
Displays the command line to call the compiler, assembler, linker, etc.
for processing the input files, without invoking them. See also -v and -#.

-errmax=n
Limits the number of error messages the compiler prints before quitting
to n. The default is 100 and the minimum is two.

-fnone
Emits an error when the source file makes use of the floating point. This
option also implies -nofloatio. See “Reducing Program Size” on page
34.

 -H
Displays a list of files opened by an #include directive. The output goes
to stderr rather than stdout. This option corresponds to the following:
click on Options, click Advanced..., select Show Headers.

-Help
Displays to the standard error a detailed list of the compiler driver
options to the standard output. The compiler driver ignores all other
arguments.

-help
Displays a list of most of the compiler driver options to the standard
output. The compiler driver ignores all other arguments.

-I-
The -I- option effects the way #include "file.h" and
#include <system.h> are handled. For example, if both #include
directives appear in source.c and -Ihere and -Ithere are both on the
command line, then the compiler first searches for file.h in the direct
containing source.c. Then, it will search in ’here’, and ’there’. The
compiler with search for system.h in ’here’, and ’there’ only.
69 Embedded MCore Development Guide

General Options

e
ry

 of
er

be

r the
ses.

t

ram
The

ear
If the -I- option is added to the command line like this:

-Ihere -I- -Ithere
then the compiler will search for file.h in ’here’, and ’there’, and the
compiler will search for system.h in ’there’ only.

-I- causes the compiler to search for files specified with "" in all of th
directories listed with -Idir on the command line, but not in the directo
containing the source file. Furthermore, -I- causes the compiler to
search for files specified with <> only in the

directories listed with -Idir _after_ the -I- option on the command line.

Use the -I option to avoid a fundamental problem with the #include " "
directive. In large programming projects, you may make local copies
either source files or header files. If you have a local copy of a head
file but do not have a local copy of all source files that include that
header file with #include " ", then the local header file will not always
used. To solve this:

• Never use #include " ", but always use #include file instead.

• Use the -I- option. Once -I- appears anywhere on the command line, the
#include "" option will never cause the compiler to look in the directory
containing the source file. Instead, the compiler will look only in the
directories listed on the command line, in the following order:
1) Local directories
2) Non-local directories containing both source and headers. 3) -I- option
4) Any directories which may be referenced with the #include <>.

• NOTE: It may be necessary to list some directories both before and afte
-I- option in order to ensure that the proper header file is found in all ca

-keeptempfiles
Does not delete temporary files after they are used, including the .s files.
If you want to generate the .s file in the current directory and not have i
deleted, use the -S option. Equivalent to MULTI Builder’s “Keep Temp
Files” option in the Advanced Options window.

-language=cxx
-language=fortran

Informs the driver of all of the languages which are in use in the prog
being linked. This option may be specified once for each language.
driver always assumes that at least some files are written in C or
assembly language, but it needs to know if any files contain C++ or
FORTRAN in order to select the correct libraries and perform any
special processing at link time. If C++ or FORTRAN source files app
Green Hills Software, Inc. 70

on the command line, the driver automatically sets this option. If only
object files and libraries are on the command line, this option is required.

-ident=string
Passes the arbitrary string, string, to the object file. This is the same as
using #pragma ident "string" in C. This can be used to place the date of
the source file in the object file.

-o filename
 Names the output file of the current driver command. In the simplest
case, the linker output file will be named filename. If another file is
generated from the linker output file, such as an S-Record file, the -o
determines the name of the other file as well. If only one source file is
named, -o can be used with either the -S or -c option to name the output
of the compiler or assembler. The driver enforces certain suffixes for
some types of output files.

-object_dir=foobar
foobar is a directory, often a subdirectory of the current working
directory. The driver puts object files there, along with assembly listings,
debug information files, inliner files, and other intermediate files which
have the same basename as the object file but with a different suffix.
Note that the output of the linker and the output of the archiver is never
put into object_dir.

-passsource
When used with -S, it interleaves your original source code with the
generated assembly code. Not every line of the original source code will
appear in the output.

-pg
Generates code to collect extended profiling information for use with
MULTI. This option functions similarly to the -p option, except that a
call graph report can be produced with the additional information.

-prefixed_msgs
Inserts the words WARNING and ERROR before every warning and
error message encountered during compilation. The following Utility
Programs support this option: gbincmp, gnm, gstrip, gsrec, and
mtrans.

--prelink_objects
Causes the driver to invoke the C++ prelink utility to instantiate
templates but not to invoke the linker or archiver. The effect is similar to
-c in that only object files are created, but no link is performed. The
difference is that the object files contain all template instantiations
required by this set of object files. Therefore, they can be linked later
71 Embedded MCore Development Guide

General Options
without concern for template requirements. --prelink_objects should not
be used with any options that prevent the linker from running, such as
-E, -P, -S, or -c, nor with the option -template=no_auto_instantiation,
which prevents running prelink.

-S
Produces only an assembly file from the source file. For each source
language file specified, compile the file into an assembly language
output file. The default output filename is basename.s unless -o is used.

-stderr=file
Redirects all warning and error messages into the named file.

-shared
Produce a shared object instead of an executable.

-syntax
Checks syntax but does not generate code.

-T
Truncates all symbol names to eight characters for compatibility with
older UNIX compilers and linkers that require this option. This option
may affect debugging symbols longer than eight characters.

-V
Causes various programs to print their copyright banner and version
number as they are invoked.

-v
Displays the compiler driver command lines to invoke the compiler,
assembler, and/or linker as they are executed. See also -dryrun and -#.

-Wx,args
 Passes options args to the tool specified by the x argument as follows.

The following list describes valid values for x. The first value in the list
is the number zero, not the uppercase letter “O”.

0 All compilers

2 Compiler but not inliner

L Librarian

C C compiler

F FORTRAN compiler

a Assembler

l Linker
Green Hills Software, Inc. 72

ies.

e
S Linker
Like -Wl, but places arguments before any files in the link line.
See -lnk=.

-w
Suppresses compiler warning diagnostics.

-Yx,directory
Specifies the directory containing the executable designated by the x
option. Valid options are as follows, with the first argument in the list
being the number zero, not the uppercase letter “O”:

0 Contains the compiler executable.

I The default directory to search for #include files. The compiler
driver will not search the standard Green Hills include director

L Specifies the linker’s primary search directory.

S Contains the startup module or modules such as crt0.o.

U The secondary default library search directory for the linker.

a Contains the assembler executable.

l Contains the linker executable.

Data Allocation Options

-autoregister
Enables automatic allocation of local variables to registers. This is the
default.

-globalreg=n
n is a number from 0 to 4. Arguments to -globalreg= must be positive
decimal integers. If this option is used, then the new, formerly illegal
syntax is now valid:

register int i; /* file scope implies global */

However, register static int i is still illegal, because it can cause a
possible register numbering problem when compiling multiple sourc
files.
73 Embedded MCore Development Guide

Data Allocation Options
The type of global register variable can be any data type T, including
struct and union, subject to the following restrictions:

• sizeof(T) less than or equal to sizeof(register), usually 4 bytes,

• sizeof(T) must be a power of 2 (sizeof(T) = 1, 2, 4, 8),

• no floats or doubles within type T if type T is a struct or union,

• no arrays within type T if type T is a struct or union,

• the global register variable must not be explicitly initialized,

• the address of a global register variable should never be taken.

For example,

 register int x;

 return &x;

On the MCore, the 4 registers 8, 9, 10, 11 are allocated, in that order, up
to n<=4 registers, to hold the new global register variables. The MCore
ABI designates all of these as permanent (non-volatile) registers, so they
are saved and restored by library routines which use them.

These 4 registers are initialized to zero by the startup module. The
program can depend on this, since it is necessary for ANSI C
conformance.

You must use the same n for -globalreg=n for all compilations which are
to be linked together.

It is an error to put a global variable into a register in one compilation but
not into the same register in another compilation. You must be consistent
across compilations.

If you want to share the same global register variables across
compilations, consider placing them into a single include file, which is
always included first in all compilations. This ensures absolute
consistency of order and association of a variable with a given register,
and vice versa.
Green Hills Software, Inc. 74

r
, it

r
MULTI works properly with both local (automatic) and global register
variables, even if they are structs or unions.

Restrictions:

1. No library callbacks. A routine which is called by a library

 routine cannot reliably access a global register variable, since

 the contents of the particular register may have been saved by

 the library routine and the register used for something else.

2. No interrupt routines. A routine which is called by an interrupt

 routine may have interrupted a library routine, which leads to

 the same restriction for the same reason given above.

You can work around these limitations by licensing the complete C
runtime library source from Green Hills and recompiling the entire
library with -globalreg=n.

-noautoregister
Disables automatic allocation of local variables to registers.

-nooverload
Does not allocate more than one variable to a register or a function.

-overload
Allocates more than one variable to a register. During debugging, this
option should be turned off by -nooverload. [default]

Debugging Options

-G
In default mode (without -nodbg), -G causes the compiler to generate
debug information in a .dbg file that corresponds to the object file
produced by the compilation. See Chapter 6, “Debug Formatting”, fo
more information on .dbg files. When using MULTI as the Debugger
is strongly recommended to use the default -G mode.

When using the -nodbg option, -G causes the compiler to generate
extended debug information as DWARF 1.1 stabs. When using -nodbg it
is recommended to use -g rather than -G.

-g
In default mode (without -nodbg) -g causes the compiler to generate
debug information in a .dbg file that corresponds to the object file
produced by the compilation. See Chapter 6, “Debug Formatting”, fo
75 Embedded MCore Development Guide

Optimization Options
more information on .dbg files. When using MULTI as the Debugger, it
is strongly recommended to use the default -g mode.

When using the -nodbg option, -g causes the compiler to generate
DWARF 1.1 stabs.

-nodbg
Do not use Green Hills proprietary debug information; instead use
DWARF style debugging information with ELF.

-dual_debug
Use both the Green Hills proprietary debug information and the alternate
form.

Optimization Options

-O
Enables the general optimizations such as peephole optimization,
common subexpression elimination, pipeline instruction scheduling,
dead code elimination, tail recursion and static address elimination.
Option qualifiers are also available to target specific types or areas of
code for improved performance: -OA, -OI, -OL, -OM, and -OS. When
you select any of these suboptions, the compiler automatically enables
the basic -O optimization. You can specify any combination of
optimizations in any order with a single -O option. For example,
-OLMA is equivalent to -O -OL -OM -OA. If you use -O in conjunction
with -ansi or -ANSI, the compiler driver automatically sets the -OM
option.

-OE
Allocates more temporary registers to expression evaluation and fewer to
other purposes. The -OE option should be used with programs that have
intensive numeric calculations:

rho=exp(-PI*cft/q)+(2*PI*cft*sqrt(1-0.25/q/q));

In statements such as the one above, it is desirable to have enough
registers available to hold the result of all intermediate calculations. The
-OE option is intended to make more registers available for this purpose.
If code does not have intensive numeric computations, the temporary
registers will not be needed and thus the -OE option will have the
detrimental effect of reducing the number of registers available for other
purposes.
Green Hills Software, Inc. 76

es

fore

le
rce
Algorithmic
-OA

Enables algorithmic optimizations. Applies algebraic transformations
such as associativity. In some cases, the compiler generates instructions
that ignore overflow, underflow, or round-off. Due to the delicate nature
of these transformations and the relatively rare opportunity for
significant improvement, -OA is not recommended for general use.

Following is an example of C source code and the equivalent code the
compiler produces with the -OA option enabled. The following source
code:

if (i-5 < 0) printf("%d\n", i);

with algorithmic optimization becomes:

if (i < 5) printf("%d\n", i);

An example of when -OA may produce an unexpected result would be if
the variable i is within five of its lowest bound. i-5 “wraps around” and
thus is greater than zero, even though i starts out as a negative number,
less than five.

Inlining
 -OI

Enables automatic inlining for all input source files. The compiler inlin
each function which it determines is appropriate for inlining.

This is disabled in C++.

Inlining is also performed when a function is called from a file which
does not contain its declaration or when the function call appears be
the declaration in the same file. This kind of inter-module inlining
requires two passes of the compiler.

For example, when compiling the following source modules:

% ccmcore -OI main.c prog1.c prog2.c

The compiler is invoked twice for each of the three source modules.
First, the compiler processes each source file to produce an inline fi
designated by a .inf extension. Then the compiler processes each sou
using the original source files and the three .inf files.
77 Embedded MCore Development Guide

Optimization Options
Functions declared with the __inline keyword (in C and Pascal), the
inline keyword (in C++), and OPTIONS/INLINE in FORTRAN are
also inlined. This works even if -OI is not thrown. There are a few
properties to be aware of. First, these functions are assumed to be of
static scope; therefore, they are not exported or available to be inlined in
other modules. Second, these functions must be defined in the module
before they are called or included in other inline function; otherwise the
callers located before the function definition will not be able to inline
them. Third, these functions are not output in closed form if they were
successfully inlined by all their callers.

Since the __inline keyword defines a static function, a function declared
in a single module with the __inline keyword cannot be inlined into
multiple modules. However, there are two techniques that can be used to
inline a function into multiple modules, even when the compiler chooses
not to do so automatically. The first is that the function can be declared
with __inline near the top of each module where it is used; this process
can be made easier by putting the __inline function into a file that is
included by each source module that needs it. The second is to use the
-OI=funcname option, described below, without the use of the __inline
keyword. Users may also consider using the -OD=funcname option in
conjunction with this second technique.

-OI=routines
Inlines the functions listed on the command line and any functions
specifically marked for inlining. No automatic inlining is done. For
example, when compiling the following source code:

% ccmcore -OI=sub main.c prog1.c prog2.c

The compiler inlines the routine sub() when called, along with calls to
any routines specifically marked for inlining.

Example 1:

a.c: int a() { return 1; }

b.c: int b() { return 2; }

c.c: extern int a(), b(); int c() { return a() + b(); }

o ccmcore -OI a.c b.c c.c
Green Hills Software, Inc. 78

a() and b() will be inlined automatically because of -OI.

a() and b() will both also be output in their defining modules.

o ccmcore -OI=a a.c b.c c.c

a() will be inlined automatically because of -OI=a.

b() will not be inlined because -OI was not thrown.

Both a() and b() will be output in their defining modules.

o ccmcore -OI=a -OD=a a.c b.c c.c

a() will be inlined automatically because of -OI=a

b() will not be inlined because -OI was not thrown.

a() will not be output in closed form, but b() will.

o ccmcore -OI=a -OI -OD=a a.c b.c c.c

a() will be inlined automatically because of -OI=a

b() will be inlined automatically because -OI was thrown.

a() will not be output in closed form, but b() will.

Example 2:

a.c:

int a_very_big_function()

{

 /* lots of code in here, not shown for brevity... */

 return 0;

}

int b()
79 Embedded MCore Development Guide

Optimization Options
{

 return 2;

}

b.c:

extern int a(), b();

__inline int c()

{

 return 3;

}

int d()

{

 return a_very_big_function() + b() + c();

}

o ccmcore -OI a.c b.c:

 a_very_big_function() will not be inlined even though -OI is
thrown because the compiler deems it to be too large.

 b() will be output because -OI is thrown and it is small.

 c() will be inlined because it was declared with __inline in the
same module as the caller.

a_very_big_function() and b() will be output in closed form in
module a. c() will not be output in closed form because it
declared with __inline and it was was successfully inlined
everywhere.

o ccmcore -OI=a_very_big_function a.c b.c:

a_very_big_function() will be inlined because of
-OI=a_very_big_function
Green Hills Software, Inc. 80

 b() will not be inlined because -OI was not thrown

 c() will be inlined because it was declared with __inline in the
same module as the caller.

a_very_big_function() and b() will be output in closed form in
module

 a. c() will not be output in closed form.

o ccmcore a.c b.c:

 a_very_big_function() and b() will not be inlined because -OI
was not thrown.

 c() will be inlined because it was declared with __inline in the
same module as the caller.

a_very_big_function() and b() will be output in closed form in
module a. c() will not be output in closed form.

Loop Optimization
-OL

Enables loop optimizations. With this optimization, the compiler
concentrates most of its resources to optimizing code in the innermost
loops in your source files. Therefore, this option is most effective for
code containing many loop structures which are executed frequently.
This optimization includes strength reduction, loop invariant analysis,
and loop unrolling. Where code size is a priority, you can disable loop
unrolling. Also, you can increase the maximum number of times the
loop is unrolled. See the other options in this section.

-OL=routines
Performs loop optimization only for the functions listed on the command
line. For example, the following command line specifies loop
optimization only for the function sub:

% ccmcore -OL=sub main.c prog1.c prog2.c

-OLB
Increases maximum for loop unrolling from 4 to 8 times and applies
unrolling to larger loops than usual.
81 Embedded MCore Development Guide

Optimization Options

e

mple:

ese

ne
-Ounroll8
Increases maximum for loop unrolling from 4 to 8 times. This option
requires the -OL option.

Memory
-OM

Enables memory option. This option is equivalent to -O except it allows
the optimizer to assume that memory locations do not change, except by
explicit stores, and are not affected by any external sources.

This compile-time option is not safe in applications where memory is
externally affected, such as in device drivers, operating systems, and
shared memory. This option is also not safe in a non-virtual memory
environment when interrupts are enabled.

This option is enabled automatically when -O is used with either -ansi or
-ANSI. The volatile keyword explicitly indicates any objects which
may change without the compiler’s knowledge or control. If for som
reason you cannot use the volatile keyword, you can use the
-Onomemory option, which disables memory optimization while
enabling other -O optimizations.

Space
-OD

Specifies a list of functions whose code generation may be skipped
during the compilation phase, thereby reducing code space. For exa

-OD=foo,bar

specifies that the compiler should not generate code for the functionsfoo
and bar. This can be useful if a postprocessing tool determines that th
functions are never called.

The -OD option can also be useful with inlining. For example:

-OI=foo,bar -OD=foo,bar

specifies that foo and bar will be inlined where ever they are called and
because of that, the actual code generation for the functions may be
omitted. If for some reason a function listed could not be inlined at o
Green Hills Software, Inc. 82

of the call sites, the linker will not be able to resolve the missing symbol,
resulting in a link-time error.

Example 1:

a.c: int a() { return 1; }

b.c: int b() { return 2; }

c.c: extern int a(), b(); int c() { return a() + b(); }

o ccmcore -OI a.c b.c c.c

a() and b() will be inlined automatically because of -OI.

a() and b() will both also be output in their defining modules.

o ccmcore -OI=a a.c b.c c.c

a() will be inlined automatically because of -OI=a.

b() will not be inlined because -OI was not thrown.

Both a() and b() will be output in their defining modules.

o ccmcore -OI=a -OD=a a.c b.c c.c

a() will be inlined automatically because of -OI=a

b() will not be inlined because -OI was not thrown.

a() will not be output in closed form, but b() will.

o ccmcore -OI=a -OI -OD=a a.c b.c c.c

a() will be inlined automatically because of -OI=a

b() will be inlined automatically because -OI was thrown.

a() will not be output in closed form, but b() will.

Example 2:
83 Embedded MCore Development Guide

Optimization Options
a.c:

int a_very_big_function()

{

 /* lots of code in here, not shown for brevity... */

 return 0;

}

int b()

{

 return 2;

}

b.c:

extern int a(), b();

__inline int c()

{

 return 3;

}

int d()

{

 return a_very_big_function() + b() + c();

}

o ccmcore -OI a.c b.c:

 a_very_big_function() will not be inlined even though -OI is
thrown because the compiler deems it to be too large.

 b() will be output because -OI is thrown and it is small.
Green Hills Software, Inc. 84

 c() will be inlined because it was declared with __inline in the
same module as the caller.

a_very_big_function() and b() will be output in closed form in
module a. c() will not be output in closed form because it
declared with __inline and it was was successfully inlined
everywhere.

o ccmcore -OI=a_very_big_function a.c b.c:

a_very_big_function() will be inlined because of
-OI=a_very_big_function

 b() will not be inlined because -OI was not thrown

 c() will be inlined because it was declared with __inline in the
same module as the caller.

a_very_big_function() and b() will be output in closed form in
module

 a. c() will not be output in closed form.

o ccmcore a.c b.c:

 a_very_big_function() and b() will not be inlined because -OI
was not thrown.

 c() will be inlined because it was declared with __inline in the
same module as the caller.

a_very_big_function() and b() will be output in closed form in
module a. c() will not be output in closed form.

-OS
Enables space optimizations. This option invokes all the basic
optimizations except those that would increase the code size. The
compiler generates smaller code, with potential for decreased
performance. -OS implies -Onostrcpy. If -OS is specified, calls to
85 Embedded MCore Development Guide

Optimization Options

not

ecial

 the
strcpy() will not be inlined. Inlining strcpy() takes more space but can
improve program speed. -OS disables loop unrolling (-OL).

-OT
Disables the -OS option when both -OS and -OT are on the command
line and -OS is before -OT.

Optimization Control (-Ono)
The options beginning with -Ono disable certain optimizations. Each enables
the same general optimizations specified by the -O option but turns off a
specific optimization enabled by -O.

-Onoconstprop
Disables propagation of constant expressions. Constant propagation is
the replacement of one or more variables with constants over a portion of
a variable’s lifetime in which the variable’s value is known and does
change.

-Onocse
Disables common subexpression elimination.

-Onomemory
Disables memory optimizations.

-Onominmax
For use with C and C++. Suppresses the optimization generating sp
code for minimum, maximum, and absolute value expressions of the
form:

(i < j) ? i : j
(i > j) ? i : j
(i < 0) ? -i : i

-Onopeep
Disables peephole optimizations.

-Onopipeline
Disables instruction resequencing for pipelined architectures.

-Onostrcpy
For use with C and C++. Suppresses optimizations generating inline
code for strcpy() and strcmp() with constant arguments.

-Onotailrecursion
Disables tail recursion, a general optimization enabled with the -O
option. In a recursive procedure, tail recursion optimization replaces
Green Hills Software, Inc. 86

procedure call with a branch instruction and eliminates the return
statement.

-Onounroll
Disables loop unrolling, a part of the -OL optimization. If -OL is not
specified, -Onounroll is the same as -O. If -OL is specified, all loop
optimizations except unrolling are performed.

Run-time Error Checking Options

-check=options
Generates various run-time checks. options is either a single option or a
comma-separated list of options (no spaces allowed) from the following
list.

 These options are not valid in FORTRAN.

all
Turns on all checks.

assignbound
Checks the value in the range of the type when assigning a value to a
variable or field which is a small integral type such as a bit field.

bounds
Checks array bound indices.

memory
Causes the compiler to generate extra code to verify every load or store
involving a pointer which may point to memory returned by malloc() and
its related functions. This option also causes a special version of those
library routines to be linked.

 (This option differs from -check=alloc because -check=alloc
only links the special library, but does not cause the compiler to
generate extra code.)

 The verification is performed by reading the memory location to
which the pointer points and comparing the contents to a special
value. If the memory contains the special value, a library routine,
__ptrchk(), is called with the address of the memory location. If
that address is not within the set of legal addresses currently
allocated to the program by malloc, a runtime error will occur.

This check is effective for detecting use of pointers which have
been incremented past an allocated buffer.
87 Embedded MCore Development Guide

Ada Compiler Options
nilderef
Generates an error message for dereferences of null pointers.

 switch
Generates a warning if the case/switch expression does not match any of
the case labels. This does not apply when a default case label is used or
when the case statement is enclosed in an if-then construct.

usevariable
Generates a warning message during compilation of a function
containing any local variables that are read before being written.

watch
Allows the MULTI debugger to set up one fast watchpoint. See the
watchpoint command in the MULTI Reference Manual.

zerodivide
Generates an error message indicating that a divide by zero occurred and
then terminates the program execution.

To turn off any of these options, simply precede the option with no. You
can also use this to turn on every option except the indicated flag. For
example, to turn on all checks except zerodivide, enter:

-check=all,nozerodivide

The following table lists output error messages when the run-time error
checking is enabled. Run-time error checking requires additional code, which
increases the size and reduces the speed of the program, but the convenience of
automatic checking can be very valuable during debugging.

Some messages are considered fatal errors and cause the program to exit with
the specified status. Other messages are warnings and will not cause the
program to terminate. However, these warnings can change the eventual exit
status.

Ada Compiler Options

For options specific to Ada, refer to the Green Hills Ada 95 User’s Guide and
Compiler Reference.
Green Hills Software, Inc. 88

C Preprocessor Options

-include filename
Include the source code of the indicated file at the beginning of the
compilation. This can be used to establish standard macro definitions,
etc. The filename is searched for in the directories on the include search
list.

-Xincludenever
Ignores all #include directives.

-Xincludeonce
If a filename appears in more than one #include directive during a single
compilation, it skips all of the directives except the first one.

-Xnocpperror
During preprocessing, lines inside of false #if, #elif, #ifdef, #ifndef are
ignored with the exception that a warning or error is given for lines
beginning with # which do not contain legal preprocessor directives.
This option suppresses these warnings and errors.

-Xnopragmawarn
Suppresses warnings for errors in #pragma which are recognized by the
compiler and are incorrect.

-Xredefine
Suppresses the warning or error which is normally given when two
#define directives have different values for the same preprocessor
symbol.

C and C++ Preprocessor Options

-C
Includes comments in the preprocessor output. The default is to strip
comments from the output.

-Dname
Defines the argument name for the preprocessor with a default value of
one. This is equivalent to placing the following at the top of the first
source file, #define name 1.

-Dname=string
Defines the argument name for the preprocessor with the value of string.
This is equivalent to placing the following at the top of the source file,
#define name string. There is no space between D and name.
89 Embedded MCore Development Guide

C Compiler Options
-E
Invokes the compiler as a preprocessor and places the preprocessed file
output on the standard output. This is useful for debugging preprocessor
macros and include files.

-P
Similar to the -E option. Invokes the compiler as a preprocessor but
writes the output to a file which has the name of the input file with its
suffix changed to .i.

-Uname
Undefines the preprocessor symbol name. Equivalent to placing #undef
name at the top of the source file. This option removes any predefined
compiler symbols.

-U-
Prevents the compiler from defining any symbols. Normally, the
compiler defines a set of default symbols automatically. See also -I, -I-,
and -H under General Options.

C Compiler Options

-ANSI
Sets the compiler in Strict ANSI mode. Strict ANSI mode is 100%
compliant with the ANSI X3.159-1989 standard and does not allow any
non-standard constructs.

-ansi
Sets the compiler in Permissive ANSI compatibility mode. This mode
supports the language features of the ANSI X3.159-1989 standard, while
allowing certain useful, but non-compliant, constructs in an ANSI C
framework.

-column=n
Sets the length of a line for error messages and warnings to n characters.
The default line length is 80. The compiler will break up errors and
warnings into multiple lines, inserting a new line and tab between words.
If the length of a single word (such as a filename or symbol name)
exceeds the maximum line length, then that word will appear alone on a
line, but will not be truncated to fit on the line. If the length is set to zero,
then errors and warnings will not break into separate lines regardless of
their length. Line lengths less than 40 are ignored.

-noansi
Equivalent to -Xt.
Green Hills Software, Inc. 90

-asmwarn
Prints a warning for every asm statement encountered. This is the
default.

-noasmwarn
Prevents the compiler from printing warning messages for asm
statements.

 -k+r
Interprets the source code as the C version documented in Kernighan &
Ritchie, first edition, and compatible with the portable C compiler
(PCC). See also -noansi.

-gnu_c
Supports Gnu extensions, such as #import, zero size arrays, compound
statements as part of expressions, inline functions and the _ _inline_ _
keyword. This is the default in C. Ignored for C++.

-nognu_c
Does not allow Gnu C extensions. This is the default in C++. Ignored for
C++.

-shortenum
Allocates enumerated types to the smallest storage possible.

-noshortenum
Does not allocate enumerated types to the smallest storage
possible.[default]

-shortwchar
Specifies the size of the type wchar_t in ANSI C and C++ as 2 bytes.

-noshortwchar
Specifies the size of type wchar_t in ANSI C and C++ as 4 bytes.
[default]

-signedchar
Specifies type char as signed.

-unsignedchar
Specifies type char as unsigned. [default]

-signedfield
Specifies a bit-field whose type is signed and is interpreted as a signed
quantity.

-unsignedfield
Specifies all bit-fields as an unsigned quantity. This is the default. If the
ANSI type declaration signed is used, then that bit-field is signed even if
the program is compiled with the -unsignedfield option.
91 Embedded MCore Development Guide

C Compiler Options
-signedwchar
Specifies type wchar_t in ANSI C and C++ as signed. [default]

-unsignedwchar
Specifies type wchar_t in ANSI C and C++ as unsigned.

-signedptr
Specifies pointers and addresses as signed.

-unsignedptr
Specifies pointers and addresses as unsigned. [default]

-T
Truncates all symbol names to eight characters for compatibility with
older UNIX compilers and linkers.

-tmp=dir
Causes temporary files to be placed in the directory specified by dir
instead of /tmp. This is useful if /tmp is on a small file system which
might run out of disk space during compiles with inlining or template
processing. On Win32, the default temporary directory is the current
directory. This is also set with the TMPDIR environment variable. For
example:

setenv TMPDIR /usr/tmp

-Xa
Selects Permissive ANSI compatibility mode. Equivalent to -ansi.

-Xansiopeq
Uses ANSI rules for ++ and *= in K&R C. This is turned off by the
-Zansiopeq option.

-Xc
Selects Strict ANSI compatibility mode. Equivalent to -ANSI.

-Xconcatcomments
Allows /* */ as concatenation in K&R C. This option may be turned off
with the -Zconcatcomments option.

-Xinitextern
Allows variables declared, with the extern storage class in a function, to
accept initial values. In the K+R mode, this normally gives a warning
and in ANSI C mode, it normally is illegal.

-Xjapanese_automotive_c
Enables a set of extensions to ANSI C used by Japanese automobile
manufacturers. This option implies -Xpragma_asm_inline.
Green Hills Software, Inc. 92

-Xneedprototype
Generates a fatal error if a function is referenced or called but no
prototype is provided for that function. This is an extension to ANSI C
and shows that the prototypes exist for all functions.

-Xwantprototype
Generates a warning if a function is referenced or called but no prototype
is provided for that function. This is an extension to ANSI C and shows
that the prototypes exist for all functions.

-Xnoalias
Adds noalias keyword to C. This option may be turned off with the
-Znoalias option.

-Xnoasm
asm inline directive is not recognized. The _ _asm directive is
recognized; only the asm directive without leading underscores is
affected by this switch. This switch is enabled with -ANSI. See also
-[no]asmwarn.

-Xnooldfashioned
Does not recognize old-fashioned syntax for initializing variables such
as int i 5, and for assignment operators such as =+, =-,and =*.
-Znooldfashioned turns off this option. If this option is not enabled
when compiling in non-ansi mode, the old-fashioned syntax is accepted
with a warning message. When compiling in non-ansi mode or using
-Xnooldfashioned in K&R mode, old-fashioned initializations give the
error:

expected: ’=’ got: constant
and an equal sign followed by the symbols are recognized as two
separate tokens: + - * / % & | ^ << >>. This results in a syntax error for
the symbols: + / % | ^ << >> but is correct for the following symbols
which are legal unary operators in C: - * &.

For example when not compiling in ANSI mode, -Xnooldfashioned is
required to correctly compile the following lines since no space appears
after the equal sign:

int i, *p;
i =-3;
p =&i;
i =*p;

By default, this option is disabled.
93 Embedded MCore Development Guide

C Compiler Options
-Xpragma_asm_inline
Enables the following pragmae: #pragma asm, #pragma endasm, and
#pragma inline.

-Xs
Equivalent to -k+r.

-Xslashslashcomments
Allows C++ style // comments.

-Xt
Selects a mode of ANSI C compatibility similar to AT&T C Issue 5.0
transition mode supporting function prototypes and the new ANSI
keywords signed and volatile in a non-ANSI environment.

-Zansiopeq
Does not use ANSI rules for ++ and *= in K&R C. This option is turned
off with the option -Xansiopeq.

-Zconcatcomments
Does not allow /* */ as concatenation in K&R C. This option is turned
off with the option -Xconcatcomments.

-Znoalias
Turns off the -Xnoalias option.

-Znooldfashioned
Turns off the -Xnooldfashioned option.

Compile-Time Error Checking
These options control various forms of error checking performed during
compilation.

-strict=comperr
Generates compile-time errors for division by constant zero, overflow of
constant expressions, assignment of a constant to a variable where the
constant value is outside the range of the variable, passing a constant to a
parameter where the constant value is outside the range of the parameter,
and constant array index outside of the array bounds.

-strict=compwarn
Provides warnings for unused variables, wrong pragmae, unknown
pragmae, and overflow of constant expressions.

-strict
Same as -strict=compwarn plus -strict=comperr. Also performs
parameter count checking.
Green Hills Software, Inc. 94

-STRICT=COMPERR
Same as -strict=comperr, plus gives an error for any use of a function
without an ANSI C prototype.

STRICT=COMPWARN
 Same as -strict=compwarn, plus gives a warning for any use of a

function without an ANSI C prototype.

-STRICT
Same as -strict, plus gives an error for any use of a function without an
ANSI C prototype. Also performs parameter count checking.

-strict=nocompwarn
Turns off -strict=compwarn.

-STRICT=noCOMPWARN
Turns off -STRICT=COMPWARN.

-strict=nocomperr
Turns off -strict=comperr.

-STRICT=noCOMPERR
Turns off -STRICT=COMPERR.

C++ Compiler Options

--alternative_tokens
--no_alternative_tokens

Enables or disables recognition of alternative tokens. These are tokens
that make it possible to write C++ without the use of the {, }, [,], #, &, |,
^, and ~ characters. The alternative tokens include the operator
keywords (such as and, bitand, etc.) and digraphs. Default is
--no_alternative_tokens.

--array_new_and_delete
--no_array_new_and_delete

Enables or disables support for array, new, and delete. Default is
--array_new_and_delete.

-asmwarn
Prints a warning for every asm statement encountered. [default]

-noasmwarn
Prevents the compiler from printing warning messages for asm
statements.
95 Embedded MCore Development Guide

C++ Compiler Options
--bool
--no_bool

Enables or disables recognition of bool. When bool is enabled, the
preprocessor symbol _BOOL is defined, allowing code to determine
when a typedef should be used to define the bool type. Default is --bool.

-dotciscxx
Interprets all files ending with .c as proper C++ source files.

--early_tiebreaker
--late_tiebreaker

Selects the way that tie breakers, or cv-qualifier differences, apply in
overload resolution. In early tie breaker processing, the tie breakers are
considered at the same time as other measures of the goodness of the
match of an argument value and the corresponding parameter type. In
late tie breaker processing, tie breakers are ignored during the initial
comparison, and are considered only if two functions are otherwise
equally good on all arguments; the tie breakers can then be used to
choose one function over another. The default is --early_tiebreaker.

--enum_overloading
--no_enum_overloading

Enables or disables support for using operator functions to overload
built-in operations on enum-typed operands. The default is
--enum_overloading.

--exceptions
--no_exceptions

Enables or disables support for exception handling. Default is
--no_exceptions.

--explicit
--no_explicit

Enables or disables support for the explicit specifier on constructor
declarations. Default is --explicit.

--extern_inline
--no_extern_inline

Enables or disables support for inline functions with external linkage.
When inline functions are allowed to have external linkage as required
by the standard, then extern and inline are compatible specifiers on a
non-member function declaration; the default linkage when inline
appears alone is external (i.e., inline means extern inline on
non-member functions); and an inline member function takes on the
linkage of its class, which is usually external. However, when inline
Green Hills Software, Inc. 96

functions have only internal linkage as specified by the ARM, then
extern and inline are incompatible; the default linkage when inline
appears alone in internal (i.e., inline means static inline on non-member
functions); and inline member functions have internal linkage no matter
what the linkage of their class. Default is --extern_inline.

-gnu_c
Supports Gnu extensions, such as #import, zero size arrays, compound
statements as part of expressions, inline functions and the _ _inline_ _
keyword. This is the default in C++.

-nognu_c
Does not allow Gnu C extensions. This is the default in C.

--implicit_extern_c_type_conversion
--no_implicit_extern_c_type_conversion

Enables or disables an extension to permit implicit type conversion in
C++ between a pointer to an extern C function and a pointer to an
extern C++ function. Default is --implicit_extern_c_type_conversion.

--inlining
Enables a reasonable level of function inlining. [default]

--inlining_unless_debug
Enables a reasonable level of function inlining, unless symbolic debug
information is requested. If symbolic debug information is requested,
then the effect is the same as specifying the --no_inlining option.

--keep_gen_c
The C++ source is first translated into a C source file before it is
compiled. This file has a .ic extension and is normally deleted after
compilation. This option causes the .ic file to not be deleted.

--long_lifetime_temps
--short_lifetime_temps

Selects the lifetime for temporaries. Short lifetimes refer to the end of
full expression. Long lifetimes refer to the earliest of end of scope, end
of switch clause, or next label. Short lifetimes are standard C++, and
long lifetimes are what cfront uses; the cfront compatibility modes select
long lifetimes by default.

--max_inlining
Enables an aggressive level of function inlining.

--max_inlining_unless_debug
Enables an aggressive level of function inlining, unless symbolic debug
information is requested. If symbolic debug information is requested,
then the effect is the same as specifying the --no_inlining option.
97 Embedded MCore Development Guide

C++ Compiler Options
--multibyte_chars
--no_multibyte_chars

Enables or disables processing for multibyte character sequences in
comments, string literals, and character constants. Multibyte encodings
are used for character sets like the Japanese Shift-JIS. Default is
--no_multibyte_chars.

--namespaces
--no_namespaces

Enables or disables support for namespaces. Default is --namespaces for
C++, --no_namespaces for Embedded C++.

--no_forced_zero_initialization
Does not force global, uninitialized variables to be initialized to zero.
This may save initialized data section space for embedded programs.

--no_inlining
Disables inlining of function calls. This may be a useful option for
debugging C++ code.

--old_for_init
--new_for_init

Controls the scope of a declaration in a for-init statement. The old
cfront/pre-ANSI compatible rule means the declaration is in the scope to
which the for statement itself belongs. The new ANSI standard
conforming rules, in effect, wrap the entire for statement in its own
implicitly generated scope. Default is --old_for_init.

--pack_alignment=align
Sets the default alignment for packing classes and structs to align, which
must be a power-of-2 value. The specified alignment is the default
maximum alignment for nonstatic data members; it can be overridden by
a #pragma pack directive.

--restrict
--no_restrict

Enables or disables recognition of the restrict keyword. Default is
--no_restrict.

--rtti
--no_rtti

Enables or disables support for Runtime Type Information (RTTI).
Features enabled/disabled are dynamic_cast, and typeid. Default is
--rtti for C++, --no_rtti for Embedded C++.
Green Hills Software, Inc. 98

-shortenum
Allocates enumerated types to the smallest storage possible.

-noshortenum
Does not attempt to allocate enumerated types to the smallest storage
possible. [default]

-shortwchar
Specifies the size of the type wchar_t in ANSI C and C++ as two bytes.

-noshortwchar
Specifies the size of type wchar_t in ANSI C and C++ as four bytes.
[default]

-signedchar
Specifies type char as signed.

-unsignedchar
Specifies type char as unsigned. [default]

-signedfield
Specifies a bit-field whose type, signed, is interpreted as a signed
quantity.

-unsignedfield
Specifies all bit-fields as an unsigned quantity. [default] If the ANSI
type declaration signed is used, then that bit-field is signed even if the
program is compiled with the -unsignedfield option.

-signedptr
Specifies pointers and addresses as signed.

-unsignedptr
Specifies pointers and addresses as unsigned. [default]

-signedwchar
Specifies type wchar_t in ANSI C and C++ as signed. [default]

-T
Truncates all symbol names to eight characters for compatibility with
older UNIX compilers and linkers.

-tmp=dir
Causes temporary files to be placed in the directory specified by dir
instead of /tmp. This is useful if /tmp is on a small file system which
might run out of disk space during compiles with inlining or template
processing. On Win32, the default temporary directory is the current
directory. This is also set with the TMPDIR environment variable. For
example:
99 Embedded MCore Development Guide

C++ Compiler Options
setenv TMPDIR /usr/tmp

-unsignedwchar
Specifies type wchar_t in ANSI C and C++ as unsigned.

--using_std
--no_using_std

Enables or disables implicit use of the std namespace when standard
header files are included. Default is --no_using_std.

--wchar_t_keyword
--no_wchar_t_keyword

Enables or disables recognition of wchar_t as a keyword. Default is
--wchar_t_keyword.

-Xnoasm
asm inline directive is not recognized. The _ _asm directive is
recognized; only the asm directive without leading underscores is
affected by this switch. This switch is enabled with -ANSI. See also
-[no]asmwarn.

-Xwantprototype
Generates a warning if a function is referenced or called but no prototype
is provided for that function. This is an extension to ANSI C and shows
that the prototypes exist for all functions.

-Xneedprototype
Generates a fatal error if a function is referenced or called but no
prototype is provided for that function. This is an extension to ANSI C
and shows that the prototypes exist for all functions.

C++ Compatibility Options
--anachronisms
--no_anachronisms

Enables or disables anachronisms. The default is --no_anachronisms.

--cfront_2.1
-2.1

Enables compilation of C++ with compatibility with cfront version 2.1.
This causes the compiler to accept language constructs that, while not
part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront) release 2.1.
Green Hills Software, Inc. 100

--cfront_3.0
-3.0

Enables compilation of C++ with compatibility with cfront version 3.0.
This causes the compiler to accept language constructs that, while not
part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront) release 3.0. This option also enables
acceptance of anachronisms.

 --eel
--eele

Enables extended Embedded C++. Adds templates, namespaces,
mutable, new style casts enabled and the Standard Template Library
(STL) to Embedded C++.

--old_for_init
--new_for_init

Controls the scope of a declaration in a for-init statement. The old
cfront/pre-ANSI compatible rule means the declaration is in the scope to
which the for statement itself belongs. The new ANSI standard
conforming rules, in effect, wrap the entire for statement in its own
implicitly generated scope. Default is --new_for_init.

--strict_warnings
--std

Enables strict Standard mode, which provides diagnostic messages when
non-Standard features are used, and disables features that conflict with
Standard C++. Standard violations will be issued as warnings.

--strict
--STD

Enables strict Standard mode, which provides diagnostic messages when
non-Standard features are used, and disables features that conflict with
Standard C++. Standard violations will be issued as errors.

C++ Library Selection Options
--eel

Engages extended Embedded C++ library without exceptions.

--eele
Engages extended Embedded C++ library with exceptions.

--el
Engages Embedded C++ library without exceptions.

--ele
Engages Embedded C++ library with exceptions.
101 Embedded MCore Development Guide

C++ Compiler Options

s is

n

s.
--stdl
Engages Standard C++ library without exceptions.

--stdle
Engages Standard C++ library with exceptions.

Error Message Options
--brief_diagnostics
--no_brief_diagnostics

Enables or disables a mode in which a shorter form of the diagnostic
output is used. When enabled, the original source line is not displayed
and the error message text is not wrapped when too long to fit on a single
line.

--diag_suppress tags

--diag_remark tags

--diag_warning tags

--diag_error tags
Overrides the normal error severity of the specified diagnostic messages.
The message(s) may be specified using a mnemonic error tag, or using
an error number.

--display_error_number
Displays the error message number in any diagnostic messages that are
generated. The option may be used to determine the error number to be
used when overriding the severity of a diagnostic message.

--for_init_diff_warning
--no_for_init_diff_warning

Enables or disables a warning that is issued when programs compiled
under the new for-init scoping rules would have had a different
behavior under the old rules. Default is --for_init_diff_warning.

--no_use_before_set_warnings
Suppresses warnings on local automatic variables that are used before
their values are set. The compiler’s algorithm for detecting such use
conservative and is likely to miss some cases that an optimizer with
sophisticated flow analysis could detect; thus, implementation might
suppress the warnings from the compiler when optimization has bee
requested but permit them when the optimizer is not being run.

--remarks
Issues remarks, which are diagnostic messages milder than warning
Green Hills Software, Inc. 102

--no_warnings
Suppresses warnings. Errors are still issued.

--wrap_diagnostics
--no_wrap_diagnostics

Enables or disables a mode in which the error message text is not
wrapped when too long to fit on a single line. Default is
--wrap_diagnostics.

Listing Options
--list lfile(For C++ only.) Generates raw listing information in the file lfile. This

information can generate a formatted listing. The raw listing file
contains raw source lines, information on transitions into and out of
include files, and diagnostics generated by the compiler. Each line of the
listing file begins with a key character that identifies the type of line, as
follows:

N Normal line of source; the rest of the line is the text of the line.

X Expanded form of a normal line of source; the rest of the line is
the text of the line. This line appears following the N line, and
only if the line contains non-trivial modifications. Comments are
considered trivial modifications; macro expansions, line splices,
and trigraphs are considered non-trivial modifications.

S Line of source skipped by a #if or the like; the rest of the line is
text. The #else, #elif, or #endif that ends a skip is marked with an
N.

L Indication of a change in source position. The line has a format
similar to the # line-identifying directive output by cpp, as
follows:

L line-number filename key

Where key is either 1 for entry into an include file, or 2 for exit
from an include file, and omitted otherwise. The first line in the
raw listing file is always an L line identifying the primary input
file. L lines are also output for #line directives (key is omitted). L
lines indicate the source position of the following source line in
the raw listing file.

R, W, E, or C
Indication of a diagnostic. The line has the form:

S filename line-number column-number message-text
103 Embedded MCore Development Guide

C++ Compiler Options

+

ith

tion
 on

led
ns.
where S is either R for remark, W for warning, E for error, and C
for catastrophic error. Errors at the end of file indicate the last
line of the primary source file and a column number of zero.
Command line errors are catastrophes with an empty filename
(“”) and a line and column number of zero. Internal errors are
catastrophes with position information as usual, and message text
beginning with internal error . When a diagnostic displays a list,
such as all the contending routines when there is ambiguity on an
overloaded call, the initial diagnostic line is followed by one or
more lines with the same overall format. This format is a code
letter, filename, line number, column number, and message text,
but the code letter is the lowercase version of the code letter in the
initial line. The source position in such lines is the same as that in
the corresponding initial line.

--xref xfile
Generates cross reference information in the file xfile. For each reference
to an identifier in the source program, a line of the form:

symbol-id name X file line-num column-num
is written. X is either D for definition, d for declaration (that is, a
declaration that is not a definition), M for modification, A for address
taken, U for used, C for changed (but actually meaning “used and
modified in a single operation” such as an increment), R for any other
kind of reference, or E for an error in which the kind of reference is
indeterminate. symbol-id is a unique decimal number for the symbol.
The fields of the above line are separated by tab characters. (For C+
only.)

 Precompiled Header Options
--create_pch file

If other conditions are satisfied, creates a precompiled header file w
the specified name. This option has no effect if the option --use_pch or
--pch appears after it on the command line. (For C++ only.)

--pch
Automatically uses and/or creates a precompiled header file. This op
has no effect if the option --use_pch or --create_pch appears after it
the command-line. (For C++ only.)

--pch_dir dir
Specifies the directory in which to search and/or creates a precompi
header file. This option may be used with any of the other PCH optio
(For C++ only.)
Green Hills Software, Inc. 104

s an
s

n
--pch_messages
--no_pch_messages

Enables or disables the message display that a precompiled header file
was created or used in the current compilation. Default is
--pch_messages. (For C++ only.)

--use_pch file
Uses a precompiled header file of the specified name as part of the
current compilation. This option has no effect if the option --pch or
--create_pch appears after it on the command-line. (For C++ only.)

Template Options
-archive

Just like the --prelink_objects option, except an archive is created. The
library name must be specified with the -o option. (For C++ only.)

--auto_instantiation
--no_auto_instantiation
-template=auto
-template=noauto

Enables or disables automatic instantiation of templates. Default is
--auto_instantiation. (For C++ only.)

--distinct_template_signatures
--no_distinct_template_signatures

Controls whether the signatures for template functions can match those
for non-template functions when the functions appear in different
compilation units. Default is --no_distinct_template_signatures. (For
C++ only.)

--guiding_decls
--no_guiding_decls

Enables or disables recognition of “guiding declarations” of template
functions. A guiding declaration is a function declaration that matche
instance of a function template but has no explicit definition (since it
definition derives from the function template).

For example:

template <class T> void f(T) { ...}
void f(int);

When regarded as a guiding declaration, f(int) is an instance of the
template; otherwise it is an independent function for which a definitio
105 Embedded MCore Development Guide

C++ Compiler Options

h
en
ns

o
must be supplied. If -no_guiding_decls is combined with
--old_specializations, a specialization of a non-member template
function is not recognized. It is treated as a definition of an independent
function. Default is --guiding_decls. (For C++ only.)

--implicit_include
--no_implicit_include

Enables or disables implicit inclusion of source files as a method of
finding definitions of template entities to be instantiated. Default is
--implicit_include. (For C++ only.)

--implicit_typename
--no_implicit_typename

Enables or disables implicit determination, from context, whether a
template parameter dependent name is a type or a nontype. Default is
--implicit_typename. (For C++ only.)

--instantiation_dir=directory
When --one_instantiation_per_object is used, this option can be used to
specify the directory into which the generated object files should be put.
The default instantiation directory is ./template_dir.

--nonstd_qualifier_deduction
--no_nonstd_qualifier_deduction

Controls whether nonstandard template argument deduction should be
performed in the qualifier portion of a qualified name. With this feature
enabled, a template argument for the template parameter T can be
deduced in contexts like A<T>::B or T::B. The standard deduction
mechanism treats these as nondeduced contexts that use the values of
template parameters that were either explicitly specified or deduced
elsewhere. The default is --no_nonstd_qualifier_deduction.

--one_instantiation_per_object
Puts each template instantiation in this compilation (function or static
data member) in a separate object file. The primary object file (the object
file corresponding to the original source file) contains everything else in
the compilation, i.e. everything that isn’t an instantiation. Having eac
instantiation in a separate object file is useful and recommended wh
creating libraries, because it allows you to pull in only the instantiatio
that are needed, thus reducing code size. This is also essential if tw
different libraries include some of the same instantiations to avoid
multiple defined symbol problems.
Green Hills Software, Inc. 106

--old_specializations
--no_old_specializations

Enables or disables acceptance of old style template specializations; that
is, specializations that do not use the template<> syntax. Default is
--old_specializations. (For C++ only.)

--prelink_objects
Causes the driver to invoke the C++ prelink utility to instantiate
templates, but not to invoke the linker or archiver. The effect is similar to
invoking the driver with -c in that only object files are created, but no
link is performed. The difference is that the object files contain all
template instantiations required by this set of object files. Therefore, they
can be linked later without concern for template requirements. This
option should not be used with any options that prevent the linker from
being run, such as -E, -P, -S, or -c, nor with the option
-template=noauto (or --no_auto_instantiation) which prevents prelink
from being run. This option is used by the clearmake process (For C++
only.).

-tmode
Controls instantiation of external template entities. External template
entities are external (i.e., non-inline and non-static) template functions
and template static data members. The instantiation mode determines
the template entities for which code should be generated based on the
template definition. (For C++ only.)

all Instantiates all template entities whether or not they are used.

local Instantiates only the template entities that are used in this
compilation, and force those entities to be local to this
compilation.

none Instantiates no template entities. [default]

used Instantiates only the template entities that are used in this
compilation.

--typename
--no_typename

Enables or disables recognition of typename. Default is --typename.
(For C++ only.)
107 Embedded MCore Development Guide

C++ Compiler Options
Virtual Table Control Options
--force_vtbl

Forces definition of virtual function tables where the heuristic used by
the compiler provides no guidance in deciding on definition of virtual
function tables. See --suppress_vtbl. (For C++ only.)

--suppress_vtbl
Suppresses definition of virtual function tables where the heuristic used
by the compiler provides no guidance in deciding on definitions of
virtual function tables. The virtual function table for a class is defined in
a compilation if the compilation contains a definition of the first
non-inline non-pure virtual function of the class. For classes that contain
no such function, the default is to define the virtual function table (but to
define it as a local static entity). This option suppresses the definition of
the virtual function tables for such classes, and the --force_vtbl option
forces the definition of the virtual function table for such classes.
--force_vtbl differs from the default behavior in that it does not force the
definition to be local. (For C++ only.)

The following table lists single dash equivalents for double dash options that are
not documented in this manual.

Double Dash Options Single Dash Options

--comments -C

--compile -c

--debug -g

--define_macro name=string -Dname=string

--dependencies -Make

--driver_debug -dryrun

--error_limit num -errmax=num

--include_directory -I

--instantiate mode -tmode

--library_directory dir -Ldir

--no_code_gen -syntax

--no_line_commands -P

--no_warnings -w

--optimize -O

--output -o

--preprocess -E

--signed_chars -signed_char

--undefine_macro name -Uname
Green Hills Software, Inc. 108

FORTRAN Language Compiler Options

-C
Generates code that checks for correct array subscripting at run-time.
This option slows program execution.

-bigswitch
Allows large computed GOTO statements by forcing the compiler to use
a 32-bit offset. The default is a 16-bit offset, which is smaller and faster
but fails if any of the labels is too far away.

-nobigswitch
Uses a 16-bit offset which does not allow large computed GOTO
statements.[default]

-d_line
Compiles lines starting with d, D, x, or X. The default is to treat them as
comments. This option enables debugging statements.

-dod
Enables the DoD FORTRAN extensions. This is implied by -vms.

-nodod
Disables recognition of the DoD FORTRAN extensions. The DoD
extensions are also part of the VMS FORTRAN extensions enabled by
-vms.

-extend_source
Extends source to interpret columns 1 through 132 instead of 1 through
72.

-i2
Sets the type for INTEGER to INTEGER*2. The default is
INTEGER*4.

-i4
Sets the type for INTEGER to INTEGER*4.[default]

-namelist
Enables the IBM and VMS compatible NAMELIST extensions in
FORTRAN. These extensions are enabled by the -vms option, and so this
option is only needed when -novms is active.

--unsigned_chars -unsigned_char

--version -V

Double Dash Options Single Dash Options
109 Embedded MCore Development Guide

FORTRAN Language Compiler Options
-nonamelist
Disables the IBM and VMS compatible NAMELIST extensions in
FORTRAN. These extensions are enabled by default by the -vms
option.

-onetrip
Executes at least one iteration of every DO loop. By default, when the
lower bound index of a DO loop is greater than the upper bound index,
the compiler does not execute the DO loop, for compatibility with the
ANSI FORTRAN-77 standard. This option is required for some older
FORTRAN-66 programs to operate properly.

-save
Allocates all local variables to permanent memory, equivalent to coding
SAVE at the start of every subroutine or function for compatibility with
older FORTRAN compilers. With this option, variables retain their
values between calls to subroutines or functions. [default]

-nosave
Allocates local variables to registers or stack, equivalent to coding
IMPLICIT AUTOMATIC (A-Z) at the start of every subroutine or
function. Programs compiled with this option are compliant with ANSI
FORTRAN-77 and in some cases execute more quickly.

-U
Does not convert uppercase user-supplied variables to lowercase. By
default, FORTRAN is not case sensitive and all FORTRAN names are
converted to lowercase. The compiler and library both assume that this
translation is performed. This option accesses variables defined in C as
uppercase. However when you use this option, all FORTRAN keywords
must be in lowercase, making the compiler incompatible with the ANSI
FORTRAN-77 standard.

-u
Makes “undefined” the default data type for undeclared variables,
equivalent to coding IMPLICIT UNDEFINED(A-Z) at the top of the
source file.

-vms
Selects VMS compatibility mode.[default]

-novms
Selects UNIX F77 FORTRAN compatibility mode.
Green Hills Software, Inc. 110

 Alphabetical List of Options
Symbols
68

Numerics
2.1 100
3.0 101

A
alternative_tokens 95
anachronisms 100
ANSI 90
ansi 90
ansiopeq 92
archive 69, 105
array_new_and_delete 95
asm 66
asmwarn 91, 95
auto_instantiation 105
autoregister 73

B
bigswitch 109
bool 96
brief_diagnostics 102

C
C 89, 109
c 69
cfront_2.1 100
cfront_3.0 101
check 87
column 90
concatcomments 92
create_pch 104

D
D 89
d_line 109
diag_error 102
diag_remark 102
diag_suppress 102
diag_warning 102
111 Embedded MCore Development Guide

display_error_number 102
distinct_template_signatures 105
Dname= 89
dod 109
dotciscxx 96
dryrun 69
dual_debug 76

E
E 90
early_tiebreaker 96
eel 101
eele 101
el 101
ele 101
entry 67
enum_overloading 96
errmax 69
exceptions 96
explicit 96
extend_source 109
extern_inline 96

F
fnone 69
for_init_diff_warning 102
force_vtbl 108
fsingle 66

G
G 75
g 75
globalreg 73
gnu_c 91, 97
guiding_decls 105

H
H 69
Help 69
help 69
Green Hills Software, Inc. 112

I
I- 69
i2 109
i4 109
ident 71
implicit_extern_c_type_conversion 97
implicit_include 106
implicit_typename 106
include 89
includenever 89
includeonce 89
initextern 92
inlining 97
inlining_unless_debug 97
instantiation_dir 106

J
japanese_automotive_c 92

K
k+r 91
keep_gen_c 97
keeptempfiles 70

L
L 66
l 66
language=cxx 70
language=fortran 70
late_tiebreaker 96
list 66, 103
lnk 67
locatedprogram 67
long_lifetime_temps 97

M
max_inlining 97
max_inlining_unless_debug 97
multibyte_chars 98

N
namelist 109
113 Embedded MCore Development Guide

namespaces 98
needprototype 93, 100
new_for_init 98, 101
no_alternative_tokens 95
no_anachronisms 100
no_array_new_and_delete 95
no_auto_instantiation 105
no_bool 96
no_brief_diagnostics 102
no_distinct_template_signatures 105
no_enum_overloading 96
no_exceptions 96
no_explicit 96
no_extern_inline 96
no_for_init_diff_warning 102
no_forced_zero_initialization 98
no_guiding_decls 105
no_implicit_extern_c_type_conversion 97
no_implicit_include 106
no_implicit_typename 106
no_inlining 98
no_multibyte_chars 98
no_namespaces 98
no_nonstd_qualifier_deduction 106
no_old_specializations 107
no_pch_messages 105
no_restrict 98
no_rtti 98
no_typename 107
no_use_before_set_warnings 102
no_using_std 100
no_warnings 103
no_wchar_t_keyword 100
no_wrap_diagnostics 103
noalias 93
noansi 90
noansiopeq 94
noasm 93, 100
noasmwarn 91, 95
noautoregister 75
nobigswitch 109
noconcatcomments 94
nocpperror 89
nodbg 76
nodod 109
nofloatio 67
nognu_c 91, 97
nonamelist 110
Green Hills Software, Inc. 114

nonoalias 94
nonooldfashioned 94
nonstd_qualifier_deduction 106
nooldfashioned 93
nooverload 75
nopragmawarn 89
nosave 110
noshortenum 91, 99
noshortwchar 91, 99
nostdlib 67, 71
novms 110

O
O 76
o 71
OA 77
object_dir 71
OD 82
OE 76
OI 77
OI= 78
OL 81
OL= 81
OLB 81
old_for_init 98, 101
old_specializations 107
OM 82
one_instantiation_per_object 106
onetrip 110
Onoconstprop 86
Onocse 86
Onomemory 86
Onominmax 86
Onopeep 86
Onopipeline 86
Onostrcpy 86
Onotailrecursion 86
Onounroll 87
OS 85
OT 86
Ounroll8 82
overload 75

P
P 90
pack_alignment 98
115 Embedded MCore Development Guide

passsource 71
pch 104
pch_dir 104
pch_messages 105
pg 71
pragm_asm_inline 94
prefixed_msgs 71
prelink_objects 71, 107

R
redefine 89
relobj 68
relprog 68
remarks 102
restrict 98
rtti 98

S
S 72
save 110
sec 68
short_lifetime_temps 97
shortenum 91, 99
shortwchar 91, 99
signedchar 91, 99
signedfield 91, 99
signedptr 92, 99
signedwchar 92, 99
slashcomment 94
srec 68
sreconly 68
STD 101
std 101
stderr 72
stdl 102
stdle 102
STRICT 95
strict 94, 101
STRICT=COMPERR 95
strict=comperr 94
STRICT=COMPWARN 95
strict=compwarn 94
STRICT=noCOMPERR 95
strict=nocomperr 95
STRICT=noCOMPWARN 95
Green Hills Software, Inc. 116

strict=nocompwarn 95
strict_warnings 101
suppress_vtbl 108
syntax 72

T
T 72, 92, 99
t 107
template=auto 105
template=noauto 105
tmp 92, 99
typename 107

U
U 90, 110
U- 90
u 110
unsignedchar 91, 99
unsignedfield 91, 99
unsignedptr 92, 99
unsignedwchar 92, 100
use_pch 105
using_std 100

V
V 72
v 72
vms 110

W
W 72
w 68, 73
wantprototype 93, 100
wchar_t_keyword 100
wrap_diagnostics 103

X
Xa 92
Xc 92
xref 104
Xs 94
Xt 94
117 Embedded MCore Development Guide

Y
Y 73
Green Hills Software, Inc. 118

9

Macro Assembler
 This chapter contains:

• Macro Assembler Characteristics

• Command Line Options

• Using the Driver

• Macro Assembler Syntax

• Expressions

• Labels

Macro Assembler Characteristics
Macro Assembler Characteristics

The Macro Assembler translates ASCII files containing assembly language
instructions into binary files containing relocatable, linkable object code.

The features include:

• UNIX V.4 ELF object files

• Very long identifiers (up to 4096 characters)

• Relocatable object modules

• Optional source and generated code listings

• Macro, repeat block, and conditional assembly directives

• Free form assembly input format

• Full symbolic debugger support

Command Line Options

Note: The recommended way to call the assembler is to use the driver to call
the assembler. Do not call the assembler directly.

The syntax for the Macro Assembler is:

asmcore [options] [input_files]

The Macro Assembler combines each specified ASCII input_file and produces a
single output object module.

As an option, a listing is written to the standard output file. A number of options
may be specified except where the default is not to perform the function enabled
by the option.

-g Outputs line number debug information. This allows MULTI to

debug assembly code. This should only be used for hand-coded
assembly language files; compiler-generated assembly language files
have their own debug information.

-help Prints a help message.

-Idir Searches directory dir for files specified in .include directives.

-list[,[pagelength][,pagewidth][=][file]
Enables the source listing. A page length and page width can be
specified for the source listing. If either value is omitted, the defaults are
Green Hills Software, Inc. 120

used. If only one comma and one value are used (e.g. -list,80=foo), that
value will be the page length and the default page width is used. The
default page length is 64, and the default page width is 132.

If = is specified but file is not specified, then the listing is displayed on
the standard output. If =file is specified, then the listing is written to file.
If neither = nor file are specified, then the listing file is written to a file
with a .lst extension, replacing the current extension (e.g. .s).

For example:

-list Save listing to .lst file with default page length and

line size.

-list,80Save listing to .lst file with page length of 80 and

line size.

-list=traxSave listing to file trax with default page length and

line size.

-list,,110Save listing to .lst file with default page length and

line size of 110.

-list,,110=trax

Save listing to file trax with default page length

and line size of 110.

-list= Display listing on standard output with default

 page length and line size.

-nogenDisables source listing of macro expansions.

-o file Sets the name of the output module to file. The default is the name of the
assembly language file with a .o extension. For example, foo.o is
produced for foo.s.

-r Prints a listing of symbol names in alphabetical order.

-ref Prints a full cross reference of the symbols in alphabetical order,
including the symbol name, type, file and line defined, and file and line
of each usage.

-V Prints the Macro Assembler version number to the standard output.

Example:
The following Macro Assembler command line produces an object file
example.o with DWARF 1.1 line number debugging information from the
assembler source file example.s:

% asmcore -g example.s -o example.o
121 Embedded MCore Development Guide

Using the Driver
Using the Driver

The driver, ccmcore, may be used to invoke the assembler and linker. This has
several advantages over direct use of the assembler, including the invocation of
the preprocessor on the assembly file, if it ends in .mco. This allows you take
advantage of preprocessor facilities, such as #include and #define, which are
not normally available to the assembly language programmer. Assembly
language files generally have one of two suffixes, either .s or .mco. The
preprocessor will only be invoked on the files ending in .mco. The general
format to use the driver with an assembly file is:

% ccmcore options foo.mco
To pass options to the macro assembler, you must use one of two special driver
options. Otherwise, the driver interprets the information, and it is not passed to
the assembler:

-asm=assembler_option
-Wa, assembler_options
Only one option is used with each -asm. Multiple -asm options can be used on
one line. Multiple options can be listed after -Wa. They must be separated by
commas.

For example:

% ccmcore -g -Wa,-ref,-r calc.mco -o calc
In this example, the options -ref and -r are sent to the macro assembler. The
preprocessor is invoked on the assembly file calc.mco. An executable, calc, is
produced.

% ccmcore -asm=-ref -asm=-r stack.s -o stack
In this example, the preprocessor is not called because the assembly file ends in
.s instead of .mco. The options -ref and -r are passed to the macro assembler.
An executable file, stack, is produced.

At times, the assembly language output of a high-level language is required,
often for perusal, and so that alterations can be made before assembly. To do
this, use the driver command with the -S option:

% ccmcore -S main.c
This causes the C compiler to compile main.c and place the assembly language
output in the file main.s.
Green Hills Software, Inc. 122

Macro Assembler Syntax

Character Set
The Macro Assembler recognizes the standard ASCII character set, consisting
of upper and lowercase letters (A-Z, a-z), digits (0-9), and a group of special
characters listed in the table below. The Macro Assembler also recognizes the
ASCII control characters signifying carriage return, new line, form feed,
vertical tab, and horizontal tab.

Identifiers
Identifiers, or symbols, are composed of letters, digits, and the special
characters: decimal point or underscore.The first character of an identifier must
be alphabetic or one of these two special characters. Upper and lowercase
letters are distinct; the identifier abc is not the same as the identifier ABC.
Characters in reserved symbols, such as directives, machine instructions, and
registers, are also case sensitive.

Examples:
The following table shows some valid and invalid identifiers:

Character Name Character Name

’ single quote " double quote

(left parenthesis) right parenthesis

 blank % percent

- minus sign + plus sign

: colon ! exclamation mark

, comma \ backslash

. decimal point * asterisk

& ampersand _ underscore

~ tilde | vertical bar

= equals sign ^ carat

< less than > greater than

/ slash $ dollar sign

@ at sign # number sign

; semicolon

Identifier Validity

*star Invalid (may not start with *)

123test Invalid (may not start with digit)
123 Embedded MCore Development Guide

Macro Assembler Syntax
Reserved Symbols
The following identifiers are part of the fundamental assembly language. These
symbols and their meanings are shown in the table below. Identifiers in both
upper and lower cases are reserved.

Constants
Macro Assembler constants may be numeric, character, or string constants.

Numeric Constants
A sequence of digits defines a numeric constant. By default, constants are in
decimal or floating point format, although this can be changed by a directive in
a source file. However, constants can be specified in hexadecimal, octal, binary
by preceding the number with one of the special prefixes on the following page:

All integer constants are assigned 32-bit two’s complement values.

f-ptr Invalid (hyphen not allowed)

_hello Valid

LABEL Valid

test4 Valid

Identifier Meaning

r0 - r15 integer registers

cr0 - cr31 control registers

psr status register

gbr global base register

sp stack pointer (r15)

vbr vector base register

epsr, fpsr, epc, fpc exception shadow registers

sso0-ss4 supervisor storage registers

gcr global control register

gsr global status register

pc program counter

Type Prefix Example

hexadecimal 0x 0xb0b

octal 0 0747

binary 0b 0b110011

Identifier Validity
Green Hills Software, Inc. 124

cter (‘).

acter

d by
String Constants
Some directives take a string constant as one or more of their arguments. A
string constant consists of a sequence of characters enclosed in double quotes
("). A string constant can contain any ASCII character including ASCII null,
except newline. The null character is not appended to strings by the Macro
Assembler, as it is in C or C++.

Character Constants
A character constant can be used in any location where an integer constant is
needed. A character constant consists of the following items in this order:
either a single ASCII character or a single quote character (‘), a backslash
character (\), one of the value escape characters, and a single quote chara
A character constant is considered equivalent to the ASCII value of the
character or escape sequence. For example, the character constant a is
equivalent to the decimal integer 97, and the character constant \r is equivalent
to the decimal integer 13 (see table on the following page).

Character Escape Sequences
Character and string constants consists of ASCII characters. The ASCII
backslash (\) is used within character and string constants to escape the
quotation marks and to specify certain control characters symbolically. A
backslash followed by any non-escape character is equivalent to that char
(e.g. \a is equivalent to a since \a is not an escape sequence).

Source Statements
A Macro Assembler source statement consists of a series of fields, delimite
spaces and/or horizontal tab. The general format of a statement is:

Escape Character ASCII Value

\0 null 0 (0x0)

\b backspace 8 (0x8)

\t horizontal tab 9 (0x9)

\n newline 10 (0xA)

\v vertical tab 11 (0xB)

\f formfeed 12 (0xC)

\r return 13 (0xD)

\nnn octal value nnn

\’ single quote 39 (0x27)

\" double quote 34 (0x22)

\\ backslash in a constant or string 92 (0x5c)
125 Embedded MCore Development Guide

Macro Assembler Syntax
[label:] operator arguments[comments]

Label Field
The label field is optional. When specified, it starts in column one and is
terminated by the first white space character or line terminator detected. The
last character of the label field must be a colon. More than one label may be
associated with a given statement line, but a line may consist of no more than
one label field.

The label is used to associate a memory location or constant value with the
symbolic label name. Labels may have the same names as instructions and
directives.

Operator Field
The operator field starts with the first non-white space character after the
optional label field and is terminated by the first white space character or line
terminator encountered after the operator. An operator is any symbolic opcode,
directive, or macro call.

Argument Field
The argument field starts with the first non-white space character following the
operator field, and ends with a line terminator or the beginning of a comment
field. Arguments are entered to the opcode or directive or are macro call
specified.

Comment Field
The comment field is optional and begins with a double slash (//) or a pound
sign (#). Ignore all characters to the right of the comment character until the end
of the line.

Continuation Lines
The Macro Assembler does not support continuation lines.

White Space
White space consists of spaces, form feeds, and horizontal tabs.

Line Terminators
Assembly input lines are terminated by a semicolon, line feed, form feed, or a
carriage return.
Green Hills Software, Inc. 126

 page

e
he
Expressions

Assignment Statements
An expression is assigned to a symbol by an assignment statement in one of the
following general forms:

symbol =[:] expr
symbol .equ expr

.set symbol, expr
The expression specifies any addressing mode, which is generated when the
symbol becomes an instruction operand. An assignment by = defines a local
constant, and an assignment by =: additionally specifies that the symbol is
global.

For example:

a = 1 # a local constant
xyz =: 123 # a global constant
Both .equ and .set work similarly to =, with the difference that .equ only allows
you to assign an expression to a symbol once while .set allows you to reassign
to the same symbol multiple times.

For example:

.set 7 stack # set stack to be 7 (legal)

.set 8 stack # reset stack to be 8 (legal)
chair .equ 9 # set chair to be 9 (legal)
sofa .equ 8 # set sofa to be 8 (legal)
chair .equ 5 # try to set chair to be 5 (illegal)
An expression is either absolute or relocatable. See “Expression Types” on
128 for more information about absolute or relocatable expressions.

Scalar Expression Operators
A number of operators are available to form expressions. The operators ar
listed below. The type unary indicates that the function is recognized when t
operator has only a right operand; binary indicates that the operator has two
operands, one to the left of the operator and one to the right.

Operator Type Description

~ unary BITWISE NOT operator

- unary Negation

- binary Subtraction

+ binary Addition

* binary Multiplication

/ binary Division
127 Embedded MCore Development Guide

Expressions
The following table lists the operators in decreasing order of precedence.The
binary operators are associative from left to right:

Expressions are grouped with matching square brackets [].

Expression Types
The primary expression types are:

manifest
If the value of an identifier or expression is computed by the Macro
Assembler when encountered, it is a manifest value.

absolute
If the value of an identifier or expression is computed by the Macro
Assembler during assembly, it is absolute. Essentially, any absolute
value is a manifest value with the exception of an absolute value derived
from the difference between two relocatable values in the same section.

% binary Modulus

& binary BITWISE AND operator

^ binary BITWISE EXCLUSIVE OR operator

| binary BITWISE OR operator

=,== binary Equality (0 or 1)

!= binary Inequality (0 or 1)

>,>=,<,<= binary Signed compares (0 or 1); greater than, greater than or
equal, less than, less than or equal

UGT, UGE, ULT,
ULE

binary Unsigned compares (0 or 1); greater than, greater than or
equal, less than, less than or equal

<<,>> binary Shift left and shift right

USHR binary Unsigned shift right (shift 0 into high bit)

ROTR, ROTL binary Rotate right and rotate left

Operators

~ and - (unary)

*, /, %, <<, >>, USHR, ROTR, and ROTL

+ and - (binary)

=, .equ, ==, !=, <, >, <=., >=, ULT, UGT, ULE, and UGE

&

| and ^

Operator Type Description
Green Hills Software, Inc. 128

at

k

table
es are

.

 If
a, or
f the

r a

els
cond
 it is
quoted string
A C-style character string delimited by double quotes is used in
conjunction with a number of Macro Assembler directives. All string
“escape” sequences defined in the C language, such as \n for newline,
are allowed. These sequences are described in “Character Escape
Sequences” on page 125.

relocatable
A relocatable expression or identifier assigns a value relative to the
beginning of a particular section. These values are not determined
assembly time. All label identifiers are relocatable values.

undefined
If an identifier is unassigned, its value cannot be determined until lin
time. This is an undefined external.

Type Combinations
The constant types are combined with all operators, except where a reloca
type was made immediate or absolute. Constant types and relocatable typ
combined only by the following:

+ If one operand is constant, the result is the type of the other operand

- If the second operand is constant, the result is the type of the other.
both operands are selected from the same one of the types text, dat
bss relocatable, then the result is a constant which is the difference o
addresses.

Examples:
4 # constant
4 * (5 + 6) # constant
label # relocatable

Labels

A statement optionally begins with one or more labels. Each label is eithe
named label or a temporary label.

Named Labels
Named labels are identifiers followed by one or two colon characters. Lab
defined with one colon are not referenced outside the source module. A se
colon specifies that the label is made visibly external to the source file that
in, instead of being local to that file.
129 Embedded MCore Development Guide

Labels
Temporary Labels
Temporary labels consist of a non-zero digit followed by a colon. Any number
of these labels can be present, even if the value of the constant repeats. A
reference to a temporary label consists of the label’s constant value expressed as
a decimal number followed immediately, with no space, by an f or b. This
reference refers to the nearest statement with the same numeric label either
forward of the reference, not including the current source line, specifying an f,
or backward from the reference, including the source line, specifying a b.
Matching labels in the non-specified direction are not referenced, even if they
are closer.

Example
1: bra lb # infinite loop
 nop # delay slot
Green Hills Software, Inc. 130

10

Macro Assembler
Directives
 This chapter contains:

• Listing of Macro Assembler Directives

• Characteristics of Specific Directives

Listing of Macro Assembler Directives
Macro Assembler directives and specification of instructions are specified in a similar way.
Directives control options of the Macro Assembler or format and generate data for the code
segments. Certain directives establish or alter the definitions of symbols.

The Macro Assembler directives are symbols with a type of directive and a
predefined value specifying the particular directive. Both directives and
instructions appear between labels and operands. The Macro Assembler assigns
a specific type to such predefined symbols and searches only for this type
between labels and operands. Therefore, labels can have the same names as
instructions and directives.

Listing of Macro Assembler Directives

ALIGNMENT:
.align Adjusts location counter to a boundary

DATA INITIALIZATION:
.byte Stores values in successive bytes

.short Store values in successive 16-bit words

.long Stores values in successive 32-bit words

.doubleStores values as successive 64-bit IEEE-754 floating point

.float Stores values as successive 32-bit IEEE-754 floating point

.ascii Quoted string stored in successive bytes

.asciz Quoted string stored in successive bytes (null-terminated)

.space Zero n bytes of storage

.fill Produces n elements with a given value and size

.literalsForces a dump of all accumulated literals

.ident Stores string in a section called .comment

SECTION CONTROL:
.text Specifies text segment

.data Specifies data segment

.set Controls instruction reordering

.sectionSpecifies named segment
Green Hills Software, Inc. 132

.previousUndoes the most recent .section

.org Specifies absolute segment

SYMBOL DEFINITION:
.exportExternal identifier

.importExternal identifier

.commCommon block

.bss Local identifier

.weak Weak symbols

.lcommLocal common block

FILE INCLUSION:
.includeIncludes header file

MACRO DEFINITION:
.macroDefines a macro

.endm Ends macro definition

.exitm Exits from current macro

REPEAT BLOCKS:
.rept Repeats the following statements

.endr Ends repeat block

CONDITIONALS:
.if Enters a conditional block

.else Conditional block alternative

.elseif Alternative plus new conditional test

.endif Ends conditional block

LISTING FORMAT:
.warningEmits warning messages

.nowarningDoes not emit warning messages

.list Turns listing on. This is the default.

.nolist Turns listing off

.gen Turns listing of macro generation on. This is the default.

.nogenTurns listing of macro generation off
133 Embedded MCore Development Guide

Characteristics of Specific Directives
.eject Puts a form feed (Control-L) into the output listing

.title Puts a title at the top of each page in the output listing

.subtitlePuts a subtitle at the top of each page in the output listing

.sbttl Puts a subtitle at the top of each page in the output listing

Characteristics of Specific Directives

Alignment
.align man-expr, value

This directive advances the location counter to an addressing boundary
specified by the manifest expression (constant expression) man-expr. The
boundary is 1, 2, 4, or 8 bytes corresponding to a man-expr of 0, 1, 2, or 3. The
location counter advances to the boundary specified by the manifest expression.
As the location counter advances, the segment is filled with zeros or with the
given value.

Data Initialization
.byte man-expr,man-expr, ...

.short man-expr,man-expr, ...

.long man-expr,man-expr, ...

.double flt-expr,flt-expr, ...

.float flt-expr,flt-expr, ...

.ascii quoted-string, quoted-string, ...

.asciz quoted-string, quoted-string, ...

.skip man-expr

.space man-expr

.offset man-expr

.fill man-expr,man-expr,man-expr

.ident q-string

These directives evaluate expressions and produce successive values of the
specified type in the assembly output.

.byte Computes the values of the supplied manifest expressions and produces
successive bytes. The manifest expressions must be in the range -128 to
255 (-128 to 127 or 0 to 255).
Green Hills Software, Inc. 134

.short Computes the values of the manifest expressions and produces
successive 16-bit words. The manifest expressions must be in the range
-32768 to 32767.

.long Computes the values of the expressions and produces successive 32-bit
quantities. The expressions are absolute expressions, relocatable
expressions or undefined externals. The actual values of relocatable and
undefined externals are supplied at link-time. The value of each
expression must be in the range -2147483648 to 2147483647 or 0 to
4294967295.

.doubleComputes the values supplied by the floating point expressions and
produces successive 64-bit IEEE-754 floating point values. Each floating
point expression must be in double-precision range.

.float Computes the values supplied by the floating point expressions and
produces successive 32-bit IEEE-754 floating point values. Each floating
point expression must be in single-precision range.

.ascii Evaluates a C-style string enclosed in double quotes (") and produces
successive bytes. The delimiting double quote characters and terminating
null are discarded.

.asciz Evaluates a C-style string enclosed in double quotes (") and produces
successive bytes. Only the delimiting double quote characters are
discarded.

.skip nGenerates n bytes of zero data.

.space Alternate name for .skip.

.fill n,s,vGenerates n values of size s bytes and value v.

.literalsCause the accumulated literal table for the lrw, jsri, and jmpi:
instructions for the current section to be emitted.

.ident This directive stores the C-style string specified in q-string into a section
named .comment in the object file. The delimiting double-quote
characters are eliminated and the string is null terminated. A common
use for the ident directive is to store version and revision information in
the object module.

Section Control
.text

.data

.set

.section "name","attr"
135 Embedded MCore Development Guide

Characteristics of Specific Directives
.previous

.using

.org man-expr

These directives direct assembly output into the specified section.

.text Directs assembly output into the text segment.

.data Directs assembly output into the data segment.

.set This controls whether instruction reordering will be done by the
assembler. The MCore architecture contains hazards, sequences of
instructions which lead to indeterminate results.

.sectionThis directive directs assembly output into the section called name. The
section name should be followed by a string using one of the listed
combinations of the letters a, b, x, and w. a means that the section should
have memory allocated for it, that is, not be used solely for debugging or
symbolic information. b means the section will have BSS semantics.
Although normal data directives, such as .word and .byte are allowed in
a .bss section, all of the values specified in those directives are discarded
by the assembler. Instead, in the ELF output file, the assembler records
only the size of the section. The contents of the section are omitted.
When the section is downloaded to the target, space is allocated for the
section, but no data is downloaded to this section. Instead, the
application is responsible for initializing all bytes in the section to zero.
b is used by the compiler for uninitialized variables in the Zero Data
Area and any uninitialized variables in a renamed section. x indicates
that the section will contain executable code. w indicates that the section
will be writable. If none of these letters are specified, then none of the
corresponding attributes will be set. Setting no attributes is appropriate
only for sections containing debugging or other information not intended
to be part of the final linked file. Sections which are intended to be part
of the final linked output should have at least the a attribute. Once
attributes have been set they may not be respecified. Due to limitations
in the debug file formats, only one section per source file (counting the
.text section if it is used) may have the x attribute, if debugging is
intended.

Here are a few examples using the .section directive:

.section .mytext, ax
Green Hills Software, Inc. 136

creates a section called .mytext with allocate and execute attributes.

.section .data2, a

creates a section called .data2 with the allocate attribute.

.previousChanges the active section back to the one in use before the most
recent .section directive..orgDirects assembly output into an absolute
section which starts at address man-expr. The section is given a name
equal to the eight-character hex representation of that address.

Symbol Definition
.bss ident,man-expr[,man-expr]

.comm ident,man-expr[,man-expr]

.lcomm ident,man-expr[,man-expr]

.weak ident

.exportident

.importident

These directives define the type and value of the identifier ident.

.bss Same as .comm except ident is not exported.

.exportCauses the identifier ident to be visible externally. If the identifier is
defined in the current program, this directive allows the linker to resolve
references by other programs. If the identifier is not defined in the
current program, the Macro Assembler resolves it externally.

.commCauses the specified identifier ident to be visible externally. The
identifier is assigned to a common area of man-expr bytes in length. The
linker assigns space for the identifier in the bss section if ident is not
defined by another relocatable object file. The optional man-expr
specifies the variable alignment in bytes.

.lcommSame as .comm except ident is not exported.

.weak Makes the symbol weak. Linker sets its value to zero if the ident cannot
be located.

.importSame as .export. It is common for .export to make symbols defined in
the current module be externally visible, while .import explicitly
declares symbols defined in other modules. The assembler does not
require this usage, however.
137 Embedded MCore Development Guide

Characteristics of Specific Directives

e of
y

 the

t be
eter

ted.
File Inclusion
.include file

Causes the insertion of file at the location of this directive. The file will be
searched first in the current working directory and then in any other directories
specified by the -I command line option. See “Command Line Options” on
page 120.

Macro Definition
.macro name [list]

[.exitm]

.endm

The .macro directive enters a macro definition. Assembly statements are
collected until a matching .endm directive is processed. The following is an
example of how to invoke a macro:

.macro trythis parm1
lwz r1,parm1*2 (r4)
.endm
.macro log_and parm1 parm2
lwz parm1, parm2 (r4)
.endm
.text
trythis 16
log_and r1, 0
log_and r1, 2
generates:

lwz r1,32(r4)
lwz r1,0(r4)
lwz r1,2(r4)
A macro definition assigns a name and a local parameter list to a sequenc
assembly statements. The parameter list consists of identifiers separated b
commas or white space. The name space of macro names is distinct from
names of other user defined symbols.

After a matching .endm directive is processed, the Macro Assembler
recognizes the name of the macro and substitutes the saved assembly
statements. This procedure invokes the macro and is known as macro
expansion.

Actual parameters are supplied when the macro is invoked, and there mus
the same number of actual parameters as there are identifiers in the param
list of the macro definition.

The .endm directive must be the first symbol on its line; no labels are permit
Green Hills Software, Inc. 138

ner
 The
block.

ted.

thin
During macro expansion, all references to a parameter of the definition are
replaced by the corresponding actual parameter. The >< concatenation operator
may be used to concatenate two parameters or a parameter with a symbol. The
resulting assembly statement is not scanned for further parameter matches. If
one macro calls another, the parameters of the first invocation are hidden from
that of the inner one.

A macro may contain macro definitions. In this case the inner definition is
processed only when the macro is later expanded. Macros may not call
themselves recursively.

During macro expansion, if a .exitm directive is encountered, expansion of the
macro is terminated. Typically, this directive would be placed within a .if
directive structure to allow for conditional premature termination of the macro
expansion.

When a macro is invoked, the name of the macro appears in the listing. The
expansion of the macro and the correspondingly generated object code are then
listed. The directive can be used to disable the listing of the macro expansion.
See “Listing Format” on page 141 for more information.

Repeat Block
.rept expr
. . .
.endr

This directive specifies a block of assembly statements which repeat expr times.

The block of instructions is repeated expr times. The expression must be
constant. Repeat blocks may occur within repeat blocks. In this case the in
repeat block is expanded once for each expansion of the next outer block.
repeat count of an inner block is evaluated at each expansion of the inner

The .endr directive must be the first symbol on its line; no labels are permit

Repeat blocks may be contained within macro definitions, or definitions wi
blocks, but no other overlap is possible.

Conditional Assembly
.if expr
[.else]
[.endif]
.if expr
139 Embedded MCore Development Guide

Characteristics of Specific Directives
[.elseif expr]
.endif

The .if directive specifies a block of assembly statements which are to be
assembled only if expr is non-zero. The reverse condition applies to the .else
block, and the reverse of the condition plus a new condition applies to an .elseif
block.

The expr is evaluated. It must be constant and defined within Pass 1. If its value
is non-zero, the block of statements is assembled normally. Otherwise, the
generation of code, the definition of symbols and labels, and the processing of
directives is suppressed until a matching .endif is processed.

The .else directive may be used to reverse the condition and begin assembling
statements only if the matching .if was false. The .elseif directive is equivalent
to a .else followed by a second .if, except that only one .endif will be required to
terminate the block.

Conditional blocks may occur within conditional blocks.

The conditional block is always listed, but no object code listing will appear for
blocks which are not assembled.

Symbolic Debugging and Revision Tracking
.file q-string

.ln

These directives are used for symbolic debugging.

.file Stores a source filename, q-string, into the object file symbol table. The
q-string filename must be from 1 to 255 characters in length and
delimited by double quotes.

.ln This directive creates a line number table entry in the object file,
associating the line number, line-no, with a particular memory location,
optionally specified by address. If no address is specified, the current
location in the current section is used.

Symbol Attribute Operations
The .def and .endef directive pair is used to create a symbol table entry for the
specified identifier and to associate one or more attributes with that identifier.
The general format for an .def/.endef is:

def identifier
 (one or more attribute assignment operations)

.endef
Green Hills Software, Inc. 140

If the .def/.endef pair defines a function name, a second .def/.endef pair, which
assigns a storage class of -1, must immediately follow the function definition
set. This allows the Macro Assembler to calculate function size for use with
other tools.

The following attribute assignment operators may be specified within an
.def/.endef pair:

.dim The .dim pseudo-op indicates that the identifier is an array. Each
dimension of the array is specified by a manifest expression man-expr,
the total number of dimensions being defined by the number of
comma-delimited man-expr values supplied.

.line The .line pseudo-op is used to associate a line number, man-expr with the
identifier. In this case the identifier specified by .def should be a block
symbol. The maximum number is 4.

.scl The .scl pseudo-op associates a storage class, specified by man-expr with
the identifier. The special storage class value of -1 is used to indicate the
physical end of a function.

.size The .size pseudo-op associates the size specified by man-expr with the
identifier. If the identifier is a bit field, the size is specified in bits.
Otherwise the size is assumed to be in bytes.

.tag The .tag pseudo-op associates the identifier with a structure, union or
enumeration named string.

.type The .type pseudo-op associates the C language type specified by
man-expr with the identifier.

.val The .val pseudo-op assigns the value of expr to the identifier. The
expression expr determines the section with which the identifier will be
associated, and may be either an absolute expression, a relocatable
expression or an undefined external. If expr is .val, then the current text
section location is assigned.

Listing Format
.warning
.nowarning
.nolist[.macro][.rept][.if][.include][.list]
.list[.macro][.rept][.if][.include][.list]
.gen
.nogen
.eject
.title “ title”
141 Embedded MCore Development Guide

Characteristics of Specific Directives
.subtitle “ subtitle”

.sbttl “ subtitle”

These options control the format of the informational text listing produced by
the assembler. They do not affect the object code generated.

.warningCauses warnings to be emitted to standard error output.

.nowarningCauses warnings to not be emitted to standard error output.

The following options will only be effective if the source listing has been
enabled with the -list or -l command line options.

.nolist Without any arguments, this will turn off listing for the sections
following this directive until a corresponding .list directive is
encountered at which point listing will be reactivated.

.nolist .macro

Identical to .nogen. This causes all macros in the sections following this
directive to not be expanded in the source listing. Macro expansion
listing can be reactivated with a .list .macro or a .gen directive.

.nolist .reptDoes not expand all repeat blocks in the sections following this
directive in the source listing. Repeat block expansion listing can be
reactivated with a .list .rept directive.

.nolist .ifCauses the listing of only the branch in conditional blocks (.if ...) for
which code is generated. The full conditional block listing can be
reactivated with a .list .if directive.

.nolist .include

Does not display include files in the sections following this directive in
the source listing. Include file listing can be reactivated with a .list
.include directive.

.nolist .listDoes not display all .list and .nolist directives in source listings. The
.list directive listing can be reactivated with a .list .list directive.

.list Without any arguments, this turns on listing for the sections following
this directive. This is intended to counteract a previously given .nolist
directive.

.list .if Controls printing of all .if .else .endif directives and the lines skipped
due to false if expressions.

.list .macroThis is identical to .gen. This fully expands all macros in the source
listing. This can counteract a previously given .nolist .macro directive.

.list .overControls printing of lines with so much binary output that they
overflow onto multiple lines.
Green Hills Software, Inc. 142

.list .reptControls printing the .rept directive itself. This fully expands all
repeat blocks in the source listing. This can counteract a previously given
.nolist .macro directive.

.list .if Lists all branches of conditional blocks (.if ...) in the source listing. This
is intended to counteract a previously given .nolist .if directive.

.list .includeDisplays include files in the source listing. This is intended to
counteract a previously given .nolist .include directive.

.list .listControls printing the .list directives itself. This is intended to
counteract a previously given .nolist .list directive.

.gen Identical to .list .macro.

.nogenIdentical to .nolist .macro.

.eject Puts a form feed (^L) into the output listing.

.title Causes a title, given by the specified string, to be included at the top of
each page of the source listing.

.subtitleCauses a subtitle, given by the specified string, to be included at the
top of each page of the source listing.

.sbttl Identical to .subtitle.
143 Embedded MCore Development Guide

Characteristics of Specific Directives
Green Hills Software, Inc. 144

11

MCore Macro
Assembler
Reference
 This chapter contains:

• Register Set

• Addressing Modes

• Macro Expansion

• Alphabetical List of MCore Instructions

Register Set
This chapter gives detailed information on the MCore addressing modes and instruction
formats, with a complete alphabetical listing of all MCore instructions. Numerous examples
are provided. The processor-specific information in this chapter supplements the more general
information provided by the MCore Macro Assembler chapter.

While it is intended as a useful reference for the programmer wishing to write
and maintain Green Hills MCore Macro Assembler code, it does not cover these
topics exhaustively. For additional information, please refer to the MCore
Programming Manual which also covers other related topics such as a detailed
description of the instruction set and trap handling.

Register Set

There are two types of registers, general registers and control registers,
explained below.

General Registers
There are 16 general purpose registers, each 32 bits wide. They are used to hold
source operand data and computation results. Although only r0 has a special
function at the hardware level, a convention has been established whereby the
following MCore general registers have reserved functions at the software
level:

The jsr instruction overwrites the contents of register r15 with the return
address generated by the call. However, the contents of r15 may also be
overwritten by software if required.

Register Name(s) Usage

r0 Stack pointer

r1 Scratch register

r2-r3 Parameter registers, return value

r4-r7 Parameter registers

r8-r13 Permanent registers

r14 Permanent register, frame pointer

r15 Link pointer
Green Hills Software, Inc. 146

Control Registers
There are 32 control registers, each 32-bits wide:

Control registers can be loaded and stored from via the mfcr and mtcr,
respectively. For a detailed description of the purpose of each of these registers,
please refer to the MCore Programming Manual.

Addressing Modes

Introduction
All the addressing modes offered by the MCore processor are supported, and
are summarized below:

Key:

reg1, reg2 are general purpose registers

creg1 is a control register

Name Usage

PSR Processor status register

VBR Vector base register

EPSR, FPSR,
EPC, FPC

Exception shadow registers

SS0-SS4 Supervisor storage registers

GCR Global central register

GSR Global status register

CR13-CR31 Reserved

Addressing Mode Notation Example

No arguments rts

Register reg1 abs r1

Two registers reg1,reg2 add r2,r3

Register with 5-bit immediate reg1,imm5 sub r0,16

Register with 7-bit immediate reg1,imm7 movi r4,100

Control register reg1,creg2 mfcr r2,cr1

Register indirect with 4-bit displacement reg1,(reg2,disp4) ld.w r3,(r0,16)

Register list reg1-reg2, (reg3) stm r2-r15,(r0)

Immediate Indirect [disp8] lrw r1,[100]

Branch displacement disp11 bt-16

Register with 4-bit negative displacement reg1,disp4 loopt r2,-8
147 Embedded MCore Development Guide

Addressing Modes

tes.

g
rds
imm5 is an unsigned 5-bit value

imm7 is an unsigned 7-bit value

disp4 is a signed or unsigned 4-bit displacement value

disp8 is an unsigned 8-bit displacement value

disp11 is a signed 11-bit displacement value

Each of these addressing modes is explained below.

Every MCore instruction is two bytes (16 bits), including those instructions
containing immediate data.

In line with the RISC architecture, there are relatively few instructions and
usually few addressing modes which apply to any given one. Also, a given
addressing mode applies to the instruction as a whole (in contrast to some
architectures which allow different addressing modes to be specified for each
operand). The result is very quick and easy instruction decoding, so the lack of
complex instructions and addressing modes is more than compensated for by
the attendant increase in performance.

The values in the example boxes are all in hexadecimal, except that xx means
“don't care what value is present”. 32-bit values are written as four 8-bit by

Example:
r2: DE AD C0 DE
r3: xx xx xx xx

DEADB0AC: xx xx xx xx
DEADB0B0: C0 1D BE EF
DEADB0B4: xx xx xx xx
This indicates that register r2 holds the value 0xDEADC0DE, we do not care
what value r3 holds (it holds arbitrary data), the four bytes of memory startin
at address 0xdeadb0b0 hold the value 0xC01DBEEF, and the four-byte wo
above and below each hold arbitrary data.

No Arguments
These instructions do not take any arguments.

Example:
rts

Register
These instructions use the same register as the source and destination.
Green Hills Software, Inc. 148

Example:
abs r1
This computes the absolute value of the contents of register r1 and stores the
result in register r1.

Two Registers
These instructions have two register fields to specify one or two source registers
and one destination register for the instruction.

Example:
add r2,r3
This adds the contents of register r3 to register r2 and stores the result in
register r2.

Example:
mov r2,r14
This copies the contents of register r14 to register r2. r14 remains unchanged.

Register with 5-bit Immediate
This addressing mode has a 5-bit immediate field as the first source operand
while one register field specifies both the second source operand and the
destination.

Example:
sub r0,16
This subtracts 16 from the value in register r0 and stores the result back in r0.

Register with 7-bit Immediate
The movi instruction has a 7-bit immediate field as a source operand and a
register field as the destination.

Example:
movi r4,100
This stores the value 100 in register r4.

Control Register
These instructions copy data between the general registers (r0-r15) and the
control registers (cr0 to cr31).
149 Embedded MCore Development Guide

Addressing Modes
Example:
mfcr r2,cr1
This copies the contents of control register cr1 to general register r2.

mtcr r3,cr0
This copies the contents of general register r3 to control register cr0.

Register Indirect with 4-bit Scaled Displacement
This addressing mode adds the contents of register reg1 to the scaled unsigned
immediate disp4 to form an address. The ld instructions load the data at that
address to the register reg2. The st instructions store the contents of register
reg2 to that address.

Example:
ld.w r3,(r0,16)
This copies to register r3 the 32-bit data at the memory address calculated by
adding 16 to the contents of register r0. The immediate value 16 must be a
multiple of 4 because this is a 4-byte load instruction.

Register List
This addressing mode specifies a contiguous set of registers to transfer to or
from the memory location pointed to by the contents of register reg1.

Example:
stm r12-r15,(r0)
This stores registers r12, r13, r14, and r15 in ascending memory locations
starting at the address stored in register r0.

Scaled 8-bit Immediate Indirect
This addressing mode uses a 32-bit word pointed to by a PC-relative address as
a source operand. The address is computed by adding the unsigned 8-bit
immediate field, scaled by four, to the value of PC+2. The lower two bits of this
address are then masked to 00.

lrw r1,[100]
This loads 32-bit word at address PC+2+100 and stores the result in register r1.

Scaled 11-bit Branch Displacement
This addressing mode computes a branch address by adding the sign-extended
displacement value disp11, scaled by two, to the address PC+2.
Green Hills Software, Inc. 150

Example:
bt -16
This instruction branches to the address PC+2-16 if the condition code bit is set.

Register with 4-bit Negative Displacement
The loopt instruction uses this addressing mode to specify a register to store a
loop counter and a branch address formed by subtracting the 4-bit displacement,
scaled by two, from the address PC+2.

Example:
loopt r2,-8
This instruction branches to the address PC+2-8 if the loop counter in register
r2 is not zero.

Macro Expansion

The MCore Macro Assembler supports several macro expansions as specified
in the MCore Applications Binary Interface. These macros are described below.

clrc Clears the condition code bit. Equivalent to:

cmpne r0,r0
cmplei rd,nCompare if the signed value in rd is less than or equal to the

constant n. n is allowed to have the values 0 through 31. Equivalent to:

cmplti rd,n+1
cmpls rd,rsCompare if the unsigned value in rd is lower or the same as the

unsigned value in rs. Equivalent to:

cmphs rs,rd
cmpgt rd,rsCompare if the signed value in rd is greater than the signed value in

rs. Equivalent to:

cmplt rs,rd
jbsr labelIf the address of the label is between -2048 and +2046 bytes away,

this expands to:

bsr label
Otherwise:

jsri label
jbr labelIf the address of the label is between -2048 and +2046 bytes away, this

expands to:

br label
Otherwise:

jmpi label
151 Embedded MCore Development Guide

Alphabetical List of MCore Instructions
jbf labelIf the address of the label is between -2048 and +2046 bytes away, this
expands to:

bf label
Otherwise:

bt 1f
jmpi label
1:

jbt labelIf the address of the label is between -2048 and +2046 bytes away, this
expands to:

bt label
Otherwise:

bf 1f
jmpi label
1:

neg rd Negates the value in rd. Equivalent to:

rsubi rd,0
rotlc rd,1Rotates the value in rd left by one bit. The carry bit is rotated into the

least significant bit while the most significant bit that was rotated out is
saved in the carry bit. Equivalent to

addc rd,rd
rotri rd,immRotates the value in rd right by the number of bits specified in imm.

Equivalent to:

rotli rd,32-imm
rts Returns from subroutine. Equivalent to:

jmp r15
setc Sets the condition code bit. Equivalent to:

cmphs r0,r0
tstle rdTest for a negative or zero value in the register rd. Equivalent to:

cmplti rd,1
tstlt rdTest for a negative value in the register rd. Equivalent to:

btsti rd,31
tstne rdTest for a non-zero value in the register rd. Equivalent to:

cmpnei rd,0

Alphabetical List of MCore Instructions

Instruction Description Operands Opcode(hex)

abs absolute value reg1 01e0

addc unsigned add with carry reg1,reg2 0600

addi unsigned add with immediate reg1,imm5 2000
Green Hills Software, Inc. 152

addu unsigned add reg1,reg2 1c00

and logical AND reg1,reg2 1600

andi logical AND with immediate reg1,imm5 2e00

andn logical AND NOT reg1,reg2 1f00

asr arithmetic shift right reg1,reg2 1a00

asrc arithmetic shift right by 1 bit reg1 3a00

asri arithmetic shift right immediate reg1,imm5 3a00

bclri bit clear immediate reg1,imm5 3000

bf branch if false disp11 e800

bgeni bit generate immediate reg1,imm5 3200

bgenr bit generate register reg1,reg2 1300

bkpt breakpoint - 0000

bmaski bit mask generate immediate reg1,imm5 2c00

br unconditional branch disp11 f000

brev bit reverse reg1 00f0

bseti bit set immediate reg1,imm5 3400

bsr branch to subroutine disp11 f800

bt branch if true disp11 e000

btsti bit test immediate reg1,imm5 3600

clrf clear if condition false reg1 01d0

clrt clear if condition true reg1 01c0

cmphs compare for higher or same reg1,reg2 0c00

cmplt compare for less than reg1,reg2 0d00

cmplti compare with immediate for less than reg1,imm5 2200

cmpne compare for not equal reg1,reg2 0f00

cmpnei compare with immediate for not equal reg1,imm5 2a00

decf decrement if condition false reg1 0090

decgt decrement and compare greater than reg1 01a0

declt decrement and compare less than reg1 0180

decne decrement and compare not equal reg1 01b0

dect decrement if condition true reg1 0080

divs signed divide reg1,r1 3210

divu unsigned divide reg1,r1 2c10

doze enter doze mode - 0006

ff1 find first one reg1 00e0

incf increment if condition false reg1 00b0

inct increment if condition true reg1 00a0

ixh index halfword reg1,reg2 1d00

Instruction Description Operands Opcode(hex)
153 Embedded MCore Development Guide

Alphabetical List of MCore Instructions
ixw index word reg1,reg2 1500

jmp jump reg1 00c0

jmpi jump indirect [disp8] 7000

jsr jump to subroutine reg1 00d0

jsri jump to subroutine indirect [disp8] 7f00

ld.b load unsigned byte reg1,(reg2,disp4) a000

ld.h load unsigned halfword reg1,(reg2,disp4) c000

ld.w load word reg1,(reg2,disp4) 8000

ldm load multiple registers reg1-r15,(r0) 0060

ldq load register quadrant r4-r7,(reg1) 0040

loopt decrement and loop reg1,disp4 0400

lrw load PC-relative word reg1,[disp8] 7000

lsl logical shift left reg1,reg2 1b00

lslc logical shift left by 1 bit reg1 3c00

lsli logical shift left immediate reg1,imm5 3c00

lsr logical shift right reg1,reg2 0b00

lsrc logical shift right by 1 bit reg1 3e00

lsri logical shift right immediate reg1,imm5 3e00

mfcr move from control register reg1,creg2 1000

mov logical move reg1,reg2 1200

movf move if condition false reg1,reg2 0a00

movi move immediate reg1,imm7 6000

movt move if condition true reg1,reg2 0200

mtcr move to control register reg1,creg2 1800

mult multiply reg1,reg2 0300

mvc move carry bit to register reg1 0020

mvcv move inverted carry bit to register reg1 0030

not logical NOT reg1 01f0

or logical OR reg1,reg2 1e00

rfi return from fast interrupt - 0003

rotli rotate left immediate reg1,imm5 3800

rsub reverse subtract reg1,reg2 1400

rsubi reverse subtract with immediate reg1,imm5 2800

rte return from exception - 0002

sextb sign extend byte reg1 0150

sexth sign extend halfword reg1 0170

st.b store byte reg1,(reg2,disp4) b000

st.h store halfword reg1,(reg2,disp4) d000

Instruction Description Operands Opcode(hex)
Green Hills Software, Inc. 154

st.w store word reg1,(reg2,disp4) 9000

stm store multiple registers reg1-r15,(r0) 0070

stop enter stop mode - 0004

stq store register quadrant r4-r7,(reg1) 0050

subc unsigned subtract with carry reg1,reg2 0700

subi unsigned subtract with immediate reg1,imm5 2200

subu unsigned subtract reg1,reg2 0500

sync synchronize CPU - 0001

trap trap to operating system imm2 0004

tst test with zero reg1,reg2 0e00

tstnbz test for no byte equal to zero reg1 0190

wait wait for interrupt - 0005

xor logical exclusive OR reg1,reg2 1700

xsr extended shift right reg1 3800

xtrb0 extract high order byte r1,reg2 0130

xtrb1 extract byte 1 r1,reg2 0120

xtrb2 extract byte 2 r1,reg2 0110

xtrb3 extract low order byte r1,reg2 0100

zextb zero extend byte reg1 0140

zexth zero extend halfword reg1 0160

Instruction Description Operands Opcode(hex)
155 Embedded MCore Development Guide

Alphabetical List of MCore Instructions
Green Hills Software, Inc. 156

12

The Librarian
 This chapter contains:

• Description

• Command Line Options

• Examples

Description
The librarian combines object modules created by the Assembler or Linker into a library file.
Below are the command line options and examples to understand this function.

Description

ax [options] archive-file input-files

The ax command creates library archives of .o object files for use by the linker.

By convention, archives of object files for use by the linker are given the
extension .a. The linker can search such library archives and extract only those
object files which are needed to provide definitions of undefined symbols. This
provides a convenient way to make a number of object files available to the
linker while linking in only those which are necessary.

There are two important features supported for version 1.8.9:

1. Filenames longer than 15 characters are now fully supported by ax and by
all Green Hills tools which operate on archives. This is accomplished by
storing the full name of the file in a hidden member of the archive called //.
The filename field of the archive header for the file with a long name will
have an entry of the form /nnn where nnn is a decimal integer representing
an offset into the // file where the entire filename can be found.

2. A table of contents, also known as a symbol table, is now generated by ax
whenever the archive is modified by either the d or r option. This table of
contents is stored in the form of a hidden file named / which is always the
first file in the archive. In 1.8.8 the granlib utility was provided to generate
this table of contents, but in 1.8.9, the granlib utility is no longer needed,
because this operation is integrated within ax. The new options s and S are
provided to force or prevent the creation of a table of contents.

 The lx linker supports archives with or without a table of contents, but the

 table of contents is necessary for the -rescan option to lx to have any effect.

 Future linkers will require the table of contents in order to process an

 archive.

Command Line Options

The command line ax help prints the following:
Green Hills Software, Inc. 158

ax d[eSv] archive files...
Deletes named files from an archive file.

ax r[ceSv] archive files...
Replaces (or adds) named files in an archive file. Any archive copies of
the named files are deleted and new contents of the files are added to the
archive. It is not necessary for the file to have previously been in the
archive. If the archive file did not previously exist, it will be created and
a warning message printed (unless option c is also specified).

ax t[esv] archive [files...]
List files in the archive. Without v, this just lists the names of the files.
With v, the list includes file sizes and dates.

ax x[ev] archive [files...]
Extracts named files from an archive file. The archive will be searched
for the specified filenames and the named files will be created and
written with the contents of the archived files. The archive is not altered
by this command.

ax q[ev] archive files...
Quickly appends named files to the end of the archive. q is similar to the
r option except that the files will always be added to the end of the
archive, rather than replacing any existing version of the file with the
new version. This command will be unsupported in the near future.

ax p[ev] archive [files]
Prints files to standard output.

These letters may be used with primary option letters as shown above. Options
must all appear as one string without spaces:

c Suppress warning for creation of archive if it doesn’t exist.

e Prefix messages with ERROR or WARNING. Equivalent to the driver
option -prefixed_msgs, described in Chapter 8, “Compiler Driver
Options”.

s Used with t to regenerate table of contents.

S Suppress generation of table of contents.

v Verbose mode.

Note: If a minus sign (-) is used as a prefix to the first option in the ax
command, it is silently ignored. For example:

ax -rv libx.a file.o
is the same as

ax rv libx.a file.o
159 Embedded MCore Development Guide

Examples
Examples

To create a library archive file of object modules suitable for input to the linker,
a command may be used such as:

ax cr libmystuff.a myfile1.o myfile2.o myfile3.o
To add another object module to the existing library archive:

ax r libmystuff.a myfile4.o
To delete an object module from the existing library archive:

ax d libmystuff.a myfile4.o
To replace an object module in the existing library archive:

ax r libmystuff.a myfile3.o
To extract two object modules from the existing library archive:

ax x libmystuff.a myfile1.o myfile2.o
To append two object files to an existing library:

ax q libmystuff.a add1.o add2.o
To print the table of contents of the existing library archive using verbose mode:

ax tv libmystuff.a
If the archive file consisted of three object files, foo.bar, bar.o, and etc.o, the
previous command would produce:

rw-rw----111/24 110 Mon Jun 22 09:43:14 1992 foo.o
rw-rw----111/24 141 Mon Jun 22 15:05:41 1992 bar.o
rw-rw----111/24 141 Mon Jun 22 09:47:22 1992 etc.o
To extract a single file into a different name, the p option may be used:

ax p libmystuff.a foo.o > newfoo.o
The v option must not be used with p because the filename, foo.o, will also be
written to standard output.

Note: The driver option -archive to the compiler driver is closely related to the
ax command (it invokes ax). See “General Options” on page 68 for more
information about the -archive command.
Green Hills Software, Inc. 160

13

The ELXR Linker
This chapter contains:

• Command Line Options

• Program Entry Point

• Section and Memory Maps

• Expressions

• Section Attributes

• Green Hills Specific Linker Features

• Porting Guide from other linkers

Command Line Options
Command Line Options

Option Processing
Single-letter options may be followed by an argument with or without
whitespace, or following an =. Example: the following are equivalent:

-oargument

-o=argument

-o argument

In the case of ambiguity between a single-letter option with an appended
argument, and a multiple-letter option, the multiple letter option takes
precedence. Use either of the other single-letter option forms when required.

Multiple-letter options may be preceded by one or two dashes; an argument
must be separated by an = or given as the following argument. Example: the
following are equivalent:

-option=argument

-option argument

Options
@commandfile (aliases: -Tcommandfile)
Additional options are read from file commandfile. Within the command file,
the pound sign (#) marks the remainder of that line as a comment.

-A file (aliases: -R)
Read in symbol names and addresses only from object file file. The object file’s
contents will not be relocated or included in the output. This is useful when
one linker image must refer to symbols which are located in another separately
linked image.

-a
Causes the output file to be relocatable and executable. Relocation is
performed, and final link steps are performed (such as C++ constructors
creation, common allocation, and special symbol creation), but relocation
information is retained in the output file. Implies -r.

Some of the final link steps, including but not limited to: C++ constructors and
special symbols, are not guaranteed to have relocations, and thus may not be
valid if the outfile file is loaded at a different address.
Green Hills Software, Inc. 162

-checksum/-nochecksum (default: -nochecksum)
Add a 4-byte checksum to the end of every program section. The algorithm
used is a standard 32-bit CRC using polynomial 0x10211021.

-e symbol
The program’s entry point is set to the address of symbol. See Program Entry
Point.

-sections { ... } (aliases: -sec, SECTIONS)
Specifies a section map. See Section and Memory Maps.

-L directory
Add directory to those searched for libraries specified by -l; may be repeated.
All -L options on the command-line will be processed before any -l options.
Directories will be searched in the order which they appear on the
command-line.

-lname
Look for libname.a in directories specified by -L.

-memory { ... } (aliases: MEMORY)
Specifies a memory map. See Section and Memory Maps.

-r
Causes the output file to retain relocation information. The output file may be
used as an input file in further link steps. Implies -undefined. See also -a.

-undefined
Causes elxr to not check for undefined symbol references. Any undefined
symbols will be given an address of 0. See also -a.

Program Entry Point

There are several ways to specify the program entry point. The following list
shows (in descending order of precedence) how elxr sets the entry point:

• -e symbol command-line option, if present

• the value of the symbol _start, if present

• the value of the symbol start, if present

• the value of the symbol _main, if present

• the value of the symbol main, if present

• the zero address
163 Embedded MCore Development Guide

Section and Memory Maps
Section and Memory Maps

Section Definition
A section map is formatted as follows:

SECTIONS {
...
secname [start_expression] [attributes] : [{ contents }]
...
}
Only secname and the : (colon) are required. All other entries may be omitted.
All sections in input files which participate in memory layout must be
referenced in the section map.

start_expression

The value of this expression is used as the starting address of this section. If
omitted, the section starts at the current address. In either case, the starting
address is further modified to fit alignment constraints of the subsections
included by contents.

attributes
Any number of attributes from the Section Attributes, below, may be specified.

{ contents }

Any number of section inclusion commands and expressions may be specified.

Section inclusion commands are of the form filename(secname), which directs
that the section secname from filename should be included. filename may be
replaced by * to specify sections in all files not specifically mentioned.

If ’{’ , contents, and ’}’ or if "{ contents }" are omitted, the linker includes
sections named secname from all files, as if { *(secname) } had been entered.
To avoid this, specify an empty section as follows: { } .

Expressions may be used to create or modify the value of any symbol. If a
non-existent symbol is assigned a value, that symbol is created relative to that
section.

The special symbol . (dot) may be referred to in expressions; it evaluates to the
current position, which is the offset from the beginning of the section. An
assignment increasing the value of dot will add padding at the current position.
An assignment decreasing the value of dot will result in an error.
Green Hills Software, Inc. 164

All assignments to any symbol are section relative; the numbers involved are
offsets from the start address of the section. See the ABSOLUTE function to
get an address.

Depending on the target and the enabled optimizations, program layout may
occur multiple times. Therefore you should avoid using expressions which
depend on the number of evaluations. If necessary, you may use the expression
final() to ensure that an expression is evaluated during the final layout only.

Example:
To set the low bit of a symbol func if the symbol already exists:

.text : { isdefined(func) ? (func += 1) : 0; } /*incorrect, may increment multiple
times */
.text : { final(isdefined(func) ? (func += 1) : 0); } /* correct */

Expressions

The following functions are recognized during expression evaluation. Their
names are case-insensitive.

absolute(expr)
Given a section-relative offset value, absolute returns the absolute
address by adding the address of the containing section to value. It is an
error to use absolute outside of a section contents section.

addr(section)
Returns the memory address of the section named section.

sizeof(section)
Returns the current size of the section name section.

align(expr)
Returns the current position (’.’) aligned to a value boundary. This is
equivalent to:

(. + expr - 1) & ~(expr -1)
pack_or_align(expr)

This is generally only used as the start_expression for a section map. It
returns the current position (.) aligned such that the section will not span
a page boundary of size value. This is equivalent to:

(. % value) + sizeof(this_section) > value ? align(value) : .
165 Embedded MCore Development Guide

Section Attributes
min(value1,value2)
max(value1,value2)

Returns the minimum or maximum, respectively, of the two values
supplied.

error("string")
Generates a linker error, displaying string, as well as the current section’s
name and address, and the current section offset.

isdefined(symbol)
Returns 1 if a global symbol exists and is defined, 0 otherwise.

final(finalexpression [,earlyexpression=0])

Section Attributes

ABS
Sets a flag in the output file that indicates this section has an absolute
address, and should not be moved. Program loaders and other utilities
that manipulate the output image should not include this section in any
movement related to position independent code or data.

CLEAR, NOCLEAR
Sets or removes the clear attribute of this section. If the clear attribute is
present, an entry is made in the Runtime Clear Table, which is often used
by startup code to initialize memory regions to a particular value.

The clear attribute is set by default for any section that includes a COMMON or
SMALLCOMMON section, which are by default included by .bss and .sbss,
respectively.

Examples:

.bss : /* defaults to { *(.bss) *(COMMON) } - which implies CLEAR */

.sbss NOCLEAR : /* defaults to { *(.sbss) *(SMALLCOMMON)}, but will now
not have a clear entry */
.mysbss NOCLEAR : { file1.o(SMALLCOMMON) } /* disables default clearing
*/
.stack CLEAR PAD(0x1000) : /* this section will now have a clear
entry */
PAD(expr)
pad(expr)

The linker will place value bytes of padding at the beginning of this
section. This is equivalent to specifying padding at the beginning of the
section contents.

The following two examples are equivalent:
Green Hills Software, Inc. 166

.stack PAD(0x10000) : {}

.stack : { . += 0x10000; }
ROM(section)

This section becomes a ROMmable copy of section. This section inherits
the attributes and data of section, while section is modified to reserve
address space only (as if it were all padding with no data). An entry is
made in the Section-Info section to allow startup code to copy this
section from this section (ROM) to section (RAM). See Runtime Copy
Table. It is an error to specify section contents for a ROM section, or to
have multiple sections ROMming the same section.

MIN_SIZE(expr)
Instructs the linker to possibly pad to ensure that this section is at least
size bytes in length.

Example:

.stack MIN_SIZE(0x400) : { ... } /* equivalent to the following: */

.stack : { = max(.,0x400); }
MIN_ENDADDRESS(expr)

Instructs the linker to possibly pad to ensure that this section extends to
at least address.

Example:

.stack MIN_ENDADDRESS(0x10000) : { ... } /* equivalent to the following: */

.stack : { = max(ABSOLUTE(.),0x10000) - ADDR(.stack); }
MAX_SIZE(expr)

Indicates that an error should be generated if this section exceeds size
bytes in length during final layout.

Example:

.stack MAX_SIZE(0x4000) : { ... } /* equivalent to the following: */

.stack : { ... final(. > 0x4000 ? ERROR("section limit exceeded") : 0; }
MAX_ENDADDRESS(expr)

Indicates that an error should be generated if this section extends beyond
address during final layout.

Example:

.stack MAX_ENDADDRESS(0x10000) : { ... } /* equivalent to the following: */

.stack : { ... final(ABSOLUTE(.) > 0x10000 ? ERROR("section limit exceeded")
: 0; }
167 Embedded MCore Development Guide

Green Hills Specific Linker Features
Green Hills Specific Linker Features

Section-Info Section (.secinfo)
The .secinfo section contains special tables which contain information needed
by startup code to clear sections (Runtime Clear Table), and copy sections from
ROM to RAM (Runtime Copy Table).

Runtime Clear and Copy Tables
These two tables are contained within the .secinfo section; the Clear table is
bounded by the symbols __ghsbinfo_clear and __ghseinfo_clear, while the
Copy table is bounded by the symbols __ghsbinfo_copy and __ghseinfo_copy.
The tables each contain zero or more records detailing the action to be taken at
startup. By default, the Green Hills C runtime will perform .bss clearing and
ROM copying based on this table without user intervention. The remainder of
this section only needs to be referred to if you want to override these default
actions.

The clear structure is as follows:

void *base; /* pointer to base of memory to clear */
int value; /* value to initialize with (generally zero) */
size_t length; /* number of bytes to clear */

These values are appropriate to be passed directly into the memset() routine
within the C runtime library. The default clear code in the C runtime thus is as
follows:

 {
 extern rodata_ptr __ghsbinfo_clear, __ghseinfo_clear;

 void **b = (void **) __ghsbinfo_clear;
 void **e = (void **) __ghseinfo_clear;

 while (b != e) {
 void * t; /* target pointer */
 ptrdiff_t v; /* value to set */
 size_t n; /* set n bytes */
 t = (char *)(*b++);
 v = *((ptrdiff_t *) b); b++;
 n = *((size_t *) b); b++;
 memset(t, v, n);
 }
 }
The copy structure is as follows:

void *dest; /* pointer to base of memory to copy to */
void *src; /* pointer to base of memory to copy from */
Green Hills Software, Inc. 168

size_t length; /* number of bytes to copy */

These values are appropriate to be passed directly into the memcpy() routine
within the C runtime library. The default copy code in the C runtime is as
follows:

 {
 extern rodata_ptr __ghsbinfo_copy, __ghseinfo_copy;

 void **b = (void **) __ghsbinfo_copy;
 void **e = (void **) __ghseinfo_copy;

 while (b != e) {
 void * t; /* target pointer */
 void * s; /* source pointer */
 size_t n; /* copy n bytes */
 t = (char *)(*b++);
 s = (char *)(*b++);
 n = *((size_t *) b); b++;
 memcpy(t, s, n);
 }
 }
The actual implementation of the above two routines for your CRT can be found
in libsrc/ind_crt0.c in your Green Hills distribution, and differs slightly for
PIC/PID support on some targets.

Begin and End of Section Symbols
When the linker is performing final symbol resolution for a non-relocatable
output file, certain undefined symbol names are recognized as referring to
memory addresses in the final section map. These symbol names are
constructed by prepending the strings _ _ghsbegin and _ _ghsend to the name of
each section in the output file, with any period (.) characters in the section
names changed to underscores (_). For a section named .text the symbols
_ _ghsbegin_text would resolve to the virtual address of the start, and
_ _ghsend_text to the virtual address of the end, of that section.

Example
For this section map:

{
 .text 0x100000 :
 .data 0x300000 :
 .bss1 0x400000 :
 .bss :
}

169 Embedded MCore Development Guide

Porting Guide from other linkers
And this program:

main.c:
extern char _ _ghsbegin_bss1[], _ _ghsend_bss1[], _

_ghsbegin_bss[];
main() {

 memset(_ _ghsbegin_bss1, 0, _ _ghsend_bss1 -
 _ _ghsbegin_bss1);
 _ _ghsbegin_bss[0] = 0xff;

}

If the size of section .bss1 is 0x100, then the linker will resolve
_ _ghsbegin_bss1 to be 0x400000, _ _ghsend_bss1 to be 0x400100, and
_ _ghsbegin_bss to be 0x400100.

Porting Guide from other linkers

LX

Section Attributes:
size() use max_size() instead (size is retained for compatibility)

limit()use max_endaddress() instead

Section Renaming:
Use curly braces:

lx style:

.newtext : file1.o(.text) file2.o(.text) ;
elxr style:

.newtext : { file1.o(.text) file2.o(.text) }
Green Hills Software, Inc. 170

14

Utility Programs

The gcompare Utility Program

Uti

gbi

gco

gdu

gfil

gfu

ghe

ghi

gm

gnm

gru

gsi

gsr

gst

gst

gsy

gtu

gve

gw

gze
The assembler Tool Chain contains more than 20 useful Utility Programs, including
functional replacements for the standard UNIX utilities dump, hide, nm, size, and strip. All
Utility Programs work with files generated by any Green Hills development tools.

* No BSD support.
+ For selected BSD targets only.
- Supports COFF but not BSD.

The gcompare Utility Program

The Green Hills gcompare Utility Program compares the code size of two input
files and prints a report. An input file can be an ASCII text file, an object file, an

lity
ELF/BSD
Object Files

ELF/BSD
Object
Library Files

ELF/BSD
Executable
Files

Function

ncmp Yes Yes Yes Compare two binary files.

mpare Yes Yes Yes Compare space or time performance.

mp Yes+ Yes+ Yes+ Like UNIX dump; dump/disassemble a file.

e Yes Yes Yes Like UNIX file; describe the file type.

nsize Yes Yes Yes Print function’s code size.

xfile No No Yes- Convert an ELF or COFF to TEXHEX.

de Yes No No Hide global symbols in an object file.

emfile No No Yes- Generate binary image suitable for loading.

Yes Yes Yes Like UNIX nm: print object file information.

n No No Yes Execute in batch mode.

ze Yes Yes Yes Like UNIX size: print section sizes.

ec No No Yes Convert to Motorola S-record format.

ack No No No Compute the stack size for each task.

rip No No Yes Like UNIX strip: remove symbol/debug
information.

mdump No No No Dump a .dbg or .sym file.

ne No No Yes Automatically tune a program.

rsion No No Yes Print version date and time information.

hat No No No Like UNIX what.

ro No No Yes Zero out proprietary data.
Green Hills Software, Inc. 172

object file library, or an executable file. If an input file is a text file, it consists of
lines in the following format:

name1 number1
name2 number2
...
Each name/number pair is on its own line, separated by blanks or tabs.

If an input file is an object file, an object library file, or an executable file,
gcompare automatically runs gfunsize -gcompare -all (or another command
specified by the -x option) to produce a text file to compare.

You can mix all input file types with no restrictions, including files for different
target CPUs.

The gcompare utility first reads both input files. For any name which does not
exist in both files, gcompare prints a warning, unless -w is specified. For each
name which exists in both files, gcompare compares the code size of the old
and new numbers. If the old number is worse (larger is worse unless -i is
specified) gcompare writes a line to the output report file containing the name,
old number, new number, and percentage by which the new number is better.

For example:

main 32 28 -14%

Usage
To use gcompare, enter:

gcompare [options] oldfile newfile

where

optionsgcompare options, listed on the following page.

oldfile First input file.

newfileSecond input file.

The gcompare options include:

-help Display information about all options.

-i Invert comparison. With -i, larger is better. Without -i, smaller is better.

-r Print a 2-column report, with comparisons sorted both from worst to best
and from best to worst.

-l Print a report, with comparisons sorted from worst to best.
173 Embedded MCore Development Guide

The gcompare Utility Program
-L Format for 132 column landscape mode. Default is 80 column portrait
mode.

-v Verbose mode. Print all comparisons. Without -v, only print comparisons
for which newfile is worse than oldfile.

-w Suppress warnings.

-x cmdSpecify the command to execute on a non-ASCII input file. The default
-x command is:

 -x “gfunsize -gcompare -all”

-z Do not show cases where files are the same.

If the -r, -l, or -v options are used, all comparisons are shown, regardless of the
result of the comparison. With -r, two reports are shown side by side in two
columns. The left column is sorted best first, and the right column is sorted
worst first.

Sample -r output:

The output, especially in -r mode, can require many columns. The -L option
formats the gcompare output for 132 columns instead of the default 80
columns. On a UNIX system, use the command lpr -L to print the resulting
report in landscape mode.

 linpack.188.O.s vs linpack.188.OS.a linpack.188.OS.a vs linpack.188.O.a

WORSE by: 4172 3746 11% BETTER by: 3726 4172 10%

linpack.o:_daxpy 152 112 -36% linpack.o:_dscal 34 34 0%

linpack.o:_matgen 342 258 -33% linpack.o:_epslon 20 20 0%

linpack.o:_dgesl 294 240 -23% linpack.o:_idamax 72 72 0%

linpack.o:_dgefa 524 442 -19% linpack.o:_dmxpy 1516 1598 5%

linpack.o_main 1136 1052 -8% linpack.o:_main 1052 1136 7%

linpack.o:_dmxpy 1598 1516 -5% linpack.o:_dgefa 442 524 16%

linpack.o:_idamax 72 72 0% linpack.o:_dgesl 240 294 18%

linpack.o:_epslon 20 20 0% linpack.o:_matgen 258 342 25%

linpack.o:_dscal 34 34 0% linpack.o:_daxpy 112 152 26%
Green Hills Software, Inc. 174

The gdump Utility Program

The gdump Utility Program formats and prints information about a BSD or
ELF object file, object library file, or executable file, including:

• the BSD or ELF file header

• program headers

• section headers

• (optional) symbol tables

• (optional) relocation sections

• (optional) .plt section

• (optional) .got section

• (optional) .dynamic section

Usage
To use gdump, enter:

gdump [options] filename

where

optionsgdump options, listed below.

filenameBSD or ELF file.

BSD File Options
Options when using gdump with BSD format files include:

-help Display information about all options.

-c Print section contents.

-h Print file header.

-r Print relocation entries.

-s Print symbol table.

ELF File Options
Options when using gdump with ELF format files include:

-asm Print text sections as pure assembly language (see also -ytext).

-dwarfPrint DWARF information only.
175 Embedded MCore Development Guide

The gdump Utility Program
-full Dump everything except section contents (see -ysec).

-help Display information about all options.

-load Print ELF header summary.

-map Print section summary.

-N Only print information as indicated by -y options.

-raw If -ysec, dump text sections in hexadecimal format, not disassembly.

-sx/nx Attempt/do not attempt shorter C++ demangling.

-sym Use symbol names, not numbers, in relocation output.

-v1 Print DWARF version 1. This is the default.

-v2 Print DWARF version 2. This version is not well supported.

-verify_checksum
Indicates to gdump that all non-empty, allocated sections have a 4 byte
checksum generated by the GHS linker. The content of each section is
compared against the existing checksum and if they do not match, both
will be printed.

-print_checksum
Prints the checksum for each appropriate section. If
-verify_checksum is also specified, checksums are assumed to exist and
-print_checksum prints them for those sections where the checksum is
found to be correct. If the -verify_checksum option is not specified,
checksums are assumed non-existent in the section and calculates them,
using all bytes in the section.

-yd/-nd
Print/do not print DWARF debug information.

-ydynamic/-ndynamic
Print/do not print dynamic linkage information.

-yg/-ng
Print/do not print global offset table.

-yh/-nh
Print/do not print ELF header information.

-yl/-nl
Print/do not print DWARF line number information.

-yr/nr
Print/do not print relocation information.

-yp/-np
Print/do not print procedure linkage table.
Green Hills Software, Inc. 176

-ys/-ns
Print/do not print symbol table information.

-ysec/-nsec
Print/do not print section contents.

-ysh/-nsh
Print/do not print section header information.

-ystr/-nstr
Print/do not print string table information.

-yr/-nr
Print/do not print relocation information.

-ytext
Print contents of text sections only.

The gfile Utility Program

The gfile Utility Program is similar to UNIX file. The gfile Utility prints the file
type of each filename argument. It may also display additional information. For
example, if a machine supports both Big and Little Endian data ordering, then
for an object file, object file library, or executable file, gfile displays the
machine type and byte order. For unrecognized object files, gfile prints
unknown machine type.

Usage
To use gfile, enter:

gfile [-help] filename1 [filename2 . . .]

where

-help Display information about all options.

filenameFilename argument(s), separated by white space.

Examples

Example 1
There is an executable file named a.out in the current working directory. This
executable was created by the Green Hills Tool Chain for an SH (Super Hitachi)
CPU. Running gfile on a.out produces the following:

gfile a.out
177 Embedded MCore Development Guide

The gfunsize Utility Program
a.out: SH big endian

Example 2
The current host system is a SPARC workstation running the Solaris 2.x
operating system, which uses the ELF format for executable files:

gfile /bin/od
/bin/od: SPARC big endian executable ELF

The gfunsize Utility Program

The gfunsize Utility Program prints the code size of one or more named
functions or all functions in an ELF object file, object library file, or executable
file. For ELF, the code size of each function is part of the ELF symbol
information.

MCore does not always give useful sizes because of literal pools. The compiler
does not emit literals after every function, but defers emitting literals for as long
as possible so that duplicate literals can be merged.

Usage
To use gfunsize, enter:

gfunsize [options] filename

where

optionsgfunsize options, listed below.

filenameName of the ELF file.

The gfunsize options include:

-help Display information about all options.

-all Print the code sizes of all functions. This is the default.

-func=namePrint code sizes of the specified function(s).

-addr Print function(s) addresses.

-hex Print function code sizes and addresses in hexadecimal.

-sectnum=n Only recognize functions in section number n.

-sect=nameOnly recognize functions in section name.

-gcomparePrint the output in a format suitable for use as input to the
-gcompare Utility Program.
Green Hills Software, Inc. 178

-w Suppress warnings.

-file Print filename before each function.

-nounderscores
Strip leading underscores from function names.

The ghexfile Utility Program

The ghexfile Utility Program converts an ELF or COFF executable file to an
extended Tektronix hexadecimal (TEXHEX) output file.

Usage
To use ghexfile, enter:

ghexfile [options] input_file

where

optionsghexfile options, listed below.

input_fileName of ELF or COFF executable file to be converted.

The ghexfile options include:

-help Display information about all options.

-cmd file
When -cmd is specified, the converter takes the command input from the
given filename. -cmd options may be nested up to 4 levels deep. More
than one -cmd option may appear on the command line. Command files
are processed in the order in which they are encountered. C-style
comments are accepted in the command input. Comments begin with
"/*" and are terminated with "*/".

-length n
The -length option sets the maximum length of a TEKHEX block. The
argument n must be a minimum of 40 and a maximum of 252. Any
values outside of this range will cause an error message to be displayed.
The default maximum size of a TEKHEX block is 80 bytes.

There is a certain number of bytes of overhead for each TEKHEX block.
Larger block sizes require less blocks in the TEKHEX file, thus reduces
the overhead and speeds up the time it takes to download the file.

-nodata
The option -nodata causes ghexfile to not output data blocks. The
symbol formatter was used in the past to produce a TEKHEX file
179 Embedded MCore Development Guide

The ghexfile Utility Program
containing symbols only. The option -nodata exists for backwards
compatibility with the symbol formatter.

-nolocals
Do not emit local symbols to the TEKHEX output file. Local symbols
are useful when debugging but extend download time. This has the same
function as the linker map file switch -l.

-o filename
The -o option sets the name of the TEKHEX output file. If -o is not
specified on the command line, the output filename is formed by
removing the path and the extension of the ELF or COFF input file and
adding the extension .tek. For example:

ghexfile /tmp/file.cfe
produces the TEKHEX output file named file.tek

-old
Produce output similar to what is produced by the linker with the -k
option. Limit TEKHEX data blocks to 42 bytes per block. Limit
TEKHEX symbol blocks to contain one symbol per block.

-skip name
The -skip option with a section name, will not translate data in the
specified section. If the section that you specify is not in the ELF or
COFF input file, the switch has no effect. If you want to skip more than
one section, you must enter the command once for each section. For
example: -skip .text -skip .data2

-y
The -y option suppresses printing the ghexfile banner.

To produce COFF, run the linker with the -z option. The TEKHEX support
which exists in the linker with the -k option is still available, but cannot be used
with linker directives nor COFF input files.

Features of ghexfile
The functionality of ghexfile is similar to the support in the linker and the
symbol formatter, but not identical. Several new features have been added to
make this utility more useful. Major features include:

• Control over the length of a TEKHEX block. In the linker, TEKHEX data
blocks are limited to 42 bytes. In ghexfile, the maximum bytes per block
can be specified using the command option -length. The default is 80 bytes
per block. The maximum bytes per block is 252. The minimum number of
bytes per block is 40. There is a certain amount of overhead for each
TEKHEX block. Larger block sizes require less blocks in the TEKHEX
Green Hills Software, Inc. 180

file, and thus reduces the overhead and speeds up the time it takes to
download the application.

• Multiple symbols per block: The symbol formatter was limited to a block
size of 80 thus could place several symbols in each symbol block. The
symbol blocks produced by ghexfile can be up to 252 bytes, and thus
contain 3 times as many symbols as the symbol formatter and many times
more than the linker. The linker only emitted one symbol per symbol block
resulting in delays caused by excessive overhead in downloading TEKHEX
files to emulators.

• Option not to translate data: Some users download data as S Records and
symbols as TEKHEX. The symbol formatter was used to produce a
TEKHEX file containing symbols only. The option -nodata exists for
backwards compatibility with the symbol formatter.

• Local symbol control: To reduce download time there is an option to not
emit local symbols to the TEKHEX output file. Local symbols are useful
when debugging, however they extend download time. This has the same
function as the linker map file switch -l.

• Local symbols in the TEKHEX output file are fully supported. By
default, any local symbols in the ELF or COFF input file will be converted
to TEKHEX local symbols. Local symbols are present in the ELF or COFF
output files produced by the Green Hills compilers in ELF or COFF mode.

• For assembly language source files, the assembler does not output local
symbols to the object file by default (68K COFF only). If the user needs
local symbols from assembly language source files, the options -g and
-O:DLOCAL must be specified on the command line when assembling.

 For example:

a30 file-g-O:DLOCAL=file.asm
• Unlimited number of symbols per file: There is no limitation on the number

of symbols in the TEKHEX output file. In the symbol formatter, a large
number of symbols caused symfmt to fail.

• User friendly command interface: On UNIX systems, there is a UNIX-like
command syntax. The command options have meaningful names, and as a
result, are easier to remember. The -help option will display the command
syntax and a summary of the command options with a brief description.

• Option not to translate data in a section: Many users require the ability to
discard data in a section. Linker directives can be used to discard data in a
section. In some cases, users do not need to download all section data, but
181 Embedded MCore Development Guide

The ghide Utility Program

ls
te
l
want to avoid doing multiple links, particularly with large applications. The
-skip option avoids translating data in the given section.

The ghide Utility Program

The ghide Utility Program modifies the symbol table of an object file to convert
all global symbols to local symbols, except for a specified retain list of global
symbols which remain global.

Usage
To use ghide, enter:

ghide retain_list object_file

where

-help Display information about all options.

retain_listFile containing symbol names separated by white spaces, which are
spaces, tabs, or new line characters.

object_file Output of an assembler or linker. It may be either relocatable or not
relocatable, but it should contain a symbol table, otherwise ghide will
have no effect.

The ghide Utility Program modifies the symbol table of file object_file so that
all global symbols in object_file not listed in retain_list become local. The
retain_list file contains the global symbols in object_file to be retained.

Example
An embedded application system consists of a kernel and several application
tasks, all developed independently. Some global functions in the kernel are for
kernel use only. Other global kernel functions can be called from the application
tasks. First the kernel is linked into a single file using the linker’s -r option to
retain relocation information. Then, ghide is run on the kernel using a list of the
functions which should remain visible to the application tasks. Finally, the
application tasks are linked with the kernel file, producing a complete
executable file. The use of ghide ensures that only the desired global symbo
in the kernel are visible to the application tasks. This also prevents duplica
symbol errors in the linker if any application should happen to have a globa
symbol with the same name as an internal kernel-only function.
Green Hills Software, Inc. 182

s
The

e

The gmemfile Utility Program

The gmemfile Utility Program reads a fully linked COFF or ELF executable
and produces a binary image of the final executable as it would appear in
memory. This binary image file is suitable for raw download to a target.

Usage
To use gmemfile, enter:

gmemfile [options] executable_file

where

executable_file is the name of the COFF or ELF executable from which
 you wish to generate a download image.

The gmemfile options include:

-help
Display information about all options.

-o filename
Specifies the output filename. If this option is not given, the output will
be written to a filename similiar to the executable_file, with the suffix
".bin" added (or substituted if executable_file includes a "." suffix
already). For example, "foo" becomes "foo.bin", and "a.out" becomes
"a.bin".

-s
Use ELF section headers instead of ELF program headers. Applies only
to ELF files.

-z
Write trailing zero-filled sections (e.g., ".bss")

Uninitialized Segments (ELF only)
A segment identified by an ELF program header, which is allocated in the final
executable image, but which contains no initialized data is defined by the ELF
standard to contain all zeros. The actual clearing of this portion of memory
must be performed by the loader, the operating system, or the executable’
runtime (e.g., crt0). It is also legal for a segment to be partially initialized.
remaining uninitialized portion of a segment must likewise be filled in with
zeros.

By default, trailing uninitialized segments are omitted from the binary imag
file generated by gmemfile. This can be a big savings in both download time
183 Embedded MCore Development Guide

The gnm Utility Program
and file size. However, if your application depends on these segments being
zeroed, and no other facility will clear these segments for you (e.g., crt0 or your
target operating system), you may specify the -z option to include trailing zeros
in your binary image file.

For example, if your program image looks like this:

Then without -z, the output file will look like this:

And with -z, the output file will look like this:

The same type of truncation will occur if the last segment is only partially
initialized.

The gnm Utility Program

The gnm Utility Program prints the symbol table of an ELF object file, object
library file, or executable file created by the Green Hills development tools.

Usage
To use gnm, enter:

read-only segment

read-write segment

read-only segment

read-write segment

uninitialized segment
 (all zeros)

00000000

00001000

00002000

00003000

FFFFFFFF

read-only
segment

read-write
segment

uninitialized
segment
Green Hills Software, Inc. 184

gnm [options] [files]

where

-help Display information about all options.

options gnm options for ELF are listed below.

files Name(s) of ELF file(s).

ELF File Options
Options when using gnm with ELF format files include:

-a Prints special symbols which are normally suppressed.

-h Does not print headers.

-l Prints an asterisk (*) after symbol type for WEAK symbols (-p mode
only).

-n Sorts output by symbol name.

-o Prints value and size of symbols in octal.

-p Three column output format.

-r Prepends filename to each line of output.

-u Prints undefined symbols only.

-v Sorts output by symbol value.

-x Prints value and size of symbols in hexadecimal.

-V Prints gnm version.

Default Output Format
By default, a seven column listing is produced similar to the following:

Index Position of symbol in the symbol table.

Value The value or address of the symbol.

Size Size of the symbol (e.g. a 4-byte integer would show a size of four)

Type One of the following:

NOTYTypeless symbol.

FILE Filename symbol.

SECT Section name symbol.

Index Value Size Type Bind Other Shndx Name

37 0x00000100 0x00000098 FUNC GLOBL 0 .text _ _start

205 0x00000ed0 0x00000000 FUNC GLOBL 0 .syscall _ _dotsyscall
185 Embedded MCore Development Guide

The gnm Utility Program
OBJT Data symbol.

FUNCCode symbol.

Bind One of the following:

LOCLLocal symbol (e.g. C/C++ static).

GLOBGlobal symbol.

WEAKWeak global symbol (value resolves to zero if undefined).

Other Reserved field, generally zero.

ShndxThe name of the section where symbol is defined, for example:

.text Code-defined in the .text section.

.data Data-defined in the .data section.

ABS No section (e.g. a filename symbol).

COMMONCommon variable whose section is not yet determined.

Name Symbol name.

Alternate 3 Column Output Format with -p
The alternate output format has only three columns and is provided for
backwards compatibility with tools which can read only this format. This easily
parsable format is enabled with the -p option:

00000000 T _ _start
 U _ _ _dotsyscall
The first column is the value or address of the symbol. The second column is
the kind of symbol as shown in the following table. The third column is the
name of the symbol.

A External absolute.

a Local absolute.

B External zeroed data.

b Local zeroed data.

C Common variable (same as B except not yet assigned to a section).

D External initialized data.

d Local initialized data.

G External initialized SDA.

g Local initialized SDA.

S External zeroed SDA.

s Local zeroed SDA.
Green Hills Software, Inc. 186

his
T External text.

t Local text.

U External undefined.

In -p mode, it is not possible to accurately describe all sections and all storage
classes. In particular, user-defined SDA symbols and all other symbols in
special sections are shown with letters SDA = GgSs.

The grun Utility Program

The grun Utility Program remotely executes a program using a MULTI debug
server to control the execution environment.

Usage
To use grun, enter:

grun [options] dbserv_cmd -- program [arguments]

where

optionsSpecific grun options, listed below.

dbserv_cmdName of a MULTI debug server.

-- Double dash separates debug server name from program name.

programName of executable program.

argumentsOptional program command line arguments.

The grun options include:

-help
Display information about all options.

-text addr
Specifies addr as the starting address of the program’s text (code). T
is appropriate for Position Independent Code (PIC) programs.

-data addr
Specifies addr as the starting address of the program’s data. This is
appropriate for Position Independent Data (PID) programs.

-stack addr
Specifies addr as the initial value for the program’s stack pointer.
187 Embedded MCore Development Guide

The grun Utility Program
-detach
Causes grun to immediately terminate after downloading the program to
the target system. grun usually engages in communication with the
debug server before exiting, which may halt an executing target
program. This switch is frequently used with various target monitors or
Boot ROMs when the program being downloaded will take the control of
the target system and terminate the target monitor.

-download
Causes the program to be downloaded, but does not start it running.

-pro
Like -profile, but also translates the profiling data.

-profile
Executes the target program with profiling enabled.

The grun utility downloads and starts the executable program, subject to the
options above. If the -bail flag is specified, grun exits immediately after
starting the program. Otherwise, grun waits for target program completion
before exiting. grun will wait until 10 minutes with no I/O. After that time, or if
grun is interrupted by the user, it halts the target program and exits. While grun
is running, its standard input and output are copied to and from the executing
program, redirecting the program’s I/O to the user’s terminal.
Green Hills Software, Inc. 188

The gsize Utility Program

The gsize Utility Program analyzes ELF object files, object library files, or
executable files, and for each file displays the size of each section in bytes. If
more than one file is named, or if an object library is named, gsize prints the
name of the file, with the section name and totals for each section.

Usage
To use gsize, enter:

gsize options filename

where options include:

-help
Display information about all options.

-table
 Prints the output in a slightly different format.

-nototals
Suppresses the summary information.

-all
Causes empty sections and unallocated sections to be displayed.

filename
 The file name of an ELF object file, object file library, or executable file.
189 Embedded MCore Development Guide

The gsrec Utility Program
The gsrec Utility Program

The gsrec Utility Program converts an ELF executable file into a Motorola
S-record format file. Motorola S-Records are an ASCII representation of binary
data. Many simulators, In-Circuit Emulators (ICEs), PROM programmers and
debuggers use S-Records as a program download format.

S-Record Output Format
An S-record file contains ASCII text which can be displayed or edited. There
are ten kinds of S-records, numbered from S0 to S9:

• An S0 header record which identifies the program.

• A number of data records which represent the binary data in the program.

• An S5 data count record which contains the count of data records in the S-
record file.

• A termination record which contains the address to begin execution of the
program.

Not all S-record reader programs behave the same way. Some programs require
certain types of data records. Some target environments do not accept S5 data
count records and some require certain types of termination records. Options
are provided to handle many of these cases.

Usage
To use gsrec, enter:

gsrec [options] input_file [-o srec_file]

where

optionsgsrec options, listed below.
Green Hills Software, Inc. 190

input_fileName of ELF executable file to be converted.

-o srec_file-o option and a name for the S-record format file.

The gsrec options include:

-help
Display information about all options.

-auto
Determine byte order from the file header. This is the default.

-B
Input file is Big Endian.

-L
Input file is Little Endian.

-bytes n
Set the maximum count of unpaired data bytes/records (min 4, max 28).
The default is 28.

-e addr
Set entry point in the termination record to given address.

-end addr
End address in object file.

-eol cr
Tells gsrec to terminate each record with a \r character.

-eol crlf
Tells gsrec to terminate each record with a \r\n combination. This is the
default in Windows.

-eol lf
Tells gsrec to terminate each record with a \n character. This is the
default in UNIX.

-fill1 n1 n2 v
Fill memory from address .n1 to address n2 with the one byte value v.

-fill2 n1 n2 v
Fill memory from address n1 to address n2 with the two byte value v.

-fill4 n1 n2 v
Fill memory from address n1 to address n2 with the four byte value v.

-interval n[:m]
Place only those data bytes from the input file which occur within the
specified interval in the output file. Legal values for n are 1 through 8.
The default is one, indicating that every byte will be output. If an m value
191 Embedded MCore Development Guide

The gsrec Utility Program
is specified, it tells how many bytes will be output for each interval. For
example, 4:2 outputs two consecutive bytes of every four.

-noS5
Does not produce an S5 block count record.

-o filename
Specifies the output filename. If this option is not given, the S-record will be

sent to standard output.

-romaddr addr
Start address in ROM to place data. The default is the same address as in
the input file.

-S1
Produces S1 data records (16-bit addresses).

-S2
Produces S2 data records (24-bit addresses).

-S3
Produces S3 data records (32-bit addresses). This is the default.

-S5
Produces an S5 record. This is the default.

-S5old
Produces an S5 record with a 16-bit address.

-S7
Produces an S7 end record (32-bit entry point. This is the default.

-S8
Produces an S8 end record (24-bit entry point).

-S9
Produces an S9 end record (16-bit entry point).

-skip s
Does not output data for section s.

-start addr
Starts address in object file for outputting when -interval is used.
Green Hills Software, Inc. 192

Data Record
A data record contains the address where the data is loaded, followed by the
data itself. There are 3 varieties of data records: S1, S2, and S3. The only
difference between the data records is the size of the load address as follows:

• S3 records contain 32-bit load addresses. This is the default.

• S2 data records contain 24-bit load addresses. Use the option -S2 to get S2
data records.

• S1 data records contain 16-bit load addresses. Use the option -S1 to get S1
data records.

By default an S5 data count record is emitted. If your S-record loader does not
understand S5 records, use the option -noS5 to avoid outputting an S5 data
count record.

Termination Record
A termination record contains the entry point, the address where program
execution begins. There are 3 types of termination records: S7, S8, and S9.

• The S7 record contains a 32-bit entry point. This is the default.

• The S8 record contains a 24-bit entry point. Use the -S8 option to get S8
records.

• The S9 record contains a 16-bit entry point. Use the -S9 option to get S9
records.

Some S-record readers will only accept data records up to a certain length. The
option -bytes size can be used to set the maximum length of the data records.

If you forget to specify the entry point address when linking, -e address can be
used to set the entry point to the given address.

Data Splitting
In some hardware implementations, the width of the bus differs from the width
of the PROMs. Depending on how the bus and PROMs are connected, it may
be necessary to store even bytes in one PROM and odd bytes in another PROM.
The technique of dividing the data into even and odd bytes, or worse, is called
data splitting.

Data splitting can be done in gsrec using a few options. The -start option
specifies the starting address of the data in the object input file to output to the
S-record output file. The -end option specifies the last address of data in the
object input file to output. The -interval option specifies the distance between
193 Embedded MCore Development Guide

The gsrec Utility Program
bytes in the input file to output. A value of 2 for -interval outputs every other
byte. Sometimes it is necessary to relocate the data to address zero in the
S-record output file for programming PROMS. The -romaddr option specifies
the start address of the data bytes in the S-record output file. Examples 5 and 6
illustrate separating even and odd bytes into two different S-record files.

Examples
All of the examples in this section use the following program file:

file: prog1

sections:

1: .text, address: 0x1000, size: 0x100
2: .data, address: 0x2000, size: 0x200
3: .bss, address: 0x3000, size: 0x200 (No Load Section)
4: .data2, address: 0x4000, size: 0x200
The program was linked using the following command:

lx -T0x1000 myprog.o -o prog1
Given a relocatable input file myprog.o, this command causes the linker to
create a program file called prog1 with a .text base address of 0x1000.

Example 1
gsrec prog1
gsrec translates the data in the input file prog1 and writes the S-records to the
standard output. Since the contents of section .bss are not loaded, no S-records
are output for its data.

Example 2
gsrec -S1 -S9 prog1 -o prog1.run
gsrec translates the data in the input file prog1 and writes the S-records to the
specified output file, prog1.run. Data is output as S1 records which have a
16-bit address space. The start address is output as an S9 record which has
16-bit address space.

Example 3
gsrec -start 0x1000 -end 0x1080 prog1 -o prog1.run
gsrec translates the data in the input file prog1 starting at address 0x1000 and
ending at address 0x1080 to the output file, prog1.run.

EXAMPLE 4
gsrec -start 0x1000 -end 0x1080 -romaddr 0 prog1 -o prog1.run
Green Hills Software, Inc. 194

gsrec translates the data in the input file prog1 starting at address 0x1000 and
ending at address 0x1080, relocates the data starting at address zero, and
copies the resulting S-records to the output file prog1.run.

Example 5
gsrec -start 0x1000 -end 0x1080 -romaddr 0 -interval 2 prog1
gsrec translates the even data bytes in the input file prog1 starting at address
0x1000 and ending at address 0x1080, relocates the data to start at address
zero, and copies the resulting S-records to the standard output.

EXAMPLE 6
gsrec -start 0x1001 -end 0x107F -romaddr 0 -interval 2 prog1
gsrec translates the odd data bytes in the input file prog1 starting at address
0x1001 and ending at address 0x107F, relocates the data to start at address
zero, and copies the resulting S-records to the standard output.

Example 7
gsrec -start 0x1002 -end 0x107F -romaddr 0 -interval 4:2 prog1
gsrec translates two out of every four data bytes in the input file prog1 starting
at address 0x1002 and ending at address 0x107F, relocates the data to start at
address zero, and copies the resulting S-records to the standard output.
195 Embedded MCore Development Guide

The gstack Utility Program
The gstack Utility Program

The gstack Utility Program analyzes a program to report the maximum stack
size each task may need during execution and the call chain which would
produce this maximum stack size.

The gstack utility relies on information produced by the Green Hills compilers
and by the mtrans program. See the MULTI Reference Manual for a description
of mtrans.

To produce the information required for gstack, all files comprising the
program must be compiled with -G.

Usage
To use gstack, enter:

gstack [prog | prog.sym | prog.dnm]
where

prog

prog.sym

prog.dnmName of the executable file.

The gstack options include:

-a Add functions or connections to the call graph. -a fun1:fun2, fun3 adds
fun1, fun2, fun3 to the call graph with fun2 and fun3 being callers of
fun1.

-c funcPrint all callers of func.

-f func=sizeSpecify or change function stack frame size.

-g Print the call graph.

-j Print all functions and frame sizes.

-s funcPrint the maximum stack size for the program starting with func.

-u Print all functions who have no callers.

-help Print information on all options.

Example
For the file test.c:
Green Hills Software, Inc. 196

main() { int arr[1000];fun1();fun0();fun2();
 fun3(); }
fun0() { fun1(); fun3(); }
fun1() { int arr[20]; fun2(); fun3(); }
fun2() { int arr[10]; fun3 (); }
fun3() { }

% ccmcore test.c -G -Xstaticcalls
% gstack a.out main

Task main 4136 byte stack produced by the call chain of:

Framesize Function
 4004 main
 4 fun0
 84 fun1
 44 fun2

Caveats
• gstack cannot work if there are potential direct or indirect recursive calls in

the program, as it cannot predict how many times the recursion will occur.
gstack will print a warning message if it detects a possible recursion in the
call graph.

• gstack prints a warning message if it detects a call to a function for which
there is no stack frame size information, or for which there is no call
information. Both of these situations might be caused by compiling the
function without using the -G option, or the function may be an assembly
language routine.

• gstack does not understand function calls through pointers. No warning is
printed.

• gstack cannot differentiate between static functions of the same name from
different files.

The gstrip Utility Program

The gstrip Utility Program can remove line number, symbol table, and debug
information from an ELF executable file to reduce its file size on disk.

The gstrip utility processes executable files created by the Green Hills Software
linker as well as those created by some native linkers.
197 Embedded MCore Development Guide

The gsymdump Utility Program
Usage
To use gstrip, enter:

gstrip [options] filename

where

optionsgstrip ELF options, listed below.

filenameName of executable file.

ELF File Options
Options when using gstrip with ELF format files include:

-help
Display information about all options.

-l
Strips line number information only; do not strip the symbol table or
debug information.

-V
Prints the version number of gstrip to standard error output.

-x
Does not strip the symbol table; debugging and line number information
may be stripped.

The gsymdump Utility Program

The gsymdump Utility Program prints symbolic debug information from a
.dbg file or a .sym file to the standard output.

The Green Hills compilers can create files with the file extension .dbg. These
.dbg files contain the symbolic debug information for the object file with the
corresponding basename (cookie.dbg contains the symbolic debug information
Green Hills Software, Inc. 198

for file cookie.o). The mtrans Utility Program reads .dbg files and produces
.sym files, which are read by the MULTI Debugger.

Usage
To use gsymdump, enter:

gsymdump [options] [object-file.dbg] | executable.sym

where

options gsymdump options, listed below.

object_file.dbg

Name of file with symbolic debug information.

executable.sym

Name of file to be read by MULTI Debugger.

The gsymdump options include:

-help
Display information about all options.

-c
Perform internal consistency checks.

-C
Perform internal consistency checks, but ignore warnings.

-da
Dump raw auxiliary table.

-dc
Dump static call information.

-dd
Dump the #define table.

-df
Dump the file name table.

-dh
Dump the .sym file header.

-dp
Dump the proc table.

-ds
Dump the symbol table.

-dt
Dump the typedef table.
199 Embedded MCore Development Guide

The gtune Utility Program
-dx
Dump the section table.

-nx
Do not demangle C++ names.

-sx
Shorten long C++ demangled names.

-v
Perform internal consistency checks only. Do not display symbol
information.

-V
Same as -v, but ignore warnings.

If no options are specified, then all of the above information will be displayed
with the exception of an auxiliary table. C++ names will be demangled.

The gtune Utility Program

The Green Hills gtune Utility Program can tune your program automatically. It
generates compiler options to inline functions that are only called once and to
delete functions that are never called.

gtune uses cross reference information produced by the compiler and stored in
.dbg and .sym files. In order for the compiler to produce this information, you
Green Hills Software, Inc. 200

must either compile your source code with the -G options on the compiler
command line. gtune requires debugging to be turned on.

Usage
To use gtune, enter:

gtune executable[.sym] [-help] [-a] [-k func] ... [tune.opt]

where

executable.symExecutable file name and suffix for the .sym file associated with
it.

-help
Display information about all options.

-a
Considers all functions in tuning output, regardless of whether the call
graph information exists for each function.

-k func
Does not include func in tuning the output.

tune.opt
Writes tuning output to file tune.opt, or to stdout if tune.opt is not
specified.

-t
Do not inline functions.

The gtune output file has lines of the form:

-OI=func1 (inline function func1)
-OD=func1 (deletes the out-of-line copy of function func1)
-OD=func2 (deletes function func2)
The output file is in a format suitable to be used as input to the compiler driver,
as @tune.opt. The @ character tells the compiler driver to expand tune.opt as
if the contents of the file had been explicitly entered on the compiler command
line.

Example
File test.c

void unused() { printf (“nobody calls me\n”); }
void unused_also() { printf (“nobody calls me either\n”); }
int inline_me_too() { return 7; }
int inline_me() { return 6 + inline_me_too(); }
main() { printf (“%d\n”, inline_me()); }
First, compile the program with call graph information, by entering:
201 Embedded MCore Development Guide

The gversion Utility Program
% gcc -G test.c
Then, run gtune to produce the options for the compiler optimizer, by entering:

% gtune a.out tune.opt
The contents of tune.opt will be:

-OI=inline_me_too
-OD=inline_me_too
-OD=unused_also
-OD=unused
-OI=inline_me
-OD=inline_me
Now compile the program using the information generated by gtune, by
entering:

% gcc test.c @tune.opt
As a result, the functions unused and unused_also are deleted from the
program, since they are never referenced. The functions inline_me and
inline_me_too are compiled inline, that is, no call is made, since only one call
is made to each of these functions. The out-of-line copy of each of these
functions is deleted.

The gversion Utility Program

The gversion Utility Program extracts and prints date and time information
from an executable file. By default, gversion prints out the revision date and the
release date of the program.

Usage
To use gversion, enter:

gversion [-all] [slot#] [file1] [file2] ...

where

-all
Print all non-zero dates, marked [0]..[9].

slot#
Single digit number of slot to print. The default is to display all time
slots. In the examples on the following page, since ccommcore only has
one time slot set and the slots are filled in increasing numerical order, the
command gversion 0 ccommcore yields the same result as gversion
ccommcore which is

ccommcore: Green Hills Software, release 1.8.8
Green Hills Software, Inc. 202

ccommcore: Revision Date Fri Dec 19 13:14:29 1997

However, if asked to print the value of slot 1 which is unstamped,
gversion will display an appropriate error message:

ccommcore: Green Hills Software, release 1.8.8
ccommcore has not been time stamped
ccommcore: [m] Fri Dec 19 13:14:30 1997

Note that gversion will display the file modification date for
informational purposes when no valid time stamp corresponding
to the slot requested can be found.

In -all mode, each date will be preceded by a digit in square brackets called a
time stamp. The Revision Date is preceded by [0] and the Release Date is
preceded by [6]. For example,

/usr/green/lx: [0] Thu Jul 06 22:48:50 1996
/usr/green/lx: [6] Mon Aug 14 14:32:11 1996
/usr/green/lx: Revision Date Thu Jul 11 21:45:45 1996
/usr/green/lx: Release Date Mon Oct 7 07:47:37 1996
The Revision Date reflects the date of the last modification of the source code
that was used to build the program. The Release Date is the date that the
particular tape or disk image containing the program was created. All programs
on the same tape should have the same Release Date.

Example 1
gversion /usr/green/lx
/usr/green/lx: Revision Date Thu Jul 11 21:45:45 1996
/usr/green/lx: Release Date Mon Oct 7 07:47:37 1996

Example 2
gversion all /usr/green/gversion
/usr/green/lx: [0] Thu Jul 06 22:48:50 1996
/usr/green/lx: [6] Mon Aug 14 14:32:11 1996
The gversion options include:

-help
Display information about all options.

-date
Print the value as a date string. This is the default.

gversion ccommcore
ccommcore: Green Hills Software, release 1.8.8
ccommcore: Revision Date Fri Dec 19 13:14:29 1997
203 Embedded MCore Development Guide

The gversion Utility Program
-value
Print the value without converting to date. For example:

gversion -value ccommcore
ccommcore: Green Hills Software, release 1.8.8

ccommcore: [0] 882566069
ccommcore: [1]
ccommcore: [2]
ccommcore: [3]
ccommcore: [4]
ccommcore: [5]
ccommcore: [6]
ccommcore: [7]
ccommcore: [8]
ccommcore: [9]

-mtime
Always print the file modification date. This option must be used with
-all. For example:

gversion -mtime -all ccommcore
ccommcore: Green Hills Software, release 1.8.8
ccommcore: [0] Fri Dec 19 13:14:29 1997
ccommcore: [m] Fri Dec 19 13:14:30 1997

-nomtime
Never print the file modification date.

-quiet
Suppress errors for unstamped files.

gversion foo
foo cannot be time stamped

gversion -quiet foo
Green Hills Software, Inc. 204

15

Runtime
Environment and
Library Organization
 This chapter contains:

• Introduction

• Multiple Language Runtime Support

• MCore Library Structure

• Linker Directives Files

• How to Create a Customized Linker Directives File

• Special Sections in Linker Directives Files

• Source Files Available for Customization

• Incorporating Your Changes into the Libraries

Introduction

hen

,

ry

lso,
few
 if
This chapter describes the basic structure of the Green Hills runtime environment and how to
modify and customize it. This chapter also describes changes from previous versions of the
Green Hills toolset.

Introduction

In an embedded environment, runtime support requirements differ, depending
on the application and target configuration. For example, if user C code calls
high level I/O routines such as printf, scanf, or malloc, then low-level system
call routines write, read, and sbrk need to be implemented, perhaps with
modifications appropriate to your specific hardware environment. Green Hills
provides a default implementation for these interfaces which work with the
Green Hills target environments; for example, Green Hills instruction set
simulators, ROM monitors, or real-time operating systems.

The Green Hills version 1.8.9 cross development library system includes two
low-level libraries, libsys.a and libarch.a. The libsys.a library contains
low-level system routines which implement memory initialization and system
calls. The libsys.a library automates the function of copying sections of a
program’s initialized data from ROM to RAM. It automatically relocates
initializers which are runtime located (PIC/PID). The libarch.a library contains
utility routines specific to a particular architecture; for example, libarch.a
might include an integer divide routine to be used by the compiler system w
a processor architecture does not specify an integer divide instruction. The
startup module, crt0.o, performs some basic initializations.

The source code to libsys.a and crt0.o is fully contained in a separate directory
libsrc, under the usual installation directory (for example, /usr/green) of a
Green Hills cross development distribution. This directory also contains
example project build files to build these libraries using the MULTI
Development Environment. This source code, as well as the low-level libra
object modules themselves, are a guide for development of an embedded
system.

While these object modules and object libraries enable you to get up and
running quickly under the initial default Green Hills configuration, you may
want to omit or modify these low-level interfaces for a particular system. A
not all functions contained in the libraries have default implementations; a
routines, such as fstat, are entry points for user-supplied implementations,
needed.
Green Hills Software, Inc. 206

Multiple Language Runtime Support

The Green Hills C Library implements all the standard ANSI C library
functions. For a complete list of these supported functions, please refer to the
Appendix. The libraries for other Green Hills languages, C++, Ada,
FORTRAN, and Pascal provide full support for those languages, including:

• ANSI and K&R C

• ANSI C++ and EC++

• MILSTD FORTRAN DoD supplement to ANSI X3.9-1978 with VMS
FORTRAN extensions

• ISO Pascal Level 1

• Ada 95

MCore Library Structure

Each Green Hills cross development toolset includes a set of runtime library
directories that are located beneath the main install directory. For example, if
your main install directory is /usr/green (or on a PC, C:\green), then you may
have a set of library directories /usr/green/directname, where directname can
be:

mcore MCore ELF

mcore_sdMCore ELF with single precision hardware floating point.

The compiler driver option -fsingle changes the library directory from mcore
to mcore_sd.

Linker Directives Files

The linker directives file contains a description of the program sections. The
following example linker directives file will be referred to in the descriptions
that follow:

-sec
{
 .text :
 .syscall :
 .secinfo :
 .fixaddr :
 .fixtype :
 .rodataalign(4):
207 Embedded MCore Development Guide

How to Create a Customized Linker Directives File
 .romdata ROM(.data):
 .romsdata ROM(.sdata):
 .sdabase align(4) :
 .sbss :
 .sdata :
 .rosdata :
 .data :
 .bss :
 .heapalign(4) pad(0x100000):
 .stackalign(4) pad(0x80000):
}

How to Create a Customized Linker Directives File

It is strongly suggested that you consult the existing default linker directives
examples provided in the target library directories of the distribution. When you
do not specify a linker directives file for a program build, these default
directives files will be used. The default linker directives filenames are:

default.lnkUsed for normal, absolutely-located programs

pic.lnkAppropriate for PIC (Position Independent Code) programs

pid.lnkAppropriate for PID (Position Independent Data) programs

picpid.lnkAppropriate when using both PIC and PID

Not all target library directories will contain all of these linker directives files,
although default.lnk exists in the default target library directory for all targets.
A suggested method for customizing a linker directives file is to copy the
default link map and make appropriate changes to it, such as altering the
addresses of text and data, specifying additional user-defined sections, changing
the sizes of the stack (via .stack) and heap (via .heap) areas, specifying
different sections to be placed in ROM, and removing unnecessary sections.
Before removing a section from the linker directives file, please read the
following section on Special Sections. Starting from a default section map
reduces the risk of failing to include a required section.

Special Sections in Linker Directives Files

Several sections must reside in the linker directives file for proper operation. A
list of these sections, a brief description of their functions, and an indication of
when they might not be needed follows. More detailed descriptions are located
throughout the rest of this chapter and in the libsrc source code.
Green Hills Software, Inc. 208

.heap Specifies the size and location of the runtime heap. It is required when
using the Green Hills runtime libraries for dynamic memory allocation.
A reference to the predefined linker symbol

_ _ghsbegin_heap which denotes the beginning of the .heap section is
located in the ind_heap.o module of the libsys.a library. If the Green
Hills runtime libraries are not being used at all, then the .heap section
can be omitted. Otherwise, failure to include a .heap section in the linker
directive specification when the program uses dynamic memory
allocation (i.e. when those library modules handling this feature are
linked in with the program) will cause one or more linker errors such as
the following:

[elxr] error: undefined: ’__ghsbegin_heap’ referenced in
’/usr/green/mcore/libsys.a(ind_heap.o)’

The Green Hills runtime libraries ensure that the dynamic memory
allocation will not overrun the specified .heap area by returning an error
code from sbrk which, in turn, will cause malloc() and other memory
allocation routines to return a NULL pointer. User code should always
check for erroneous return values when calling dynamic memory
allocation routines. Also, the Green Hills sbrk() routine, located in
ind_heap.c, can be customized to avoid use of the .heap section.

.sdabaseRequired when not using PIC/PID. Essentially, for all normal,
absolutely located programs, the .sdabase section MUST occur in the
linker directives files. The Green Hills debug servers will likely have to
initialize a PID/SDA base register before execution of a normal program
can begin. Debug servers will initialize this base register with the address
of the .sdabase section (a dummy, zero-sized section). Failure to include
an .sdabase section will cause the base register to be left uninitialized
and many programs to fail. If the target does not support PID or SDA, or
if customized user code startup code sets up the base register, then the
.sdabase may not be needed but should still be included for
completeness. The .sdabase section is typically located just prior to the
start of the sections that make up the SDA (typically the small data area
consists of the .sdata and .sbss sections). When small data area is being
used, location of the .sdabase is critical since only small offsets from the
SDA base register are typically allowed for addressing data within the
SDA. If data in the SDA resides too far from the .sdabase section, a
linker relocation overflow error will result. If SDA is not being used,
then location of the .sdabase may not be significant since PID references
generally allow a full 32-bit offset from the base register.
209 Embedded MCore Development Guide

Special Sections in Linker Directives Files
.stack This section specifies your intended stack area and size, although there is
no general mechanism for ensuring that the stack stay within the limits
specified by the .stack section. Green Hills startup code (when running
in standalone mode) and debug servers will initialize the initial stack
pointer of a process based on this .stack section. When building
programs to run under an operating system which does not allow
user-specification of the stack area, an empty .stack section can still be
included in the section map in order to resolve references in the startup
code. The reference to the .stack area in the Green Hills startup code
(crt0.o) is used only when programs execute standalone, that is, not
downloaded and run with the MULTI Debugger. Use of the .stack
section in the startup code is also customizeable by editing and
rebuilding the crt0.mco assembly module. The Green Hills debuggers
also allow the initial stack pointer to be specified differently with each
download of a program via the special _INIT_SP variable; use of
_INIT_SP supersedes use of a .stack section to locate the initial stack
pointer.

.romdata

.romsdataSection names beginning with .romXXX reference sections that are
the shadow copies of initialized data sections for romming code (and
hence have ROM() directives as well). Many of the Green Hills
default.lnk section maps use ROM sections even though the entire
program may be downloaded to RAM, allowing you to see examples of
how to specify ROM sections. When the linker sees a ROM directive, it
will create a copy of the RAM section that is readonly and hence
rommable. Then, the Green Hills startup code (ind_crt0.c) will
automatically copy the data from the .romXXX section to the .XXX
section as needed when copying initialized data from ROM to RAM.

If the ROM linker directives are used, but the Green Hills automatic
ROM-RAM initialization code is not desired (i.e. custom ROM-RAM
copy code is used), then you should ensure that the ROM-RAM copy
mechanism in ind_crt0.c is disabled by modifying or deleting that code.

If no ROM-RAM copying of code is necessary at all, then the .romXXX
sections can be omitted from the section map.

The .romXXX names are a convention used in the default section maps.
Names can be arbitrary. The ROM() directives provide the automatic
romming capability. You can find the actual code that accomplishes the
automatic ROM copying by looking in the ind_crt0.c file.

.syscallText section containing runtime library code for Green Hills emulation
of system calls. This is a rommable section since it contains only text.
Green Hills Software, Inc. 210

When using the Green Hills runtime libraries for system call emulation,
this section is required. The .syscall source code (assembly) is located in
the file ind_dots. When system call emulation is not being handled by
the .syscall mechanism, use of the .syscall code in this module can be
removed from the program (by customizing the libsys.a library which
contains the .syscall code), or a dummy .syscall section can be included
in the section map to prevent it from being appended to the end of the
section map by the linker. If the .syscall section is empty, it should be left
out of the section map.

.secinfoThis is a special section output by the Green Hills linker. It contains
information on the section layout of programs. The startup code in
libsys.a (ind_crt0.c) uses this information to determine which sections
need to be cleared (bss sections) and which need to be copied (ROM
sections). This is a read-only and thus a rommable section. Failure to
include this section in the link map will cause the linker to append it to
the end of the section map. There are three flags that can be used here. x
means executable, a means allocate it to be downloaded, and w means
writable. For example:

.section “.far”, “aw”
.section “.bar”, “ax”

Consult the ind_crt0.c file for further documentation on the automatic
copy/clear feature.

.rodataMany of the Green Hills compilers will place readonly data (such as
data declared with the C const specifier and string constants) into a
read-only section called .rodata. The convention used in the default
linker directives files is to place .rodata with other rommable sections.
Failure to include a .rodata section in the section map may cause the
linker to append it to the end of the section map.

With the exception of .rodata and the .romXXX ROM sections, the special
sections described above are created for and maintained by the Green Hills
runtime environment system. You should not explicitly add to them. Contents of
these sections are generated by one of the following methods:

• compiler (.fixtype, .fixaddr)

• linker (.secinfo)

• runtime library code (.syscall)

• linker directives (.sdabase,.stack, .heap)
211 Embedded MCore Development Guide

Source Files Available for Customization
Any attempt to explicitly place text or data into these special sections will
produce undefined and potentially fatal results. When creating custom named
sections, you must take care to not use any of the names of these special
sections.

More detailed descriptions of the functionality corresponding to the extended
linker directives and special sections can be found in the next section, Source
Files Available for Customization, as well as in the source code located in the
libsrc directory.

Source Files Available for Customization

With the Green Hills runtime libraries, you need to customize just a few low-
level source files and routines to implement or enhance the runtime
environment for a particular hardware system. A description of each file
follows. Each source file, including files with only assembly language, are fully
commented to provide more detailed documentation.

The linker directives files, which specify the location and, sometimes, the size
of program sections, are also improved. Some of the improved functionality in
the low-level libraries require use of some of these linker directives.

crt0.mco
The startup module crt0.mco is assembled from a small architecture-specific
assembly language file and contains only a minimal amount of code to setup a C
program environment before calling into a high level language C function. This
minimal assembly code is located in a function named _start, the default entry
point for programs in the Green Hills environment. On program startup, an
initial system call is made to determine whether a Green Hills debug agent (or
debug server) is controlling execution of the program (as opposed to the
program running standalone, without being connected to a debug server). If the
system call is successful, some required register initialization is assumed to
have been accomplished by the debug server; otherwise the code in crt0.mco
may do some more initialization. The source code in crt0.mco should be
consulted since the actual register manipulation varies widely across different
architectures.

The most commonly required register initialization is that of the processor stack
pointer, since a valid stack is generally required before a high level language
can be called. Most crt0.o modules reference the special symbol
_ _ghsend_stack when initializing the stack pointer. _ _ghsbegin_section and _
_ghsend_section, where section is the name of your section preceded by an
Green Hills Software, Inc. 212

 in
rtup;

underscore (_) and not a period (.), are special linker-defined symbols which
reference the respective start and end of each user program section.

The .stack section is an improved method for specifying the location of the
runtime stack. You can place a .stack section into the linker directives file to
specify the location and size of the runtime stack. The Green Hills startup code
sets up the stack pointer to point to the end of this section if the stack grows
downward. Otherwise the stack pointer is written with the address of the start of
the .stack section. You can change the location or size of the stack by changing
the linker directives file.

Green Hills debug servers automatically detect the existence of the .stack
section and automatically initialize the stack pointer. An example .stack section
specified in the preceding example directives file is:

.heap align(16) pad(0x100000) :

.stack align (16) pad(0x80000):
This specifies that the stack starts on the first 16-byte aligned address following
the .heap section in memory. Also, the stack is configured to be 0x80000 bytes
in size.

Using the .stack to specify the stack configuration permits stack checking code
is to be easily built into a program; code need only compare the current value of
the stack pointer register with the value of _ _ghsbegin_stack
to determine whether the available stack area is exhausted.

Finally, _start calls the function _ _ghs_ind_crt0, the architecture-independent
startup routine located in libsys.a.

ind_crt0.c
As described above, this module contains machine-independent startup code. In
particular, ind_crt0.c clears the uninitialized data sections (.bss and .sbss, if
present), and copies initialized data sections from their location in ROM to their
final location in RAM. Whether a program requires this ROM to RAM copy
depends on the use of the linker directives file for that program. In the example
linker directives file above, the ROM directives specify that the sections
.romdata and .romsdata are “shadow” or ROM copies of the actual .data
section in RAM. The ROM sections are copied to RAM by the startup code
this module. You do not have to write code to clear or copy sections at sta
ind_crt0.o does it automatically. The ind_crt0.c module should be customized
and rebuilt should you want to do this initialization without the aid of the
library.
213 Embedded MCore Development Guide

Source Files Available for Customization

evel

e
ny
 the

ll is
re
ets

can
When your program requires PIC/PID, the ind_crt0.o module will relocate
initialized pointers to any position independent object. For example, consider
the following C code:

extern int foo();
int (*ptr)() = &foo;
This declares a global function pointer which is initialized to the address of the
function foo. This declaration is not valid with other compilers when utilizing
position independent code because the address of foo is unknown at link-time
and hence unresolvable by the linker/loader. Green Hills, however, supports
this. The compiler emits a small amount of data which describes each relocated
initialization in the program. For example, when compiling for PIC, the
compiler generates data to inform ind_crt0.o that the initializer of the variable
ptr requires a runtime modification specifying the runtime location of the
program’s code, as desired. After ind_crt0.o finishes, all initialized pointers
contain valid runtime addresses.

Finally, ind_crt0.c calls into the user code, that is, to main().

ind_call.mco

ind_dots.mco
These modules contain architecture-specific language and handle lowest l
system call capability. The routine _ _ghs_syscall is called from various system
call routines, such as open, close, read and write. The _ _ghs_syscall routine
transfers control to a special address, the start address of the special .syscall
section (see the earlier linker directives example.).

Debug servers or monitors can key in this special address to accomplish th
emulation of system calls in the Green Hills environment. For example, ma
MULTI debug servers set a special breakpoint on this address; then, when
breakpoint is encountered during execution, the debug server knows that a
system call occurred. The arguments are then retrieved and the system ca
emulated on the host by the debug server. This mechanism provides a mo
generic system call interface and brings system call capability to some targ
where this functionality was previously unavailable.

ind_mcpy.c

ind_mset.c
These modules contain the C runtime library functions memcpy and memset.
They are needed to clear and copy data sections during initialization. You
Green Hills Software, Inc. 214

modify and change these routines if desired. For some architectures, either or
both of these functions are provided in assembly code. On other architectures,
high level C functions are used and compiled into the libsys.a library with the
highest optimization level.

ind_mcnt.mco

ind_gcnt.mco

ind_bcnt.c

ind_mprf.c

ind_gprf.c
These modules provide profiling support. Two routines are used:
__ghs_mcount for call count profiling and _ _ghs_gcount for call graph
profiling. The module ind_bcnt.c contains the profiling routine, __ghs_bcount,
which handles calls that are emitted by the compiler to implement code
coverage analysis. The ind_mprf.c and ind_gprf.c modules contain routines
that accomplish profiling functions such as starting a profiling timer (only on
certain processors) and writing profile data to disk.

ind_heap.c
The ind_heap.c module contains the dynamic memory allocation routines, in
particular the system call routine sbrk. The .heap section specifies the location,
size, and alignment of the heap in the linker directive file.

For example, in the preceding linker directives example, the heap section is
specified as follows:

. . .

.bss :

.heap align(16) pad(0x100000) :

.stack align(16) pad(0x80000) :

. . .
This specifies that the heap starts on the first 16-byte aligned address following
the .bss section in memory and is 0x100000 bytes in size. The .stack section
then follows the heap area. The pad directive instructs the linker that the heap is
uninitialized on startup. This directive enables you to place the runtime heap
anywhere in memory; the runtime library automatically allocates heap memory
where you place this section.
215 Embedded MCore Development Guide

Source Files Available for Customization

s.

write,
ired.
s not

lt

e to
ove
In addition, the ability to hardcode a size for the heap assures you that the
program does not use more heap memory than desired or expected. Attempting
to allocate memory at an address which is higher than that specified by the size
in the linker directive will cause sbrk to fail and return an error value.

ind_io.c
ind_io.c, ind_gmtm.c, ind_sgnl.c, ind_stat.c, ind_time.c, ind_exit.c,
ind_tmzn.c, ind_renm.c, and ind_syst.c contain a basic set of UNIX-like
operating system routines. Each routine is documented to show the function it
performs and the values it returns. These routines allow the linker to resolve an
operating system’s symbols, referenced by the Green Hills runtime librarie
The ind_io.c system routines most likely to be needed for a basic UNIX-like
implementation are:

int open(const char *filename, int mode, . . .);
int creat(const char *filename, int prot);
int close(int fno);
int read(int fno, void *buf, int size);
int write(int fno, const void *buf, int size);
int unlink(char *name);
void _exit(int code);
These system calls enable the embedded system program to open, read,
and close files. In many embedded systems, this basic support is not requ
For example, on some systems, the application never ends and hence doe
need an exit routine.

Other system calls, enabling a more robust interface and used in the defau
Green Hills runtime environment, include:

int brk(void *addr);
void *sbrk(int size);
long lseek(int fno, long offset, int end);
int fcntl(int fno, int cmd, int arg);
int getpid(void);
int isatty(int fno);
void _enter(void);
The _enter routine is called at startup and can be used as a separate routin
initialize the I/O system, initialize caching options, etc. Also, a few of the ab
listed routines only provide rudimentary support; you should consult the
implementation before using them. Many of the Green Hills ind_io.c and
related system call modules filter down to calls to the generic system call
interface routine, _ _ghs_syscall, described above.
Green Hills Software, Inc. 216

ind_exit.c
_enter Called up at startup and is used as a separate routine to initialize the I/O

system, initializing caching options, etc.

_ghs_at_exitRegisters functions that need to be called upon _exit (similar to
the ANSI atexit().)

_exit Calls cleanup routines registered by the program via

_ _ghs_at_exit() or atexit() and allows the program to terminate
gracefully via an exit system call.

FORTRAN Runtime Support
The system routines needed specifically for FORTRAN are tabulated below.
These routines are used by the Green Hills FORTRAN runtime library, libf.a.
Descriptions of the routines are in the noted source files.

Other Low-Level Functions

Incorporating Your Changes into the Libraries

Included in each MCore library directory is a default.bld file to help you
recompile and replace the customized object modules. For example, after

Source File Routine

ind_trnc.c int truncate(const char *path, int length);

ind_stat.c int fstat(int fno, struct stat *statptr);
int stat(char *name, struct stat *statptr);

Source File Routine

ind_gmtm.c struct tm *gmtime(const time_t *timer);

ind_sgnl.c int raise(int sig);
void (*signal(int sig, void (*func)(int)))(int);
unsigned int ualarm(unsigned int value, unsigned int interval);
unsigned int alarm(unsigned int seconds);

ind_stat.c int access(char *name, int mode);

ind_time.c time_t time(time_t *tptr);
int times (struct tms *buffer);

ind_tmzn.c struct tm *localtime(const time_t *timer);
void tzset(void);
int __gh_timezone(void);

ind_renm.c int rename(const char *old, const char *new);

ind_syst.c int system(const char *string);
217 Embedded MCore Development Guide

Incorporating Your Changes into the Libraries
changing directories into one of the target library directories, do the following
steps:

1. Create a subdirectory objs, if it has not already been created.

2. Rename or remove the file (libsys.a or crt0.o) that you wish to rebuild. It
might be useful to keep the old file around as a backup.

3. Run multi. It should open up on default.bld.

4. Remove the unused libghs.bld from project by single clicking on it and
hitting the remove button, if this has not already been done.

5. Enter either the libsys or crt0 project with a double click.

6. Click on build. The library should be built.

7. If you rebuilt crt0.o, it should be copied from out of the objs subdirectory
back into the target directory. On UNIX systems, you may, instead, create a
symbolic link with ln -s objs/crt0.o.

Consult the MULTI Reference Manual on using the Builder to change options
and rebuild. Options should be changed with care, as some of them are required
for proper operation. For example, the default.bld project causes the
preprocessor symbol EMBEDDED to be defined when compiling; this symbol is
required for some modules in the libraries. Under default.bld, the subproject
libsys.bld builds the libsys.a library and crt0.bld builds the startup module,
crt0.o. The libghs.bld project should be ignored.
Green Hills Software, Inc. 218

16

MCore Simulator
 This chapter contains:

• The MCore Simulator Command Line Options

• The Simulator as a MULTI Debugger Target

• ROM Mode

• Unsupported Features

The MCore Simulator Command Line Options
You can use simmcore as a standalone simulator to run MCore programs or use it as a
debugging target with MULTI to interactively debug MCore programs. See the MULTI
Reference Manual for more information on the MULTI Debugger.

The MCore Simulator Command Line Options

Command Line Options
You can run the simulator from the command line using the following syntax:

simmcore [options] image-file
where image-file is an ELF style executable file.

The simmcore options include:

-help
Prints the options list.

-fpu
Enables hardware floating point support.

-ieee
Enables IEEE-style operating mode with floating point exception
handling.

-V
Print version of simulator.

The Simulator as a MULTI Debugger Target

The simulator can be used in conjunction with MULTI to interactively debug
programs that may be difficult to debug. Invoking the simulator either from the
command line or as a result of the MULTI remote command, will bring up two
other windows, one labeled TARGET and the other labeled IN/OUT.

The IN/OUT window is where all output to stdout goes, and all input from
stdin comes from. This separates communication with the remote process from
communication with the simulator itself.

The TARGET window provides an interface to the simulator. Target commands
provide a comprehensive view of the internal state of the simulated processor.
Some of these commands are only useful in the simulator’s ROM mode. The
Green Hills Software, Inc. 220

commands currently available in the MCore simulator are listed in the table
found below.

All of these commands can also be reached from the MULTI Debugger
command pane by using the target command.

OS Simulation Mode
The simulator is able to deal with number of system calls. The following table
lists these system calls.

A large portion of library functions use a combination of these calls to achieve
their goal. These system calls are unavailable to you in ROM simulation mode.

ROM Mode

ROM mode was added to the Green Hills simulators to facilitate creation of
embedded programs for real-time systems. The MCore simulator in ROM mode
will not simulate various system calls available in OS simulation mode. Instead,
only the minimum hardware is simulated, such as the CPU and memory
systems.

In ROM mode the executable is loaded into simulator memory using the
physical addresses specified in the object file instead of virtual addresses. Then
execution begins at the address stored in the vector table (0x0), as if the CPU

Command Meaning

help Show all of commands with their brief descriptions.

reset Reset processor manually.

softreset Send soft reset signal to processor.

intr num Send interrupt num to processor.

fintr num Send fast interrupt num to processor.

show timing Show number of cycles executed.

zerotime Reset cycle time counter.

timer count int Send interrupt int every count cycles.

alloc addr size Allocate size bytes of memory starting at address addr in memory.

exit close stat link

read access fstat unlink

write creat brk getpid

open lseek time alarm
221 Embedded MCore Development Guide

Unsupported Features
were just turned on. Thus, the object file acts like programmable ROM where
your system code can reside.

Other features of ROM mode:

• Exception handling is left to the user.

• All memory pages are allocated on use. No segmentation faults are
generated.

• No arguments are passed to the running program.

• Stack can be set anywhere desired by user (the value stored at 0x4 is used
initially).

ROM mode is useful for writing and testing exception handlers and parts of an
operating system. Also, you will have to write at least some start-up code in
pure assembly language since this mode gives you such a bare-bones processor.

Unsupported Features

The simulator does not support the following hardware features:

• instruction pipelining for external memory

• low power mode

• instruction timings
Green Hills Software, Inc. 222

A

Enhanced asm
Facility
 This appendix contains:

• Introduction

• Definition of Terms

• asm Macros

• MCore asm procedures

• Writing asm Macros

Introduction

r,
r

e it

ds
k

d
.

e

 need
n

e
s the
Introduction

Although the ability to write portable code is one reason for using the C
language, sometimes it is necessary to introduce machine-specific assembly
language instructions into C code. This need arises most often within operating
system code that must deal with hardware registers that would otherwise be
inaccessible from C. The asm facility makes it possible to introduce this
assembly code.

In earlier versions of C, the asm facility included a line that looked like a call on
the function asm, which took one argument, a string:

asm("assembly instruction here");
Unfortunately this technique has shortcomings when the assembly instruction
needs to reference C language operands. You have to guess the register or stack
location into which the compiler would put the operand and encode that
location into the instruction. If the compiler’s allocation scheme changed, o
more likely, if the C code surrounding the asm changed, the correct location fo
the operand in the asm would also change. You’d have to be aware that the C
code would affect the asm and change it accordingly.

The new facility presented here is upwardly compatible with old code, sinc
retains the old capability. In addition, it allows you to define asm macros that
describe how machine instructions should be generated when their operan
take particular forms that the compiler recognizes, such as register or stac
variables.

Although this enhanced asm facility is easier to use than before, you are
strongly discouraged from using it for routine applications because those
applications will not be portable to different machines. The primary intende
use of the asm facility is to help implement operating systems in a clean way

The optimizer (ccmcore -O) may work incorrectly on C programs that use th
asm facility, particularly when the asm macros contain instructions or labels
that are unlike those that the C compiler generates. Furthermore, you may
to rewrite asm code in the future to maximize its benefits as new optimizatio
technology is introduced into the compilation system.

Definition of Terms

asm macroAn asm macro is the mechanism by which programs use the
enhanced asm facility. The asm macros have a definition and uses. Th
definition includes a set of pattern/body pairs. Each pattern describe
Green Hills Software, Inc. 2

e

. The
e the

file

ies
 when

ge
tutes

eas a

y

s of

tained
re or
acro.
sses
storage modes that the actual arguments must match for the asm macro
body to be expanded. The uses resemble C function calls.

storage mode

The storage mode, or mode, of an asm macro argument is the
compiler’s idea of where the argument can be found at run-time.
Examples are “in a register” or “in memory.”

patternA pattern specifies the modes for each of the arguments of an asm
macro. When the modes in the pattern all match those of the use, th
corresponding body is expanded.

asm macro body

The asm macro body, or body, is the portion of code that will be
expanded by the compiler when the corresponding pattern matches
body may contain references to the formal parameters, in which cas
compiler substitutes the corresponding assembly language code.

asm Macros

The enhanced asm facility allows you to define constructs that behave
syntactically like static C functions. Each asm macro has one definition and
zero or more uses per source file. The definition must appear in the same
with the uses (or be #included), and the same asm macro may be defined
multiply (and differently) in several files.

The asm macro definition declares a return type for the macro code, specif
patterns for the formal parameters, and provides bodies of code to expand
the patterns match. When it encounters an asm macro call, the compiler
replaces uses of the formal parameters by its idea of the assembly langua
locations of the actual arguments as it expands the code body. This consti
an important difference between C functions and asm macros. An asm macro
can therefore have the effect of changing the value of its arguments, wher
C function can only change a copy of its argument values.

The use of an asm macro look exactly like normal C function calls. They ma
be used in expressions and they may return values. The arguments to an asm
macro may be arbitrary expressions, except that they may not contain use
the same or other asm macros.

When the argument to an asm macro is a function name or a structure con
in memory, the compiler generates code to compute a pointer to the structu
function, and then resulting pointer is used as the actual argument of the m
Structures contained in registers are passed directly to the function. Addre
3 Embedded MCore Development Guide

asm Macros

n

ly,

are loaded into a temporary variable before being passed along; these will
usually be allocated to a register. The following example shows how passing
addresses work:

Example

asm void make10(addr)
{
%reg addr
 li r3, 10
 stw r3, 0(addr)
%nearmem addr
 lwz r4, addr
 li r3, 10
 stw r3, 0(r4)
%error
}

void func()
{
 int i, array[10];
 make10(&i);
 make10(array);
 make10(&array[3]);
}

Definition
The syntactic descriptions that follow are presented in the style used in “C
Language Compilers.” The syntactic classes type-specifier, identifier, and
parameter-list have the same form as in that chapter. A syntactic descriptio
enclosed in square brackets ([]) is optional, unless the right bracket is
followed by +. A + means “one or more repetitions” of a description. Similar
* means “zero or more repetitions.”

asm macro:
 asm [type-specifier]identifier ([parameter-list])
 {
 [storage-mode-specification-line
 asm-body] *
 }
An asm macro consists of the keyword asm, followed by what looks like a C
function declaration. Inside the macro body there are one for more pairs of
storage-mode-specification-line(s) (patterns) and corresponding asm-body(ies).
If the type-specifier is other than void, the asm macro should return a value of
the declared type.

storage-mode-specification-line:
 % [storage-mode [identifier [, identifier]*];]+
Green Hills Software, Inc. 4

A storage-mode-specification-line consists of a single line (no continuation
with \ is permitted) that begins with % and contains the names (identifier(s))
and storage mode(s) of the formal parameters. Modes for all formal parameters
must be given in each storage-mode-specification-line (except for error). The %
must be the first character on a line. If an asm macro has no parameter-list, the
storage-mode-specification-line may be omitted.

Storage Modes
These are the storage modes that the compiler recognizes in asm macros.

treg A compiler-selected temporary register.

ureg A C register variable that the compiler has allocated in a machine
register.

farmemA location in memory that cannot be accessed with a single load
instruction. These may need to be broken up into multiple load
instructions, and the steps for doing this may depend on the compilation
mode.

nearmemA location in memory that can be accessed with a single load
instruction (such as nearby stack variables or variables in a small data
area).

reg A treg or ureg.

con A compile time constant.

mem A mem operand matches any allowed machine addressing mode, with
the exception of reg and con.

lab A compiler-generated unique label. The identifier(s) that are specified as
being of mode lab do not appear as formal parameters in the asm macro
definition, unlike the preceding modes. Such identifiers must be unique.
Example:

asm void check_for_bit_set(r)
{
%reg r %lab endlab
 b_if_not_bit_set r, endlab
 software_trap
endlab:
%error
}

void check_status(int i, int j)
{
 /* Using the macro twice would cause the "endlab" */
 /* label to be defined twice if it was not specified
5 Embedded MCore Development Guide

asm Macros
 /* as a unique label */
 check_for_bit_set(i);
 check_for_bit_set(j);
}
error Generate a compiler error. This mode exists to allow you to flag errors

at compile time if no appropriate pattern exists for a set of actual
arguments.

farsprelA location on the stack that is too far away to be accessed in a single
instruction.

Note: For an asm macro that does not take any arguments, use a blank storage
mode (%).

asm Body
The asm body represents (presumed) assembly code that the compiler will
generate when the modes of all of the formal parameters match the associated
pattern. Syntactically, the asm body consists of the text between two pattern
lines (that begin with %) or between the last pattern line and the } that ends the
asm macro. C language comment lines are not recognized as such in the asm
body. Instead they are simply considered part of the text to be expanded.

Formal parameter names may appear in any context in the asm body, delimited
by non-alphanumeric characters. For each instance of a formal parameter in the
asm body the compiler substitutes the appropriate assembly language operand
syntax that will access the actual argument at run time. As an example, if one of
the actual arguments to an asm macro is x, an automatic variable, a string like
4(%fp) would be substituted for occurrences of the corresponding formal
parameter. An important consequence of this macro substitution behavior is that
asm macros can change the value of their arguments. This differs from standard
C semantics.

For lab parameters a unique label is chosen for each new expansion.

If an asm macro is declared to return a value, it must be coded to return a value
of the proper type in the machine register that is appropriate for the
implementation.

An implementation restriction requires that no line in the asm body may start
with %.

The MCore compiler also supports the following primitives in the body of an
asm statement.

%SPOFF(m)
Green Hills Software, Inc. 6

Given that m is of the farsprel storage class, this expands to an integer
containing its offset from the stack pointer.

Example:

%farsprel m
lrw r3, %SPOFF(m)
add r3,r0
ld.w r3,(r3,0)

MCore asm procedures

#include <stdio.h>

asm int mulword(a,b)
{
%con a %con b
 lrw r2,a
 lrw r3,b
 mult r2,r3
%con a %reg b
 lrw r2,a
 mult r2,b
%reg a %con b
 lrw r2,b
 mult r2,a
%reg a %reg b
 mov r2,a
 mult r2,b
%con a %nearmem b
 ld.w r2,b
 lrw r3,a
 mult r2,r3
%nearmem a %con b
 ld.w r2,a
 lrw r3,b
 mult r2,r3
%nearmem a %nearmem b
 ld.w r2,a
 ld.w r3,b
 mult r2,r3
%con a %farsprel b
 lrw r2,%SPOFF(b)
 addu r2,r0
 ld.w r2,(r2,0)
 lrw r3,a
 mult r2,r3
%farsprel a %con b
 lrw r2,%SPOFF(a)
 addu r2,r0
 ld.w r2,(r2,0)
7 Embedded MCore Development Guide

MCore asm procedures
 lrw r3,b
 mult r2,r3
%farsprel a %farsprel b
 lrw r2,%SPOFF(a)
 addu r2,r0
 ld.w r2,(r2,0)
 lrw r3,%SPOFF(b)
 addu r3,r0
 ld.w r3,(r3,0)
 mult r2,r3
%farmem a %farmem b
 lrw r2,a
 ld.w r2,(r2,0)
 lrw r3,b
 ld.w r3,(r3,0)
 mult r2,r3
%error
}

short x = 30;
short y = 2;
int z = 10;

func()
{
 int tmp1 = x, tmp2 = y;
 int ztmp = z;
 return mulword(10,20) + mulword(tmp1,tmp2) + mulword(ztmp,30) +
 mulword(ztmp,ztmp) + mulword(10,ztmp) + mulword(x,y);
}

func()
{
 int tmp1 = x, tmp2 = y;
 int ztmp = z;
 return mulword(10,20) + mulword(tmp1,tmp2) + mulword(ztmp,30) +
 mulword(ztmp,ztmp) + mulword(10,ztmp) + mulword(x,y);
}

func2()
{
 int tmp1 = x, tmp2 = y;
 int ztmp = z;
 return (10*20) + (tmp1*tmp2) + (ztmp*30) +
 (ztmp*ztmp) + (10*ztmp) + (x*y);
}

main()
{
 if (func() != func2())
 printf("ASMPROC FAIL: %d (wrong) != %d (correct)\n",func(),func2());
 return 0;
Green Hills Software, Inc. 8

sual
n
tions.
om

s

f
rns in

 a

s is

t.

rify
}

Writing asm Macros

Here are some guidelines for writing asm macros.

1. Know the implementation. You must be familiar with the C compiler and
assembly language with which you are working. You can consult the
Application Binary Interface for your machine for the details of function
calling and register usage conventions.

2. Observe register conventions. You should be aware of which registers the C
compiler normally uses for scratch registers or register variables. An asm
macro may alter scratch registers at will, but the values in register variables
must be preserved. You must know in which register(s) the compiler returns
function results.

3. Handle return values. asm macros may “return” values. That means they
behave as if they were actually functions that had been called via the u
function call mechanism. asm macros must therefore mimic C’s behavior i
that respect, passing return values in the same place as normal C func
Float and double results sometimes get returned in different registers fr
integer-type results. On some machine architectures, C functions return
pointers in different registers from those used for scalars. Finally, struct
may be returned in a variety of implementation-dependent ways.

4. Cover all cases. The asm macro patterns should cover all combinations o
storage modes of the parameters. The compiler attempts to match patte
the order of their appearance in the asm macro definition.

If the compiler encounters a storage mode of error while attempting to find
matching pattern, it generates a compile time error for that particular asm
macro call.

5. Beware of argument handling. asm macro arguments are used for macro
substitution. Thus, unlike normal C functions, asm macros can alter the
underlying values that their arguments refer to. Altering argument value
discouraged, however, because doing so would make it impossible to
substitute an equivalent C function call for the asm macro call.

6. asm macros are inherently non-portable and implementation-dependen
Although they make it easier to introduce assembly code reliably into C
code, the process cannot be made foolproof. You will always need to ve
correct behavior by inspection and testing.
9 Embedded MCore Development Guide

Writing asm Macros
7. Debuggers will generally have difficulty with asm macros. It may be
impossible to set breakpoints within the inline code that the compiler
generates.

8. Because the optimizers are highly tuned to the normal code generation
sequences of the compiler, using asm macros may cause optimizers to
produce incorrect code. Generally speaking, any asm macro that can be
directly replaced by a comparable C function may be optimized safely.
However, the sensitivity of an optimizer to asm macros varies among
implementations and may change with new software releases.
Green Hills Software, Inc. 10

B

Viewpathing
This appendix contains:

• Theory of Operation

• Limitations

• Environment Variables

Theory of Operation

s,

3rd
ng a
e
r’s
Viewpathing is a simple, lightweight implementation of workspaces. This feature gives our
tools a hierarchical method for searching multiple directories for requested input files. For
example, with this feature the compiler could first look in the current developer’s local source
directory for a source file, then, in the development group’s group source directory, and
finally, in a multi-group global source directory.

Theory of Operation

When a viewpath is specified, by means of the environment variable NVPATH,
the tools treat all input filenames as viewpath-relative. To create a
viewpath-relative filename, the tools first determine the difference between the
first element of the NVPATH variable and the current working directory. For
example, if NVPATH=/1:/2:/3 and your current working directory is
/1/subdir/, then the difference is subdir/.

This difference is appended to each node in the viewpath, in order to generate
the path prefix to append to the relative filename provided to the tool. In the
previous example, if the tool is given src/file.c, then the searched
locations will be, in order:

/1/subdir/src/file.c

/2/subdir/src/file.c

/3/subdir/src/file.c

For effective viewpathing, the developer must run all tools from a current
working directory which is a subdirectory of the first element in the NVPATH,
referred to as the root node.

Undesirable behavior may result if “.” is specified as the root node.

Viewpathing does not affect the locations of output files. All temporary files
will be unaffected and all other output files (such as executables, object file
etc.) will be created relative to the root node.

If a file located in a directory down the viewpath, for example, in the 2nd or
node, is opened for modification, such as adding files to an archive or editi
text file, then the original file will first be copied into a location relative to th
root node. Then, it will be opened for modification. In this way, a develope
modification will not affect the development group's files.
Green Hills Software, Inc. 12

Limitations

When creating a file for output in the root node, the required intermediate
directories will not be created in the root node, even if the corresponding
directory path exists in a node down the viewpath.

Environment Variables

The following environment variables control viewpathing behavior of the tools.
These environment variables must be set to a non-null value to take effect.

NVPATHEnable viewpathing and should be a colon separated list of
pathnames.

GHS_VP_DEBUG

Enable the output of diagnostic information from programs that use
viewpathing.

GHS_VP_NONE

Disable viewpathing, even if NVPATH is set.

GHS_VP_SLOW

 Disable a performance optimization where files which are opened for
creation and not updating are not copied down the viewpath if they
already exist.

Example
This example requires three existing empty directories:

/test/local
/test/group
/test/global
</test>: pwd
 /test
</test>: ls -Ag *
 global:
 total 2
 -rw-rw-r-- 1 green 7 Feb 11 15:56 file1.c
 group:
 total 2
 -rw-rw-r-- 1 green 15 Feb 11 15:58 file2.c
 local:
 total 2
 -rw-rw-r-- 1 green 34 Feb 11 15:55 file3.c
</test>: cd local
</test/local>: setenv NVPATH "/test/local:/test/group:/test/global"
13 Embedded MCore Development Guide

Environment Variables
</test/local>: setenv GHS_VP_DEBUG 1
</test/local>: ax crv archive.a file1.c file2.c file3.c
 ax: info: Viewpathing support is ON (FAST).
 ax: info: Adding viewpath node 1: /test/local
 ax: info: Adding viewpath node 2: /test/group
 ax: info: Adding viewpath node 3: /test/global
 a - file1.c
 ax: info: Located file: /test/global/file1.c
 a - file2.c
 ax: info: Located file: /test/group/file2.c
 a - file3.c
</test>: cd ..
</test>: ls -Ag *
 global/:
 total 2
 -rw-rw-r-- 1 green 7 Feb 11 15:56 file1.c
 group/:
 total 2
 -rw-rw-r-- 1 green 15 Feb 11 15:58 file2.c
 local/:
 total 4
 -rw-rw-r-- 1 green 246 Feb 11 16:05 archive.a
 -rw-rw-r-- 1 green 34 Feb 11 15:55 file3.c
</test>: cd local
</test/local>: ax tv archive.a
 ax: info: Viewpathing support is ON (FAST).
 ax: info: Adding viewpath node 1: /test/local
 ax: info: Adding viewpath node 2: /test/group
 ax: info: Adding viewpath node 3: /test/global
 rw-rw-r-- 4025/28 7 Feb 11 15:56 1998 file1.c
 rw-rw-r-- 4025/28 15 Feb 11 15:58 1998 file2.c
 rw-rw-r-- 4025/28 34 Feb 11 15:55 1998 file3.c
</test/local>: echo "Completely new and larger file 1" > file1.c
</test/local>: ls -Ag
 total 6
 -rw-rw-r-- 1 green 246 Feb 11 16:05 archive.a
 -rw-rw-r-- 1 green 32 Feb 11 16:09 file1.c
 -rw-rw-r-- 1 green 34 Feb 11 15:55 file3.c
</test/local>: ax r archive.a file1.c
 ax: info: Viewpathing support is ON (FAST).
 ax: info: Adding viewpath node 1: /test/local
 ax: info: Adding viewpath node 2: /test/group
 ax: info: Adding viewpath node 3: /test/global
</test/local>: ax tv archive.a
 ax: info: Viewpathing support is ON (FAST).
 ax: info: Adding viewpath node 1: /test/local
 ax: info: Adding viewpath node 2: /test/group
 ax: info: Adding viewpath node 3: /test/global
 rw-rw-r-- 4025/28 32 Feb 11 16:09 1998 file1.c
 rw-rw-r-- 4025/28 15 Feb 11 15:58 1998 file2.c
 rw-rw-r-- 4025/28 34 Feb 11 15:55 1998 file3.c
Green Hills Software, Inc. 14

C

C Runtime Libraries
 This appendix contains:

• Built-in Functions

• Reentrancy

• libansi.a data structures and functions

• libind.a functions

• Less Buffered I/O

Built-in Functions
To use the Green Hills C Library, the user needs a standard Green Hills compiler license.
Under this license, unlimited distribution of programs linked with the Green Hills C Library
object code is permitted without charge. However, distribution of the Green Hills C Library
source code or object code is not permitted.

Built-in Functions

The Green Hills C and C++ compilers implement certain built-in functions. A C
or C++ built-in function name begins with two underscores: _ _. A built-in
function is recognized by the compiler as a special function. It usually generates
optimized inline code, often using special instructions which do not correspond
to standard C and C++ operations.

_ _MULUH, _ _MULSH
C and C++ function prototype:

extern unsigned int _ _MULUH(unsigned int a, unsigned int b);

extern signed int _ _MULSH(signed int a, signed int b);

The _ _MULUH(a,b) built-in function takes as arguments two 32-bit unsigned
integers and returns the high 32-bit half of their 64-bit unsigned product. This
built-in function generates inline code for most targets.

The _ _MULSH(a,b) built-in function takes as arguments two 32-bit signed

integers and returns the high 32-bit half of their 64-bit signed product.

The _ _MULUH and _ _MULSH built-in functions generate inline code for the

following targets:

_ _CLZ32
C and C++ function prototype:

externunsigned int _ _CLZ32(unsigned int a);

The _ _CLZ32(a) built-in function takes a 32-bit integer argument and returns
the count of leading zeros, which is a number from 0 to 32.

MIPS PowerPC 960 TriCore

V800 486 Sparc
Green Hills Software, Inc. 2

The _ _CLZ32 built-in function generates inline code for the following targets:

_ _DI, _ _EI
C and C++ function prototype:

externvoid _ _DI(void);/* disable interrupts */

externvoid _ _EI(void);/* enable interrupts */

The _ _DI() built-in function disables interrupts.

The _ _EI() built-in function enables interrupts.

These two built-in functions can be used together as a pair to bracket a critical
section of code which must not be interrupted.

The _ _DI and _ _EI built-in functions generate inline code for the following
targets.

For targets other than those listed, the _ _DI() and _ _EI() are undefined in the
library.

Reentrancy

A reentrant function can be interrupted, suspended, and called again, then
resumed from its suspended state. Generally, reentrant functions do not write to
global variables or local static data structures, and call only other reentrant
functions.

In the tables on the following pages, the code letters listed below are used to
identify the reentrancy of the library functions:

Y Function is reentrant

N Function is not reentrant

I Function does I/O; for most purposes it is not reentrant.

PowerPC 960 TriCore MCore

MIPS PowerPC

SH V800

TriCore FR

MCore
3 Embedded MCore Development Guide

libansi.a data structures and functions
E Function writes to the global variable errno, otherwise is reentrant. It
may be possible to modify the library source so writing to errno is a
reentrant operation. See the functions

 _ _gh_set_errno() and _ _gh_get_errno(). The complete source code is
libsrc/ind_errn.c.

libansi.a data structures and functions

Variable Source Module Declaration

_CTYPE ccctype.c unsigned char _CTYPE[]

sys_errlist ccsyserr.c char *sys_errlist[]

tolower ccctype1.c short _tolower_[]

toupper ccctype1.c short _toupper_[]

Function
Source
Module

Reentrant? Arguments/Return Value

abort ccabort.c Y void abort(void)

abs ccabs.c Y int abs(int x)

asctime ccstrftm.c N char *asctime(const struct tm *t)

_assert ccassert.c I void _assert(const char *problem, const char *filename, int
line)

assert ccassert.c I void assert(int value)

atexit ccatexit.c N int atexit(void (*func)(void))

atof ccatof.c Y double atof(const char *str)

atoi ccatoi.c Y int atoi(const char *str)

atol ccatol.c Y long atol(const char *str)

bcmp ccbcmp.c Y bcmp(char *b1, char *b2, int length)

bcopy ccbcopy.c Y bcopy(char *from, char *to, int n)

bsearch ccbsrch.c Y void *bsearch(const void *key, const void *base,
 size_t nmemb, size_t size,
 int (*compar)(const void *, const void *))

bufcpy ccbufcpy.c Y bufcpy(char *to, char *from, int n)

bzero ccbzero.c Y bzero(char *pt, int n)

calloc cccalloc.c N void *calloc(size_t num, size_t size)

cfree cccfree.c N void cfree(char *item)

clearerr ccclrerr.c I void clearerr(FILE *file)

clearn ccclearn.c Y void clearn(int n, char *pt)

clock ccclock.c Y clock_t clock(void)
Green Hills Software, Inc. 4

ctime ccctime.c N char *ctime(const time_t *timer)

difftime ccdifftm.c Y double difftime(time_t time1, time_t time0)

div ccdiv.c Y div_t div(int number, int denom)

_ _docvt ccdocvt.c Y internal use only

_doprnt ccvprintf.c I int _doprnt(const char *format, va_list args, FILE *stream)

_doscan ccscanf.c I _doscan(const char *format, va_list args, FILE *stream)

ecvt ccecvt.c N char *ecvt(double value, int ndig, int *decpt, int *sign)

eprintf cceprntf.c I int eprintf(const char *format, ...)

execl ccexecl.c Y int execl(const char *name, const char *args, ...)

execle ccexecle.c Y int execle(const char *name, const char *args, ...)

execv ccexecv.c Y int execv(const char *name, char *const *argv)

exit ccexit.c N void exit(int val)

fabs ccfabs.c Y double fabs(double x)

fclose ccfclose.c I int fclose(FILE *file)

fcvt ccecvt.c N char *fcvt(double value, int ndig, int *decpt, int *sign)

feof ccfeof.c Y int feof(FILE *stream)

ferror ccferror.c Y int ferror(FILE *stream)

fflush ccfflush.c I int fflush(FILE *file)

ffs ccffs.c Y int ffs(int i)

fgetc ccfgetc.c I int fgetc(FILE *file)

fgetpos ccfgetps.c I int fgetpos(FILE *file,fpos_t *pos)

fgets ccfgets.c I char *fgets(char *str, int n, register FILE *file)

_filbuf ccfilbuf.c I _filbuf(register FILE *file)

filln ccfilln.c Y void filln(int n, char *pt, int fill)

_flsbuf ccflsbuf.c I _flsbuf(int ch, FILE *file)

fdopen ccfopen.c I FILE *fdopen(int fno,const char *mode)

fopen ccfopen.c I FILE *fopen(const char *name, const char *mode)

fprintf ccprntf.c I int fprintf(FILE *stream, const char *format, ...)

fputc ccfputc.c I int fputc(int ch,FILE *file)

fputs ccfputs.c I int fputs(const char *str,FILE *file)

fread ccfread.c I size_t fread(void *ptr,size_t size,size_t nitems,FILE *file)

free ccmalloc.c N void free(void *ptr)

freopen ccfopen.c I FILE *freopen(const char *name, const char *mode,
 FILE *file)

frexp ccfrexp.c Y double frexp(double value, int *eptr)

frexpf ccfrexpf.c Y float frexpf(float value, int *eptr)

fscanf ccscanf.c I int fscanf(FILE *stream, const char *format, ...)

Function
Source
Module

Reentrant? Arguments/Return Value
5 Embedded MCore Development Guide

libansi.a data structures and functions
fseek ccfseek.c I int fseek(FILE *stream, long int offset, int ptrname)

fsetpos ccfsetps.c I int fsetpos(FILE *file,const fpos_t *pos)

ftell ccftell.c I long ftell(FILE *stream)

fwrite ccfwrite.c I size_t fwrite(const void *ptr,size_t size,size_t nitems,
 register FILE *file)

gcvt ccgcvt.c N char *gcvt(double value, int ndig, char *buf)

getc ccgetc.c I int getc(FILE *f)

getchar ccgetchr.c I int getchar(void)

getenv ccgetenv.c Y char *getenv(char *np)

getl ccgetl.c I long getl(FILE *file)

gets ccgets.c I char *gets(char *str)

getw ccgetw.c I int getw(FILE *file)

index ccindex.c Y char *index(const char *str, const char ch)

isalnum ccfuncs.c Y int isalnum(int c)

isalpha ccfuncs.c Y int isalpha(int c)

iscntrl ccfuncs.c Y int iscntrl(int c)

isdigit ccfuncs.c Y int isdigit(int c)

isgraph ccfuncs.c Y int isgraph(int c)

islower ccfuncs.c Y int islower(int c)

isprint ccfuncs.c Y int isprint(int c)

ispunct ccfuncs.c Y int ispunct(int c)

isspace ccfuncs.c Y int isspace(int c)

isupper ccfuncs.c Y int isupper(int c)

isxdigit ccfuncs.c Y int isxdigit(int c)

labs cclabs.c Y long labs(long x)

ldexp ccldexp.c E double ldexp(double value, int exp)

ldexpf ccldexpf.c E float ldexpf(float value, int exp)

ldiv ccldiv.c Y ldiv_t ldiv(long int number, long int denom)

localeconv cclocale.c Y struct lconv *localeconv(void)

longjmp ccsetjmp.xxx
(xxx is the
target)

Y void longjmp (jmp_buf env, int val)

malloc ccmalloc.c N void *malloc(size_t size)

mblen ccmblen.c Y int mblen(const char *s, size_t n)

mbstowcs ccmbswcs.c Y size_t mbstowcs(wchar_t *pwcs, const char *mbs, size_t n)

mbtowc ccmbtowc.c Y int mbtowc(wchar_t *pwc, const char *s, size_t n)

memchr ccmemchr.c Y void *memchr(const void *s, int c, size_t n)

memcmp ccmemcmp.c Y int memcmp(const void *s1, const void *s2, size_t length)

Function
Source
Module

Reentrant? Arguments/Return Value
Green Hills Software, Inc. 6

memmove ccmemmov.c Y void *memmove(void *s1, const void *s2, size_t n)

mktemp ccmktemp.c N char *mktemp(char *str)

mktime ccmktime.c Y time_t mktime(struct tm *timeptr)

modf ccmodf.c Y double modf(double value, double *iptr)

on_exit ccatexit.c N int on_exit(void (*func)(void), char * arg)

perror ccperror.c I void perror(const char *str)

printf ccprintf.c I int printf(const char *format, ...)

putc ccputc.c I int putc(int ch, FILE *f)

putchar ccputchr.c I int putchar(int ch)

putl ccputl.c I long putl(long l, FILE *file)

puts ccputs.c I int puts(const char *str)

putw ccputw.c I putw(int w, FILE *file)

qsort ccqsort.c Y void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *))

rand ccrand.c N int rand()

realloc ccmalloc.c N void *realloc(void *old, size_t new_size)

remove ccremove.c I int remove(const char *filename)

rewind ccrewind.c I void rewind(FILE *stream)

rindex ccrindex.c Y char *rindex(const char *str, const char ch)

scanf ccscanf.c I scanf(const char *format, ...)

setlocale cclocale.c Y char *setlocale(int category, const char *locale)

setbuf ccsetbuf.c N void setbuf(FILE *stream, char *buf)

setjmp ccsetjmp.xxx
(xxx is the
target)

Y int setjmp (jmp_buf env)

setlinebuf ccsetlbf.c N int setlinebuf(FILE *stream)

setvbuf ccsetvbf.c N int setvbuf(FILE *stream, char *buf, int mode, size_t size)

sprintf ccsprntf.c E int sprintf(char *s, const char *format, ...)

srand ccrand.c N void srand(int val)

sscanf ccscanf.c N int sscanf(const char *str, const char *format, ...)

strcat ccstrcat.c Y char *strcat(char *s2, const char *str1)

strchr ccstrchr.c Y char *strchr(const char *str, int ch)

strcmp ccstrcmp.c Y int strcmp(const char *str1, const char *str2)

strcoll ccstrcol.c Y int strcoll(const char *s1, const char *s2)

strcpy ccstrcpy.c Y char *strcpy(char *s2, const char *str1)

strcspn ccstrcsp.c Y size_t strcspn(const char *s1, const char *s2)

strerror ccstrerr.c Y char *strerror(int errnum)

Function
Source
Module

Reentrant? Arguments/Return Value
7 Embedded MCore Development Guide

libansi.a data structures and functions
strftime ccstrftm.c Y size_t strftime(char *start, size_t maxsize, const char *format,
 const struct tm *timeptr)

strindex ccstridx.c Y int strindex(char *str, char *sub)

strlen ccstrlen.c Y size_t strlen(const char *str)

strncmp ccstrncm.c Y int strncmp(const char *str1, const char *str2, register int n)

strncpy ccstrncp.c Y char *strncpy(char *s2, char *str1, register int n)

strpbrk ccstrpbr.c Y char *strpbrk(const char *s1, const char *s2)

strrchr ccstrrch.c Y char *strrchr(const char *str, int ch)

strrindex ccstrrdx.c Y int strrindex(char *str, char *sub)

strsave ccstrsav.c N char *strsave(char *str)

strspn ccstrspn.c Y size_t strspn(const char *s1, const char *s2)

strstr ccstrstr.c Y char *strstr(const char *str, const char *sub)

strtod ccstrtod.c E double strtod(const char *str, char **endptr)

strtok ccstrtok.c N char *strtok(char *s1, const char *s2)

strtol ccstrtol.c E long strtol(const char *str, char **ptr, register int base)

strtoul ccstrtul.c E unsigned long strtoul(const char *str, char **ptr,
 register int base)

strxfrm ccstrxfm.c Y size_t strxfrm(char *s1, const char *s2, size_t n)

swab ccswab.c Y swab(char *from, char *to, int nbytes)

tmpfile cctmpfil.c I FILE *tmpfile(void)

tmpnam cctmpnam.c N char *tmpnam(char *s)

tolower ccfuncs.c Y int tolower(int c)

toupper ccfuncs.c Y int toupper(int c)

ungetc ccungetc.c I int ungetc(int ch,FILE *file)

vfprintf ccvprntf.c I int vfprintf(FILE *stream, const char *format, va_list args)

vfscanf ccscanf.c I vfscanf(FILE *stream, const char *format, va_list args)

vprintf ccfprntf.c I int vprintf(const char *format, va_list args)

vscanf ccscanf.c I vscanf(const char *format, va_list ap)

vsprintf ccsprntf.c I int vsprintf(char *s, const char *format, va_list ap)

vsscanf ccscanf.c I vsscanf(const char *str, const char *format, va_list ap)

wcstombs ccwcsmbs.c Y size_t wcstombs(char *s, const wchar_t *pwcs, size_t n)

wctomb ccwctomb.c Y int wctomb(char *s, wchar_t wchar)

Function
Source
Module

Reentrant? Arguments/Return Value
Green Hills Software, Inc. 8

libind.a functions

Function
Source
Module

Reentrant? Arguments/Return Value

acos indacos.c E double acos(double x)

acosf indacosf.c E float acosf(float arg)

acosh indacosh.c E double acosh(double x)

asin indasin.c E double asin(double x)

asinf indasinf.c E float asinf(float arg)

asinh indasinh.c E double asinh(double x)

atan indatan.c E double atan(double x)

atan2 indatan2.c E double atan2(double y, double x)

atan2f indatn2f.c E float atan2f(float y, float x)

atanf indatanf.c E float atanf(float x)

atanh indatanh.c E double atanh(double x)

cabs indcabs.c E double cabs(struct complex z)

ceil indceil.c Y double ceil(double x)

cos indcos.c Y double cos(double f0)

cosf indcosf.c Y float cosf(float f0)

cosh indcosh.c E double cosh(double x)

coshf indcoshf.c E float coshf(float x)

erf inderf.c Y double erf(double x)

erfc inderf.c Y double erfc(double x)

exp indexp.c E double exp(double x)

expf indexpf.c E float expf(float x)

fabs indfabs.c Y double fabs(double x)

floor indfloor.c Y double floor(double x)

fmod indfmod.c Y double fmod(double x,double y)

gamma indgamma.c E double gamma(double x)

_gh_va_arg indvaarg.c Y char *_gh_va_arg(p, align, regtyp, size)

hypot indhypot.c E double hypot(double x,double y)

isinf indisinf.c Y int isinf(double x)

isnan indisnan.c Y int isnan(double x)

j0 indbessl.c E double j0(double x)

j1 indbessl.c E double j1(double x)

jn indbessl.c E double jn(int n,double x)

log indlog.c E double log(double x)

log10 indlog.c E double log10(double x)

log10f indlogf.c E float log10f(float x)
9 Embedded MCore Development Guide

Less Buffered I/O
Less Buffered I/O

The Green Hills ANSI C library includes a Standard I/O Package, abbreviated
stdio.

stdio includes formatted I/O using printf and scanf, character I/O using getc
and putc, plus other features.

In traditional implementations, all I/O performed in stdio is buffered
automatically.

In embedded programming there is a constant trade-off between space and
performance. Buffering improves performance by increasing the average
number of characters written per system call. However, buffering occupies
space for the code to manage the buffers, as well as for buffers themselves.

logf indlogf.c E float logf(float x)

matherr inderr.c Y int matherr(struct exception *ex)

memcpy ccmemcpy.c Y void *memcpy(void *s1, const void *s2, size_t n)

memset ccmemset.c Y void *memset(void *s, int c, size_t n)

pow indpow.c E double pow(double x, double y)

powf indpowf.c E float powf(float x, float y)

rmatherr inderr.c Y int rmatherr(struct rexception *ex)

_rnerr indrnerr.c N int _rnerr(int num, int linenum, char *str, void *ptr, void
*al, void *as, void *a3, void *a4, void *a5, int len);

sin indsin.c Y double sin(double f0)

sinf indsinf.c Y float sinf(float f0)

sinh indsinh.c E double sinh(double x)

sinhf indsinhf.c E float sinhf(float arg)

sqrt indsqrt.c E double sqrt(double f0)

sqrtf indsqrtf.c E float sqrtf(float f0)

tan indtan.c E double tan(double x)

tanf indtanf.c E float tanf(float arg)

tanh indtanh.c E double tanh(double x)

tanhf indtanhf.c E float tanhf(float x)

y0 indbessl.c E double y0(double x)

y1 indbessl.c E double y1(double x)

yn indbessl.c E double yn(int n, double x)

Function
Source
Module

Reentrant? Arguments/Return Value
Green Hills Software, Inc. 10

If I/O is totally unbuffered, every character read or written requires a system
call. A benefit of this mode is that I/O is never delayed until the buffer is full or
lost in a buffer if the application exits abnormally.

If I/O is buffered in the traditional manner, several kilobytes of code are added
to the application, because the stdio package invokes malloc and various other
routines to manage the buffering.

The Less Buffered I/O mode in which the Green Hills ANSI C library is built
provides a reasonable compromise between full buffering and unbuffered I/O.

Rather than allocate a permanent buffer for each file, which is used as long as
the file is open, Less Buffered I/O performs buffering within each of the
following routines:

fwrite

fputs

puts

printf

fprintf

sprintf

vprints

vfprintf

vsprintf

Thus, during a single call, any characters, which are written to one of these
functions, will be buffered. In this way, one function call will often require only
one output system call. Once the function completes, all characters are written
to the file. No characters are ever left in a buffer after the function call,
eliminating the risk that output will be lost, and eliminating the need to flush
buffers when a file is closed or the program exits.

No input routines are buffered in any way by the Less Buffered I/O method.
Files are not closed upon program termination, except as noted below.

The program may enable full buffering of either input or output by calling either
setbuf() or setvbuf(). In this case, characters are only written to a buffered file
when the buffer is full, or fflush() or fclose() is called. Upon normal termination
of the program, if setbuf() or setvbuf() has been called at any time, then all
open files will be flushed and then closed.
11 Embedded MCore Development Guide

Less Buffered I/O
All files perform in exactly the same manner, whether they are opened by
default (stdin, stdout, and stderr) or opened by using fopen().
Green Hills Software, Inc. 12

13 Embedded MCore Development Guide

IndexIndex
Symbols
-# option 68
#pragma ghs interrupt 40
#pragma ghs section directive 36
#pragma intvect 40
#pragma pack directive 26
.a extension 10, 158
.align directive 132, 134
.ascii directive 132, 135
.asciz directive 132, 135
.bss directive 137
.bss program section 32
.byte directive 132, 134
.C extension 10
.c extension 10
.cc extension 10
.comm directive 133, 137
.cpp extension 10
.cxx extension 10, 11
.data directive 132, 136
.data program section 32
.dbo files 42
.def directive 140
.dim operator 141
.dnm files 42

generation of 43
.double directive 132, 135
.dsect directive 133
.eject directive 134
.eject option 143
.else directive 133, 139
.elseif directive 133, 140
.endef directive 140
.endif directive 133, 139, 140
.endm directive 133, 138
.endr directive 133, 139
.equ operator 127
.exitm directive 133
.extern directive 133
.f extension 10
.file directive 140
.fill directive 132
.float directive 132, 135
.for extension 10
.gen directive 133, 143
.globl directive 137
.heap directive 209

.i extension 10

.ident directive 132, 135

.if directive 133, 139

.ii extension 10

.import directive 133, 137

.include directive 133, 138

.inf extension 10

.lcomm directive 133, 137

.line operator 141

.list directive 133, 142

.literals directive 132, 135

.long directive 132

.macro directive 133, 138

.nogen directive 133, 143

.nolist directive 133, 142

.nowarning directive 133, 142

.o extension 10

.org directive 133, 137

.previous directive 133, 137

.Ramsgate 210

.rept directive 133, 139

.rodata directive 211

.romdata directive 210

.s extension 10

.sbttl directive 134, 143

.scl operator 141

.sdabase directive 209

.secinfo directive 211

.secinfo program section 33

.section directive 132, 136

.set directive 132, 136

.set operator 127

.short directive 135

.size operator 141

.skip directive 135

.space directive 132, 135

.stack 210

.str directive 135

.subtitle directive 134, 143

.sym files, printing information from 198

.syscall directive 210

.tag operator 141

.text directive 132, 136

.text program section 32

.title directive 134, 143

.type operator 141

.using directive 137
Green Hills Software, Inc. I-1

Index

.val operator 141
.warning directive 133, 142
.weak directive 133, 137
@file 68
_ _interrupt keyword 39
__CLZ32 built-in function C-2
__DI built-in function C-3
__EI built-in function C-3
__ghsbegin symbol 32, 169
__ghsbinfo_clear 33
__ghsbinfo_copy 33
__ghseinfo_clear 33
__ghseinfo_copy 33
__ghsend symbol 32, 169
__MULSH built-in function C-2
__MULUH built-in function C-2
__psinfo 34
_start function 21

Numerics
32-bit ELF data types 47

A
absolute expressions 128
Ada language

compiler driver options for 88
addressing modes 147
alignment directives 132, 134
--anachronisms option 100
ANSI C

library 21
-ANSI option 39, 90, 93
-ansi option 90
-ansiopeq option 92
-archive option 69, 105, 160
archives

adding or replacing files in 159
deleting files from 159
examples of creating and using 160
extracting files from 159
generating 69

argument field 126
--array_new_and_delete option 95
asm facility A-1
asm inline directive, ignoring 93, 100
-asm option 66, 122

-asmwarn option 39, 91, 95
assembler 5, 119

command line options for 120
compiler driver options for 66
directives for 19, 132
invoking with compiler driver 122
listings 141
passing options to compiler driver 122

assembly language 123
assignment statements 127
character set for 123
comments 126
constants for 124
continuation lines 126
escape sequences for 125
expression types 128
expressions 127
generating from source file 72
identifiers for 123
interleaving with source code 71
labels 129
line terminators 126
operators 127
source statement syntax 125
type combinations 129

assignment statements, assembler 127
--auto_instantiation option 105
-autoregister option 73
ax librarian 20, 158, 207, 212

See Also librarian

B
-bigswitch option 109
binary 127
--bool option 96
--brief_diagnostics option 102
building an executable 7

from both C and C++ 7, 13
from C 10
from C++ 11

built-in functions C-2
__CLZ32 C-2
__MULSH C-2
__MULUH C-2
I-2 Using MULTI with amonserv, v. 1.8.9

Index
C
C default directories 20
C language

ANSI conformance 90
building an executable 10
combining with C++ 7, 13
compiler driver options for 90
header files for 20
interrupt processing 29
Kernighan & Ritchie conformance 91
preprocessor options 89
reentrant functions in runtime libraries C-3
run-time libraries C-1

-C option 89, 109
-c option 11, 12, 69
C++

compatibility options 100
C++ language

building an executable 11
combining with C 7, 13
compiler driver options for 95
header files for 20
interrupt processing 29
making compiler driver aware of 70
preprocessor options 89

C++ library options 101
calling conventions 19, 27

interrupt functions 29
cfront

options 100
character constants 125
character set for assembler 123
-check option 87
COFF files

converting to S-records 68, 190
coff2sr utility 35
coff2tek

length 179, 183
nodata 179
nolocals 180
o 180
old 180
y 180

-column option 90
command file

@file 68
command line

displaying without invoking 68
for assembler 120
for compiler driver 9, 66
for gbincomp utility 173
for gcompare utility 172
for gdump utility 175
for gfile utility 177
for gfunsize utility 178
for ghide utility 182
for gnm utility 184
for grun utility 187
for gsize utility 189
for gsrec utility 190
for gstrip utility 197
for gsymdump utility 198
for gtune utility 200
for librarian 158, 207, 212
gstack utility 196
gversion utility 202
library 158, 159

comments, in assembler source 126
compiler 5
compiler driver 5, 8, 16, 220

command line options for 66
command line syntax 9
help on options 69
including linker switches 35
invoking assembler with 122

compile-time error checking options 94
-concatcomments option 92
conditional assembly directives 139
conditionals directives 133
conditions, section headers 52
constants, in assembler 124
continuation lines, in assembler 126
coof2tek 180
copyright banner, generating 72
-cpu=m200 option 66
-cpu=m300 option 66
--create_pch option 104
cross compilers 19
customized linker directives files 208

D
-D option 89
-d_line option 109
Green Hills Software, Inc. I-3

Index

data initialization directives 132, 134
data record 193
data splitting 193
dblink utility program 42
debug formatting 41
debugger 5
debuggers. See MULTI debugger
debugging

compiler driver options for 75
removing information with gstrip

utility 197
symbolic 140

debugging and running the program 22
--diag_error option 102
--diag_remark option 102
--diag_suppress option 102
--diag_warning option 102
difference between relocatable and executable

files 46
directives, assembler 19
directives, macro assembler 132
--display_error_number option 102
--distinct_template_signatures option 105
-dod option 109
-dotciscxx option 96
driver. See compiler driver
-dryrun option 69
-dual_debug 43
-dual_debug option 76
-dwarf option 43
DWARF, using debug information 43

E
E 89
-E option 90
e_entry 49
e_phentsize 63
e_phnum 63
e_shentsize 52
e_shnum 52
e_shoff 52
--early_tiebreaker option 96
--eel option 101
--eele option 101
ELF data types 47
ELF files 45

converting to S-records 68, 190

default sections for 56
file header structure 47
object and image file organization 46, 58
relocation directories for 58
section headers for 52
string table 62
symbol table 59
using gstrip utility with 198

embedded development 32
and multiple-section programs 36
and ROM 32
linker switches for 35
producing S-record output 35
program sections and 32
reducing program size 34

-entry= 35, 67
--enum_overloading option 96
-errmax option 69
error message options 102
error messages 108

in assembler listing 142
line length for 90
maximum number of 69
run-time 88
standard error files 69

escape sequences, in assembler 125
exception handling 96
executable file 46
executables

building 7
building from both C and C++ 7, 13
building from C 10
building from C++ 11
reducing size of 34
specifying directory for 73

expressions, in assembler 127, 128
-extend_source option 109
--extern_inline option 96

F
file header

of ELF object files 47
file inclusion directives 133, 138
file organization, relocatable and executable 46
floating point

I/O, disabling 67
libraries, disabling 69
I-4 Using MULTI with amonserv, v. 1.8.9

Index
libraries, removing 34
library 21

-fnone option 34, 69
--for_init_diff_warning option 102
--force_vtbl option 108
FORTRAN compiler options 109
FORTRAN language

making compiler driver aware of 70
UNIX F77 compatibility 110
VMS compatibility 110

FORTRAN run-time support 217
-fsingle option 66

G
-G option 8, 42, 75
-g option 42, 75
gcompare utility 172
gdump utility 175
general options 68
general registers 146
generating debug information 42
gfile utility 177
gfunsize utility 178
ghexfile 172
ghexfile utility 179
ghide utility 182
GHS_VP_DEBUG 13
GHS_VP_NONE 13
GHS_VP_SLOW 13
-globalreg=n option 73
gmemfile 172
gmemfile utility 183
gnm utility 184
-gnu_c option 91, 97
grom utility 33
grouping program variables 36
grun utility 187
gsize utility 189
gsrec utility 190

command line options for 179, 183
gstack utility 196
gstrip utility 197
gsymdump utility 198
gtune utility 200
--guiding_decls option 105
gversion utility 202

H
-H option 69
header files 20
-Help option 69
-help option 69, 120

I
-I option 20, 69, 120, 138
-i2 option 109
-i4 option 109
-ident option 71
identifiers 123

in assembler 123
image files

in ELF format 46, 58
--implicit_extern_c_type_conversion option 97
--implicit_include option 106
--implicit_typename option 106
include files 20

directive for 20, 133, 138
directory for assembler 120
search method for 69

-include option 89
-includenever option 89
-includeonce option 89
-initextern option 92
initialized data, in ROM 33
inlining input source files 77
--inlining option 97
--inlining_unless_debug option 97
--instantiation_dir= option 106
interrupt functions 39
interrupt processing 29
interrupt vectors 40

J
Japanese Automotive C 38
-japanese_automotive_c option 38, 92

K
-k+r option 91
--keep_gen_c option 97
-keeptempfiles option 70
Green Hills Software, Inc. I-5

Index

L
-L option 66
-l option 66
label field 126
labels, in assembler 129
language independent library 21
-language option 70
--late_tiebreaker option 96
less buffered I/O C-10
libansi.a

ANSI C library 21
data structures C-4

libind.a
functions C-9
language independent library 21

librarian 5, 20
command line options 158

q 159
r 159
x 159

examples of using 160
generating archives with 69
See Also archives

libraries 21
libraries and support routines 21
library

compiler driver options for 66
libsrc 206
libsys.a 206
line terminators

in assembler source statements 126
linker 5, 16, 20, 220

compiler driver options for 67
default section map 32
ELF optional header output 63
switches for 35
symbols for 32

linker directives 207
--list option 103
-list option 66, 120
listing format directives 133, 141
listing options 103
-lnk option 35, 67
-locatedprogram. See -relprog, -relobj, -archive,

-shared. 67
--long_lifetime_temps option 97
loop unrolling 81

disabling 87
lx linker 20

See Also linker

M
macro assembler 5
macro assembler syntax 123
macro assembler. See assembler
macro definition directives 133, 138
macro expansion 138
macros, defining 138
manifest expressions 128
math library 21
--max_inlining option 97
--max_inlining_unless_debug option 97
memory options 82
Motorola S-record output 35, 68
mtrans utility program

output used by gsymdump utility 198
MULTI debugger 8, 22, 24

compiler driver options for 75
--multibyte_chars option 98
multiple-section programs 36

N
named labels 129
-namelist option 109
namespaces

options 98
--namespaces option 98
near and far function calls 40
-needprototype option 93, 100
--new_for_init option 98, 101
--no_anachronisms option 100
--no_array_new_and_delete option 95
--no_auto_instantiation option 105
--no_bool option 96
--no_brief_diagnostics option 102
--no_distinct_template_signatures option 105
--no_enum_overloading option 96
--no_extern_inline option 96
--no_for_init_diff_warning option 102
--no_forced_zero_initialization option 98
--no_guiding_decls option 105
--no_implicit_extern_c_type_conversion

option 97
I-6 Using MULTI with amonserv, v. 1.8.9

Index
--no_implicit_include option 106
--no_implicit_typename option 106
--no_inlining option 98
--no_multibyte_chars option 98
--no_namespaces option 98
--no_nonstd_qualifier_deduction option 106
--no_old_specializations option 107
--no_pch_messages option 105
--no_restrict option 98
--no_rtti option 98
--no_typename option 107
--no_use_before_set_warnings option 102
--no_using_std option 100
--no_warnings option 103
--no_wchar_t_keyword option 100
--no_wrap_diagnostics option 103
-noalias option 93, 94
-noansi option 90
-noansiopeq option 94
-noasm option 39, 93, 100
-noasmwarn option 91, 95
-noautoregister option 75
-nobigswitch option 109
-noconcatcomments option 92, 94
-nocpperror option 89
-nodbg option 76
-nodod option 109
-nofloatio option 67, 69
-nogen option 121
-nognu_c option 91, 97
-nonamelist option 110
-nonoalias option 93, 94
-nonooldfashioned option 93, 94
-nonosym option 43
--nonstd_qualifier_deduction option 106
-nooldfashioned option 93, 94
-nooverload option 75
-nopragmawarn option 89
-nosave option 110
-noshortenum option 39, 91, 99
-noshortwchar option 91, 99
-nostartfiles option 67
-nostdlib option 21, 67
-nostrip option 44
-nosym option 43
-novms option 110
numeric constants 124

NVPATH 12, 13

O
-o 10
-O option 76
-o option 10, 11, 12, 69, 71, 121
-OA option 77
object file types 47
object files

in ELF format 46, 58
printing size of with gfunsize utility 178
relocatable, generating 69

object module librarian 20
-object_dir option 71
-OD option 82
-OI option 77
-OI= option 78
-OL option 81
-OL= option 81
-OLB option 81
--old_for_init option 98, 101
--old_specializations option 107
-OM option 82
--one_instantiation_per_object option 106
-onetrip option 110
-Ono option 86
-Onoconstprop option 86
-Onocse option 86
-Onomemory option 82, 86
-Onominmax option 86
-Onopeep option 86
-Onopipeline option 86
-Onostrcpy option 86
-Onounroll option 87
operator field 126
operators

type combinations and 129
optimization

algorithmic 77
compiler driver options for 76
controlling with compiler driver options 86
inlining 77
loop unrolling 81
space 82

optimizing compilers 19
-OS option 85
Green Hills Software, Inc. I-7

Index

-OT option 86
-Ounroll8 option 82
-overload option 75

P
-P option 90
--pack_alignment= option 98
packing, structure 26
padding between fields 26
Pascal language

making compiler driver aware of 70
-passsource option 71
--pch option 104
--pch_dir option 104
--pch_messages option 105
-pg option 71
pipelined architectures

disabling instruction resequencing 86
-pragma_asm_inline option 38, 94
precompiled headers

options 104
--prelink_objects option 71, 107
preprocessor options

for C 89
for C and C++ 89

program headers 63
program sections

begin and end symbols for 169
for embedded development 32
user-defined 32

program start address 35
program variables, grouping 36

Q
quoted string expressions 129

R
-r option 121
RAM, placing variables in 36
recursion, tail 86
-redefine option 89
reentrant functions, in C runtime libraries C-3
-ref option 121
register usage 25
-relobj option 68

relocatable expressions 129
relocatable object file 46
relocatable object module 11, 12
relocation directories

for ELF object files 58
relocation types 58
-relprog option 68
--remarks option 102
renaming output file 10, 12
repeat block directives 133, 139
reserved symbols 124
--restrict option 98
revision tracking 140
ROM monitor 6
ROM, putting data in 32
RTTI 98
--rtti option 98
run-time environment and library

organization 205
run-time error checking options 87
run-time libraries C-1

S
-S option 72
-save option 110
-sec option 68
section attribute flags 55
section control directives 132, 135
section header conditions 52
section header table 46
section maps 32
section names 56
section pragma 36
section types 54
sh_flags 55
-shared 72
shared object

producing, see -shared 72
--short_lifetime_temps option 97
-shortenum option 91, 99
-shortwchar option 91, 99
-signedchar option 91, 99
-signedfield option 91, 99
-signedptr option 92, 99
-signedwchar option 92, 99
simulator 5
size of program, reducing 34
I-8 Using MULTI with amonserv, v. 1.8.9

Index
skip 180
-slashcomment option 94
source code

interleaving with assembly code 71
source files for customization 212
source listing, from assembler 120
special section indexes 53
-srec option 68
-sreconly 68
-sreconly option 68
S-records 35, 68

converting from ELF or COFF files 190
output from gsrec utility 190

standard error, list of files to 69
standard I/O package C-10
-start 35
-start option 193
startup file 21
--STD option 101
--std option 101
stdio C-10
-STRICT option 95
--strict option 101
-strict option 94, 95
--strict_warnings option 101
string constants 125
string table

in ELF object files 62
-strip option 44
structure packing 26
support routines and libraries 21
--suppress_vtbl option 108
-sym option 43
symbol binding 60
symbol definition directives 133, 137
symbol table

entries for identifiers 140
in ELF object files 59
modifying with ghide utility 182

symbol type 61
symbol values 62
symbolic debugging 140
symbolic debugging directives 140
symbols

external, hiding with ghide utility 182
truncating names of 72

-syntax option 72

system registers 147

T
-T option 72, 92, 99
-t option 107
tail recursion, disabling 86
template options 105
-template=auto option 105
-template=noauto option 105
temporary labels 130
termination record 193
-tmp option 92, 99
type combinations 129
--typename option 107

U
-U option 90, 110
-U- option 90
-u option 110
unary 127
undefined expressions 129
unreferenced strings 63
-unsignedchar option 38, 91, 99
-unsignedfield option 38, 91, 99
-unsignedptr option 92, 99
-unsignedwchar option 92, 100
--use_pch option 105
--using_std option 100
utility programs 171

V
-V option 72, 121
-v option 72
variables

compiler driver options for allocating 73
local, automatic allocation 73
placement of for embedded development 36
positioning to minimize padding 35

version number
generating from assembler 121
generating from compiler driver 72

viewpathing 11
virtual tables 108
-vms option 110
Green Hills Software, Inc. I-9

Index

void __DI built-in function 40
void __EI built-in function 40
void _set_il built-in function 40
volatile keyword 82

W
-W option 72
-w option 68, 73
-Wa option 122
-wantprototype option 93, 100
warnings, suppressing 73
--wchar_t_keyword option 100
white space 126
--wrap_diagnostics option 103

X
-Xa option 92
-Xc option 92
--xref option 104
-Xs option 94
-Xt option 94

Y
-Y option 73

Z
-Zp1 option 26
-Zp2 option 26
-Zp4 option 26
I-10 Using MULTI with amonserv, v. 1.8.9

	Embedded MCore Development Guide
	Embedded MCore Development Guide
	Contents
	About this Manual
	Typographical Conventions
	What This Manual Covers

	1 Introduction
	Components of the Toolset

	2 Building An Executable Program
	How to Build a Program for Use with the MULTI Debugger
	The Compiler Driver
	How to Build a C Executable Program
	How to Build a C++ Executable Program
	How to Build Programs with C and C++ Modules

	3 The Toolset
	How to Compile and Link an Executable Program
	Green Hills MCore Cross Compilers
	The MCore Macro Assembler, asmcore
	Object Module Librarian, ax
	The MCore Linker, elxr
	Header Files
	Support Routines and Libraries
	Startup File
	Libraries
	ANSI C Library, libansi.a
	Language Independent Library, libind.a

	Debugging and Running the Program
	MULTI Debugger
	Simulator
	In-Circuit Emulator Server

	4 The MCore Processor
	MCore Characteristics
	Compiler Output Format
	Register Usage
	Structure Packing
	Calling Conventions
	Arguments
	Return Values
	Frame Pointer

	Interrupt Processing in C and C++

	5 Embedded Features
	Program Sections
	Putting Data into ROM
	Putting Initialized Data into ROM
	How to Copy Data Sections from ROM to RAM and Clear .bss (zero-initialized data)
	Verifying Program Integrity

	Reducing Program Size
	Removing Floating-Point Libraries
	Specifying Program Start Address

	Using Linker Switches
	Producing S-Record Output
	Multiple-Section Programs
	Renaming Text Sections
	Bad Example 1
	Bad Example 2

	Japanese Automotive C
	Interrupt Functions
	#pragma ghs interrupt
	#pragma intvect

	6 Debug Formatting
	Basic Debug Formatting Information
	Benefits of .dbo Files
	Backwards Compatibility
	How to Use DWARF
	Controlling Generation of the .dnm File

	7 ELF Files
	Relocatable and Executable File Organization
	32-bit ELF Data Types
	ELF Header
	ELF Identification
	Sections
	Section Headers
	Special Section Indexes
	Section Types
	Section Attribute Flags
	Relocation Types

	Symbol Tables
	Symbol Binding
	Symbol Type
	Symbol Values

	String Tables
	Program Headers

	8 Compiler Driver Options
	MCore-Specific Options
	Driver Options Specific to the Assembler
	Library Options
	Driver Options Specific to the ELXR Linker
	General Options
	Data Allocation Options
	Debugging Options
	Optimization Options
	Algorithmic
	Inlining
	Loop Optimization
	Memory
	Space
	Optimization Control (-Ono)

	Run-time Error Checking Options
	Ada Compiler Options
	C Preprocessor Options
	C and C++ Preprocessor Options
	C Compiler Options
	Compile-Time Error Checking

	C++ Compiler Options
	C++ Compatibility Options
	C++ Library Selection Options
	Error Message Options
	Listing Options
	Precompiled Header Options
	Template Options
	Virtual Table Control Options

	FORTRAN Language Compiler Options

	9 Macro Assembler
	Macro Assembler Characteristics
	Command Line Options
	Example:

	Using the Driver
	Macro Assembler Syntax
	Character Set
	Identifiers
	Examples:

	Reserved Symbols
	Constants
	Numeric Constants
	String Constants
	Character Constants
	Character Escape Sequences

	Source Statements
	Label Field
	Operator Field
	Argument Field
	Comment Field
	Continuation Lines
	White Space
	Line Terminators

	Expressions
	Assignment Statements
	Scalar Expression Operators
	Expression Types
	Type Combinations
	Examples:

	Labels
	Named Labels
	Temporary Labels
	Example

	10 Macro Assembler Directives
	Listing of Macro Assembler Directives
	ALIGNMENT:
	DATA INITIALIZATION:
	SECTION CONTROL:
	SYMBOL DEFINITION:
	FILE INCLUSION:
	MACRO DEFINITION:
	REPEAT BLOCKS:
	CONDITIONALS:
	LISTING FORMAT:

	Characteristics of Specific Directives
	Alignment
	Data Initialization
	Section Control
	Symbol Definition
	File Inclusion
	Macro Definition
	Repeat Block
	Conditional Assembly
	Symbolic Debugging and Revision Tracking
	Symbol Attribute Operations
	Listing Format

	11 MCore Macro Assembler Reference
	Register Set
	General Registers
	Control Registers

	Addressing Modes
	Introduction
	Example:

	No Arguments
	Example:

	Register
	Example:

	Two Registers
	Example:
	Example:

	Register with 5-bit Immediate
	Example:

	Register with 7-bit Immediate
	Example:

	Control Register
	Example:

	Register Indirect with 4-bit Scaled Displacement
	Example:

	Register List
	Example:

	Scaled 8-bit Immediate Indirect
	Scaled 11-bit Branch Displacement
	Example:

	Register with 4-bit Negative Displacement
	Example:

	Macro Expansion
	Alphabetical List of MCore Instructions

	12 The Librarian
	Description
	Command Line Options
	Examples

	13 The ELXR Linker
	Command Line Options
	Option Processing
	Options

	Program Entry Point
	Section and Memory Maps
	Section Definition
	Example:

	Expressions
	Section Attributes
	Green Hills Specific Linker Features
	Section-Info Section (.secinfo)
	Runtime Clear and Copy Tables
	Begin and End of Section Symbols
	Example

	Porting Guide from other linkers
	LX
	Section Attributes:
	Section Renaming:

	14 Utility Programs
	The gcompare Utility Program
	Usage

	The gdump Utility Program
	Usage
	BSD File Options
	ELF File Options

	The gfile Utility Program
	Usage
	Examples
	Example 1
	Example 2

	The gfunsize Utility Program
	Usage

	The ghexfile Utility Program
	Usage
	Features of ghexfile

	The ghide Utility Program
	Usage
	Example

	The gmemfile Utility Program
	Usage
	Uninitialized Segments (ELF only)

	The gnm Utility Program
	Usage
	ELF File Options

	Default Output Format
	Alternate 3 Column Output Format with -p

	The grun Utility Program
	Usage

	The gsize Utility Program
	Usage

	The gsrec Utility Program
	S-Record Output Format
	Usage
	Data Record
	Termination Record
	Data Splitting
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	The gstack Utility Program
	Usage
	Example
	Caveats

	The gstrip Utility Program
	Usage
	ELF File Options

	The gsymdump Utility Program
	Usage

	The gtune Utility Program
	Usage
	Example

	The gversion Utility Program
	Usage
	Example 1
	Example 2

	15 Runtime Environment and Library Organization
	Introduction
	Multiple Language Runtime Support
	MCore Library Structure
	Linker Directives Files
	How to Create a Customized Linker Directives File
	Special Sections in Linker Directives Files
	Source Files Available for Customization
	crt0.mco
	ind_crt0.c
	ind_call.mco
	ind_dots.mco
	ind_mcpy.c
	ind_mset.c
	ind_mcnt.mco
	ind_gcnt.mco
	ind_bcnt.c
	ind_mprf.c
	ind_gprf.c
	ind_heap.c
	ind_io.c
	ind_exit.c
	FORTRAN Runtime Support
	Other Low-Level Functions

	Incorporating Your Changes into the Libraries

	16 MCore Simulator
	The MCore Simulator Command Line Options
	Command Line Options

	The Simulator as a MULTI Debugger Target
	OS Simulation Mode

	ROM Mode
	Unsupported Features

	A Enhanced asm Facility
	Introduction
	Definition of Terms
	asm Macros
	Definition
	Storage Modes
	asm Body

	MCore asm procedures
	Writing asm Macros

	B Viewpathing
	Theory of Operation
	Limitations
	Environment Variables
	Example

	C C Runtime Libraries
	Built-in Functions
	_ _MULUH, _ _MULSH
	_ _CLZ32
	_ _DI, _ _EI

	Reentrancy
	libansi.a data structures and functions
	libind.a functions
	Less Buffered I/O

	Index

