

Building and Editing with
MULTI® 2000

Copyright © 1983-1999 by Green Hills Software, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission from Green Hills Software, Inc.

DISCLAIMER
GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software, Inc.
reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation
of Green Hills Software, Inc. to notify any person of such revision or changes.

Green Hills Software and the Green Hills logo are trademarks, and MULTI is a registered trademark, of Green Hills
Software, Inc.
System V is a trademark of AT&T.
Sun is a trademark of Sun Microsystems, Inc.
UNIX and Open Look are registered trademarks of UNIX System Laboratories.
ColdFire is a registered trademark of Motorola, Inc.
DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.
4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.
X and X Window System are trademarks of the Massachusetts Institute of Technology.
Motif is a trademark of Open Software Foundation, Inc.
VelOSity and Integrity are trademarks of Green Hills Software, Inc.
VxWorks is a registered trademark of Wind River Systems, Inc.
pSOS, pSOS+/Probe are trademarks of Integrated Systems, Inc.
Microsoft is a registered trademark, and Windows, Windows 95, and Windows NT are trademarks of Microsoft
Corporation.
All other trademarks or registered trademarks are property of their respective companies.

PubID: M41W-A1299-2BNG

Time Stamp: December 20, 1999 3:41 pm

CONTENTSContents
 Preface P-1
About the MULTI manuals P-2

Conventions P-2

1 Introduction to MULTI 1
Features 2

Embedded programming in MULTI 4

Running MULTI from the command line 5

Resources 9

2 Using the Builder 11
Starting a Builder session 12

Setting up your software project 13

Navigating through your project 18

Setting options: An overview 20

Important options 23

Building your project 24

Debugging 27

3 The Builder GUI 31
The Builder window 32

The Builder menus 32

The Builder toolbar 41

Other Builder components 42

Build Panel 43

File Options dialog box 45

Language Options dialog box 68

CPU Options dialog box 92

Toolchain Options dialog box 118

The Progress window 126
Green Hills Software Inc. i

CONTENTS
4 Version control 129
MULTI Version Control 130

How to use MVC 131

Branching and version numbers 131

How to use the MVC commands 132

MVC command list 134

Other version control systems 139

5 Using the Editor 143
Starting the Editor 144

Opening files 145

Navigating between open files 147

Saving files 147

Editing 148

Working with your code 151

Searching 155

Merging files 156

Comparing files 160

Using version control from the Editor 160

Configuring the Editor 162

6 The Editor GUI 163
The main Editor window 164

Editor menus 164

Editor toolbar 173

Location fields 174

Status bar 174

Merge dialog boxes 175

Search dialog box 178

Goto dialog box 182
ii Building and Editing with MULTI 2000

CONTENTS
Per File Settings dialog box 182

File chooser 183

Print dialog box 185

7 Editor commands 187
Navigation commands 188

Indentation commands 191

Selection commands 192

Drag-and-drop commands 195

Text deletion commands 197

Clipboard commands 197

Block commands 198

Search commands 200

Undo/Redo commands 201

File commands 202

Tool commands 205

Tag commands 207

Version control commands 209

Configuration commands 212

Help commands 214

Insert commands 214

’if’ conditional commands 215

8 Default key bindings 217
Default keyboard settings 219

Escape key interrupt 225

Default mouse settings 225

9 Configuring and customizing MULTI 229
Setting configuration options 230
Green Hills Software Inc. iii

CONTENTS
Customizing the graphical user interface (GUI) 233

Creating custom functionality 234

How MULTI uses startup files to configure a session 237

Example customizations 239

10 Configuration commands 241
Options dialog box 242

Other Configuration options 266

A Third party tools A-1
Third party version control systems A-2

Third party editors A-2

Using the Editor with third party tools A-3

Using the Debugger with third party tools A-4

Index I-1
iv Building and Editing with MULTI 2000

Preface
This chapter contains:

• About the MULTI manuals

• Conventions

About the MULTI manuals

This manual systematically documents all the features and commands of the
MULTI Builder and Editor. The comprehensive index will help you locate the
information you need.

For other components of MULTI, such as the Debugger, refer to the Debugging
with AdaMULTI 2000 manual.

For specific target systems, refer to the Development Guide for your target.

Conventions

Typographical conventions

For example, in the command description:

gxyz [-processor] filename

the command gxyz should be entered as given, the word processor may
optionally be substituted with an appropriate option, and the word filename
must be replaced with an appropriate file name.

Convention Example Description

italic text in a command line -o filename place-holder for mandatory user-supplied
arguments

square brackets, [] .macro name [list] encloses optional commands, terms, or
arguments

square brackets [] around
boldface word “default”

Specifies char as
signed. [default]

command or option is the default

menu > item > sub-item... File > Open... menu bar, menu items, sub-menu items...

Enter something Enter adamulti a.out Type something AND press the Enter key.
Compare with “Type something” below.

Type something Type foo.s and press
Edit

Type something WITHOUT pressing the Enter
key. Compare with “Enter something” above.
P-2 Building and Editing with MULTI 2000

Conventions

it) or

GUI mode conventions
The main MULTI windows in the Builder, Editor, and Debugger contain some
or all of the following regions:

GUI conventions
MULTI documentation assumes you have a working knowledge of your
operating system and its conventions, including its command-line and GUI
interfaces—for example, how to use a mouse and standard menus and
commands, and how to open, save, and close files, etc.

Check box conventions
There are two types of check boxes: two-way and three-way.

A two-way check box has two states: either enabled (with a check mark in
disabled (when it’s empty). For example, Config > Options... > Colors tab >
Build file coloring.

Convention Description

source pane The portion of the window in which the source code is displayed.

status bar Displays information, such as the process state and the name of
the file being debugged.

command pane Area to enter commands and display results.

toolbar Contains buttons for commonly used commands.

Convention Meaning

First mouse button Mouse buttons are numbered from the left. The first mouse
button is the left-most mouse button.

Shift+Click Hold down the Shift key while clicking a mouse button.

Ctrl+Click Hold down the Ctrl key while clicking a mouse button.
Green Hills Software, Inc. P-3

A three-way check box has three states (for example, Builder > Project >
Options > General tab > Automatically use MVC):

• The first state is On. The box has a plus sign (+), indicating that the option is
turned on, overriding any previous or inherited settings.

• The second state is Off. The box contains a minus sign (-), indicating that
the option is turned off, overriding any previous or inherited settings.

• The third state is Default. The box is empty, indicating that the inherited
state, if any, is used.
P-4 Building and Editing with MULTI 2000

Chapter
1

Introduction to
MULTI
This chapter contains:

• Features

• Embedded programming in MULTI

• Running MULTI from the command line

• Resources

1. Introduction to MULTI

ode.

s

MULTI is a complete interactive software development environment for programs written in
Ada, C, C++, Pascal, and FORTRAN, as well as in assembly language for each supported
target. Source code from these languages can be compiled and linked into a single executable
in virtually any combination.

NOTE: If you are upgrading from version 1.8.9 to MULTI 2000, DO NOT
INSTALL YOUR MULTI 2000 IN THE SAME LOCATION AS YOUR
1.8.9 RELEASE.

Features

Some of MULTI’s powerful features include:

Project Management
• A Program Builder for creating, assembling, and controlling your

programming projects. See Chapter 2, “Using the Builder”.

• A Progress Window to keep you informed at all times as you build your
project. See “The Progress window” on page 126.

Version Control
• An automatic Version Control System with features for managing revision

levels and program branches, and for tracking the origins of suspicious c
See Chapter 4, “Version control”.

• The capability to Merge two or three versions of a file. See “Viewing
inherited options” on page 21.

• Highlighted Diff Windows to see the difference between two files. See
“Comparing files” on page 160.

Editing
• A built-in Editor that is fully configurable, enhanced with special feature

to support some of the advanced capabilities of MULTI. See Chapter 5,
“Using the Editor”.
2 Building and Editing with MULTI 2000

Features
Debugging
For information about the following features, see the Debugging with
AdaMULTI 2000 manual.

• A Source Level Debugger that supports mixed language debugging and all
C++ and Ada language constructs.

• A Profiler that collects data, provides reports, annotates the source code to
find hot spots in your program, and provides mechanisms to feed
information back into the development process.

• Run-Time Error Checking for different classes of errors, implemented
with a combination of compiler checks, libraries, and debugger commands.

• Expression Evaluation to determine whether your expressions are correct.

• A Data Explorer to monitor variables and evaluate expressions during
debugging.

• Memory Leak Detection to find chunks of memory that have been
allocated but are no longer used.

• Conditional Breakpoints that cause a breakpoint to be active under
conditions you specify.

• A graphical Ada 95 Type Inheritance and C++ Class Browser to delineate
the structure of your classes and of classes you inherit.
Green Hills Software, Inc. 3

1. Introduction to MULTI
Embedded programming in MULTI

MULTI supports embedded development for the following 32- and 64-bit
microprocessor families:

Embedded programming is the programming of microprocessors which are
incorporated into an embedded product. Workstations and PCs are used as host
computers on which programs are edited and compiled. The programs are then
downloaded into a target system to be debugged and executed.

MULTI interfaces to embedded targets by connecting to a debug server. The
debug server may reside on the same host as MULTI, or on any other host on
your network. The debug server communicates with the target under

Processor families supported by MULTI

680x0/683xx

ARM / Thumb

ColdFire

i960

MCore

MIPS

PowerPC

RH32

SPARC

SH

TriCore

V800

x86 / Pentium
4 Building and Editing with MULTI 2000

Running MULTI from the command line

nd
es and

dded
n

age

s
development. Green Hills supplies servers for many common target systems
and real time operating systems:

• Instruction set simulators: Simulators can test programs before target
hardware is ready and are available for most processor models. Instruction
set simulators incorporate an integrated debug server as a front end.

• ROM Monitors: Monserv and the ROM monitor specific to your target
support basic debug features, host I/O, a command window, and profiling.

• In-Circuit Emulators: Available for several popular emulator families.
Emulator servers use your network to communicate with the command
interface of the emulator.

• ROM Emulator: NetROM provides debugging capabilities with only a
single connection to the ROM socket.

• RTOS (real-time operating system) servers: Available for several real
time operating systems including INTEGRITY from Green Hills Software,
ThreadX from Express Logic, OSE from Enea Systems, and VxWorks from
Wind River. RTOS servers use ethernet and serial communication to
communicate with a debug process running under the RTOS. Commands
from MULTI’s various debug windows are combined into a single comma
stream by the RTOS server; the debug process interprets these messag
performs the proper action on the appropriate task.

MULTI allows you to use the same tools for both embedded and native
development. The same MULTI program can debug both native and embe
code; the only difference is that MULTI uses a different host processor whe
communicating with an embedded target.

Running MULTI from the command line

When you start MULTI, it attempts to use the host system windowing pack
by default. If you start MULTI on a color monitor, it defaults to color. If you
start MULTI from a non-windowing monitor or if MULTI encounters problem
with the window interface, it comes up in non-GUI mode. If MULTI is
incorrectly coming up in non-GUI mode, check that the DISPLAY environment
variable is set, or set it from the command line with the -display option.

If MULTI is in your path, then the command line syntax is:

adamulti [options] [filename]
Green Hills Software, Inc. 5

1. Introduction to MULTI

ns to

n
If filename is a build file, then the Builder starts up with the build file loaded.
Note that some options are specific to the Debugger and are not applicable to
the Builder.

If filename is an executable program file that has had some (or all) of its
component modules compiled for debugging (with Green Hills compiler’s -G
or -g options), then the Debugger starts up. For a list of command line optio
use when opening the Debugger, see “Command line options” on page 7.

If you specify a build file, it can either be a main project or a subproject. To
open a subproject directly with the inherited options from a particular main
project, specify the main project name followed by the subproject’s name i
quotes. For example:

adamulti "main.bld sub.bld"

This opens the subproject, sub.bld, with the options inherited from main.bld.

See the following table of examples.

How to open MULTI

Example Description

adamulti Opens the Builder on the last build file that was
open.

adamulti default.bld Opens the Builder on default.bld. If default.bld is
not found, MULTI will create it.

adamulti foo.bld Opens the Builder on the file foo.bld. The build file
may be a main project or a subproject.

adamulti "parent.bld child.bld" Opens the Builder on the subproject child.bld
directly with the inherited options from the main
project parent.bld.

adamulti a.out Opens the Debugger on the executable a.out

adamulti -remote simppc Opens the Builder and connects it to the simulator
simppc. In this syntax, it is a function of the debug
server whether the Builder window or the Debugger
window is opened. See the example below with
adamulti -remote 5emon.

adamulti -remote simppc a.out Opens the Debugger on the executable a.out and
the Debugger is connected to the simulator simppc.

adamulti -remote 5emon Opens the Debugger and connects it to the debug
server 5emon. In this syntax, it is a function of the
debug server whether the Builder window or the
Debugger window is opened. See the example
above with adamulti -remote simppc.

adamulti foo.c Opens the Editor on the file foo.c.
6 Building and Editing with MULTI 2000

Running MULTI from the command line

 8
Command line options
When you start MULTI from the command line on an executable program file
(i.e. when you want to use the Debugger directly), the following options may be
used. Some of these options should not be used when starting MULTI on a build
file, or when starting MULTI without a file.

-c file
Reads configuration information from file.

-C corefile
Sets core file. corefile is assumed to be a core image of objectfile.

-D
Ignores all currently specified alternate directories.

-data offset
Offsets for all data addresses. This is for position independent data. The
offset is entered in decimal by default. A hexadecimal number may be
specified by preceding the number with 0x. For example, 0x10000.

-dotciscxx
Treats files ending in .c as C++ files instead of C files.

-e entry
Specifies entry label. The default is main. In C++ mode, the entry must
be specified in such a way that it may be demangled.

-E file
Tells MULTI to debug more than one file. Use this option for each file
you wish to debug at the same time. For example, if you want to debug
foo, bar, and rin, then type:

adamulti foo -E bar -E rin

-help
Runs MULTI and opens the on-line help system with the MULTI
manual.

-I directory
Names an alternate directory where files are searched for. Alternate
directories are searched in the order given. If a file is not found in an
alternate, the current directory is searched.

-L[cpfC]
Sets language type (C, Pascal, FORTRAN, or C++ respectively). By
default, MULTI uses the file name extension to determine the language.

-m file
Uses file as default specification file. See “Specification file” on page
for more information.
Green Hills Software, Inc. 7

1. Introduction to MULTI

r

ars.

 The
e

.
ion
am
mand
st
-nocfg

Does not read any of the .cfg files of MULTI on startup.

-norc
Does not run any .rc files on startup.

-noshared
Does not debug shared libraries.

-nosplash
Does not open the About banner. See “About MULTI...” on page 41 fo
more information.

-p file
Startup with command playback from file.

-P pid

Attaches to process with process id pid. This option is currently for
Solaris only.

-r file
Startup with commands recording to file.

-R file
Startup with commands and output recording to file.

-rc file
Reads file as a command script when the first debugger window appe
The file is read after the global and user script files.

-remote target
Attaches to remote debug server with name target.

-text offset
Offsets for all text addresses. This is for position independent code.
offset is entered in decimal by default. A hexadecimal number may b
specified by preceding the number with 0x. For example, 0x10000.

-V

Prints debugger version information.

Specification file
The specification file allows you to set up a default set of command line
arguments that may be used with any given executable you want to debug
However, not all command line options are available for use in a specificat
file. If you want a set of default arguments for each program, put the progr
name at the beginning of a line followed by a space and then a set of com
line arguments. The arguments may be continued on the next line if the fir
8 Building and Editing with MULTI 2000

Resources
character in that line is a tab. When you run MULTI with the -m option, the file
listed is checked and if there is an entry that matches the name of the executable
being debugged, then that list of command line arguments is used. For example,
a specification file named albatross might look like this:

foo -norc -I /usr/joebob -I /usr/foodir
bar -text 10000 -data 10000

If you then type:

adamulti -m albatross foo

the file albatross is searched and the arguments found after foo are used. This is
equivalent to typing:

adamulti foo -norc -I /usr/joebob -I /usr/foodir

Resources

To install MULTI, please see the MULTI 2000 Installation & Licensing Guide.

The Debugging with AdaMULTI 2000 manual provides information on using
the Debugger and its related features.

The Quick Reference Card summarizes the most common Debugger and Editor
commands.

For assistance or additional information about the use of Green Hills Software,
please contact our Technical Support:

Green Hills Technical Support

North America Mountain/Pacific time, Australia, and New Zealand
Tel: (805) 965-6044, Fax: (805) 965-6343
email: support-west@ghs.com

North America Eastern/Central time, South America
Tel: (781) 862-2002, Fax: (781) 863-2633
email: support-east@ghs.com

Europe, Africa, India
email: support-nl@ghs.com

Japan, Taiwan, and South Korea
Tel: +81-3-3576-6805, Fax: +81-3-3576-0106
email: support@adac.co.jp
Green Hills Software, Inc. 9

1. Introduction to MULTI
10 Building and Editing with MULTI 2000

Chapter
2

Using the Builder

This chapter contains:

• Starting a Builder session

• Setting up your software project

• Navigating through your project

• Setting options: An overview

• Important options

• Building your project

• Debugging

2. Using the Builder

ults

er.
ger

 file

 are

hat
The Builder is a graphical tool that configures how your software project gets built. In
addition to maintaining file dependencies like a make file, the Builder also lets you set
compiler options.

Starting a Builder session

When you start the Builder, it attempts to use the host system’s windowing
package. If the Builder is started on a machine with a color monitor, it defa
to color.If you run MULTI from a non-windowing monitor or encounters
problems with the window interface, it will come up in non-GUI mode. If
MULTI is incorrectly coming up in non-GUI mode, check that the DISPLAY
environment variable is set, or set it from the command line with the -display
option.

If you start MULTI with the -nodisplay command line option, or if MULTI
cannot start in GUI mode, then it will start in non-GUI mode in the Debugg
Because the Builder and Editor are available only in GUI mode, the Debug
is always displayed in non-GUI mode in these scenarios.

To start the Builder from the command line
Whenever you start adamulti without specifying any options, the Builder
automatically opens default.bld in the directory from where MULTI was
started. If default.bld does not exist in that directory, the Builder opens the
most recently used project instead. To start the Builder with a specific build
of your project loaded, do the following:

1. At the command prompt, change to the directory where your project files
located.

2. Assuming that adamulti is in your path, enter:

adamulti [filename]

where filename is the build file (*.bld) of the program, subproject, or library
of your project that you want to open.

Important: If you want to open a build file that is a child of another build
file in the hierarchy of your project, use the following syntax to ensure t
the child inherits all of the appropriate settings from its parent:

adamulti "parent.bld child.bld"

where parent.bld is the build file from which child.bld inherits its option
settings.
12 Building and Editing with MULTI 2000

Setting up your software project
For example, suppose you want to build the source files that belong to
foochild.bld, which is a program that inherits options from the top-level
program of your project, masterfoo.bld. To open foochild.bld directly
while inheriting all the options needed to compile and link it properly, enter:

adamulti "masterfoo.bld foochild.bld"

To open a different project in the same Builder window
1. Click Open ().

2. Browse for the *.bld of the project you want to open, and click Open.

To open a project in a new Builder window
1. Choose File > Open Project in New Builder...

2. Browse for the *.bld of the project you want to open, and click Open.

To set your target
When you start the Builder for the first time, it attempts to select a target that
matches the target of your development environment. If the Builder does not
select the correct target, you need to manually set it. Once you set the correct
target, the Builder will remember and use it every time.

1. Choose Project > Set Build Target for Project...

2. Browse the MULTI installation directory, and select the correct build file for
your target. For example, if your target is the PowerPC, select ppc.bld.

Note: Your MULTI installation may contain more than one build file for your
target. The majority of users select the most basic build file, for example,
ppc.bld. If you have a customized MULTI environment, you may need to load a
specialized build file for your target. For example, if you are using the PowerPC
500 as your target, load ppc500.bld.

Setting up your software project

By creating a hierarchical view of all your programs, libraries, source files,
headers, and other project files, you can define the file dependencies of your
software project.

As you define your file dependencies, you need to add a build file (*.bld) for
every program in your project. Also, add a build file for libraries that you want
Green Hills Software, Inc. 13

2. Using the Builder

ble
ild

to rebuild with your project. If you would like to take this a step further and
group source files into modules, you may add build files for your subprojects.
These build files:

• List all of the files that comprise the program, subproject, or library.

• Store compiler options for the program, subproject, or library, and for each
source file.

When defining your project hierarchy, be aware that files inherit compiler
options from parent build files. For example, suppose a program,
masterfoo.bld, contains a subproject, subfoo.bld. In this scenario, subfoo.bld
is the child that inherits options from the parent, masterfoo.bld. Now suppose
that subfoo.bld contains a source file, foo.c. In this scenario, foo.c inherits
options from masterfoo.bld AND subfoo.bld.

Using default.bld
When you start creating your project hierarchy, the Builder automatically puts
default.bld at the top of the hierarchy. Since your entire project inherits from
default.bld, you can use default.bld to set global options that will be used as
the default throughout your project.

You can create your own top-level *.bld files directly below default.bld in the
hierarchy if you are uncomfortable with using default.bld at the top of your
hierarchy. You can then load one of your own *.bld files when you start the
Builder. Your project will still inherit from default.bld behind the scenes, but if
you never load default.bld, the relationship will have no impact.

To define the executable programs in your project
You define what programs get built in your project by adding a build file for
each program. You can have multiple programs that are built as part of your
project. These programs can be built at the same hierarchical level, or one
program can be a child of another program.

If a program is a child of another program (i.e., it is lower in the hierarchy), the
source files of the child will inherit default settings from the parent. However,
the child’s source files will be compiled and linked into a separate executa
from the parent executable. For example, suppose you have a program bu
file, masterfoo.bld, at the top of your project’s hierarchy. Lower in the
hierarchy, you have fooaid.bld, the build file for a separate program. The
source files contained in fooaid.bld inherit options from masterfoo.bld, but are
compiled and linked into a separate executable, fooaid.out.

1. Start the Builder from the project’s directory.
14 Building and Editing with MULTI 2000

Setting up your software project

ke

e
e

is
 the
 the

he

ct is

am;

e

ou

he

 for

urce
2. If you want to put the program at the top of your project’s hierarchy, ma
sure default.bld is at the top of the Source pane.
– or –
If you want to put the program lower in your project’s hierarchy, navigat
until the program or subproject that will contain the new program is at th
top of the Source pane.

3. Click the Add button ().

4. In the file chooser, browse for a location to create your new build file. It
recommended to place the program’s build file in the same directory as
source files for that program. When you have chosen a directory, type in
name of the build file to create. Usually, this will be the same name as t
executable you wish to generate, but with a .bld extension. For example, if
your executable is called masterfoo.out, call your build file masterfoo.bld.

5. Click Add.

To define a subproject
To organize your source code into logical units, use subprojects. A subproje
always a child project of a program or another subproject. The source files
contained within a subproject are compiled and linked into its parent progr
subprojects do not get built into executables. You define a subproject as a
special type of build file (*.bld) that does not get built.

If your project uses sub-directories to organize your source code in your fil
system, you can create the subproject’s build file in the appropriate
sub-directory. This allows the Builder to look in the correct directory when y
add source files to the subproject.

1. Double-click the build file of the program or subproject that will contain t
new subproject.

2. Click Add ().

3. In the file chooser, select a directory and enter the name of the build file
the new subproject. The subproject’s build file needs to have a .bld exten-
sion. Normally, the subproject is located in the same directory as the so
files contained within it.

4. Click Add.

5. Highlight the new subproject.

6. Choose Project > Options for Selected Files....

7. On the General tab, set the Type: field to Subproject.
Green Hills Software, Inc. 15

2. Using the Builder

very

y

 for

the
8. Click OK.

To link in a compiled library
To link a compiled library to a program, add the library file to the program’s
build file.

1. Double-click the build file of the program to which you want to link the
library.

2. Click Add ().

3. Browse for the library file that you want to add, then click Add.

4. Look at the new file’s type to make sure the Builder assigned it the type
Library. If the Builder did not assign the Library type:

a. Highlight the library file.

b. Choose Project > Options for Selected Files... .

c. In the General tab, set the Type text field to Library.

To link to a library that gets built with your project
You can define a library and its source files so that the library gets rebuilt e
time you start a build.

If the library is hierarchically lower than a program or subproject, the librar
will inherit settings from the parent program or subproject. However, the
library’s source files get built into the library, not into the parent program.

1. Double-click the build file that will contain the new library.

2. Click Add ().

3. In the file chooser, select a directory and enter the name of the build file
the new library. Make sure your library’s build file has a .bld extension.
Normally, your library’s build file is located in the same directory as the
library’s source file, and the name of the build file is the same name as
library, but with a .bld extension.

4. Click Add.

5. Highlight the new library.

6. Choose Project > Options for Selected Files... .

7. In the General tab, set the Type text field to Library.

8. Double-click the new library.
16 Building and Editing with MULTI 2000

Setting up your software project

file

rce

ader
ure

 as

urce

neral

re
 the
9. Add source files for the new library.

To add an existing source file to your project

1. Double-click the build file that will contain the source file.

2. Click Add ().

3. Browse for the source file, and click Add. To add multiple files quickly, you
may specify a file pattern using the wildcard characters ‘*’ and ‘?’ in the
chooser.

To define and create a new source file
1. Double-click the build file that will contain the new source file.

2. Click Add ().

3. In the file chooser, select a directory and enter the name of the new sou
file. Click Add. The name of the file appears in the Source pane, but the
actual file does not yet exist.

4. Double-click the name of the new source file to open it in the Editor.

5. Save the new file.

To define header files
You can add header files to your project hierarchy to quickly access the he
files for edit. However, adding a header file to the hierarchy does NOT ens
that the Builder will find the header when it is compiling your source files.

To define a header file in your project hierarchy, add the file the same way
adding a source file.

To ensure that the Builder finds the header file when it is compiling your so
files:

1. Select the build file for the program or library you are building.

2. Choose Project > Options for Selected Files..., then navigate to the Ge
tab.

3. In the Source Directories: field, enter the path where your header files a
located. If your header files are located in multiple directories, separate
paths by commas WITHOUT any spaces.
Green Hills Software, Inc. 17

2. Using the Builder

. If

.c to

ich
 will
nge
r
g to a

ed.

file
d to
To change a file’s type
The Builder automatically sets the type of file based on the file’s extension
you need to manually override the Builder’s choice:

1. Select the file.

2. Choose Project > Options for Selected Files... .

3. Go to the General tab.

4. In the Type: field, select the type of the selected file.

Note, however, that the compiler will always be selected based on the file’s
extension, not the file type. So for instance, even if you set the type for foo
Fortran, the C compiler will still be used instead of the Fortran compiler.
Therefore, you will need to rename the file if you want to use a different
compiler.

To rearrange the order of files in the hierarchy
The files at each level of your project’s hierarchy display in the order in wh
you added them to the Builder. This is also the same order in which the files
be built. You can rearrange the order in which the files are displayed to cha
the build order, and also to help you visually understand your hierarchy. Fo
example, you may want to rearrange the files so the source files that belon
build file appear before the subprojects of that build file.

1. Highlight the files you want to move.

2. Choose Edit > Cut Selected Files, or click the Cut button ().

3. Highlight the file immediately above where you want the files to be plac

4. Choose Edit > Paste Selected Files, or click the Paste button ().

Alternatively, after you highlight the files you want to move, press
Ctrl+UpArrow or Ctrl+DownArrow to move the files up or down in the list.

Navigating through your project

In the Builder’s hierarchical view of your project, files that belong to a build
(program, subproject, or library) appear below the build file, and are indente
the right.
18 Building and Editing with MULTI 2000

Navigating through your project

 of a

t. The

file
,

uilt,

ntains
se

,
d

s of
There are two ways to see the contents of a build file in the hierarchy:

• Click the plus (+) and minus (–) signs to expand or collapse the contents
program, subproject, or library. This does not change the base project.

• Double-click a program, subproject, or library to make it the new base
project. At this point, you can no longer see the parent build file that
contains the new base project.

The base project
The build file that appears at the top of the Source pane is the base projec
base project changes as you navigate among the build files in your project.

Knowing which build file is the base project is important for three reasons:

• When files are added, they are added to the base project.

• Options for build files get set differently depending on whether the build
is the base project. For more details, see “Setting options for programs
subprojects, and libraries” on page 21.

• When you start a standard build, the current base project is what gets b
regardless of what is highlighted in the Source Window.

For example, suppose masterfoo.bld is the current base project, and co
another program, foochild.bld. If you highlight foochild.bld and then choo
Build > Build Program, the Builder compiles the masterfoo.bld program
NOT foochild.bld. To build foochild.bld, you must double-click foochild.bl
to make it the base project, then start the build.

Navigating among base projects
During a Builder session, you need to navigate through the various build file
your project hierarchy. To descend one level in the project hierarchy,
double-click on the build files to navigate deeper. Then, you can quickly

base project
Green Hills Software, Inc. 19

2. Using the Builder
navigate back and forth between levels by using the Back and Forward history
buttons:

 Navigates up the project hierarchy to the build file that encloses the current
base project.

 Navigates down the project hierarchy to the location of the previous base
project opened.

Searching through your project
If you have a big project, it may be difficult to locate a particular file within the
hierarchy. You can perform an incremental search to find your files quickly. To
perform the search, first expand the projects that contain the files you are
searching for. To expand the projects, click on the plus signs or click the Expand
button (). Then, use one of the following keystrokes:

Ctrl+f searches forward for the filename.

Ctrl+b searches backward for the filename.

When you type a key combination, the first instance of the matching filename is
highlighted. To find the next match, repeat the key combination. When you are
done, press Escape to cancel the search mode.

Note that only files in projects which have been expanded will be found. This is
why it is important to expand the relevant projects first, by clicking on the plus
signs, or using the Expand button.

To view all files in the base project

To expand the hierarchical view of the current program, subproject, or library so you can view
all of its files, click ().To open a source file in the Editor

If you want to edit a source file that appears in the hierarchical view of your
project, simply double-click the filename.

Setting options: An overview

You can use the Builder to set options for your project such as how it gets
compiled and linked, how you debug the executable, and how runtime error
checking works. Many of these options correspond directly to the compile-time
options for the Green Hills compilers.
20 Building and Editing with MULTI 2000

Setting options: An overview

ge

s in
s
ons
he

 or
le.
nts.

er

. If

in
le
build
d on
he
All of the Builder options are available through menu items in the Build menu.
For detailed descriptions of each Build menu item, see “Build menu” on pa
37.

Inheriting options from parent build files
A file inherits its options from all build files (*.bld) to which it belongs in the
project hierarchy. You can override these inherited options by setting option
the file itself. When the Builder compiles your project, the top-level project’
options are applied first, with each subsequent child project adding its opti
to the existing ones, overriding or appending where specified, until finally t
individual file options are added for each file.

Viewing inherited options
When you look at the options for a particular file, whether it is a source file
build file, you see only the options that have been specifically set for that fi
You do not see the options that the file inherits from the build files of its pare
Before setting an option for a specific file, you probably want to see wheth
that option is already being inherited from a parent.

To see the inherited value of the option, do one of the following:

• In the main Builder, click Merge ().

• From the Builder, choose Project > Options for Selected Files... and click
Merge in the Options dialog box.

You cannot edit the options while you are looking at them in merged mode
you see an option you want to change, first do one of the following:

• In the main Builder, click Unmerge ().

• From the Builder, choose Project > Options for Selected Files... and click
Unmerge in the Options dialog box.

Then, edit the option.

Setting options for programs, subprojects, and libraries
Because you can reuse build files for programs, subprojects, and libraries
multiple projects, it is important to specify whether the options for a build fi
are specific to the current project or whether the options are specific to the
file itself regardless of what project it belongs to. This choice, which is base
which build file is the base project, determines if the options are stored in t
Green Hills Software, Inc. 21

2. Using the Builder

e
 is a
p of

ple,
e

file

will

ess

w

OT

e

ve

om a

om
build file itself or in its parent’s build file. For more information about the
Builder’s base project, see “Navigating through your project” on page 18.

• If the options are specific to the current project, set the options while th
parent’s build file is the base project. For example, suppose foochild.bld
subproject of masterfoo.bld. Make sure masterfoo.bld appears at the to
the Source Window, then select foochild.bld and set the options.

Options set in this way are stored in the parent’s build file (in this exam
masterfoo.bld). If you reuse the child’s build file in a different project, th
options will not be carried over into the new project.

• If the options are specific to the build file itself, set options for the build
while it is the base project. For example, suppose foochild.bld is a
subproject of masterfoo.bld. Make sure foochild.bld is at the top of the
Source Window before you select foochild.bld and set the options. You
not see masterfoo.bld in the Source Window.

Options set in this way are stored as part of the child’s build file (in this
example, foochild.bld), and therefore will be set for that build file regardl
of what parent it belongs to.

Setting options for source files
You can set options for an individual file or for a list of files.

• To set an option for an individual file, select the file in the Source Windo
and set the options. Be aware that if you move the file to a different
program, subproject, or library, the options that you previously set do N
move with the file.

• To set an option for a group of files, select the build file that contains th
files in the Builder’s hierarchy of your project, then set the options. The
options are set in the build file; all files below the build file, including its
source files, will inherit these options.

Understanding tick boxes
Tick boxes allow you to set the value of some options. These tick boxes ha
three states:

 On. The option is turned on regardless of the default setting inherited fr
parent build file.

 Off. The option is turned off regardless of the default setting inherited fr
a parent build file.
22 Building and Editing with MULTI 2000

Important options

ing

ion

rror
t

e.

l

n is
 Default. The value of this option is inherited from the parent build file. To
see the inherited value of the option, click Merge in the Project > Options
for Selected Files... dialog box, or click Merge () in the main Builder
window.

Entering multiple text items for an option
Some options require that you enter a text item, such as a path or filename. If
you need to enter multiple items for these options, then separate each item by a
comma, without any spaces. Do not put spaces before or after the commas
because the Builder will not understand your items.

Important options

To set optimization options
To set compiler optimization options that correspond to the optimizations
options found in the Green Hills Language User’s Guide for your programm
language, choose Project > Options for Selected Files... > Optimization tab. If
you have questions about individual options, see “File Options > Optimizat
tab” on page 52.

To set run-time error checking options
To enable the Debugger to provide run-time error checking, set run-time e
checking options in your project before you build it. The options that you se
determine the types of errors the Debugger will be able to check at run-tim

To set run-time error checking options, choose Project > Options for
Selected Files... > Run-time Error tab. If you have questions about individua
options, see “File Options > Run-time Error tab” on page 55.

To set manifest constant definitions for the preprocessor
1. Navigate to the top of your hierarchy to ensure that the constant definitio

inherited throughout your project.

2. Choose Project > Options for Selected Files... .

3. Choose the General tab.

4. In the Defines: field, enter the constant definitions. Do not enter the -D pre-
processor option before the constants. For example, if you want to set
DEBUG to 1 and MAX to 64, enter:
Green Hills Software, Inc. 23

2. Using the Builder

tant

ine.

e

et in

el”
DEBUG,MAX=64

See “Defines:” on page 50, for more information.

To undefine manifest constant definitions for the preprocessor
1. Navigate to the top of your hierarchy to ensure that the undefined cons

definition is inherited thought your project.

2. Choose Project > Options for Selected Files... .

3. Select the General tab.

4. In the Undefines: field, enter the constant definitions you want to undef
Do not enter the -U preprocessor option before the constants.

Building your project

To start a build, make the program’s build file the base project, then choos
Build > Build program-name or library-name or click (). When you start a
build in this way, the Builder completes the build according to the options s
the Build Panel.

To change options in the Build Panel, choose Build > Advanced Build
Controls... . For information about an individual build option, see “Build Pan
on page 43.

To perform a dryrun build
You can run a build that duplicates the command line options -dryrun and -#.
The build will show the actions that take place without actually performing
them.

1. Choose Build > Advanced Build Controls... .

2. Choose Test Run.

3. Choose Commands.

4. Click the Build button ().

To build individual source files
1. Select the source files that you want to build.

2. Choose Build > Build Selected Files.
24 Building and Editing with MULTI 2000

Building your project
To specify the name of the compiled program or library file
By default, the Builder names the compiled program or library file based on the
*.bld file that gets built. To override the default name:

1. Navigate to the *.bld that you want to change.

2. Choose Project > Options for Selected Files... .

3. Choose the Actions tab.

4. In Output Filename, enter the name you want for your program or library.

To track down errors from a build
1. Build your application.

2. In the Progress Window, double-click the error message you want to exam-
ine.

The Editor appears, opens the source file that contains the error, and puts the
cursor on the line of code that caused the error.

Building platform-specific programs from the same source files
When a program needs to work on multiple hardware platforms, often times the
source files are identical except for one or more assembly language routines that
vary from processor to processor. In cases like this, you can create Select One
subprojects that contain the processor-specific files so you can build the same
program for multiple target processors.

Consider the following example. Suppose a program for SH processors depends
on the following files:

indprogram.c
indprogram.h
traps.ppc ; PowerPC assembly language file

Suppose the same program compiled for Alpha depends on these files:

indprogram.c
indprogram.h
traps.mip ; MIPS assembly language file

You can use a Select One subproject, traps.bld, to build a program that uses
only the processor-specific file, traps.ppc or traps.mip, for the specified target
processor.

If you have multiple files that are specific to a single processor, create multiple
Select One subprojects. Suppose the program in the above example also uses
Green Hills Software, Inc. 25

2. Using the Builder

rent
ge

hen
s
ou

ions
bdriver.ppc and bdriver.mip. In this case, you would need another Select One
subproject, bdriver.bld.

To define your project for multiple platforms
1. Create the program that gets compiled and linked.

2. Add to the program all of the source files except the processor-specific
assembly files.

3. Add to the program a Select One subproject that contains the processor-spe-
cific assembly files:

a. Create a build file for the subproject. For example, create traps.bld.

b. With the new build file highlighted, choose Project > Options for
Selected Files... .

c. Choose the General tab.

d. In the Type: field, select Select One.

e. In the Source Window, add to this new Select One build file the vari-
ous processor-specific assembly files for the program. In the example
above, traps.bld contains two files: traps.sh and traps.alp

To build a platform-specific program
Once you have defined your project for multiple platforms using a Select One
subproject:

1. Set the Builder’s Target: field to specify the target processor for the cur
build. For details about setting the target, see “To set your target” on pa
13.

2. With the program as the base project and highlighted, choose Project >
Options for Selected Files... .

3. Choose the Configuration tab.

4. In the Select text field, enter one or more of the file extensions needed w
building for this particular target. That is, enter the extensions of the file
that apply specifically to the target processor. In the example above, if y
are building your program for PowerPC, enter ppc in the Select text field. If
you are building your program for Mips, enter mip in the Select text field.

5. Start the build.

When you start the build and each time the Builder reaches a Select One
subproject, it chooses the first file in the list that matches one of the extens
26 Building and Editing with MULTI 2000

Debugging
specified in the Select: field of the program. The other files in the Select One
subproject are ignored.

Debugging

You can use the Builder to set options that determine the type of debugging
information that gets generated when you build your project. Once you build
your project, you can use the Builder to connect to a simulator or debug server
and to start a debugging session on your new executable.

To set what debugging information gets generated
The default is to have MULTI level debugging information generated.

1. Choose Project > Options for Selected Files... .

2. Select the General tab.

3. Set the Debugging Level: field to the desired value.

To connect to a target through a debug server or simulator
Before you can debug your application on your target system, you must first
connect to a remote target through a debug server or simulator.

1. Click Connect () or choose Remote > Connect to Target.

2. In the dialog box that appears, enter the debug server or simulator that you
are using in your debugging environment.
Green Hills Software, Inc. 27

2. Using the Builder
The available debug servers include:

The available simulators include:

MULTI debug servers

810serv, 830serv, 850serv

960serv

e7kserv

hpserv

idtserv

m16serv

monserv

ocdserv

rtserv

spotlight (for pSOS)

tornserv

unixserv

vxserv

winserv

MULTI simulators

sim800, sim850

sim960

simalp

simarm

simm16

simmma

simmips

simppc

simrh32

simsh

simspc
28 Building and Editing with MULTI 2000

Debugging
3. You may also add command line options following the name of the debug
server. For example: simppc -ppc860

4. Click Ok.

When you connect to a debug server or simulator, an IN/OUT window and a
Target window will appear. You can close these windows without harming the
MULTI environment. If you close these windows and later wish to use them
again, you can choose Remote > Show Target Windows to redisplay them.

The IN/OUT window provides the basic I/O for the program you are
debugging. The Target window allows you to send commands to the debug
server or simulator.

You can perform incremental searches in both the IN/OUT and the target
window. The key presses are:

Ctrl+f Searches forward.

Ctrl+b Searches backward.

To start a debug session
1. Connect to your debug server or simulator. Alternatively, you can wait to

connect to the debug server or simulator from the Debugger.

2. Double-click the project that you wish to debug.

3. Click Debug () or select Debug > Debug program-name.

4. If the user entry point is known, then the Debugger displays it on start-up.
Otherwise, the Debugger displays the executable entry point on start-up. For
normal C applications, the user entry point is main and the executable entry
point is usually _start.

Green Hills Software, Inc. 29

2. Using the Builder
30 Building and Editing with MULTI 2000

Chapter
3

The Builder GUI
This chapter contains:

• The Builder window

• The Builder menus

• The Builder toolbar

• Other Builder components

• Build Panel

• File Options dialog box

• Language Options dialog box

• CPU Options dialog box

• Toolchain Options dialog box

• The Progress window

3. The Builder GUI

re
This chapter provides a comprehensive description of the commands and options in the main
Builder window menu bar.

The Builder window

To start MULTI and open the Builder windows, enter adamulti at the command
line, if MULTI is in your path.

Title bar
The title bar contains the title of the current project. In this example, the project
title is default.bld, the default project title when you first run MULTI.

The Builder menus

NOTE: The following tables contain all Builder menu items along with brief
descriptions of the items. If a menu item has a command equivalent, then it is
provided for advanced users wishing to configure their Builder menu settings.
To configure Builder menu settings, choose Config > Options... > General tab
and click the Menus... button. A dialog box appears where you can enter the
command equivalents. See Chapter 10, “Configuration commands” for mo
information.

Menu bar

Source pane

Selected file

Output pane

Status bar
32 Building and Editing with MULTI 2000

The Builder menus
Pop-up menu
Many command operations can be performed in the builder by right-clicking in
the source pane. All operations available on the pop-up menu are documented
elsewhere in this chapter, and apply to the currently selected files.

File menu
NOTE: Spaces are not allowed in filenames. This restriction applies throughout
the entire MULTI development environment.
Green Hills Software, Inc. 33

3. The Builder GUI

File menu (builder)

Menu item Meaning Command

Open Project in
Builder...

Opens a project (*.bld) in the current Builder window. Open

Open Project in
New Builder...

Opens a project (*.bld) in a new Builder window. NewBuilder

Open File in
Editor...

Opens a file in a new editor window. Edit

Save project Saves changes for all projects in the hierarchy that
have been modified.

Save

Save project
As...

Same as Save, except you can save the current
project under a new name.

SaveAs

Revert project Reloads the current project from disk, discarding any
changes made since the last save.

Revert

Print Current
View...

Prints the currently displayed project hierarchy. The
hierarchy will be printed in the exact state that it is
displayed in the source pane. In particular, if you wish
to print the contents of subprojects, you need to
expand them first so that they are displayed.

Print

Print Entire
Project...

Prints the fully expanded project hierarchy. All projects
will be expanded first, then the entire project hierarchy
will be printed.

PrintEntire

Write entire
project to file...

Prints the currently displayed project hierarchy to a
text file in ASCII format.

PrintToFile

Recent Files This submenu contains recently edited files. You can
choose one of these files to edit it more quickly.

Edit

Recent Projects This submenu contains recently opened projects. You
can choose one of these projects to open it more
quickly.

Open

Close Builder Closes the Builder window. Close

Exit All Exits MULTI. If any files are not saved, a Save All
dialog box appears first. All active debug sessions are
terminated.

QuitAll
34 Building and Editing with MULTI 2000

The Builder menus
Edit menu

Project menu

Edit menu (builder)

Menu item Meaning Command

Cut Selected
Files

Removes the selected files from the current
project and places them in the clipboard.
Note: For the commands Cut Files, Copy Files,
and Paste Files, an internal clipboard separate
from the system clipboard is used.

CutFiles

Copy
Selected
Files

Makes a copy of the selected files and places
them in the clipboard.

CopyFiles

Paste
Selected
Files

Copies files from clipboard and inserts them
into the top level project, after the current
selection.

PasteFiles

Find in
Files...

Greps through the files in your project. Grep

Project menu (builder)

Menu item Meaning Command

Add Files To
Project

Opens a dialog box to add selected files to the current
project.

Add

Remove
Selected
Files

Removes the currently selected files from the project. Remove

Edit Selected
Files...

Opens in the Editor the files that are selected in the
source pane.

EditSelected

Simplify
Filenames

Attempts to convert absolute filenames to relative
filenames when possible. To be more precise, if the path
of a file is removed and if the file can still be found by
searching the source directories list, then the full
pathname is replaced by the filename without a path.
This is a simple means of converting absolute pathnames
in projects to short relative pathnames to increase
portability. To add source directories, select the project
first, then select Project > Options for Selected Files... >
General tab.

SimplifyNam
es
Green Hills Software, Inc. 35

3. The Builder GUI
Recalculate
Filenames

For efficiency, the Builder only evaluates filenames
against the “source directories” when a project is opened.
To add source directories, select the project first, then
select Project > Options for Selected Files... > General
tab. It continues to use the filename calculated initially
unless Recalculate Filenames is selected. Choosing
Recalculate Filenames rescans the source directories list
for the files listed in the current project. This is useful after
changing the source directories list, where a file originally
found in one directory is now in another. It is also useful if
a file is moved from one source directory to another, or a
file is deleted from a source directory. Without performing
this operation, the Builder would continue to use the file in
the original directory.

RecalculateF
ilenames

Set Build
Target for
Project...

Allows you to select a new target system for which to
build. All files in a project inherit a set of default options
that depend upon the target system. These defaults are
set up in a build file which consists of the target name
followed by the .bld extension, such as ppc.bld. Some
targets are preinstalled in the same directory in which
MULTI was installed. You may create your own target
files as well.

n/a

Options for
Selected
Files...

Displays the File Options dialog box, which you use to set
most build options. For more details, see “File Options
dialog box” on page 45. Note: Only the options for the
first file selected in the source pane will be affected.

Options
FileOptions

Project menu (builder)

Menu item Meaning Command
36 Building and Editing with MULTI 2000

The Builder menus
Build menu

Language
Options for
Selected
Files...

Displays the Language Options dialog box, which you use
to set language specific compiling options. These include
Ada, C, C++, FORTRAN, and Pascal options. See
“Language Options dialog box” on page 68 for more
information. Note: Only the options for the first file
selected in the source pane will be affected.

Options
LanguageOp
tions

CPU Options
for Selected
Files...

Displays the Options dialog box that corresponds to the
processor family for which you are building your program.
The processor family is determined by the target you
have selected (see “Set Build Target for Project...” on
page 36 for more information). For example, if you are
building your program for the PowerPC, the PowerPC
Options dialog box appears.
See “CPU Options dialog box” on page 92 for more
information on choosing targets and a list of possible CPU
Options dialog boxes. Note: Only the options for the first
file selected in the source pane will be affected.

Options Cpu

Toolchain
Options for
Selected
Files...

Displays the Toolchain Options dialog box that
corresponds to the toolchain for which you are building
your program. This dialog box includes linker options and
assembler options. The toolchain is determined by the
target you have selected (see “Set Build Target for
Project...” on page 36 for more information). See
“Toolchain Options dialog box” on page 118 for more
information on the Toolchain. Note: Only the options for
the first file selected in the source pane will be affected.

Options
Toolchain

Build menu (builder)

Menu item Meaning Command

Build
Program

Builds the current program and shows the status of the
build in a separate window. For any type of build, the
project will be saved first if it has been modified.

Build

Build
Selected
Files

Builds only the selected files instead of the whole
project.

Build Selected

Rebuild All Builds the current project, and forces every file to be
rebuilt, even if the dependencies show that the file has
already been built and is up to date.

Build All

Build and
Ignore Errors

Builds the current project, and continues building upon
detection of an error. Normally, the build stops when
an error occurs.

Build
IgnoreErrors

Project menu (builder)

Menu item Meaning Command
Green Hills Software, Inc. 37

3. The Builder GUI
Debug menu

Cleanup
Intermediate
Files

Deletes all of the files which are normally created
when building the project. This includes object files,
libraries, and executables. In other words, at each step
where a file would be created in a normal build, the file
is deleted instead. The only files that remain after
Clean Up are the source files necessary for building
the project from scratch.

Build CleanUp

Show a
Dry-run of
Build

The Builder determines and displays the steps of
building the project, but does not actually run any of
the tools, such as the compiler, assembler, linker,
archiver, etc. This option is usually used in conjunction
with one of the Display Overrides settings in the Build
Panel. In particular, Progress, Reasons, and
Commands can all be displayed in a test run. The
Warnings setting has little effect in Test Run mode
because only the builder itself is executed in Test Run
mode, therefore only warnings from the builder itself
are displayed.
Enabling both Test Run and Commands is equivalent
to the -dryrun and -# build-time options on the driver
command line.

Build TestRun

Advanced
Build
Controls...

Opens the Build Panel dialog box, which you use to
temporarily set options for how you want to build the
project. These settings will be in effect for the current
session only, and will not be saved when you close the
Builder. See “Build Panel” on page 43 for more
information on each build panel options.

BuildPanel

Debug menu (builder)

Menu item Description Command

Debug Program ... Starts a debugging session on the compiled
executable of the current project.

DebugCurrent

Debug Other... Opens a dialog box which you can use to select
the executable that you want to debug.

Debug

Attach to Process...

Attaches to a running process. See also the
debugger command attach. This command
works only with a multi-tasking target and is
grayed out otherwise. It opens a new debugger
window to debug the specified task.

n/a

1,2,3,4 Debug the specified executable. Debug

Build menu (builder)

Menu item Meaning Command
38 Building and Editing with MULTI 2000

The Builder menus
Remote menu

Version menu

Remote menu (builder)

Menu item Description Command

Connect to Target... Opens a dialog box where you can enter the debug
server or simulator to which you want to connect.
The four most recently connected targets are
available in the drop-down list.

Remote

Disconnect from
Target

Disconnects from the remote target. Disconnect

Show Target
Windows

Displays the Target and I/O windows for the target
to which you are currently connected.

TargetWin

Load Module This submenu is for multi-tasking debug servers
only, allowing you to download a new object
module to the target. Choose Load Module... again
from the submenu to choose the module to
download from a dialog box, or choose one of the
recently downloaded projects from the list
provided.

LoadModule

1,2,3,4 Connect to the specified remote target. Remote

Version menu (builder)

Menu item Description Command

Check Out Retrieves a writable copy of the latest version and
locks the file so others cannot change the file while
you work on it.

BCheckOut

Check In Saves the changes made to the file, makes the file
read-only, and removes the lock from the file. You will
be asked for comments to be saved in the log file
along with your changes.

BCheckIn

Check In +
Out

Saves the changes made to the file, but keeps the file
checked out (locked).

BCheckInOut

Retrieve Retrieves a read-only copy of the current version of
the file, even if the file is locked.

BRetrieve

Discard
Changes

Discards changes made to the file, removes the lock
from the file, and reverts to the latest version. Use this
to undo a checkout when you decide not to make any
changes.

BUncheck
Green Hills Software, Inc. 39

3. The Builder GUI
Config menu

See Chapter 10, “Configuration commands” for more information.

Place Under
VC

Puts the current file under version control. Once a file
is placed under version control, the file must be
checked out before changes can be made.

BCreate

Show History... Opens a window that displays version history
information: version numbers, dates, user names, and
comments.

BShowHistory

Other VC
Command

Allows you to run additional version control
commands. For a complete list of the version control
commands, see Chapter 4, “Version control”.

BOther

Config menu (builder)

Menu item Meaning Command

Options Displays the Options dialog box, which you
use to change options that affect the way the
Builder and other MULTI tools look and
behave.

ConfigOptions

Save
Configuration as
Default

Allows you to permanently save the changes
you made in the Options dialog box.

SaveConfig

Clear Default
Configuration...

Clears all saved changes and reverts to all
defaults in the Options dialog box.

ClearConfig

Save
Configuration...

Save the changes you made in the Options
dialog box to a user specified file.

SaveConfigToFile

Load
Configuration

Load changes to the settings in the Options
dialog box from a user specified file.

LoadConfigFromFile

Version menu (builder)

Menu item Description Command
40 Building and Editing with MULTI 2000

The Builder toolbar
Help menu

The Builder toolbar

These are the buttons on the Builder toolbar, their meanings, and their
equivalent commands:

Help menu (builder)

Menu item Meaning Command

Builder Help... Opens MULTI’s online help for the Builder. Help

Manuals Opens the “Manuals sub-menu”, which will
display a list of manuals appropriate to your
version of MULTI. Choosing one of these
manuals will open the online help to the first
page of that manual.

n/a

About MULTI... Displays the About banner. About

Builder toolbar

Button Meaning Command

Opens a project (*.bld) in the current Builder window. Open

Saves changes for all projects in the order that they
have been modified.

Save

Cuts the selected files from the current project and
places them in the clipboard. For the commands Cut
Files, Copy Files, and Paste Files, an external
clipboard separate from the system clipboard is used.

CutFiles

Makes a copy of the selected files and places them in
the clipboard.

CopyFiles

Copies files from clipboard and inserts them into the
current project.

PasteFiles

Opens a dialog box to add selected files to the current
project.

Add

Click to navigate up the project hierarchy to the build
file that encloses the current build file.

Back

Click to navigate down the project hierarchy to the
previous build file that you were working with.

Forward
Green Hills Software, Inc. 41

3. The Builder GUI
Other Builder components

Source pane
Your projects and source files are listed in the source pane. Each line of this list
is displayed with the filename in the Filename column, followed by the file type
in square brackets in the File Type column. If you are using MULTI Version
Control (MVC), then files that are checked out have the appropriate user name
in parentheses in the Version Control column. All projects (*.bld) have a small
plus or minus to their left. Clicking the plus will expand the view so that the
contents of the project are displayed (the plus will change into a minus).

 Expand

 Contract

Click Expand to display an expanded view of all
projects. In other words, each project will be expanded
(have its plus sign clicked).
Click Contract to display a contracted view of all
projects. Each project will be contracted (have its
minus sign clicked).
Click Expand to display expanded view of subprojects.
Click Contract to hide the contents of all subprojects.

ExpandAll

 Merge

 Unmerge

Merge and Unmerge. Clicking Merge shows the
merged options for a file, including full pathnames and
all inherited options. This will affect the Builder window
and all of its options windows as well. After clicking
this button, it becomes Unmerge, which changes the
options view back to normal. See “Viewing inherited
options” on page 21 for more information.

ShowMerged

Saves a project, if necessary, then builds it. The status
of the build is shown in a separate window.

Build

 Connect
Connect to a debug server or simulator. Remote

Disconnect

Disconnect from a debug server or simulator. Disconnect

 Debug
Debug the current program. DebugCurrent

 Edit
Edit the currently selected files. EditSelected

Closes the Builder window. You will be prompted to
save and/or check in all edited files. You can configure
whether or not to have this button on the toolbar. See
also “Display close (x) buttons” on page 243.

Close

Builder toolbar

Button Meaning Command
42 Building and Editing with MULTI 2000

Build Panel
Clicking the minus will contract the view so that the contents of the project are
hidden (the minus will change into a plus).

When the names of files in a project do not show an absolute path, the path is
relative to the directory the build file resides in. Your project is more portable if
you use only relative file names. You can specify additional source directories
in which to find files by doing the following: select the project you wish to add
source directories to, then choose Project > Options for Selected Files... >
General tab, and edit the Source Directories list. After you add source
directories, choose Project > Simplify Filenames, which will attempt to convert
absolute filenames to relative filenames.

You can change the order of the files in the list by selecting a file in the list, and
then while holding the Ctrl key press the up or down arrow keys to move the file
up or down.

Output pane
The Output pane displays information about the current status of the build
project.

Status bar
When the cursor is on a button, the status bar shows a short description of the
function of the button.

Target window
The target window displays the currently selected build target. To change the
build target, select Project > Set Build Target for Project....

Build Panel

(Builder : Build > Advanced Build Controls....)

This sets options for how you want to build your project.

The Build Options check boxes affect the way the files are built.

Build all
Forces every file to be rebuilt, even if the dependencies show that the file has
already been built and is up to date.
Green Hills Software, Inc. 43

3. The Builder GUI

ut.
r

e
 is
lays

lt
Ignore errors
Continues building upon detection of an error. Normally, the build stops when
an error occurs.

Clean up
Deletes all of the files which are normally created when building the project.
This includes object files, libraries, debugger symbol files, and executables. At
each step where a file would be created in a normal build, the file is deleted
instead. The only files that remain after Clean up are the source files necessary
for building the project from scratch.

Test run
The Builder goes through the steps of building the project, but does not actually
run any of the tools, such as the compiler, assembler, linker, archiver, etc. This
option is usually used in conjunction with one of the Display Overrides
settings described below. In particular, Progress, Reasons, and Commands can
all be displayed in a test run. The Warnings setting has little effect in Test run
mode because only the builder itself is executed in Test run mode, therefore
only warnings from the builder itself are displayed.

Enabling both Test run and Commands is equivalent to the -dryrun and -#
build-time options on the driver command line.

The Display Overrides check boxes affect the appearance of the build’s outp
These check boxes override display settings, which can also be set for you
project in Project > Options for Selected Files... > General tab > Show. When
the check box displays a plus (), the option is turned on regardless of th
setting in the project. When the check box displays a minus (), the option
turned off regardless of the setting in the project. When the check box disp
nothing (), the setting in the project is used.

Progress
Displays the build steps as they occur. The default setting is on.

Warnings
Displays any warnings that occur from the compilation process. The defau
setting is on.

Reasons
Displays why a certain action takes place. The default setting is off.
44 Building and Editing with MULTI 2000

File Options dialog box

n

ave

ot be
.

it.

 as
u
r to

Commands
Displays the actual program and arguments used in the step. Together with Test
run, this is equivalent to the -dryrun and -# build-time command line options.
The default setting is off.

File Options dialog box

(Builder : Project > Options for Specified Files....)

Each of the Options menu items in the Project menu opens a dialog box that
allows you to set certain options. The File Options dialog box contains several
tabs. Each tab contains options that affect your project and how it gets built.
Most of the options are compile-time options described in the Green Hills
Language User’s Guides and the Development Guides. For an overview of
issues involved when setting options, see “Setting options: An overview” o
page 20.

Note: The File, Language, CPU, and Toolchain options dialog boxes ALL h
the following buttons:

Merge
Allows you to see the inherited settings for options which have not
been set. When the dialog is displaying merged options, the settings may n
modified. See “Viewing inherited options” on page 21 for more information

OK
Applies any changes which have been made in the dialog box and closes

Cancel
Discards any changes and closes the dialog box. Certain operations, such
Merging or selecting another file in the Source Window, require first that yo
apply or discard any changes. You will then be prompted to choose whethe
apply or discard your changes for each Options dialog box which has been
modified.

Apply
Applies any changes and leaves the dialog box open.

File Options > General tab
(Builder: Project > Options for Selected Files... > General tab)
Green Hills Software, Inc. 45

3. The Builder GUI

o
 the

The

n
Type (drop-down list)
The Type drop-down list box allows you to select a file type. The Builder
normally tries to determine the file type by looking at the file’s extension. T
change the file type, open the Type box, then choose the desired type from
drop down list. For example, to change a build file from a program to a
subproject, click the text program and select Subproject. Then click Apply.
build file will show the newly assigned type in the build file list. MULTI does
not allow changing a file type to certain inappropriate file types. Below is a
explanation of each file type:

Type (drop-down list)

File Type Meaning

Default Determines file type by the file extension.

Nobuild This type of build file is useful for containing other projects, such as
programs and libraries. Building a project of this type will build all the
projects contained within it. The file default.bld is normally set to this
type, since it contains all the projects you will want to build. If a
nobuild is contained within another build file (for example a program),
then building the program will not build the contents of the nobuild.
Instead, navigate into the nobuild and build it directly from there.

Program Main build file for a project; generally contains source files and/or
subprojects. The contents of this project are compiled and linked to
form a program.

Subproject A component of a project. Subprojects are useful for grouping source
files together so that common build options can be set for the whole
group. They generally contain one or more source files. Contained
files are compiled and linked with the program or library which
includes the subproject. Subprojects are also used to include the
same group of files in two different projects.

Select one Sometimes a program needs to work on different kinds of hardware
platforms. Usually, most of the source files are identical, but there
may be one or more assembly language routines that vary from
processor to processor. Select one files allow the same .bld file to
build the program by selecting one of several assembly language
files.
For information about setting up Select one files, see “Building
platform-specific programs from the same source files” on page 25.

Single file library A single object file used as a library.
46 Building and Editing with MULTI 2000

File Options dialog box
Library A normal library, usually a build file (*.bld). A build file (*.bld) of this
type contains source files and/or subprojects. When the library build
file is built, the source files are compiled and linked to create the
library. If the library build file is included in a program, then building
the program also builds the library and links the library into the
program. See “To link to a library that gets built with your project” on
page 16 for more information. On the other hand, a library file (*.a,
*.lib, *.dll, etc.) may also have this type. A library file with this type
must be included in a program. Building the program will link the
library file into the program. See “To link in a compiled library” on
page 16 for more information.

Shared library A shared library, usually a build file (*.bld). When building shared
libraries, it is necessary to build a corresponding shared data library
containing the modules of the shared library that exports initialized
data. MULTI creates both types of libraries from the same build file.
To create a build file with all of the desired library files, mark each
shared data file by selecting the Includes shared data option in the
File Options dialog box, General tab.
If you set the file type to Shared library in the File Options dialog
box, General tab, then files are built whether or not they are marked
as including shared data. If the file type is set to Shared data library,
then only the files marked as including shared data are built.

Shared data
library

A shared data library, usually a build file. Refer to Shared library
above for more information.

Include file An include file. Adding include files to the project does not affect the
actual include files included during a compile. See “To define header
files” on page 17 for more information.

Script Contains shell script commands.

Documentation A documentation file.

C source file Contains C source code. During a build, the file type is ignored and
the Builder uses the file’s extension to determine the correct compiler
to use. For example, setting the file type to C Source File for a file
named foo.f still runs the Fortran compiler.

Fortran source file Contains FORTRAN source code.

Pascal source file Contains Pascal source code.

C++ source file Contains C++ source code.

Ada source file Contains Ada source code.

Object file An object code file. The object file will be linked into the program or
library containing it.

Linker file A linker directives file. This file is passed to the linker.

Assembly file Contains assembly language code. The assembly file will be
assembled and linked into the program or library containing it.

Integrate file Integrate configuration file used for the INTEGRITY RTOS.

Type (drop-down list)

File Type Meaning
Green Hills Software, Inc. 47

3. The Builder GUI
Show (drop-down list)
The Show drop-down list box sets which levels of information are displayed
when building, but the Build Panel overrides this which precedes the selected
level in the list. Any of these settings automatically set all the choices before it
in the list. For example, setting Warnings automatically sets Progress and Errors

Default
Uses the inherited setting. The default is Warnings.

Errors
Shows errors from the Builder, compiler, and linker.

Progress
Shows the steps being executed. For example, files being compiled or
your program being linked.

Warnings
Shows warnings from the Builder, compiler, and linker. The MULTI
default is to build without warnings.

Dependencies
Shows why actions occur. For example, why a particular source file is
being recompiled (because a dependent source file has changed.)

Commands
Displays the compiler driver command lines used by the builder to run
the compiler, assembler, and linker as they are executed without
actualling run the tools. Equivalent to the -v and -# build-time options.
For example:

Debug
Shows warnings from the Debugger.

Debugging level (drop-down list)
The debugging level drop-down list box sets the type of debugging information
the compiler outputs.

Custom A source file which needs custom build rules. To set the custom build
rules from the Builder, choose Project > Options for Selected Files
and choose the Configuration tab. Scroll the commands list down to
Custom Processor, and set the appropriate command to build your
custom source files. See “File Options > Configuration tab” on page
57 for more information.

Type (drop-down list)

File Type Meaning
48 Building and Editing with MULTI 2000

File Options dialog box
Default
Uses the inherited settings. The default is MULTI.

None
No debugging information should be generated.

Stack
Generates a stack frame in every routine to support stack traces. Without
this option, some routines may not create stack frames, thereby reducing
code size and improving performance. This option does not imply the -g
option, but is implied by the -g option. This option also disables leaf
procedure optimization. Equivalent to the -ga debugging option.

Plain
Generates source-level symbolic debugging information. The debugging
information varies with the capabilities of the target system. Debugging
languages other than C has severe limitations. Equivalent to the -g
debugging option.

MULTI
Generates extended debugging information for MULTI. This option is
required for proper debugging of Ada, C, C++, FORTRAN, and Pascal
code, since it provides information for handling language specific
features. Equivalent to the -G debugging option.

Performance analysis (drop-down list)
Sets the level of profiling information output by the compiler.

Default
Uses the inherited settings. The default is None.

None
No profiling information is generated.

Percent
Generates profiling calls. When your source files are compiled with this
option, calls to routines for maintaining profiling information are
embedded in each routine in the source file. This displays the percentage
of time spent at each source line. Equivalent to the -p build-time option.

Functions
Determines the number of calls to each function. This option also sets
Percent. Equivalent to the -p build-time option.

Graph
Generates code to collect extended profiling information to include call
graph information. This option functions similarly to the -p option,
Green Hills Software, Inc. 49

3. The Builder GUI

except additional information collected produces a call graph report.
This option also sets Functions and Percent. Equivalent to the -pg
build-time option.

Coverage analysis (drop-down list)
Coverage analysis generates basic block profiling calls. When your source files
are compiled with this option, calls to routines for maintaining profiling
information are embedded in each block of instructions generated by the
compiler. This displays information about which source lines are actually used
when your program executes. This is either turned On or Off. The default is Off.
Equivalent to the -a build-time option.

Automatically use MVC
Automatically places all text files under MULTI Version Control (MVC) when
added to the project list or edited. If a non-existent file is added to the project
list, it is not placed under version control until edited and created.

Driver options:
Any extra options sent to the driver are listed here. The Development Guide for
your system provides a description of driver options.

Defines:
Enters any desired macro definitions for the preprocessor. However, do not put
a -D in front of your entries. Equivalent to the -D C and C++ option. For
example:

xxx=1,yyy=444

this defines xxx as 1 and yyy as 444.

Undefines:
Does not convert uppercase user-supplied variables to lowercase. By default,
FORTRAN is not case sensitive and all FORTRAN names convert to lowercase.
The compiler and library both assume this translation is performed. This option
generally accesses variables defined in C as uppercase. However when using
this option, all FORTRAN keywords must be lowercase, making the compiler
incompatible with the ANSI FORTRAN-77 standard. Equivalent to the -U
FORTRAN option. Placing a minus sign (-) prevents any symbols, such as
__STDC__ and __ghs to be defined by the Builder or compiler. Note that there
are two underscores (_) before and after ‘STDC’, and two underscores before
‘ghs’.
50 Building and Editing with MULTI 2000

File Options dialog box
Libraries:
Specifies extra user libraries. Library names are either given with their full
pathname, or a simple name, such as foo.

If you specify the file extension or full path of the library, the Builder looks for
the library in the local directory rather than the directories specified by the
Library Directories field.

If you enter a simple name, such as bat, the Builder looks for bat.a in the
library directory paths set in the Library Directories field.

To indicate the library located in the local directory, use ./library, for example,
./bat.

This box only adds libraries. To replace system libraries or Green Hills libraries
such as libansi, edit the Advanced tab of the File Options dialog box.

Source directories:
Normally, the Builder looks for source files in the same directory as the build
file and in the directory from which the Builder is run. Additional directories
specified here are searched for source files as well as include files. This is an
editable field in the File Options dialog box, General tab.

Library directories:
Additional library search paths may be listed here.

Don’t rebuild because of changes in:
This file

By default, all files depend on the Builder file which includes them. For
example, if a program fly.bld contains a source file bat.c, then bat.c
depends on fly.bld. So, if fly.bld changes, then bat.c along with every
other file is rebuilt. This is not always desired. When this option is set,
the Builder does not consider changes in the selected file and does not
rebuild other files when it changes.

Include files
By default, the Builder determines dependencies of source files on the
files they include (such as header files). Therefore, changing an include
file causes the recompilation of all the source files that include it.

When this option is set, the Builder ignores all dependencies on include
files for the current file.
Green Hills Software, Inc. 51

3. The Builder GUI

 are

ed
Other files:
This field allows you to enter files which you do not want automatically
rebuilt because changes have been made to them. For example, if you
want the current file to depend on every header file except fly.h, then
type fly.h in this box.

File Options > Optimization tab
This tab controls the compilers’ optimization features. These optimizations
discussed in more detail in the Optimization chapter in the Language User’s
Guides.

Default
Uses the inherited settings. If no parent project has an explicit setting, then the
default is No optimization.

No optimization
No optimizations should be performed. Any settings in the Advanced
Optimizations dialog will be ignored.

Optimize for size
Employ optimization strategies that reduce code size, potentially at the expense
of code speed.

Optimize for speed
Employ optimization strategies that favor code speed, potentially at the expense
of code size.

Advanced button
If either “Optimize for size” or “Optimize for speed” are selected, the Advanc
button will be available. Pressing the button will open the Advanced
Optimizations Options dialog box.

Advanced Optimizations Options dialog box
To get to this dialog box, do this:

1. From the Builder, choose Project > Options for Selected Files....

2. Choose the Optimization tab.

3. Choose either “Optimize for size” or “Optimize for speed”.

4. Click Advanced...
52 Building and Editing with MULTI 2000

File Options dialog box
Many of the options in this window automatically set other options in this
window. Use Merge to display the fully resolved option settings. The following
table shows the name of the section in the Language User’s Guides dealing with
the given optimization:

The following table shows the minor optimizations and the corresponding
command line option. Refer to the description of optimization control in the
processor specific Development Guide for more information.

Optimization Section

Inline Inlining Enabled with -OI

Loop Loop Optimizations Enabled with -OL

Minor Optimization Command Line Option

Peephole -Onopeep

Common subexpression
elimination

-Onocse

Constant propagation -Onoconstprop

Unroll loops -Onounroll

Recognize min, max, abs
expressions

-Onominmax

Pipeline scheduling -Onopipeline

Inline strcpy() and strcmp()
calls

-Onostrcpy

Tail recursion -Onotailrecursion

Unroll loops up to 8 times -Ounroll8

Unroll bigger loops -Ounrollbig

Pipeline only within source
line

-Olimit=pipeline

Peephole only within source
line

-Olimit=peephole
Green Hills Software, Inc. 53

3. The Builder GUI
The optimizations in the following table have an associated command line
option in the “register allocation by coloring” description in the Language
User’s Guide:

The first table of optimizations contains all major categories, while the second
and third tables contain minor optimizations. Turning on some of the major
optimizations automatically turns on some of the minor optimizations. The
minor optimization boxes are not altered to reflect their new state. To see the
final state of the minor optimizations, use the Merge button in the Builder
window. The following table explains the state of minor optimizations:

Most of the time, you will be turning off optimizations, since Optimize for size
and Optimize for speed turn on most optimizations by default. The minor
optimizations are useful in special circumstances.

The textfields allow you to enter additional information about the
corresponding optimizations. For example, you may enter functions to inline in
the Inline textfield, and functions to loop-optimize in the Loop textfield.

There are three ways to use the Inline field.

• Click the small box to the left. The compiler inlines only those functions it
determines heuristically to be good inlining candidates.

• Enter a list of functions without clicking the box. The compiler inlines only
those listed functions.

• Enter both a list of functions and click the box. The compiler inlines the
listed functions and determines what other functions to inline.

Minor Optimization Command Line Option

Allocate auto variables in
registers

-autoregister

Overload variables in registers -overload

Minor Optimization State

Overload registers
Auto register

Always on, unless forced off.

Loop unrolling Implied by Loop optimization.

Unroll 8
Unroll Big

Requires Loop optimization, but always off
unless forced on.

All others Always off, unless forced on.
54 Building and Editing with MULTI 2000

File Options dialog box

orted:

ory
The Loop option works differently. If you click the checkbox, then all functions
will have loop optimizations applied, overriding any functions listed in the
textfield. So, if you enter any specific functions in the textfield, do not click the
checkbox to the left.

Note: Not all optimizations are supported for all targets.

File Options > Run-time Error tab
(Builder: Project > Options for Selected Files... > Run-time Error tab)

Select the options that enable the desired error checks. Most of these checks
occur at run-time, although some occur at compile time.

Memory checking (drop-down list)
Default

Maintains the previous or inherited setting. Originally, the default is
None.

None
Disengages memory checking.

Allocation
Equivalent to the -check=alloc command line option. Enables the
Debugger’s findleaks command and checks for the following memory
errors. (See also “Finding memory leaks” in Debugging with MULTI
2000.)

If the program attempts to free memory not previously allocated, this
error is reported:

Attempt to free something not allocated

If the program attempts to free memory already free, sometimes the
previous error message is reported here. Otherwise, this error is rep

Attempt to free something already free

If the program attempts to allocate memory after various other errors
occurred, this error report appears:

Malloc internals (free list?) corrupted
Memory

Generates an error message when the program tries to access mem
that is not yet allocated. (Equivalent to the -check=memory command
line option.) It displays the appropriate Allocation error messages,
above, in addition to the following:
Green Hills Software, Inc. 55

3. The Builder GUI
Attempt to read/write memory not yet allocated
Array Bounds

Checks array indexes against array bounds. For constant indexes, this
check occurs at compile-time; for other expressions at run-time.
(Equivalent to the -check=bounds command line option.)

The error message is:

Array index out of bounds

Assignment Bounds
When assigning a value to a variable or field which is a small integral type such
as a bit field, this checks if the value is within the range of the type. (Equivalent
to the -check=assignbound command line option.) The error messages are:

Assignment out of bounds

or
Value outside of type

NULL Dereference
Generates an error message for all dereferences of NULL pointers. (Equivalent
to the -check=nilderef command line option.) The error message is:

NULL pointer dereference

Case/Switch Statement
Generates a warning if the case/switch expression does not match any of the
case/switch labels. This does not apply when using a default case/switch label.
(Equivalent to the -check=switch command line option.) The error message is:

Case/switch index out of bounds

Divide by Zero
Generates an error message indicating a divide by zero. (Equivalent to the
-check=zerodivide command line option.) The error message is:

Divide by 0

Unused Variables
Generates an error message at compile-time for declared variables never used.
(Equivalent to the -check=usevariable command line option.) The error
message is:
56 Building and Editing with MULTI 2000

File Options dialog box

n.
Unused variable

Pascal Variants
Checks that the tag field of a variable declared as a variant record type matches
one of the case selectors in the record. This applies only to Pascal. (Equivalent
to the -check=variant command line option.) The error message is:

Bad variant for reference

Watchpoint
Enables the Debugger command watchpoint to create one watchpoint without
using an assertion. (Equivalent to the -check=watchpoint command line
option.) See also “watchpoint” in Debugging with MULTI 2000. The error
message is:

Write to watchpoint

Return
Generates a warning if a non-void procedure ends without an explicit retur
For example, the following procedure generates a warning when exiting:

int func() {
 for (int x = 0; x< 10; x++)
 {
 if (x == 10)
 return x;
 }
}

This option only applies to C and C++. (Equivalent to the -check=return
command line option.) The error message is:

No value returned from function

File Options > Configuration tab
(Builder: Project > Options for Selected Files... > Configuration tab)

Builder:
Specifies the name of the Builder program (build). This program is otherwise
assumed to be in the same directory as MULTI.
Green Hills Software, Inc. 57

3. The Builder GUI

ch
ject, it
Select:
For the project type Select One, you may list several files which have different
extensions. Only one of those files will be built, however. To determine which
one is built, the builder looks at the ‘select’ list. This is a list of suffixes whi
are to be built. Thus, when the builder comes across a Select One subpro
will look through the ‘select’ suffix list, and find the file which has a valid
suffix.

Green Hills C++ include dirs:
A list of directories containing Green Hills C++ include files. Adds directory to
the list of directories to search when processing #include directives. If file.cxx
contains the line #include “header.h”, the compiler searches for header.h in
the file.cxx directory, then in directories specified in Source Directories on the
File Options dialog box, General tab, and finally in a list of default directories.
If file.cxx contains the line #include <header.h>, the processing is the same
except the directory containing file.cxx is not searched. If header.h is specified
with an absolute pathname, then no directories are searched. Equivalent to the -I
and -YI build-time options.

Green Hills C include dirs:
A list of directories containing Green Hills C include files. Adds directory to the
list of directories to search when processing #include directives. If file.c
contains the line #include “header.h” , the compiler searches for header.h in the
file.c directory, then in directories specified in Source Directories on the File
Options dialog box, General tab, and finally in a list of default directories. If
file.c contains the line #include <header.h>, the processing is the same except
the directory containing file.c is not searched. If header.h is specified with an
absolute pathname, then no directories are searched. Equivalent to the -I and
-YI build-time options.

System include dirs:
A list of directories containing system include files. Equivalent to the -YI
build-time option.

Green Hills library dirs:
A list of directories containing Green Hills libraries. Equivalent to the -L , -YL ,
and -YU build-time options.
58 Building and Editing with MULTI 2000

File Options dialog box

e

 the

ile

er.
System library dirs:
A list of directories containing system libraries. Equivalent to the -L, -YL, and
-YU build-time options.

Tools directory:
Changes the default directory to look for the commands in the list described
below under Commands.

Alternate tools dir:
If you select the Gnu tool chain or a UNIX tool chain, instead of the Green Hills
tool chain, then this directory is used for the assembler, linker, and other files
that comprise this alternate tool set.

Commands:
Displays many different commands called by the Builder. You can change the
name and arguments to any or all of these commands. Select the command and
then fill in the appropriate information in the text fields below the list.

Generally, the Builder’s default information is correct so you can leave thes
entries blank.

Command directory:
Specifies a new directory to search for a command.

Command name:
Specifies a new name for a command.

Arguments:
Specifies a list of additional arguments sent to the command when called.

File Options > Actions tab
(Builder: Project > Options for Selected Files... > Actions tab)

Output Filename:
Names the output file of the current driver command. In the simplest case,
linker output file is called filename. If another file is generated from the linker
output file, such as an S-Record file, this determines the name of the last f
created, which is the S-Record file. If only one source file is named, -o is used
with either the -S or -c option to name the output of the compiler or assembl
Equivalent to the -o build-time option.
Green Hills Software, Inc. 59

3. The Builder GUI
On a project of type Program, Library, Shared library, or Shared data
library, these commands are executed before calling the linker or archiver, and
not at the very beginning of processing. However, projects of type Shared and
Nobuild generate no output files, and at this time this field is ignored for
projects of these types.

Append Extension:
To make your file portable across different systems, the Builder can append the
appropriate extension to the output filename, so you do not have to specify it
yourself.

For example, if you are building a program with a build file called fly.bld and
want to name the executable file bat, enter bat into the output filename box.
Once this is done, the executable will call bat on every system, including those
expecting the executables to have extensions such as .bat.exe. When setting this
option, the Builder adds the appropriate extension, .exe, on those systems that
require it.

Object Directory:
Equivalent to -object_dir.

Stop with (drop-down list)
The Stop with field should be used in conjunction with the C Source option in
the Compilation menu, located in the Advanced tab. Stop With sets the type of
file with which to stop when building, so that you can look at the intermediate
files. For example, if you have a C source file and want to compile it into
assembly code but you do not want it to process any further, set this menu to
Assembly. The Builder compiles source files to object files by default.

Some of the file types in this menu are incompatible with the type set in the
Type: menu in the File Options dialog box, General tab. For example, you
cannot make a C source file into an archive file.

Inf file
Indicates that an analyzing pass is being performed, and stops
after generating the .inf (information) file. The .inf file contains
reader-file dependent information.

Preprocessor output
For source files which are preprocessed (C and C++ files plus
preprocessed assembly language files), it runs the compiler only
as a preprocessor and places the output in the standard output file.
Although this does not process files as quickly as a standalone C
60 Building and Editing with MULTI 2000

File Options dialog box
preprocessor, it duplicates the action that is taken when the file is
compiled. Equivalent to the -E C and C++ preprocessor option.

Preprocessor file
For source files which are preprocessed (C and C++ files plus
preprocessed assembly language files), it runs the compiler as a
preprocessor but sends the output to a new file with a .i extension.
Equivalent to the -P C and C++ preprocessor option.

Translated C file
When converting from other languages to C, this stops with the C
file. This option is used in conjunction with the C Source option
from the Compilation menu. This is currently not supported.

If you are converting from C++, you can set the Leave Translated
C in the C++ option window to achieve the same effect.

Syntax
For Ada, C, C++, FORTRAN, and Pascal, it checks the syntax of
the source file, but does not generate code. Equivalent to the
-syntax command line option.

Assembly
Only produces an assembly file from the source file. For each
source language file specified in Ada, C, C++, FORTRAN, or
Pascal, compiles the file into an assembly language output file
using standard naming conventions. Implies the Assembly option
in the Compilation menu. Equivalent to the -S command line
option.

Object
Only generates a relocatable object file for each source input file
with a filename of inputfile.o. Applies to all source files which are
compiled, in Ada, C, C++, FORTRAN, and Pascal. Equivalent to
the -c command line option.
Green Hills Software, Inc. 61

3. The Builder GUI
Executable
Stops with an executable file. This option applies to projects of
type Program. If the Debugging level is not MULTI, this option
has no effect. Select this option to prevent dblink from running
on the executable after it is generated by the linker.

Sym file
Runs dblink on the executable file, producing debugging symbol
files and strips the original executable file of all symbol
information. This option applies to projects of type Program. It is
the default with Debugging level: MULTI.

Archive
Runs the librarian to generate an archive instead of invoking the
linker to generate an executable program. It is the default for
projects of type Library. This option must be used with the -o
filename option with a .a extension. For example:

cc960fly.c -archive -o libfly.a

Equivalent to the -archive command line option.

Shared Object
Stops with a shared library file with a .so extension. This option
applies to project of type Shared Library and is the default for
such projects. This type of project is only supported if the Target
OS is UNIX. Equivalent to the -shared command line option.

Shared Data
Stops with a shared data library file with a .sa extension. This
option applies to projects of type Shared Data Library and is the
default for such projects. This type of project is only supported if
the Target OS is SunOS.

Dependencies:
Enters any additional files you want the current file to depend on. When
changes are made in any of these files, the Builder rebuilds the current file.

Commands to set up input files:
If you want to execute shell commands before compilation, enter a list of
executable commands. Typically, you run commands to set up source files such
as preprocessing. These commands are executed verbatim with the default
command processor with no variable substitution.
62 Building and Editing with MULTI 2000

File Options dialog box
Commands to process output:
If you want to execute shell commands after compilation, enter a list of such
commands here. Typically, you run commands to process the output of the
compilation and produce more suitable output. These commands are executed
verbatim with the default command processor with no variable substitution.

File Options > Advanced tab
(Builder: Project > Options for Selected Files... > Advanced tab)

Set by the target Build File, the options on this tab are usually already calculated
for you by the Builder. Changing these options will have unspecified results as
they are not valid in all configurations. All of these options are only set in
projects of type program or nobuild. This ensures consistency across all files
in a single program. In addition, many of these options apply to the link phase
and are ignored if set on individual files within a program.

Processor (drop-down list)
Sets the processor family for the program being built. This selection affects the
behavior of the Builder in many ways. Not all options are relevant for all
processor families. In particular a sub-window in the CPU Options dialog is
provided for each processor family. Only the options in the sub-window
corresponding to the selected processor take effect.

When set to C Translator, the source code is translated into C by one of the C
translators. The native C compiler is then run on the generated C code.

Compilation (drop-down list)
Compilation specifies the output format of the compiler itself.

C Source
The source code is translated into C by one of the C translators. The
native C compiler is then run on the generated C code.

Assembly
The source file produces an assembly language file. The assembler will
then run on that file to produce an object code. Equivalent to the -noobj
command line option.

Object
The source file directly produces an object code file without producing
an assembly language file. Currently, this is only supported on M16,
68000 and SH processors. Equivalent to the -obj command line option.
Green Hills Software, Inc. 63

3. The Builder GUI
Alignment (drop-down list)
Alignment sets the maximum data alignment for the target. This is rarely used.
Equivalent to the -align= machine specific option.

Structure packing (drop-down list)
Specifies the maximum alignment of fields in a structure. This feature is NOT
supported for all processors.

Toolchain (drop-down list)
This feature sets the toolchain: the assembler, linker, libraries and utilities. The
Builder and compilers are adapted to work with assemblers and linkers from
various vendors. This field should not be set or changed at any time.

Object format (drop-down list)
BSD

Used by SunOS and some Gnu compilers. Equivalent to the -bsd
command line option.

COFF
The Common Object File Format is used by UNIX System V.3 and older
embedded environments. Equivalent to the -coff command line option.

ELF
The Executable and Linking Format is used by UNIX System V.4 and
the modern embedded environments. Equivalent to the -elf command
line option.

Oasys 68k
A proprietary format generated by the Oasys 680x0 assembler and linker.
Equivalent to the -oasys command line option.

Output mode (drop-down list)
This sets the file format produced by the linker. Many environments only
support one binary format. The following are descriptions of these output
formats:

BSD
Used by SunOS and some Gnu compilers. Equivalent to the -bsd
command line option.

COFF
The Common Object File Format is used by UNIX System V.3
and older embedded environments. Equivalent to the -coff
command line option.
64 Building and Editing with MULTI 2000

File Options dialog box
ELF
The Executable and Linking Format is used by UNIX System V.4
and the modern embedded environments. Equivalent to the -elf
command line option.

S-Records
Produces a COFF or ELF file, translates into an S-Record file,
and keeps both files. Equivalent to the -srec linker option.

Oasys 68k
A proprietary format generated by the Oasys 680x0 assembler
and linker. Equivalent to the -oasys command line option.

Memory
Memory image format. Equivalent to the -memory command line
option.

HP/OMF
Obsolete.

Only S-Records
Produces a COFF or ELF file, translates into an S-Record file,
and then deletes the COFF or ELF file. Equivalent to the
-sreconly linker option.

Oasys Objects and S-Records
Produces S-Record output directly using Oasys object format
instead of COFF or ELF. Equivalent to the -srecoasys command
line option.

Tek Hexadecimal
Tektronix extended hex format (680x0 only).

Exormacs
Obsolete.

IEEE-695
Portable format used by 680x0 emulators. Equivalent to the
-ieee695 command line option.

Target OS (drop-down list)
Target OS sets the type of operating system on the target system you are
building.

Temp Directory
Stores temporary files in the directory specified by dir instead of /tmp. This is
useful if /tmp is on a small file system that may run out of disk space during
Green Hills Software, Inc. 65

3. The Builder GUI
compiles with inlining or template processing. This is also set with the
TMPDIR environment variable. For example:

setenv TMPDIR /usr/tmp

Equivalent to the -tmp= C compiler option.

Start address:
Specifies where the program starts. This is passed to the linker and is normally a
symbol name, so it should be written so that the linker recognizes it (that is, you
may need to include an extra underscore (_). This is equivalent to the -entry=
linker option.

Start/End file dir
Contains startup files, such as crt0.o. Equivalent to the -YS command line
option.

Start files
A list of files linked at the beginning of your program. For example: mcrt0.o,
crt10.o. The files listed replace crt0.o. If you just want to suppress the linker
from including the default startup code from the library into your program, you
can type a ’-’ in this field. It will prevent the builder from linking in any startup
code.

End files
A list of files linked at the end of your program. On systems using it, crtn.o is
replaced by these files.

Green Hills libraries
Replaces the default Green Hills Libraries normally linked in with those listed
here. These libraries are normally chosen automatically.

System libraries
Replaces the default System Libraries normally linked in with those listed here.
These libraries are normally chosen automatically.

Remote
This field is only used in a default.bld file or a program build file. When the
Builder window is opened on a build file with this field set, the value specified
66 Building and Editing with MULTI 2000

File Options dialog box

ule.
automatically loads into the text field next to the Remote button in the Builder
window.

Small printf without %e%f%g
Uses libnoflt.a, a smaller version of printf, that does not handle floating point
numbers. The I/O routines within this library do not contain instructions for
floating point support and therefore are much smaller.

Show headers
Displays a list of files opened by a #include directive. Equivalent to the -H
command line option.

Source lines in asm File
Outputs lines from original source files into the assembly language output of the
compiler as comments. This option has no effect with direct binary code
generation. This option interferes with some optimizations, including loop
optimization which produces inferior code in some circumstances. Equivalent
to the -passsource command line option.

Show Versions
Displays the copyright banner and version number of the compiler, assembler,
and linker as they are run. By default, the version and copyright banner is
suppressed. Equivalent to the -V command line option.

Put versions
Places the compiler’s version into the comment section of each object mod
Currently, this is only available on some UNIX systems. Equivalent to the -Qy
command line option.

Output dual debug formats
Output both Green Hills proprietary information as well as Dwarf.

Dynamic download project
For the INTEGRITY RTOS, build project for dynamic download.

Keep temp files
Does not delete temporary files after they are used.
Green Hills Software, Inc. 67

3. The Builder GUI

not

lent

.

tains
ions

ns:

Link without default startfiles or libraries
Prevents the Builder from adding any of the following to the link command:

• Green Hills Libraries (Advanced tab)

• System Libraries (Advanced tab)

• Green Hills Library directories (Configuration tab)

• System Library directories (Configuration tab)

• Startup Files (Advanced tab)

• End Files (Advanced tab)

The option still specifies libraries and library directories using the fields in the
File Options dialog box, General tab. A linker directive file still adds to the link
command line with the Oasys 68000 linker, l68. However, it does not add any
startup files or any libraries and passes fewer options to the linker command
line. (This is equivalent to the -nostdlib command line option.) An alternative is
to override the default for individual fields listed above by placing a dash “-” in
the field.

Languages Used:
These check boxes tell the Builder which languages are used that it does
recognize, such as those compiled to object files that have no source. The
Builder uses this field to select libraries during the link phase. This is equiva
to the -language= linker option which ensures that the driver is aware of all
languages in use. It is specified once for each language used other than C

Language Options dialog box

(Builder: Project > Language Options for Selected Files...)

The Language Options dialog box contains several tabs, each of which con
options for a particular language. Most of the options are compile-time opt
described in the Green Hills Language User’s Guides and the Development Guides.

For an overview of issues involved when setting options, see “Setting optio
An overview” on page 20.

Language Options > C tab
To get to this tab, from the Builder, choose Project > Language Options for
Selected Files..., and choose the C tab.
68 Building and Editing with MULTI 2000

Language Options dialog box
The following are descriptions of the items in the C tab.

C version (drop-down list)
K+R

For C source files, interpret the source code as the C version
documented in Kernighan & Ritchie, first edition, and compatible
with the portable C compiler, or PCC. Equivalent to the -k+r and
-Xs C options.

Transition Mode
Selects a mode of ANSI C compatibility similar to AT&T C
Issues 5.0 transition mode supporting function prototypes and the
new ANSI keywords signed and volatile in a non-ANSI
environment. This is the default. Equivalent to the -Xt C option.

ANSI
Sets the compiler in Permissive ANSI compatibility mode. With
some systems, this uses the header files in /usr/green/include and
/usr/green/ansi before those in /usr/include.

This mode supports the language features of the ANSI
X3.159-1989 standard, while allowing certain useful but
non-compliant constructs in an ANSI C framework. Equivalent to
the -ansi C option.

Strict ANSI
Strict ANSI mode is 100% compliant with the ANSI
X3.159-1989 standard and does not allow non-standard
constructs. This also uses the header files in /usr/green/include
and /usr/green/ansi before those in /usr/include. Equivalent to
the -ANSI C option.

Type of wchar_t (drop-down list)
Specifies the type of wchar_t, the type of all wide-characters. This allows you
to set the size of all wide characters and determine whether they are signed or
unsigned. Equivalent to the -shortwchar and -signedwchar C and C++
compiler options. The type selected here has the following effects:

• Changes the size and signed or unsigned attributes of wide character
constants and strings such as L’x’ and L“Hello” .

• Predefines one of the following symbols:
 __WChar_Is_Unsigned__
 __WChar_Is_Signed__
and also predefines one the following symbols:
Green Hills Software, Inc. 69

3. The Builder GUI
 __WChar_Is_Short__
 __WChar_Is_Int__
 __WChar_Is_Long__
 __WChar_Is_LongLong__
Note that there are two underscores (_) both at the beginning and at the end
of each of the above symbols.

• Selects which type is used for the typedef of wchar_t in stddef.h.

Only the default selection works with the libraries provided.

short
Default for SunOS 4.x.

unsigned short
int

Default for Ultrix on DEC station.

unsigned int
long

Default on UNIX System V.4, Solaris, and all embedded products.

unsigned long
Not supported for all target processors. See your target
Development Guide for more information.

long long
Not supported for all target processors. See your target
Development Guide for more information.

unsigned long long
Not supported for all target processors. See your target
Development Guide for more information.

Target kanji (drop-down list)

Host kanji (drop-down list)
The Target kanji and Host kanji drop-down list boxes control the internal
representation of kanji characters recognizable in C host code, comments, and
character strings. If Host kanji > EUC and Target kanji > Shift-JIS are both
selected, then the compiler automatically translates character string literals from
EUC to Shift-JIS format. The combination of Host kanji > Shift JIS and Target
kanji > EUC is not supported. On SunOS, Host kanji defaults to EUC. On
Windows and HP/UX, Host kanji defaults to Shift-JIS. Target kanji defaults to
Host kanji. Equivalent to the -kanji= command line option.

The following are descriptions of the check boxes in the C tab.
70 Building and Editing with MULTI 2000

Language Options dialog box
Ignore Duplicate #include
Ignores an #include directive if attempting to include a file already included.
The file must appear with exactly the same name in both #include directives to
ignore the second #include directive.

If a filename appears in more than one #include directive during a single
compilation, it skips all of the directives except the first one. Equivalent to the
-includeonce C preprocessor option.

Ignore All #include
Ignores all #include file directives. Equivalent to the -includenever C
preprocessor option.

Allow Macros to be Re#defined
Suppresses the warning or error normally given when two #define directives
provide different values for the same preprocessor symbol. Equivalent to the
-redefine C preprocessor option.

Allow Wrong #directives inside #if 0
During preprocessing, lines inside of false #if, #elif, #ifdef, and #ifndef are
ignored. With the exception that a warning or error is given for lines beginning
with #, they do not contain legal preprocessor directives. This option suppresses
these warnings and errors. Equivalent to the -nocpperror C and C++
preprocessor option.

Warn for Unknown #pragma
Generates a warning for unknown #pragma lines. Normally, unknown
#pragmae are ignored silently. Equivalent to the -unknownpragmawarn
command line option.

No Warning for Incorrect #pragma
Suppresses warnings for errors in #pragma that are recognized by the compiler
and that are incorrect. Equivalent to the -nopragmawarn C and C++
preprocessor option.

Allow #pragma asm and #pragma inline
Allows the use of #pragma asm, #pragma endasm, and #pragma inline in C
source files. See the Green Hills C User’s Guide for more information on these
pragmae. Equivalent to the -pragma_asm_inline command line option.
Green Hills Software, Inc. 71

3. The Builder GUI
No Output for #ident or #pragma ident
Prevents the compiler from outputting an ident directive in the assembly
language output or from placing the same information in the .comment section
when generating COFF or ELF object files directly. This option is primarily
intended for an assembler or linker that does not support the ident directive.
Equivalent to the -noidentoutput C compiler option.

Allow // style comments in C
Allows C++ style comments (beginning with // and terminating with a new line
to be used in C). This option is also used with preprocessed assembly files.
Equivalent to the -slashcomment command line option.

Keep Comments in Preprocessor Output
Includes comments in the preprocessor output. The default strips comments
from the output. Equivalent to the -C C and C++ preprocessor option.

Concat 2 Symbols Separated by Comment
Allows /* */ as concatenation in K&R C. You can turn off this option with the
-Zconcatcomments option. Equivalent to the -concatcomments C option.

Warn for Function Used without Prototype
Generates a warning if a function is referenced or called but no prototype is
given for that function. This is an extension to ANSI C, ensuring that prototypes
exist for all functions used. Equivalent to the -wantprototype C compiler
option.

Disallow Function Used without Prototype
Generates a fatal error if a function is referenced or called but no prototype is
given for that function. This is an extension to ANSI C, ensuring that prototypes
exist for all functions used. Equivalent to the -needprototype C compiler
option.

Allow ‘noalias’ keyword in C
Adds noalias keyword to C. You can turn off this option with the -Znoalias
option. Equivalent to the -noalias C option.

Disable ANSI aliasing rules
Disables ANSI aliasing rules. Equivalent to the -no_ansi_alias build-time
option.
72 Building and Editing with MULTI 2000

Language Options dialog box
No Warning for asm()
Does not give warnings for asm statements. Equivalent to the -asmwarn
build-time option.

Do not reserve asm keyword
By default, the compiler recognizes asm as a keyword and gives a syntax error
if any variable, structure field, macro, or function has the name asm. Selecting
this option causes the compiler to treat asm as an ordinary identifier in C. Any
attempt to use an asm statement with this option enabled causes the compiler to
call a function asm() with a character string as its argument.

This option is implied by Strict ANSI mode. The _ _asm keyword is always
recognized; only the asm directive without leading underscores is affected by
this switch. This switch is enabled with -ANSI. Equivalent to the -noasm C
compiler option.

Give fatal error for asm statement
Generates a fatal error if an asm statement is used. Equivalent to the
-asmillegal command line option.

Allow Some Gnu Syntax Extensions
Supports GNU extensions, such as #import, zero size arrays, compound
statements as part of expressions, inline functions, and the _ _inline_ _
keyword. Equivalent to the -gnu_c C compiler option.

Japanese Automotive C
Enables a set of extensions to ANSI C used by Japanese automobile
manufacturers. This option implies the following option settings:

Allow #pragma asm and #pragma inline
No warning for asm()
Do not reserve asm keyword

Refer to the Green Hills C User’s Guide for more information on this option.
Equivalent to the -japanese_automotive_c command line option.

Allow extern to be Initialized
Allows variables declared with the extern storage class to accept initial values.
In the K+R definition of C this is an error, but is legal in ANSI C. This option
only affects K+R. Equivalent to the -initextern command line option.
Green Hills Software, Inc. 73

3. The Builder GUI
Disallow Old Fashioned Syntax
Does not recognize outdated syntax for initializing variables, such as int i 5;,
and for assignment operators like =+, =-, =*. If this option is not set, these are
accepted with a warning message. If this option is set, old fashioned
initializations give the error:

expected ’=’ got constant

and an equal sign followed by the symbols:

+ - * / % & | ^ << >>

is recognized as two separate tokens. This results in a syntax error for the
symbols:

+ / % | ^ << >>
but is correct for the symbols:

- * &
which are legal unary operators in C. Therefore, this option is required to
correctly compile the following lines because no space appears after the equal
sign:

int i, *p;
i =-3;
p =&i;
i =*p;

By default, this option is only set on native UNIX 68K compilers. In all other
Green Hills compilers, this is turned off by default. Equivalent to the
-nooldfashioned C option.

Use ANSI C Semantics for Assignment
Uses ANSI rules for ++ and *= in K&R C. Equivalent to the -ansiopeq
command line option.
74 Building and Editing with MULTI 2000

Language Options dialog box
Allocate Small Enums as char or short
Allocates enumerated types to the smallest storage possible. Equivalent to the
-shortenum C compiler option.

Consider char to be signed
Specifies type char as signed. Equivalent to the -signedchar C compiler option.

Consider Bit-fields to be Signed
Specifies a bit field whose type is signed to be interpreted as a signed quantity.
Equivalent to the -signedfield C compiler option.

Consider Pointers to be Signed
Specifies pointers and addresses as signed. This is the default. Equivalent to the
-signedptr C compiler option.

Truncate External Symbols to 8 characters
Truncates all symbol names to eight characters for compatibility with older
compilers and linkers. Equivalent to the -T C compiler option.

Allocate unique space for all strings
Creates separate space for each string. Normally, the compiler performs an
optimization in which equivalent strings are combined to share the same space.
This reduces code size, but could cause problems if the strings are modified.
This option disables the optimization and forces each string to have unique
storage. Equivalent to the -uniquestrings C compiler option.

Language Options > C++ tab
(Builder: Project > Language Options for Selected Files... > C++ tab)

The following are descriptions of the drop-down list boxes in the C++ tab.

C++ version (drop-down list)
Standard C++

Enables ANSI C++ mode. Warning messages are issued when non-ANSI
C++ features are used. Features that conflict with ANSI C or C++ are
disabled. Equivalent to the --std command line option.

ARM
Accepts the C++ language as defined in The Annotated C++ Reference
Manual (ARM), by Ellis and Stroustrup. This version of C++ includes
templates, exception handling, which must be explicitly requested, and
Green Hills Software, Inc. 75

3. The Builder GUI

me

es,

age

age
the anachronism of the book’s Chapter 18. This is essentially the sa
language as the language reference manual for cfront 3.0, with the
addition of exception handling. This is the default C++ version.

ESTL C++
Enables the extended embedded C++ dialect. Equivalent to the --ee
command line option

Embedded C++
Enables the Embedded C++ dialect, with templates, STL, namespac
and mutable, new-style casts. Equivalent to the --e command line option.

Cfront 3.0
Enables compatibility with cfront version 3.0. This causes language
constructs to be accepted which are not necessarily part of the C++
language definition, but which are accepted by the AT&T C++ Langu
System (cfront) release 3.0. This mode also enables acceptance of
anachronisms.

Cfront 2.1
Enables compatibility with cfront version 2.1. This causes language
constructs to be accepted which are not necessarily part of the C++
language definition, but which are accepted by the AT&T C++ Langu
System (cfront) release 2.1. This mode also enables acceptance of
anachronisms.
76 Building and Editing with MULTI 2000

Language Options dialog box
C++ Library (drop-down list)

Inlining (drop-down list)
Selects whether function inlining should be done.

Max inlining
Enables maximum inlining of function calls.

Max inlining unless debug
Disables maximum inlining of function calls when debugging
information is requested.

Inlining
Enables minimal inlining of function calls.

Inlining unless debug
Disables inlining of function calls when debugging information is also
requested.

No inlining
Disables inlining of function calls.

Virtual tables (drop-down list)
Controls the allocation of virtual tables.

C++ Library Option Command

Standard C++ library with exceptions. --stdle

Standard C++ library without exceptions. --stdl

Extended Embedded C++ library with exceptions. --eele

Extended Embedded C++ library without exceptions. --eel

Embedded C++ library without exceptions. --el

Embedded C++ library with exceptions. --ele

cfront version 2.1 compatibility with compilation of C++. This
causes the compiler to accept language constructs that, while not
part of the C++ language definition, are accepted by the AT&T
C++ Language System (cfront) release 2.1.

--cfront_2.1
-2.1

cfront version 3.0 compatibility with compilation of C++. This
causes the compiler to accept language constructs that, while not
part of the C++ language definition, are accepted by the AT&T
C++ Language System (cfront) release 3.0. This option also
enables acceptance of anachronisms.

--cfront_3.0
-3.0

Minimum Runtime Support Library --minl
Green Hills Software, Inc. 77

3. The Builder GUI
Standard Allocation
Uses the standard heuristic to define a virtual function table for a class.
The virtual function table for a class is defined in a compilation if that
compilation contains a definition of the first non-inline pure virtual
function for the class. For classes that contain no such function, the
default behavior defines the virtual function table as a local static entity.

Force Allocation
Forces definition of virtual functions tables in cases where the heuristic
used by the front end, to decide on the definition of virtual tables,
provides no guidance.

Suppress Allocation
Suppresses definition of virtual function tables in cases where the
heuristic used by the front end, to decide on the definition of virtual
function tables, provides no guidance. For details on this heuristic, see
Standard Tables above. The option suppresses definition of the local
static virtual function tables.

Type of enum (drop-down list)
Selects the algorithm to allocate storage for enumeration types.

Int
Always allocates a full integer for an enumeration type. This is the
default.

Smallest possible
Allocates enumerations to the smallest possible integral type.

Packing (drop-down list)
Selects the default alignment for packing classes and structs. This option is
rarely used, and should match the alignment setting in the Project > Options for
Selected Files... dialog box, Advanced tab.

The following items describe check box items in the Language Options dialog
box, C++ tab:

Enable exception handling
Enables support for the C++ exception handling feature. Code size and speed
may be impacted even when exception handling is not directly used.

Disable namespaces
Disables support for the C++ namespaces feature.
78 Building and Editing with MULTI 2000

Language Options dialog box

st”

.
Enable std namespace
Enables implicit use of the standard namespace when standard header files are
included.

Disable RTTI
Disables support for runtime type information (RTTI) features “dynamic_ca
and “typeid.”

Disable “bool” keyword
Disables recognition of the “bool” keyword. Equivalent to omitting the --bool
command line option.

Disable “explicit” keyword
Disables support for the “explicit” specifier on constructor declarations. It is
equivalent to the --no_explicit build-time option.

Disable wchar_t keyword
Does not recognize wchar_t as a keyword. Use this option if your source
contains a typedef that declares wchar_t.

Disable array new/delete
Disables support for the array new and delete feature.

Recognize “restrict” keyword
Enables recognition of the “restrict” keyword.

Disable “extern inline”
Disable support for ’inline’ functions with external linkage in C++. Functions
which are declared only ’inline’ will be external or static depending on the flag
specified. Equivalent to the --no_extern_inline command line option.

Disable ’extern "C"’ type conversion
Disable an extension to permit implicit type conversion in C++ between a
pointer to an ‘extern “C”’ function and a pointer to an ‘extern “C++”’ function
Equivalent to the --no_implicit_extern_c_type_conversion command line
option.
Green Hills Software, Inc. 79

3. The Builder GUI

.

nly
nt to

ro.
C and C++ functions have distinct types
Function types are considered distinct if their only difference is that one has
‘extern “C”’ routine linkage and the other has ‘extern “C++”’ routine linkage
Equivalent to the --c_and_cpp_functions_are_distinct command line option.

Allow overloading of enum types
Allow operator functions to overload built-in operations on enum-typed
operands.

Use late tiebreaker rules
When resolving an overloaded function, tie-breakers (‘const’ and ‘volatile’
qualifiers) are ignored during the initial comparison. They are considered o
if the two functions are otherwise equally good on all arguments. Equivale
the --late_tiebreaker command line option.

Force zero initialization of scalars
Force all uninitialized scalar global variables to be explicitly initialized to ze
Equivalent to the --force_zero_initialization command line option.

No constructor initialization in main
Do not generate an automatic call to _main from main. _main performs
constructor initialization.

Enable multibyte characters
Enable processing for multibyte character sequences in comments, string
literals, and character constants. Equivalent to --multibyte_chars.

Enable Microsoft extensions
Enables recognition of a set of Microsoft extensions. The Green Hills C++
User’s Guide discusses this in further detail.

Allow anachronisms
Enables support of anachronisms.

Use old for-loop initialization scoping
The old (Cfront-compatible) scoping rules means the declaration of a variable
in the initialization part of a for statement is in the scope to which the for
statement itself belongs. The new (standard conforming) rules, in effect, wrap
the entire for statement in its own implicitly generated scope.
80 Building and Editing with MULTI 2000

Language Options dialog box

s by

pe,
ime
is
Don’t demangle linker messages
Does not demangle names that appear in linker messages. These are typically
symbol names which are either undefined or multiply defined.

Leave translated C
Leaves a C version of the C++ code. The translated C file is filename.ic.

Keep comments in preprocessor output
If producing a preprocessor output file (see File Options dialog box, Actions
tab) passes comment lines through from the C++ source to the preprocessor
output file.

Ignore duplicate #include
Ignores an #include directive if attempting to include a file already included.
The file must appear with exactly the same name in both #include directives to
ignore the second #include directive.

If a filename appears in more than one #include directive during a single
compilation, it skips all of the directives except the first one. Equivalent to the
-includeonce C preprocessor option.

Consider char to be signed
The “char” type is treated as “signed char.”

Consider bit-fields to be signed
Bit fields within a struct or class are treated as signed entities by default.

Consider enum bit-fields to be signed
Bit fields of type “enum” within a struct or class are treated as signed entitie
default.

Use long lifetimes for temps
Creates temporary variables whose lifetime ends at the earliest end of sco
end of switch clause, or next label. This is the behavior of cfront. Long lifet
temporaries are implied by the cfront compatibility modes. The alternative
for temporary variable lifetimes to end at the end of the full expression for
which they are created. This is the behavior of standard C++.
Green Hills Software, Inc. 81

3. The Builder GUI
Recognize alternate tokens
Enables recognition of alternative tokens. These are tokens that make it possible
to write C++ without the use of the {, }, [,], #, &, |, ^ and ~ characters. The
alternative tokens include the operator keywords, such as and and bitand, and
digraphs.

More C++ Options > Template tab
(Builder: Project > Language Options for Selected Files... > C++ tab > More
Options... > Template tab)

This dialog box contains more C++ specific options, including template,
precompiled header, diagnostics, and listing file options.

Template mode (drop-down list)
Select the manner in which the compiler should force the template instantiation.
This form of template instantiation is done when a source file is compiled, as
opposed to allowing the automatic template instantiation mechanism to decide
which templates need instantiation.

Never force instantiations
Gives the automatic template instantiation mechanism complete control
over which templates to instantiate.

Force instantiations for used entities
The compiler instantiates all templates which are used in the current
compilation.

Force all possible instantiations
The compiler instantiates all template entities whether or not they have
been used in this compilation.

Force local instantiations when used
The compiler instantiates only the template entities that are used in this
compilation, and forces those entities to be local to this compilation.

Disable automatic instantiations
Does not do template instantiation automatically. This assumes the
responsibility of making sure the necessary entities are instantiated, possibly
using one of the Template Mode settings, or through the use of #pragma
directives.
82 Building and Editing with MULTI 2000

Language Options dialog box

ns

ns.
use

te,

 that

as no
or
Disable template implicit inclusion
“Implicit inclusion” is a convention that Cfront uses where template definitio
must appear in a header (.h) file. For each such file, there must be a
corresponding C++ source file containing the associated template definitio
This option tells the automatic instantiation mechanism NOT to attempt to
this convention to locate template definitions.

Use distinct template signatures
Uses signatures for template functions that can never match those of
non-template functions. A normal (non-template) function, such as void
f(int), cannot be used to satisfy the need for an instantiation of a templa
such as void f(T), with T set to int.

Disable old-style specializations
Does NOT accept old-style template specialization, that is, specializations
do not use the template <> syntax.

Disable “typename” keyword
Disable recognition of the keyword ‘typename’. ‘typename’ can be used
instead of class when declaring template parameters. Equivalent to the
--no_typename command line option.

Disable implicit typename determination
Disables implicit determination, from context, whether a template
parameter-dependent name is a type or non-type.

Disable “guiding declarations”
Disable “guiding declarations” of template functions. A guiding declaration is a
function declaration that matches an instance of a function template, but h
explicit definition (since its definition derives from the function template). F
example:

template <class T> void f(T) { ... }
void f(int);
Equivalent to the --no_guiding_decls command line option.

Non-standard qualifier deduction
Controls whether non-standard template argument deduction should be
performed in the qualifier portion of a qualified name.
Green Hills Software, Inc. 83

3. The Builder GUI
One template instantiation per object file
Places each template instantiation in this compilation (function or static data
member) in a separate object file.

More C++ Options > Precompiled Header tab
(Builder: Project > Language Options for Selected Files... > C++ tab > More
Options... > Precompiled Header tab)

Automatic PCH processing
Automatically uses or creates a precompiled header file.

Disable PCH creation message
Disables the message indicating that a precompiled header file was created or
used during a compilation.

PCH directory
Directory to search for and create a precompiled header file.

Create PCH file:
Creates a precompiled header file with the specified name.

Use PCH file:
Uses a precompiled header file of the specified name as part of the current
compilation.

More C++ Options > Diagnostics tab
(Builder: Project > Language Options for Selected Files... > C++ tab > More
Options... > Diagnostics tab)

Change certain ANSI C++ errors to warnings
Non-fatal ANSI C++ errors are downgraded to warnings.

Suppress all warnings
Suppresses all warning level messages from the compiler.

Quit building if warnings occur
Stop building when a warning occurs. Without the option, the build continues
when warnings occur but stops when an error occurs.
84 Building and Editing with MULTI 2000

Language Options dialog box
Issue remarks
Issues remark level messages from the compiler, equivalent to mild warnings.

No “used before set” warnings
Does not issue warnings on local automatic variables used before their values
are set.

No warnings for old for-loop scoping
If the new for-loop scoping is used, do NOT give a warning for programs which
would have different behavior under the old rules.

Display message numbers
Displays the error message number in the diagnostic messages. These message
number may be used in the Suppress specific diagnostic and Change severity
to... text fields.

Display brief messages
Enables an error reporting mode in which a single line error message is
produced. The original source line and pointer to the location of the error within
that line is not displayed.

Don’t wrap diagnostic messages
Displays messages in single long lines, instead of wrapping them.

Maximum number of error mgs
Forces the compiler to abandon the compilation after this number of error
messages, not including warning and remark level messages. The default limit
is 100.

Suppress specific diagnostic
Suppresses diagnostic messages corresponding to the given error numbers.
Multiple error numbers may be listed in a comma separated list. Use the
Display message numbers check box to list error numbers in the diagnostic
output.

Change severity to remark
Overrides the normal severity of the specified diagnostic message, making it a
remark, whenever possible. Multiple error messages may be listed in a comma
Green Hills Software, Inc. 85

3. The Builder GUI
separated list. Use the Display message numbers check box to list error
numbers in the diagnostic output.

Change severity to warning
Overrides the normal severity of the specified diagnostic message, making it a
warning, whenever possible. Multiple error numbers may be listed in a comma
separated list. Use the Display message numbers check box to list error
numbers in the diagnostic output.

Change severity to error
Overrides the normal severity of the specified diagnostic message, making it a
fatal error. Multiple error number may be listed in a comma separated list. Use
the Display message numbers check box to list the error numbers in the
diagnostic output.

More C++ Options > Listing tab
(Builder: Project > Language Options for Selected Files... > C++ tab > More
Options... > Listing tab)

Cross reference file
Generates a cross reference file corresponding to the source file. The file
extension of cross reference files is .xrf.

Listing file
Generates a listing file corresponding to the source file. The file extension of a
listing file is .lis.

Listing Directory
The directory in which to generate the cross reference and listing files.

Language Options > Ada tab
(Builder: Project > Language Options for Selected Files... > Ada tab)

The following are descriptions of the items in the Ada tab.

Main program name
Specifies the name of the main procedure for your Ada build (if .bld file is not
labeled with the name).
86 Building and Editing with MULTI 2000

Language Options dialog box
Library directories
Allows additional library paths to be searched for libraries to be incorporated
into the program. Equivalent to the -Ldir command line option.

Elaboration only library directories
Allows additional elaboration only library paths to be incorporated into the
program. Equivalent to the -ep build-time option to adaopts (adaopts is an Ada
utility program; see the Ada Language User’s Guide).

Ada83 analysis mode
Gives useful hints on converting Ada83 code to Ada95 code. It does not
generate object code (strictly analysis mode). Same as -ada83.

Suppress all runtime checks
Suppresses all automatic run-time checking including numeric checking. This
option is equivalent to using Pragma Suppress on all checks. Using this option
reduces the size of the code. Same as -no_check.

Suppress numeric runtime checks
Suppresses two kinds of Numeric Checks for the entire compilation:
division_check and overflow_check. The Ada95 LRM describes these checks.
Using this option reduces the size of the code. Same as -no_num_check.

Generate cross reference
Generates a cross reference listing containing a line-numbered listing, followed
by a cross reference table. The listing is written to file.xlst. Same as -list/x.

Generate text elaboration table
Generates an elaboration table listing in the elab_table.txt file.

Source listing (drop-down list)
Will generate source listing Always, Only if errors, or Never (default).

Always -list/c

Only if errors -list/e

Never no listing
no options thrown
Green Hills Software, Inc. 87

3. The Builder GUI
Listing format (drop-down list)
Displays all source lines, all source lines numbered, and only error lines.

Page length/width
Allows you to format page length and width for the paginated source listing.
Same as -page/l and -page/w respectively.

Diagnostics
Informs the Builder what to display in the progress window when building the
application.

Suppress errors is the same as -nomsg/e.

Suppress warnings is the same as -nomsg/w.

Suppress informative messages is the same as -nomsg/i.

Suppress implementation dependent messages is the same as -nomsg/d.

This is a description of the Ada95 Library Displays:

Library info
Displays search path to libraries used by the application.

Registered units
Displays Unit Names and Unit descriptions of modules registered in the Ada
library.

Registered sources
Displays source code path and names of modules registered in the Ada library.

Language Options > FORTRAN tab
(Builder: Project > Language Options for Selected Files... > FORTRAN tab)

FORTRAN version (drop-down list)
Standard

Interprets FORTRAN code in compliance with the ANSI FORTRAN
standard.

All source lines default

All lines numbered -list/p

Only error lines -list/r
88 Building and Editing with MULTI 2000

Language Options dialog box

.

s.

lent

h 72.

alent

ult,

ed.

ver,
g
F77
Interprets FORTRAN code for compatibility with AT&T’s f77 compiler
Equivalent to the -f77 command line options.

DoD
Enables DoD FORTRAN extensions. Equivalent to the -dod command
line option.

Vax/VMS
Interprets code for compatibility with DEC’s VAX/VMS FORTRAN
compiler. This includes all Dod extensions. Equivalent to the -vms
command line option.

Extended
Allows as many general purpose language extensions as possible.

Enable Debug Lines
Compiles lines starting with d, D, x, or X. The default treats them as comment
This option enables debugging statements. Equivalent to the -d_line command
line option.

Namelist
Enables the IBM and VMS compatible NAMELIST extensions in FORTRAN.
These extensions are already enabled in VMS compatibility mode. Equiva
to the -namelist command line option.

132 columns
Extends source to interpret columns 1 through 132 instead of only 1 throug
Equivalent to the -extend_source command line option.

Implicit Undefined
Makes the default data type for undeclared variables as “undefined”, equiv
to coding IMPLICIT UNDEFINED(A-Z) at the top of the source file.
Equivalent to the -u command line option.

Case Sensitive
Does not convert uppercase user-supplied variables to lowercase. By defa
FORTRAN is not case sensitive and all FORTRAN names are converted to
lowercase. The compiler and library both assume this translation is perform
This option generally accesses variables defined in C as uppercase. Howe
when using this option, all FORTRAN keywords must be lowercase, makin
Green Hills Software, Inc. 89

3. The Builder GUI
the compiler incompatible with the ANSI FORTRAN-77 standard. Equivalent
to the -U command line option.

Locals on Stack
Allocates local variables to registers or stacks, equivalent to coding IMPLICIT
AUTOMATIC (A-Z) at the start of every subroutine or function. Programs
compiled with this option are compliant with ANSI FORTRAN-77 and in some
cases execute much more quickly. Equivalent to the -nosave command line
option.

Check array bounds at runtime
Check that array subscripts are within the bounds of an array at runtime.
Equivalent to the -boundcheck command line option.

One Trip Do Loops
Executes at least one iteration for every DO loop. By default, when the lower
bound index of a DO loop is greater than the upper bound index, the compiler
does not execute the DO loop for compatibility with the ANSI FORTRAN-77
standard. This option may be required for some older FORTRAN-66 programs
to operate correctly. Equivalent to the -onetrip command line option.

VMS Common
Names COMMON blocks in the VMS style with a dollar sign appended. This
option is enabled by default in VMS compatibility mode, but is also selected in
F77 compatibility mode. Equivalent to the -vms_common command line
option.

VMS Octal
Controls whether a double quotation mark is used for octal characters. If this is
set, then the quotation mark is used for octal characters even in F77 and
Extended modes. If this is not set, then the double quotation mark is an
alternative to an apostrophe as a delimiter for character string constants. For
example, PRINT*,“sofa sofa” prints sofa sofa. This is true even in VMS
mode. The quotation mark is not allowed in Standard mode. Equivalent to the
-vms_octal command line option.

2 Byte Integer
Sets the type for INTEGER to INTEGER*2 . The default is INTEGER*4 .
Equivalent to the -i2 command line option.
90 Building and Editing with MULTI 2000

Language Options dialog box
Hollerithblankpad
Pads hollerith constants on the right with blanks. The default, compatible with
F77 mode, is that only the first byte of the hollerith is significant and the
constant zero is padded on the right. Equivalent to the -hollerith_blank_pad
command line option.

Missing Args Ok
Allows CALL X(1,,2). Suppresses warning resulting from the missing
argument. The compiler in either case passes a null value for the missing
argument. Equivalent to the -missing_args_ok command line option.

Language Options > Pascal tab
(Builder: Project > Language Options for Selected Files... > Pascal tab)

Pascal version (drop-down list)
ISO Level 0

Interprets Pascal code in compliance with the ISO Level 0 standard.

ISO Level 1
Interprets Pascal code in compliance with the ISO Level 1 standard.

Extended
Accepts all available Pascal extensions.

Big Set
Allocates all sets in the range 0..255. Otherwise, sets are allocated in the range
0..31 for efficiency. ISO Level 0 and Level 1 Pascal default to Big Set, but
Extended Pascal does not.

Case Sensitive
Specifies that Pascal is case sensitive. Extended Pascal defaults to case sensitive
and ISO Level 0 and Level 1 Pascal does not. Equivalent to the -X59 command
line option.

Append score
Appends an underscore to the names of all functions and procedures. This
prevents conflict with C routines that have the same name. However, this results
in unresolved symbols because the Green Hills Pascal library does not expect to
have this option set.
Green Hills Software, Inc. 91

3. The Builder GUI

t.

r

l

n.

m
times
ur
CPU Options dialog box

This is a complete description of the CPU specific option dialog boxes. MULTI
displays only the CPU options dialog box that applies to the processor for which
you are building your program.

Note: To set the processor family for your program, choose Project > Set Build
Target For Project..., and pick a target.

For more detailed information on any of the options in these windows, please
refer to the appropriate Development Guide.

i386/i486/Pentium dialog box

Processor (drop-down list)
Generates code optimized for the selected processor’s instruction se

Floating point processor (drop-down list)
Default

Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has no
floating point support.

None
Rejects any use of floating point variables or constants in C, C++, o
Pascal. Equivalent to the -fnone build-time option.

Software
Generate software floating point emulation code, regardless of the
capabilities of the selected processor. Libraries built for software wil
also be used. Equivalent to the -fsoft build-time option.

The following are descriptions of the check boxes in the i386/i486/Pentium
window.

fprecise
Stores all floating point calculations in memory to ensure precise truncatio
Normally, all floating point operations on the 386/486/Pentium are done in
extended precision. Without this option, calculations on the 386/486/Pentiu
are done at a different precision than on other architectures, which is some
undesirable. This option generates more predictable results, but makes yo
code larger and slower. Equivalent to the -fprecise command line option.
92 Building and Editing with MULTI 2000

CPU Options dialog box
ffunctions
Enables the compiler to directly use the 387 hardware instructions for certain
floating point functions instead of calling them in the library. Equivalent to the
-ffunctions machine specific option.

manifest
The Builder predefines many symbols for compatibility with the SCO native C
compiler. These symbols are known as manifest defines and all begin with M_.
This option is only relevant for an SCO target system. Equivalent to the
-nomanifest command line option.

The following options only apply to native Win32 compilation. Both fields are
passed directly to the Microsoft linker:

Reserve
How much stack space you want allocated.

Commit
How much of that stack space you want unpaged.

The Microsoft linker documentation provides further information on these
fields.

MC68000 dialog box

Processor (drop-down list)
68000

Generates code for the 68000 instruction set. Equivalent to the
-68000 machine specific option.

68010
Generates code for the 68010 instruction set. Equivalent to the
-68010 machine specific option.

68020
Generates code for the 68020 instruction set. Equivalent to the
-68020 machine specific option.

68030
Generates code for the 68030 instruction set. Equivalent to the
-68030 machine specific option.
Green Hills Software, Inc. 93

3. The Builder GUI
68040
Generates code for the 68040 instruction set. Equivalent to the
-68040 machine specific option.

68LC040
Generates code for the 68LC040 instruction set. Equivalent to the
-68LC040 machine specific option.

68EC040
Generates code for the 68EC040 instruction set. Equivalent to the
-68EC040 machine specific option.

68060
Generates code for the 68060 instruction set. Equivalent to the
-68060 machine specific option.

68LC060
Generates code for the 68LC060 instruction set. Equivalent to the
-68LC060 machine specific option.

68EC060
Generates code for the 68EC060 instruction set. Equivalent to the
-68EC060 machine specific option.

6830x
Generates code for the 68000 instruction set used by the 68302
and 68306. Equivalent to the -68302 machine specific option.

6833x
Generates code for the CPU32 instruction set used by the 68330,
68331, 68332, and 68F333. Equivalent to the -68331 machine
specific option.

68340
Generates code for the CPU32 instruction set used by the 68340.
Equivalent to the -68340 machine specific option.

68360
Generates code for the CPU32+ instruction set used by the 68360.
Equivalent to the -68360 command line option.

MCF510x
Generates code for the ColdFire 5100 series instruction set.
Equivalent to the -cf5102 command line option.
94 Building and Editing with MULTI 2000

CPU Options dialog box
MCF5202
MCF5203
MCF5204
MCF5206E

Generates code for the ColdFire 5200 series instruction set.
Equivalent to the -cf5202, -cf5203, -cf5204, -cf5206, -cf206e
machine specific options.

MCF5307
Generates code for the ColdFire 5300 series instruction set.
Equivalent to the -cf5307 machine specific option.

Floating point processor (drop-down list)
Default

Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to the -fnone build-time option.

Software
Generate software floating point emulation code, regardless of the
capabilities of the selected processor. Libraries built for software
will also be used. Equivalent to the -fsoft build-time option.

68881
Generates code for the 68881 floating point processor. Equivalent
to the -68881 machine specific option.

68882
Generates code for the 68882 floating point processor. Equivalent
to the -68882 machine specific option.

Position independent code (drop-down list)
Absolute

Generates absolutely addressed (position dependent) code.
Equivalent to the -nopic command line option.

16 bit pc-relative
Generates position independent code for the code and data
sections of the program. The position offsets are 16 bits (+/-
Green Hills Software, Inc. 95

3. The Builder GUI
32KB), and are relative to the program counter. Equivalent to the
-pic16 PIC option.

32 bit pc-relative
Generates position independent code for the code and data
sections of the program. The position offsets are 32 bits, and are
relative to the program counter. Equivalent to the -pic32 PIC
option.

Position independent data (drop-down list)
Absolute

Generates absolute addressed (position dependent) data.
Equivalent to the -nopid PID option.

16 bit pc-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the program counter. Equivalent to the -pid16 option.

16 bit a2-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a2. Equivalent to the -pid16=a2 option.

16 bit a3-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a3. Equivalent to the -pid16=a3 option.

16 bit a4-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a4. Equivalent to the -pid16=a4 option.

16 bit a5-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a5. Equivalent to the -pid16=a5 option.

16 bit a6-relative
Generates position independent data for the data sections of the
program. The position offsets are 16 bits (+/- 32KB), and are
relative to the register a6. Equivalent to the -pid16=a6 option.
96 Building and Editing with MULTI 2000

CPU Options dialog box
32 bit pc-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
program counter. Equivalent to the -pid32 option.

32 bit a2-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register a2. Equivalent to the -pid32=a2 option.

32 bit a3-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register a3. Equivalent to the -pid32=a3 option.

32 bit a4-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register a4. Equivalent to the -pid32=a4 option.

32 bit a5-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register a5. Equivalent to the -pid32=a5 option.

32 bit a6-relative
Generates position independent data for the data sections of the
program. The position offsets are 32 bits, and are relative to the
register a6. Equivalent to the -pid32=a6 option.

The following are descriptions of the check boxes in the MC-68000 window.

Use built-in fp funcs
Uses built-in floating point instructions rather than calling library
functions such as fabs(), sqrt(), and sin(). Equivalent to the -ffunctions
machine specific option.

Insert extra Fpnops
Appends one FPNOP instruction after every 68881 instruction, other
than FMOVE, unless immediately followed by a 68881 instruction. This
ensures that interrupts are taken at the correct position. Equivalent to the
-ffpnop machine specific option.

Return fp in d0/d1
Returns floating point numbers from functions in the registers d0 and d1
instead of fp0. Equivalent to the -freturnd0 machine specific option.
Green Hills Software, Inc. 97

3. The Builder GUI
Truncate fp expressions
In 68881/68882 and 68040 mode, this stores all single and double
precision floating point variables and values in memory to ensure precise
truncation. Without this option, variables and intermediate values are
often located in the internal 80-bit floating point registers, resulting in
additional precision. This produces results different from other
architectures that truncate all results to 32 or 64 bits. Equivalent to the
-fprecise machine specific option.

Enable 68851 support
Enables use of a 68851 memory management unit. This option only
affects the assembler. Equivalent to the -68851 machine specific option.

Use DS for uninit vars
This is currently unsupported. For zero initialized variables and
assembly output, the DS directive is used instead of DCB. This results in
much smaller output from the assembler but does not explicitly initialize
the variables to zero. It is then your responsibility to make sure the
variables are initialized to zero.

Portable assembly code
For assembly output, use constant directives rather than actual 68K
instructions. The compiler outputs assembly code which is portable to
many more assemblers than the standard assembly code output.
Equivalent to the -preassemble machine specific option.

Large switch statements
Allows large switch statements by forcing the compiler to use a 32-bit
offset, which works regardless of the destination label. The default is a
16-bit offset which is smaller and faster. However, it fails if a label is too
far away. Equivalent to the -bigswitch FORTRAN option.

Minimum structure alignment
Does not round up the size of structs containing one byte of data to the
default minimum alignment value. These structs will be one byte in size
and may be linked at an odd-numbered address with the option.

Pop stack args often
Subroutine calls require a substantial amount of code in many programs.
Each time a subroutine is called the arguments are pushed on the stack,
the subroutine is called, and when the subroutine returns the arguments
are removed from the stack by adding to the stack pointer. In many
programs a substantial savings in code size is realized by the Green Hills
compiler by not adding to the stack pointer after each call.

Instead, the total amount of space that needs to be removed is
accumulated until some occurrence, such as a branch, forces the
98 Building and Editing with MULTI 2000

CPU Options dialog box

0) and
ited

only
compiler to adjust the stack. The optimization may cause a program to
use more stack space than it otherwise would have.

This option forces a stack adjustment after each subroutine call. This
stops stack frames from growing too large at the expense of generating
more code.

V800 dialog box
This window applies to the most up-to-date V800 toolset which uses ELF as the
default format and version 1.8.9 compilers. To use the previous generation of
tools and COFF or ELF format, either use the V805/V810/V820/V830 window
or the V850/V851 window.

To change the target processor to a different member of the V800 series, change
the entry in the Target box in the main Builder window. Do not change the
processor field in this window.

Processor (drop-down list)
 Generates code for the selected processor’s instruction set. Equivalent to
executing the corresponding processor specific compiler driver from the
command line.

Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the selected
processor.

None
Rejects any use of floating point variables or constants in C, C++, or
Pascal. Equivalent to the -fnone build-time option.

V850 tiny data area (drop-down list)
 Allocates a small area of Tiny Data Area (TDA) memory to hold small data
objects and reference objects in that area using a base pointer register (r3
short load and store instructions. The total size of the Tiny Data Area is lim
to 4K. Please refer to the “Tiny Data Area Optimization” chapter in the
Embedded V800 Development Guide for more information.

You need to specify which TDA model to enable. Because TDA is enabled
through #pragma by default, no objects are placed in the TDA.
Green Hills Software, Inc. 99

3. The Builder GUI

 set

e

ains
nd
e
None
No TDA. The compiler uses the TDA base register r30 as a
normal temporary register.

Single
Enables the Single TDA model.

Multiple
Enables the Multiple TDA model.

The following are descriptions of the check boxes and text fields in the V800
window:

Reserve r2 for the user
The compiler reserves r2 for the user. This is the default. If the box is set
to “-”, the compiler uses r2 as a temporary register. Equivalent to the
-reserve_r2 command line option.

Reserve r5 for the user
The compiler reserves r5 for the user. This is the default. If the box is
to “-”, the compiler uses r5 as a temporary register. Equivalent to the
-reserve_r5 command line option.

Reserve r15-r24 for the user (22 register mode)
Generates code in 22 register mode. Default is 32 register mode.
Equivalent to the -cpu=v800_22 V800 specific option.

Reserve r17-r22 for the user (26 register mode)
Generates code in 26 register mode. Default is 32 register mode.
Equivalent to the -cpu=v800_26 V800 specific option.

Constant value 255 is in r20
The compiler assumes that r20 contains the value 255 and uses r20
instead of 255 during code generation. r20 should be initialized in th
startup code. Equivalent to the -r20has255 command line option.

Constant value 255 is in r20 and 65535 is in r21
The compiler assumes that r20 contains the value 255 and r21 cont
the value 65535. The compiler will use r20 and r21 instead of 255 a
65535 during code generation. r20 and r21 should be initialized in th
startup code. Equivalent to the -r21has65535 command line option.

Position independent code
Generates position independent code. Equivalent to the -pic PIC option.

Position independent data
Generates position independent data. Equivalent to the -pid PID option.
100 Building and Editing with MULTI 2000

CPU Options dialog box

e

ption

all

he

 is
 data

 the
g r4

 the
 r0

peed
se
ro
 to
Far function calls
Generates register-indirect calls (“far”-calls) for user functions. The
default is not to generate far calls, but to use PC-relative calls.
Equivalent to the -farcalls command line option.

Inline prologue
Forces the compiler to generate function prologue and epilogue cod
inline. The alternative is to call routines in the Green Hills libraries to
save and restore registers and allocate stack space for locals. This o
is on by default for unoptimized code, or when not optimizing for sm
code size.

Do not use V850E callt instruction
Prevents the compiler from generating the CALLT instruction on the
V850E. Also causes the linker to use a different set of libraries which
also do not use the CALLT instruction.

Small Data or Zero Data threshold
Specifies a size in bytes to determine which data objects appear in t
Small or Zero Data Areas. By default, objects less than 8 bytes are
placed in Small Data Area (i.e., the default small data area threshold
8), and no objects are placed in Zero Data Area (i.e, the default zero
area threshold is 0). Equivalent to the -sda= and -zda= special data area
options.

See the Development Guide for more information on the SDA and ZDA
optimizations.

Put variables smaller than threshold into (drop-down list)
 Normal Data

Puts variables smaller than threshold into the Data Area.

Small Data
Allocates an area of memory to hold data objects smaller than
Small Data Threshold and references objects in that area usin
as the base pointer register. Equivalent to the -sda Small Data
Area option.

Zero Data
Allocates an area of memory to hold data objects smaller than
Zero Data Threshold and references objects in that area using
as the base pointer register. This improves program size and s
because addressing an object via the Small/Zero data area ba
register uses fewer instructions. The total size of the Small/Ze
data area is limited to 64k; large applications may not be able
Green Hills Software, Inc. 101

3. The Builder GUI

 the

cted
as

++,

of

e of

 the
the
take advantage of this feature. Equivalent to the -zda special data
area option.

i960 dialog box

 Processor (drop-down list)
 Generates code for the selected processor’s instruction set. Equivalent to
-cpu=960 machine-specific option.

Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the sele
processor or software floating point if the selected processor h
no floating point support.

None
Rejects any use of floating point variables or constants in C, C
or Pascal. Equivalent to the -fnone build-time option.

Software
Generates software floating point emulation code, regardless
the capabilities of the selected processor. Libraries built for
software will also be used. Equivalent to the -fsoft build-time
option.

The following is a description of the items in the i960 window.

Big-Endian
Generates code with big endian byte order. The most significant byt
an integer appears at the lowest address. Equivalent to the -bigendian
command line option.

Position Independent Code
Generates position independent code. Equivalent to the -pic PIC option.

Position Independent Data
Generates position independent data. Equivalent to the -pid PID option.

Small Data Area
Allocates a small area of memory to hold small data objects and
references objects in that area using a base pointer register. This
improves program size and speed because addressing an object via
small data area base register uses fewer instructions. Equivalent to
-sda Small Data Area option.
102 Building and Editing with MULTI 2000

CPU Options dialog box

cted

++,

 the
re

.
Small Data Area Threshold
Specifies a size in bytes to determine which data objects appear in the
Small Data Area. By default, objects four bytes or less are placed in the
Small Data Area. Equivalent to the -sda= special data area option.

See the i960 Development Guide for more information about the Small Data
Area optimization.

Alpha dialog box

 Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the Alpha
processor.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to the -fnone build-time option.

ARM dialog box

 Processor (drop-down list)
 Generates code for the selected processor’s instruction set. Equivalent to
setting the corresponding -cpu flag on the command line.

Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the sele
processor.

None
Rejects any use of floating point variables or constants in C, C
or Pascal. Equivalent to the -fnone build-time option.

Software
Generate software floating point emulation code, regardless of
capabilities of the selected processor. Libraries built for softwa
will also be used. Equivalent to the -fsoft build-time option.

Fpal0
Generate code for the ARM Fpal0 hardware floating point unit
Equivalent to the :arm_fputype=fpa10 command line option.

The following describes the items in the ARM window:
Green Hills Software, Inc. 103

3. The Builder GUI

cted

++,

of
Big endian
Generates code with big endian byte order. The most significant byte of
an integer appears at the lowest address. Equivalent to the -bigendian
command line option.

Thumb code
Generate code for 16-bit instruction Thumb mode. Equivalent to the
-thumb command line option.

Thumb libraries
Link with runtime libraries built for Thumb mode (default is ARM
libraries).

FR20 dialog box

 Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the FR
processor.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to the -fnone build-time option.

MCore dialog box

 Processor (drop-down list)
 Generates code for the selected processor’s instruction set.

Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the sele
processor.

None
Rejects any use of floating point variables or constants in C, C
or Pascal. Equivalent to the -fnone build-time option.

Software
Generates software floating point emulation code, regardless
the capabilities of the selected processor. Libraries built for
software will also be used. Equivalent to the -fsoft build-time
option.
104 Building and Editing with MULTI 2000

CPU Options dialog box

cted
sor

++,

of

d
s

"
Single Precision Hardware
Causes the compiler to use hardware instructions to do some
single-precision floating point operations for the CPU types that
support it.

MIPS dialog box

 Processor (drop-down list)
 Generates code for the selected processor’s instruction set.

Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the sele
processor or software floating point code if the selected proces
has no floating point support.

None
Rejects any use of floating point variables or constants in C, C
or Pascal. Equivalent to the -fnone build-time option.

Software
Generates software floating point emulation code, regardless
the capabilities of the selected processor. Libraries built for
software will also be used. Equivalent to the -fsoft build-time
option.

Hardware Single
Uses hardware floating point for single precision, but software
floating point for double precision (when this mode is supporte
in the selected processor). The compiler uses different librarie
instead of the default. Equivalent to the -fsingle build-time
option.

Calling sequence (drop-down list)
 RH32 always uses the Embedded Calling Sequence, which is the default.
Therefore this item should be kept as "Default" for RH32 (equivalent to the
-embedded_calling_sequence command line option). Selecting "Workstation
(equivalent to the -workstation_calling_sequence command line option)
would have undefined effect on the code generation.

RH32 FPU (drop-down list)
 Select for which Floating Point Unit the floating point instructions are
generated. When the FPU number is n, the compiler will append n to every
Green Hills Software, Inc. 105

3. The Builder GUI
floating point instructions generated when appropriate. The default FPU
number is 0. Equivalent to the -fpu=n option.

The following are descriptions of the items in the MIPS window.

Position Independent Code
Generates position independent code. Equivalent to the -pic PIC option.

Position Independent Data
Generates position independent data. Equivalent to the -pid PID option.

PIC Compatible Code
Generates code that does not use the PIC base register. Code compiled
with this option is absolutely addressed, but can be safely linked with
code compiled with the position independent code or position
independent data options.

MIPS Assembler Compatible Output
Produces assembly language code for the MIPS native assembler. By
default, code is produced for the Green Hills assembler.

Little-Endian
Generates code with little endian byte order. The least significant byte of
an integer appears at the lowest address. This is the default with native
compilers on the DEC station and is also used for embedded
development. Equivalent to the -littleendian command line option.

MIPS-16 Instruction Set
Enables the MIPS-16 ISA. Equivalent to the -mips16 command line
option.

MIPS-16 Library
Link in the MIPS-16-specific runtime libraries (prebuilt with MIPS-16
enabled) by default, when the MIPS-16 instruction set is enabled. If the
MIPS-16 ISA is not enabled, clicking this button will have no effect.
Equivalent to the -mips16_lib command line option.

64 bit integers
Enables the 64-bit mode. In this mode, all registers are 64-bit wide, and
64-bit integers and arithmetical are supported (via the long long type).
However, pointers and addresses are still 32 bits. This option is not
available with all processors. Equivalent to the -64bit command line
option.

Far Function Calls
Enables the far function call mode. All functions are called via the jalr
instruction instead of the jal instruction by first loading the address of
106 Building and Editing with MULTI 2000

CPU Options dialog box

all or
 Data

 the
g r4

 the
 r0
the function into a temporary register. This allows the functions called to
be in any address within the range of 32 bits. Equivalent to the -farcalls
command line option.

Inline Prologue
Always generates the inlined prologue/epilogue code that saves and
restores the permanent registers in/from the stack of a function. If this
option is not turned on, then the compiler will choose for each function
to generate the prologue/epilogue code either inlined or offlined (when
in Software Floating Point mode, and not with -ga nor -G), depending on
which is better for code size when the # of registers to be saved/restored
are more than 2.

Note: An offline prologue/epilogue is a function call to a library routine
__savegN that saves registers $16 to $N, or __restgN that restored
registers $16 up to $N, respectively. These routines exist in indarch.a.

Multiple Near Code Regions (MIPS-X only)
Generates code in ’multiple near code region mode’. This is used to
create multiple code regions in memory. Code in each region is
accessible via an offset from a base register whose initial value is
determined during link time by specifying the -initreg linker option.
This feature is available for MIPS-X only. See your Development Guide
for more information.

Small Data or Zero Data Threshold
Specifies a size in bytes to determine which data objects appear in the Sm
Zero Data Areas. By default, objects less than 8 bytes are placed in Small
Area, and no objects are placed in Zero Data Area. Equivalent to the -sda= and
-zda= special data area options.See the MIPS Development Guide for more
information about the Small Data Area optimization.

Put variables smaller than threshold size into (drop-down list)
 Normal Data

Puts variables smaller than threshold into the Data Area.

Small Data
Allocates an area of memory to hold data objects smaller than
Small Data Threshold and references objects in that area usin
as the base pointer register. Equivalent to the -sda Small Data
Area option.

Zero Data
Allocates an area of memory to hold data objects smaller than
Zero Data Threshold and references objects in that area using
Green Hills Software, Inc. 107

3. The Builder GUI
as the base pointer register. This improves program size and speed
because addressing an object via the Small/Zero Data Area base
register uses fewer instructions. The total size of the Small/Zero
Data Area is limited to 64k; large applications may not be able to
take advantage of this feature. Equivalent to the -zda special data
area option.

nCPU dialog box

 Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to the -fnone build-time option.

Software
Generates software floating point emulation code, regardless of
the capabilities of the selected processor. Libraries built for
software will also be used. Equivalent to the -fsoft build-time
option.

The following are descriptions of the check boxes in the nCPU window.

Far function calls
This causes the compiler to generate function calls through a register;
this allows for functions to be located at any distance from the caller.
Without this, extremely large programs or programs with discontinuous
text sections may not link if the range of the call instruction is exceeded.

Small Data Area Threshold
Specifies a size in bytes to determine which data objects appear in the
Small Data Area. By default, objects four bytes or less are placed in the
Small Data Area. Equivalent to the -sda= special data area option.

See the Development Guide for more information about the Small Data
Area optimization.

Put variables smaller than threshold size into (drop-down list)
 Normal Data

Puts variables smaller than threshold into the Data Area.
108 Building and Editing with MULTI 2000

CPU Options dialog box
Small Data
Allocates an area of memory to hold data objects smaller than the
Small Data Threshold and references objects in that area using r4
as the base pointer register. Equivalent to the -sda Small Data
Area option.

Zero Data
Allocates an area of memory to hold data objects smaller than the
Zero Data Threshold and references objects in that area using r0
as the base pointer register. This improves program size and speed
because addressing an object via the Small/Zero data area base
register uses fewer instructions. The total size of the Small/Zero
data area is limited to 64k; large applications may not be able to
take advantage of this feature. Equivalent to the -zda special data
area option.

NDR dialog box

 Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to the -fnone build-time option.

The following describes the items in the NDR window.

Position independent code

Generates position independent code. Equivalent to the -pic PIC option.

Position independent data
Generates position independent data. Equivalent to the -pid PID option.

Zero data area
Enables the ZDA optimization. Puts variables smaller than the threshold
in the Zero Data Area. Equivalent to the -zda= special data area option.

Zero data area threshold
Specifies a size in bytes to determine which data objects appear in the
Zero Data Area. Equivalent to the -zda=special data area option.
Green Hills Software, Inc. 109

3. The Builder GUI

cted
as

++,

.

les
ection

ced
his

he
ode

rted

and
ts

PowerPC dialog box

 Processor (drop-down list)
 Generates code for the selected processor’s instruction set.

Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the sele
processor or software floating point if the selected processor h
no floating point support.

None
Rejects any use of floating point variables or constants in C, C
or Pascal. Equivalent to the -fnone build-time option.

The following are descriptions of the check boxes in the PowerPC window

Constant Data Section
Places all string literals, floating point constants, and initialized variab
declared const in C and C++ in a separate section, rather than the s
containing other initialized data.

This option is on by default. When disabled, constant data will be pla
in the .data or .sdata section. The user should take care when using t
option and interfacing with the provided libraries. The libraries place
constant data in .rodata sections, and problems can come up due to t
inconsistency, particularly if the user turns on Position Independent C
or Data.

Position Independent Code
Generates position independent code. Equivalent to the -pic PIC option.

Position Independent Data
Generates position independent data. Equivalent to the -pid PID option.

Far Function Calls
Uses the PowerPC instructions mtlr followed by blrl instead of bl for all
calls so that a full 32-bit displacement may be used. This is not suppo
with position independent code. Equivalent to the -farcalls command
line option.

Inline Prologue
Normally, the compiler chooses the most efficient function prologue
epilogue, depending on the optimization settings. This option preven
the compiler from calling off to library routines for this purpose; inline
110 Building and Editing with MULTI 2000

CPU Options dialog box

code sequences will be used instead. This option may adversely impact
the size of the generated code, so it should only be used when it is
necessary (for example, when the routines may not exist in memory yet).

Little Endian
 Specifies code generation for a little endian system. Equivalent to the
-littleendian command line option.

Label at End of Function
Specifies that a global label of the form __ghs_eofn_funcname will be
placed at the end of every function. This can be useful for computing the
size of functions based on global symbols.

Truncate single-precision fp on RSC:
This option only affects the Power architecture -cpu=rsc. Unlike
PowerPC, the closely related Power Architecture/RS6000 does not have
arithmetic instructions that produce a single precision result. As a result,
code which depends on the exact precision of single precision quantities
may not execute correctly. This option causes the compiler to truncate
the result to a single precision quantity after each single precision
arithmetic operation; this will cause the code to have the desired
behavior in these cases. This option is meaningless for non-RS6000
members of the Power/PowerPC family.

Small Data or Zero Data Threshold
Specifies a size in bytes to determine which data objects appear in the
Small or Zero Data Areas. By default, objects less than 8 bytes are
placed in Small Data Area (i.e. the default small data area threshold is 8),
and no objects are placed in Zero Data Area (i.e. the default zero data
area threshold is 0). Equivalent to the -sda= and -zda= special data area options.

See the Development Guide for more information on the SDA and ZDA
optimizations.

Put variables smaller than threshold size into (drop-down list)
 Species the XDA section for variables smaller than the specified threshold. If
“Normal Data” is selected, all variables will be placed in normal data rather
than the SDA or ZDA sections.

SH dialog box

 Processor (drop-down list)
 Generates code for the selected processor’s instruction set.
Green Hills Software, Inc. 111

3. The Builder GUI
Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support..

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to the -fnone build-time option.

Software
Generate software floating point emulation code, regardless of the
capabilities of the selected processor. Libraries built for software
will also be used. Equivalent to the -fsoft build-time option.

The following describes the items in the SH window.

Position Independent Code
Generates position independent code. Equivalent to the -pic PIC option.

Position Independent Data
Generates position independent data. Equivalent to the -pid PID option.

Little Endian
 Specifies code generation for a little endian system. Equivalent to the
-littleendian command line option.

All Floating Point is Single Precision
This option will cause "double" to be interpreted as "float" so no 64-bit
instructions will be required for floating point operations. Equivalent to
the -floatsingle command line option.

Disable use of MACH, MACL, and GBR by compiler
Prevents the compiler from using the MACH, MACL, or GBR registers
as general purpose, permanent registers.

Small Data Area
Allocates a small area of memory to hold small data objects and
references objects in that area using a base pointer register. This may
improve program size and speed because addressing an object via the
Small Data Area base register sometimes uses fewer instructions.
Equivalent to the -sda small data area option.

Small Data Area Threshold
Specifies a size in bytes to determine which data objects appear in the
Small Data Area. Equivalent to the -sda= special data area option.
112 Building and Editing with MULTI 2000

CPU Options dialog box

cted
as

++,

of

ct.

ct.
e

. All
f

ory
ich is

ize
nt to
SPARC dialog box

 Processor (drop-down list)
 Generates code for the selected processor’s instruction set.

Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the sele
processor or software floating point if the selected processor h
no floating point support.

None
Rejects any use of floating point variables or constants in C, C
or Pascal. Equivalent to the -fnone build-time option.

Software
Generates software floating point emulation code, regardless
the capability of the selected processor. Libraries built for
software will also be used. Equivalent to the -fsoft build-time
option.

The following are descriptions of the check boxes in the Sparc window.

pic (small offset)
Generates System V.4 style Position Independent Code with 16-bit
offsets. Code generated with this option is placed into a shared obje
Equivalent to the -pic PIC option.

PIC (large offset)
Generates System V.4 style Position Independent Code with 32-bit
offsets. Code generated with this option is placed into a shared obje
The larger offset degrades program size and speed, but increases th
limit on the number of external symbols appearing in a shared object
modules in a single shared object are compiled with the same type o
offset. Equivalent to the -PIC command line option.

Assume Double Alignment
By default, 4-byte loads and stores access all 8-byte objects in mem
to avoid any errors caused by using an 8-byte load on an address wh
a multiple of four, but not a multiple of eight. This option uses 8-byte
loads and stores to access 8-byte objects. This improves program s
and speed, but requires all 8-byte objects to align properly. Equivale
the -dalign command line option.
Green Hills Software, Inc. 113

3. The Builder GUI
Reserve Registers g5, g6, g7 for User
This option will keep the compiler from using the %g5, %g6 or %g7
registers as general purpose, permanent registers.

Small Data Area
Allocates a small area of memory to hold small data objects and
references objects in that area using a base pointer register. This
improves program size and speed because addressing an object via the
Small Data Area base register uses fewer instructions. The total size of
the Small Data Area is limited to 8K; therefore, large applications may
not be able to take advantage of this feature. Equivalent to the -sda
command line option.

ST100 dialog box

 Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to the -fnone build-time option.

The following describes the items in the ST100 dialog box.

Position Independent Code
Generates position independent code. Equivalent to the -pic PIC option.

Gp 16 Mode
Causes code to be generated in the gp16 instruction set of the ST100.
This provides smaller overall code size, at the expense of code speed

Gp 16 Libraries
Causes your application to be linked with standard libraries that were
built in gp16 mode (see above). The gp16 libraries are smaller in size,
but may execute more slowly.

Small Data Area Threshold
Specifies a size in bytes to determine which data objects appear in the
Small Data Area. Equivalent to the -sda= small data area build-time
option.

Tiny Data Area Threshold
Specifies a size in bytes to determine which data objects appear in the
Tiny Data Area. Equivalent to the -tda= tiny data area build-time option.
114 Building and Editing with MULTI 2000

CPU Options dialog box
StarCore dialog box

 Floating point processor (drop-down list)
 Default

Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support.

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to the -fnone build-time option.

The following describes the items in the StarCore window.

Big Endian
Specifies code generation for a big endian system. Equivalent to the -b
command line option.

Far function call
Treats all function calls as far calls. Equivalent to the -farcalls command
line option.

Align functions to 16-byte boundaries
Causes all functions to be aligned on 16-byte boundaries.

Do not allocate to d8-d15
Prevents the compiler from allocating variables to the high data registers, d8
through d15.

Do not allocate to r8-r15
Prevents the compiler from allocating variables to the high address registers, r8
through r15.

Small Data or Zero Data threshold
Specifies a size in bytes to determine which data objects appear in the Small or
Zero Data Areas. By default, objects less that 8 bytes are placed in the Small
Data Area (i.e the default small data area threshold is 8), and no objects are
placed in the Zero Data Area (i.e the default zero data area threshold is 0).
Equivalent to the -sda= and -zda= special data area options.
Green Hills Software, Inc. 115

3. The Builder GUI
See the Development Guide for more information on the SDA and ZDA
optimizations.

Put variables smaller than threshold size into (drop-down list)
 Normal Data

Puts variables smaller than threshold into the data area.

Small Data
Allocates an area of memory to hold data objects smaller than the Small
Data threshold and references objects in that area using r4 as the base
pointer register. Equivalent to the -sda Small Data Area option.

Zero Data
Allocates an area of memory to hold data objects smaller than the Zero
Data threshold and references objects in that area using r0 as the base
pointer register. This improves program size and speed because
addressing an object via the Small/Zero Data Area base register uses
fewer instructions. The total size of the Small/Zero Data Area is limited
to 64k; large applications may not be able to take advantage of this
feature. Equivalent to the -zda special data area option.

TriCore dialog box

Processor (drop-down list)
AUDO-lite

 For use with AUDO-lite boards.

AUDO-1
For use with AUDO-1 boards.

Rider A
For use with the TriCore Rider A Evaluation Board.

Rider B
For use with the TriCore Rider B Evaluation Board.

Floating point processor (drop-down list)
Default

Generates code using the floating point capabilities of the selected
processor or software floating point if the selected processor has
no floating point support..

None
Rejects any use of floating point variables or constants in C, C++,
or Pascal. Equivalent to the -fnone build-time option.
116 Building and Editing with MULTI 2000

CPU Options dialog box
The following describes the item boxes in the TriCore window.

Far Function Calls
Treats all function calls as far calls.

A function call is normally performed with a CALL instruction, which
takes a 24-bit PC-relative displacement. In large programs with functions
placed throughout memory, you can make functions unreachable with
the CALL instruction. This will result in an error at link time.

To avoid this problem, the compiler provides support for Far Function
Calls. In place of the CALL instruction, the compiler places the address
of the called function into a register and uses a CALLI instruction to
perform an indirect call. This method can reach a function anywhere in
the address space of the processor, at the expense of slightly larger code.

Small Data or Zero Data Threshold
Specifies a size in bytes to determine which data objects appear in the
Small or Zero Data Areas. By default, objects less that 8 bytes are placed
in Small Data Area (i.e the default small data area threshold is 8), and no
objects are placed in Zero Data Area (i.e the default zero data area
threshold is 0). Equivalent to the -sda= and -zda= special data area options.

See the Development Guide for more information on the SDA and ZDA
optimizations.

Put variables smaller than threshold size into (drop-down list)
Normal data

Puts variables smaller than threshold into the data area.

Small data
Allocates an area of memory to hold data objects smaller than the
Small Data threshold and references objects in that area using r4
as the base pointer register. Equivalent to the -sda Small Data
Area option.

Zero data
Allocates an area of memory to hold data objects smaller than the
Zero Data threshold and references objects in that area using r0 as
the base pointer register. This improves program size and speed
because addressing an object via the Small/Zero Data Area base
register uses fewer instructions. The total size of the Small/Zero
Data Area is limited to 64k; large applications may not be able to
take advantage of this feature. Equivalent to the -zda special data
area option.
Green Hills Software, Inc. 117

3. The Builder GUI
Toolchain Options dialog box

This is a complete description of the toolchain specific option dialog boxes.
MULTI displays only the toolchain options window that applies to the toolchain
with which you are building your program. For more detailed information on
any of the options in these windows, please refer to the appropriate
Development Guide.

Toolchain Options > Linker tab
(Builder: Project > Toolchain Options for Selected Files... > Linker tab)

Linker section overlap (drop-down list)
Allows sections to overlap in the final layout without warning or error.

Disable warnings
Disables warnings from the linker.

Generate checksum
Generates a 4-byte checksum at the end of every section, equivalent to
the -checksum option. See the Development Guide for more
information.

Allow undefined symbols
Allows a link to complete successfully with undefined symbols rather
than producing an error. Equivalent to the -undefined command line
option.

Re-scan libraries
Continually re-scans the list of libraries to resolve dependencies if at the
end of a pass through the libraries some symbols remain unresolved.
This continues until either all symbols are resolved or no symbols were
resolved in the last pass. See the linker section in the Development Guide
for more information.

Relocatable program
Generates an object file which is suitable for input into another linker
run, a dynamic loader, or an executable. Equivalent to linking with the
-relprog option.

No INTEGRITY shared objs
INTEGRITY specific: do not use shared objects (libraries are statically
linked into each AddressSpace).

C parameter checking
Causes the C compiler to output special symbols which represent every
function definition and every function call. The Green Hills linker (lx or
elxr) will recognize these symbols and give an error if a function is
118 Building and Editing with MULTI 2000

Toolchain Options dialog box

ker
ing

d

n

.

e

pter

r in
called inconsistently with its definition. Equivalent to the build-time
option -parameter_check.

Full C parameter checking
This is a superset of “C parameter checking” above. It causes the lin
to give an error if a function is called but there is no parameter check
information associated with the definition. This option cannot be use
unless all libraries and objects are compiled with some form of C
parameter checking enabled. Furthermore, any functions defined in
assembly language will need to have parameter checking informatio
added manually. Note that libraries provided by Green Hills are not
compiled with parameter checking enabled except on certain targets
Equivalent to the build-time option -full_parameter_check.

Undefined symbols
Identify these symbols as undefined in the symbol table. This is
generally used to force the loading of a library symbol that otherwise
might not be loaded. Equivalent to the -u sym command line option.

Defined symbols
The format is sym=val. Defines a symbol ‘sym’ with value ‘val’.

Abs objects to link against
Equivalent to linking with -A <name of object>

General linker options
These options are passed through to the linker.

Generate map file
Generate a link map file showing where symbols are located. See th
linker chapter in the Development Guide for more information.
Equivalent to the -map command line option.

Add cross reference
Adds cross reference information to the link map. See the linker cha
in the Development Guide for more information. Equivalent to the -Mx
command line option.

Sort symbols by address
Sorts symbols in the link map by their address. See the linker chapte
the Development Guide for more information. Equivalent to the -Mn
command line option.

Wide format
Prints the link map in wide format. See the linker chapter in the
Development Guide for more information. Equivalent to the -Mw
command line option.
Green Hills Software, Inc. 119

3. The Builder GUI
Map file name
Specifies the filename for the map file (optional). Equivalent to the
-map=name command line option.

Map file directory
Specifies the directory where the map file will be generated (optional).
Equivalent to the -map=name command line option.

Toolchain Options > Assembler tab
(Builder: Project > Toolchain Options for Selected Files... > Assembler tab)

Disable warnings
Disable warnings from the assembler.

Error for undefined sym
Give an error for undefined symbols. Normally undefined symbols are
silently converted into external references.

General assembler options
These options are passed through to the assembler. Equivalent to using
the -asm= command line option.

Generate listing file
Generates an assembly listing file. See the assembler chapter in the
Development Guide for more information. Equivalent to the -list
command line option.

Add cross reference
Adds cross reference information to the assembly listing file. See the
assembler chapter in the Development Guide for more information.
Equivalent to the -ref command line option.

Do not expand macros
Do not expand macros in the assembly listing file. See the assembler
chapter in the Development Guide for more information. Equivalent to
the -nogen command line option.

Listing file name
Specifies the filename for the assembly listing file (optional). Equivalent
to using the -list=name command line option.

Listing file directory
Specifies the directory where the assembly listing file will be generated
(optional). Equivalent to using the -list=name command line option.
120 Building and Editing with MULTI 2000

Toolchain Options dialog box
68000 Toolchain Options > Linker tab
Disable warnings

Disables warnings from the linker.

Extract common vars from libraries
Interpret uninitialized global variables defined with XCOM as
definitions rather than references when processing libraries. Equivalent
to the -cd option.

Do not create __ghs_begin symbols
Avoids outputting the COFF special symbols which are defined in the
linker. Equivalent to the -S7 option.

Relocatable program
Creates an output file which is both relocatable and executable.
Equivalent to using the -r and -a command line options.

No INTEGRITY shared objs
INTEGRITY specific: do not use shared objects (libraries are statically
linked into each AddressSpace).

Undefined symbols
Idenfity these symbols as undefined in the symbol table. This is
generally used to force the loading of a library symbol that otherwise
might not be loaded. Equivalent to the -u sym command line option.

Abs objects to link against
Use only the symbols from these objects and do not include the contents
of any sections from these objects in the output file. Equivalent to the -A
objs command line option.

General linker options
These options are passed through to the linker.

Generate map file
Generate a link map file showing where symbols are located. Equivalent
to the -map command line option.

Generate cross reference file
Generate a file containing cross-reference information. Equivalent to the
-Mx command line option.

Sort symbols by address
Sorts symbols in the link map by their address. Equivalent to the -Mn
command line option.

Map file name
Specifies the filename of the output map file. Equivalent to using the
-map=name command line option.
Green Hills Software, Inc. 121

3. The Builder GUI

e

 file

ting

ified

ants
Cref file name
Specifies the filename of the output cross-reference information.

Map and cref directory
Specifies the directory in which the cross-reference and map files will be
created.

68000 Toolchain Options > Assembler tab
Forward branch size

Sets the default size for forward branches when they’ve not otherwis
been specified. Equivalent to -opt: BRB, -opt:BRS, -opt:BRW, or -opt:
BRL assembler options.

Disable assembler warnings
Do not display warning messages on the screen. However, if a listing
is being created, the warning messages are still output to the file. By
default, warning messages are output both to the screen and the lis
file, if there is one. Equivalent to -E1 assembler option.

Accept C style numerical constants
Accept C style numeric constants. Hexadecimal constants are ident
by the prefix 0x. Octal constants are identified by a leading zero.
Decimal constants have no prefix. Motorola constant syntax is also
accepted ($ for hex, @ for octal, % for binary). There is a conflict
between this option and Motorola’s normal constant analysis. Const
122 Building and Editing with MULTI 2000

Toolchain Options dialog box
beginning with zero are considered octal when this option is set but are
considered decimal otherwise. Equivalent to -opt:CNUMS.

Reserve upper case register names
Reserves upper case register names and do not allow them to be used as
variable names. Equivalent to -reg:/UPPER.

Reserve lower case register names
Reserves lower case register names and do not allow them to be used as
variable names. Equivalent to -reg:/LOWER.

Reserve safe register names (such as %A5)
Reserves safe case register names and do not allow them to be used as
variable names. Equivalent to -reg:/SAFE.

Reserve register names only for this CPU
Reserves register names that are valid only for this CPU, rather than the
entire CPU family. Equivalent to -reg:/CPU.

Pad sections to 4-byte boundary, not 2
Pad relocatable sections to a 4 byte boundary (the default is 2).
Equivalent to -Y5.

Use abs short mode for abs forward refs
Uses absolute short mode (16-bit) for forward references that are in the
absolute format. Equivalent to -opt:FRS.

Interpret .L on branches to be 16-bits
Interpret the branch size code .L as being a 16-bit branch. Equivalent to
-opt:OLD.

General assembler options
These options are passed through to the assembler.

Defined symbols
The format is sym=val. Defines a symbol ‘sym’ with value ‘val’.

Generate listing file
Generates an assembly listing file. Equivalent to the -list command line
option.

Do not expand macros
Do not expand macros in the assembly listing file. Equivalent to the
-nogen command line option.
Green Hills Software, Inc. 123

3. The Builder GUI
Do not list macro call
Do not print macro calls in the assembly listing file. Equivalent to the
-opt:NOMC option.

Do not list macro definition
Do not print macro definitions in the assembly listing file. Equivalent to
the -opt:NOMD option.

Do not expand control statement
Do not print expansions of control statements in the listing. Equivalent to
the -opt:NOMEX option.

Listing file name
Specifies the filename for the listing file (optional). Equivalent to the
-list=name option.

Listing file directory
Specifies the directory in which the listing file will be generated
(optional).

Unix Toolchain Options > Linker tab
Relocatable program

Generates an output file which is both relocatable and executable.
Equivalent to using the -r and -a command line options.

No shared objects
Prevents shared objects from resolving library references of the form
-lname.

Undefined symbols
Identify these symbols as undefined in the symbol table. This is
generally used to force the loading of a library symbol that otherwise
might not be loaded. Equivalent to the -u sym command line option.

Abs objects to link against
Use only the symbols from these objects and do not include the contents
of any sections from these objects in the output file. Equivalent to the -A
objs command line option.

General linker options
These options are passed through to the linker.

Map file name
Specifies the file name for the link map file (optional). Equivalent to the
-map=name command line option.
124 Building and Editing with MULTI 2000

Toolchain Options dialog box
Map file directory
Specifies the directory where the link map file will be generated
(optional).

Unix Toolchain Options > Assembler tab
General assembler options

These options are passed through to the assembler.

Windows Toolchain Options > Linker tab
Undefined symbols

Idenfity these symbols as undefined in the symbol table. This is
generally used to force the loading of a library symbol that otherwise
might not be loaded. Equivalent to the -u sym command line options.

General linker options
These options are passed through to the linker.

Map file name
Specifies the filename for the map file (optional). Equivalent to the
-map[=name] option.

Map file directory
Specifies the directory where the map file will be generated (optional).

Windows Toolchain Options > Assembler tab
General assembler options

These options are passed through to the assembler.

Gnu Toolchain Options > Linker tab
Relocatable program

Equivalent to linking with the -r and -a options.

No shared objects
Passes -Bstatic to the linker to prevent shared objects from resolving
library references of the form -lname. This option is available only for
SunOS, Solaris2, and System V.4 Unix.

Undefined symbols
Place these symbols as an undefined symbol in the symbol table. This is
generally used to force the loading of a library symbol that otherwise
might not be loaded.

Abs objects to link against
The fully linked object files given are used to resolve addresses.
Green Hills Software, Inc. 125

3. The Builder GUI

dit

 the
r
General linker options
These options are passed through to the linker.

Map file name
Specifies the filename for the map file (optional).

Map file directory
Specifies the directory where the map file will be generated (optional).

Gnu Toolchain Options > Assembler tab
General assembler options

These options are passed through to the assembler.

The Progress window

When you build a project (e.g. if you click the Build button to start compiling),
MULTI opens a Progress window. This window displays information about the
progress of the build, as well as any errors or warnings.

To control exactly what information is displayed, use the Build Panel (see
“Build Panel” on page 43).

In addition to the normal editor buttons, the progress window has a Halt button
while building. This button changes to a Next Error button when the build
finishes.

The Next Error button is only present if you have either halted the build
process or after the build process has completed. It allows you to quickly e
the source files which have generated errors. If any errors occurred during
compilation of a source file, then pressing this button edits the file in which
error was detected in a new editor window, with the line containing the erro
126 Building and Editing with MULTI 2000

The Progress window
highlighted. Pressing the button again will do the same things, but for the next
error in the build.

The Halt button is only present during the build. If the Halt button is pressed,
then the build stops.

Another way to quickly edit errors is to double click the line in the progress
window where the error message was reported. This will edit the source file
which generated the error and highlight the line on which the error occurred.
For example, double clicking an error message such as:

"far.c", line 6: expected: ";" got: return

opens a new editor window displaying the source of far.c with line 6
highlighted.

Green Hills Software, Inc. 127

3. The Builder GUI
128 Building and Editing with MULTI 2000

Chapter
4

Version control

This chapter contains:

• MULTI Version Control

• How to use MVC

• Branching and version numbers

• How to use the MVC commands

• MVC command list

• Other version control systems

4. Version control

l
rol
to

y

en
u
w
ing

ile.

 is

u
nts.

y are

es.

e

he
ile
MULTI Version Control

MULTI provides a proprietary version control system (MVC) for text files. By
default, MULTI is configured to use MVC as its version control system. If you
already use another version control system, see the “Other version contro
systems” on page 139 to learn how you can use your existing version cont
system with MULTI. If you do not have a version control system, it is easy
begin using MVC.

Caution: MVC works on text files only. If you attempt to check in any binar
files, they will be deleted without warning.

MULTI keeps track of all changes to your text file in a separate log file. Wh
you edit the file, you first “check out” your file from version control. After yo
finish editing your file, you then “check in” your changes. This creates a ne
version in the log file. The log file preserves the entire version history, allow
you to restore any previous version to compare or revert back to another f

If you are using the MULTI editor to edit a file under version control, the file
automatically checked out when you make changes, assuming you have
Automatic Checkout enabled. The file is automatically checked in when yo
close it. During the check in process, a dialog appears, requesting comme
These comments are saved in the log file along with the new version.

To prevent changes from being made to files without the version control
system’s knowledge, all files in version control are read-only. Files become
writable when they are checked out and return to read-only status when the
checked in. Files become writable only to the user who checked out the fil
This prevents multiple users from editing the same file at the same time.

When a file is in version control, several directories are created in the sam
directory:

mvc.log
This directory contains log files. For example, if the file /a/john/fly.c is
placed under version control, then the log file is /a/john/mvc.log/fly.c.

Note: These log files must not be modified by hand, as all version
history may be lost if the file becomes corrupted.

mvc.log/mvc.lok
This directory contains the lock files showing who has checked out t
file. MVC only allows one user to check out a file at a time. The lock f
for /a/john/fly.c is /a/john/mvc.log/mvc.lok/fly.c.
130 Building and Editing with MULTI 2000

How to use MVC
mvc.log/mvc.sem
This directory contains temporary files used as semaphores to prevent
two different MULTI sessions from writing to the same log file at the
same time.

How to use MVC

There are three ways to access MULTI version control:

1. Use the Editor on a text file under version control. Files are checked in and
out automatically. Although MVC is enabled by default, only your .bld files
are automatically put under version control. All other files must be placed
under version control manually. To place files under version control:

a. Select Editor > Version > Place Under VC.

b. Enter the create command on the command line.

2. Choose menu items in the Builder or Editor Version menus.

3. Enter a full MVC command line. You can enter a full MVC command in two
different places:

a. The first is from a UNIX shell; there is an MVC executable which
comes with MULTI.

b. Choose Version > Other VC Command... in the Builder.

Example

% mvc co foo.c (assumes mvc is in your PATH)

Branching and version numbers

Version numbers are created when new files are added to a branch or version.
This allows you to revert to previous versions if necessary. Version numbers
have the form:

major_version.minor_version

As you create new versions, the minor version number increments by one for
each new version. You can set the version number for a new version (for
instance if you want to increment the major version number) by using the -v
version option of the various check in commands. This is done from an MVC
command line. For example, mvc ci foo.c -v 3.2 checks in foo.c with version
Green Hills Software, Inc. 131

4. Version control

ge

t
rrent
on on
 but

r
number 3.2. Version numbers are never allowed to decrease. 1.4 -> 1.5 and 1.5
-> 2.1 are allowed, but 2.5 -> 2.4 and 2.5 -> 1.6 are not allowed.

You can create a branch in the version for a file, by adding two more dots (..) to
the version number. For example, a version sequence might be: 1.1, 1.2, 1.3,
1.4. If you create a version with the number 1.3.1.1, that version is a branch off
the main sequence. The version sequence for that branch would be 1.1, 1.2, 1.3,
1.3.1.1. The next version for that branch after 1.3.1.1 would be 1.3.1.2.

To create a branch, you use the -v version option of the various checking
commands. The version is of the form of a branch version (with 4 numbers).
This needs to be done from the MVC command line. For example, mvc ci foo.c
-v 1.5.1.1 creates a branch off of version 1.5. When you work on a branch, you
always use the -v version option. If you omit the -v version option, MVC
assumes that you are working on the main version sequence. This creates a
version on the main sequence instead of on the branch. For example:

mvc co foo.c -v 1.5.1.1

(edit foo.c)

mvc ci foo.c -v 1.5.1.2

NOT mvc ci foo.c, which creates a version on the main branch (1.8, for
instance).

How to use the MVC commands

Some of the MVC commands are also listed in the Editor > Version and Builder
> Version menus. To type these commands, see “How to use MVC” on pa
131.

For any of the commands that check in a file, you can enter the -c option to
force MVC to ask for comments.

In all of the following commands, version refers to the version number you wan
the command to manipulate. If no version number is specified, then the cu
version is assumed. For a check out, the current version is the latest versi
the main version sequence. For a check in, the current version is the same
with the minor version number incremented by one.

Some of the commands use a date (-d date) instead of a version number to refe
to a given version. The date needs to be in the form:

MMDDYYhhmmss
132 Building and Editing with MULTI 2000

How to use the MVC commands
where:

The individual components of the date are separated by non-digit characters
(except for white space). For example, you can specify the date as
082597120000 or 08.25.97.12.00.00. Do not put spaces in the date. If any part
of the date is omitted, the maximum value for that part is used. For example,
082597 implies 082597235959. Two digit years between 50 and 99 are assumed
to describe years from 1950-1999, while years from 00 to 49 are used to refer to
years from 2000-2049.

You can use four-digit years by using the -D date option which takes a date in
the form:

YYYYMMDDhhmmss

All of the following commands use a filename. Multiple filenames are separated
by spaces. You can specify these files using the command-line option -l list_file
instead of filename. The list file is a normal text file that starts with the keyword
mvc-list, followed by the number of files, then the filenames. Everything in the
list file needs to be separated by spaces, tabs, and/or newlines. For example, you
have the following list file named fly:

mvc-list 3
art.c
trip.c
hat.c

With the above list file, you can specify a command to work on all three of the
listed files, art.c, trip.c, and hat.c. This means the following two commands
are identical:

ci art.c trip.c hat.c
ci -l fly

MM month

DD day

YY year

hh hour

mm minutes

ss seconds
Green Hills Software, Inc. 133

4. Version control
With both of these commands, the three files are checked in. The first line lists
them explicitly; in the second line, a list file is specified which contains the
three files.

To use directories other than the current one, specify the -L logdir and -S
sourcedir options. logdir is the directory that contains the mvc.log directory to
use for the log files. sourcedir is the directory containing the source files. For
example, if the source files are in /usr/john and the log files are in
/usr/george/mvc.log then the command:

ci fly.c bat.c -S /usr/john -L /usr/george
takes the files /usr/john/fly.c and /usr/john/bat.c and checks them into the log
files /usr/george/mvc.log/fly.c and /usr/george/mvc.log/bat.c.

MVC command list

Alias
alias filenames -v alias [-V version]

Allows you to refer to a given version number in the log file for the files
specified by filenames by another name, alias. This alias is used with other
MVC commands to refer to that version. If you do not specify -V version, the
current version is assumed. Valid aliases must satisfy the following conditions:

• they must be one word;

• they must begin with a non-digit;

• two aliases with the same name cannot be defined for the same file.

For example, if version 5.3 is a working version, enter:

alias fly.c -v goodone -V 5.3

where the word goodone becomes the alias for version 5.3. Later, you can use
goodone to specify the version number in any command which takes a version
number as an argument. For example:

get fly.c -v goodone

This command is extremely useful for making a whole set of source files. For
instance, if you are ready to release a product and want to mark all the current
sources as release, make sure all source files are checked in and then do the
following:
134 Building and Editing with MULTI 2000

MVC command list

e

 this
alias [list of source files] -v release

Then you can continue working on the product, making changes and creating
new versions. If you ever need to return to the sources for the release version,
you can use the following:

get [list of source files] -v release

Another way to accomplish the same goal is to specify the date of the release:

get [list of files] -d date

Remembering an alias is easier than remembering a date. If you find that you
need to change the alias (for example, if a new release is going to replace the
old one), you can use the unalias command to remove the old alias, then use the
alias command again to create the new alias.

Copy file
copyfile [list of files] new_directory

Copies each file and its accompanying log file to the new_directory.

Create log
create filenames [-v version]

Creates a log file for each file specified by filenames. The log file is placed in
the mvc.log, which is created if it does not currently exist. The log file’s nam
is mvc.log/filename.

You can specify the starting version number with -v version. The version
numbers start at 1.1 by default.

Check in changes
All these commands check in changes made to the file into the log file. For
command to work, the file needs to be previously checked out.

delta filenames [-v version | -d date]
Changes are checked in and the file is deleted.

delget filenames [-v version | -d date]
Changes are checked in and the file becomes read-only.

ci filenames [-v version | -d date]
Same as delget.
Green Hills Software, Inc. 135

4. Version control
 deledit filenames [-v version | -d date]
Changes are checked in, but the file remains checked out and is editable.
In effect, this is a check in followed by a check out.

 cio filenames [-v version | -d date]
Same as deledit.

Delete file
mvc deletefile filenames

Deletes the filenames and its log files.

Diff Files
diff filename [-v version1 -V version2]

Finds the differences between different versions of the specified file. To specify
the versions, enter one of the following:

diff filename
Determines the latest changes to filename. MVC finds differences
between the source file version retrieved from the log file and the last
version in the log file. If the last version in the log file is the same as the
source file, it uses the next to the last version instead. If the source file
does not exist, MVC compares the last version in the log file to the next
to the last version in the log file.

diff filename -v version
Compares the latest version of filename against the specified version.
MVC considers the source file the latest version. If the source file does
not exist, the latest version in the log file is used.

diff filename -v version1 -V version2
Compares version1 of filename to version2 of filename.

Display version
disp filenames [-v version | -d date]

Displays the files specified by filenames and their versions. The version number
in which each line was originally created is prepended to the line.

Check out and edit
edit filenames [-v version | -d date]
co filenames [-v version | -d date]
136 Building and Editing with MULTI 2000

MVC command list

lts of

 file
s not

e if
Check out the specified files and retrieve editable copies for your use. These
commands are identical.

Find changed version
fc filenames [-v version | -d date] -s startline [-e endline]

Finds the most recent version of the files specified by filenames which changes
a particular piece of text. startline specifies the starting line number of the
change. endline specifies the ending line number of the change. If no ending
line is specified, then only one line (startline) is used. See also “ShowLastEdit”
on page 210. The current file must also be checked in. Otherwise, the resu
this operation are undefined.

Read (only) version
get filenames [-v version | -d date]

Retrieves a read-only copy of the specified file. This does not check out the
and is not affected if someone else checks out the file. This command doe
work if you are currently editing a writable copy of the file.

Move file
movefile filenames new_directory

Moves each file and its log file to the new_directory.

Remove from version control
unmvc filenames

Removes filenames from version control.

Package files
package [-f packfile] filenames

Archives, or “packs”, the listed files and their corresponding log and lock fil
they exist. The result is placed in the file logs.pak, unless you specify packfile.
The package file is in UNIX tar format.

Unpackage files
unpackage [-f packfile] [-L directory] [filenames]
Green Hills Software, Inc. 137

4. Version control

eed

ny
Unpacks the files in the specified packfile, or from logs.pak if a packfile is not
specified. If you specify directory, all the files unpack into that directory. If you
specify filenames, then only the specified files are unpacked.

Delete version
remver filenames [-v version | -d date]

Deletes the specified version.

Important: Do not delete any versions that start branches or you will not be
able to trace the branched copies back to the originator. Once a version is
deleted it can never be recovered, so use this command with care.

Show log
show filenames [-F]

Displays a table of contents of the log files for the files specified by filenames.
Each version in the log file is displayed with its date, username, and comment.
By default, only the first line of the comment is displayed. To display the full
comment, specify the -F option.

Unalias
unalias filenames -v alias

Removes an alias (alias) previously defined with the alias command.

Check in, lose changes
uncheck filenames

unedit filenames

Checks in a file without checking in the changes, so that any changes made to
the file are lost. This command applies only to files which have previously been
checked out. A read-only copy of the latest version of the file is then retrieved.
This command is useful if you check out a file and later decide you don’t n
to make any changes to it.

Unlock file
unlock filenames

Forcibly checks in a file, even if the file was checked out by another user. A
changes made are checked in. This command is useful when someone
138 Building and Editing with MULTI 2000

Other version control systems

,

nu”

the

ed
or

t
accidentally leaves a file checked out and cannot be contacted to check the file
back in. If the file was checked out by another user, a mail message is sent to
that user.

Who checked out a file
who filenames

Displays the user who has each file specified by filenames checked out, as well
as the time when each file was checked out.

Other version control systems

MULTI supports several version control systems to keep track of your source
code changes:

• MVC

• RCS

• ClearCase

MULTI Version Control (MVC) is provided with MULTI for those who do not
have another version control system. RCS and ClearCase are available from
third-party vendors. If you use a version control system not specified above,
you will not experience the benefit of MULTI’s integrated version control
features.

How to use other version control systems with MULTI
MULTI provides the Version menu in both the Builder and Editor Windows
where you can perform version control operations such as checking in files
checking out files, and showing histories. For more information on Version
menu options, see “Version menu” on page 39 in the Builder or “Version me
on page 170 in the Editor.

When you begin to edit a file in the Editor, MULTI automatically checks out
file for you if Automatic Checkout is enabled. See “Check or uncheck
‘Automatic checkout’.” on page 140. When you close a file you have check
out during an editing session, MULTI asks you whether to check in the file
leave it checked out.

When you open a project in the Builder, any checked out files in the projec
contain the user’s name listed next to the file.
Green Hills Software, Inc. 139

4. Version control

e

l sys-

or
eck
at
. To

er
When you debug a program with MULTI, it attempts to find the version of the
source files which was current when the program was built. Files from version
control may be used if the source files have changed since the program was
built.

If you are using ClearCase as your version control system, you need to set the
view you want to use before you start MULTI. You cannot change it once you
have started MULTI. However, you can see what your current view is by
choosing Version > Show View in the Editor.

To enable other version control systems with MULTI

For MVC, RCS, or ClearCase Users
1. Choose Config > Options... > Version Control tab.

2. Check the ‘Use version control’ checkbox. (See also “Options...” on pag
232.)

3. Choose the appropriate version control system from the Version contro
tem drop-down list.

4. Check or uncheck ‘Automatic checkout’.

If you enable ‘Automatic checkout’, MULTI automatically checks out a file f
you when you start editing. If this box is not checked, choose Version > Ch
Out and MULTI allows you to edit a file. This setting only affects new files th
you open; files already open when you change this setting are not affected
change this attribute on a per-file basis, choose Version > Auto Checkout.

Note: If you use RCS, then ci, co, rlog, and rcsdiff must exist in your path. If
you use ClearCase, then cleartool must exist in your path.

Tip: Save your configuration and restart MULTI whenever you change eith
the “Version control system” setting or the “Use version control” setting.
Switching version control systems while you have files open can lead to
unpredictable results.
140 Building and Editing with MULTI 2000

Other version control systems

CS
le to
ve
ntrol

ing
e
For other version control systems
1. Choose Config > Options... in the Builder, Editor, or Debugger.

2. Uncheck the Use version control checkbox under the Version Control tab.
(See “Options...” on page 232 for more information.)

Note: MULTI provides special support and added benefits for ClearCase, R
and MVC users. If you use another version control system, you may be ab
create custom menus that control your version control system. This can gi
you some (but not all) of the benefits of using a more supported version co
system. For more information, see Appendix A, “Third party tools”.

Tip: Save your configuration and restart MULTI whenever you change the
“Version control system” setting or the “Use version control” setting. Switch
version control systems while you have files open can lead to unpredictabl
results.
Green Hills Software, Inc. 141

4. Version control
142 Building and Editing with MULTI 2000

Chapter
5

Using the Editor
This chapter contains:

• Starting the Editor

• Opening files

• Saving files

• Editing

• Working with your code

• Searching

• Merging files

• Comparing files

• Using version control from the Editor

• Configuring the Editor

5. Using the Editor

ton
Starting the Editor

You can start the Editor from other MULTI tools or as a standalone editing
program.

To start the Editor from the Builder window
As you use the Builder to navigate through your projects, you can open a source
file the following ways:

• Double-click the filename in the Source pane.

• Select one or more files in the Source pane, then choose Project > Edit
Selected Files to edit the selected files.

• Choose File > Open File in Editor to be prompted for the name of an
arbitrary file to edit.

If the file already exists, then the Editor will open the existing file;
otherwise, the Editor will open on a new (blank) file.

To start the Editor from the Progress window
When you use the Builder to build a project, a Progress window appears with
information about the build, including any build errors. When you double-click
an error in the Progress window, the Editor opens the source file, placing the
cursor on the line with the error.

To start the Editor from the Debugger
When you start the Editor from the Debugger, MULTI creates temporary copies
of source files so you can continue to debug your program while looking at the
original source code. Changes that you make in the Editor affect the actual file,
not the temporary file that the Debugger is using to show the original code.
When you exit the Debugger, the temporary files are deleted.

To open the Editor on the Debugger’s current source file, click the Edit but
in the Debugger.
144 Building and Editing with MULTI 2000

Opening files
You can also start the Editor by entering commands in the Debugger Command
Window. The following table summarizes which command to use to open a
certain file:

To start the Editor as a standalone program
The Editor is an executable program, me, that is located in the Green Hills
directory (by default, /usr/green). To run the Editor as a standalone program,
you can:

• Enter the following at a command line prompt:

me +linenumber filename

Opening files

As you are working in the Editor, you can open a new file in the current Editor
or in a separate Editor window.

Debugger commands that start the Editor

To open Enter Examples and Comments

The current source file edit n/a

A file by name edit filename n/a

A file by selecting it in a
dialog box

editfile n/a

A file that contains a
certain procedure

edit procedure If a procedure name is followed by a
wildcard pattern, then a window appears
with a list of procedures from which you
select a procedure to edit. For example,
the command edit f* opens a window that
lists all procedures beginning with the letter
f.

A file whose procedure
has a certain
breakpoint

edit numberb For example, to edit the procedure
containing breakpoint number three, use
the command edit 3b. You can obtain
breakpoint numbers with the B command.

A file whose procedure
is at a certain stack
depth

edit number_ For example, to edit the procedure at stack
depth three, use the command edit 3_.
You can obtain stack depths with the calls
command.
Green Hills Software, Inc. 145

5. Using the Editor

 a
ou

itor

he
e

file.
en.

me
To open a file in the current Editor window
You can open multiple files in the same Editor window. When you open an
additional file, the Editor places the newly opened file on top of its stack of
open files. You can then navigate through the open files using View > Next File
and View > Previous File, or the toolbar buttons.

1. Choose File > Open
– or –
Click the Open button()

2. In the Edit File file chooser, select the file you want to open.

Shortcut: To quickly open a file, type the filename in the File field, and press
Enter.

If the file is not located in the current directory, you must include the path.

To open a file in a new Editor window
Some people prefer to work with multiple Editor windows, each containing
single file, rather than opening multiple files in the same Editor window. If y
are working in the Editor and want to open a different file in a separate Ed
window:

1. Choose File > New Editor.

2. In the Edit File file chooser, select the file you want to open.

Shortcut: To quickly open an existing file in a different Editor window, type t
filename in the File: field, and press Shift+Enter. If the file is not located in th
current directory, you must include the path.

To create a new file
 If you want to create a new file, follow the first step to opening an existing
When the Edit File file chooser appears, enter a new filename and click Op
The Editor creates and opens the new file.

Shortcut: To quickly create a new file in the current directory, type the filena
in the File field, and press Enter. If you want the new file to open in a new
Editor window, press Shift+Enter.
146 Building and Editing with MULTI 2000

Navigating between open files

s

e
o

h all
d
okes,

ted.
Navigating between open files

When you open multiple files in the same Editor window, only one file is
visible at any given time. The rest of the open files are stacked below the
current file in the order in which they were opened.

To view the previous file
To view the file that you were looking at just prior to the current file, choose
View > Previous File, or click the Previous File button ().

To view the next file
To view the next file in the Editor’s stack of open files, choose View > Next
File, or click the Next File button ().

If you are viewing the most recently opened file, going to the next file allow
you to view the first file opened.

Navigating between files in different Editor windows
If you like to work with multiple Editor windows, each containing a single fil
(rather than opening the files in the same Editor window), you might want t
customize the Editor to make the NextWindow command (see “NextWindow”
on page 215) easily accessible. You can use this command to cycle throug
of the Editors that are currently open on your computer. To learn how to ad
commands to the Editor through menus, buttons, mouse clicks, and keystr
see Chapter 9, “Configuring and customizing MULTI”.

Saving files

There are several ways to save changes made to the file or files being edi

To save changes to the file currently being viewed
To save changes to the file currently visible in the editor, do one of the
following:

• click the Save button ()

• choose File > Save
Green Hills Software, Inc. 147

5. Using the Editor
To save the file currently being viewed under a new name
To save the file currently visible in the editor with a different name, choose File
> Save As.

To save all files currently open in the editor
To save all the files currently open in the editor, choose File > Save All.

Editing

To perform common editing operations
You can right-click in the editor window to open a menu of common editing
operations. This menu allows easy access to cutting, copying, and pasting the
current selection, undoing the last editing operation, or navigating to the tag the
cursor is currently over. All these functions are documented separately in this
chapter.

To reverse changes made to a file
You can reverse any edits you have made to a file since you opened it.

To reverse the last edit, do one of the following:

• Click Undo ().

• Right-click and choose Undo from the pop-up menu.

• Choose Edit > Undo

Keep clicking Undo to reverse more edits, until the file is in the same state as
when you opened it.

To restore changes that you reversed
To restore any changes you have reversed using Undo, do one of the following:

• click the Redo button ()

• choose Edit > Redo

Each time you choose Edit > Redo, the effects of one Undo are reversed,
beginning with the most recent.

To reverse all changes made to a file since the last save
To return to the last saved version of a file, choose File > Revert to Saved.
148 Building and Editing with MULTI 2000

Editing
To insert a character blocked by a custom keybinding
If you customize the Editor to run a command based on a single keystroke, you
cannot directly insert the literal character of that keystroke into a file. For
example, if you customize the Editor so that every time you press d the cursor
moves down one line, then you will not be able to type the literal letter d in a
file. In this scenario, you would have to complete the following steps to enter
the literal character d in your file.

1. Press Ctrl+\

2. Press the key for the character that you want to enter into the file.

To repeat the last change you made to a file
1. Place the cursor where you want to repeat the last edit.

2. Choose Edit > Repeat Last Edit.

You can repeat only certain types of edits. For example, if you just selected text
and then replaced it with new text, then repeating the last edit will delete a
similar selection contiguous to the cursor and insert the new text. Suppose you
file contains the text:

The albatross said it was 8:09, and everyone cheered.

If you select the word everyone and type rainbow, your text becomes:

The albatross said it was 8:09, and rainbow cheered.

If you move the cursor to the beginning of the word albatross (you do not have
to highlight the word) and choose Edit > Repeat Last Edit, the text becomes:

The rainbow said it was 8:09, and rainbow cheered.

To copy a column of text
You can copy a column of data from a file, excluding data on either side of the
column. For example, suppose you have a tab delimited file that lists date, time,
file size, and filename. You can copy just the column that list the times without
affecting any of the other data.

1. On the first line that contains data you want to copy, start the selection at the
first character you want copy.

2. Extend the selection to include all of the data in the column. The last charac-
ters selected should be the last character of the column.
Green Hills Software, Inc. 149

5. Using the Editor

py a

ular
h line
3. Choose Block > Rect Copy.

Example
You highlight the following selection, then choose Block > Rect Copy.

When you paste the contents of the clipboard, the following text is inserted in
your file:

09:21a
09:22a
09:23a
09:36a
09:23a
09:33a

 To cut a column of text
To cut a column of text out of a file, highlight the column and choose Block >
Rect Cut. For more details on how to highlight a column of text, see “To co
column of text” on page 149.

To paste a column of text
After you have cut or copied a column of text from a file, if you use the reg
paste (Edit > Paste), the contents of the clipboard are pasted in the file wit
breaks.
150 Building and Editing with MULTI 2000

Working with your code
To paste the column without inserting line breaks, choose Block > Rect Paste.

Working with your code

To configure the Editor for your programming language
When you open a source file that has a language-specific extension, the Editor
automatically configures itself to work with that programming language. For
example, if you open a file foo.c, the Editor uses /* */ whenever you insert a
comment block. The Editor also displays elements in your code in different
colors based on the specified language.

If you need to manually specify your programming language because the Editor
does not recognize a file extension:

1. Open the source file.

2. Choose View > Language, then select the programming language used in the
source file.

Using comments

To insert a comment
The Editor inserts the proper syntax for comments based on the programming
language you are using. If the Editor is not using the correct syntax, choose
View > Language to make sure it is set to the correct language. Block comment
operations are not supported in FORTRAN or Green Hills Script.

First, do one of the following:

• To comment out existing code, highlight the text. If there is no highlighted
selection, the entire line the cursor is currently on will be commented out by
default.

• To insert a new comment, place the cursor on a blank line where you want
the comment to start.

Then, do one of the following:

• Right-click the highlighted code, and choose Comment from the pop-up
menu.

• Choose Block > Comment.
Green Hills Software, Inc. 151

5. Using the Editor
If you want to uncomment a comment block, highlight the block and choose
Block > UnComment or right-click the selected block and choose Uncomment
from the pop-up menu.

To keep comments flush-left
If you want comments in your code to stay flush-left even when you auto-indent
your code:

1. Choose Config > Options....

2. On the Editor tab, select Comments Stick Flush Left.

3. Enter your comments next to the left margin.

Note: If you insert # as the first character of a comment, then the comment will
move to the left margin regardless of the position where you started the
comment. For example, if you are coding in C and enter /*#, then the comment
automatically moves to the left margin.

Indenting your code
As you write code, you can insert an indent manually, or you can let the Editor
indent your code based on common coding standards.

To set the size of indents code
You can change the size of indents that you manually insert, or that are
automatically inserted by the Editor.

1. Choose Config > Options....

2. On the Editor tab, change the Indent size field to specify the size of indents.

To manually insert or remove an indent
1. Place the cursor on the line of code you want to indent or unindent.

2. To insert an indent, choose Block > Indent.

To remove an indent, choose Block > Unindent.

To let the Editor indent your code
The Editor has an auto-indent feature that indents your code according to
common coding standards.

1. If you want to auto-indent a single line of code, move the cursor to that line.
If you want to auto-indent multiple lines of code, highlight those lines.
152 Building and Editing with MULTI 2000

Working with your code
2. Choose Block > Auto-Indent, or press Ctrl+2, or press Ctrl+; (semi-colon).
Pressing Tab also automatically indents everything to the right of the cursor.

3. Select the block you wish to indent, right-click it, and choose Auto Indent
from the pop-up menu.

Influencing how the Editor auto-indents your code
You can change how far the Editor auto-indents the lines of a lexical block of
code. At the start of the lexical block, indent the code how you want the entire
block to look. Then, highlight the rest of the block and start the auto-indent.
This prevents the Editor from breaking the conventions of a pre-existing block.

How indenting multiple lines affects your comments
If you are auto-indenting multiple lines of code and do not want to indent the
comments within those lines:

1. Choose Config > Options....

2. On the Editor tab, deselect Indent Comments when Indenting Multiple
Lines.

Characters that auto-indent your code
By default, the Editor automatically makes indenting adjustments when you
enter the following characters:

To disable characters from auto-indenting your code and comments
1. Choose Config > Options....

2. On the Editor tab, deselect Implicit Auto Indent.

To disable characters from auto-indenting your comments only
You might want special characters to auto-indent your code, but to disable them
if you use them within a comment.

1. Choose Config > Options....

2. On the Editor tab, deselect Implicit Auto Indent In Comments.

:

* {

; }
Green Hills Software, Inc. 153

5. Using the Editor

ur

k

 so
our

ers in
his

n
lects

 to
Indenting the line following a left parenthesis ‘(’
You can configure how the Editor indents the line of code that follows a left
parenthesis ‘(’.

1. Choose Config > Options....

2. Go to the Editor tab.

3. In the C Paren Indent Mode, select one of the following according to yo
preferred coding standard:

• If you want the Editor to indent by two levels the line of code that
follows a left parenthesis ‘(’, select “Indent in two”. Your code will loo
like this:

int main (
int argc

• If you want to indent the line of code that follows a left parenthesis ‘(’
that it lines up with the parenthesis, select “Even with parentheses”. Y
code will look like this:

int main (
int argc

To alter the case of the currently selected code
Choose Block > UpperCase to transmute the case of all alphabetic charact
the current selection to uppercase, or Block > LowerCase for lowercase. T
operation is not supported in FORTRAN, Pascal, and Green Hills Script.

To highlight the boundaries of the current block of code
To quickly identify the start and end of the current block of code, choose
View > Match.

The Editor searches backward from the cursor and finds the first enclosing
instance of a left parenthesis ‘(’, left curly brace ‘{’ , or a left bracket ‘[’ , the
searches forward from the cursor to find the matching ending mark and se
the code in between.

Using tags in your files
If you use the utility ctags to create a tag file, the Editor uses the information
open files and move the cursor based on the name of a function.
154 Building and Editing with MULTI 2000

Searching

-up

o

et
 to

rch
To navigate to a function
1. Choose Edit > Goto...

2. In the GoTo dialog box, select the Function radio button. If the Function
radio button is not available, the Editor could not find a tag file.

3. Type the name of the function, and click Go. If the function is in the current
file, the Editor moves the cursor to the beginning of the function. If the func-
tion is in a different file, the Editor opens that file and moves the cursor to
the beginning of the function.

— or —

1. Right-click the function name and choose Jump to Function from the pop
menu.

To manually load a tag file in an Editor session
When the Editor starts, it looks for a file called tags. If the tag file has a
different name or is in an unexpected location, the Editor may not find it. T
manually load a tag file into an Editor session:

1. Choose Tools > Append TagFile.

2. Enter the path and filename of the tag file, and click OK.

To remove a tag file from an Editor session
If you want to unload a tag file from an Editor session, choose Tools > Res
Tags. Once you have unloaded a tag file, the Editor no longer uses that file
navigate to functions.

Searching

To start a full search, do one of the following:

• Click Search ().

• Choose Edit > Find...

For a general description of the fields available to tailor a search, see “Sea
dialog box” on page 178.

To make a “quick” incremental search
If you do not want to spend the time opening the Search dialog box and do not
need to replace what you find, you can perform a quick search.
Green Hills Software, Inc. 155

5. Using the Editor
1. If you want to search forward in the file, press Ctrl+f.
If you want to search backward in the file, press Ctrl+b.
The left corner of the status bar changes to Srch:.

2. Enter the character pattern you are looking for. As you enter the characters,
the Editor highlights the first occurrence of that character pattern.

3. If the current file contains more than one occurrence of the character pattern
you entered, continue to press Ctrl+f to view the next match or Ctrl+b to
view the previous match until you find what you are looking for.

Quick search tips
• If you want quick searches to be case-sensitive, choose Config > Options...,

go to the General tab, and select Match Exact Case in Searches. Be aware
that this setting affects quick searches in all MULTI tools, not just the Editor.

• If you previously used the Search dialog box to perform a full search, you
can perform a quick search using the same advanced criteria. To perform a
quick search, press Ctrl+f, then press Ctrl+f again without entering any text.
The Editor searches for the first instance that matches the criteria previously
defined in the Search dialog box.

To search using wildcards
1. Choose Edit > Find..., or click Search ().

2. In the Search dialog box, select Wildcard.

3. Enter the character pattern you are looking for. The following characters act
as wildcards:

Merging files

You can use the Editor to merge two or three files into a single file. The two or
three files can be different versions of the same file or be different files.

If you are using a version control system and want to use a different version of
the file from disk, then enter the name of the file which you want to merge in

Wildcard Behavior Example

? Matches any single character, except
newline

c?t finds cat and cot, but not coat

* Matches any number of characters,
except newlines

c*t finds cat, cot, and coat
156 Building and Editing with MULTI 2000

Merging files
the Filename field, and the version of that file you wish to merge in the Version
text field.

To merge two files into a single file
1. Choose Tools > Merge Files...

An EditMerge dialog box appears. In the File1 field, enter the first version
of the file. If you specify a file which you are currently editing and you do
not enter a version number, File1 will be the copy of the file with your cur-
rent (unsaved) edits. This is useful if someone else has edited the file at the
same time you were working on it.

2. In the File2 field, enter the second version of the file. If you specify a file
which you are currently editing and you do not enter a version number, File1
will be the last saved copy of the file.

3. Deselect Automatic.

4. Click Merge.

A window appears for each file you specified, as well as an extra window
for the results of the merge. To identify which file is in a window, look at the
title bar at the top of the window.

5. Use the Merge window to select what gets placed in the merged file.

The Editor pauses at each point where the two files are different, and
highlights the text that differs. Using the Control Panel, you can select
which one of the highlighted sections, or both, to copy into the results
window. You can also manually cut and paste text into the results window.
Listed below are the features of the results window:

Skip
The Editor finds the next difference.

Help
Opens help on the control panel.

Cancel
Aborts the merge, closing all merger windows.

File1
Copies the selected text from File1.

File2
Copies the selected text from File2.
Green Hills Software, Inc. 157

5. Using the Editor
Both
The first time you press this button, a dialog box appears asking you how
you want to merge the two selections: in what order, with change bars
around them, with comments in front, between, or after them, and so
forth. The next time you press this button, the last values entered are
used.

Change Bars...
Changes the way the Both button works, and opens the same dialog box
as the first time you press the Both button.

When merging is complete, the windows on the original files are removed and a
dialog box allows you to save the results window. If you save it as the same
name as one of the original files, then any windows still looking at that file are
replaced with the merged results. After saving, the results window is removed.

To merge three files into a single file
When merging three files, one is considered the base file that the other two are
derived from. With this assumption, the Editor is usually able to merge without
asking you. The Editor does this using the following rules:

• If a difference exits between the two source files, and one is the same as the
base file, then the Editor uses the one that is different from the base file.

• If both source files differ from the base file, but are the same as each other,
then the Editor uses the new text from either source file.

• If all three files are different, then a conflicting change was made and the
Editor has to ask which change to use. In this case, it is likely that you will
have to merge the change manually.

1. Choose Tools > Merge Files...

2. In File1, enter the first variation of the base file. If you want to use a version
from version control, enter the version number in the adjacent Version field.

3. In File2, enter the second variation of the base file. If you want to use a ver-
sion from version control, enter the version number in the adjacent Version
field.

4. In Base, enter the version of the file from which File1 and File2 files are
derived. If you want to use a version from version control, enter the version
number in the adjacent Version field.

5. If you want to manually control every merge change, deselect Automatic. If
Automatic is selected, the Editor asks you to control a change only if it
encounters a conflict it cannot resolve.
158 Building and Editing with MULTI 2000

Merging files
6. Click Merge.

7. Use the Merge window to control merges. If you deselected Automatic, the
Merge window appears for every change. If you selected Automatic, the
Merge window appears only when the Editor encounters a conflict it cannot
resolve. Listed below are the features of the merge window:

Skip
The Editor finds the next difference.

Help
Opens help on the control panel.

Cancel
Aborts the merge, closing all merger windows.

File1
Copies the selected text from File1.

File2
Copies the selected text from File2.

Base
Copies the selected text from the base file.

All
Copies the selected text from all three files.

The first time you press this button, a dialog box appears asking you how
you want to merge the three selections: in what order, with change bars
around them, with comments in front, between, or after them, and so
forth. The next time you press this button, the last values entered are
used.

1 & 2
The first time you press this, or either of the next two, a button dialog
box appears asking you how to merge the two selections from File1 and
File2: in what order, with change bars around them, with comments in
front, between, or after them, and so forth. The next time you press this
button, it uses the last values entered.

1 & Base
This is identical to 1 & 2 except it merges the selections from File1 and
the base file.

2 & Base
This is identical to 1 & 2 except it merges the selections from File2 and
the base file.
Green Hills Software, Inc. 159

5. Using the Editor

ed
heck
e
ChangeBars...
Changes the way 1 & 2, 1 & Base, and 2 & Base buttons work, and
opens the same dialog box as the first time you press any of those
buttons.

Automatic
Choose if you want the Editor to try to make merge changes without
prompting you. Deselect if you want to manually control every merge
change.

Comparing files

To compare two files, do the following:

1. Choose Tools > Diff Files...

2. In File1, specify the version you want to compare to File2. If you do not
specify a version, the Editor assumes you mean the current version.

3. In File2, specify the version you want to compare to File1. To decrement the
version number, click Previous Version.

4. Click Diff.

The specified versions appear in a separate windows.

5. Click Previous or Next to navigate among the differences between the two
versions. The Editor highlights the differences.

Using version control from the Editor

The Editor is fully aware of several version control systems. Many version
control operations can be performed without leaving the Editor when using a
supported version control system.

To configure MULTI to work with your version control system
See Chapter 4, “Version control” for more information.

To automatically check out files when they are modified
The Editor will prevent you from making changes to files that are not check
out, because they are read-only. To configure the Editor to automatically c
out files when you modify them, choose Version > Auto Checkout or choos
160 Building and Editing with MULTI 2000

Using version control from the Editor
Config > Options... and check or un-check Automatic Checkout on the Version
Control tab.

To check out a file manually
Choose Version > Check Out to check a file out of version control.

To save your changes and check in a file
There are several ways to check in files. To save a current file and manually
check it in, choose Version > Check In. To manually check in all open files that
are checked out, choose Version > Check In All. Finally, when you close a file
or the editor, you will be asked whether to check in any modified files which
you have checked out during the current editor session.

To check in a file and revert to the previous version
Choose Version > Discard Changes to check a file back in without making
changes.

To put a new file under version control
Choose Version > Place Under VC.

To view the version history of a file
Choose Version > Show History to display the list of file versions and the
comments made when these versions were checked in.

To show the last change to a portion of a file
This feature is only supported when using MVC as the version control system.
Select the portion of the file you are interested in and choose Version > Show
Last Edit. Two additional editor windows will appear displaying the version of
the file where the last edit to the selected area was made and the version
immediately prior to that version. A third window will appear allowing you to
navigate between changes made at the time of the last edit to the selected area.
Green Hills Software, Inc. 161

5. Using the Editor

g

se
Reverting to a previous version of a file
There are three ways to specify the version of a file you wish to revert to:

• If you wish to select the version to revert to from a list of all versions,
choose Version > Revert to History.

• If you wish to revert to the current version as of a particular date, choose
Version > Revert to Date.

• If you know the version number you wish to revert to, choose Version >
Revert to Version.

Configuring the Editor

To help you work more efficiently, you can:

• Change how the Editor looks and behaves. For example, you can change
whether you can drag and drop text within a file. To access settings that
change how the Editor looks, behaves, and handles your code, choose
Config > Options..., and go to the Editor tab.

• Customize the Editor to perform actions in new ways. You can replicate all
of the actions that are available in the standard Editor window by assigning
the appropriate commands to a new menu, keystroke combination, mouse
click combination, or button. For example, if you do not like to use the
mouse when you are editing, you can assign commands to keystrokes.

Perhaps the easiest way to find out what command you want is to look in
Chapter 5, “Using the Editor”, which lists the equivalent command for each
GUI component. You can also look at the complete list of commands in
Chapter 7, “Editor commands”.

For information about how you assign commands to menus, keybindings,
mouse bindings, and buttons, see Chapter 9, “Configuring and customizin
MULTI”.

Once you learn the basic method of customizing menus, keybindings, mou
bindings, and buttons in the Editor, you can easily customize the Editor to
improve your efficiency.
162 Building and Editing with MULTI 2000

Chapter
6

The Editor GUI

This chapter contains:

• The main Editor window

• Editor menus

• Editor toolbar

• Location fields

• Status bar

• Merge dialog boxes

• Search dialog box

• Goto dialog box

• Per File Settings dialog box

• File chooser

• Print dialog box

6. The Editor GUI
This chapter describes all buttons and menus used in the main Editor window.

The main Editor window

When you open the Editor, you see the following window:

The main menu bar at the top, rests on a tool bar of Editor buttons. Underneath
the button bar is the title bar. Below this is the source pane, where your code to
be edited is displayed. The options in the menu bar, the tool bar, and the title bar
are explained below.

Editor menus

The following tables contain all menu items along with brief descriptions of the
items. For each menu item, the equivalent command, if any, is provided for
advanced users wishing to configure their menu settings. See Chapter 10,
“Configuration commands” for more information.
164 Building and Editing with MULTI 2000

Editor menus
File menu
NOTE: Spaces are not allowed in filenames. This restriction applies throughout
the entire MULTI development environment.

File menu (editor)

Menu item Meaning Command

New Editor... Opens the Edit File dialog box, which you use to
open a file in a new Editor window. To open an
existing file, browse and select the file. To create a
new file, enter the new filename and click Open.
Tip: Use the wildcards ’*’ (any number of characters)
and ’?’ (one character) to match and select multiple
files.

LoadFile

Open... Opens the Edit File dialog box, which you use to
open a file in the current Editor window. To open an
existing file, browse and select the file. To create a
new file, enter the new filename and click Open. The
file is pushed to the top of the context stack for the
current window.
Tip: Use the wildcards ’*’ (any number of characters)
and ’?’ (one character) to match and select multiple
files.

OpenFile

Save Saves the current file. Save

Save As... Opens the Save As dialog box, which you use to
save the current file under a different name.

SaveAs

Save All... Opens a dialog box that lists all open files with
changes that have not been saved. Select the check
box next to the files you want to save, then click
Save Selected. If you want to save all of the listed
files, click Save All.

QuerySaveAll

Revert to Saved Removes all changes made to the current file since
the last time you saved it.

Revert

Print... Opens the print dialog, which will allow you to print
the current file to either a printer or a file. See“Print
dialog box” on page 185 for more information.

Print

1, 2, 3, 4 Up to four previously viewed files may be listed.
Select one to open it into the current Editor window.

OpenFile

Close File Closes the top file in the Editor’s file stack. If the file
is not saved, it will prompt you to save it. If the file
was checked out of version control this session, it
will prompt you to check it back in.

Pop

Close Editor Prompts you to save changes made to open files,
then exits the Editor.

Close

Exit All Prompts you to save changes made to open files,
then quits all MULTI tools that are currently running.

Quit
Green Hills Software, Inc. 165

6. The Editor GUI
Edit menu

Edit menu (editor)

Menu item Meaning Command

Undo Allows you to undo each of the changes made to the
current file since it was opened.

Undo

Redo Restores the edit that was just removed by selecting
Undo. You can redo each undo, until a new change
is made to the file.

Redo

Repeat Last Edit Repeats the last edit you made to the file. For
example, suppose you replace a selection with the
word albatross. If you select a new part of the file
and select Repeat Last Edit, the selection is also
replaced with the word albatross. Only works for
some types of edits. For more details, see “To repeat
the last change you made to a file” on page 149.

RepeatLast

Cut Copies the current selection to the clipboard and
deletes selection from the current file.

Cut1

Copy Copies the current selection to the clipboard. Copy1

Paste Pastes the clipboard contents in the current location. Paste1

Delete Deletes the current selection. If there is no current
selection, this deletes the character after the
insertion point.

Delete

Select All Selects the entire contents of the current file. SelectAll

Find... Opens the Search dialog box. See also “Search
dialog box” on page 178. Tip: To quickly search for a
string without using the dialog box, use Ctrl+f.

Find

Goto... Opens the GoTo dialog box, which you use to go to a
new file, a line within the current file, or a function.
See also “Goto dialog box” on page 182. Tip: To
quickly goto a line number without using the dialog
box, use ctrl+g.

Goto
166 Building and Editing with MULTI 2000

Editor menus
View menu

View menu (editor)

Menu item Meaning Command

Language Select the programming language used in the
current source file. The Editor uses this setting for
syntax coloring, commenting, and auto-indenting
features.

Language

Per File
Settings...

A list of variables which can be set for an individual
file for the current session only. See “Per File
Settings dialog box” on page 182 for more
information.

EditorFlags

Next File Accesses the next open file in the Editor’s stack. CyclePushBack

Previous File Accesses the previous open file in the Editor’s stack. CyclePush

Flash Cursor Scrolls to and flashes the line containing the cursor. FlashCursor

Match Searches backward from the cursor for the first open
parenthesis, square bracket, or curly brace at the
same nesting level as the cursor. It then selects all
the text enclosed by the corresponding close
parenthesis, square bracket, or curly brace.

SelectToMatch

Column... Puts the cursor at the specified column on the
current line, if possible.

Column

Read Only Toggles the file between read-only and writable
modes. A dot next to this menu item indicates that
the file is currently read-only.

ToggleReadOnly
Green Hills Software, Inc. 167

6. The Editor GUI
Block menu

Block menu (editor)

Menu item Meaning Command

Indent Adds an indent at the beginning of the current line or
selected lines. To set the size of the indent, choose
Config > Options..., then select the Editor tab and
edit the Indent size field. The default size is four
spaces.

Indent

Unindent Unindents the current line, deleting a number of
spaces equal to or less than the size of an indent
from the beginning of the current line. To set the size
of the indent, choose Config > Options..., then select
the Editor tab and edit the Indent Size field. The
default size is four spaces.

Unindent

Auto Indent Indents the current line or block of lines to positions
indicated by the syntax of the code. Available for C,
C++, and Ada languages. See “To let the Editor
indent your code” on page 152 for more information.

AutoIndent

Comment Inserts the appropriate characters to signify that the
selected text is a comment, not code. The comment
style that is used is determined by the language that
you have set in View > Language.

CommentBlock

UnComment Removes comment style characters from the
selected text to make it active code.

UnCommentBlock

UpperCase Changes all the characters in the current selection to
upper case.

UpperCaseBlock

LowerCase Changes all the characters in the current selection to
lower case.

LowerCaseBlock

Rect Copy Copies a rectangular subsection of the current
selection to the clipboard. For more details, see “To
copy a column of text” on page 149.

RectCopy1

Rect Cut Copies a rectangular subsection of the current
selection to the clipboard, then deletes it. For more
details, see “To copy a column of text” on page 149.

RectCut1

Rect Paste If you have used Rect Copy or Rect Cut to copy a
selection to the clipboard, you can use Rect Paste to
put the selection into the file without linebreaks. If
you use Edit > Paste to paste a rectangular
selection, linebreaks will be added.

RectPaste1
168 Building and Editing with MULTI 2000

Editor menus
Tools menu

Cut Lines Extends the current selection to the closest line
boundaries, copies the resulting selection to
clipboard number two, then deletes it.

SelectToLines;
Cut2

Join Lines Joins two lines of text by removing the new line
character from the end of the current line, as well as
all initial whitespace on the next line, then adding
one space.

JoinLines

Insert File... Opens the Insert dialog box, which you use to insert
the contents of a separate file into the current file.
The contents of the selected file is placed on the line
above the cursor.

InsertFile

Tools menu (editor)

Menu item Meaning Command

Insert Date Inserts the current date, as a formatted string,
at the cursor’s position in the current file.

Date

Grep... Searches for a regular expression in all open
files. (If you have a debugger open when you
run this command, it will also search in all of
your program’s source files.) The output from
this command appears in a temporary Editor
window. Double click any of the lines in the
temporary window to open a new Editor on the
specified file. See also “Grep” on page 205.

Grep

Make... Calls the make utility on a project of your
choosing.

Make

Execute Shell
Command...

Executes a command to the sh shell. Output
will appear at the insertion point in the
currently open file.

ExecuteCmd

Command to
Window...

Executes a command to the sh shell. Output
will appear in a new temporary Editor window.

CommandToWindow

Notepad... Calls a small Editor window on a scratch file. Notepad

Execute Editor
Commands...

Prompts for an editor command to execute in
the current editor. See Chapter 7, “Editor
commands” for valid commands.

MiniBuffer

Block menu (editor)

Menu item Meaning Command
Green Hills Software, Inc. 169

6. The Editor GUI
Version menu

Append
TagFile...

Allows you to specify a tag file (in the format
determined by the ctag utility) that the Editor
can use to find procedures in files. By default,
the Editor looks for a file called "tags". See the
command “OpenTag” on page 208 for more
information.

AppendTagFile

Reset Tags... Resets the tag file the Editor uses back to the
default of "tags".

ResetTags

Merge Files... Merges either two or three files. See “Merging
files” on page 156 for more details.

MergeFiles

Diff Files... Finds and displays the differences between
two files. See also “Comparing files” on page
160.

DiffFiles

Version menu (editor)

Menu item Meaning Command

Check Out Checks out the current file from version
control for editing. Enabled only if the current
file uses version control.

Checkout

Check In Checks the current file back into version
control, making the file read-only. Enabled
only if the current file uses version control.

Checkin

Check In All Checks in all of the files currently checked
out in the Editor.

QuerySaveCheckinAll

Discard
Changes

Reverts the file back to the last checked in
version from version control. Enabled only if
the current file uses version control.

Discard

Place Under VC Puts the current file under version control.
Once a file is placed under version control,
the file must be checked out before changes
can be made.

CreateLog

Auto Checkout Toggles Auto-Checkout mode. When
selected, the Editor automatically checks out
a file from version control when you start to
make changes. If deselected, you must
manually check out a file that uses version
control before making changes.

AllowAutoCheckout

Tools menu (editor)

Menu item Meaning Command
170 Building and Editing with MULTI 2000

Editor menus
Config menu

Show History... Shows information about all versions of the
current file with a dialog box that allows you
to open any version in a new Editor. Enabled
only if the current file uses version control.

ShowHistory

Show Last Edit Finds the version of the current file that
changed the selected text. This command
opens a window on the version that changed
the text, placing the cursor at the beginning
of the change. Enabled only if the current file
uses version control, and is checked in (if
the current file is checked out, the results of
this operation is undefined). See also
“ShowLastEdit” on page 210.

ShowLastEdit

Revert To
History...

Displays a window with a list of all versions
and comments. You can choose a version
from this list to load into the Editor, replacing
the currently open version. Enabled only if
the current file uses version control.

RevertHistory

Revert To
Date...

Displays a small window to enter a version
date. The Editor loads the version current to
the specified date. Enabled only if the
current file uses version control.

RevertDate

Revert To
Version...

Displays a window to enter a version
number to load into the Editor. Enabled only
if the current file uses version control.

RevertVersion

Config menu (editor)

Menu item Meaning Command

Options... Displays the Options dialog box, which you
use to change options that affect the way the
Editor and other MULTI tools look and behave.

configoptions

Save
Configuration as
Default

Allows you to permanently save the changes
you made in the Appearance Settings and
Functionality Settings dialog boxes.

SaveConfig

Clear Default
Configuration...

Clears all saved changes and reverts to all
default Appearance and Functionality settings
dialog boxes.

ClearConfig

Save
Configuration...

Save the Appearance and Functionality
settings to a user specified file.

SaveConfigToFile

Load
Configuration

Load Appearance and Functionality settings
from a user specified file.

LoadConfigFromFile

Version menu (editor)

Menu item Meaning Command
Green Hills Software, Inc. 171

6. The Editor GUI

Help menu

Right-click pop-up menu

Help menu (editor)

Menu item Meaning Command

Editor Help... Opens MULTI’s help index. Help

Manuals Opens the “Manuals sub-menu”, which will display a
list of manuals appropriate to your version of MULTI.
Choosing one of these manuals will open the online
help to the first page of that manual.

n/a

Identify... Displays help for the next key or mouse click
sequence that you perform.

Identify

About MULTI... Opens the About banner. About

Menu item Meaning Command

Cut Copies the selection to the clipboard and deletes
selection from the current file.

Cut1

Copy Copies the selection to the clipboard. Copy1

Paste Pastes the clipboard contents in the current
location.

Paste1

Undo Allows you to undo each of the changes made to
the current file since it was opened.

Undo

Jump to
Function

Goes to the location of the function selected (if a
selection exists), otherwise to the one indicated in
the menu item

OpenTag
172 Building and Editing with MULTI 2000

Editor toolbar
Editor toolbar

Comment Inserts the appropriate characters to signify that
the selected text is a comment, not code. The
comment style that is used is determined by the
language that you have set in View > Language.
This menu item appears only for context menus
brought up on selections.

CommentBlock

Uncomment Removes comment style characters from the
selected text to make it active code. This menu
item appears only for context menus brought up on
selections.

UnCommentBlock

Auto Indent Indents the current line or block of lines to positions
indicated by the syntax of the code. Available for C,
C++, and Ada languages. See “To let the Editor
indent your code” on page 152 for more
information.

AutoIndent

Editor toolbar

Button Meaning Command

Opens a file into the current Editor window. OpenFile

Saves the current file. Save

Copies the current selection to the clipboard, then deletes
it.

Cut1

Copies the current selection to the clipboard. Copy1

Pastes the contents of the clipboard. Paste1

Opens the Editor’s search window. See “Search dialog
box” on page 178.

Search

Opens the GoTo dialog box, which you use to go to a new
file, a line within the current file, or a function. See “Goto
dialog box” on page 182 for more information.

Goto

Undoes the last edit. You can undo to the original status
of your file.

Undo

Menu item Meaning Command
Green Hills Software, Inc. 173

6. The Editor GUI

 a
Location fields

Below the toolbar are two text fields that control and describe where you are in
the current file. These fields display the following information:

File:
The File: field contains the name of the file you are currently editing. If you
want to edit another file, enter another filename in the File: field and press
Enter. If the filename you entered does not exist, MULTI prompts to create a
new file. The file will appear in the current window, pushing the current file
onto the Editor’s stack.

To open the file in a new Editor window, use Shift+Enter instead of Enter.

Line:
The Line: field tells you what program line your cursor is on. You can go to
specific line by clicking this text field and typing a new line number.

Status bar

The status bar is at the very bottom of the Editor window. It displays the
following information:

Redoes the last edit that was undone. You can redo all
undos until a new edit is made.

Redo

Accesses the previous open file in the Editor’s stack. CyclePush

Accesses the next open file in the Editor’s stack. CyclePushBack

Quits after saving permanent files. Temporary files like the
progress window (build output) and notes are not
automatically saved.

Done

Closes the current file. You will be prompted to save
and/or check in the file before closing it.

Pop

Quits the Editor. You will be prompted to save and/or
check in all edited files before quitting. You can configure
whether or not to have this button. See also “Display
close (x) buttons” on page 243.

Close

Editor toolbar

Button Meaning Command
174 Building and Editing with MULTI 2000

Merge dialog boxes
Status box
The left corner of the status bar displays status, usage, and error messages.
When the mouse hovers over certain widgets, this area will display a usage
message, and when the source pane is active it will display status and error
messages. For example, when you press Ctrl+f, the left corner of the Status Bar
displays the search text as you type it in, and when you type Ctrl+g it displays
the line number to goto as you type it.

Cursor position indicator
Displays the current line and column on which the text cursor resides.

Read-only indicator
When the current file is read-only, a Stop Sign displays in the Status Bar.

Change dot
If changes were made to the file since the last time it was saved, a small red star
appears in the bottom right corner of the screen. When the file is saved, this star
disappears.

Version control status
If the current file is controlled by version control, VC appears in the right
corner of the Status Bar. If you have the current file checked out from version
control, the letters will be red. Otherwise they will be black.

Merge dialog boxes

Merge dialog box
(Tools > Merge Files...)

Green Hills Software, Inc. 175

6. The Editor GUI
If you are using a version control system and want to merge a different version
of a file from disk, enter the filename in the Filename field and the version of
that file to be merged in the adjacent Version field.

File1
Enter the name of the first file you want to merge.

File2
Enter the name of the second file you want to merge. If you specify the
same file as you specified in the File1 field, then the File1 file refers to
the copy currently open in the Editor, while File2 file refers to the file on
disk. This is useful if someone else has edited the file at the same time
you were working on it.

Base
Enter the name of the file from which the other two files, File1 and File2,
are derived. If you are merging two files, then leave this field blank

Automatic
Select if you want the Editor to try to resolve merges without prompting
you. Deselect if you want to manually review every proposed merge.
This field has no meaning when merging two files.

Control panel (two-file merge)
(Tools > Merge Files... ; fill in File1 and File2, and click Merge.)

This dialog box allows you to control the merge. The Editor pauses at each
difference it finds and waits for you to tell it what to do.

The panel contains the following buttons:

Skip
Finds the next difference.

Help
Opens help on the control panel.

Cancel
Aborts the merge, closing all merger windows.
176 Building and Editing with MULTI 2000

Merge dialog boxes
File1
Copies the selected text from File1.

File2
Copies the selected text from File2.

Both
The first time you press this button, a dialog box appears asking you how
you want to merge the two selections: in what order, with change bars
around them, with comments in front, between, or after them, and so
forth. The next time you press this button, the last values entered are
used.

Change Bars...
Changes the way the All button works, and opens the same dialog box as
the first time you press the All button.

Edit...
This performs the same action as 1,2, but then allows you to modify the
changes in a temporary editor before merging them into the new file.

Automatic
Enables or disables the automatic merge feature. If enables, the Editor
will try to make merge changes without prompting you. If disabled, the
Editor will let you manually control every merge change.

Control panel (three-file merge)
(Tools > Merge Files... ; fill in File1 and File2 and Base, and click Merge.)

This dialog box allows you to control the merge. If the automatic feature is
turned off, you can control the entire merge. If the automatic feature is turned
on, you only control the merge of conflicting changes with this window. The
panel contains the following buttons:

Skip
Finds the next difference.

Help
Opens help on the control panel.
Green Hills Software, Inc. 177

6. The Editor GUI
Cancel
Aborts the merge, closing all merger windows.

File1
Copies the selected text from File1.

File2
Copies the selected text from File2.

All
Copies the selected text from all three files. The first time you press this,
or any of the next three buttons, a button dialog box will appear asking
you how to merge the selection: in what order, with change bars around
them, with comments in front, between, or after them, and so forth. The
next time you press this button, it will use the last values entered.

1,2
Merges the selections from File1 and File2.

1,Base
This is identical to 1,2 except it merges the selections from File1 and the
base file.

2,Base
This is identical to 1,2 except it merges the selections from File2 and the
base file.

Change Bars...
Changes the way 1,2, 1,Base, 2,Base, and All buttons work, and opens
the same dialog box as the first time you press any of those buttons.

Edit...
This performs the same action as 1,2, but then allows you to modify the
changes in a temporary editor before merging them into the new file.

Automatic
Enables or disables the automatic merge feature. If enables, the Editor
will try to make merge changes without prompting you. If disabled, the
Editor will let you manually control every merge change.

Search dialog box

To open the search dialog box, do one of the following:

• Click the Search button ().

• Choose Edit > Find...

• Press Ctrl+Shift+f
178 Building and Editing with MULTI 2000

Search dialog box

This dialog box searches and replaces text in your file. You can open a search
dialog box for each file you are editing.

Enter the desired text or search string in the field next to the Find button. To
search for control characters, such as a tab, use the Quote command to enter
them correctly (by pressing Ctrl+\). For example, if you want to search for a tab,
press Ctrl+\ and then press Tab. You can copy and paste special characters from
an Editor window.

To replace text, enter the desired text or replace string in the field next to the
Replace button.

The Editor searches from the current location in the file towards the end of the
file for a forward search, and toward the top of the file for a backward search. If
the search string is not found before it reaches the end or the beginning, it prints
a message and stops. If you start again, it resumes the search from the beginning
or the end of the file.

There are six buttons in the search window:

Find
Searches for and highlights the next occurrence of the search string.
Simply pressing Enter also searches for the next occurrence.

Replace
Replaces the current selection with the replace string.

Replace Then Find
Replaces the current selection and then searches again.

Find Then Replace
Searches for the next occurrence of the search string, and replaces it with
the replace string if found.

Replace All
Starts at the beginning of the file and replaces all occurrences of the
search string with the replace string.
Green Hills Software, Inc. 179

6. The Editor GUI

r
oxes

d of

only

 the

 the
ion
Undo
Undoes the last Editor command.

There are a number of check boxes, which click on and off, and several radio
buttons, small circles that either contain a solid dot for ‘on’ or are empty fo
‘off.’ Radio buttons are in sets, and only one turns on at a time. The check b
and radio buttons include:

Forward or Backward
Determines whether the search proceeds forward or backward.

Case: Exact or Either
Determines whether case should be matched. If Exact is on, then only
strings that exactly match the case are found. For example, Fly matches
Fly, but not fly or FLY. If Either is on, then case is ignored. For
example, Fly matches both fly and FLY.

StartsWord or EndsWord
If only StartsWord is on, then the search string must appear at the
beginning of a word. For example, fly matches fly or flybat, but not
batfly.

If only EndsWord is on, then the search string must appear at the en
a word. For example, fly matches fly or batfly, but not flybat.

If they are both on, then the string must form a complete word. For
example, fly matches fly, but not flybat or batfly.

If neither is on, then any occurrence of the string is found.

StartsLine or EndsLine
These are similar to StartsWord and EndsWord above, except they
apply to the beginning and end of a line.

Normal
If this is on, then there are no special characters; that is, characters
match themselves.

WildCard
If this is on, then the following characters have a special meaning in
search string:

? Matches any single character except a newline.

* Matches any number of characters except newlines.

RegExpr
If this is on, then the following characters have a special meaning in
search string. In this description, a regular expression is an express
180 Building and Editing with MULTI 2000

Search dialog box
using any combination of the following special characters. Note that you
cannot match a newline.

For example:

The settings in this dialog box set the defaults for the next quick search.

Regular expressions

. (A period) Matches any single character except a newline.

[string] Matches any single character appearing in the string. For example,
[abc] matches an a, b, or c. You can specify character ranges by
separating the start and end of the range with a -. For example,
[b-e] matches any character between b and e (b, c, d, and e). To
include a] as part of the string, make it either the first character of
the string, or the last character of a range. For example, []abc].

If the first character of the string is a ^, then it matches any
character that does not match the rest of the string.

^ At the start of the search string, this matches the beginning of a line.

$ At the end of the search string, this matches the end of a line.

< At the start of the search string, this requires the rest of the search
string to match the beginning of a word. Same as the StartsWord
toggle.

> At the end of the search string, this requires the rest of the search
string to match the end of a word. Same as the EndsWord toggle.

(re) Matches the regular expression re enclosed in parentheses.

re* Matches zero or more occurrences in succession of the regular
expression re.

re1|re2 Matches regular expression re1 or regular expression re2.

a.d matches and, a d, and aud.
a.*d matches ad, are d, and abd.
<and matches and, but not stand.
are|is matches either are or is.
(are|is)* bad matches are bad, is bad, areisare bad, and bad.
Green Hills Software, Inc. 181

6. The Editor GUI

en it

go to

 to
on is

ile...

ing
Goto dialog box

To open the Goto dialog box, do one of the following:

• Click the Goto button ().

• Choose Edit > Goto...

• Press Ctrl+Shift+g

You can use this dialog box to ‘goto’ a file, line number, or function by
selecting the appropriate radio button.

Goto a file
When Filename is selected, you can type a filename into the textfield to op
into the current editor.

Goto a line number
When Line Number is selected, you can type a number into the textfield to
that line in the current editor.

Goto a function
When Function is selected, you can type a function name into the textfield
search for a function name and open its file into the current editor. This opti
only available if a ctags style tag file named "tags" resides in the current
directory, or if a tags file has been specified using the Tools > Append TagF
menu option or by using the AppendTagFile editor command. See
AppendTagFile on page 208 and/or ResetTags on page 209 for more
information.

Per File Settings dialog box

The Per File Options dialog box lists a number of indenting and text wrapp
options that you can set for the current file and current session only.

To open this dialog box, choose View > Per File Settings.
182 Building and Editing with MULTI 2000

File chooser

ode

s
o
 a
ly
ffset,

183

e

e).

s
Indent size
Controls the tab size that the Editor inserts when you press the Tab key. The
default is 4 spaces. If you enter 0 to disable tabs, pressing Tab will insert a
single space.

Ada indent size
For Ada language file types only. Same as above, except the default is 3. See
“Language” on page 167 for more information.

Ada continuation size
For Ada language file types only. Determines how far a line of Ada source c
is indented if it continues to multiple lines.

Wrap column
If word wrap is enabled, this specifies the column at which word wrap take
affect. See “Word wrap” on page 183 for more information. If a line grows t
longer than this number of columns as you are typing, the Editor will insert
page break at the first white space before the column. It will indent the new
formed line by the same amount as the line above it, plus the wrap indent o
described below.

Wrap indent offset
If word wrap is enabled, this determines how much the wrapped line will be
indented past the indention of the line above it. See “Word wrap” on page
for more information.

Word wrap
This check box enables or disables word wrap. If word wrap is enabled, th
Editor will not wrap long lines while loading a file, but will wrap lines
automatically as you type. See Wrap column and Wrap indent offset (abov

Disk format
Determines whether the file will be written in UNIX format or DOS format
when the Editor saves it to disk. It will default to the appropriate setting.

File chooser

This File Chooser Window allows you to browse and choose files for variou
functions.It displays the following information:
Green Hills Software, Inc. 183

6. The Editor GUI

and
 one
Directory
This textfield displays the current directory being listed. Type in a new directory
name and press return to display a different directory list.

Directory Buttons
This set of buttons allows you to jump quickly to different important
directories:

File List
Below the directory text field is the file list. Double click on a directory to enter
it. Double click on a filename to choose it and dismiss the window. To sort the
list in ascending or descending order by any column, click on the desired
column header. Resize any of the columns by clicking and dragging the column
separators in the column headers. If multiple files are allowed for the present
operation (i.e. Edit and Open), the File Chooser will allow you to select
multiple files with the mouse. Hold down the Control key to select
non-consecutive files. Use the Shift key to extend a consecutive list of selected
files.

Filename
Type a filename or directory name into this textfield. The selected file in the file
list will change as you type in this field to reflect the closest match. If you enter
a directory name and press return or enter a trailing slash, the file list will
change to that directory. If you type a filename and press return the file will be
chosen and the window dismissed. Chooser will translate the wildcards ’*’
’?’ to match respectively: 1) any number of consecutive characters, and 2)
character.

Button Meaning

Pops up to the parent of the current directory.

Jumps to the Current Working Directory.

Jumps to the directory MULTI is running from.

Jumps to the user’s home directory.
184 Building and Editing with MULTI 2000

Print dialog box
Action buttons
There are two buttons in the lower right corner of the file chooser window. The
upper button displays the action that takes place upon pressing it (i.e. Edit or
Save). The lower button is the Cancel button, which closes the window without
taking any action.

Print dialog box

The Print menu item opens a Print dialog box. You can use this dialog box to
print the current file in various ways. The following describes the items in the
dialog box.

Print To
The Print To radio button allows you to choose to print to a printer or to a
postscript file.

Print Command
For Print To Printer mode only, this textfield displays the actual command that
will be run when the Print button is clicked. Use this to add printer or system
specific options or commands.

Filename
For Print To File mode only, this textfield displays the postscript file that will be
written to when you click the Print button. You can use the Browse... button to
look for a file to print to.

Font Name
You can use this combo box to pick the font that will be used when you click the
Print button.

Font Size
Use this combo box to select the font size that will be used when you click the
Print button.

Paper Size
Use this radio button to select the paper size that will be used when you click
the Print button.
Green Hills Software, Inc. 185

6. The Editor GUI
Orientation
Use this radio button to select the paper orientation that will be used when you
click the Print button.

Columns
Use this radio button to select the number of columns that will be used when
you click the Print button.

Print button
When all options are set correctly, click this button to print the file.
186 Building and Editing with MULTI 2000

Chapter
7

Editor commands
This chapter contains:

• Navigation commands

• Indentation commands

• Drag-and-drop commands

• Text deletion commands

• Clipboard commands

• Block commands

• Search commands

• Undo/Redo commands

• File commands

• Tool commands

• Tag commands

• Version control commands

• Configuration commands

• Help commands

• Insert commands

• ’if ’ conditional commands

7. Editor commands

s so

 any
from
ys

n
ngle
enu

w
. Of

 to
rs.

 as

st

ast
Most of the commands listed in this chapter duplicate actions you can perform using the
Editor’s Graphical User Interface (GUI). Green Hills Software provides these command
you can customize the Editor to help you work more efficiently. For example:

• If you do not want to use the mouse when you are editing, you can bind
command to a keystroke combination. Since all editor actions available
the GUI are also commands, all Editor functionality may be bound to ke
in this way.

• If you find that you are often performing the same two or more actions i
succession, you can combine the commands for these actions into a si
keystroke, key sequence, mouse button combination, GUI button, or m
item.

Please see Chapter 9, “Configuring and customizing MULTI” to find out ho
you can bind commands to menus, keystrokes, mouse clicks, and buttons
course, many of these commands are already accessible via the default
bindings; for a list of those defaults, please see Chapter 8, “Default key
bindings”.

Navigation commands

The cursor is the point in the open file where new text appears in response
keystrokes, and is denoted by a flashing vertical bar between two characte
These commands change the location of the cursor, scrolling the open file
necessary to keep the cursor within the Editor’s window. None of these
commands will modify the contents of the open file in any way.

Up
Moves the cursor up one line.

Down
Moves the cursor down one line.

Left
Moves the cursor one character to the left. If the cursor is already in the fir
column of the line, this command has no effect.

Right
Moves the cursor one character to the right. If the cursor is already in the l
column of the line, this command has no effect.
188 Building and Editing with MULTI 2000

Navigation commands

n of

n of
s in
.

PageUp
Scrolls the window and moves the cursor up one window-length.

PageDown
Scrolls the window and moves the cursor down one window-length.

UpSome
Moves the cursor up by some lines. The size of the “some” parameter defaults
to 5, but may be changed via the Ctrl-cursor jump size field, which is located in
Config > Options... > Editor tab.

DownSome
Moves the cursor down by some lines. The size of the "some" parameter
defaults to 5, but may be changed via the Ctrl-cursor jump size field, which is
located in Config > Options... > Editor tab.

LeftSome
Moves the cursor to the left by some characters. The size of the "some"
parameter defaults to 5, but may be changed via the Ctrl-cursor jump size field,
which is located in Config > Options... > Editor tab.

RightSome
Moves the cursor to the right by some characters. The size of the "some"
parameter defaults to 5, but may be changed via the Ctrl-cursor jump size field,
which is located in Config > Options... > Editor tab.

LeftU
Moves the cursor one character to the left. If the cursor is in the first colum
the line, moves the cursor to the last column of the previous line.

RightD
Moves the cursor one character to the right. If the cursor is in the last colum
the line, moves the cursor to the first column of the next line. If the cursor i
the last column of the last line of the open file, this command has no effect

Return
Moves the cursor to the first column of the next line.
Green Hills Software, Inc. 189

7. Editor commands
Word
Moves the cursor to the end of the next word. If the cursor is currently not on a
word (a group of consecutive alphanumeric characters), this command moves
the cursor to the end of the next word in the open file.

ReverseWord
Moves the cursor to the beginning of the previous word, in a similar fashion to
the Word command.

SOL
Moves the cursor to the first non-whitespace character on the line. If the cursor
is already to the left of the first non-whitespace character, moves the cursor to
the first column of the current line.

EOL
Moves the cursor to the last column of the current line.

SOF
Moves the cursor to the first column of the first line of the open file.

EOF
Moves the cursor to the last column of the last line of the open file.

SOL0
Moves the cursor to the first column of the current line (before any indentation),
even if the first character is indented.

SOL1
Moves the cursor to the first non-whitespace character on the line, even if the
cursor is currently to the left of the first non-whitespace character.

EditLine
Allows you to enter the line number you want to place the cursor on. When you
run the editline command, the prompt “Goto Line:” is displayed in the status
bar. Enter the line number.

If you prefer to enter a new line number in a dialog box, see the Goto command.

If you prefer to enter a line number as a parameter, see the LineD command.
190 Building and Editing with MULTI 2000

Indentation commands
Goto
Opens the Goto dialog box that allows you to specify a filename, line number,
or tag to open in the editor.

LineD
Format: LineD [line_number]

Moves the cursor to the specified line. If no parameter is specified, this
command opens a dialog box that allows you to specify the line to which the
cursor should be moved.

Column
Format: Column [column_number]

Moves the cursor to the specified column in the current line. If no parameter is
specified, this command opens a dialog box that allows you to specify the
column to which the cursor should be moved.

FlashCursor
Flashes the line the cursor is on. This command also turns off insert mode off.
(See the EnterInsertMode command.) This command is equivalent to View >
Flash Cursor.

Indentation commands

Indentation is whitespace at the beginning of each line, and may be used to
more clearly denote the hierarchical structure of your code, thus making it more
readable. Each of these commands change the way that the current line is
indented, either by altering the indentation manually or by automatically
applying language-specific heuristics to determine how the line should be
indented. If a number of lines are selected, these commands will operate on
each line in the selection instead.

Indent
Adds an indent at the beginning of the current line or selection. The default
indent size is 4 spaces, which can be overridden on a per-file, per-session basis
with the EditorFlags Editor command. The default indent size is specified in
Config > Options... under the Editor tab.
Green Hills Software, Inc. 191

7. Editor commands

tting

ore

d
 to

 text
n they
Unindent
Removes an indent from the beginning of the current line or selection. Up to
one indent worth of whitespace is removed. If there is less whitespace than the
indent size at the beginning of the current line, this command will remove all of
it. If there is no whitespace at the beginning of the current line, this command
has no effect. See the Indent command for notes about the indent size.

SelectLanguage
Selects the language to use for color syntax and for auto-indenting. Available
modes include: C, C++, Ada, Pascal, Fortran, None, GreenHillsScript.

Note: The C and C++ syntax highlighting module attempts to gray out any code
that is enclosed by the #if 0 preprocessor directive. However, if several such
directives are nested, only the outermost one will be highlighted correctly.

AutoIndent
For C, C++, and Ada only. Automatically indents the current line or selection
according to the structure of the code. Several configuration options affect the
operation of AutoIndent. See “Auto Indent Options” on page 255 for more
information.

AutoIndentImplicit
Like AutoIndent, except that it can be turned off (made to do nothing) by se
the configuration option AIimplicitindent to Off. This is equivalent to clearing
the Implicit Auto Indent check box, which is in Config > Functionality
Settings... under the Editor tab. See “Implicit auto indent” on page 255 for m
information.

AutoIndentOrTab
Like AutoIndent, except that if the current file is in a language not supporte
by AutoIndent, a Tab is inserted instead. This command is typically bound
the Tab key.

Selection commands

The current selection is a highlighted area of the text in the open file. When
is selected, many commands operate differently upon the selected text tha
192 Building and Editing with MULTI 2000

Selection commands

ult, a

use

 of
ion

of

cels

d of

d of
would ordinarily. These differences are documented in the individual command
descriptions. The MULTI Editor supports two selections:

• Text that is part of the primary selection can be manipulated by many
commands, such as the Clipboard Commands, Indentation Commands, and
Drag-and-Drop Commands. The primary selection is replaced by any typed
or inserted text, and is cancelled by any Navigation Command. One end of
the primary selection, the cursor-end, is always at the cursor’s current
location, and may be either the start or the end of the selection. By defa
primary selection is created by dragging over text with the left mouse
button.

• Text that is part of the secondary selection can be replaced using either the
SecondarySelectionReplace or SecondarySelectionReplaceClip
commands. Any other non-selection-related MULTI Editor command or
keystroke will cancel a secondary selection if it exists. By default, a
secondary selection is created by dragging over text with the middle mo
button. When the middle button is released, SecondarySelectionReplace is
executed.

The Selection Commands can be used to create or cancel these two types
selections. Commands which don’t explicitly mention the secondary select
operate on the primary selection only. With the exception of the
SecondarySelectionReplace and SecondarySelectionReplaceClip
commands, none of the commands in this section will modify the contents
the open file in any way.

NoSelection
Moves the cursor to the beginning of the current primary selection and can
it. If no primary selection exists, this command has no effect.

SelectAll
Makes the entire open file the primary selection, moving the cursor to the en
the open file. The window is not scrolled to show the cursor.

SelectWord
Makes the current word the primary selection, moving the cursor to the en
the word. The window is not scrolled to show the cursor.
Green Hills Software, Inc. 193

7. Editor commands

d of

SelectLine
Makes the entire current line (including any indentation) the primary selection,
moving the cursor to the end of the line. The window is not scrolled to show the
cursor.

SelectMatch
If the character immediately after the cursor is a paired character, such as a
parenthesis, square bracket, quote, or curly brace, it will select the
corresponding paired character in the open file. For example, if the cursor is
positioned immediately before a closing parenthesis, this command will select
the opening parenthesis character that matches it. If the cursor is not over one of
these characters, or if the parenthesis, bracket, etc. has no match, this command
will cause a beep and have no further effect. See also SelectToMatch.

SelectToLines
Extends the current selection so that it completely includes the first and last
lines of the current selection. The new selection begins at the first column of the
first line of the current selection and ends at the last column of the last line of
the current selection. If there is no current selection, this command is equivalent
to SelectLine.

SelectToMatch
Extends the selection to include the nearest paired characters (quotes,
parentheses, etc.) that enclose the current selection, along with any text that is
between them. If there is no selection, this command makes the selection
include the nearest paired characters on either side of the cursor. This command
is equivalent to View > Match. See also SelectMatch.

ContinueSelection
Moves the cursor-end of the current selection with the next Navigation
Command, extending or shrinking the selection accordingly. For example, if the
cursor-end of the selection is last and a Down command is preceded by
ContinueSelection, the cursor will move down and the selection will be
extended down one line to the cursor’s position. However, if the cursor-en
the selection is first (at the beginning of the selection) and a Down command is
preceded by ContinueSelection, the cursor will move down and the selection
will shrink by one line to the cursor’s position.
194 Building and Editing with MULTI 2000

Drag-and-drop commands

xt in
.

xt in
re

 with
tion

o
 a
SelectionStart, SelectionGrab, SelectionExtend, SelectionAdjust
These commands create and manipulate selections in a way that is dependent
upon the mouse. To be useful, these commands should be bound to mouse
buttons and used in conjunction with one another. (See “Default mouse
settings” on page 225 for a sense of how these commands are used.)

SecondarySelectAll, SecondarySelectLine, SecondarySelectWord
These commands have the same behavior as their primary selection
counterparts, except that they operate on the secondary selection.

SecondarySelectionStart, SecondarySelectionExtend,
SecondarySelectionAdjust

These commands have the same behavior as their primary selection
counterparts, except that they operate on the secondary selection.

SOLSecondary
Starts the secondary selection at the beginning of the current line, the first
column, and changes it to zero length. It contains no characters.

SecondarySelectionReplace
Deletes the text in the secondary selection, replacing it with a copy of the te
the primary selection. This command also cancels the secondary selection

SecondarySelectionReplaceClip
Deletes the text in the secondary selection, replacing it with a copy of the te
the clipboard. This command also cancels the secondary selection. For mo
information about the clipboard, see “Clipboard commands” on page 197.

Drag-and-drop commands

The MULTI Editor supports editing the open file by dragging selected text
around to move it. These commands perform various functions associated
this drag-and-drop behavior. Because they are all dependent upon the loca
of the mouse pointer, these commands are rarely useful when not bound t
mouse buttons and actions. See “Default mouse settings” on page 225 for
sense of how these commands are used.
Green Hills Software, Inc. 195

7. Editor commands
SelectionStartDrag
Starts a drag-and-drop operation. When the mouse is over a legal drop spot, the
cursor will change into the drop cursor, allowing you to drop the text to a new
location. At the completion of a drag-and-drop operation, the text will be
deleted from the current location, and pasted to the dropped location. If there is
no primary selection, this command has no effect.

By default this command is executed by left-clicking and dragging from within
the current primary selection. If the control key is pressed during any point
during a drag-and-drop operation, the operation will turn into a
drag-and-drop-add operation.

Warning: This command must be followed by a SelectionDrop. See also
SelectionDrop and SelectionStartDragAdd.

SelectionStartDragAdd
Starts a drag-and-drop-add operation. When the mouse is over a legal drop spot,
the cursor will change into the drop-add cursor, allowing you to copy the text
to a new location. At the completion of a drag-and-drop-add operation, the text
will be copied to the dropped location. If there is no primary selection, this
command has no effect.

By default this command is executed by left-clicking and dragging selected
text, while holding down the control key. If the control key is pressed during
any point during a drag-and-drop operation, the operation will turn into a
drag-and-drop-add operation.

Warning: This command must be followed by a SelectionDrop. See also
SelectionDrop and SelectionStartDragAdd.

SelectionDrop
This command will complete the drag-and-drop or drag-and-drop-add
operation. Legal drag spots are anywhere in the editor text pane, except on the
current selection, and are indicated by the mouse cursor changing into the drop
(or drop-add) cursor. Illegal drop spots are indicated by the no mouse cursor.
See SelectionStartDrag and SelectionStartDragAdd below.

By default this command will be called whenever the left mouse button is
released during a drag-and-drop or a drag-and-drop-add operation.
196 Building and Editing with MULTI 2000

Text deletion commands

 201

at
the
nt
xt,

xt

d
s

rth
 open
Text deletion commands

These commands destroy text in the open file, either at the cursor or in the
primary selection. Once text is destroyed by these commands, it can only be
recovered with the undo command. (See “Undo/Redo commands” on page
for more information.)

Backspace
Deletes the text in the current primary selection and cancels the primary
selection. If there is no selection, this command deletes the character
immediately before the cursor.

Delete
Deletes the text in the current primary selection and cancels the primary
selection.

Clipboard commands

• The clipboard is a special place set aside in your computer’s memory th
may be used to store text for you to use later. Although it is not visible,
data will persist until you restart MULTI or until you replace it with differe
data. In fact, MULTI provides 4 different areas in which you may store te
which is useful for quickly moving or duplicating parts of the open file.
These commands provide you with facilities for storing and retrieving te
from the clipboard.

Copy1, Copy2, Copy3, Copy4
Copies the text in the current selection into the first and second, third, and
fourth clipboards, respectively. The previous contents of the given clipboar
will be lost after this command is issued, although all of the other clipboard
will be unaffected.

Cut1, Cut2, Cut3, Cut4
Copies the text in the current selection into the first, second, third, and fou
clipboards, respectively, and then deletes the text in the selection from the
file. The previous contents of the given clipboard will be lost after this
command is issued, although all of the other clipboards will be unaffected.
Green Hills Software, Inc. 197

7. Editor commands

ith

rd. If
ns

oard.

 is

rd,
nes,
e

 will

s

ting
 to

d is

t
se

Paste1, Paste2, Paste3, Paste4
Inserts the text from the first, second, third, and fourth clipboards, respectively
into the open file at the cursor’s current location. The contents of the given
clipboard will still be intact after this command is issued, so subsequent Paste
commands will still insert the same text that was originally copied or cut (w
the Copy or Cut command).

RectCopy1
Copies a rectangular subsection of the current selection to the first clipboa
the selection extends across multiple lines, only the characters in the colum
that are between the start and end of the selection will be stored in the clipb

For examples, see “To copy a column of text” on page 149. This command
equivalent to Block > Rect Copy.

RectCut1
Copies a rectangular subsection of the current selection to the first clipboa
and then deletes the copied text. If the selection extends across multiple li
only the characters in the columns that are between the start and end of th
selection will be stored in the clipboard. The remaining text in the selection
shift to the left to fill the space left by the text that was cut.

For examples, see “To cut a column of text” on page 150. This command i
equivalent to Block > Rect Cut.

RectPaste1
If the first clipboard contains a rectangular section (that was put there by a
RectCopy1 or RectCut1 command), inserts the selection as a rectangle star
at the current cursor position. Text on lines below the cursor will be shifted
the right to make room for the rectangle that is being inserted.

For examples, see “To paste a column of text” on page 150. This comman
equivalent to Block > Rect Paste.

Block commands

These commands modify text in the current primary selection in convenien
ways. Although they are designed to operate on selected text, most of the
commands have some default behavior that occurs even when there is no
selection.
198 Building and Editing with MULTI 2000

Block commands

/’,
ing

l

.

m the
th
CommentBlock
Comments the text in the selection using language-specific commenting (see
also SelectLanguage). For languages such as C that do not support
parenthesis-style nested comments, any comment-delimiting characters in the
selected text will be mangled so that they are no longer parsed as comment
characters. For example, if the following C code is selected:

int i=5; /* index */
void bad(void) {}

Then the CommentBlock will replace it with:

/*int i=5; /@*$ index $*@/
 - void bad(void) {}*/

In other words, the block would be surrounded with C-style comments ’/*’, ’*
nested comments would have ’@’ and ’$’ inserted to allow for uncomment
and correct nesting, and new lines are replaced by ’ - ’. Note that if these
comments are now included in another CommentBlock command, they wil
change to ’/@@*$’ and ’$*@@/’, so subsequent UnCommandBlock
commands will work as expected.

For C++, C++ style comments ’//’ will be prepended to every line.

Pascal behaves like C, except that the block is surrounded with ’{’, ’}’, and
nested comments will be replaced by ’(@*$’, ’$*@)’.

function foo {my comment};
begin
 i := 5;
end; {foo}

Would become:

{function foo (@*$my comment$*@);
 - begin
 - i := 5;
 - end; (@*foo*@)}

If there is no selection, CommentBlock treats the current line as the selection

UnCommentBlock
Removes comment characters that are specific to the current language fro
selected text (see also SelectLanguage). The selected text must begin wi
comment-start symbols and end with comment-stop symbols in order for
Green Hills Software, Inc. 199

7. Editor commands

k to

nds

.

re is

h

e
arch
 to
rch

dit >
UnCommentBlock to work. Otherwise, it will do nothing. If correctly
commented, UnCommentBlock applies the following rules to the selected text:

• Lines beginning with ’ - ’ will have the ’ - ’ deleted.

• Nested comments detected (i.e. /@*$, $*@/ for C) will be unnested bac
their original state.

• The beginning and ending comment markers will be removed from the e
(i.e. for C, /*, and */).

This command should “undo” a CommentBlock and is useful for
uncommenting old comment blocks in later sessions.

If there is no selection, CommentBlock treats the current line as the selection

LowerCaseBlock
Changes each alphabetic character in the selection to lower case.

UpperCaseBlock
Changes each alphabetic character in the selection to upper case.

JoinLines
Joins the currently selected lines by replacing new lines with spaces. If the
no selection, the current line is joined with the successive line.

Search commands

The MULTI Editor supports two ways to search the open file for text:

• Interactive search allows you to perform a variety of searching tasks, suc
as search-and-replace and regular expression matching, through an
interactive dialog box.

• Incremental search has fewer options but allows you to see the area of th
open file that matches the text you are searching for as you type the se
text. This can be useful for quickly finding a piece of text without having
type it completely. Except for the replace facilities in the interactive sea
dialog box, these commands will not modify the open file.

Search
Opens the interactive Search dialog box. This command is equivalent to E
Find. See “Searching” on page 155 for more information.
200 Building and Editing with MULTI 2000

Undo/Redo commands

ssion

ward
en

ed

and
ISearch
Starts an incremental search that will proceed forward (toward the end of the
open file) from the current cursor position. When you run ISearch, the word
Srch: is displayed in the status bar, indicating that you should begin typing the
text that you wish to locate. As you type each character, the next piece of text in
the open file that matches what you have typed so far will be selected, and the
cursor will be moved to the matching text. If no matching text can be found
before the end of the open file, the editor will beep.

If an incremental search is already in progress when this command is executed,
the next piece of text after the cursor which matches the characters typed so far
will be selected. In this way, each piece of text matching the search text will be
selected in succession, once for each time that the ISearch command is
re-executed. If there are no more matching pieces of text before the end of the
open file, the incremental search will “wrap around,” proceeding from the top
of the open file.

To search the open file using more powerful methods such as regular expre
matching, use the Search command instead. See also BackISearch.

BackISearch
This command is similar to the ISearch command, except that it searches
backward (toward the beginning of the open file) from the current cursor
position. When no more matching text appears before the cursor, the back
incremental search will wrap around, proceeding from the bottom of the op
file.

TruncateSearch
Restarts the incremental search at the cursor’s current position.

StopSearch
Stops an incremental search. The most recently matched or partially match
text will remain selected, and the cursor will remain at the matched text
selection, if any. The Abort command will also stop an incremental search.

Undo/Redo commands

These commands allow you to undo, repeat, and cancel other commands
actions that you have executed in the past, or are currently executing.
Green Hills Software, Inc. 201

7. Editor commands

e

u to

ow,

se
 the
Undo
Allows you to undo all the changes made to the current file since it was opened.
You can undo as many of the changes as you want. For example, suppose you
open a file and make three separate edits. Now, you choose undo, then undo
again. Your file now contains only the first edit that you made. Typing is
merged into a single undo; typing "abc" and then performing an undo will
remove all three characters. Equivalent to Edit > Undo.

Redo
Redoes an edit that was undone with the Undo command. You can redo any
undone edits if you have not yet made any other edits. Equivalent to Edit >
Redo.

RepeatLast
Repeats the most recent edit at the cursor’s current position. See “To repeat th
last change you made to a file” on page 149 for more information.

Abort
Aborts any ongoing command, such as a search.

File commands

These commands allow you to choose new files to edit, as well as save or
discard open files.

OpenFile
Format: OpenFile [filename]

Opens the given file in the current Editor window. If no parameters are
specified, then this command opens the Edit File dialog box that allows yo
open or create a file. This command is equivalent to File > Open.

LoadFile
Format: LoadFile [filename]

Opens the given file in either a new editor window or the current editor wind
depending on the current setting of the OpenFilesInNewBuffers config option.
This config option is accessible from Config > Options... > Editor tab > Reu
Editor Windows. If no parameters are specified, then this command opens
Edit file dialog box that allows you to open or create a file.
202 Building and Editing with MULTI 2000

File commands

ws
 all
also

t to
are

e

r
LoadFileWithNewEditor
Format: LoadFileWithNewEditor [filename]

Opens the given file in a new Editor window. If no parameters are specified,
then this command opens the Edit file dialog box that allows you to open or
create a file. This command is equivalent to File > New Editor.

Save
Saves the current file. Equivalent to File > Save.

SaveAs
Opens the Save As dialog box allowing you to enter the name you wish to save
the current file. This allows you to save additional copies of the current file
under different names. After saving a file under a different name, the current file
edited is changed to the new file. Equivalent to File > Save As.

SaveAll
Automatically saves all open files without prompting you with a dialog box.

SaveAllLog
Opens a dialog box that lists all currently edited files that are under version
control. You can choose to save any combination of these files by clicking the
box next to the file’s name. Clicking OK saves all the files selected and allo
you to enter the same comment for all of them. This is equivalent to saving
the files at once and entering the same comment for each log. All the files
have exactly the same date and time in their log entry.

QuerySaveAll
Lists all currently edited files modified since the last save. Click the box nex
the file’s name to select any files to be saved. By default, all modified files
selected. Clicking OK saves all selected files. If any of the files are under
version control, it will ask you to enter a comment. The comment is the sam
for all files saved. Equivalent to File > Save All.

QuerySaveComments
Identical to QuerySaveAll, except if comments are turned off for a file unde
version control, it will still ask you for a comment.
Green Hills Software, Inc. 203

7. Editor commands

re
tton.

.

lude
ext
ent if

sion
more

ion.

 are
lose

e
Revert
Reverts the file to the last saved version (file on disk), deleting any unsaved
changes. Equivalent to File > Revert to Saved.

CyclePush
Allows you to edit the previous file in the Editor’s stack of open files. Every
time you open a file in an existing Editor window, previously opened files a
stacked below the newly opened file. Equivalent to the Previous toolbar bu

CyclePushBack
Allows you to edit the next file in the Editor’s stack of open files. Every time
you open a file in an existing Editor window, previously opened files are
stacked below the newly opened file. Equivalent to the Next toolbar button

EditorFlags
Opens a dialog box to control the file settings for the current file. These inc
the tag and indent sizes, the time spent on matching parentheses, where t
wraps, whether text should wrap, and whether subsequent lines should ind
they wrap. These settings default to the settings in the Config > Options...
dialog > Editor tab, and are only applied to the current file in the current ses
(they are not stored for future sessions). See “Editor tab” on page 254 for
information.

Print
Opens the print dialog box that allows you to print the file or current select

Close
Closes the current Editor window. If changes were made to open files, you
prompted to save the files before closing the window. Equivalent to File > C
Editor.

Quit
Opens a dialog box asking which modified files you wish to save, saves th
selected files, and quits the entire MULTI session, not just the Editor.
Equivalent to File > Exit All.
204 Building and Editing with MULTI 2000

Tool commands

he
>
Done
Performs a QuitAll, except that any files that were not checked out by the Editor
during this session are automatically saved without prompting you.

OpenText
This command has been deprecated. Please see the OpenFile command.

Tool commands

MULTI provides several useful tools for working with your open files,
including searching and diffing files and revisions, and executing shell
commands. These commands provide access to those tools.

Grep
Opens a dialog box that asks for text to search for in all of the files in the current
program being debugged (if any), as well as any open files. The output from this
command is put in a temporary window. Double clicking any of the lines in this
window opens an Editor window on the line.

This command works by running the GNU grep utility. For your convenience, a
copy of GNU grep is installed along with MULTI. However, GNU grep is not
part of MULTI and is not distributed under the same license as MULTI. For
more information about the GNU General Public License which GNU grep is
distributed under, refer to the file gnugrep.README, which is located in the
directory where MULTI is installed.

DiffFiles
Opens the Diff Files dialog box that you may use to find and display the
differences between two files or between two versions of the same file. This
command is equivalent to Tools > Diff Files. See “Comparing files” on page
160 for more information.

MergeFiles
Opens the Merge dialog box that allows you to merge two or three files
together. You can also merge versions of the same file together. Also see t
Version Control Commands section. This command is equivalent to Tools
Merge Files. See “Merging files” on page 156 for more information.
Green Hills Software, Inc. 205

7. Editor commands

 it

st end
 as
tput

 box

put.

ut.
Minibuffer
Opens a dialog box that you use to execute an Editor command. This command
is equivalent to Tools > Execute Editor Commands.

CommandToWindow
Format: CommandToWindow [command ;]

Sends the given command to the shell as a command. (The parameter must end
with a semicolon ‘;’.) The output is placed into a new Editor window which is
given a temporary name. If no parameters are specified for this command,
opens a dialog box that prompts you for a command to send.

ExecuteCmd
Format: ExecuteCmd [command ;]

Sends the given command to the shell as a command. (The parameter mu
with a semicolon ‘;’.) The command uses the current selection in the editor
stdin, and replaces that selection with stdout. If nothing is selected, the ou
from the command is inserted into the open file after the cursor’s current
position. If no parameters are specified for this command, it opens a dialog
that prompts you for a command to execute.

In the following command, the special macro sequence %FILE is replaced by
the current file name. Thus, you could implement a PRINT button with the
following commands:

NoSelection; ExecuteCmd

 lpr %FILE> /dev/null

If there is a current selection, then it sends to the command as standard in
Any output from the command replaces the selection. The following macro
sequences are recognized:

%FILE: Replaced with the name of the current open file.

%SEL: Replaced with current selection.

%LINE: Replaced with current line number.

%COMMENTS: Replaced with text from a dialog box that prompts for inp

!
Same as ExecuteCmd on page 206.
206 Building and Editing with MULTI 2000

Tag commands
Shell
Format: Shell [command ;]

Sends the given command to the shell as a command. (The parameter must end
with a semi-colon ";".) The output is sent to the console from which MULTI
was launched. Thus, this command has no effect on the document. If no
parameters are specified for this command, it opens a dialog box that prompts
you for a command to execute.

Notepad
Opens a small editing window on a scratch file for taking notes. Equivalent to
Tools > Notepad..., or the note command in the Debugger.

The scratch file used is ~/.Notes.

cmdprompt2wnd
This command is deprecated. Please see CommandToWindow on page 206.

Tag commands

ErrorOrTag
Searches either an output window from the grep command or a progress
window for the next item. In grep windows, the next item is the Next tag and
file/line number combination. When the next item is found, the insertion point
moves to it. A window opens the file the item is from with the appropriate line
selected.
Green Hills Software, Inc. 207

7. Editor commands
The window searched is determined in the following ways:

• If the current window contains output from grep, then it is searched.

• If the current window does not contain output from grep, and the last time
this command is used was on a progress window, then the progress window
is searched.

• If the current window does not contain output from grep, and the last time
this command is used was on a grep window, then the grep window is
searched.

• If the current window does not contain output from grep, and this is the first
time using this command, then the latest progress window is searched.

• If this command refers to a window that does not exist, for example, if no
grep window exists, then MULTI gives you an error.

OpenTag
Enters a new file or procedure to edit in the current window. The new tag is
typed at the top of the window, exactly as if clicking the filename. If text is
currently selected, then the text is automatically used for the new tag to edit.

For windows produced by the grep command, this opens the file and specifies
the line number.

If no text is selected, it is identical to the EditTag command.

NewTag
Searches the tag database for a procedure with the name of the selected text. If
the tag is found, the file containing the tag is opened in a new Editor window
and the editor attempts to search for the tag.

In windows produced by the grep command, this opens the file and specifies the
line number.

SpecialTag
When used inside of a window with output from the progress window, this
moves to the location of the next error.

AppendTagFile
Append the entries from the specified tag file into the tag database for later
queries.
208 Building and Editing with MULTI 2000

Version control commands

out
n.
was

ents
ResetTags
Clear the current tag database of all entries.

EditTag
This command has been deprecated. Please see the OpenTag and NewTag
commands.

Version control commands

CheckIn
Checks the file into version control, prompting you for comments.

CheckOut
Checks the file out of version control.

AllowAutoCheckout
Enables auto checkout from version control. This only affects buffers that are
under version control. AutoCheckout means whether typing implicitly checks
out a file or whether explicit checkout operations are required. This option is on
a per-file basis, and defaults to the value of the “Automatic Checkout”
configuration option. See also PreventAutoCheckout.

PreventAutoCheckout
Opposite of AllowAutoCheckout.

Discard
Discards the current checkout. If the file is checked out, discards the check
and reverts the contents of the file to those from the last checked in versio
This function updates the timestamp on a file in case the modified version
used in a previous build.

PlaceUnderVC
Places the current file under version control, prompting you to insert comm
(if desired). If using MVC, this is equivalent to the create command, which
creates a log file. See “Create log” on page 135 for more information.
Green Hills Software, Inc. 209

7. Editor commands

f
(e.g.

 For
nt,
 on a

e
der
vcbuffer
Opens a dialog box that asks you for a version control command. The full name
of the current file is appended at the end of the command.

Mvcbuffer
Opens a dialog box that asks you for a MULTI version control command.

RevertDate
Opens a dialog box that asks you to specify the date to revert the file to out of
version control (currently only supported for some version control systems (e.g.
MVC).

RevertHistory
Opens a dialog box that allows you to select a version to revert the file to out of
version control (currently only supported for some version control systems (e.g.
MVC). See “ShowHistory” on page 210.

RevertToBackup
Revert the current file to the backup file. Only valid if editor backups are
enabled in the configuration options (off by default).

RevertVersion
Opens a dialog box to specify the version number to revert the file to out o
version control (currently only supported for some version control systems
MVC)).

ShowHistory
Opens a dialog box that shows the version-control specific version history.
MVC, this opens a dialog box that shows you the first line of every comme
who checked the file in, and the date. Clicking on an entry opens an editor
temporary copy of that version.

ShowLastEdit
Note: This command is only supported when using MVC (MULTI Version
Control).

Finds the version of the current file that changed the selected text. This
command opens a window on the version that changed the text, placing th
cursor at the beginning of the change. Enabled only if the current file is un
210 Building and Editing with MULTI 2000

Version control commands

nge

t
show
version control (such as MVC) that supports this feature. Equivalent to the
menu item if you choose Version > Show Last Edit.

The current file must also be checked in. Otherwise, the results of this operation
are undefined.

When you run this command, three windows are opened very much like a Diff
(Tools > Diff Files... > Diff). The editor window on the left shows the last
version which had different text in the selected lines. The editor window on the
right shows the next version. Looking at the two versions will show you how
the text changed between the two versions.

The third window is the Show Last Edit controller. It consists of a button bar
with three buttons and a text section underneath.

Here’s a description of the buttons:

• Previous (): shows the previous difference (if any) between the two
displayed versions.

• Next (): shows the next difference (if any) between the two displayed
versions.

• ‘Close’ (): closes the controller and both editor windows.

All three windows will also be closed if you close either of the two editor
windows.

The text section below the button bar shows information regarding the cha
between the two versions. This information is laid out as follows:

Where the first line contains the version number, user, and date for the righ
hand file (the one where the change was checked in). The remaining lines
the comments (potentially several lines) and is displayed in the currently
configured comment color.

ShowView
Note: This command is only supported when using ClearCase.

Version number) User Date and Time

Comments
Green Hills Software, Inc. 211

7. Editor commands

f the

nter a

d

ey

led

s,

Displays the user’s current view.

CreateLog
This command has been deprecated. See PlaceUnderVC for more information.

Configuration commands

The MULTI Editor’s appearance and behavior can be configured heavily
beyond the defaults. These commands allow you to specify values for any o
MULTI Editor’s options.

Configure
Format: Configure config_item=value

Format: Configure config_item:value

Format: Configure config_item value

This is identical to the Debugger command configure. If no parameters are
specified, then this command opens a dialog box which requests that you e
configuration command.

ConfigureFile
Format: ConfigureFile [file]

This command treats the given file as a list of configuration commands, an
executes them in order.

AlterMode
Format: AlterMode [mode number]

This command is typically only bound to keys, and can be used to create
bindings for sequences of key combinations, instead of just single-stroke k
combinations.

The actual AlterMode command switches the editor to any of 10 modes, cal
"Edit0" through "Edit9". In each mode, keystrokes have different behavior
depending on what their binding is for that particular mode. This is useful
because it can cause any given key combination to have up to 10 meaning
depending on whether or not it was preceded by a key that is bound to the
AlterMode command.
212 Building and Editing with MULTI 2000

Configuration commands
Usually, the keybind command only allows you to bind a command to a key
with modifiers such as the Control and Shift keys. However, with AlterMode,
you can bind commands to a key sequence. The keybind command requires the
specification of an editing mode. When you press the key in that mode, the
given command executes. To bind commands to keys to work in the MULTI
Editor, the mode should usually be Edit (which refers to the same mode as
Edit0). However, if this command is specified and followed by a mode called
Edit1-Edit9, then the next key press in the Editor will execute the command that
it is bound to the new mode. For example:

keybind “x”|Control@Edit=SaveFile
keybind “s”|Control@Edit2=RightD

With this command, pressing Ctrl+x in the Editor saves the current file.
However, pressing Ctrl+s in the Editor window does nothing because this
command only works in mode Edit2. By default, the Editor mode is Edit or
Edit0. However, if you enter the command:

keybind “q”|Control@Edit=AlterMode Edit2

then pressing Ctrl+q changes the Editor mode to Edit2 for only the next key
press. So if you type Ctrl+q Ctrl+s, the cursor moves to the right one character,
the RightD command. Ctrl+s works this time because it is now in the correct
mode, Edit2.

Any command issued while in an alternate mode will switch the mode back to
Edit0, the default mode.

->
This command is only used for specifying menu bindings. It must be followed
by the name of a menu, which is created with the specific menu command that
opens that menu. Any menus created for the Editor should only contain editing
commands.

ShowContextMenu
This command is issued to open a context sensitive menu at the current mouse
location. This should be bound only to mouse buttons.

AlterLocation
Format: AlterLocation [mode_number]

This command is deprecated. Please see the AlterMode command.
Green Hills Software, Inc. 213

7. Editor commands

r

licks,

een

. The

tion.

ition.
Help commands

These commands allow you to access the MULTI Editor’s help features.

About
Opens the About box which describes version information.

Help
Opens the online help system. This command is equivalent to Help > Edito
Help.

Identify
Waits until you enter another command, either by key presses or mouse c
and displays the name of that command.

Insert commands

These commands add text to the open file at the cursor’s current position.

“ ” (text surrounded by double-quotes)
Inserts all of the text between double quotes into the open file at the cursor’s
current position. The current selection, if any, is replaced with the text betw
the quotes. Standard C quoting sequences (i.e. \n, \t, \\) are allowed.

Tab
Inserts a tab (\t) character into the open file at the cursor’s current position
current selection, if any, is replaced with the tab.

UserName
Inserts the current user name into the open file at the cursor’s current posi
The inserted name is inserted in lower case.

InsertNewline
Inserts a newline (\n) character into the open file at the cursor’s current pos
The current selection, if any, is replaced with the newline.
214 Building and Editing with MULTI 2000

’if ’ conditional commands
InsertFile
Opens the Insert dialog box, in which you may select a file to be inserted into
the current line. The contents of the selected file are placed on the line above the
cursor.

EnterInsertMode
Puts the Editor into insert mode, allowing you to enter literal keystrokes into
your file, even if the keys are bound to commands.

For example, suppose you customized the Editor so that every time you press d,
the cursor moves down one line. This makes it impossible to type the letter d in
the file. When you turn on insert mode and press d, the letter d appears in the
file, and the cursor does not move down one line.

Insert mode may be turned off by the FlashCursor command (see
FlashCursor on page 191).

Quote
Forces the character generated by the next key press to be literally entered in the
file, even if the key is bound to a command. This is useful for entering
characters that have commands bound to them.

Beep
Sounds a tone that should be audible to the user.

NextWindow
Moves the pointer into another Editor window and raises that window to the
foreground. Using this command repeatedly will eventually cycle through all of
the open Editor windows.

ToggleErrorView
Enables error view mode, which is useful for grep and Progress windows.

’if’ conditional commands

The conditional command is useful for constructing scripts and key bindings
which predicate on a particular state or mode within the editor. For example, if
commands can be used to make your key bindings more responsive to the
existence of selections or whether or not the editor is in insert mode.
Green Hills Software, Inc. 215

7. Editor commands
if condition {cmds1}[else {cmds2}];
This executes the commands given for cmds1 if condition is true, and executes
cmds2 if condition is false (although specifying the else clause is optional).

Currently, condition may only be one of the following:

<searching>
This is true if an incremental search is currently in progress, and false
otherwise. (See the ISearch on page 201.)

<noselection>
This is true if there is no primary selection.

<nosselection>
This is true if there is no secondary selection.

<insertmode>
This is true if you are not in insert mode.

<select num=line>
This is true if the selection number num aligns on line boundaries.

<select num=rect>
This is true if the selection number num is rectangular.

<select num=text>
This is true if neither of the above two are true.

The keyword else is included optionally, followed by a second command list. If
else is included and condition is not true, then the second command list
executes.

The final closing brace is followed by a semicolon.

Example
if <noselection> {SelectLine}; Cut1
If there is no selection, then this selects the entire line. The Cut1 command is
always executed.

if <noselection> {ContinueSelection; SOL} else {Delete}
If there is no selection, then this selects from the current cursor position to the
end of the line. If there is a selection, it is deleted.
216 Building and Editing with MULTI 2000

Chapter
8

Default key bindings

This chapter contains:

• Default keyboard settings

• Escape key interrupt

• Default mouse settings

8. Default key bindings
This chapter tabulates the default key and mouse combination settings. See Chapter 10,
“Configuration commands” for information on how to implement the keybindings and
customize your settings.
218 Building and Editing with MULTI 2000

Default keyboard settings
Default keyboard settings

Moving the cursor

Function Editor command Keystrokes

Move the cursor up one line Up Up Arrow

Ctrl+k

Move the cursor up a number of lines
(default is 4)

UpSome Ctrl+Up Arrow

Move the cursor up one page PageUp Ctrl+Shift+b

PageUp

F29

Move the cursor down one line Down Down Arrow

Ctrl+j

Move the cursor down a number of lines
(default is 4)

DownSome Ctrl+Down Arrow

Move the cursor down one page PageDown Ctrl+Shift+n

PageDown

Move the cursor left one character LeftU Left Arrow

Ctrl+h

Move the cursor right one character RightD Right Arrow

Ctrl+l (lowercase ’L’)

Move the cursor to the previous word ReverseWord Ctrl+Left Arrow

Move the cursor to the next word Word Right Arrow

Move the cursor to the beginning of the line SOL0 Ctrl+w or Home

Move the cursor to the end of line EOL Ctrl+e or End

Move the cursor to the beginning of the next
line

EOL; RightD Ctrl+Enter

Move the cursor to the end of the file EOF Ctrl+End

Move the cursor to the beginning of the file SOF Ctrl+Home
Green Hills Software, Inc. 219

8. Default key bindings
Selecting text

Searching

Function Editor commands Keystrokes

Extend selection up one line ContinueSelection; Up Shift+Up Arrow

Ctrl+Shift+k

Extend selection up a number
of lines

ContinueSelection; UpSome Ctrl+Shift+Up Arrow

Extend selection up one page ContinueSelection; PageUp Shift+PageUp

Shift+F29

Extend selection down one line ContinueSelection; Down Shift+Down Arrow

Ctrl+j

Extend selection down a
number of lines

ContinueSelection; DownSome Ctrl+Shift+
Down Arrow

Extend selection down one
page

ContinueSelection; PageDown Ctrl+Shift+
PageDown

Shift+F35

Extend selection left one
character

ContinueSelection; LeftU Shift+Left Arrow

Ctrl+Shift+h

Extend selection right one
character

ContinueSelection; RightD Shift+
Right Arrow

Ctrl+Shift+l

Extend selection to previous
word

ContinueSelection; ReverseWord Ctrl+Shift+
Left Arrow

Extend selection to next word ContinueSelection; Word Ctrl+Shift+
Right Arrow

Extend selection to beginning
of line

ContinueSelection; SOL0 Shift+Home

Ctrl+Shift+w

Extend selection to end of line ContinueSelection; EOL Shift+End

Ctrl+Shift+e

Extend selection to beginning
of next line

ContinueSelection; Return Ctrl+Shift+Enter

Select entire document SelectAll Ctrl+a

Function Editor commands Keystrokes

Start or continue an incremental search forward ISearch Ctrl+f
220 Building and Editing with MULTI 2000

Default keyboard settings
Start or continue an incremental search
backward

BackISearch Ctrl+b

Cancel a search Abort ESC

Open the search dialog box Search Ctrl+Shift+f

L9

Start an incremental search, then open the
search dialog box

BackISearch;Searc
h

Shift+L9

Function Editor commands Keystrokes
Green Hills Software, Inc. 221

8. Default key bindings
Deleting text

Indenting

Copying, cutting and pasting

Function Editor commands Keystrokes

Delete last character Backspace Backspace

Delete next character if <noselection> {
ContinueSelection; RightD };
Delete

Delete

Ctrl+d

Cut an entire line SelectToLines; Cut2 Ctrl+m

Merge selected lines JoinLines Ctrl+p

Delete previous word if <noselection> {
ContinueSelection; ReverseWord
}; Backspace

Ctrl+
Backspace

Delete next word if<noselection> {
ContinueSelection; Word }; Delete

Ctrl+Delete

Cut to beginning of line if<noselection>{ContinueSelection
; SOL}; Cut2

Ctrl+u

Function Editor commands Keystrokes

Indent a line Indent Ctrl+i

Unindent a line Unindent Ctrl+Shift+i

Auto-indent the selected
line(s)

if<beforenonwhite>
{AutoIndentOrTab} else {if
<noselection> {Tab} else
{AutoIndentOrTab} }

Tab

Function Key Modifiers Command

Copy to clipboard L6 n/a Copy1

c C Copy1

Copy to second buffer L6 S Copy2

C C,S Copy2

Copy to third buffer L6 C Copy3

c M, C Copy3

Copy to fourth buffer L6 C, S Copy4

C M, C, S Copy4
222 Building and Editing with MULTI 2000

Default keyboard settings
Cut to clipboard L10 n/a Cut1

x C Cut1

Cut to second buffer L10 S Cut2

x C, S Cut2

Cut to third buffer L10 C Cut3

x M, C Cut3

Cut to fourth buffer L10 C, S Cut4

x M, C,S Cut4

Paste from clipboard L8 n/a if <noselection> { if <select1=lines>
{SOL0}} Paste1

v C if <noselection> { if <select1=lines>
{SOL0}} Paste1

Paste from second
buffer

L8 S if <noselection> { if <select1=lines>
{SOL0}} Paste2

v C, S if <noselection> { if <select1=lines>
{SOL0}} Paste2

Paste from third buffer L8 C if <noselection> { if <select1=lines>
{SOL0}} Paste3

v M,C if <noselection> { if <select1=lines>
{SOL0}} Paste3

Paste from fourth
buffer

L8 C, S if <noselection> { if <select1=lines>
{SOL0}} Paste4

v M, C, S if <noselection> { if <select1=lines>
{SOL0}} Paste4

Function Key Modifiers Command
Green Hills Software, Inc. 223

8. Default key bindings
Fixing errors

File commands

Debugging

Function Key Modifiers Command

Undo last edit L4 n/a Undo

z C Undo

Redo last undo L2 n/a Redo

y C Redo

Load version that changed text r M, C, S ShowLastEdit

Function Editor commands Keystrokes

Close the current editing window Close Ctrl+q

Save the current file Save Ctrl+s

Save the current file under a new name SaveAs Ctrl+Shift+s

Edit the tag the cursor is near in a new window SelectWord;
NewTag

Ctrl+t

Open a dialog box to open a file in the current
window

OpenFile Ctrl+o

L7

Open a dialog box to open a file in a new window LoadFile Ctrl+n

Ctrl+Shift+o

Enter a new line number to go to EditLine Ctrl+g

Cycle through open file buffers forward CyclePush Ctrl+Tab

Cycle through open file buffers backward CyclePushBack Ctrl+Shift+Tab

Save current file, then close window Done Ctrl+Shift+q

Function Command Keystrokes

View the procedure one higher on the call stack UpStack (E +) Ctrl++ (plus)

View the procedure one lower on the call stack DownStack (E -) Ctrl+- (minus)

Help Help (help) F1

Run a program if not started or continue
executing if a program has stopped

Go (C) F5
224 Building and Editing with MULTI 2000

Escape key interrupt
Miscellaneous

Escape key interrupt

Pressing ESC during a while, step or blocking run will cause MULTI to abort
the command and clean up. In the case of a step or blocking run, the process
will be halted and the PC displayed.

Default mouse settings

Key for Mouse Clicks:

LC = Single left click

LLC = Double left click, LLLC = Triple left click, etc.

MC = Single middle click

MMC = Double middle click, MMMC = Triple middle click, etc.

RC = Single right click

Continue to the end of the current subroutine
and stop in the calling routine after returning

Return (cU) F9

Execute single statements and step over
procedure calls

Next (n) F10

Execute single statements and step into
procedure calls

Step (s) F11 (May not work
on some
keyboards.)

Function Editor commands Keystrokes

Flash the line the cursor is on NoSelection; FlashCursor ESC

Enter the next key press sequence
literally

Quote Ctrl+\ (backslash)

Insert a new line InsertNewline;AutoIndent ENTER

Insert a new line at the end of the
current line

EOL; InsertNewLine Ctrl+Shift+r

Repeat the last command RepeatLast Ctrl+. (period)

Transpose previous two characters NoSelection;
ContinueSelection; Left;
Cut2; Left; Paste2; Right

Ctrl+Shift+t

Function Command Keystrokes
Green Hills Software, Inc. 225

8. Default key bindings
RRC = Double right click, RRRC = Triple right click, etc.

Ctrl = Control Key

First (leftmost) mouse button

Second (middle) mouse button
The middle button may not be available, depending on your mouse.

Function Mouse operations

Start new (primary) selection LC

Select text for the primary selection LC+drag

Extend your selection to the mouse pointer Shift+LC

Select the current word LLC

Select the current line LLLC

Select the entire file LLLLC

Select text and copy it to the clipboard Ctrl+LC

Extend your selection to the mouse pointer and copy it to
the clipboard

Ctrl+Shift+LC

Select the current word and copy it to the clipboard Ctrl+LLC

Select the current line and copy it to the clipboard Ctrl+LLLC

Select the entire file and copy it to the clipboard Ctrl+LLLLC

Select text and cut to clipboard Meta+LC+drag

Select the current word and cut to clipboard Meta+LLC

Select the current line and cut to clipboard Meta+LLLC

Function Mouse operations

Make a secondary selection and either delete it or replace it with a
primary selection

MC

Replace a current word with primary selection MMC

Replace a current line with primary selection MMMC

Replace an entire file with primary selection MMMMC

Make a secondary selection and replace with clipboard Ctrl+MC

Replace a current word with clipboard Ctrl+MMC

Replace a current line with the clipboard Ctrl+MMMC
226 Building and Editing with MULTI 2000

Default mouse settings
Third (right-most) mouse button

Makes secondary selection and replace with clipboard Meta+MC

Replaces current word with clipboard Meta+MMC

Replaces current line with clipboard Meta+MMMC

Function Mouse operations

Open the pop-up menu for performing operations on
the object you just clicked

RC

Edit the current tag in current window Meta+RC

Edit the current tag in a new window Meta+RRC

Select a matching parenthesis Shift+RC

Select from the current location to the first matching
parenthesis

Shift+RRC

Open a window for taking notes Ctrl+Shift+RC

Select word, open a tag Meta+RC

Select word, open a tag in new window Meta+RRC

Function Mouse operations
Green Hills Software, Inc. 227

8. Default key bindings
228 Building and Editing with MULTI 2000

Chapter
9

Configuring and
customizing MULTI
This chapter contains:

• Setting configuration options

• Customizing the graphical user interface (GUI)

• Creating custom functionality

• How MULTI uses startup files to configure a session

• Example customizations

9. Configuring and customizing MULTI

ese

ly

e

g

ure
em
MULTI gives you the ability to configure and customize your Integrated Development
Environment (IDE) to fit the way you work most efficiently. You can:

• Set configuration options

• Customize the MULTI graphical user interface (GUI)

• Create custom functionality

Setting configuration options

MULTI provides standard options governing MULTI’s appearance and
behavior that you can edit according to your preferences. You can save th
options in a configuration file (*.cfg), then have MULTI reconfigure itself at
startup based on existing configuration files. Alternatively, you can manual
load a configuration file during a MULTI session to reconfigure your
environment. For more information about specific configuration settings, se
Chapter 10, “Configuration commands”.

Editing configuration options
You can edit MULTI’s configuration options in two ways: using the Config
menu and using the configure command. Both methods write your settings to
the same temporary configuration file; when you edit a setting using the
configure command, your changes are automatically reflected in the Confi
menu dialog boxes.

Be aware that changes that you make are NOT automatically saved for fut
MULTI sessions. You must manually save your configurations if you want th
restored the next time you run MULTI.

Config menu
To make changes to MULTI’s options using the graphical configuration
interface, choose Config > Options....

configure command
If you know the name of the options you want to change, you can use the
configure command from the Debugger Command Pane. The format is:

configure config_item=value
configure config_item:value
configure config_item value
configure ?
230 Building and Editing with MULTI 2000

Setting configuration options

hich

e
 a

or
on

d

or
ave

e
Typing configure ? displays a list of all items you can configure. You can
change individual items by including their name followed by an equal sign
(‘=’), a colon (‘:’), or a space (‘ ’), then the new value. For example:

configure tabsize=9
configure background #ffffff
configure moon: On
configure linenumbermode: Both Numbers
configure prompt: "MULTI> "
configure status.stopped STOPPED
configure key: "Up"@Command=backhistory

Saving configuration options for future MULTI sessions
You must save your option settings if you want to preserve them for future
MULTI sessions. When you save the settings, you are saving a *.cfg file w
can be loaded into MULTI in future session.

• If you want to save the current settings so that they are loaded every tim
you start MULTI, choose Config > Save Configuration As Default. When
user chooses this menu item, the current options are saved in the user
configuration file, which loads each time the same user starts MULTI. F
more information about the user configuration file, see “user configurati
file” on page 238.

• If you want to save the current settings, but don’t want them to be loade
automatically every time you start MULTI, choose Config > Save
Configuration, then save the *.cfg file.

• If you want to save the current settings so that they are always loaded f
every user in a user group, choose Config > Save Configuration, then s
the file as: $MULTI’S_INSTALLATION_DIR/config/multi.cfg. For more
information, see “global configuration file” on page 237.

You can also manually create and edit a *.cfg file.

Loading configuration files
When MULTI starts a session, it automatically configures itself based on th
following configuration files (*.cfg), if they exist:

• global configuration file

• user configuration file

• a configuration file specified on the commands line with the -config option
Green Hills Software, Inc. 231

9. Configuring and customizing MULTI

he

ou

ent,

ions

tate
s to
 Be aware that settings in a configuration file can override global or user
options, and that MULTI also loads script files that can affect configuration
options. For more information about what files MULTI uses at startup, see
“How MULTI uses startup files to configure a session” on page 237.

Loading a configuration file during a session
To load a predefined configuration file during a MULTI session, do one of t
following:

• Choose Config > Load Configuration, then select the configuration file y
want to load.

• In the Debugger Command Pane, use the following command:

configurefile filename

Configuration file format
Configuration files consist of lines, each one of which can be blank, a comm
or a configuration. Blank lines contain only whitespace characters and are
ignored. Comment lines start with a pound sign (#) and are ignored. For
example:

tabsize: 8
background: #ffffff
moon: On
linenumbermode: Both Numbers
prompt: "MULTI> "
status.stopped: STOPPED
key: "Up"@Command=backhistory

Config menu
The following is an overview of the menu items in the Config menu.

Options...
Opens a tabbed dialog that allows you to set most of the configuration opt
that affect visual and behavioral aspects of MULTI.

Save Configuration as Default
Saves the current configuration of MULTI into the user configuration file,
which MULTI reads each time it starts to restore your configuration to the s
it was in when you saved it. MULTI doesn’t ask if you want to save change
your configuration when you quit, so you have to remember to do so.
232 Building and Editing with MULTI 2000

Customizing the graphical user interface (GUI)

p.

 at

e

nd
UI

uted

nus”

or
ting

nds
 the

w
re

on’t
See “user configuration file” on page 238 for the location of the user
configuration file and other files which MULTI reads automatically on startu

See “Configuration file format” on page 232 for the format of configuration
files (.cfg files).

Clear Default Configuration...
Deletes the user configuration file.

Save Configuration...
Like Save Configuration as Default, but lets you choose a file to save the
configuration into. This saved configuration will not be automatically loaded
start up. This can be useful in conjunction with configurefile or Load
Configuration.... (see “Loading a configuration file during a session” on pag
232). For the format of configuration files (.cfg files), see “Configuration file
format” on page 232.

Load Configuration...
Loads a configuration file of your choosing.

Customizing the graphical user interface (GUI)

MULTI allows you to customize buttons, menus, keystroke combinations, a
mouse clicks in the Debugger, Builder, and Editor. You can remove these G
elements, add new GUI elements, or change the commands that are exec
when the GUI element is used. You can also define a button, keystroke
combinations, or mouse click to display a custom menu (see “Opening me
on page 275).

You can define customized GUI elements in two ways:

• Use the Config > Options dialog box to edit a configuration file (*.cfg). F
more information about saving and loading configuration files, see “Set
configuration options” on page 230. If you customize using the Config >
Options dialog box, you may need to refer to the corresponding comma
in Chapter 10, “Configuration commands”for proper syntax; you can use
table below to determine the appropriate command.

• Write a script file that contains customization commands. The table belo
lists the commands you need to execute for each GUI element. Be awa
that the script files that MULTI loads automatically (global, user, and
program script files) are loaded only when the Debugger is active, so d
Green Hills Software, Inc. 233

9. Configuring and customizing MULTI

and
o

nd
and
sing

they
end

g. By
that
put customizations that apply to the Builder and Editor into these startup
script files; use a configuration file instead. For more information about
writing a script, see “Scripting” on page 234.

Once you have defined a configuration file or script file that customizes the
GUI, you can have MULTI load that file. For more information about these
other files that MULTI uses at startup, see “How MULTI uses startup files t
configure a session” on page 237.

Use the following table as a guide to where you need to go to customize a
particular GUI element.

Creating custom functionality

You can customize MULTI to perform complex procedures that automate a
simplify tasks, configure MULTI automatically based on specific situations,
perform tests, including regression tests. You create custom functionality u
scripts and macros.

Scripting
A script is a list of commands in a file that MULTI reads and executes as if
were entered individually in the Debugger Command Pane. They typically
with .rc.

A script can contain both commands and expressions. It can contain if () {} else
{} statements that could, for example, compare a program variable to a
particular value and then perform some action based on that result.

You can use scripts for automating common tasks and for regression testin
writing a command script that executes parts of your program and checks

To customize using a configuration file, choose using commands, see

Debugger buttons Config > Options > Debugger tab >
Configure Debugger Buttons

clearbuttons on page 266
debugbutton on page 266

Editor buttons Config > Options > Editor tab >
Configure Editor Buttons

editbutton on page 268
cleareditbuttons on page 268

menus Config > Options > General tab >
Menus...

menu on page 273
clearmenus on page 273

keystroke
combinations

Config > Options > General tab >
Key Bindings...

keybind on page 269
clearkeys on page 269

mouse clicks Config > Options > General tab >
Mouse Bindings...

mouse on page 275
clearmice on page 275
234 Building and Editing with MULTI 2000

Creating custom functionality

age

sions

ich

ing
s

d

the

o

your program is running correctly, you can rerun this script at a later date, after
making supposedly unrelated changes, to verify that your program still runs the
way you expect. See “Example 1: Connecting to a target from MULTI” on p
239, for an example.

Creating a script
You can create a script automatically by use the > file command (see “Record
and playback commands” in Debugging with MULTI 2000).

You can also manually create a script by putting the commands and expres
into a text file.

Running a script
To run a script, do one of the following:

• Use the < file command (see “Record and playback commands” in
Debugging with MULTI 2000).

• Specify the script file on the command line (see “-rc file” on page 8).

• Customize a button or menu item to execute the script. Define < file as the
command that is executed by the button or menu item.

In addition, you can save a script as one of the following startup scripts, wh
MULTI runs automatically at specific times:

• global script file (see “global script file” on page 238).

• user script file (see “user script file” on page 238).

• program script file (see “program script file” on page 238).

Checking the syntax of your script
Syntax checking checks the validity of your command syntax without caus
target interactions or changing system settings. You can check your script’
syntax using:

• The sc command (see Debugger Commands in the MULTI Debugger
Reference Manual) checks a script to make sure it has correct syntax an
valid object references (references to variables, etc.).

• The bpsyntaxchecking configuration option controls whether MULTI
checks the syntax of the commands associated with breakpoints when
breakpoint is set.

In many debugging environments, it would be tedious to repeatedly run int
syntax errors minutes or hours into a lengthy auto-debugging process. You
Green Hills Software, Inc. 235

9. Configuring and customizing MULTI

set
n-

, in

nd as

t
 con-

er
39 for

st as
 used

ds
could manually find the syntax errors by starting the process, making sure that
all the breakpoints are hit and the associated commands are executed, and
testing all of the script branches, but that can be very time-consuming. A better
option is to use the sc command to check the syntax of your scripts before
putting them into service.

 The sc command has three limitations:

1. It can’t check syntax errors in commands associated with a breakpoint
with the bu command. The bu command sets up-level breakpoints; the co
text of the breakpoint depends on the dynamic execution. For example
the command bu {print varA}, MULTI cannot determine the up-level pro-
cedure until the bu command is actually encountered while running the
script. So, it has no way to check if the variable varA is a valid reference
when syntax checking the script.

2. sc cannot check the syntax errors in the body of a MULTI macro.

3. sc treats all local variable references that are not in a breakpoint comma
errors, as in the following script:

b main#10 {if (argc>2) {print argc+i;} else {print
"Too few arguments"}}
print argc+i;
print global_var;

If the procedure main contains the number variables argc and i, and
global_var is a global variable, sc will pass the first and the third lines. Bu
sc treats the second line as error because MULTI cannot determine the
text in which the print argc+i; command will be performed.

Macros
Macros are available through the define command. The define command is
similar to the C preprocessor directive #define. It gives you the ability to create
a macro inside MULTI. You can then later run that macro from the Debugg
command pane or a script. See “Example 2: Regression testing” on page 2
an example.

Macros can combine a small set of commands into one macro function, ju
#define macros are used in C programs. A macro can return a value and be
in an expression evaluated in the Debugger Command Pane, just as a #define
macro. Although you can probably automate most tasks by using comman
and scripting, you might want to create macros in some circumstances.
236 Building and Editing with MULTI 2000

How MULTI uses startup files to configure a session

f

sed

nce

file
., on
ebug

y),

How MULTI uses startup files to configure a session

Certain configuration files are executed automatically to set up the environment
whenever MULTI starts up, and additional script files are executed whenever
the Debugger starts on a particular program. MULTI parses these files in the
following order (if a file does not exist, it is skipped):

1. global configuration file

2. user configuration file

3. command line configuration file

4. global script file (Debugger environment only)

5. user script file (Debugger environment only)

6. command line script file (Debugger environment only)

7. program script file (Debugger environment only)

Because changes to the same configuration item (see Chapter 10,
“Configuration commands”) can exist in multiple files, the execution order o
such files is important. A configuration change can override the effects of a
previous change.

The global config file, user config file, and command line config file are par
on MULTI startup, whether the Builder comes up first or the Debugger. The
global script file, user script file, and command line script file are executed o
when MULTI’s first Debugger window appears (the first time you start a
Debugger on a program from an invocation of MULTI). The program script
is executed every time that program is loaded into a Debugger window, i.e
every new Debugger window on that program, on every program reload (d
command with no arguments), but not on every program restart.

If you load a new program into an existing Debugger, MULTI will
automatically execute the commands in the new program’s script file (if an
but does not clean up the effects of the old program’s script file (if any).

All Debugger windows launched in a debugging session share the same
Debugger environment. If you launch multiple Debugger windows from the
same MULTI program (for example, the Builder), all the script files of the
corresponding debugged programs will be executed, resulting in the final
Debugger environment.

global configuration file
$MULTI’S_INSTALLATION_DIR/config/multi.cfg
Green Hills Software, Inc. 237

9. Configuring and customizing MULTI

in a

ny
This file is useful in setting up a common environment, required by whole user
groups when debugging any program. If you run the MULTI editor as a
stand-alone executable (not from within MULTI(#) it uses me.cfg instead of
multi.cfg.

user configuration file
$HOME/.ghs/multi.cfg

This file is useful in setting up a common environment, required by a single
user when debugging any program. If you run the MULTI editor as a standalone
executable (as opposed to from within MULTI), it looks for me.cfg instead of
multi.cfg.

command line configuration file
You can specify a configuration file on the MULTI command line with -config
filename or -configure filename. This feature is not available when running
the MULTI editor as a separate executable.

global script file
$MULTI’S_INSTALLATION_DIR/config/multi.rc

This file is useful for commands which need to run once when any person
whole user group starts the Debugger the first time in a debug session.

user script file
$HOME/.ghs/multi.rc

This file is useful for commands which need to run once when debugging a
program by a single user.

command line script file
You can specify a script file in the command to run MULTI with the -rc option,
such as multi my_prog -rc your_script.

program script file
$EXECUTABLE_DIR/executable_name.rc
238 Building and Editing with MULTI 2000

Example customizations
Example customizations

You can customize MULTI to help you work more efficiently. For example, you
can create a script file that defines a new button in the MULTI Debugger which
executes a script that contains a list of Debugger commands and may also
define and make use of a macro. You could also define a Debugger button from
a configuration file. You now have a Debugger button which can perform a
complex task. The following two examples show some automating possibilities.

Example 1: Connecting to a target from MULTI
You can automate the series of repeated steps required to connect to a target.
With the large number of connection methods and the variability of specific
user environments, automating a connection is generally unique to a user.
MULTI lets you define exactly what you want automated.

In this example, the target processor is a PPC860, the target board is Motorola
PPC860ADS, and MULTI is connected to it via an HP Processor Probe. The
program being debugged is foo. The following scripts give you a button in
MULTI that will connect MULTI to the target and initialize it.

File: foo.rc

debugbutton “My Connect” c="< connect.txt" i=connect

File: connect.txt

remote hpserv 192.67.44.234
target rst
target ads setup

Example 2: Regression testing
This regression test consists of a program with a function that calculates Celsius
from a given Fahrenheit.

File: foo.c

#define CONV (5.0/9.0)
extern int mytotal;
int celsius (int fahrenheit) {
 int rval = (int) ((fahrenheit - 32) * CONV);
 return rval;
}
void main (void) {
 int some_degrees;
Green Hills Software, Inc. 239

9. Configuring and customizing MULTI

he

e

ular
 int some_celsius;
 some_celsius = celsius(some_degrees);
}

File: foo.rc

debugbutton RegTest1 c="<bar.txt" i=”letter_a”
define check_celsius(arg) {
 if (some_celsius != arg) {
 print "Failed!"
 printf ("Failed!\n actual:%d\n expected:%d\n",
 some_celsius, arg);
 } else {
 print "Pass";
 printf ("Pass!\n actual:%d\n expected:%d\n",
 some_celsius, arg);
 }
}

File: bar.txt

b main
r
some_degrees = 45;
S
check_celsius(7);

Now, when you start up a MULTI Debugger on foo, MULTI runs the script
foo.rc automatically. foo.rc creates a button (with name RegTest1 and built-in
icon letter_a with the shape of ‘A’) and also defines a macro. You can run t
regression test by clicking the button. Notice that:

• commands such as b are used as if you entered them directly;

• program variables and #define macros are referenced;

• functions that are linked into your program like printf() are callable;

• C-like expressions such as if() {}then{} are evaluated.

This file exists in the same directory as the executable and shares the sam
name as the executable, but with an .rc extension. This file is useful for
commands that need to execute whenever the Debugger starts on a partic
executable.
240 Building and Editing with MULTI 2000

Chapter
10

Configuration
commands
This chapter contains:

• Options dialog box

• Other Configuration options

10. Configuration commands

the
e
ions

ersed
, or
d in
ices

ed
ts

ult

ime a
nd
n,
 the
The previous chapter discussed how you can customize your interface using MULTI’s
configuration options. This chapter describes each configuration option and it includes
default settings, if applicable. The chapter begins with options you can access from th
Config Options window, as well as the command line or a config file. It is followed by opt
which can only be set from the command line or a config file.

The format of each entry in this chapter is:

Name in GUI

Format: (command line name)

Default: (if any)

Explanation of option. In cases where the sense of the config option is rev
depending on whether it is accessed through the GUI, through a config file
the command pane, the default is for the option as it is set in config files an
the command pane, not in the GUI. For config options where there are cho
in a pull-down menu, the command line choice may differ from the choice
presented in the GUI. For this situation, the GUI choice will be listed follow
by the command line choice in parentheses. For example: Use Color Offse
(Offset).

Note: Remember to save your configuration using Config > Save Configuration as Defa
before you quit MULTI, otherwise you will lose your changes.

Options dialog box

This section describes the Options dialog box (when you choose Config >
Options...).

General tab
(Config > Options... > General tab)

Save window positions and sizes
Format: rememberwindowpositions

Default: On

Remembers the position and size of each type of window so that the next t
window of the same type is created, it will be created with the same size a
position. The first window of a given type is positioned in the saved locatio
but subsequent windows of the same type are positioned slightly offset from
242 Building and Editing with MULTI 2000

Options dialog box

I
previous window (although they are still sized to the same size). This takes
effect even across sessions (after you exit and restart the program). For
example, if you resize the Builder window, move it to a specific location on
your screen, and then close the window, the next time a Builder window is
created it will appear in the same exact place. Not all windows are affected by
this option. In particular, data explorer windows are not affected.

Use icons for buttons
Format: iconifiedbuttons

Default: On

Uses icon based buttons instead of textual buttons.

Display close (x) buttons
Format: closebuttonontitlebar

Default: On

Check to have MULTI always provide a close button of its own on windows it
creates. This option will only affect new windows created after you change the
setting, except for Debugger windows which will adjust to the new setting
immediately.

Match exact case in searches
Format: exactcase

Default: Off

Determines the case sensitivity of all text searches in MULTI. This option can
also be set on a per-editor-window basis with the Edit > Find... dialog.

Allow beeping
Format: beep

Default: On

Determines whether MULTI beeps. Enabled, MULTI beeps on various error
conditions, such as a search that doesn’t match anything. Disabled, MULT
never beeps.

Show tooltips
Format: tooltips

Default: On
Green Hills Software, Inc. 243

10. Configuration commands
To enable tooltips, turn this option on. Tooltips are the little explanatory boxes
that pop up when you hover the mouse cursor over something.

Warp pointer
Format: warppointer

Default: Into Dialog

Controls when MULTI warps the mouse pointer across the screen to a
convenient location.

Print command
Format: printcommand

Default: lpr

The UNIX command to print a postscript file. This command will be used
whenever MULTI tries to print anything.

Vertical scroll bar location
Format: scrolllocation

Default: Right

Location of the vertical scroll bar (Left or Right).

Horizontal scroll bar location
Format: scrollhlocation

Default: Bottom

Location of the horizontal scroll bar (Top or Bottom).

Warp pointer values

Value Command Meaning

Never never Never move the mouse pointer; the user has
complete control over its location.

Into Dialog IntoDialogue Warp the mouse pointer onto the default
button of new dialog boxes that appear.

In & Out of Dialog In&OutDialogue Warp the mouse pointer onto the default
button of new dialog boxes that appear, and
then back to where it was when the dialog box
is closed.
244 Building and Editing with MULTI 2000

Options dialog box
Display moon phase
Format: moon

Default: Off

Display the approximate phase of the moon in the nook of the vertical and
horizontal scroll bars instead of the Green Hills Software logo.

Scroll bar width
Format: scrollbarwidth

Default: 18

Width of scroll bars.

Main Font...
Format: font

Default: "-dt-interface user-medium-r-normal-m*-*-*-*-*-*-*-*-*"

Change the main font, used for code and filenames in the Builder. This font
should normally be set to a fixed width font, so that text will line up properly.

Button Font...
Format: buttonfont

Default: "-*-interface system-medium-r-*-*-12-*-*-*-*-*-*-*"

Change the button font, used on buttons, menus, and other GUI controls.

Kanji Font...
Format: kanjifont

Default: (none)

Change the 16-bit font used to display Kanji text.

Menus...
Opens a dialog box which allows editing of the menus in MULTI using the
same format that the menu command takes. See also menu on page 273.

Mouse Bindings...
Openss a dialog box which allows editing of the mouse bindings using the same
format that the mouse command takes. See also mouse on page 275.
Green Hills Software, Inc. 245

10. Configuration commands

 you

you

rom

y so
n the
 help.
Key Bindings...
Opens a dialog box which allows editing of the key bindings using the same
format that the keybind command takes. See also keybind on page 269.

Online Help...
Opens a dialog box which contains additional configuration options for the
online help system. See Online Help Options.

Online Help Options
(Config > Options... > General tab > Online Help)

Help browser
Format: helpbrowser

Default: netscape

Web browser to use for online help. Can also be used to give command line
arguments to the browser. For example, to set the display to a different
machine:

"/home/site/bin/netscape -display othermachine:0.0"

If the browser isn’t in your path, the full path must be provided.

Use current context to resolve help ambiguities
Format: helpcontextdisambiguates

Default: On

Enabled, the online help system will take the current context into account if
ask for help on a help keyword for which there are multiple help entries.
Disabled, the online help system will always ask you to pick which context
are interested in when there is ambiguity.

Browser supports -remote command line option (Netscape)
Format: helpnoremotecommand

Default: Off (On in GUI)

NOTE: The meaning of this option varies depending on whether you set it f
the GUI, or from the command line or a config file.

If enabled in the GUI, the debugger will try to use Netscape’s -remote facilit
that the same browser can be used for multiple help sessions. If disabled i
GUI, then help will always open a new web browser each time you request
246 Building and Editing with MULTI 2000

Options dialog box
Help in new browser window
Format: helpinnewwindow

Default: On

To launch help in a new Netscape window when the browser is already open,
turn this option on. Not applicable when helpnoremotecommand is on.

Use Java (1.1) applet for online help
Format: helpnojava

Default: On

NOTE: This meaning of this option varies depending on whether it is accessed
from the GUI, or using the command line or a config file.

To use Java-based help (with features such as full-text searching), turn this
option on. With this option off, a set of html-only pages will be used.
Java-based help requires a browser that supports Java 1.1 or greater.

Help port number
Format: helpportnumber

Default: 5150

Sets the port number that help will try to bind to. Must be between 1024 and
2^16-1. No effect if helpnojava is on.

Number of ports to scan if bind fails
Format: helpnumportstoscan

Default: 100

If the connection is unsuccessful when connecting on the port specified by
helpportnumber, this many ports after that one are scanned to find a port to bind
to.

Debugger tab
(Config > Options... > Debugger tab)

Ask before halting to set breakpoint
Format: verifyhalt

Default: On
Green Hills Software, Inc. 247

10. Configuration commands

es,

al
ical
ned

 have

d a

 that
ssion
When enabled, the Debugger will ask before halting the process to set a
breakpoint. Disabled, the Debugger will automatically halt, set the breakpoint,
and continue the process without requiring user intervention.

Use procedure relative line number (vs. file relative)
Format: procrelativelines

Default: On

Make Debugger commands such as the e command interpret line numbers as
procedure relative instead of file relative by default. You can obtain the
non-default behavior by using the ’#’ character in the invocation of e.

Display all numbers/characters as hex
Format: hexmode

Default: Off

Display all numeric values as hexadecimal. Disabled, the display format is
chosen based on the "natural" display format for that type. For integral typ
the “natural” display format is decimal.

View unsigned char as integer
Format: viewunsignedcharasint

Default: Off

Make the "natural" display format of unsigned chars the same as the natur
format for ints. This is useful when you want to view byte values as numer
values instead of characters. Disabled, the natural display format for unsig
chars is a literal character, such as ’A’.

Remember breakpoints
Format: rememberbreakpoints

Default: Within Session

Determines whether the Debugger should remember breakpoints that you
set for a program the next time you debug the same program.

Never - the Debugger will clear all breakpoints whenever you load or reloa
program.

Within Session (WithinSession) - the Debugger will remember breakpoints
you have set for a program when you reload the program during a single se
(i.e. until you exit MULTI).
248 Building and Editing with MULTI 2000

Options dialog box
Across Sessions (AcrossSessions) - the Debugger will remember breakpoints
for a program even if you exit and restart MULTI.

Coloring for multiple debuggers
Format: backgroundmode

Default: Offset from current

Controls the background color of debuggers other than the first one. It is useful
to turn this on when using multiple debugger windows if it helps you keep track
of which is which.

Off - All debugger windows use the normal background color (see).

Use Color Offsets (Offset) - The subsequent debuggers use predetermined
offsets from the normal background color. This option is usually the best since it
will pick colors near the current background color, and will keep the text as
legible as possible.

Preset high contrast (Preset) - The subsequent debuggers use a set of pre-chosen
colors.

Line numbers in source pane
Format: linenumbermode

Default: Both Numbers

Controls which line number(s) are displayed on the left side of the Debugger
Source Pane.

No Number (None) - No line numbers are displayed.

File Number (File) - Line numbers in file are displayed.

Proc Number (Proc) - Line numbers in procedure are displayed.

Both Numbers (Both) - Line numbers in both procedures and in files are
displayed.

Position of buttons
Format: debugbuttonsloc

Default: Top

Controls the position of the Debugger buttons

Top - Below the menu bar and above the source pane.

Bottom - Below the command pane and above the status bar.
Green Hills Software, Inc. 249

10. Configuration commands

e
there

).

ve)
.

Command pane height in lines
Format: cwindlines

Default: 10

Number of lines in the Command Pane.

Command pane prompt
Format: prompt

Default: “MULTI> ”

Text which acts as a prompt just before any commands you enter in the
Debugger Command Pane.

Configure Debugger Buttons...
Opens a dialog which allows editing of the debugger buttons using the sam
format that the debugbutton command takes. In the dialog that comes up,
is a list of buttons on the left and a list of available icons on the right.

More Debugger Options...
Opens the More Debugger Options... dialog which contains additional
configuration options for the debugger.

Data Explorer Options

Minimum initial size (WxH)
Format: minviewsize

Default: 40x3

Minimum initial size of a data explorer window (also known as view window
If left blank, MULTI will auto-size the data explorer windows appropriately.

Maximum initial size (WxH)
Format: maxviewsize

Default: 40x42

Maximum initial size of a data explorer window. If the minviewsize (see abo
is greater in either dimension than the maxviewsize, the maxviewsize wins

Initial position (XxY)
Format: firstposition
250 Building and Editing with MULTI 2000

Options dialog box

eft
ows.

ases

s. If
e to

ad
s
the

x
e
a
Default: 0x0

Initial position from the top-left of the screen for a data explorer window,
specified in characters and lines. To give the coordinates in pixels, put a ’p’
after them (e.g. “100x100p”). This only applies to the first data explorer
window; subsequent ones are offset some, avoiding excessive overlap. If l
unspecified (blank), the debugger auto-positions all the data explorer wind

Two color mode
Format: blackwhite

Default: Off

Use only the foreground and background color (except in icons). This incre
usability in low-graphics-bandwidth situations, such as when displaying
MULTI on a different machine.

Load Color Scheme...
Opens a dialog which lets you choose from a list of prepared color scheme
you prefer a fundamentally different look from the default, you can try thes
find the one that’s closest to what you want, then modify the colors.

More Debugger Options...
(Config > Options... > Debugger > More Debugger Options...)

Automatically dereference pointers
Format: derefpointer

Default: On

To have MULTI automatically follow pointers when it encounters them inste
of just printing the pointer value, enable this option. When on, MULTI show
the value of the pointer and what it points to. Disabled, MULTI only shows
value of the pointer.

Check syntax of breakpoints when they are set
Format: bpsyntaxchecking

Default: On

Ensure that the commands being associated with a breakpoint pass synta
checking when the breakpoint is set. With this option on, breakpoints whos
commands fail syntax checking cannot be set. Disabled, a syntax error in
Green Hills Software, Inc. 251

10. Configuration commands

ing

hey
e
ing

e

)
breakpoint command will not be detected by MULTI until the breakpoint is hit
and MULTI tries to execute the breakpoint’s commands.

Continue running script files on error
Format: continueplaybackfileonerror

Default: Off

Ignore errors in script files (.rc files). Disabled, the Debugger will stop runn
a script file if an error is encountered.

"s" (step) and "n" (next) are blocking by default
Format: blockstep

Default: Off

Ensure that no Debugger commands execute until a step or next finishes.
Disabled, scripts that use s or n can appear to behave inconsistently since
subsequent commands can appear to be lost sometimes, when in reality t
just happened before the step or next finished. A step or next can be mad
blocking or non-blocking regardless of the setting of this option by append
an n (for non-blocking) or b (for blocking) to the command.

Show locations of variables
Format: showaddress

Default: On

Print the location of a variable (address in memory or register name) befor
printing the value of the variable when using the print command.

Display typedef type instead of basic type
Format: leavetypedef

Default: Off

Display the typedef’ed name of a type instead of the actual (self-contained
type.

Show position in non-GUI (-nodisplay) mode
Format: showposinnodisplaymode

Default: On

Print the current line after every command in non-GUI mode.
252 Building and Editing with MULTI 2000

Options dialog box

g.

t
der
each

at

Repeat last command on return key in non-GUI (-nodisplay)
mode
Format: disablecarriagereturnrepeat

Default: On (Off in GUI)

The meaning of this command varies according to whether you access it
through the Config menu, through the command line, or through a config file.

To make the return key repeat the last entered command when running in
non-GUI mode, turn this option on in the GUI.

If setting this option from the command line or a config file, turn this option on
to disable repetition of the last command via the return key.

Stepping over C++ exception or longjmp
Format: longjmpstepmode

Default: Ignore/RunAway

When nexting over a subroutine that calls longjmp or does a C++ exception
throw (a call to longjmp internally), the subroutine never returns in the normal
way. This is significant because the debugger uses a temporary breakpoint just
after the normal return to effect the next (this is also true of step if there is no
source available for the subroutine). When longjmp is called, this temporary
breakpoint is bypassed and execution can “run away” instead of just nextin

This configuration option controls how MULTI handles this situation.

Ignore/RunAway (IgnoreRunAway) - Let the code call longjmp without
worrying about the consequences to a next.

Minimize Temp Stops (MinimizeTempStops) - Fix the problem in a way tha
doesn’t cause temporary stops in longjmp as the program runs normally un
the debugger. This option inserts and removes a temporary breakpoint for
next over a subroutine.

Maximize Step Speed (MaximizeStepSpeed) - Fix the problem in a way th
minimizes the time it takes to do a next. This option leaves a breakpoint in
longjmp, and will result in a temporary stop if longjmp is called when the
program is running normally under the debugger.

Command pane buffer size in bytes
Format: ctextsize

Default: 524288
Green Hills Software, Inc. 253

10. Configuration commands

for
l be

, you
Maximum number of bytes of memory used for the command pane scroll-back
buffer. Increase this value if you keep scrolling back only to find that the thing
you are interested in has scrolled out of the top of the buffer.

Seconds to wait for debug server before timing out
Format: servertimeout

Default: 15

Number of seconds to wait for the debug server before assuming it is dead and
disconnecting from it. A number that is too low will sometimes mistakenly
disconnect from the debug server, and is not recommended. A fairly high
number can be useful for very slow debug servers or debug servers that are
being debugged. A high number can be frustrating if the debug server actually
does die from time to time, because it keeps the debugger from accepting input
while it’s waiting to time out.

Editor tab
(Config > Options... > Editor tab)

Reuse editor windows
Format:openfilesinnewbuffers

Default: off (files are opened in new editor windows)

Specifies whether a buffer in an existing editor window should be created
files opened from the builder and debugger. If off, a new editor window wil
created for each file edited.

Create backup files when saving
Format: editorbackups

Default: Off

Automatically create a backup of the on-disk version of a file before saving
over it. The backup file has the same name as the original file, with a "~"
appended to it.

Drag and drop text editing
Format: draganddrop

Default: On

Check to enable drag and drop text editing. After you select a block of text
can click on it and drag the mouse to move the text to another location.
254 Building and Editing with MULTI 2000

Options dialog box
Tab size
Format: tabsize

Default: 8

Number of spaces in a tab when displayed in the Editor.

Indent size
Format: editindent

Default: 4

Number of spaces in an indent for languages other than Ada. Used with
indentation editor commands. Ada has its own indent setting.

Ctrl+cursor jump size
Format: editsomesize

Default: 5

Multiplier used by UpSome, DownSome, LeftSome, and RightSome editor
commands. These are bound to the Ctrl+cursor keys by default. So pressing
Ctrl+Left will move the cursor left by 5 characters by default.

Configure Editor Buttons...
Opens a dialog which allows editing of the editor buttons using the same format
that the editbutton command takes. In the dialog that comes up, there is a list of
buttons on the left and a list of available icons on the right.

More Editor Options...
Opens the More Editor Options... dialog which contains additional
configuration options for the editor.

Auto Indent Options

Implicit auto indent
Format: aiimplicitindent

Default: On

Check to turn on the Editor command AutoIndentImplicit. This will cause the
editor to auto indent your file as you type, as opposed to manually invoking the
auto indent. Disabled, AutoIndentImplicit has no effect.
Green Hills Software, Inc. 255

10. Configuration commands

just

sert

ake

 * in
Implicit auto indent in comments
Format: aiimplicitindentincomments

Default: On

If aiimplicitindent is on, then check to enable AutoIndentImplicit within
comments. Disabled, AutoIndentImplicit has no effect in comments.

Switch bodies indented two instead of one
Format: aiswitchintwo

Default: On

C - Switch bodies are indented two levels so that case labels are indented one
level in from the switch. Disabled, the case labels are even with the switch.

Ada - Select bodies are indented two levels so that when labels are indented one
level in from the select. Disabled, the when labels are even with the select.

Indent comments when indenting multiple lines
Format: aitouchcomments

Default: Off

Auto indent comments even when auto indenting multiple lines. If Disabled,
then comments aren’t modified by AutoIndent unless AutoIndent is run on
one line.

Comments stick flush left
Format: aicommentsstayflushleft

Default: On

Check to keep comments from indenting away from the left margin. If you
want to indent a comment that is stuck to the left margin while this is on, in
a space just before the comment to get it unstuck, then use AutoIndent.

C chars aligned like ’*’ in comments
Format: aicharslikestarincomment

Default: "-"

To have characters other than ’*’ line up in comments as if they were ’*’, m
them part of this string. For example, this allows correct auto indention of
comments which have a column of -’s down the left side, lined up under the
the /*.
256 Building and Editing with MULTI 2000

Options dialog box

C paren indent mode, Ada paren mode
Format: aiparenindentmode

Default: IndentInTwo

Format: aiadaparenindentmode

Default: EvenWithParen

Controls how the editor indents a line if it starts within an open paren/close
paren pair in the corresponding language.

EvenWithParen - If there is a non-whitespace character between the open paren
and the end of its line, then the lines enclosed in () start at the same column as
that character. Otherwise, the lines enclosed in () start in the column just after
the open paren.

IndentInTwo - The lines enclosed in () start two indent levels in from the open
paren’s line.

More Editor Options...
(Config > Options... > Editor > More Editor Options...)

Print 2 columns in landscape
Format: editprint2column

Default: On

Print files in landscape mode, with two pages per sheet.

Temp file directory
Format: tempfiledir

Default: (blank, looks for the TMPDIR, TEMP environment vars, resorts to
/tmp)

Directory used for temporary editor files.

Initial width in characters
Format: editwidth

Default: 80
Green Hills Software, Inc. 257

10. Configuration commands

on
ave

not
ging

s out
 the

 can

pen
any
Initial width (in characters) of the internal MULTI editor. This option is only
useful when the rememberwindowpositions option is off. See also “Save
window positions and sizes” on page 242.

Initial height in characters
Format: editheight

Default: 32

Initial height (in characters, i.e. lines) of the internal MULTI editor. This opti
is only useful when the rememberwindowpositions option is off. See also “S
window positions and sizes” on page 242.

Selection margin width in pixels
Format: selectionmarginwidth

Default: 13

Width of the left margin of the editor. If the width is 0, the left margin does
appear, and text can no longer be selected by line using the margin. Chan
the selection margin width does not affect already open editors, only new
editors.

Generate auto-recover file every ... seconds
Format: editincrfrequency

Default: 120

The editor creates auto-recover files every so often, in case the power goe
or the editor crashes. If this happens, the next time you open the editor on
file it will give you the option to restore to the auto-recover file. This option
sets the frequency at which the editor generates these auto-recover files.

Per File Settings Defaults
The settings in this section apply to files when the files are first opened. You
use View > Per File Settings... in the Editor to modify these settings on a
per-file basis. However, changes to these settings will also affect already o
files, so you have to make the changes on a per-file basis after you make
desired changes to the defaults.

Spaces per indent for Ada
Format: adaindentsize

Default: 3
258 Building and Editing with MULTI 2000

Options dialog box

ny

 this

al
Number of spaces in an indent for Ada files.

Ada continuation line indent
Format: adacontinuationsize

Default: 2

Number of spaces in the indent for a continuation line in Ada files.

Word wrap
Format: wordwrap

Default: Off

Automatically split lines on word boundaries as you type.

Wrap column
Format: wrapcolumn

Default: 79

When wordwrap is on, this is the last column that will be used before wrapping
to the next line unless a single word is so long that it can’t fit within this ma
columns, in which case it will be put on a line by itself.

Wrap indent offset
Format: wrapindent

Default: 2

When a word wrap to the next line occurs, the line is automatically indented
many extra spaces from where it would normally appear.

Alternate Editor Options
Allows you to use a third-party editor in MULTI.

Use Alternate editor

Format: usealternateeditor

Default: Off

When enabled, MULTI opens an external editor instead of using the intern
one.
Green Hills Software, Inc. 259

10. Configuration commands

n

f the
ed
e 2
n

st
se

ugh

ntrol
Use xterm for alternate editor
Format: usextermforalternateeditor

Default: Off

When enabled, MULTI runs the alternate editor within a newly created xterm.

Executable
Format: editor

Default: me

Name of the alternate editor executable, with full path if the directory isn’t i
your path.

Command line arguments
Format: editorlaunch

Default: (blank)

Command line arguments for the alternate editor, not including the name o
editor itself. There are three special strings in editorlaunch that get replac
with useful information for the alternate editor. “Third party editors” on pag
contains the required configuration of these three strings for some commo
editors.

%file0 - Replaced with the first file MULTI is opening.

%line - Replaced by the line number the first file should be opened to.

%files - Replaced by a space separated list of all the files other than the fir
one. There is no mechanism for conveying what line numbers to open the
files to.

Version Control tab
(Config > Options... > Version Control tab)

Use version control
Format: dontusevc

Default: Off (On in GUI)

The meaning of this option varies depending on whether you access it thro
the Config menu or through the command line or a config file.

If you are accessing this option from the GUI, check it to enable version co
awareness.
260 Building and Editing with MULTI 2000

Options dialog box

uires
 an
If you are setting this option from the command line or a config file, turn this
option on to disable version control awareness.

Automatic checkout
Format: preventautocheckout

Default: Off (On in GUI)

The meaning of this command varies depending on whether you access it

• through the Config menu

• through the command line

• through a config file

If you are accessing this option from the GUI, check it to enable automatic
checkout of files when you start to edit them.

If you are accessing this option via the command line or a config file, turn this
option on to prevent automatic checkout of files when you try to begin editing
them.

Version control system
Format: versioncontroltype

Default: MVC

Controls which version control system MULTI uses.

MVC - MULTI Version Control. Green Hills Software provides this version
control system as part of MULTI.

ClearCase

RCS

Command
Format: vc_command

Default: (varies per versioncontroltype)

Command prepended to all the other version control configuration strings. For
instance, if vc_command is "mvc", and vc_checkout is "co", then to check a file
out, MULTI would issue "mvc co filename". It is ok to leave this blank if it’s
not required.

The version control configuration strings are provided in case your site req
a slightly different syntax. Attempting to set up MULTI to automatically use
Green Hills Software, Inc. 261

10. Configuration commands

,

ents
arbitrary unsupported version control system by modifying the settings for, say,
ClearCase, may or may not be possible. If you are so inclined, the best hope for
success is probably with ClearCase selected. Any changes to the defaults for a
system may break support for that version control system (until you restore that
system to the default settings).

Under VC
Format: vc_undervc

MULTI uses this command to determine if a file is under version control. Only
used with ClearCase. If the output of this command begins with the name of the
file being checked, the file is considered to be under version control.

Check out
Format: vc_co

Command to check out a file from version control for editing.

Get
Format: vc_get

Only used for MVC and RCS. Command to get a read only copy of the latest
version of a file.

Un check out
Format: vc_unco

Command to undo the effects of a check out. Reverts to the latest version of the
file in the repository and restores the file’s checked-in status (if applicable)
discarding any edits since the check out.

Check in
Format: vc_ci

Command to check in a file as the latest version.

Check in, no comments
Format: vc_cinocomments

Command to check in a file as the latest version without entering any comm
into the version control logs.
262 Building and Editing with MULTI 2000

Options dialog box
Create
Format: vc_create

Command to put a file under version control for the first time (i.e. have version
control start managing a file).

Show history
Format: vc_show

Command to output a list of versions a file has gone through, with optional
comments or information about each.

Who
Format: vc_who

Only used for ClearCase. Command to check which user has this file checked
out. Output of this command is the username who has this file checked out.

Previous version
Format: vc_prevver

Only used for ClearCase. Used to get version number for the previous version
of a file.

Restore Defaults for This VC System
Resets the version control configuration strings to their defaults for this system.
This also happens when you switch to another version control system and back.

Colors tab
(Config > Options... > Colors tab)

Colors tab: Global Colors

Background
background: #ffffff

Background color of "user areas" such as the background behind code or text
that you enter.

Foreground
foreground: #000000

Default color of text.
Green Hills Software, Inc. 263

10. Configuration commands
Control Area
controlcolor: #c0c0c0

Background color of "control areas" such as menu bars.

Selection
select: #000080

Background color of text selections (foreground color chosen automatically).

Builder File Coloring check box
Format: colorbuilder

Default: On

Check to enable coloring the files in the Builder based on their type (code, build
file, etc.).

Color of the corresponding type of file in the Builder.

Colors tab: Debugger Colors

Assembly
Format: assembly

Builder File Coloring settings

GUI Name Command Hex RGB Default

NoBuild nobuild #b00000

Program program #900010

SubProject subprogram #c80020

Source source #00b010

Header header #007010

Documentation documentation #a0a0a0

Library Build singlelibrary #000080

Object object #000050

Library library #004580

Script script #808000

Other other #808080
264 Building and Editing with MULTI 2000

Options dialog box
Default: #0000ff

Color of interlaced assembly code in the Debugger.

Break Dot
Format: bdotcolor

Default: #00cd00

Color of break dots in the Debugger; the dots that show where a breakpoint
could go.

Status
Format: breakcolor

Default: #ff0000

Color of the program status ("STOPPED", "RUNNING", etc.).

Context Arrow
Format: pointercolor

Default: #0000ff

Color of the context arrow, which indicates which context to use for commands
in the Debugger.

Colors tab: Syntax Coloring
Format: colorsyntax

Default: On

Color code according to its syntax.

Syntax Color settings

GUI Name Command Hex RGB Default

Comments comment #008000

Keywords keyword #0000ff

Dead Code deadcode #808080

Numbers number #e000e0

Strings string #800000

Characters character #c000c0
Green Hills Software, Inc. 265

10. Configuration commands
Color of corresponding item in source code. Dead code refers to code enclosed
in #if 0 ... #endif.

Color C++ comments in C
Format: cppcommentsinc

Default: On

Color C++ style comments (//) as comments, even if the source file is a C file.

Other Configuration options

This section describes configuration options not accessible from the Config
menu.

NOTE: These configuration options are only available from the Debugger
Command Pane using the Debugger command configure or from a Config file.

clearbuttons
Format: clearbuttons

Removes all the buttons so they can be created from scratch with debugbutton.

debugbutton
Format: debugbutton [num] [name] [[c=]command] [[i=]iconname]
[[h=]helpstring] [[t=]tooltip]

This command adds a new icon button to the debugger toolbar.

command, iconname, helpstring, and tooltip are all either single words, or
quoted strings. Quoted string are of the form:

“This is a quoted string.”
266 Building and Editing with MULTI 2000

Other Configuration options

w
ap

 are
o
, and

 list

t.
ding
There are several forms of the command:

command is the command executed when the button is pressed. You may use
semicolons in the command to execute multiple commands. For example:

iconname is the name of the icon associated with the button. If not specified,
then the first letter of the command name will be used as the icon for the button.

iconname may either be the name of one of MULTI’s built-in icons (see belo
for how to obtain a list of these names), or it may be the filename of a bitm
you have created yourself. If the filename is not an absolute filename, it is
assumed to be relative to the directory where MULTI is installed.

If you create your own bitmap file, it must end in a .bmp extension and must be
in the uncompressed 16-color Windows Bitmap format. Other color depths
not supported, and compressed bitmaps are not supported. An easy way t
create such bitmaps is to use the Paint accessory under Microsoft Windows
make sure you choose “16 Color Bitmap” in the “Save as type” drop-down
box of the “Save As” dialog.

The built-in icons in MULTI are 20 pixels wide by 20 pixels tall, so your
buttons will look best if you also use this size for your custom bitmaps.

By default, the color light gray in your custom icons will become transparen
You can specify additional color translations for your custom icon by appen
a string of the form “oldcolor1=newcolor1&oldcolor2=newcolor2” with a
question mark to the end of your bitmap filename. For example:

Form Meaning

debugbutton By itself, the command lists all the defined buttons. Note
that the quit button and the spacer before it are never
listed. Those buttons are special and can not be modified
or deleted.

debugbutton 0 Deletes all buttons (except the quit button and its spacer).

debugbutton num Deletes the button numbered num.

debugbutton num name [...] Replaces the button numbered num
debugbutton name Deletes the button named name
debugbutton name [...] If a button named name exists, the button is replaced.

Otherwise a new button named name is added to the end
of the debugger toolbar.

debugbutton printxy c=”print x;print y”

debugbutton Hello c=“echo hello”
i=“/home/user/hello.bmp?black=fg&dkgray=shadow&white=highlight” h=“Say
hello”
Green Hills Software, Inc. 267

10. Configuration commands

e
oltip.

>

as
ad.
You can use the following values for oldcolor and newcolor:

helpstring is the help text that appears at the bottom of the window when the
mouse moves over the button.

tooltip is the tooltip text that appears when you move your mouse over the
button and wait. If you do not specify a tooltip, the name of the button will be
used.

button
This command is deprecated. Use debugbutton. See debugbutton on page
266. 1.8.9 MULTI users upgrading to MULTI 2000 should note that the syntax
for the debugbutton command is different than it was for the button command.

cleareditbuttons
Removes all the editor buttons so they can be created from scratch with
editbutton.

editbutton
Format: editbutton ButtonName c=“commands” [i=iconname] [h=“Status bar
string[@@tooltip string]”]

Creates a new editor button. For additional information about creating new
buttons, see debugbutton on page 266.

ButtonName - Name of the button. If iconifiedbuttons is off, this is the nam
that goes on the button. If no tooltip string is provided, this becomes the to

c - Commands the button executes when pressed.

i - Name of icon to use on the button if iconifiedbuttons is on. (See Config
Options... > Editor > Configure Editor Buttons... for a list of icons with
pictures.) Alternatively, you can specify your own 16-color bitmap (*.bmp)
the icon. If no icon is specified, the help icon (question mark) is used inste

Oldcolor (R,G,B values) Possible values for newcolor

white (255,255,255) white (default)
highlight

ltgray (192,192,192) ltgray
transparent (default)

dkgray (128,128,128) dkgray (default)
shadow

black (0,0,0) black (default)
fg
268 Building and Editing with MULTI 2000

Other Configuration options

.

 the
hift)
nd

all

the

he
h - Status bar string which shows up as soon as the mouse is over the button,
and tooltip string which shows up after the mouse hovers over the button for a
short time. The status bar string and tooltip string are separated by ‘@@’.

clearkeys
Removes all keybindings so they can be created from scratch with keybind

keybind
Format: keybind

Format: keybind location

Format: keybind key[|modifiers][@location][=command]

Assigns an action to a key pressed while holding down modifiers while the
cursor is in a specified area of a window. In other words, if the mouse is in
specified location (area of a window) and the specified modifiers (such as s
are held down, and the specified key is pressed, then the specified comma
will execute. The syntax for this command is essentially the same as the mouse
command, except keybind does not use a click count.

To print the current key press setting for a location, type keybind followed by
the location (see below for valid locations). If no location is specified, then
settings for the source pane are displayed.

key is a single ASCII (or ISO8859) character or a quoted string containing
name of one of the keys on the keyboard, such as "BACKSPACE" or “F3” . A
list of the acceptable key names are obtainable by typing:

keybind "????"

Characters needing more than one key press (besides the Shift, Control, and
Meta keys) to generate cannot be used. To specify a double quote, put it inside
double quotes: """ (that is three double quotes in a row).

modifier is any combination of Shift, Meta, and Control. If a modifier is
specified, then the command is only run if that modifier is depressed at the time
the key is pressed. If more than one modifier is specified, they should be
separated from each other and from key by vertical bars ‘|’. The BACKSPACE
key is different from h|Control even though their ASCII representations are t
same.
Green Hills Software, Inc. 269

10. Configuration commands
A location may be one of the following:

Location Meaning

All Any of MULTI’s windows, except the Editor.

InputWindow Any MULTI input window, such as the command pane or a
remote or I/O window.

OutputWindow Any output only window, such as the source pane or a monitor
window.

View Anywhere in a view (data explorer) window, excluding the title
bar.

Title Anywhere in a title bar of a data explorer or monitor window.

Command Anywhere in the command pane or source pane.

Remote Anywhere in a ‘pass through’ or I/O window.

Monitor Anywhere in a monitor window, excluding the title bar.

Labels Displays the field names in the data explorer’s pane.

Values Contains the field values in the data explorer’s pane.

Name Region of the title bar displaying the name of the expression in
the data explorer, or a monitor window command.

Type Region of the title bar displaying the type of expression in a
data explorer.

Freeze Region indicating whether the window is frozen.

Close Close box in the title bar.

Pop Near the pop arrow on the title bar.

Help Near the question mark on the title bar.

Menu Inverted triangle in the data explorer title bars.

Dup Duplication button, if togglebuttons is set.

Shrink Shrink button, if togglebuttons is set.

ScrollBar Entire scrollbar.

UpArrow Arrow pointing up at the top of the scrollbar.

DownArrow Arrow pointing down at the bottom of scrollbar.

ScrollArea Scrollbar between the arrows.

Thumb Grey region in scrollbar middle.
270 Building and Editing with MULTI 2000

Other Configuration options
 If location is omitted, the default is Command.

These locations are arranged hierarchically with:

AboveThumb Blank area above Thumb and below arrow.

BelowThumb Blank area below Thumb and above arrow.

Edit MULTI Editor.

Locations hierarchy

Location Composed of:

All InputWindow, OutputWindow, View, and
Title

InputWindow Command and Remote

OutputWindow Source and Monitor

View Labels and Values

Title Name, Type, Freeze, Close, Pop, Help, and
sometimes Dup and Shrink.

ScrollBar UpArrow, DownArrow, and ScrollArea

ScrollArea Thumb, AboveThumb, and BelowThumb

Location Meaning
Green Hills Software, Inc. 271

10. Configuration commands
command is any MULTI command. The text it specifies may include any of the
following special sequences. These sequences are not valid for key binding in
the Editor:

If the key[|modifier]@location of a keybind input matches one previously
defined, then the new definition replaces the old. If no command is specified in
the new definition, then the new definition deletes the old.

When a key is depressed in a window, MULTI searches for keybind actions that
match. There may be more than one, in which case MULTI chooses the one
whose location is most specific. If there are still several, then MULTI chooses
one arbitrarily.

Example
With this command, MULTI evaluates and prints the selection when the first
function key is pressed in the source window.

keybind “F1”=print %s

With this command, the Debugger opens a data explorer which displays the
current selection when the first function key is pressed anywhere while the Ctrl
key is depressed.

keybind “F1”|Control@All= view %s

Sequences for command

Sequence Meaning

%s Replaced by the current selection.

%p Replaced by the current selection if it exists,
otherwise MULTI prompts for input.

%P Always prompts for input.

%w Replaced by a special number identifying the
window to MULTI.

%x Replaced by the x location in the window
when pressing the button.

%y Replaced by the y location in the window.

%k Replaced by the ASCII expansion of the key.
For the key labeled a, this is "a."

%m Replaced by Press.

%% Replaced by %.
272 Building and Editing with MULTI 2000

Other Configuration options

With these commands, MULTI scrolls the window when the up or down arrow
is depressed.

keybind “Up”@All= (%w) scrollcommand 1l
keybind “Down”@All= (%w) scrollcommand -1l

With this command, MULTI single steps the program when Ctrl+s is pressed in
the source window.

keybind s|Control=S

The following is a special case: Any key bound to the command HELP at
location All opens context sensitive help.

keybind ?|Control@All=HELP

clearmenus
Removes all menus so they can be created from scratch using menu.

menu
Format: menu name {{label cmd}}
menu name
menu

Defines a menu to be attached to a menu bar, MULTI button, mouse button, or
key from the keyboard. All menus have a name, by which they are run, and a
body which lists labels and associated commands. When a menu is opened, the
menu name at the top of the menu is shown with all the labels beneath.
Selecting a label causes the associated command to execute.

To choose a menu item, do one of the following:

• Click it.

• Use the arrow keys to highlight it and press Enter.

If one of the characters in a menu label is preceded with an ampersand (&), it
will be underlined, and if the user types that character while the menu is up, the
command associated with that label will be executed just as if the user had
clicked on the label.

MULTI comes with a set of predefined menus for the main MULTI window, as
well as for the Editor. (See “Debugger menus” in Debugging with MULTI 2000
and “Editor menus” on page 164)
Green Hills Software, Inc. 273

10. Configuration commands
If you enter menu by itself, a list of all defined menu names is printed. Entering
menu followed by a menu name displays the body of that menu. (This is case
sensitive.)

To create a menu, enter menu followed by the name you give it, followed by the
set of labels and commands. The entire body of the menu must be enclosed in
curly braces {}, as well as curly braces for each line. The first entry of each line
is the label that appears in the menu left justified. The second entry is the
command corresponding to the label. (Each of these lines must be contained in
its own set of curly braces.) The command portion can contain its own subset of
curly braces, such as using the if...else command, as long as they are paired
correctly. If the command is a single command (not a list of commands), and
that command has a key binding associated with it, then that key binding will be
displayed (right justified) next to the label.

The following example creates a menu named RunCmds:

menu RunCmds {
{Step s}
{Next S}
{Run r}
{Go c}
{Return cU}

}
Menus can contain other menus, for example:

menu Main {
{RunCmds -> RunCmds}
{Up {E 1}}
{Down {E -1}}
{ToPC E}

Invoking this menu and moving the cursor to the right edge of the RunCmds
entry calls up the submenu RunCmds.

The following example allows you to customize your own menu and bind it to a
mouse click . Typing the following in the Debugger command pane allows you
to use your customized menu in the Debugger with a click.

menu MyMenu {
{Go C}
{Step s}
{Next S}
}

mouse mouse*Press1@All=->MyMenu

To replace a menu definition, type a new menu command with the same name.
274 Building and Editing with MULTI 2000

Other Configuration options

ith

rints
alid
se

fiers,
 as

e five
or
To edit existing menus, choose Config > Options... > General tab > Menus....
You can also use this dialog box to add or delete menus. See also “Menus...” on
page 245.

Opening menus
You can open a menu by typing -> directly before their name in the Debugger
command pane. For example, to open the menu Main from the command
window, enter:

->Main

To bind a menu to a Debugger button, type:

debugbutton RunCmds ->RunCmds

To bind a menu to a mouse button, enter:

mouse mouse3*Press1@All=->RunCmds
(where mouse3 is the rightmost mouse button)

clearmice
Removes all mouse button bindings so they can be created from scratch w
mouse.

mouse
Format: mouse location

Format: mouse mouse button_num[AtOnce][*click click_num] [|modifiers]
[@location] [=command]

Defines the function of the mouse buttons. The first form of the command p
the current mouse commands in the given location (see the list below for v
locations), and the second form of the command changes the way the mou
buttons work.

To execute the desired command, you must indicate a combination of modi
button number, number of clicks, and a location for the command to occur,
explained below.

mouse button_num may either be the keyword Any, meaning any mouse
button, or the word mouse followed by some of the digits between 1 and 5,
meaning those mouse buttons whose numbers are listed. Not all mice hav
buttons, so any commands assigned to non-existent buttons are not run. F
example, to set a command for buttons 1 or 3, use mouse13.
Green Hills Software, Inc. 275

10. Configuration commands

e

m
f
The click count option, *click click_num, may be omitted, in which case it
defaults to one click. However if present, it specifies the number of times the
mouse button must be depressed before the command is executed. click_num
may be a number between 1 and 5. The keyword click may be replaced by press
in which case the command executes on the button press, rather than on the
release. Or it may be either, in which case the command executes on both the
press and release.

The keyword click is also followed by the text (AtOnce). This means the
command bound to it executes immediately rather than pausing briefly to see if
this is part of a click sequence. It has the unfortunate side effect that this
command is always done immediately, even if followed by the second click of a
double click. This is acceptable for many options such as the standard selection
clicks: one click sets the insertion point, two clicks select the current word,
three the line, and so forth. The downside to not using AtOnce is that there is a
delay when invoking single-click commands (while it’s waiting to see if ther
will be the second click of a double click, etc.).

modifiers may be one of the keywords Shift, Meta, or Control. All modifiers
are preceded by a vertical bar “|”. This separates them from each other and fro
mousebutton_num. If a modifier is specified, then the command is only run i
that modifier is depressed. If more than one modifier is specified, then all
modifiers listed must be depressed simultaneously.

A location is one of the following:

Location Meaning

All Any of MULTI’s windows.

InputWindow Any MULTI input window, such as the command pane or a
remote pass through window.

OutputWindow Any output only window, such as the source pane or a monitor
window.

View Anywhere in a view (data explorer) window, excluding the title
bar.

Title Anywhere in a title bar of a data explorer or monitor window.

Command Anywhere in the command pane.

Remote Anywhere in a pass through or I/O window.

Source Anywhere in the source pane.

Monitor Anywhere in a monitor window, excluding the title bar.

Labels In the pane of a data explorer displaying the field names.
276 Building and Editing with MULTI 2000

Other Configuration options
If location is omitted, then Source is the default.

These locations are arranged hierarchically with:

Values In the pane of a data explorer containing the field names.

Name Region of the title bar displaying the name of the expression in
the data explorer, or the command of a monitor window.

Type Region of the title bar displaying the type of expression in a
data explorer.

Freeze Region indicating whether the window is frozen.

Close Close box in the title bar.

Pop Near the pop arrow on the title bar.

Help Near the question mark on the title bar.

Dup Duplication buton, if togglebuttons are set.

Shrink Shrink button, if togglebuttons are set.

ScrollBar Entire scrollbar.

Menu On the inverted triangle in data explorer title bars.

Edit MULTI Editor.

Locations hierarchy

Location Composed of:

All InputWindow, OutputWindow, View, and
Title

InputWindow Command and Remote

OutputWindow Source and Monitor

View Labels and Values

Title Name, Type, Freeze, Close, Pop, Help, and
sometimes Dup and Shrink.

Location Meaning
Green Hills Software, Inc. 277

10. Configuration commands
command is any MULTI command. The text specified may include any of the
following special sequences. These sequences are not valid when binding
commands in the Editor:

If the mousebutton_num[|modifiers>][@location] of a mouse input matches
one previously defined, then the new definition replaces the old one. If no
command is specified, then the new definition deletes the old.

When the mouse is clicked in a window, MULTI searches its list of mouse
actions to match. If there is more than one, the following procedure determines
which one to choose: First, the one whose location is the most specific. If there
are still several, then the one which accepts the fewest number of buttons is
chosen. If there are still several, then MULTI chooses one arbitrarily.

Example
mouse mouse1=print %s

The Debugger evaluates and prints the selection when you click the left mouse
button once in the source window.

mouse mouse1*Click2@All=view %s

The Debugger opens a data explorer displaying the current selection when you
double-click the left mouse button anywhere.

Sequences for commands

Sequence Meaning

%s Replaced by the current selection.

%p Replaced by the current selection if it exists,
otherwise MULTI prompts for input.

%P Always prompts for input.

%w Replaced by a special number identifying the
window to MULTI.

%x Replaced by the x location in the window
when pressing the button.

%y Replaced by the y location in the window.

%k Replaced by the null string.

%m Replaced by Press or Release, as
appropriate.

%% Replaced by %.
278 Building and Editing with MULTI 2000

Other Configuration options
configurefile
configure
Formats: configurefile filename
configure filename

Used in a config file (.cfg file), these both read filename in as a .cfg file. Then
processing of the original .cfg file continues as normal. configure used in this
capacity is deprecated. Use configurefile instead.

grabtimeout
Format: grabtimeout

Default: -1

If time is less than zero, then MULTI does not check to see if there are any
outstanding grabs on the X server each time it stops. Otherwise it checks, and if
both the keyboard and the mouse are grabbed, waits time is seconds before
aborting the grab and debugging. This is useful for debugging X-windows
programs that are broken and keep grabbing the keyboard and mouse, making it
impossible to issue commands to the debugger.

clickpause
Format: clickpause

Default: 4

Specifies the length of time, in tenths of a second, that MULTI waits between
button presses to get a double or triple click. For example, if time is four, and
two clicks come within four tenths of a second of one another, and they are on
the same button in the same place, then they are treated as a single double-click.
On the other hand, if they come with more than four tenths of a second between
them, then they are treated as two single-clicks. If MULTI determines there is
no possible double click command, then it does not wait.

viewdef (Data Explorer Window Format)
Format: viewdef

Default: formats

Default setting: ShowName, ExpandValue, ReEvalContext, ShowChanges
Green Hills Software, Inc. 279

10. Configuration commands

” in

. The

 off,
This resource sets which items in the format menu of the data explorer windows
are set by default. formats is a list containing the following keywords:

For more information on the format menu, see “Data explorer format menu
Debugging with MULTI 2000.

geometry
Format: geometry

Default: widthxheight+x_offset+y_offset

Default setting: Depends on screen size and varies from system to system
width is approximately wide enough to display 80 characters on a line.

Sets the size and position of the Debugger window. The offset values are
optional. The italicized fields are specified in pixels. The “+” field may also be
“ -” to specify relative to lower and right edges. For example:

geometry 500x700+0+0

usewmpositioning

Format: usewmpositioning [on | off]

Default: Off

Allows the window manager to decide where all windows should go. When
MULTI tries to be a bit smarter about where windows should go.

iconify
Format: iconify

Default: Off

Default data explorer formats

ShowAddress ShowAllFields

ShowName ShowBases

Alternate ReEvaluate

OnlyAlternate ReEvalInGlobal

Hex ReEvalInContext

Oct UseAddress

ExpandValue ShowChanges
280 Building and Editing with MULTI 2000

Other Configuration options
Specifies whether the next MULTI window will come up iconified. state may
be on (iconify) or off (do not iconify). This option is reset to off when the icon
for the iconified window appears.

ignoremotion
Format: ignoremotion

Default: 4

Specifies the number of pixels of movement in the mouse that MULTI ignores
during the time of pressing and releasing a mouse button. If the mouse is moved
by more than the value of pixels between press and release, then the mouse click
is no longer treated as a single click.

linesnonoverlapped
Format: linesnonoverlapped

Default: 4

By default, when the Debugger opens a data explorer or monitor window using
its own positioning algorithm, it tries to stack it on top of previous windows. To
save screen space, it overlaps the new data explorer or monitor window on top
of the old one. This obscures the bottom of the previous window. Set
linesnonoverlapped to be the number of lines of the old window that should
still be visible after the new window is placed on top of it.

editparenmatch
Format: editparenmatch

Default: 10

Every time you type a right parenthesis, right square bracket, or right curly
brace, the Editor briefly selects the matching one. This controls how long it
pauses on the selection. time is given in tenths of a second.

sharedsymbols
Format: sharedsymbols

Default: On

Determines whether dblink is run to process debug information from shared
libraries. This is also controlled with the -noshared Green Hills compiler
option.
Green Hills Software, Inc. 281

10. Configuration commands
procqualifiedlocalimpliesoutermostblock
Default: Off

On - Even if the context pointer is in an inner block, and that inner block defines
a variable which has the same name as a variable in the outer block, a reference
to that name in that procedure will reference the outer variable of that name.

Off - If the context pointer is in the inner block and the variable name is
referenced, the inner variable will be used.

warnonbpreplacement
Default: Off

To get a warning from the debugger before replacing a breakpoint that was
already there, turn this option on. This is useful to avoid losing a long
breakpoint command by accidentally replacing that breakpoint with a new
breakpoint (which has no command).

warnoncmdadrlinepromotion
Default: Off

To get a warning when setting a breakpoint on a line with no corresponding
assembly (no breakdot), turn this option on.

attempttoshowoldversionofupdatesource
Default: Off

To have the debugger attempt to show the versions of source files that were
used to build the executable being debugged (via version control), turn this
option on.

allowexecutioninbpcommand
Default: Off

To allow stepping, nexting, and execution of command line procedure calls
from within a breakpoint command, turn this option on. This is somewhat
risky, in that if the execution from within the breakpoint command causes
another breakpoint to be hit (or the same one), infinite breakpoint command
recursion can occur. Continue ("c") is always allowed in a breakpoint
command.

keeploaders
Default: Off
282 Building and Editing with MULTI 2000

Other Configuration options

w

he

e
he

 an

To have the debugger keep certain item chooser windows (such as file choosers)
open after they’ve been used to load one file, turn this option on. With this
option off, such windows disappear after being used once.

icongeometry
Default: 32x64+0+0

icongeometry widthxheight+x_offset+y_offset

Specifies the geometry of the iconified form of the debugger. Some windo
managers ignore this setting.

exprcasesensitivity
Default: Language_Default

Controls the case sensitivity of expression evaluation.

Language_Default - Recommended. Follows the case sensitivity rule for t
language of the program being debugged.

On - Expression evaluation is case sensitive.

Off - Expression evaluation is not case sensitive.

gotohitsbpattargetaddress
Default: Off

When using the debugger command g, if this option is on, any breakpoint at th
destination will be hit as soon as execution begins at the new location. If t
option is off, the breakpoint will not be hit.

disasmstyle
Default: remote

Controls the style of Motorola 68000 series assembly code.

remote - XORmacs style if and only if the code is destined for execution on
embedded processor (not going to be executing on the same processor as
MULTI).

XORmacs - Always XORmacs style (MOVE.L (12,A6),D0).

unix - Always unix/sun style (movl a6@(12),d0).

synchronous
Default: Off
Green Hills Software, Inc. 283

10. Configuration commands

n is

or
.

To enable synchronous X-windows mode, turn this option on. Synchronous
mode insures that X-windows calls within MULTI complete before they return.
This can be useful when running MULTI on faulty X-servers.

builderposition
This command is deprecated.

Format: builderposition

Default: 0x0

Initial position of the builder window from the upper left of the screen in
characters and lines. To specify in pixels, append the letter ‘p’. This optio
only useful if the rememberwindowpositions option is off. See also “Save
window positions and sizes” on page 242.

minwindowsize
This command is deprecated.

Default: 51x6

Minimum initial size of a non-view window, such as an IO, Target, or Monit
window. If left unspecified, the Debugger will auto-size them appropriately
This option is only useful if the rememberwindowpositions option is off. See
also “Save window positions and sizes” on page 242.

maxwindowsize
This command is deprecated.

Default: 128x20

Maximum initial size of a non-view window. This option is only useful if the
rememberwindowpositions option is off. See also “Save window positions
and sizes” on page 242.

nodecoration
Format: nodecoration

Default: Off

If this is on and the window manager supports it, then all windows appear
without title bars.

QuietTogCmd
Default: off
284 Building and Editing with MULTI 2000

Other Configuration options
Causes the tog command to not echo the status of the breakpoint(s) it toggles.

Example:

D; // delete all breakpoints
b; // set a breakpoint
tog off; // disable the current breakpoint
B; // list all breakpoints
configure QuietTogCmd on
tog on; // enable the current breakpoint
B; // list all breakpoints
Green Hills Software, Inc. 285

10. Configuration commands
286 Building and Editing with MULTI 2000

Appendix
A

Third party tools

This appendix contains:

• Third party version control systems

• Third party editors

• Using the Editor with third party tools

• Using the Debugger with third party tools

A. Third party tools

 are
LTI

hell

.. >
es,

ird

LTI
is
set

at

cept
Third party version control systems

You can configure MULTI to use a third party version control system, such as
RCS or ClearCase. See Chapter 4, “Version control” for information. If you
using a third party version control system other than RCS or ClearCase, MU
does not have built-in support for it, but you can provide partial support
yourself by creating menus which open your version control system as a s
command. For more information on invoking shell commands from editor
menus, see “Using the Editor with third party tools” on page 3.

Third party editors

You can configure MULTI to use another editor in place of MULTI’s built-in
Editor with the configuration strings:
usealternateeditor,usextermforalternateeditor, editor and editorLaunch.
These options are accessible from the GUI by choosing Config > Options.
Editor Tab > More Editor Options.... For more information on these variabl
see Chapter 9, “Configuring and customizing MULTI” or Chapter 10,
“Configuration commands”. usealternateeditor (which corresponds to the
"Alternate editor" checkbox in the GUI) means that MULTI should use a th
party editor instead of the build-in editor. usextermforalternateeditor
(corresponds to "Use Xterm for alternate editor" checkbox) means that MU
will launch the editor inside an xterm window; use this option if your editor
non-graphical. editor (corresponds to the "Executable" text field) should be
to the command name of the third party editor, and editorLaunch (corresponds
to "Command line arguments" text field) to a string which indicates the form
of arguments that the Editor expects. Within editorLaunch, the following
special escape sequences are recognized:

%LINE The line number.

%FILE0 Filename (first file name if there are multiple ones).

%FILES Where the rest of the file names should go if the editor can ac
multiple file names.

For example, here are configurations for commonly used editors:

vi

usealternateeditor: On
usextermforalternateeditor: On
editor: vi
editorLaunch: "+%LINE %FILE0"
A-2 Building and Editing with MULTI 2000

Using the Editor with third party tools
emacs

usealternateeditor: On
usextermforalternateeditor: Off
editor: emacs
editorLaunch: "+%LINE %FILE0 %FILES"

notepad

usealternateeditor: On
usextermforalternateeditor: Off
editor: notepad
editorLaunch: "%FILE0"

Depending upon your PATH environment variable, you may need to specify the
full path to the Editor.

Using the Editor with third party tools

The Editor can be configured to launch third party tools from buttons or menus.
The Editor commands !, Shell and CommandToWindow are appropriate for
this purpose.

! (and the equivalent command ExecuteCmd) takes the current selection in the
editor, if any, and pipes it to the standard input of the specified command, and
then replaces the selection with the standard output of the specified command.
If there is no selection, the command gets no input, and the output is inserted at
the cursor.)

Shell runs a shell command with no input/output redirection.

CommandToWindow runs a shell command and opens a new editor window
which the standard output of the command is redirected to.

For more information on !, Shell, and CommandToWindow, see Chapter 7,
“Editor commands”.

Here is an example configuration that runs some simple UNIX commands:

menu: MyTools {{’insert pretty date’ ! date "+%l:%M %p on
%B %e, %Y"} {’count words’ CommandToWindow "printf
%8s%8s%8s%9s\\\\n lines words chars filename ; wc %FILE"}}
menu: EditMenuBar {{&File ->EditFile} {&Edit ->EditEdit}
{V&iew ->EditView}{&Block ->EditBlock} {&Tools
->EditTools} {MyTools ->MyTools} {&Version ->EditVersion}
{&Config ->Config} {&Help ->EditHelp}}
Green Hills Software, Inc. A-3

A. Third party tools
Recall that an easier way to configure menus is to use the Menus... button on the
General tab of the Config > Options... dialog.

Using the Debugger with third party tools

External tools can be run from within the Debugger using the Shell command.
Menus and buttons can be configured to run arbitrary external commands and
dynamically construct command-line arguments to those commands. The main
facility for constructing command-line arguments is the %EVAL escape
sequence.

For example, here is a set of configuration directives appropriate for invoking
SNiFF+ from within the Debugger. The variable _SELECTION is a Debugger
special variable, corresponding to the current selection in the Debugger source
pane.

shellconfirm: Off
usealternateeditor: On
usextermforalternateeditor: Off
editor: sniffedit
editorLaunch: %FILE0
debugbutton: Class i=letter_c h="SNiFF browse class"
c="shell sniffaccess
browse_class */ %EVAL{_SELECTION}"
debugbutton: Hierarchy i=dsndnt h="SNiFF hierarchy"
c="shell sniffaccess
hierarchy */ %EVAL{_SELECTION}"
debugbutton: Symbol i=search h="SNiFF find symbol"
c="shell sniffaccess
find_symbol */ %EVAL{_SELECTION}"
debugbutton: Retriever i=letter_r h="SNiFF retriever "
c="shell sniffaccess
retrieve */ %EVAL{_SELECTION}"
menu: Sniff {{Class shell sniffaccess browse_class */
%EVAL{_SELECTION}}
{Hierarchy shell sniffaccess hierarchy */
%EVAL{_SELECTION}} {Symbol shell
sniffaccess find_symbol */ %EVAL{_SELECTION}} {Retriever
shell sniffaccess
retrieve */ %EVAL{_SELECTION}}}
menu: MultiMenuBar {{ &File ->FileMenu } { &Debug
 ->DebugMenu } { &View ->ViewMenu } { &Browse
 ->BrowseMenu } { T&arget ->Target } { &Tools
 ->ToolsMenu } { &SNiFF ->Sniff } { &Config
 ->ConfigMenu } { &Help ->HelpMenu } }
A-4 Building and Editing with MULTI 2000

Using the Debugger with third party tools
Green Hills Software, Inc. A-5

A. Third party tools
A-6 Building and Editing with MULTI 2000

IndexIndex
- sign 18

Symbols
#

using in comments 152
-# build-time option

GUI equivalent to 38, 44, 48
+ sign 18
.bld extension 32
.inf extension 60
-> command 275
__ghs

compiler symbol 50
__ghs_eofn_funcname

compiler symbol 111
__STDC__

compiler symbol 50
__WChar_Is_Int__

compiler symbol 70
__WChar_Is_Long__

compiler symbol 70
__WChar_Is_LongLong__

compiler symbol 70
__WChar_Is_Short__

compiler symbol 70
__WChar_Is_Signed__

compiler symbol 69
__WChar_Is_Unsigned__

compiler symbol 69

Numerics
1,2,3,4 option

in builder 34, 38, 39
16 bit pc-relative code 95
-2.1 option 77
-3.0 option 77
32 bit pc-relative code 96
386 options 92
486 options 92
-64bit command line option, equivalent to 106
68000 series instruction sets 93, 94
68020 instruction set 93
-68030 machine specific option, equivalent

to 93
-68851 machine specific option, equivalent

to 98
68851 memory management unit 98
-68881 machine specific option, equivalent

to 95
68881 processor 95
-68882 machine specific option, equivalent

to 95
68882 processor 95
68EC* instruction sets 94
68EC060 instruction set 94
68LC* instruction sets 94

A
-a build-time option

GUI equivalent to 50
Abort command 202
AboutMULTI option

in builder 41
in editor 172

Ada
elab_table.txt file 87

Ada Source File file type 47
Add Files to Project option

in builder 35
adding

files to your project 17
program to your project 14

Advanced Optimizations dialog box 52
Advanced tab 63
alias

command 134, 135
creating 134
removing 138

-align= machine specific option
GUI equivalent to 64

Alignment option 64
All Others optimization 54
Allocation, memory checking option 55
Allow Auto Checkout menu item

in editor 170
Alpha options 103
AlterMode command 212, 213
-ANSI C option

GUI equivalent to 69
Append extension field

in file actions window 60
Green Hills Software, Inc. I-1

Index

AppendTagFile menu item

in editor 170
-archive command line option

GUI equivalent to 62
Archive, file type 62
Arguments field

in builder File Options window 59
Array Bounds check box

in Runtime Checking window 56
-asmwarn build-time option

GUI equivalent to 73
assembly code

compiler output 63
file type for builder 47
stopping with from C source 61

Assignment Bounds check box
in Runtime Checking window 56

Attach to Process...
in builder File menu 38

Auto Indent menu item
in editor 168

Auto Register optimization 54
auto-indent 152

characters 153
automatic checkout 139
automatically indenting text 168
Automatically use MVC check box

in file options window 50

B
.bld extension 32
BackISearch command 201
Backspace command 197
Backward radio button

in search window 180
base project 19
beeping

enabling and disabling 243
Big-Endian option 102
-bigswitch Fortran option, equivalent to 98
block profiling 50
braces,matching 167
brackets,matching 167
branching and version numbers 131
-bsd command line option

GUI equivalent to 64
bsd output mode 64

buffers
containing string of editor commands 206
copying to 197
cutting to 197
pasting from 198

build
files 13

inheritance from 21
projects

collapsing 18
expanding 18

Build All check box
in Build Panel 43

Build All option
in Builder 37

Build menu
in Builder 37

build menu
Toolchain options 118

Build Selected Files option
in builder 37

Builder
Build menu 37
Build Panel 43
closing 34
Config menu 40
Debug menu 38
display options for 44
Edit menu 35
file menu 33
Help menu 41
help option 41
ignoring errors 37, 44
ignoring file dependencies 51
main window 32
opening a new project 13
opening a project in a different window 13
opening a subproject 12
output pane 43
Project menu 35
rebuilding all files 37, 43
Remote menu 39
source pane 42
starting 12
status bar 43
stopping 127
target window 43
test run 38, 44
I-2 Building and Editing with MULTI 2000

Index
toolbar 41
Version menu 39
window 32

Builder field
in builder File Options window 57

Builder Help option
in Builder 41

building 24
libraries with your project 16
source files 24

button command (deprecated) 268
buttons

attaching a menu to 273
changing behavior of 268
using icons instead of text for 243

C
-C C and C++ preprocessor option, Kanji

equivalent 72
-C command line option

to MULTI 7
-c command line option

GUI equivalent to 61
to MULTI 7
version control 77, 132

C language
C version, in Language Options dialog

box 69
options in builder 68
Source File file type 47
Source output format 63

C tab
in Language Options dialog box 68

C Translator processor option 63
C++ language

options in builder 75
Source File file type 47

C++ tab
More Options dialog box 82

case sensitivity
in searches 243
variables in program files 50
when searching in editor 180

Case toggle
in search window 180

Case/Switch Statement check box

in Runtime Checking window 56
cfront options 77
--cfront_2.1 option 77
change dot

in editor 175
characters

auto-indenting 153
inserting 149
inserting literally 215

check 57
check box

convention for P-3
Check In All menu item

in editor 170
Check In option

in builder 39
Check In+Out option

in builder 39
Check Out option

in builder 39
-check=* commands

GUI equivalent to 55, 56, 57
-check=usevariable command line option

GUI equivalent to 56
Checkin menu item

in editor 170
checking in all files 170
checking in files 39, 135, 138, 170
checking out files 39, 131, 136, 137, 170
Checkout menu item

in editor 170
ci command 135
cio command 136
Clean Up check box

in build panel window 44
Clean Up option

in builder 38
Clear Default Configuration menu item

in editor 171
Clear Default Configuration option

in builder 40
ClearCase 139
clickpause, resource 279
clipboard

copying files to 35
copying rectangular text section to 198
copying to 166, 197
Green Hills Software, Inc. I-3

Index

cutting files to 35
cutting rectangular text section to 198
cutting to 166, 197
pasting files from 35
pasting from 166

Close
menu item

in editor 165
close buttons

displaying 243
Close command 204
co command 136
code indenting 152
-coff command line option

GUI equivalent to 64
COFF output mode 64
ColdFire instruction set 94
collapsing projects 18
colors

configuring 263
Column menu item

in editor 167
Command Directory field

in builder File Options window 59
command line

configuration file 238
script file 238

command name field
in configuration options window 59

command pane P-3
commands

binding multiple key presses to 212, 213
configuration 242
conventions for P-2
cursor movement 219
deleting text 222
file manipulation 224
for keys or mouse clicks in editor 172
identifying for keys or mouse clicks 214
indenting text 222
searching files 220
selecting text 220
shell 206
strings of 169, 206

Commands check box
in build panel window 45

Commands display level 48
Commands field

in builder File Options window 59
Commands to process output

in builder, File Options window 63
Commands to set up input files

in builder, File Options window 62
Comment menu item

in editor 168
commenting text

inserting 168
removing 168

comments
for log files 165
in MVC 77, 132
inserting in code 151
keeping flush-left 152
using 151

Common Subexpression optimization 53
comparing files 160
Compilation menu

in builder, File Options window 63
compiling

libraries with your project 16
Config menu

in Builder 40
configuration

commands for 242
configuration file format 232
configuration option

QuietToCmd 284
configure command 212, 230
configuring

colors 263
configuring editor 162
configuring MULTI

clearing all saved changes 171
loading appearance/functionality

settings 171
Options menu item 171
saving changes 171

constant definitions
setup 23
undefining 24

Constant Propagation optimization 53
ContinueSelection command 194
control characters

inserting 215
conventions for this manual P-2
Copy Files option
I-4 Building and Editing with MULTI 2000

Index
in builder 35
Copy in editor

Copy1 command 197
Copy2 command 197
Copy3 command 197
Copy4 command 197

Copy menu item
in editor 166

copyfile command 135
copying, cutting and pasting 222
Coverage Analysis menu

in file options window 50
CPU Options menu

in CPU options window 92
CPU Options option

in builder 37
create

command 131, 135
new file in editor 146

CreateLog command 209, 212
curly braces,matching 167
cursor movement

beginning of file 190
beginning of line 190
beginning of next line 189
column 167
displaying line containing 191
down multiple lines 189
down one line 188
down one page 189
end of file 190
end of line 190
flashing to current line 167
left multiple characters 189
line number 190, 191
list of keys and commands for 219
next character 188, 189
next word 190
previous character 188, 189
right multiple characters 189
size of "some" commands 255
up multiple lines 189
up one line 188
up one page 189
when dialog box opens 244

customizing See configuring
Cut Files option

in builder 35
Cut in editor

Cut1 command 197
Cut2 command 197
Cut3 command 197
Cut4 command 197

Cut Lines menu item
in editor 169

Cut menu item
in editor 166

CyclePush command 204

D
-D C and C++ option

GUI equivalent to 50
-D command line option

to MULTI 7
-d option 132
-dalign command line option, equivalent to 113
-data command line option

to MULTI 7
data explorer windows

format for 279
date command 169
dblink command

processing debug information 281
Debug in builder

Current Project option 38
Other option 38
servers 28

Debug menu 38
debug servers

currently supported 28
debugger

debugging level from compiler output 49
debugger window

size and position of 280
Debugging 27
Debugging level 48
Default

display level 48
file type 46
memory checking option 55

default.bld 14
Defines field

in file options window 50
Green Hills Software, Inc. I-5

Index

deledit command 136
Delete command 197
Delete menu item

in editor 166
deletefile command 136
deleting text

current selection 197
list of keys and commands for 222
previous character 197

delget command 135
delta command 135
Dependencies display level 48
Dependencies field

in file actions window 62
dialog boxes

cursor movement in 244
diff 160
diff command 136
DiffFiles command 205
DiffFiles menu item

in editor 170
directories

for subprojects 15
Discard Changes menu item

in editor 170
Discard Changes option

in builder 39
Disconnect option

in builder 39
disp command 136
DISPLAY 5, 12
Display close (x) buttons

Config > Options 243
-display command line option

to MULTI 5
-display option 12
displaying

close buttons 243
Divide by Zero check box

in Runtime Checking window 56
division_check

runtime check, suppressing 87
Do not rebuild... check box

in file options window 51
Documentation file type 47
-dotciscxx command line option

to MULTI 7
Down command 188

DownSome command 189
size of 255

Driver Options field
in file options window 50

dryrun build 24
-dryrun build-time option

GUI equivalent to 38, 44
Dynamic download project check box

in advanced options window 67

E
-E C and C++ preprocessor option

GUI equivalent to 61
-E command line option

to MULTI 7
-e command line option

to MULTI 7
Edit

command 136
Edit menu

in Builder 35
Edit Selected Files option

in builder 35
editincrfrequency command 258
EditLine command 190
editor

accessing next files 167
accessing previous files 167
closing 204
command strings in 169
configuring 162
creating files 146
cycling through windows 204, 215
editing files 148
exiting 165
files merging 156
frequency of recording recent changes 258
help on 172
insert mode 215
invoking 165
keyboard settings

moving the cursor 219
keyboard settings for 219
main window 164
merge

three files into a single file 158
two files into a single file 157
I-6 Building and Editing with MULTI 2000

Index
merging files 156
navigating between open files 147
opening files 145, 146
quick search 155
repeating previous actions 202
repeating previous commands 166
saving files 147
scratch files in 169
searching 155

quick search tips 156
using wildcards 156

selecting languages 167
setting files 167
setting language 151
starting 144

from the Builder window 144
from the Debugger 144
from the Progress window 144

starting as standalone program 145
version control 160
working with your code 151

using comments 151
Editor commands

ShowContextMenu 213
editor window

icons in 173
progress 126

EditorFlags command 204
editparenmatch command 281
edits

repeating 149
reversing 148

EditTag command 209
--eel option 77
--eele option 77
Either radio button

in search window 180
--el option 77
elab_table.txt file

Ada output file 87
--ele option 77
-elf command line option

GUI equivalent to 64, 65
ELF output mode 64, 65
embedded programming in MULTI 4
Endfiles option

in advanced options window 66

EndsLine radio button
in search window 180

EndsWord radio button
in search window 180

EnterInsertMode command 215
-entry= linker option

GUI equivalent to 66
EOF command 190
EOL command 190
-ep build-time option

GUI equivalent to 87
ErrorOrTag command 207
errors

allocation 55
array bounds 56
assignment bounds 56
case/switch statements 56
display level 48
displaying from builder 126
divide by zero 56
exit without return 57
from builder 126
from make command 208
ignoring when building 37, 44
memory 55
null dereferences 56
Pascal variants 57
tracing down build errors 25
unused variables 56
watchpoint 57

escape key interrupt 225
Exact radio button

in search window 180
executable

defining in your project 14
file type 62

ExecuteCmd command 206
Exit menu item

in editor 165
Exit option

in Builder 34
Exormacs output mode 65
expanding projects 18

F
-F option 138
Green Hills Software, Inc. I-7

Index

Far Function Calls option 110
fc command 137
-ffpnop machine specific option, equivalent

to 97
-ffunctions machine specific option, equivalent

to 93, 97
File Actions tab 59
File field

in editor 174
File menu

in Builder 33
in editor 165

File Options
dialog box 45

File Options option
in builder 36

file type, changing 18
file types 60
filename

no spaces allowed 33
recalculating after change source

directories 36
files

adding to project 35
adding to your project 17
archiving 137
automatic check out 170
changes indicated in editor 175
checking in 39, 135, 138, 170
checking in all 170
checking out 39, 136, 137, 170
closing 165
comparing 160
copying to clipboard 35
cutting to clipboard 35
differences between 170, 205
displaying comments and versions 40
editing 165
inserting 169
last edited version 171
list of keys and commands for 224
merging 156, 170, 205
packing 137
pasting to clipboard 35
printing 165
pushing 204
retrieving when locked 39
reverting to last version 170

saving 165, 203
scratch 169, 207
searching for in project 20
searching with grep. See grep command
setting options 22
simplifying filenames 35
switching read/write modes 167
temporary 38, 44
type of 46
unlocking 138
unpacking 137
version control 170
versions of. See version control

Find button
in search window 179

Find menu item
in editor 166

Find then Replace button
in search window 179

Flash Cursor menu item
in editor 167

FlashCursor command 191
-fnone build-time option, equivalent to 92, 95,

99, 102, 103, 104, 105, 108, 109, 110, 112, 113,

114, 115, 116
FORTRAN

options dialog box 88
options in builder 88
Source File file type 47
Version menu

in FORTRAN options window 88, 91
Forward radio button

in search window 180
-fprecise command line option, equivalent to 92
-fprecise machine specific option, equivalent

to 98
FR20 options 104
-freturnd0 machine specific option, equivalent

to 97
-fsoft build-time option, equivalent to 92, 95,

102, 103, 104, 105, 108, 112, 113
full_parameter_check

build-time option, GUI equivalent to 119
Functions profiling level 49

G
-G command line option
I-8 Building and Editing with MULTI 2000

Index
to the compiler 6
-g command line option

to the compiler 6
-G debugging option

GUI equivalent to 49
-g debugging option

GUI equivalent to 49
-ga debugging option

GUI equivalent to 49
geometry command 280
get command 137
global configuration file 237
global script file 238
gnu_c C compiler option, equivalent to 73
Goto menu item

in editor 166
grabtimeout, resource 279
Graph profiling level 49
Green Hills Include Dirs field

in builder File Options window 58
Green Hills Libraries field

in advanced options window 66
Green Hills Library Dirs field

in builder File Options window 58
grep command 169, 205

See Also searching files
Grep menu item

in editor 169
GUI conventions P-3

H
-H command line option

GUI equivalent to 67
Halt button

in progress window 127
header files 17
-help command line option

to MULTI 7
Help menu

in Builder 41
in editor 172

hierarchy
of your project 13

Host kanji drop-down list
in Language Options dialog box > C tab 70

I
-I build-time option

GUI equivalent to 58
-I command line option

to MULTI 7
i386 options 92
i486 options 92
i960 options 102
iconify, resource 280
icons

using for buttons 243
Identify command 214
Identify menu item

in editor 172
-ieee695 command line option

GUI equivalent to 65
IEEE695 output mode 65
Ignore Errors check box

in Build Panel 44
Ignore Errors option

in Builder 37
ignoremotion command 281
in Builder 38
IN/OUT window 29
In-Circuit Emulators 5
Include File file type 47
Indent command 191
Indent menu item

in editor 168
indenting text 152, 191, 204

automatically 168
changing size of 152
Editor auto-indent 152
inserting indents 168
list of keys and commands for 222
removing indents 168, 192
size of indent 204

Inf file, file type 60
infinite redo 166
infinite undo 166
information file 60
Inline check box

in optimization options window 53
Inline field

in optimization options window 54
Inline Prologue option 110
Inlining drop-down list box
Green Hills Software, Inc. I-9

Index

in C++ tab 77

Insert Date menu item
in editor 169

Insert File menu item
in editor 169

insert mode 215
InsertFile command 215
inserting

comments in code 151
control characters 215
entire files 215
extra Fpnops 97
literal characters 149
new line 214
text between double quotes 214

InsertNewline command 214
instruction set simulators 5
instruction sets, 68000 series 93
ISearch command 201

J
Join Lines menu item

in editor 169
JoinLines command 200

K
-k+r C option

GUI equivalent to 69
kanji - see 16bitfont,resource
-kanji= command line option

GUI equivalent to 70
Keep Temp Files check box

in advanced options window 67
keybind command 269
keyboard settings

in editor 219
Copying, cutting and pasting 222
Debugging 224
Deleting text 222
File commands 224
Fixing errors 224
Indenting 222
Miscellaneous 225
Moving the cursor 219
Searching 220
Selecting text 220

keys
attaching a menu to 273
binding commands to 212, 213
for cursor movement 219
for deleting text 222
for file manipulation 224
for indenting text 222
for searching files 220
for selecting text 220
identifying command for 214
specifying actions and locations for 269

L
-L build-time option

GUI equivalent to 58, 59
-L command line option

to MULTI 7
-L option 134
-l option 133
Label at End of Function option 111
language

options in builder 37
setting in Editor 151

Language menu item
in editor 167

Left command 188
LeftSome command 189

size of 255
LeftU command 189
Libraries field

in file options window 51
library

building with your project 16
file type 47
linking to a program 16
setting options 21

Library Directories field
in file options window 51

Line field
in editor 174

line numbers
moving to 190, 191

LineD command 191
lines

cutting 169
inserting 214
joining 169
I-10 Building and Editing with MULTI 2000

Index
leaving unobscured 281
merging 200

linesnonoverlapped command 281
Link without

default startfiles or libraries 68
Linker File file type 47
linking

to a compiled library 16
Little Endian option 111
-littleendian command line option, equivalent

to 106
Little-Endian option 106
Load Configuration menu item

in editor 171
Load Configuration option

in builder 40
LoadFile command 202
LoadFileWithNewEditor command 203
LoadModule option

in builder 39
log files 131

comments for 165
creating 135, 209, 212
creating alias in 134
displaying 138, 171
saving 165, 203

Loop optimization 54
options

check box 53
field 55

Loop Unrolling optimization 53, 54
LowerCase menu item

in editor 168
lowercasing characters 168

M
-m command line option

to MULTI 7
macros 236

definitions 50
make command

errors from 208
Match menu item

in editor 167
MC68000 options 93
MCF510x instruction set 94

MCF520* instruction sets 95
MCore options 104
Mem output mode 65
memory checking option 55
-memory command line option

GUI equivalent to 65
menu

creating 273
invoking 275

menu command 273
MergeFiles command 205
MergeVersions menu item

in editor 170
merging files 156
messages. See errors
Min Max optimization 53
Minibuffer command 206
MiniBuffer menu item

in editor 169
MIPS options 105
modifications to files, indicating 175
moon command 245
mouse

attaching a menu to 273
conventions for using P-3
default functions for 225
defining functions for 275
identify commands for 214
ignoring motion of 281

mouse clicks
time between - see clickpause, resource 279

movefile command 137
MULTI

chip support 4
command line options 7
exiting 34, 165, 204
running from command line 5

MULTI Version Control. See version control
Multiple Tiny Data Area option 101
MVC

commands 132
menu in editor 170

MVC. See version control
Mvcbuffer command 210
Green Hills Software, Inc. I-11

Index

N
naming executable 25
navigating project 18
nCPU options 108
NDR options 109
New Builder option

in builder 34
NewEditor menu item

in editor 165
NewTag command 208
Next File menu item

in editor 167
NextWindow command 215
-no_ansi_alias build-time option

GUI equivalent to 72
--no_explicit build-time option, equivalent to 79
-no_num_check

runtime check 87
Nobuild file type 46
-nocfg command line option

to MULTI 8
nodecoration, resource 284
-nodisplay

command-line option for MULTI 12
-nomanifest command line option, equivalent

to 93
None, memory checking option 55
-noobj command line option

GUI equivalent to 63
-nopic command line option, equivalent to 95
-nopid PID option, equivalent to 96
-norc command line option

to MULTI 8
Normal check box

in search window 180
NoSelection command 193
-noshared command line option

to MULTI 8
-nosplash command line option

to MULTI 8
-nostdlib command line option

GUI equivalent to 68
Notepad command 207
NotePad menu item

in editor 169
NULL Dereference check box

in Runtime Checking window 56

NxtErr button
in progress window 126

O
-o build-time option

GUI equivalent to 59
-oasys command line option

GUI equivalent to 64, 65
Oasys output mode 64, 65
Oasys Srec output mode 65
-obj command line option

GUI equivalent to 63
Object File file type 47
Object output format 63
Object, file type 61
Only Srec output mode 65
Open

menu item
in editor 165

option
in builder 34

open
files in the editor 146
new project in Builder 13
subproject in Builder 12

OpenFile command 202
OpenTag command 208
OpenText command 205
operating system, target 65
optimization options setup 23
Optimization tab 52
options

advanced 63
constant definitions setup 23
entering multiple items 23
file 45
file actions 59
inheritance in your project 21
language 37
optimization 52
optimization setup 23
runtime checking 55
run-time error checking setup 23
selecting targets 36
setting for a project 38
setting for programs and subprojects 21
setting for source files 22
I-12 Building and Editing with MULTI 2000

Index
setting in builder 36, 37
undefining constant definitions 24

Options menu item
in builder Config menu 40

Other files field
in file options window 52

Other VC Command option
in builder 40

Output dual debug formats check box
in advanced options window 67

Output Filename field
in file actions window 59

Output Mode option 64
output pane

in Builder 43
overflow_check

runtime check, suppressing 87
Overload Registers optimization 54

P
-p build-time option

GUI equivalent to 49
-P C and C++ preprocessor option

GUI equivalent to 61
-P command line option

to MULTI 8
-p command line option

to MULTI 8
package command 137
packing, structure 64
PageDown command 189
PageUp command 189
-parameter_check

build-time option, GUI equivalent to 119
parentheses

matching 167, 204
pause for matching 281

Pascal
options in builder 91
options window 91

Pascal Source File file type 47
Pascal Variants check box

in Runtime Checking window 57
Pascal Version menu

in Pascal options window 91
-passsource command line option

GUI equivalent to 67
Paste Files option

in builder 35
Paste in editor

Paste1 command 198
Paste2 command 198
Paste3 command 198
Paste4 command 198

Paste menu item
in editor 166

Peephole optimization 53
Pentium options 92
Per File Settings menu item

in editor 167
Percent profiling level 49
Performance analysis drop-down list

in File Options dialog box 49
-pg build-time option

GUI equivalent to 50
-PIC command line option, equivalent to 113
PIC option

GUI equivalent to 114
PIC options, equivalent to 96, 100, 102, 106, 109,

112, 113
-pic32 PIC option, equivalent to 96
PID options, equivalent to 96
-pid PID option, equivalent to 100, 102, 106, 109,

110, 112
-pid16 PIC option, equivalent to 96
-pid16=a* PIC options, equivalent to 96, 97
-pid32 PIC option, equivalent to 97
Pipeline optimization 53
Place under VC menu item

in editor 170
Place Under VC option

in builder 40
Plain debugging level 49
platforms

building for multiple 25
Position Independent Code option 95, 100, 102,

106, 109, 110, 112, 113, 114
Position Independent Data option 96, 100, 102,

106, 109, 112
Position Independent Data options 110
PowerPC options 110
-preassemble machine specific option, equiva-

lent to 98
Green Hills Software, Inc. I-13

Index

Preprocessor file, file type 61
Preprocessor output, file type 60
Previous File menu item

in editor 167
Print

menu item
in editor 165

Print Current View option
in builder 34

print entire hierarchy option
in builder 34

print to file option
in builder 34

processors
building for multiple 25

profiler
level of 49

program
adding source files 17
building 24
case sensitivity in 50
changing name of compiled file 25
defining in your project 14
linking to a library 16
script file 238
setting options 21

Program file type 46
Progress check box

in Build Panel 44
Progress display level 48
progress window 126
project

1,2,3,4 option 34
adding source files 17
building 24, 37
hierarchy 13
loading in builder 34
printing current view 34
printing the entire hierarchy 34
printing to file 34
rearranding order of files 18
rearranging order of files 17
reverting to last saved version 34
saving 34
searching for files 20
Select One Files option 46
setting options for 38

Project menu

in Builder 35

Q
QuerySaveAll command 203
QuerySaveComments command 203
QuietToCmd configuration option 284
Quit command 204
QuitAll menu item

in editor 165
QuitAll option

in builder 34
Quote command 179, 215
quotes, inserting text in 214
-Qy command line option

GUI equivalent to 67

R
-R command line option

to MULTI 8
-r command line option

to MULTI 8
RCS 139
Read Only menu item

in editor 167
rearranging

files in project 17, 18
Reasons check box

in build panel window 44
Recalculate Filenames option

in builder 36
rectangular text section

copying 168, 198
cutting 168, 198
pasting 168

RectCopy menu item
in editor 168

RectCopy1 command 198
RectCut menu item

in editor 168
RectCut1 command 198
RectPaste menu item

in editor 168
redo changes 166
Redo command 202
Redo menu item

in editor 166
I-14 Building and Editing with MULTI 2000

Index
RegExpr toggle
in search window 180

regular expressions
in search strings 180

-remote command line option
to MULTI 8

Remote field
in advanced options window 66

Remote menu 39
in Builder 39

remote system
disconnecting from 39

remver command 138
repeating edits 149
RepeatLast command 202
RepeatLstEdit menu item

in editor 166
Replace All button

in search window 179
Replace button

in search window 179
Replace Then Find button

in search window 179
ResetTags menu item

in editor 170
restrictions

in filenames (no spaces allowed) 33
Retrieve option

in builder 39
Return check box

in Runtime Checking window 57
Return command 189
ReverseWord command 190
Revert command 204
Revert items in editor

Revert File 165
RevertDate 171
RevertHistory 171
RevertToVersion 171

Revert Project option
in builder 34

Right command 188
RightD command 189
RightSome command 189

size of 255
ROM emulator 5
ROM monitors 5

RTOS (real time operating system) servers 5
Runtime Checking options 55
Runtime Checking tab 55
run-time error checking options 23

S
-S command line option

GUI equivalent to 61
-S option 134
Save As option

in builder 34
Save command 203
Save Configuration

as Default option
in builder 40

option in builder 40
Save Configuration as Default menu item

in editor 171
Save Configuration menu item

in editor 171
Save menu item

in editor 165
Save option

in builder 34
save window positions and sizes

Config > Options 242
SaveAll command 203
SaveAll menu item

in editor 165
SaveAllLog command 203
SaveAs command 203
SaveAs menu item

in editor 165
saving

window positions and sizes 242
Saving Files 147
scratch files

editing 169, 207
Script file type 47
scripting 234
scroll bars

displaying on left or right 244
width of 245

scrollbarwidth command 245
scrolllocation command 244
-sda Small Data Area option, equivalent to 101,
Green Hills Software, Inc. I-15

Index

102, 107, 109, 112, 116, 117

-sda= small data area option
GUI equivalent to 114

-sda= special data area option, equivalent to 103,

108, 112
-sda= tiny data area option

GUI equivalent to 114
Search button

in editor 178
Search command 200
Search menu item 178
search window 178

invoking 200
searching

case sensitivity in 243
case-sensitive 155
for files in your project 20
functions 154
in Editor 155
quick search in Editor 155

searching files 179
case sensitivity 180
incrementally 201
list of keys and commands for 220
regular expressions in 180
wildcards in 180

SecondarySelectAll command 195
SecondarySelectionExtend command 195
SecondarySelectionReplace 195
SecondarySelectionReplaceClip command 195
SecondarySelectionStart 195
SecondarySelectLine command 195
SecondarySelectWord command 195
Select field

in builder File Options window 58
Select One

build files 25
file type 46
Files,setting up for a project 46

Select Target option
in builder 36

SelectAll command 193
SelectAll menu item

in editor 166
selected text

entire file 166
extending 194
list of keys and commands for 220

Selection commands 193, 194, 195
setting your target 13
SH options 111
-shared command line option

GUI equivalent to 62
Shared Data Library file type 47
Shared Data, file type 62
Shared Library file type 47
Shared Object, file type 62
sharedsymbols command 281
shell commands

executing 206
shortcut commands

backward 20
forward 20

-shortenum C compiler option, equivalent to 75
-shortwchar C and C++ compiler option

GUI equivalent to 69
show command 138
Show Headers check box

in advanced options window 67
Show History option

in builder 40
Show menu

in file options window 48
Show Versions check box

in advanced options window 67
ShowContextMenu (Editor command) 213
ShowHistory menu item

in editor 171
ShowLastEdit command (editor) 210
ShowLastEdit menu item

in editor 171
-signedchar C compiler option, equivalent to 75
-signedfield C compiler option, equivalent to 75
-signedptr C compiler option, equivalent to 75
-signedwchar C and C++ compiler option

GUI equivalent to 69
Simplify Filenames option

in builder 35
simulators

currently supprted 28
Single File Library file type 46
16bitfont, resource 245
size indents 152
Small Data Area

option 101, 102, 112, 115, 117
Threshold option 103, 108, 112, 114
I-16 Building and Editing with MULTI 2000

Index
Small Printf check box
in advanced options window 67

SOF command 190
SOL command 190
SOL1 command 190
SOLO command 190
SOLSecondary command 195
somesize command 255
source code control. See version control
source directories

recalculating filenames after updating 36
Source Directories field

in file options window 51
source files

adding to your project 17
building individually 24
defining and creating 17
setting options 22

Source Lines in Asm File check box
in advanced options window 67

source pane P-3
in Builder 15, 42
in Builder (picture of) 19

Source pane (Builder)
navigating 18

spaces
not allowed in filenames 33

SPARC options 113
SpecialTag command 208
specification file 8
square brackets

matching 167
-srec linker option

GUI equivalent to 65
Srec output mode 65
-srecoasys command line option

GUI equivalent to 65
-sreconly linker option

GUI equivalent to 65
ST100 options 114
Stack debugging level 49
StarCore options 115
Start/End File Dir field

in advanced options window 66
Startfiles field

in advanced options window 66
starting

Builder 12
editor 144

starting editor 144
from the Progress window 144

StartsLine radio button
in search window 180

StartsWord radio button
in search window 180

startup files 237
status bar P-3

in Builder 43
--stdl option 77
--stdle option 77
Stop With menu

in file actions window 60
stopping

Builder 127
Strcpy optimization 53
Structure Packing option 64
subproject 15

file type 46
opening in Builder 12
saving 34
setting options 21
using separate file directories 15

Sym file, file type 62
syntax checking 235
-syntax command line option

GUI equivalent to 61
Syntax, file type 61
System Include Dirs

in builder File Options window 58
System Libraries field

in advanced options window 66
System Library Dirs field

in builder File Options window 59

T
-T C compiler option, equivalent to 75
tab size 204, 255
tabsize command 255
tag files

appending 170
deleting 170

tags 154
Tail Recursion optimization 53
Green Hills Software, Inc. I-17

Index

target

building for multiple 25
setting 13
supported 4

Target kanji drop-down list
in Language Options dialog box > C tab 70

Target OS option 65
Target window 29
target window

in Builder 43
target window, how to search 29
Tekhex output mode 65
Temp Directory field

in advanced options window 65
temporary files 44
Test Run check box

in Build Panel 44
Test Run option

in Builder 38
-text command line option

to MULTI 8
third party tools

editors with the MULTI environment A-2
integrating the Debugger A-4
integrating the editor A-3
using with MULTI A-1
version control systems 139
version control systems with MULTI A-2

three-way check box P-3
Tiny Data Area

Threshold option 114
title bars - see nodecoration, resource 284
-tmp= C compiler option

GUI equivalent to 66
Toolbar P-3
toolbar

in Builder 41
Toolchain option 64
Toolchain Options

in builder 37
Tools Directory field

in configuration options window 59
tooltips

enabling and disabling 243
Translated C file, file type 61
TriCore options 116
two-way check box P-3
Type drop-down list

in File options dialog box 46
Type of wchar_t menu

in C options window 69

U
-U Fortran option

GUI equivalent to 50
unalias command 135, 138
UnComment menu item

in editor 168
Undefines field

in file options window 50
Undo button

in search window 180
undo changes 166
Undo command 202
Undo menu item

in editor 166
unedit command 138
Unindent command 192
Unindent menu item

in editor 168
unindenting text 168, 192
unlock command 138
unmvc command 137
unpackage command 137
Unroll 8 optimization 53, 54
Unroll Big optimization 53, 54
Unused Variables check box

in Runtime Checking window 56
Up command 188
UpperCase menu item

in editor 168
uppercasing characters 168
UpSome command 189

size of 255
user configuration file 238
user script file 238
usewmpositioning, resource 280
using third party tools with MULTI A-1

V
-v build-time option

GUI equivalent to 48
-V command line option

GUI equivalent to 67
I-18 Building and Editing with MULTI 2000

Index
to MULTI 8
-v option 131
V800 options 99
version control 129, 170

automatic checkout 139
automatically placing files under 50
checking out files 131
ClearCase 139, 140
commands for 132
deleting version 138
differences between files 205
differences between versions 170
displaying last edited version 210
editor 160
enabling 170
file history 171
finding changed version 137
invoking commands for 210
last edited version 171
merging multiple file versions 170
merging multiple files 205
RCS 139
remove version 138
removing 137
removing alias 138
reverting to previous version 171, 204
reverting to previously saved version 165
reverting to specific date 171
reverting to specific version 171

Version menu
in Builder 39

version number
branching 131
creating alias from 134
displaying 136

View menu
in editor 167

viewdef resource 279
Virtual Tables menu

in C++ options window 77

W
Warnings check box

in build panel window 44
Warnings display level 48
warppointer command 244

Watchpoint check box
in Runtime Checking window 57

who command 139
WildCard check box

in search window 180
wildcards

in searches 180
window positioning - see usewmpositioning,

resource 280
window positions and sizes

saving 242
windows

conventions for P-3
Word command 190
wrapped text 204

X
-Xansiopeq command line option, equivalent

to 74
-Xincludenever C preprocessor option, equiva-

lent to 71
-Xincludeonce C preprocessor option

GUI equivalent to 71
-Xincludeonce C preprocessor option, equiva-

lent to 81
-Xinitextern command line option, equivalent

to 73
-Xneedprototype C compiler option, equivalent

to 72
-Xnoalias C option, equivalent to 72
-Xnocpperror C and C++ preprocessor option,

equivalent to 71
-Xnoidentoutput C compiler option, equivalent

to 72
-Xnooldfashioned C option, equivalent to 74
-Xnopragmawarn C and C++ preprocessor

option, equivalent to 71
-Xpragma_asm_inline command line option,

equivalent to 71
-Xredefine C preprocessor option, equivalent

to 71
-Xs C option,GUI equivalent to 69
-Xslashcomment command line option, equiva-

lent to 72
-Xt C option, GUI equivalent to 69
-Xunknownpragmawarn command line option,
Green Hills Software, Inc. I-19

Index

equivalent to 71

-Xwantprototype C compiler option, equivalent
to 72

Y
-YI build-time option

GUI equivalent to 58
-YL build-time option

GUI equivalent to 58, 59
-YS command line option

GUI equivalent to 66
-YU build-time option

GUI equivalent to 58, 59

Z
-zda special data area option, equivalent to 102,

108, 109, 116, 117
Zero Data Threshold option 101, 115, 117
I-20 Building and Editing with MULTI 2000

	Building and Editing with MULTI® 2000
	Contents
	Preface
	About the MULTI manuals
	Conventions
	Typographical conventions
	GUI mode conventions
	GUI conventions
	Check box conventions

	1 Introduction to MULTI
	Features
	Project Management
	Version Control
	Editing
	Debugging

	Embedded programming in MULTI
	Running MULTI from the command line
	Command line options
	Specification file

	Resources

	2 Using the Builder
	Starting a Builder session
	To start the Builder from the command line
	To open a different project in the same Builder window
	To open a project in a new Builder window
	To set your target

	Setting up your software project
	Using default.bld
	To define the executable programs in your project
	To define a subproject
	To link in a compiled library
	To link to a library that gets built with your project
	To add an existing source file to your project
	To define and create a new source file
	To define header files
	To change a file’s type
	To rearrange the order of files in the hierarchy

	Navigating through your project
	The base project
	Navigating among base projects

	Searching through your project
	To view all files in the base project
	To expand the hierarchical view of the current program, subproject, or library so you can view al...

	Setting options: An overview
	Inheriting options from parent build files
	Viewing inherited options
	Setting options for programs, subprojects, and libraries
	Setting options for source files
	Understanding tick boxes
	Entering multiple text items for an option

	Important options
	To set optimization options
	To set run-time error checking options
	To set manifest constant definitions for the preprocessor
	To undefine manifest constant definitions for the preprocessor

	Building your project
	To perform a dryrun build
	To build individual source files
	To specify the name of the compiled program or library file
	To track down errors from a build
	Building platform-specific programs from the same source files
	To define your project for multiple platforms
	To build a platform-specific program

	Debugging
	To set what debugging information gets generated
	To connect to a target through a debug server or simulator
	To start a debug session

	3 The Builder GUI
	The Builder window
	Title bar

	The Builder menus
	Pop-up menu
	File menu
	Edit menu
	Project menu
	Build menu
	Debug menu
	Remote menu
	Version menu
	Config menu
	Help menu

	The Builder toolbar
	Other Builder components
	Source pane
	Output pane
	Status bar
	Target window

	Build Panel
	Build all
	Ignore errors
	Clean up
	Test run
	Progress
	Warnings
	Reasons
	Commands

	File Options dialog box
	Merge
	OK
	Cancel
	Apply
	File Options > General tab
	Type (drop-down list)
	Show (drop-down list)
	Debugging level (drop-down list)
	Performance analysis (drop-down list)
	Coverage analysis (drop-down list)
	Automatically use MVC
	Driver options:
	Defines:
	Undefines:
	Libraries:
	Source directories:
	Library directories:
	Don’t rebuild because of changes in:

	File Options > Optimization tab
	Default
	No optimization
	Optimize for size
	Optimize for speed
	Advanced button

	Advanced Optimizations Options dialog box
	File Options > Run-time Error tab
	Memory checking (drop-down list)
	Assignment Bounds
	NULL Dereference
	Case/Switch Statement
	Divide by Zero
	Unused Variables
	Pascal Variants
	Watchpoint
	Return

	File Options > Configuration tab
	Builder:
	Select:
	Green Hills C++ include dirs:
	Green Hills C include dirs:
	System include dirs:
	Green Hills library dirs:
	System library dirs:
	Tools directory:
	Alternate tools dir:
	Commands:
	Command directory:
	Command name:
	Arguments:

	File Options > Actions tab
	Output Filename:
	Append Extension:
	Object Directory:
	Stop with (drop-down list)
	Dependencies:
	Commands to set up input files:
	Commands to process output:

	File Options > Advanced tab
	Processor (drop-down list)
	Compilation (drop-down list)
	Alignment (drop-down list)
	Structure packing (drop-down list)
	Toolchain (drop-down list)
	Object format (drop-down list)
	Output mode (drop-down list)
	Target OS (drop-down list)
	Temp Directory
	Start address:
	Start/End file dir
	Start files
	End files
	Green Hills libraries
	System libraries
	Remote
	Small printf without %e%f%g
	Show headers
	Source lines in asm File
	Show Versions
	Put versions
	Output dual debug formats
	Dynamic download project
	Keep temp files
	Link without default startfiles or libraries
	Languages Used:

	Language Options dialog box
	Language Options > C tab
	C version (drop-down list)
	Type of wchar_t (drop-down list)
	Target kanji (drop-down list)
	Host kanji (drop-down list)
	Ignore Duplicate #include
	Ignore All #include
	Allow Macros to be Re#defined
	Allow Wrong #directives inside #if 0
	Warn for Unknown #pragma
	No Warning for Incorrect #pragma
	Allow #pragma asm and #pragma inline
	No Output for #ident or #pragma ident
	Allow // style comments in C
	Keep Comments in Preprocessor Output
	Concat 2 Symbols Separated by Comment
	Warn for Function Used without Prototype
	Disallow Function Used without Prototype
	Allow ‘noalias’ keyword in C
	Disable ANSI aliasing rules
	No Warning for asm()
	Do not reserve asm keyword
	Give fatal error for asm statement
	Allow Some Gnu Syntax Extensions
	Japanese Automotive C
	Allow extern to be Initialized
	Disallow Old Fashioned Syntax
	Use ANSI C Semantics for Assignment
	Allocate Small Enums as char or short
	Consider char to be signed
	Consider Bit-fields to be Signed
	Consider Pointers to be Signed
	Truncate External Symbols to 8 characters
	Allocate unique space for all strings

	Language Options > C++ tab
	C++ version (drop-down list)
	C++ Library (drop-down list)
	Inlining (drop-down list)
	Virtual tables (drop-down list)
	Type of enum (drop-down list)
	Packing (drop-down list)
	Enable exception handling
	Disable namespaces
	Enable std namespace
	Disable RTTI
	Disable “bool” keyword
	Disable “explicit” keyword
	Disable wchar_t keyword
	Disable array new/delete
	Recognize “restrict” keyword
	Disable “extern inline”
	Disable ’extern "C"’ type conversion
	C and C++ functions have distinct types
	Allow overloading of enum types
	Use late tiebreaker rules
	Force zero initialization of scalars
	No constructor initialization in main
	Enable multibyte characters
	Enable Microsoft extensions
	Allow anachronisms
	Use old for-loop initialization scoping
	Don’t demangle linker messages
	Leave translated C
	Keep comments in preprocessor output
	Ignore duplicate #include
	Consider char to be signed
	Consider bit-fields to be signed
	Consider enum bit-fields to be signed
	Use long lifetimes for temps
	Recognize alternate tokens

	More C++ Options > Template tab
	Template mode (drop-down list)
	Disable automatic instantiations
	Disable template implicit inclusion
	Use distinct template signatures
	Disable old-style specializations
	Disable “typename” keyword
	Disable implicit typename determination
	Disable “guiding declarations”
	Non-standard qualifier deduction
	One template instantiation per object file

	More C++ Options > Precompiled Header tab
	Automatic PCH processing
	Disable PCH creation message
	PCH directory
	Create PCH file:
	Use PCH file:

	More C++ Options > Diagnostics tab
	Change certain ANSI C++ errors to warnings
	Suppress all warnings
	Quit building if warnings occur
	Issue remarks
	No “used before set” warnings
	No warnings for old for-loop scoping
	Display message numbers
	Display brief messages
	Don’t wrap diagnostic messages
	Maximum number of error mgs
	Suppress specific diagnostic
	Change severity to remark
	Change severity to warning
	Change severity to error

	More C++ Options > Listing tab
	Cross reference file
	Listing file
	Listing Directory

	Language Options > Ada tab
	Main program name
	Library directories
	Elaboration only library directories
	Ada83 analysis mode
	Suppress all runtime checks
	Suppress numeric runtime checks
	Generate cross reference
	Generate text elaboration table
	Source listing (drop-down list)
	Listing format (drop-down list)
	Page length/width
	Diagnostics
	Library info
	Registered units
	Registered sources

	Language Options > FORTRAN tab
	FORTRAN version (drop-down list)
	Enable Debug Lines
	Namelist
	132 columns
	Implicit Undefined
	Case Sensitive
	Locals on Stack
	Check array bounds at runtime
	One Trip Do Loops
	VMS Common
	VMS Octal
	2 Byte Integer
	Hollerithblankpad
	Missing Args Ok

	Language Options > Pascal tab
	Pascal version (drop-down list)
	Big Set
	Case Sensitive
	Append score

	CPU Options dialog box
	i386/i486/Pentium dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	fprecise
	ffunctions
	manifest
	Reserve
	Commit

	MC68000 dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	Position independent code (drop-down list)
	Position independent data (drop-down list)

	V800 dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	V850 tiny data area (drop-down list)
	Put variables smaller than threshold into (drop-down list)

	i960 dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	Alpha dialog box
	Floating point processor (drop-down list)

	ARM dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	FR20 dialog box
	Floating point processor (drop-down list)

	MCore dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	MIPS dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	Calling sequence (drop-down list)
	RH32 FPU (drop-down list)
	Put variables smaller than threshold size into (drop-down list)

	nCPU dialog box
	Floating point processor (drop-down list)
	Put variables smaller than threshold size into (drop-down list)

	NDR dialog box
	Floating point processor (drop-down list)

	PowerPC dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	Put variables smaller than threshold size into (drop-down list)

	SH dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	SPARC dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)

	ST100 dialog box
	Floating point processor (drop-down list)

	StarCore dialog box
	Floating point processor (drop-down list)
	Big Endian
	Far function call
	Align functions to 16-byte boundaries
	Do not allocate to d8-d15
	Do not allocate to r8-r15
	Small Data or Zero Data threshold
	Put variables smaller than threshold size into (drop-down list)

	TriCore dialog box
	Processor (drop-down list)
	Floating point processor (drop-down list)
	Put variables smaller than threshold size into (drop-down list)

	Toolchain Options dialog box
	Toolchain Options > Linker tab
	Toolchain Options > Assembler tab
	68000 Toolchain Options > Linker tab
	68000 Toolchain Options > Assembler tab
	Unix Toolchain Options > Linker tab
	Unix Toolchain Options > Assembler tab
	Windows Toolchain Options > Linker tab
	Windows Toolchain Options > Assembler tab
	Gnu Toolchain Options > Linker tab
	Gnu Toolchain Options > Assembler tab

	The Progress window

	4 Version control
	MULTI Version Control
	How to use MVC
	Example

	Branching and version numbers
	How to use the MVC commands
	MVC command list
	Alias
	Copy file
	Create log
	Check in changes
	Delete file
	Diff Files
	Display version
	Check out and edit
	Find changed version
	Read (only) version
	Move file
	Remove from version control
	Package files
	Unpackage files
	Delete version
	Show log
	Unalias
	Check in, lose changes
	Unlock file
	Who checked out a file

	Other version control systems
	How to use other version control systems with MULTI
	To enable other version control systems with MULTI
	For MVC, RCS, or ClearCase Users
	For other version control systems

	5 Using the Editor
	Starting the Editor
	To start the Editor from the Builder window
	To start the Editor from the Progress window
	To start the Editor from the Debugger
	To start the Editor as a standalone program

	Opening files
	To open a file in the current Editor window
	To open a file in a new Editor window
	To create a new file

	Navigating between open files
	To view the previous file
	To view the next file
	Navigating between files in different Editor windows

	Saving files
	To save changes to the file currently being viewed
	To save the file currently being viewed under a new name
	To save all files currently open in the editor

	Editing
	To perform common editing operations
	To reverse changes made to a file
	To restore changes that you reversed
	To reverse all changes made to a file since the last save
	To insert a character blocked by a custom keybinding
	To repeat the last change you made to a file
	To copy a column of text
	Example

	To cut a column of text
	To paste a column of text

	Working with your code
	To configure the Editor for your programming language
	Using comments
	To insert a comment
	To keep comments flush-left

	Indenting your code
	To set the size of indents code
	To manually insert or remove an indent
	To let the Editor indent your code
	Influencing how the Editor auto-indents your code
	How indenting multiple lines affects your comments

	Characters that auto-indent your code
	To disable characters from auto-indenting your code and comments
	To disable characters from auto-indenting your comments only

	Indenting the line following a left parenthesis ‘(’

	To alter the case of the currently selected code
	To highlight the boundaries of the current block of code
	Using tags in your files
	To navigate to a function
	To manually load a tag file in an Editor session
	To remove a tag file from an Editor session

	Searching
	To make a “quick” incremental search
	Quick search tips

	To search using wildcards

	Merging files
	To merge two files into a single file
	To merge three files into a single file

	Comparing files
	Using version control from the Editor
	To configure MULTI to work with your version control system
	To automatically check out files when they are modified
	To check out a file manually
	To save your changes and check in a file
	To check in a file and revert to the previous version
	To put a new file under version control
	To view the version history of a file
	To show the last change to a portion of a file
	Reverting to a previous version of a file

	Configuring the Editor

	6 The Editor GUI
	The main Editor window
	Editor menus
	File menu
	Edit menu
	View menu
	Block menu
	Tools menu
	Version menu
	Config menu
	Help menu
	Right-click pop-up menu

	Editor toolbar
	Location fields
	File:
	Line:

	Status bar
	Status box
	Cursor position indicator
	Read-only indicator
	Change dot
	Version control status

	Merge dialog boxes
	Merge dialog box
	Control panel (two-file merge)
	Control panel (three-file merge)

	Search dialog box
	Goto dialog box
	Goto a file
	Goto a line number
	Goto a function

	Per File Settings dialog box
	Indent size
	Ada indent size
	Ada continuation size
	Wrap column
	Wrap indent offset
	Word wrap
	Disk format

	File chooser
	Directory
	Directory Buttons
	File List
	Filename
	Action buttons

	Print dialog box
	Print To
	Print Command
	Filename
	Font Name
	Font Size
	Paper Size
	Orientation
	Columns
	Print button

	7 Editor commands
	Navigation commands
	Up
	Down
	Left
	Right
	PageUp
	PageDown
	UpSome
	DownSome
	LeftSome
	RightSome
	LeftU
	RightD
	Return
	Word
	ReverseWord
	SOL
	EOL
	SOF
	EOF
	SOL0
	SOL1
	EditLine
	Goto
	LineD
	Column
	FlashCursor

	Indentation commands
	Indent
	Unindent
	SelectLanguage
	AutoIndent
	AutoIndentImplicit
	AutoIndentOrTab

	Selection commands
	NoSelection
	SelectAll
	SelectWord
	SelectLine
	SelectMatch
	SelectToLines
	SelectToMatch
	ContinueSelection
	SelectionStart, SelectionGrab, SelectionExtend, SelectionAdjust
	SecondarySelectAll, SecondarySelectLine, SecondarySelectWord
	SecondarySelectionStart, SecondarySelectionExtend, SecondarySelectionAdjust
	SOLSecondary
	SecondarySelectionReplace
	SecondarySelectionReplaceClip

	Drag-and-drop commands
	SelectionStartDrag
	SelectionStartDragAdd
	SelectionDrop

	Text deletion commands
	Backspace
	Delete

	Clipboard commands
	Copy1, Copy2, Copy3, Copy4
	Cut1, Cut2, Cut3, Cut4
	Paste1, Paste2, Paste3, Paste4
	RectCopy1
	RectCut1
	RectPaste1

	Block commands
	CommentBlock
	UnCommentBlock
	LowerCaseBlock
	UpperCaseBlock
	JoinLines

	Search commands
	Search
	ISearch
	BackISearch
	TruncateSearch
	StopSearch

	Undo/Redo commands
	Undo
	Redo
	RepeatLast
	Abort

	File commands
	OpenFile
	LoadFile
	LoadFileWithNewEditor
	Save
	SaveAs
	SaveAll
	SaveAllLog
	QuerySaveAll
	QuerySaveComments
	Revert
	CyclePush
	CyclePushBack
	EditorFlags
	Print
	Close
	Quit
	Done
	OpenText

	Tool commands
	Grep
	DiffFiles
	MergeFiles
	Minibuffer
	CommandToWindow
	ExecuteCmd
	!
	Shell
	Notepad
	cmdprompt2wnd

	Tag commands
	ErrorOrTag
	OpenTag
	NewTag
	SpecialTag
	AppendTagFile
	ResetTags
	EditTag

	Version control commands
	CheckIn
	CheckOut
	AllowAutoCheckout
	PreventAutoCheckout
	Discard
	PlaceUnderVC
	vcbuffer
	Mvcbuffer
	RevertDate
	RevertHistory
	RevertToBackup
	RevertVersion
	ShowHistory
	ShowLastEdit
	ShowView
	CreateLog

	Configuration commands
	Configure
	ConfigureFile
	AlterMode
	->
	ShowContextMenu
	AlterLocation

	Help commands
	About
	Help
	Identify

	Insert commands
	“ ” (text surrounded by double-quotes)
	Tab
	UserName
	InsertNewline
	InsertFile
	EnterInsertMode
	Quote
	Beep
	NextWindow
	ToggleErrorView

	’if’ conditional commands
	if condition {cmds1}[else {cmds2}];
	Example

	8 Default key bindings
	Default keyboard settings
	Moving the cursor
	Selecting text
	Searching
	Deleting text
	Indenting
	Copying, cutting and pasting
	Fixing errors
	File commands
	Debugging
	Miscellaneous

	Escape key interrupt
	Default mouse settings
	First (leftmost) mouse button
	Second (middle) mouse button
	Third (right-most) mouse button

	9 Configuring and customizing MULTI
	Setting configuration options
	Editing configuration options
	Config menu
	configure command

	Saving configuration options for future MULTI sessions
	Loading configuration files
	Loading a configuration file during a session

	Configuration file format
	Config menu
	Options...
	Save Configuration as Default
	Clear Default Configuration...
	Save Configuration...
	Load Configuration...

	Customizing the graphical user interface (GUI)
	Creating custom functionality
	Scripting
	Creating a script
	Running a script
	Checking the syntax of your script

	Macros

	How MULTI uses startup files to configure a session
	global configuration file
	user configuration file
	command line configuration file
	global script file
	user script file
	command line script file
	program script file

	Example customizations
	Example 1: Connecting to a target from MULTI
	Example 2: Regression testing

	10 Configuration commands
	Options dialog box
	General tab
	Save window positions and sizes
	Use icons for buttons
	Display close (x) buttons
	Match exact case in searches
	Allow beeping
	Show tooltips
	Warp pointer
	Print command
	Vertical scroll bar location
	Horizontal scroll bar location
	Display moon phase
	Scroll bar width
	Main Font...
	Button Font...
	Kanji Font...
	Menus...
	Mouse Bindings...
	Key Bindings...
	Online Help...

	Online Help Options
	Help browser
	Use current context to resolve help ambiguities
	Browser supports -remote command line option (Netscape)
	Help in new browser window
	Use Java (1.1) applet for online help
	Help port number
	Number of ports to scan if bind fails

	Debugger tab
	Ask before halting to set breakpoint
	Use procedure relative line number (vs. file relative)
	Display all numbers/characters as hex
	View unsigned char as integer
	Remember breakpoints
	Coloring for multiple debuggers
	Line numbers in source pane
	Position of buttons
	Command pane height in lines
	Command pane prompt
	Configure Debugger Buttons...
	More Debugger Options...
	Data Explorer Options
	Minimum initial size (WxH)
	Maximum initial size (WxH)
	Initial position (XxY)
	Two color mode
	Load Color Scheme...

	More Debugger Options...
	Automatically dereference pointers
	Check syntax of breakpoints when they are set
	Continue running script files on error
	"s" (step) and "n" (next) are blocking by default
	Show locations of variables
	Display typedef type instead of basic type
	Show position in non-GUI (-nodisplay) mode
	Repeat last command on return key in non-GUI (-nodisplay) mode
	Stepping over C++ exception or longjmp
	Command pane buffer size in bytes
	Seconds to wait for debug server before timing out

	Editor tab
	Reuse editor windows
	Create backup files when saving
	Drag and drop text editing
	Tab size
	Indent size
	Ctrl+cursor jump size
	Configure Editor Buttons...
	More Editor Options...
	Auto Indent Options
	Implicit auto indent
	Implicit auto indent in comments
	Switch bodies indented two instead of one
	Indent comments when indenting multiple lines
	Comments stick flush left
	C chars aligned like ’*’ in comments
	C paren indent mode, Ada paren mode

	More Editor Options...
	Print 2 columns in landscape
	Temp file directory
	Initial width in characters
	Initial height in characters
	Selection margin width in pixels
	Generate auto-recover file every ... seconds
	Per File Settings Defaults
	Spaces per indent for Ada
	Ada continuation line indent
	Word wrap
	Wrap column
	Wrap indent offset
	Alternate Editor Options
	Use xterm for alternate editor
	Executable
	Command line arguments

	Version Control tab
	Use version control
	Automatic checkout
	Version control system
	Command
	Under VC
	Check out
	Get
	Un check out
	Check in
	Check in, no comments
	Create
	Show history
	Who
	Previous version
	Restore Defaults for This VC System

	Colors tab
	Colors tab: Global Colors
	Background
	Foreground
	Control Area
	Selection
	Builder File Coloring check box
	Colors tab: Debugger Colors
	Assembly
	Break Dot
	Status
	Context Arrow
	Colors tab: Syntax Coloring
	Color C++ comments in C

	Other Configuration options
	clearbuttons
	debugbutton
	button
	cleareditbuttons
	editbutton
	clearkeys
	keybind
	Example
	clearmenus
	menu
	Opening menus
	clearmice
	mouse
	Example
	configurefile configure
	grabtimeout
	clickpause
	viewdef (Data Explorer Window Format)
	geometry
	iconify
	ignoremotion
	linesnonoverlapped
	editparenmatch
	sharedsymbols
	procqualifiedlocalimpliesoutermostblock
	warnonbpreplacement
	warnoncmdadrlinepromotion
	attempttoshowoldversionofupdatesource
	allowexecutioninbpcommand
	keeploaders
	icongeometry
	exprcasesensitivity
	gotohitsbpattargetaddress
	disasmstyle
	synchronous
	builderposition
	minwindowsize
	maxwindowsize
	nodecoration
	QuietTogCmd

	A Third party tools
	Third party version control systems
	Third party editors
	Using the Editor with third party tools
	Using the Debugger with third party tools

	Index

