

Green Hills C
User’s Guide

Version 1.8.9

Copyright © 1983-1999 by Green Hills Software, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written permission from Green Hills Software, Inc.

DISCLAIMER

GREEN HILLS SOFTWARE, INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software, Inc.
reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation
of Green Hills Software, Inc. to notify any person of such revision or changes.

Green Hills Software and the Green Hills logo are trademarks, and MULTI is a registered trademark, of Green Hills
Software, Inc.
All other trademarks or registered trademarks are property of their respective companies.

PubID: L02B-I1099-89NG

CONTENTS
PREFACE P-1
About this Manual P-2

Supporting Documentation P-2

Typographical Conventions P-3

1 C LANGUAGE FEATURES 1
C Language Modes 2

Pragma Directives 5

The C Preprocessor 15

Type Qualifiers 24

Structure and Union Assignment and Comparisons 25

Bit Fields 25

Old-Fashioned Syntax 28

Functions Returning Structures or Unions 29

Enumerated Types 30

Functions with Variable Arguments 31

asm Statement 33

Japanese Automotive C 34

C Run-time Library 36

Compiler Limitations 36

2 MIXING LANGUAGES 39
How the Driver Builds a Mixed Language Executable 40

Initialization of Libraries 42

Main() Program Examples 42

Performing I/O on a Single File in Multiple Languages 44

Native UNIX Libraries versus Green Hills Libraries 45

Calling a C Routine from FORTRAN 45

Calling a FORTRAN Routine from C 53

Calling a C Routine from Ada 60
Green Hills Software Inc. i

CONTENTS
Interfacing Pascal and C 62

C Routines and Header Files In C++ 63

Using C++ in C Programs 64

Function Prototyping in C versus C++ 65

3 WRITING PORTABLE CODE 67
Compatibility Between Green Hills Compilers 68

Word Size Differences 68

Byte Order Problems 69

Alignment Requirements 70

Structures, Unions, and Bit Fields 71

Assumptions about Function Calling Conventions 72

Pointer Issues 73

NULL Pointer 73

Character Set Dependencies 74

Floating Point Range and Accuracy 74

Operating System Dependencies 75

Assembly Language Interfaces 75

Evaluation Order 75

Machine Specific Arithmetic 76

Illegal Assumptions about Compiler Optimizations 77

Memory Optimization Restrictions 78

Problems with Source Level Debuggers 79

Problems with Compiler Memory Size 80

PCC Mode Incompatibilities 81

Detection of Portability Problems 82

4 OPTIMIZATION 83
Default Optimizations 84

General Optimizations Enabled with the -O Option 87
Green Hills Software Inc. ii

CONTENTS
Specialized Optimizations Set with the Suboptions -OLAMISD 93

Selecting Optimizations 104

A KANJI CHARACTER SUPPORT A-1
About Kanji A-2

Green Hills Support for Kanji A-2

Wide-Character vs. Multi-Byte Representation A-3

INDEX I-1
Green Hills Software Inc. iii

.
iv Green Hills C User’s Guide, v. 1.8.9

PREFACE

ABOUT THIS MANUAL

This manual describes the features of the C language supported by the Green
Hills C compilers. Only those features of the language which are consistent
across the entire family of Green Hills C compilers on all hosts and targets are
described here.

This manual is not a complete reference on the C programming language, nor
does it attempt to teach programming methods.

All of the examples given in this manual were done on a Sun workstation
running a UNIX environment. Where differences may exist on other systems,
an attempt has been made to mention them.

In all of the explanations and examples in this manual, it is assumed that the
Green Hills products have been installed in the directory /usr/green. If this is
not the case for your system, simply substitute the correct directory wherever
you see /usr/green.

SUPPORTING DOCUMENTATION

A complete set of documentation for the Green Hills C compiler includes a
Development Guide which is specific to that processor and operating system.
For information on using the compiler and for details which are specific to your
distribution, please refer to the Development Guide for that distribution.

In addition to the documentation provided with the Green Hills C compiler,
access to one or more of the following references will be valuable:

▲ Kernighan and Ritchie, The C Programming Language, First Edition, 1978,
Prentice Hall

▲ Kernighan and Ritchie, The C Programming Language, Second Edition,
1988, Prentice Hall

▲ Harrbison and Steele, C: A Reference Manual, Third Edition, 1991, Prentice
Hall

▲ ISO C Standard, ISO/IEC 9899:1990, (previously known as ANSI
X3.159-1989)
P-2 Green Hills C User’s Guide, v. 1.8.9

Typographical Conventions
TYPOGRAPHICAL CONVENTIONS

For example, in the command description

ccppc [-processor] filename

the command ccppc should be entered as given, the word “processor” may
optionally be substituted with the appropriate option, and the word “filename”
must be substituted with the appropriate file name.

Convention Example Description

bold text -noansi name of program, command, directory, or file

bold characters in quotes “A” name to enter as shown, without quotes

courier setenv TMPDIR samples of code, or instructions to enter

italic text in a command line -o filename place-holder for user-supplied information

square brackets, [] .macro name [list] encloses optional commands or terms

square brackets [] around
boldface default

Specifies char as
signed [default].

command or option is the default
Green Hills Software, Inc. P-3

P-4 Green Hills C User’s Guide, v. 1.8.9

Chapter
1

C LANGUAGE
FEATURES

1. C Language Features
This chapter describes aspects of the C language which are particular to Green Hills C.

C LANGUAGE MODES

Green Hills C supports four dialects of the C programming language:

▲ K+R

▲ Transition

▲ Permissive ANSI

▲ Strict ANSI

These terms are used throughout this document whenever a particular construct
is supported only in the mode for a specific dialect. If no specific mode is
mentioned, the construct is supported in all four modes.

The C Language Mode can be selected by the command line options shown in
the table below. Redundant options are provided for compatibility with various
UNIX C compilers.

All files in a single program must be compiled with the same C language mode.
Failure to do so may result in obscure failures at link-time or at run-time.

K+R MODE

This is the classic dialect of C in which UNIX was originally written. It is
described in the first edition of The C Programming Language by Kernighan
and Ritchie. The most important implementation of this dialect was the Portable
C Compiler (PCC). There are many versions of this compiler, including the C
compilers distributed with System V.3, BSD 4.3 and SunOS 4.x. Together these
compilers implement hundreds of extensions. Without these extensions it is

Mode Options

K+R -Xs, -k+r

Transition -Xt

Permissive ANSI -Xa, -ansi

Strict ANSI -Xc, -ANSI

Table 1 Language Mode Options
2 Green Hills C User’s Guide, v. 1.8.9

C Language Modes
impossible to compile the UNIX operating system or many existing C
application programs.

Green Hills has chosen to follow the particular version of pcc distributed with
the Berkeley 4.3 BSD version of UNIX. To this, many documented and
undocumented extensions from other compilers have been added to make
porting existing C programs to the Green Hills compiler as straightforward as
possible.

The following are a few of the useful features of C supported in this mode:

▲ the void keyword

▲ enum types

▲ the predefined symbol _ _LINE_ _, _ _FILE_ _, _ _TIME_ _, and
_ _DATE_ _

▲ #error, #ident, #elif and #defined() preprocessor directives

▲ functions that return structures

▲ asm() statements

▲ initialized extern variables

▲ initialized unions

▲ initialized automatic structs and arrays

TRANSITION MODE

The Transition mode is named after a similar mode of the C compiler provided
with UNIX System V Release 4. This mode is intended to allow existing
programs written in K & R C to make use of certain features of ANSI C. In
particular, function prototypes and the keywords const, signed, and volatile are
supported, along with all of the features of K+R mode. The f, u, and l suffixes
for numeric constants are recognized, and spaces are allowed before the leading
in preprocessor directives.

In this mode the header stdarg.h must be used rather than varargs.h because
function declarations follow the ANSI C rules rather than the K + R rules.

PERMISSIVE ANSI MODE

In this mode all of the features of the ANSI standard are provided, without some
of the restrictions. In particular the ANSI standard prohibits certain
Green Hills Software, Inc. 3

1. C Language Features
programming practices which may be useful or even necessary in certain cases.
Some cases which are prohibited by the ANSI standard generate a warning in
Permissive ANSI mode. Others, such as the following, generate no warning at
all:

▲ casts in constant expressions

▲ bit fields with type char, short, or long, rather than int as required by ANSI

▲ lone semicolons outside the body of a procedure

▲ empty structure or union declarations

▲ empty source files

▲ asm() statements

▲ floating point values in constant expressions

▲ uncommented characters after #endif

▲ functions not declared void which do not return a value

Permissive ANSI mode is recommended for all existing C code which comes
close to ANSI C and for all new development.

STRICT ANSI MODE

In this mode, all of the features of the ANSI standard are provided and all of the
restrictions are enforced. In most cases, the code generated in this mode will be
the same as in Permissive ANSI mode if the code compiles and if there are no
uses of predefined symbols which differ between the two modes.
4 Green Hills C User’s Guide, v. 1.8.9

Pragma Directives
PRAGMA DIRECTIVES

#pragma directives control compiler behavior by allowing individual compiler
implementations to add special features to C without changing the C language.
Programs that use #pragma stay relatively portable, although they make use of
features unavailable in all ANSI C implementations.

 The ANSI standard states in 6.8.6 “Any pragma that is not recognized by the
implementation is ignored.”

This requirement may help when porting code between compilers, because one
compiler will silently recognize and process a certain pragma, while a different
compiler which does not need that pragma or recognize it will silently ignore it.
On the other hand, if a pragma is misspelled the compiler will probably not
recognize it and therefore will silently ignore it also. For this reason, the
option -unknownpragmawarn is provided to cause the compiler to give a
warning for any pragma which is not recognized. Unrecognized pragma are
always ignored.

The majority of Green Hills proprietary #pragma begin with the keyword ghs to
differentiate them from other implementations. The compiler considers any
pragma beginning with the ghs keyword to be recognized.

 If the compiler recognizes a pragma, some amount of syntax checking will be
performed. Incorrect pragma may generate warnings but not errors and are
always ignored. The option -nopragmawarn disables warnings for pragma
which the compiler recognizes but which are incorrect.

#pragma asm
#pragma endasm

#pragma asm marks the start of a sequence of lines which are to be copied
literally to the assembly language output file. All lines after this pragma are
copied until a #pragma endasm is encountered. No processing of comments,
macros, or preprocessing directives will be performed. #pragma endasm may
not contain any comments or \ escapes, although it may contain spaces or tabs
before and after the # character, as long as the total length of the line does not
exceed 255 characters. Both pragma are enabled with the -pragma_asm_inline
and -japanese_automotive_c command line options.
Green Hills Software, Inc. 5

1. C Language Features
#pragma ghs check=(all,none,assignbound,bounds,nilderef, revert,
 switch,case,uninitvariable,usevariable,zerodivide)

The following pragma items turn on or off various compile-time or run-time
checks. They must be used outside of any function and they control all
functions which are defined after the pragma. They all take the form:

#pragma ghs check=(pragma items)

The parentheses are only needed around pragma-items if more than one is used,
in which case each item should be separated by a comma. To turn off any of
these options, precede the pragma-items with the word no. This is useful to turn
on everything except the indicated flag. For example, use #pragma ghs
check=(all,nozero) to turn on all checks except zero.

All of these pragma items may also be given on the command line with the
-check=pragma-items option. For example, to turn on all checking except
bounds checking, you could either include the following code in your program:

#pragma ghs check=(all,nobounds)

or you could use the following command line option:

-check=all,nobounds

Only the long form of the options are recognized on the command line.
Therefore, -check=assignbounds is allowed, but -check=assign is not.

#pragma ghs check=all
Turns on all checks.

#pragma ghs check=none
Turns off all checks.

#pragma ghs check=assign or
#pragma ghs check=assignbound

Checks that integral assignments to variables smaller than type int
are in bounds.

#pragma ghs check=bound or
#pragma ghs check=bounds

Checks at runtime that array index expressions do not exceed the
declared array dimension, if it is known.
6 Green Hills C User’s Guide, v. 1.8.9

Pragma Directives
#pragma ghs check=nil or
#pragma ghs check=nilderef

Check for NULL pointer dereferences.
#pragma ghs check=revert

Reverts to the settings on the command line.
#pragma ghs check=switch or
#pragma ghs check=case

Generates a runtime warning if the switch expression does not
match any of the case labels. This check is not done when a
default case label is used or when the switch statement is
enclosed in an if construct.

#pragma ghs check=uninit or
#pragma ghs check=uninitvariable

Check at runtime for simple variables which are read before they
are initialized. Composite variables such as arrays, structs and
unions are not checked. This option generates much larger and
slower programs. It may be used to detect bugs which are
otherwise very hard to find.

#pragma ghs check=use or
#pragma ghs check=usevariable

Generate a compile-time warning for three conditions:

1. Local variables or parameters which are not used.

2. Local variables or parameters which the compiler can
detect are read before they are initialized. This checking
uses a linear algorithm rather than data flow analysis,
therefore it cannot detect all cases of uninitialized vari-
ables.

3. Non-void functions which do not return a value.
#pragma ghs check=zero or
#pragma ghs check=zerodivide

Generates an error message indicating that a zero divide occurred
and terminates program execution.

If one of the above run-time checking pragma are used in a program, the Green
Hills library, libind, must be linked in. In many environments, libind is linked
in by default. In some environments, such as native UNIX, libind must be
linked in manually.
Green Hills Software, Inc. 7

1. C Language Features
#pragma ghs ifdebug pragma

This pragma and the three which follow it are used as a kind of prefix to any
pragma listed in this chapter which begins with the keyword ’ghs’. For example,

#pragma ghs check=bounds

may be made to take effect only if debugging is enabled like this:

#pragma ghs ifdebug check=bounds

This invokes pragma pragma if the current file is compiled with debugging
enabled.

#pragma ghs ifnodebug pragma

This invokes the pragma pragma if the current file is not compiled with
debugging enabled.

#pragma ghs ifoptimize pragma

This invokes pragma pragma if the current file is being optimized pragma.

#pragma ghs ifnooptimize pragma

This invokes pragma pragma if the current file is not being optimized.

#pragma ghs includeonce

Same as the -includeonce option. Header files are only included once. This is
illegal in strict ANSI C.

#pragma ghs inline

The next function to be defined becomes an inline function. See also #pragma
inline.

#pragma ghs interrupt

The next function to be defined becomes an interrupt function.
8 Green Hills C User’s Guide, v. 1.8.9

Pragma Directives
#pragma ghs nofloat interrupt

The next function to be defined becomes an interrupt function which does not
save and restore floating point registers.

#pragma ghs revertoptions

Undoes the effect of all options set via pragma and returns to the default
specified on the command line.

#pragma ghs sda=all
#pragma ghs sda=size

Specifies the threshold size for variables placed in the Small Data Area (SDA).

#pragma ghs section sect=”name”

The term section refers to an area of memory allocated at link time. The
compiler categorizes all functions, variables and data into sections. Each section
has a default name. This pragma allows you to rename the section, giving you
more control over the location of objects in memory.

The following list displays sections which may be renamed (Note: not all
sections are used on all processors). Normally, the following keywords are the
same as the section’s default name that the compiler uses:

text
rodata
data
rozdata
sdata
bss
tdata
sbss
zdata
zbss
rosdata

The keywords may be understood as follows:
text Any function or other executable code.
data Initialized data.
Green Hills Software, Inc. 9

1. C Language Features
bss Uninitialized or zero initialized data.
ro Read-only
s Small Data Area (SDA)
t Tiny Data Area (TDA)
z Zero Data Area (ZDA)

(Thus, rozdata refers to Read-only Zero Data Area.)

No existing section names may be used. For example, it is not allowed to
rename text=”.data”. If the output is COFF, section names must be no more than
8 characters in length. Other than this, there are no restrictions on the names that
may be used for sections. Most default section names begin with a period, but
this not a requirement.

The syntax of #pragma ghs section sect=”name” allows more than one section
to be renamed on a single line, as follows:

#pragma ghs section text="text1" data="data1" bss="bss1"

To revert entirely to the default section names (except text), use the abbreviated
form with no arguments:

#pragma ghs section

To revert an individual section to its default name, use the keyword default,
without quotation marks:

#pragma ghs section data=default

In most environments, it is not allowed to have more than one text section. This
means that #pragma ghs section text=”text1” must appear in the file before any
functions. It also means that #pragma ghs section text=default is not allowed
after the text section has been renamed. In fact, once any functions have been
seen, the abbreviated directive #pragma ghs section will NOT revert the name
of the text section to the default, although it will revert all other sections to their
defaults.

This pragma should be used outside of any function.
10 Green Hills C User’s Guide, v. 1.8.9

Pragma Directives
#pragma ghs startdata
#pragma ghs enddata

Forces any variables declared between the two pragmas to be allocated and
referenced in normal data areas, outside any Small Data Area (SDA) or Zero
Data Area (ZDA).

#pragma ghs startsda
#pragma ghs endsda

Forces any variables declared between the two pragmas to be allocated and
referenced in the Small Data Area (SDA).

#pragma ghs starttda (CERTAIN PROCESSORS ONLY)
#pragma ghs endtda

Forces any variables declared between the two pragmas to be allocated and
referenced in the Tiny Data Area (TDA).

#pragma ghs startzda
#pragma ghs endzda

Forces any variables declared between the two pragmas to be allocated and
referenced in the Zero Data Area (SDA).

#pragma ghs zda=all
#pragma ghs zda=size

Specifies the threshold size for variables placed in the Zero Data Area (SDA).

#pragma ident “string”

This causes string to be placed in the output file as a comment. The exact
behavior varies between systems.

#pragma inline function-list (C ONLY)

This pragma takes a list of comma separated function names. It will cause all
the listed functions to behave as if the keyword __inline was used to declare the
function. This pragma is enabled with the -pragma_asm_inline and
Green Hills Software, Inc. 11

1. C Language Features
-japanese_automotive_c command line options. (See also #pragma ghs
inline.)

#pragma intvect intfunc integer_constant (CERTAIN PROCESSORS ONLY)

This causes a pointer to the function intfunc to be output at the address specified
by integer_constant. This pragma is intended to support interrupt vectors. For it
to be useful, you must implement an interrupt handler which loads the function
pointer from the specified address and transfers control to that address. intfunc
should be the name of a function declared as an interrupt function somewhere in
the application. No verification is made that function is the name of a valid
interrupt function. To enable this pragma, use the -japanese_automotive_c
command line option.

#pragma pack(n)
#pragma pack()

Controls packing of an individual structure. Causes all structs, unions, and
classes declared after the pragma to be laid-out in memory such that no data
member has alignment greater than n bytes. n must be 1, 2, 4, 8, or 16.

#pragma weak

1. #pragma weak foo

#pragma weak foo has 2 different uses:

a) It can be used with external references:

#pragma weak foo
extern int foo;

In this usage, foo must not be defined in the file containing the pragma,
although it may be referenced. If foo is defined in another file, the pragma has
no effect. If foo is not defined in any file, the pragma prevents an undefined
symbol error in the linker and causes the address of foo to be zero. (Exception:
In -pic or -pid mode, foo will have the address 0 plus an adjustment for the text
or data segment offset.)
12 Green Hills C User’s Guide, v. 1.8.9

Pragma Directives
b) It can be used with initialized global definitions:

#pragma weak foo
int foo=1;

If foo never appears in any other file, or if foo only appears in external
references such as

extern int foo;

in other files, then the #pragma has no effect. If a definition of foo, either
initialized or common, appears in any other file, then the effect is as if foo was
declared as

extern int foo;

2. #pragma weak foo=bar

This directive is used to create a globally defined symbol, foo, which has the
same address as the globally defined symbol bar. The symbol foo should not be
declared in the C file at all, and the symbol bar must be declared.

No reference to foo should appear in the file, since foo is not declared.

At link time, foo is identical to bar unless there is another global definition of
foo in another file. In that case, the weak definition of foo disappears and is
replaced by the global definition of foo from another file.

This is normally used to provide backwards compatible aliases to symbols
which have been renamed in a new version of software:

#pragma weak oldname=name
int name()
{
 return 5;
}

If any old software depends on the existence of oldname, it will continue to
work as if the function is called oldname. However, if all references to oldname
which expect the old meaning are removed, the symbol effectively disappears
and can be reused for another purpose.
Green Hills Software, Inc. 13

1. C Language Features
C++ ONLY PRAGMA

#pragma hdrstop

It enables the user to specify where the set of header files are subject to
precompilation ends.

#pragma instantiate

Causes a specified entity to be instantiated.

#pragma can_instantiate

Indicates that a specified entity can be instantiated in the current compilation,
but need not be. This is used in conjunction with automatic instantiation to
indicate potential sites for instantiation if the template entity turns out to be
required.

#pragma do_not_instantiate

Suppresses the instantiation of a specified entity. It is typically used to suppress
the instantiation of an entity for which a specific definition will be supplied.

#pragma no_pch

May be used to suppress precompiled header processing for a given source file.
14 Green Hills C User’s Guide, v. 1.8.9

The C Preprocessor
THE C PREPROCESSOR

Green Hills C includes a built-in preprocessor. Preprocessing and compilation
are normally performed in a single pass, improving compiler performance. The
C Language mode affects behavior of the preprocessor. Generally, in K+R and
Transition mode preprocessing follows the traditional UNIX rules and in
Permissive ANSI and Strict ANSI modes, preprocessing follows the ANSI
standard.

PREPROCESSOR OUTPUT FILE

Preprocessed output may be sent to standard output using the -E compiler driver
option. Or it may be written to the file filename.i using the -P compile-time
option. Normally, preprocessing is performed concurrently with compilation
and no intermediate output is generated.

PREDEFINED SYMBOLS IN C

SYMBOLS REQUIRED BY ANSI C

The ANSI standard requires the preprocessor to define 5 symbols. These
symbols and their values are shown in the table below. All of them except
_ _STDC_ _ are defined in all modes of C. _ _STDC_ _ is defined in
Permissive ANSI and Strict ANSI modes only.

Symbol Value

_ _STDC_ _ 0 in Permissive ANSI mode
1in Strict ANSI mode
undefined in K+R and Transition modes

_ _FILE_ _ The name of the current source file, enclosed in quotes, e.g. “file.c”

_ _LINE_ _ The current line-number as an integer.

_ _DATE_ _ The current date, enclosed in quotes; it must always be ten characters.
For example, “Apr 01 2001”

_ _TIME_ _ The current local time, enclosed in quotes.
For example, “11:46:51”

Table 2 ANSI C Predefined Symbols
Green Hills Software, Inc. 15

1. C Language Features
ADDITIONAL SYMBOLS PROVIDED BY GREEN HILLS C

The preprocessor defines a number of symbols by default. Different symbols
are defined depending on the particular compiler and the options specified. In
this way you can write code which will compile differently depending on the
use of the #ifdef preprocessor directive. All preprocessor symbols are listed
below.

The ANSI standard for C requires that all symbols which are predefined by the
compiler begin with one or two underscores (_). Prior to the ANSI standard, C
preprocessors defined symbols with names like ghs or unix which could
conflict with symbol names in the user’s program. In the list below, all symbols
have 2 leading underscores and are defined in all modes. In K+R, Transition,
and Permissive ANSI modes, some symbols are also defined without the two
leading underscores; those symbols have a * in the second column. Recent
preprocessors use 2 leading underscores and 2 trailing underscores. Symbols
listed below which are available in all 3 forms (ghs, _ _ghs, and _ _ghs_ _) are
marked with **.

All of the symbols have the value 1 except _ _ghs_alignment, explained below.
The general symbols are:

Symbol Description

_ _ghs_ _ ** Any Green Hills Software compiler

_ _LANGUAGE_C_ _ ** Language is C (as opposed to C++ or assembly language)

_ _PROTOTYPES_ _ All modes of C except K+R mode

_ _BigEndian * Big Endian byte order

_ _LittleEndian * Little Endian byte order

_ _IeeeFloat * IEEE-695 Floating Point format

_ _SoftwareFloat All floating point is done with integer instructions

_ _SoftwareDouble Double precision floating point uses integer instructions

_ _NoFloat * No Floating Point mode

_ _ghs_alignment Alignment of the type double.
Has a value of either 1, 2, 4, or 8

Table 3 General Symbols
16 Green Hills C User’s Guide, v. 1.8.9

The C Preprocessor
_ _ghs_packing Represents value specified with -Zpn option on the command line or
with the Structure Packing button. Has a value of either 1, 2, 4, or 8.
This is NOT set at all unless packing is explicitly set by the user either
with -Zp1 or with the Structure Packing button. This value is not
changed by the #pragma pack directive.

_ _ghs_pic * Position Independent Code for embedded

_ _ghs_pid * Position Independent Data for embedded

_ _ghs_sda * Small Data Area optimization supported

_ _ghs_tda * Tiny Data Area optimization supported

_ _ghs_zda * Zero Data Area optimization supported

_ _Ptr_Is_Signed Pointers are Signed

_ _Ptr_Is_Unsigned Pointers are Unsigned

_ _Char_Is_Signed Type char is signed char

_ _Char_Is_Unsigned Type char is unsigned char

_ _Wchar_Is_Signed Type wchar_t is signed short, int, or long

_ _Wchar_Is_Unsigned Type wchar_t is unsigned short, int, or long

_ _Wchar_Is_Short_ _ Type wchar_t are short or unsigned short

_ _Wchar_Is_Int_ _ Type wchar_t are int or unsigned int

_ _Wchar_Is_Long_ _ Type wchar_t are long or unsigned long

_ _Int_Is_64 Type int is 8 bytes

_ _Int_Is_32 Type int is 4 bytes

_ _Long_Is_64 Type long is 8 bytes

_ _Long_Is_32 Type long is 4 bytes

_ _LL_Is_64 Type long long is 8 bytes

_ _Ptr_Is_64 Pointers are 8 bytes

_ _Ptr_Is_32 Pointers are 4 bytes

_ _Reg_Is_64 CPU has 64-bit registers

_ _Reg_Is_32 CPU has 32-bit registers

Symbol Description

Table 3 General Symbols
Green Hills Software, Inc. 17

1. C Language Features
The general target operating system symbols are:

TARGET PROCESSOR PREDEFINED SYMBOLS

Target predefined symbols for a variety of architectures are tabulated below.:

Symbol Description

_ _bsd * Bsd 4.x and SunOS 4.x

_ _DGUX_ _ ** Data General DG/UX

_ _sco * SCO UNIX

_ _sun * Sun Microsystems SunOS 4.x or Solaris 2.x

_ _sysV * UNIX System V.3

_ _sysV4 * UNIX System V.4 or Solaris 2.x or DG/UX

_ _sysV4pic * Position Independent code on any of above

_ _windows * Microsoft Windows 3.1

_ _msw * Microsoft Windows 3.1

_ _VXWORKS * Wind River VxWorks

_ _unix_ _ ** Any version of UNIX

Table 4 Target Operating System Symbols

Symbol Description

_ _i386 Intel 80386, i486, or Pentium

_ _i486 Intel i486 or Pentium

_ _Japanese_Automotive_C Japanese Automotive C

_ _ghs_thread_safe True for velOSity and INTEGRITY

_ _ARM6 ARM 6 CPU variant

_ _ARM7 ARM 7 CPU variant

_ _ARM7m ARM 7m CPU variant

_ _ARM7tm ARM 7tm CPU variant

_ _ARM8 ARM 8 CPU variant

_ _ARM9 ARM 9 CPU variant

Table 5 Target Processor Symbols
18 Green Hills C User’s Guide, v. 1.8.9

The C Preprocessor
_ _ARM7500fe ARM 7500fe CPU variant

_ _StrongARM StrongARM mode

_ _THUMB When either THUMB code or libraries are selected

_ _GlobalRegisters=n Corresponds to settings of -globalreg=options. n is a
positive integer or 0.

_ _GlobalFloatingPointRe
gisters=n

Corresponds to setting of -globalfpreg=options. n is a
positive integer or 0.

_ _MicroRAD ARM’s MicroRAD mode

_ _NDR NDR CPU

_ _nCPU nCPU

_ _MCore_ _ MCore CPU

_ _M200 MCore 200 CPU variant

_ _M300 MCore 300 CPU variant

_ _ColdFire Motorola ColdFire

_ _MCF5100 NOTE: Motorola, but does NOT imply ColdFire!

_ _MCF5202 Motorola ColdFire 5202 CPU variant

_ _MCF5203 Motorola ColdFire 5203 CPU variant

_ _MCF5204 Motorola ColdFire 5204 CPU variant

_ _MCF5206 Motorola ColdFire 5206 CPU variant

_ _MCF5206E Motorola ColdFire 5206E CPU variant

_ _MCF5207 Motorola ColdFire 5207 CPU variant

__m68k_ _ Motorola 68xxx, all CPU variants

__m88k_ _ Motorola m88000, all CPU variants

__m88110 Motorola m88110 CPU variant

_ _mc68000,
_ _MC68000

* Motorola 68xxx, all CPU variants

_ _mot68k * Motorola 68xxx in Oasys assembler mode

_ _motcoff * Motorola 68xxx in COFF mode

Symbol Description

Table 5 Target Processor Symbols
Green Hills Software, Inc. 19

1. C Language Features
_ _motelf * Motorola 68xxx in ELF mode

_ _m68000 * Motorola 68000 CPU variant

_ _m68010 * Motorola 68010 or 6830x CPU variants

_ _m68020 * Motorola 68020 CPU variant

_ _m68030 * Motorola 68030 or 68340 or 68360 CPU variants

_ _m68332 * Motorola 6833x CPU variants

_ _m68360 * Motorola 68360 CPU variant

_ _m68lc040 * Motorola 68LC040 CPU variant

_ _m68ec040 * Motorola 68EC040 CPU variant

_ _m68040 * Motorola 68040 CPU variant

_ _m68lc060 * Motorola 68LC060 CPU variant

_ _m68ec060 * Motorola 68EC060 CPU variant

_ _m68060 * Motorola 68060 CPU variant

_ _m68881 * Motorola 68881 CPU variant

_ _m68882 * Motorola 68882 CPU variant

_ _mips * SGI MIPS, all CPU variants

_ _mips2 * MIPS R3000 or R3900

_ _mips64 * MIPS with 64-bit integer registers

_ _MIPSEL MIPS Little Endian

_ _MIPSEB * MIPS Big Endian

_ _mipsf64 * MIPS with 64-bit floating point registers

_ _ns32000 * National Semiconductor 32000

_ _R300_ _ MIPS R300

_ _R3000_ _ MIPS R3000

_ _R3700_ _ MIPS R3700

_ _R3750_ _ MIPS R3750

_ _R3900_ _ MIPS R3900

Symbol Description

Table 5 Target Processor Symbols
20 Green Hills C User’s Guide, v. 1.8.9

The C Preprocessor
_ _R3900e_ _ MIPS R3900e

_ _R4000_ _ MIPS R4000

_ _R4100_ _ MIPS R4100

_ _R4200_ _ MIPS R4200

_ _R4100_ _ MIPS R4100

_ _R4200_ _ MIPS R4200

_ _R4300_ _ MIPS R4300

_ _R4400_ _ MIPS R4400

_ _R4600__ MIPS R4600

_ _R4650__ MIPS R4650

_ _R4700_ _ MIPS R4700

_ _RH32_ _ TRW RH32

_ _PowerPC * PowerPC

_ _ppc * PowerPC

_ _ppc401 PowerPC 401 CPU variant

_ _ppc403 PowerPC 403 CPU variant

_ _ppc500 PowerPC 500 CPU variant

_ _ppc555 PowerPC 555 CPU variant

_ _ppc601 PowerPC 601 CPU variant

_ _ppc602 PowerPC 602 CPU variant

_ _ppc603 PowerPC 603 CPU variant

_ _ppc603e PowerPC 603e CPU variant

_ _ppc604 PowerPC 604 CPU variant

_ _ppc604e PowerPC 604e CPU variant

_ _ppc740 PowerPC 740 CPU variant

_ _ppc750 PowerPC 750 CPU variant

_ _ppc821 PowerPC 821 CPU variant

Symbol Description

Table 5 Target Processor Symbols
Green Hills Software, Inc. 21

1. C Language Features
_ _ppc823 PowerPC 823 CPU variant

_ _ppc860 PowerPC 860 CPU variant

_ _ppc8240 PowerPC 8240 CPU variant

_ _ppc8260 PowerPC 8260 CPU variant

_ _ppcec603e PowerPC ec603e CPU variant

_ _rs6000c PowerPC rs6000c CPU variant

_ _SH7000 * For SH1, SH2, SH3, SH-DSP

_ _SH7400 * For SH-DSP

_ _SH7600 * For SH2

_ _SH7700 * For SH3

_ _SH_1 * For SH1

_ _SH_1_PLUS * For SH1+

_ _SH_2 * For SH2

_ _SH_3 * For SH3

_ _SH_4 * For SH4

__SH_DSP * For SH-DSP

_ _sparc * Sun SPARC

_ _sparclite * Sun SPARClite

_ _danlite * DANlite chip

_ _ST100 For ST100

_ _GP16 For ST100

_ _StarCore_ _ For StarCore

_ _Tricore * For TriCore (NOTE: "c" is not capitalized here)

_ _Tricore_Rider_A * For TriCore (NOTE: "c" is not capitalized here)

_ _Tricore_Rider_B * For TriCore (NOTE: "c" is not capitalized here)

_ _V800 * NEC V800 Series, all CPU variants

_ _V810 * NEC V810 CPU variant

Symbol Description

Table 5 Target Processor Symbols
22 Green Hills C User’s Guide, v. 1.8.9

The C Preprocessor
For the i960, there are three levels of predefined symbols. The top level
contains four symbols that are defined for all 960 processors: __i960, i960,
__i80960, and i80960. The next two levels include families of processors and
specific processors:

_ _V810U * NEC V810U CPO variant

_ _V830 * NEC V830 CPU variant

_ _V830R * NEC V830R CPU variant

_ _V850 * NEC V850 CPU variant

_ _V850E * NEC V850E CPU variant

Symbols * Description

_ _i960KA, _ _i960_KA, 960KA processor

_ _i960KB, _ _i960_KB, 960KB processor

_ _i960KX, _ _i960_KX, KX family (960KA, 960 KB)

_ _i960SA, _ _i960_SA, 960SA processor

_ _i960SB, _ _i960_SB, 960SB processor

_ _i960SX, _ _i960_SX, SX family (960SA, 960SB)

_ _i960CA, _ _i960_CA, 960CA processor

_ _i960CF, _ _i960_CF, 960CF processor

_ _i960CX, _ _i960_CX, CX family (960CA, 960CF)

_ _i960JA, _ _i960_JA, 960JA processor

_ _i960JF, _ _i960_JF, 960JF processor

_ _i960JD, _ _i960_JD, 960JD processor

_ _i960RD _ _i960RD 960 RD processor

_ _i960RP, _ _i960_RP, 960RP processor

_ _i960JX, _ _i960_JX, 960JX processor

_ _i960HA, _ _i960_HA, 960HA processor

Table 6 Target Processor Symbols for 960

Symbol Description

Table 5 Target Processor Symbols
Green Hills Software, Inc. 23

1. C Language Features
* In K+R, Transition, and Permissive ANSI modes, this symbol is
also defined without the 2 leading underscores.

** This symbol is always defined with and without the 2 trailing
underscores. In K+R, Transition, and Permissive ANSI modes,
this symbol is also defined with neither the leading nor trailing
underscores.

TYPE QUALIFIERS

There are two new type qualifiers in all modes except K+R mode: volatile and
const.

VOLATILE

When optimizations are turned on with Standard Optimizations (-O) in
Permissive ANSI or Strict ANSI modes, Memory Optimization (-OM) is turned
on automatically (see section Memory Optimization with -OM). Memory
Optimization means that the compiler may assume that memory locations only
change under the control of the compiler. This assumption is usually, but not
always, true. For example, it is not true for memory which is updated by
interrupt routines, or for memory-mapped I/O. When the compiler is allowed to
make this assumption, it may avoid and/or delay reads or writes to memory
locations by maintaining a copy of the memory location in a register. This is
generally much faster since reads and writes to registers are faster than read and
writes to memory. The volatile qualifier specifically turns off Memory
Optimization for the indicated variables, indicating that these variables may
change and the compiler can not assume otherwise. This allows you to still use
Memory Optimization when only some of your variables may change.

_ _i960HD, _ _i960_HD, 960HD processor

_ _i960HT, _ _i960_HT, 960HT processor

_ _i960HX _ _i960HX HX family (960HA, 960HD, 960 HT)

Symbols * Description

Table 6 Target Processor Symbols for 960
24 Green Hills C User’s Guide, v. 1.8.9

Structure and Union Assignment and Comparisons
CONST

The compiler will give a compile-time error for any attempt to modify an object
declared const. This qualifier also provides the compiler with additional
information for use in optimizations. Wherever the value of a const variable is
visible, the optimizer makes full use of the fact that this variable is simply a
named constant value, combining it with other constants at compile time, and
performing other simplifications. Even when the value of a const is not visible,
the optimizer can make use of the fact that the variable is invariant to
resequence statements and instructions or to move them outside of loops.

When const is used with volatile, even if the value of the object is visible, the
compiler will never replace a use of the object with its value.

STRUCTURE AND UNION ASSIGNMENT AND COMPARISONS

Two structures or unions with the same type may be assigned or compared for
equality or inequality. Assignment of one structure or union to another is done
with a memory copy of the data. Comparison is done, on a bit by bit basis, on
the entire structure or union, including padding bytes.

If there are padding bytes between fields or members of a structure or union due
to memory alignment requirements, those holes cannot be accessed by means of
the structure or union. Note also that global variables will always be initialized
to zero so the holes will always be zero, but local variables may have random
data in the holes. Therefore, two structures or unions with the same values for
every field may not be equal when compared. For structures or unions that will
be compared, it is important to either have no holes in the memory
representation or to explicitly initialize each such variable with a structure
assignment from a global variable known to have zeros in the holes.

A structure or a union may be passed as an argument to a function without
restriction. The structure or union is copied when it is passed, however, so
passing a very large structure or union is much less efficient than passing a
pointer. For this reason we recommend that pointers be passed where possible.

BIT FIELDS

Bit fields in C have a base type which determines whether the field is signed or
unsigned, its alignment, and its maximum size.
Green Hills Software, Inc. 25

1. C Language Features
ANSI C LIMITATIONS

ANSI C requires that the base type of a bit field be either int, signed int, or
unsigned int. This restriction is enforced in Strict ANSI mode and is ignored
without warning in all other modes.

SIGNED VERSUS UNSIGNED BIT FIELDS

If the base type is either char, short, int, or long, without either the signed or
unsigned qualifier, compile-time options -signedfield and -unsignedfield can
be used to select whether the bit field is signed or unsigned. The default on each
system is chosen for efficiency and compatibility with other important
implementations on that system. It is not safe to assume that bit fields will be
signed or unsigned when using different C compilers, even between Green Hills
C compilers for different systems.

The choice of signed versus unsigned bit fields can significantly affect code
efficiency. Unless the processor has special instructions for this purpose, it may
require 2 or even 3 instructions to extract the bits of a signed field whenever that
field is evaluated. This is because the bits must be sign-extended to the size of
an int, which may require 2 arithmetic shifts.

Another difficulty with signed bit fields is seen in the following example:

int i;
struct {int x:2; } y;
y.x = 2;
i = y.x;
if (y.x > 0) func();

In this example, if x is an unsigned field, i will have the value 2 and func() will
be called. If x is a signed field, i will have the value -2 and func() will not be
called. This is because the range represented by a signed field with 2 bits is
from -2 to 1. The value 2 is out of range which is not detected. Instead it is
interpreted as -2 when y.x is later evaluated.

SIZE AND ALIGNMENT OF BIT FIELDS

There is a close relationship between the base type of a field and the space it
occupies. First, an individual bit field can never have more bits than its base
type.
26 Green Hills C User’s Guide, v. 1.8.9

Bit Fields
Second, a bit field must always fit entirely within a memory location that could
hold its base type. It cannot cross a boundary that a simple variable of that type
cannot cross. Thus, a field of type char can be placed in any memory location,
but cannot cross a byte boundary. For example, variable w below requires 3
bytes because fields a and b do not fit in a single byte. Therefore 4 bits of
padding are inserted before field b. Similarly b and c do not fit in a byte and 2
bits of padding are inserted before c.

struct {
 char a:4;
 char b:6;
 char c:5;
} w;

Variable x below requires only 2 bytes because the total size of the 3 fields is
less than the size of a short.

struct {
 short a:4;
 short b:6;
 short c:6;
} x;

Third, the alignment of a bit field is determined by its base type. Padding may
be inserted so that the field and the structure containing it is properly aligned.
In the examples above, w has the alignment of a char which is always 1 byte,
and x has the alignment of a short which is either 1 byte or 2 bytes. (Refer to
your Development Guide for information on the size and alignment of C and
C++ Data Types.) Neither w nor x would be any larger due to alignment, but y
and z below will have an extra byte of padding added if short is 2 byte aligned.

struct {
 char byte;
 short a:4; {padding inserted before ‘a’ for
 alignment}
 short b:6;
 short c:6;
} y;

struct {
 short a:4;
Green Hills Software, Inc. 27

1. C Language Features
 short b:6;
 short c:6;
 char byte; {padding added after ‘byte’ for
 alignment}
} z;

OLD-FASHIONED SYNTAX

In K+R and Transition modes there are two forms of old-fashioned syntax
which are still supported. The first is initialization of variables without an =
(such as int x 5 in place of int x = 5). The second is reflexive operators with the
= first (such as x =+ 5 instead of x += 5). The compiler always gives one of the
following warnings when it recognizes these old forms:

warning: Old-fashioned initialization

or

warning: Old-fashioned assignment operator

Alternatively, the option -Xnooldfashioned causes the compiler to completely
reject the old-fashioned syntax forms, and instead to behave exactly as it would
in Permissive ANSI and Strict ANSI modes. In those modes int x 5 is illegal
and x =+ 5 is interpreted as x=5, x =& y is interpreted as x = (&y), and x =* p is
interpreted as x = (*p). The following table shows examples of the old and the
new syntax:

Type Old syntax New syntax

Initializers int x 5,y 6; int x=5,y=6;

Operators x =+ 5 x += 5

 x =- 6 x -= 6

 x =* 9 x *= 9

 x =/ 4 x /= 4

 x =& y x &= y

 x =| 7 x |= 7

 x =^ 1 x ^= 1

Table 7 Old vs. New Syntax
28 Green Hills C User’s Guide, v. 1.8.9

Functions Returning Structures or Unions
FUNCTIONS RETURNING STRUCTURES OR UNIONS

With most Green Hills C compilers, other than C-68000 and the C-to-C
translator, functions that return structures or unions are handled in a reentrant
manner. Consider the following example:

struct s_t {
 int i;
 float x;
} s;

struct s_t init_s(int i, float x)
{
 struct s_t ret;
 ret.i = i;
 ret.x = x;
 return ret;
}

main(void)
{
 s = init_s(33, 4.2);
}

In main, the compiler creates a temporary variable of type struct s_t and passes
its address to init_s. When init_s executes the return statement, the contents of
ret are copied to this temporary structure. In main(), after the call, the contents
of the temporary are copied into s.

This method is completely safe and reentrant. Often more efficient code would
result if the C program were written like this instead:

 x =% z x %= z

 x =<< 3 x <<= 3

 x =>> 5 x >>= 5

Type Old syntax New syntax

Table 7 Old vs. New Syntax
Green Hills Software, Inc. 29

1. C Language Features
struct s_t {
 int i;
 float x;
} s;

void init_s(struct s_t *p, int i, float x) {
p->i = i;
p->x = x;
}

main(void) {
 init_s(&s, 33, 4.2);
}

In C-68000 and the C-to-C translator, structure return is non-reentrant. Instead
of having the caller allocate a temporary variable, the function init_s itself
allocates the variable, using permanent memory. The function init_s returns a
pointer to this variable and the caller, main, copies it to s. The code is slightly
more efficient than the reentrant form, but it has the problem that the return
value can be corrupted if init_s is invoked again after it has returned, but before
the caller has had time to copy the value. This could happen if init_s is called by
an interrupt routine, for example. The second call to init_s would modify the
return value of init_s and return. Then the first caller to init_s would use the
value returned by the second call, not the first. This problem can be avoided by
rewriting init_s as shown above.

ENUMERATED TYPES

Variables of type enum actually have the type int. Similarly, the members of an
enumerated type are essentially named constants of type int. The compile-time
option -shortenum allows the compiler to select the smallest predefined type
(including unsigned types) that allows representation of all listed values.

The ANSI standard does not call for strict type checking with respect to
enumerated types. In fact, a variable of enumerated type is considered
equivalent to a normal int and most operations which are allowed on int are
allowed on enumerated types, including assignment of a variable or member of
one enumerated type to a variable or parameter of another type.
30 Green Hills C User’s Guide, v. 1.8.9

Functions with Variable Arguments
FUNCTIONS WITH VARIABLE ARGUMENTS

Green Hills C supports functions with variable parameters. In K+R mode, this is
done using the varargs facility. In Transition, Permissive ANSI, and Strict
ANSI, this is done using the stdarg facility. The two implementations are
different and incompatible. You must take care to use the correct facility for the
mode of C in use.

An important limitation of variable parameters is that the types char, short, and
float are not supported. When a function with variable parameters is called, the
caller promotes expressions of these types to int and double. Therefore, inside
a function with variable parameters, only variables of type int, long, double,
and pointer should be expected as parameters.

THE VARARGS FACILITY

To use the varargs facility you must do the following:

1. The line #include <varargs.h> must appear before the first function defini-
tion.

2. The last parameter of a variable argument list function must be named
va_alist.

3. The last parameter declaration of a variable argument list function must be
va_dcl.

4. There must not be a semicolon between va_dcl and the initial left brace ({)
of the function.

5. There must be a variable declared in the function of type va_list.

6. The varargs facility must be initialized at the top of the function by passing
the variable of type va_list to a call of the macro va_start.

7. To obtain the variable arguments to the function, in left to right order, the
macro va_arg is invoked once for each argument. The first argument to the
macro va_arg is the variable of type va_list. The second argument is the
type of the current argument of the function. The va_arg macro returns the
value of the current argument of the function.

8. The varargs facility must be terminated by passing the variable of type
va_list to a call of the macro va_end at the end of the function.
Green Hills Software, Inc. 31

1. C Language Features
EXAMPLE:

#include <varargs.h>
/* Return the sum of a variable number of "int"
arguments */
Sum(n, va_alist)
int n;
va_dcl/* steps 3 and 4 */
{
 va_list params; /* step 5 */
 int ret = 0;
 va_start(params); /* step 6 */
 while (n-- > 0)
 ret += va_arg(params,int); /* step 7 */
 va_end(params); /* step 8 */
 return(ret);
}

THE STDARG FACILITY

The stdarg facility has some additional limitations. First, every function with
variable parameters is required to have at least one fixed parameter. Second, a
prototype for the function must appear before its first invocation.

To use the stdarg facility you must do the following:

1. The line #include <stdarg.h> must appear before the first function defini-
tion

2. In the function definition, at least one fixed parameter must appear in the
parameter list before the ...

3. The last parameter in the function’s parameter list must be ...

4. There must be a variable declared in the function of type va_list.

5. The stdarg facility must be initialized by invoking va_start at the beginning
of the function with 2 parameters: the variable of type va_list and the last
fixed parameter in the function parameter list.

6. To obtain the variable parameters to the function in left to right order,
invoke the macro va_arg once for each parameter. The first parameter to
va_arg is the variable of type va_list. The second parameter is the type of
the current parameter of the function. The va_arg macro returns the value of
the current parameter of the function.
32 Green Hills C User’s Guide, v. 1.8.9

asm Statement
7. The stdarg facility must be terminated by invoking the macro va_end with
the variable of type va_list as its parameter.

EXAMPLE:

#include <stdarg.h>
/* Return the sum of the parameters, using the first
parameter as a key to determine the types of the
parameters. */

double sum(const char *key, ...)
{
 double ret = 0;
 va_list ap;
 va_start(ap, key);

 while (*key) {
 switch (*key++) {
 case ‘i’: ret += va_arg(ap, int); break;
 case ‘l’: ret += va_arg(ap, long); break;
 case ‘d’: ret += va_arg(ap, double); break;
 case ‘p’: ret += *(va_arg(ap, int*)); break;
 }
 }
 va_end(ap);
 return ret;
}

ASM STATEMENT

The asm statement generates in-line assembly code and can be used anywhere a
statement can be used within a function and anywhere a declaration can be used
outside of a function. There are two spellings, _ _asm and asm, but only
_ _asm is recognized in Strict ANSI mode. The option -noasm prevents the
compiler from recognizing asm as a keyword in other modes, allowing a
variable or function named asm to be declared. The keyword _ _asm is always
recognized, even with the -noasm option.

_ _asm (“ any_line_of_assembly_language”);
Green Hills Software, Inc. 33

1. C Language Features
or

asm (“ any_line_of_assembly_language”);

The entire contents of the string will be passed through to the assembly
language output file, in the same position as it appears in the C source file. If the
underlying assembler requires a space or tab before the opcode, this tab or space
must appear in the string.

For example:

asm (“ sethi %hi(L16),%o0“);

This statement drops the sethi instruction into the assembly code generated by
the compiler, corresponding exactly to where the compiler found it in the source
code. The compiler will, by default, issue the following message for every asm
statement found in the file:

warning: asm statement not portable

This warning may be suppressed with the -noasmwarn option.

It is important to note that the compiler uses assembly language instructions and
directives throughout the file without concern for possible interactions with user
asm statements. Furthermore the allocation of variables to registers and
memory may vary from one compilation to another. Therefore the use of the
asm statement is considered extremely non-portable and may be difficult to
maintain.

JAPANESE AUTOMOTIVE C

Green Hills Software supports Japanese Automotive C for all processors.
Japanese Automotive C is a set of extensions to ANSI C used by Japanese
automobile manufacturers. For complete specifications, refer to the
C-Language Specification for Automotive Control (Proposal) by Toyota Motor
Corp., July 29, 1993.

Japanese Automotive C generally conforms to the principles of ISO 9899,
equivalent to the ANSI X3.159-1989 standard, with the exception of the
“Implementation-defined Behavior” specification of Annex G.3 in ISO 9899.
Japanese Automotive C modifies, or extends, this specification to support
portability. The method by which it extends the “Implementation-defined
34 Green Hills C User’s Guide, v. 1.8.9

Japanese Automotive C
Behavior” conforms to the “Common Extension” section of ISO 9899, found in
Annex G.5.

To select this version of C, click the Japanese Automotive C box in the C
options window of the MULTI Builder window. (Alternately, enter the
-japanese_automotive_c command line option.)

Selecting Japanese Automotive C enables the following command line options:

-pragma_asm_inline
Enables #pragma asm, #pragma endasm, #pragma inline.
Please refer to the “General Pragma” section for a full description.

-unsignedchar
Specifies type char as unsigned.

-unsignedfield
Specifies that a bit-field whose type is char, short, int, or long
has an unsigned value.

-noshortenum
Specifies that enumerated types always have type int or
unsigned int

-noasmwarn
Prevents a warning from being printed for each asm statement.

Selecting Japanese Automotive C also enables

#pragma intvect function integer_constant

which supports interrupt vectors, by causing a pointer to function to be output at
the address specified by integer_constant. Please refer to the “General Pragma”
section for a full description.

Selecting Japanese Automotive C also enforces the following behavior: in the
case of a pointer being cast to an integer, if the pointer and the integer are the
same size, no data is lost. If the integer is smaller than the pointer, then the data
is reduced from the upper bit.

In addition, selecting Japanese Automotive C enables several built-in functions
to control interrupts, for the targets which currently support it:

void _ _DI(void);
Disables all interrupts.
Green Hills Software, Inc. 35

1. C Language Features
void _ _EI(void);
Enables all interrupts.

void _ _set_il(int n);
Sets interrupt level to n.

C RUN-TIME LIBRARY

On UNIX systems, Green Hills C can use the standard C library. The Green
Hills ANSI C Library, libansi, is provided for users needing an ANSI C library
and for those on non-UNIX systems which do not already have a C library.
libansi is supplied as either object code or C source code, depending on the
environment. See the Appendix, C Runtime Libraries in the Development
Guide.

To use the Green Hills ANSI C Library you need a standard Green Hills C
compiler license. Under this license, unlimited distribution of programs which
are linked with Green Hills ANSI C Library object code is permitted without
charge. However, distribution of the Green Hills ANSI C Library source code
or object code is not permitted.

COMPILER LIMITATIONS

(U > x) Theoretically unlimited, and actually tested to limit "x"
(U) Theoretically unlimited

*Theoretically unlimited actually means limited by memory limits

▲ 15 nesting levels of compound statements, iteration control structures and
selection control structures (U > 500)

▲ 8 nesting levels of conditional inclusion (U > 500)

▲ 12 pointer, array, and function declarators (in any combinations) modifying
an arithmetic, a structure, a union, or an incomplete type in a declaration (U
> 64)

▲ 31 nesting levels of parenthesized declarators within a full declarator (U)

▲ 32 nesting levels of parenthesized expressions within a full expression (U >
200)

▲ 31 significant characters in an external identifier (U)

▲ 511 external identifiers in one translation unit (U)

▲ 127 identifiers with block scope declared in one block (U)
36 Green Hills C User’s Guide, v. 1.8.9

Compiler Limitations
▲ 1024 macro identifiers simultaneously defined in 1 translation unit (U)

▲ 31 parameters in one function declaration (U 100)

▲ 31 arguments in one function call (U > 100)

▲ 31 parameters in one macro definition (U > 100)

▲ 31 arguments in one macro call (U > 100)

▲ 509 characters in a logical source line (U > 3000)

▲ 509 characters in a character string literal or wide string literal (after
concatenation) (U > 3000)

▲ 8 nesting levels for #included files (64)

▲ 257 case labels for a switch statement, excluding those for any nested
switch statements (U)

▲ 127 members in a single structure or union (U)

▲ 127 enumeration constants in a single enumeration (U)

▲ 15 levels of nested structure or union definitions in a single
struct-declaration-list (U)
Green Hills Software, Inc. 37

1. C Language Features
38 Green Hills C User’s Guide, v. 1.8.9

Chapter
2

MIXING LANGUAGES

2. Mixing Languages
HOW THE DRIVER BUILDS A MIXED LANGUAGE EXECUTABLE

With Green Hills compilers, you can mix and match C, C++, FORTRAN,
Pascal, and Ada routines in the same executable files, subject to certain
constraints.

The Green Hills compiler drivers are compatible. This permits a C driver to
compile a FORTRAN module, and a Pascal driver to compile a C++ module.
The driver uses the input filename extension to determine the correct language,
rather than assuming that the name of the driver determines the source code
language.

While compatible during compilation, the various drivers differ during the link
phase. To link an application the driver must determine all of the languages in
use, in order to know which libraries to include. The driver assumes that every
application has modules written in C and assembly language, and further, that
there is at least one module written in the driver’s default language. If source
files written in other languages are on the command line, as indicated by the file
extension, then the driver recognizes that those languages exist in the
application as well.

Therefore, mixing any one language with C is easy, as the driver always
assumes C is in use. In this case, the driver for the language other than C should
be used for linking the application, to assure the correct linkage.

To link two languages other than C into a single application, all of the source
files are placed on the command line so the driver can compile and link in a
single step. This assures giving the driver full information during the link
phase.

The most difficult case is where each module must be compiled separately and
the link phase is done strictly from object files which come from several
different languages. In this case, it is best to use the driver for the language with
the most complicated linkage requirements. Specifically, to link C, FORTRAN,
and Pascal, use the FORTRAN driver and add the Pascal library at the end of
the driver command line. To link C, C++ and either FORTRAN or Pascal, use
the C++ driver and place the FORTRAN or Pascal libraries at the end of the
driver command line.
40 Green Hills C User’s Guide, v. 1.8.9

How the Driver Builds a Mixed Language Executable
Some command line options have different meanings for different languages.
The drivers recognize these differences and apply all relevant meanings. For
example, the -C option governs the handling of comments by the preprocessor
in C and C++, but in Pascal and FORTRAN the same option enables array
bounds checking. Therefore, specifying -C on the driver command line along
with files written in C and FORTRAN will have different effects on the
different language modules.

THE -LANGUAGE OPTION

The -language option facilitates mixing languages in the same program. It is
written as:

-language=language

where language is either cxx, fortran, or pascal. It is not necessary to specify
C.

The -language option tells the driver that files written in language are being
mixed with the default language. This option is specified once for each
language being mixed. It is not necessary to specify the driver’s default
language.

EXAMPLE:

Three precompiled object files, main.o, pigeon.o, and falcon.o, are written in
C, Pascal, and FORTRAN, respectively. The following command line tells the
driver about all three languages when linking:

gfc -language=pascal main.o pigeon.o falcon.o

Here, the driver knows about FORTRAN because the FORTRAN driver is
being used (gfc). All drivers assume C, and the -language=pascal option
informs the driver about Pascal.

To link the same three modules with the C driver:

gcc -language=pascal -language=fortran main.o
pigeon.o falcon.o
Green Hills Software, Inc. 41

2. Mixing Languages
INITIALIZATION OF LIBRARIES

A multiple language application may need to perform input and output in more
than one language. With a little care to avoid conflicts between languages, this
is fully supported. If input and output will always be performed on different
files by each language, then the initialization and deinitialization of each
language’s runtime routines is handled automatically by the main program in a
single language application. Therefore, if the application will only perform I/O
in one language other than C, then it is easy to write the main program for the
application in that language. For more complex requirements, a main program
may be written in C which performs the initialization and deinitialization of the
library runtime routines.

NOTE

If libraries are static when you have main() in C, then the module in the
FORTRAN library which declares main() is not brought in so there is no
reference to MAIN_.

However if the libraries are dynamic, then the following appear: main() in C
and main() in the FORTRAN library (which will never be called). Since there
is no FORTRAN PROGRAM, MAIN_ becomes an undefined symbol, even
though it will never be referenced.

MAIN() PROGRAM EXAMPLES

If you implement your own main() function, __gh_initrec() must be called
unless FORTRAN IO is not used in the program. This function initializes the
logical UNIT table within the FORTRAN library. It sets Units 5, 6, and 0 to
stdin, stdout, and stderr respectively and sets all Units (0-99) to a proper initial
state.

A C MAIN() PROGRAM FOR C++

main() {
 _main();/* must be first executable line */

 /* rest of main goes here */

 exit(0);/* must be last executable line */
42 Green Hills C User’s Guide, v. 1.8.9

Main() Program Examples
}

A C MAIN() PROGRAM FOR FORTRAN

int __gh_argc;
char **__gh_argv;

extern void (*__gh_initrec)();
extern void (*__gh_uninitrec)();

int main(argc, argv)
int argc;
char **argv;
{
 __gh_argc = argc;
 __gh_argv = argv;

 if (__gh_initrec)
 __gh_initrec();

/* rest of main goes here */

 if (__gh_uninitrec)
 __gh_uninitrec();
 return(0);
}

A C MAIN() PROGRAM FOR PASCAL

main(argc, argv)
int argc;
char **argv;
{
 extern int __argc;
 extern char **__argv;
__argc = argc;
 __argv = argv;/* the 4 lines above must be first */
 /* rest of main goes here */

 __GHSexit(0);/* must be last executable line */
Green Hills Software, Inc. 43

2. Mixing Languages
}

A C MAIN() PROGRAM FOR ADA

When using Ada, two procedures facilitate a non-Ada main program, adainit
and adafinal. The procedure adainit performs Ada elaborations, and adafinal
performs Ada finalizations. These two procedures can be called at the
beginning and end, respectively, of a non-Ada main program.

PERFORMING I/O ON A SINGLE FILE IN MULTIPLE LANGUAGES

Some applications benefit from performing input and output on a single file or
device from more than one language; an example is pre-opened files. In C, these
are stdin, stdout, and stderr. In C++, they are cin, cout, and cerr. In
FORTRAN, they are Units 5, 6, and 0 respectively. In Pascal, the first two files
are input and output, and the equivalent of C’s stderr cannot be used directly.

All languages have full access to these pre-opened files, and input and output
can easily be mixed between the languages on these files. However, for the best
results, a complete input or output operation is done in a single language. In
FORTRAN, a single READ, WRITE, or PRINT statement is a complete
operation. In Pascal, a single read, readln, write, or writeln call is a complete
operation. In C, any call to a library function which performs input or output is
a complete operation. If this rule is followed, all data will be output correctly
and in the intended sequence. The C library routine fflush() flushes the buffer
of the pre-opened files in all languages, except in C++. To flush one of these
files in C++, use the notation file<<flush. For example, cout<<flush.

Performing input and output on a single file which is not preopened is more
difficult. It is possible to open the file once in each language and perform input
and output independently in each language. In many cases this would be
unacceptable, particularly when working with a device rather than a simple file.

It is possible to open a file in FORTRAN and subsequently perform input and
output on that file by using the FORTRAN library routines GETCHAN and
GETFD. The FORTRAN function GETCHAN takes a single argument which
is the Unit number of a FORTRAN file and returns a FILE* which can then be
used with C library routines such as fprintf(), fread(), fwrite(), fflush(),
fseek(), fstat() and fputc(). Operations on such a file are compatible to the same
extent as the three pre-opened files.
44 Green Hills C User’s Guide, v. 1.8.9

Native UNIX Libraries versus Green Hills Libraries
The FORTRAN function GETFD takes a single argument which is the Unit
number of a FORTRAN file and returns an integer which can then be used with
lower level routines such as read(), write(), lseek(), and stat(). Because these
low level routines are not compatible with fprintf(), fread(), fwrite(), etc., their
use may conflict with the FORTRAN runtime routines.

There is currently no mechanism for performing input and output in C on a file
opened in Pascal.

NATIVE UNIX LIBRARIES VERSUS GREEN HILLS LIBRARIES

This section refers only to native UNIX users.

Although the combination of multiple languages in a single application is fully
supported, certain differences cannot be avoided between programs written
entirely in one language and those written in multiple languages, due primarily
to library selection.

The C and C++ languages use the native UNIX math and C libraries by default.
The FORTRAN and Pascal languages use the Green Hills math library. ANSI C
uses the Green Hills math and C libraries. This means that the combination of
FORTRAN and C will cause the entire application to use the Green Hills math
library, and the combination of ANSI C with C++ will cause the entire
application to use the Green Hills math and C libraries. Therefore, programs
written entirely in C or C++ may behave differently than otherwise identical
programs written partially in C or C++ and partially in FORTRAN or ANSI C.

CALLING A C ROUTINE FROM FORTRAN

This section shows how to call C subroutines from FORTRAN.
Green Hills Software, Inc. 45

2. Mixing Languages
ARGUMENT PASSING

By default, all FORTRAN arguments are passed by reference. Therefore, each
parameter in the called C routine must be a pointer of the appropriate type. The
following table shows how arguments passed by FORTRAN are received by C:

FORTRAN CHARACTER types are a special case. When a C function
receives a CHARACTER argument by a FORTRAN routine, it receives not
only a pointer to the char variable, but also its length, as an int (not as an int *).
This int will appear at the end of the argument list. If more than one
CHARACTER parameter is passed, then an extra int for every
CHARACTER parameter will be passed at the end of the argument list, in the
order that the CHARACTER parameters are passed. The called C routine must
declare one extra variable of type int for every FORTRAN CHARACTER
argument passed in order to receive the information.

For example, a FORTRAN routine calls a C function with two CHARACTER
parameters and two INTEGER parameters:

FORTRAN Passes C Receives

REAL or REAL*4 float *

DOUBLE PRECISION or
REAL*8

double *

INTEGER or
INTEGER*4

int *

INTEGER*2 short *

INTEGER*1 signed char *

LOGICAL or
LOGICAL*4

long *

LOGICAL*2 short *

LOGICAL*1 signed char *

COMPLEX or
COMPLEX*8

struct complex {float realpart, imagpart} *

DOUBLE COMPLEX or
COMPLEX*16

struct dcomplex {double realpart, imagpart} *

CHARACTER signed char * and int (for length)

Table 8 Passing Arguments from FORTRAN to C
46 Green Hills C User’s Guide, v. 1.8.9

Calling a C Routine from FORTRAN
CHARACTER A,B
INTEGER X,Y
CALL NAME(A,X,B,Y)
END

The C routine, then, is:

name_(char *a, int *x, char *b, int *y, int alen, int
blen)
{}

In this routine, the char *a points to CHARACTER A, int *x points to
INTEGER X, char *b points to CHARACTER B, int *y points to INTEGER
Y, int alen is the length of CHARACTER A, and int blen is the length of
CHARACTER B. The extra arguments, int alen and int blen, appear at the
end of the argument list in the order that their corresponding CHARACTER
parameters were passed (A is passed before B, so alen appears before blen).

Although FORTRAN CHARACTER string constants are null terminated,
CHARACTER variables are not. Thus, the character strings A and B in the
above example do not end with an extra 0. However, if the FORTRAN code
were changed to the following, the C code could remain the same:

CHARACTER A
INTEGER X,Y
CALL NAME(A,X,”this is a string”,Y)
END

The string “this is a string” will end in an extra zero. However, this 0 will not
be counted as part of the string length being passed. So, in the above example,
blen is 16, not 17.

RETURN TYPES

Called C functions may return values to FORTRAN routines.

SIMPLE RETURN TYPES

An int C function must be declared either as INTEGER (or INTEGER*4) or
LOGICAL (or LOGICAL*4) in the calling FORTRAN routine.
Green Hills Software, Inc. 47

2. Mixing Languages
An ANSI C function which returns a float must be declared as REAL or
REAL*4 in the calling FORTRAN routine.

An ANSI C function which returns a double must be declared as DOUBLE
PRECISION or REAL*8 in the calling FORTRAN routine.

A non-ANSI C function which returns a float or double must be declared as
DOUBLE PRECISION or REAL*8 in the calling FORTRAN routine.

CHARACTER

Some implementations do not allow functions which return CHARACTER
types to be written in C. The following description applies only to those
implementations, such as Green Hills, which allow this.

A CHARACTER type may not be returned directly with a C return statement.
Instead, when a C function wants to return a FORTRAN CHARACTER result,
then two extra arguments are passed to the C function. These arguments appear
at the beginning of the argument list. The first argument in the C function must
be a char *. The character string to be returned should be placed where this
argument points. The second argument must be the maximum permitted length
of the character string. For example:

CHARACTER*9 NAME
CHARACTER*9 A
A=NAME()
PRINT*,A
END

The C function is:

name_(c, b)
char *c;
int b;
{
 char d[]=”pigeon”;
 int i, len;
 len=strlen(d);
 if (len > b)
 len = b;
 for (i=0; i < len; i++)
48 Green Hills C User’s Guide, v. 1.8.9

Calling a C Routine from FORTRAN
 c[i] = d[i];
 for (i=len; i < b; i++)
 c[i] = ‘ ‘;
}

In the FORTRAN routine, the function name is not called with any arguments.
Since the function is declared as a CHARACTER return type, two arguments
will be automatically passed. The C function receives these as a pointer to the
return location (char *c) and the length (int b) of the character string. The C
function does not use the return statement.

COMPLEX AND DOUBLE COMPLEX

Some implementations do not allow functions which return COMPLEX or
DOUBLE COMPLEX types to be written in C. The following description
applies only to those implementations, such as Green Hills, which do allow this.

COMPLEX (or COMPLEX*8) or DOUBLE COMPLEX (or
COMPLEX*16) types may not be returned with a C return statement. When a
function is declared to be of one of these types, then one extra argument is
passed to the C function. This argument will appear at the beginning of the
argument list. The C function must declare a special struct in which to put the
return information. The first argument in the C function must be a pointer to the
previously defined struct. Table 8 on page 2-46 lists the necessary struct
declarations for these two return types. For example, a FORTRAN routine
calling a C function with a COMPLEX return type:

COMPLEX A
COMPLEX COMP
A=COMP()
PRINT*,A
END

can have the C function:

struct complex {float realpart, imagpart;};

comp_ (c)
struct complex *c;
{
 c->realpart=1.9;
Green Hills Software, Inc. 49

2. Mixing Languages
 c->imagpart=4.5;
}

In the FORTRAN routine, the function comp is not called with any arguments.
Since the function is declared as having a COMPLEX return type, one
argument will automatically be passed at the beginning of the argument list.
The C function receives this argument as a pointer to a struct to store the return
information in (struct complex *c). The C function does not use the return
statement.

ALTERNATE RETURNS

A FORTRAN routine may call a C function using the alternate return
conventions. The C routine would use the return statement in the same way a
FORTRAN using alternate returns would, except that instead of the FORTRAN
RETURN, the C program would use return 0. For example:

 X = 9
 Y = 3
 CALL COMPARE(X,Y,*100,*200,*300)
 PRINT*,’Illegal input’
 GOTO 99
 100 PRINT*,’X < Y’
 GOTO 99
 200 PRINT*,’X == Y’
 GOTO 99
 300 PRINT*,’X > Y’
 GOTO 99
 99 END

The C function could be:

 compare_(a, b)
 float *a, *b;
 {
 if (*a < 0.0 || *b < 0.0)
 return 0;
 if (*a < *b)
 return 1;
 if (*a == *b)
 return 2;
50 Green Hills C User’s Guide, v. 1.8.9

Calling a C Routine from FORTRAN
 return 3;
 }

If compare returns a 0 in the above example, the next line after the function call
will be executed. If 1 is returned, then line 100 will be the next line executed.

SYMBOL NAMING CONVENTIONS

FORTRAN is not case-sensitive and converts all characters (outside of
quotation marks) to lower case. In a FORTRAN program, the symbol names
FALCON, Falcon and falcon are all the same item. C is case-sensitive. In a C
program, the symbols FALCON, Falcon and falcon are three distinct
identifiers. So, only C functions whose names are all lower case are called,
unless FORTRAN routines are compile with a -U option, making FORTRAN
case-sensitive.

FORTRAN also appends an underscore (_) to each function name. To call a C
function from a FORTRAN routine, the name of the C routine must end in an
underscore. For example, instead of naming a C routine falcon(), it is named
falcon_(). This feature allows calling C routines from FORTRAN via an
interface routine. The next section explains this in detail.

CALLING C ROUTINES FROM FORTRAN

Because FORTRAN passes function arguments as pointers, it is not possible to
directly call pre-compiled C routines that haven’t been explicitly written for
FORTRAN. FORTRAN appends an underscore to the end of function names to
allow an interface routine of the same name. An interface routine could be
called from FORTRAN, and would then call the actual C routine with the
correct arguments.

For example, for the following pre-compiled C routine is not possible to call
this routine from FORTRAN because i and j are not pointers:

int add(int i, int j)
{
 return i + j;
}

However, with the following interface routine in C this routine can now be
called from FORTRAN, which in turn calls the real add routine:
Green Hills Software, Inc. 51

2. Mixing Languages
int add_(int *i, int *j)
{
 return add(*i, *j);
}

For example:

INTEGER ADD
I = ADD(4, 5)
END

COMMON BLOCKS

FORTRAN modifies the names of COMMON blocks. All capital letters are
converted to lowercase, but the character or characters appended to the name of
the common block differ, depending on the compilation mode.

In f77 compatibility mode, a single underscore is appended to COMMON block
names. Since this can cause name conflicts between subprogram names and
COMMON block names, in VMS compatibility mode, a dollar sign ($) is
appended instead.

The -X608 option causes COMMON blocks to be named in the VMS style,
with a dollar sign appended. This option can be selected independently of VMS
compatibility mode. With this, f77 compatibility mode can be used, and -X608
can be specified on the command line to name the COMMON block with a
dollar sign suffix instead of an underscore.

The -X608 is usually enabled in VMS compatibility mode. However, f77 style
names can be specified while in VMS compatibility mode by specifying -Z608
on the command line.

An alternate form of VMS style names for environments do not allow dollar
signs in names. This is enabled with the -X402 option and causes two
underscores to be appended to COMMON block names instead of one dollar
sign. The -X402 option is ignored unless VMS style COMMON block names
are being generated. (-X402 in f77 mode can be used if -X608 is specified.)
52 Green Hills C User’s Guide, v. 1.8.9

Calling a FORTRAN Routine from C
CALLING A FORTRAN ROUTINE FROM C

This section shows how to call FORTRAN subroutines from C.

ARGUMENT PASSING

All FORTRAN parameters are passed by reference, so the corresponding
argument in the C call must be a pointer of the appropriate type. The table
below shows the argument type that C must pass to correspond to the
FORTRAN parameter.

Mode Switch Effect

f77 (default) block_

-X608 block$

-X608 -X402 block_ _

VMS (default) block$

-Z608 block_

-X402 block_ _

Table 9 COMMON Block Naming Conventions

C Passes FORTRAN Receives

float * REAL or REAL*4

double * DOUBLE PRECISION or
REAL*8

int * INTEGER or INTEGER*4

short * INTEGER*2

signed char * INTEGER*1

int * LOGICAL or LOGICAL*4

short * LOGICAL*2

char * LOGICAL*1

Table 10 Passing Arguments from C to FORTRAN
Green Hills Software, Inc. 53

2. Mixing Languages
For example, to pass an integer variable a from C to FORTRAN, pass &a.

Passing a char argument to a FORTRAN function is a special case. The C
routine must pass not only a pointer to the char variable, but also its length, as
an int (not as an int *). This int must be passed as the last argument. If more
than one char is being passed by the C routine, then each one will have a
separate int associated with it. The ints must all appear at the end of the
argument list, in the same order that their corresponding chars appear. For
example:

extern int falcon_();
main()
{
 char *c1=”pigeon”;
 char *c2=”sofa sofa”;
 int extra=5;
 int len=falcon_(c1, c2, &extra, strlen(c1),
 strlen(c2));
 printf(“%d\n”,len);
}

This C routine passes two CHARACTER parameters and one INTEGER
parameter to a FORTRAN function. It accomplishes this by passing five
arguments. The first two are pointers to chars being passed (c1 and c2), the
third is the int being passed (extra), and the last two are the lengths of c1 and
c2. The corresponding FORTRAN function is:

integer function falcon(a,b,x)
character*(*)a
character*(*)b
integer x

struct complex {float realpart, imagpart;} * COMPLEX or
COMPLEX*8

struct dcomplex {double realpart, imagpart;} * DOUBLE COMPLEX or
COMPLEX*16

char * and int CHARACTER

C Passes FORTRAN Receives

Table 10 Passing Arguments from C to FORTRAN
54 Green Hills C User’s Guide, v. 1.8.9

Calling a FORTRAN Routine from C
falcon=len(a)+len(b)+x
end

RETURN TYPES

FORTRAN functions may return values to C routines.

SIMPLE RETURN TYPES

An INTEGER or (INTEGER*4) or LOGICAL (or LOGICAL*4)
FORTRAN function must be declared as int in the calling C routine.

A DOUBLE PRECISION or REAL*8 FORTRAN function must be declared
as double in the calling C routine. Since C usually promotes float return values
to double, a REAL return value may not be accessible in C. This is not true for
ANSI C, however.

CHARACTER

Some implementations do not allow functions which return CHARACTER
types to be called from C. The following description applies only to those
implementations which do allow this.

FORTRAN functions that have a CHARACTER return type are special cases.
A value is not actually returned to the calling C routine; instead, the C routine
must pass two extra arguments in which to store the return values. The first
argument passed must be a char * to point to the beginning of the return string.
The second argument must be an int that is the length of the char *. All other
normal arguments must follow these two. For example:

extern void falcon();
main()
{
 char buff[20];
 char xbuff[]=”pigeon”;

 falcon_(buff, sizeof(buff), xbuff,
 sizeof(xbuff)-1);
 printf(“%s\n”, buff);
}

Green Hills Software, Inc. 55

2. Mixing Languages
Here, two extra arguments are passed, both for a character string being passed.
The size of xbuff is passed as one short to remove the null character that C will
put at the end of the string. The return string will be stored in buff. The
FORTRAN is then:

character*20 function falcon(x)
character*(*) x
falcon=x // ’ sofa sofa’
end

This function appends a string to the input string (x), then passes back the new
string as the return value.

COMPLEX, COMPLEX*8, DOUBLE COMPLEX, COMPLEX*16

Some implementations do not allow functions which return COMPLEX,
COMPLEX*8, DOUBLE COMPLEX, or COMPLEX*16 types to be called
from C. The following description applies only to those implementations which
do allow this.

FORTRAN functions that have a COMPLEX (or COMPLEX*8) or
DOUBLE COMPLEX (or COMPLEX*16) return type are special cases. A
value is not actually returned to the calling C routine; instead, the C routine
must pass an extra argument in which to store the return value. The first
argument passed must be a pointer to a predefined struct of the correct type.
The return value will be stored in this struct. All other arguments must follow
this one. For example:

struct complex {float realpart, imagpart;};
extern void falcon();
main()
{
 struct complex comp;
 int x=5;

 falcon_(&comp, &x);
 printf(“%f + %fi\n”, comp.realpart,
 comp.imagpart);
}

56 Green Hills C User’s Guide, v. 1.8.9

Calling a FORTRAN Routine from C
NOTE: For the PowerPC: In order for printf to work correctly, #include needs
to be added to the beginning of the function:

#include <stdio.h>
struct complex {float realpart, imagpart;};
extern void falcon();
main()
{
 struct complex comp;
 int x=5;

 falcon_(&comp, &x);
 printf(“%f + %fi\n”, comp.realpart,
 comp.imagpart);
}

Here, the returned complex number is stored in comp, and x is an argument
being passed. The FORTRAN function is:

complex function falcon(x)
integer x
complex y
y=(0.0 , 2.3)
falcon=y+x
end

ALTERNATE RETURNS

The FORTRAN alternate return statements return the corresponding integer to
the calling C routine (the simple RETURN statement returns a 0 to C). The
calling C routine makes appropriate use of these return values. Use of a switch
statement is recommended. There should be a case label corresponding to each
valid alternate return, and a default case to handle all return values outside the
expected range. For example:

main()
{
 float x, y;
 int ret;

 x = 9;
Green Hills Software, Inc. 57

2. Mixing Languages
 y = 3;
 ret = compare_(&x, &y);
 switch (ret)
 {
 default: printf("Illegal input\n"()
 break;
 case 1: printf(“x < y\n”);
 break;
 case 2: printf(“x == y\n”);
 break;
 case 3: printf(“x > y\n”);
 break;
 }
}

The FORTRAN function would be:

SUBROUTINE COMPARE(A,B,*,*,*)
IF (A .LT. 0.0 .OR. B .LT. 0.0) RETURN
IF (A .LT. B) RETURN 1
IF (A .EQ. B) RETURN 2
RETURN 3
END

SYMBOL NAMING CONVENTIONS

FORTRAN is not case-sensitive and will convert all characters to lower case. In
a FORTRAN program the symbol names FALCON, Falcon and falcon refer to
the same item. C is case-sensitive. In a C program, the symbols FALCON,
Falcon and falcon are three distinct identifiers.Compiling FORTRAN routines
with a -U option makes FORTRAN case-sensitive; otherwise, only C functions
with lower case names can be called.

FORTRAN also appends an underscore (_) to function names. To call a C
subroutine from a FORTRAN routine, the name of the C routine must end in an
underscore. For example, a C routine has to be named falcon_() instead of
falcon(). This feature allows calling pre-compiled C routines from FORTRAN
via an interface routine, explained in detail in the next section.
58 Green Hills C User’s Guide, v. 1.8.9

Calling a FORTRAN Routine from C
COMMON BLOCKS

FORTRAN modifies the names of COMMON blocks. All capital letters are
converted to lowercase, but when using a Green Hills FORTRAN compiler, the
character or characters which are appended to the name of the common block
differ depending upon the compilation mode.

In f77 compatibility mode, a single underscore is appended to COMMON block
names. Since this can cause name conflicts between subprograms and
COMMON blocks with the same name, in VMS compatibility mode, a dollar
sign ($) is appended.

The -X608 option causes COMMON blocks to be named in the VMS style,
with a dollar sign appended. This option can be selected independently of VMS
compatibility mode. Thus, using f77 compatibility mode and specifying -X608
on the command line gives the COMMON block a dollar sign suffix instead of
an underscore.

Normally, -X608 is enabled in VMS compatibility mode. However, f77 style
names can be specified while in VMS compatibility mode, by specifying -Z608
on the command line.

An alternate form of VMS style names for environments does not allow dollar
signs in names. This is enabled with the -X402 option and causes two
underscores to be appended to COMMON block names instead of one dollar
sign. The -X402 option is ignored unless VMS style COMMON block names
are being generated. (-X402 can be used in f77 mode by specifying -X608.)

Mode Switch Effect

f77 (default) block_

-X608 block$

-X608 -X402 block_ _

VMS (default) block$

-Z608 block_

-X402 block_ _

Table 11 COMMON Block Naming Conventions
Green Hills Software, Inc. 59

2. Mixing Languages
CALLING A C ROUTINE FROM ADA

This section shows how to call C subroutines from Ada.

PRAGMA INTERFACE C

Pragma interface specifies that a subprogram is written in some other language,
and the definition of that subprogram resides in a separate object module.
Pragma interface is allowed at the place of a declarative item in a package
specification. The subprogram specification for which pragma interface is given
must appear in the same compilation unit, with the optional link-name limited to
62 characters.

For example, to create a link to call C routine “name” in Ada, a package
specification has to first be created, containing the Ada declaration of the C
routine. The package specification C_LINK is:

 PACKAGE C_LINK IS
 PROCEDURE Name ;
 PRIVATE
 pragma interface(C, Name, ”name”) ;
 END C_LINK:

The corresponding C routine is:

 void name()
 {
 printf(“This routine is called from Ada”);
 }
60 Green Hills C User’s Guide, v. 1.8.9

Calling a C Routine from Ada
ARGUMENT PASSING

Each parameter in the called C routine must be the appropriate type. The
following table shows how the arguments passed by Ada are received by C:

The previous example can pass an integer and float to the C routine; it is
modified to:

PACKAGE C_LINK IS
 PROCEDURE Name(A_Integer: INTEGER; A_Float:
FLOAT) ;
 PRIVATE
 pragma interface(C, Name, “name”) ;
 END C_LINK:

The corresponding C routine is:

 void name(int a_integer; float a_float)
 {
 printf(“This routine is called from Ada”);
 printf(“This is an integer passed from Ada %d\n”,
 a_integer);
 printf(“This is a float passed from Ada %f\n”,
 a_float);
 }

Ada Passes C Receives

INTEGER int

INTEGER long

SHORT_INTEGER short

CHARACTER char

BYTE_INTEGER char

FLOAT float

LONG_FLOAT double

Table 12 Passing Arguments from Ada to C
Green Hills Software, Inc. 61

2. Mixing Languages
Function calls operate in the same manner as procedures. The Function types
must be compatible in C and Ada.

ARRAY AND STRING TYPES

For Static Ada Array Types, individual components must be structurally
compatible to the corresponding C variable. Dynamic Arrays, however, can be
passed from Ada to C using the address of the first element:

 Dynamic_Array(Dynamic_Array’First)’Address

In Ada, information is kept in the record regarding bounds of the array.

C strings are terminated by an ASCII null character, ASCII 16#00#. Passing a
string to C is much like passing a Dynamic Array, with the exception of
appending an ASCII null character to the end of the string.

For example, for an Ada string declared:

 My_String: STRING(1 . . 8);

To pass this to a C string:

 My_String(My_String’First)’Address

POINTERS AND ADDRESS TYPES

The address convention is identical for Green Hills Ada and C compilers.

INTERFACING PASCAL AND C

This section shows how to interface Pascal and C:

NAMING CONVENTIONS

By default, the names of Pascal external variables, procedures, and functions
are accessible from C functions linked with the Pascal program. External Pascal
names are accessed by using the same name in C. Green Hills Pascal is
case-sensitive by default; however, using the -s or -X59 compile time options
make the Pascal compiler case-insensitive, causing it to convert all uppercase
character to lowercase. C is always case-sensitive.
62 Green Hills C User’s Guide, v. 1.8.9

C Routines and Header Files In C++
When compiling with the -s or -X174 option (Strict ISO mode), the names of
Pascal external procedures and functions are changed by appending an
additional underscore (_). If this option is used, then to call the Pascal function
Falcon from C means calling the function falcon_. This is the only function of
the -X174 option, while -s has many effects.

This option causes all of the C library functions provided with Pascal to become
inaccessible.

REDEFINING WRITE OR READ

If a Pascal program redefines the built-in procedure WRITE or READ, it must
be compiled with the -s option. The Green Hills C Run-time Library and the
UNIX C library use the names write and read (to which WRITE and READ
are translated by Pascal) for the basic I/O primitives. If the program redefines
these names, then very strange results (often infinite loops) occur. The -s
compile-time option translates these names to write_ and read_ instead, so no
redefinition will occur. However, under these options communication between
Pascal and C or the C Library becomes much more complicated.

C ROUTINES AND HEADER FILES IN C++

The C++ language allows much use of existing C code. Therefore, it is fairly
straightforward to call functions written in ANSI C from C++. The syntax of
the two languages is very similar and the use of header files has been continued
in C++.

By default, the names of functions are encoded or mangled in C++, whereas in
C, the names of functions are unchanged. C++ provides the extern specifier to
identify non-C++ functions so their names will not be mangled. Therefore, this
specifier, allows including ANSI declarations for any C functions and then
linking with the compiled C object code.

To specify a C declaration:

▲ Specify or declare functions individually. For example:

 extern “C” {
 int fclose(FILE *);
 FILE *fopen(const char *, const char *);
Green Hills Software, Inc. 63

2. Mixing Languages
 }

▲ Specifies that two functions with external C linkage are to be declared.

▲ It is easy to include ANSI C in a C++ source. C++ requires prototyped
declarations, as does ANSI C. It is not advisable to include non-prototyped
declarations since they mean something different in C++. If they are used,
any error messages may or may not point to the non-prototype declaration.

▲ Declare entire header files with extern. For example:

 extern “C” {
 #include <stdio.h>
 #include <string.h>
 }

▲ Has the same effect on all the function declarations that appear in stdio.h
and string.h as the previous example has on the two specific functions
(fclose and fopen).

▲ If code contains both C and C++, then the extern statements can be placed
within #ifdef _ _cplusplus statements. This practice is common within
header files. For example:

 #ifdef _ _cplusplus
 extern "C" {
 #endif
 void assert(int);
 void _assert(const char *,const int ,const
 char *);
 #ifdef _ _cplusplus
 }
 #endif

USING C++ IN C PROGRAMS

Many features in the C++ language simplify complicated tasks, for most
languages. It makes little sense to attempt to call C++ from C in most cases,
since doing so would force the C programmer to reproduce work performed by
the C++ compiler. The various implementations and different mechanisms of
C++ make porting of C programs which call C++ more difficult.
64 Green Hills C User’s Guide, v. 1.8.9

Function Prototyping in C versus C++
Inclusion of C++ modules in C programs is not a trivial. C has no support for
any of the C++ extensions to the language. The C programmer must manually
perform some of the tasks automatically done by a C++ compiler. Some
knowledge of the internal mechanics and details of a C++ implementation is
necessary, as follows:

▲ Encoding of C++ names can be a problem. The C++ compiler encodes or
mangles function and class member names. Any C++ function or class
members called from a C program must be referenced by the encoded or
mangled names.

▲ The way member functions are handled by a C++ compiler must be known.
All member functions (except static member functions) have the special
object member pointer this inserted automatically as the first argument in
the parameter list. A C programmer must add the argument this manually
when calling any member functions from C.

▲ Special processing is needed to handle constructors and destructors for static
objects. On most systems the main module has special function calls
inserted to insure that all static constructor/destructor calls are made
properly. If main is not in a C++ module, then the C programmer must
manually include calls to _main in the C main module. The _main code is
contained in the C++ library and therefore must be linked into the final
executable.

▲ Finally, after the executable is produced, the postlink program must be run,
as is the case with any C++ executable. If no static objects are used in the
program, this step is not necessary. There are four global objects in the
iostream library: cout, cin, cerr, and clog. If any of these objects are used
in a program, the postlink program must be run on the executable.

▲ Virtual functions are also handled automatically by a C++ compiler, but
involve additional coding to access or use them from a C environment.

FUNCTION PROTOTYPING IN C VERSUS C++

In ANSI C and C++, header files provide prototypes for library functions which
enforce a standard interface between the calling program and the called
function.

Function prototyping requires that the function declaration include the function
return type and the number and type of the arguments. When a prototype is
available for a function, the compiler is able to perform argument checking and
Green Hills Software, Inc. 65

2. Mixing Languages
coercion on calls to that function. If a prototype is not available for a function
when it is called, ANSI C will behave like K&R C. The return type of the
function is assumed to be int, and actual arguments will be promoted to ints,
longs, doubles, or pointers as appropriate. In C++, however, it is an error to call
a function which has not been declared with a prototype.

Another important difference between ANSI C and C++ is that a non-prototype
declaration of a function, such as:

char *function_name();

has no effect on the number and type of the arguments in ANSI C, but in C++ it
is understood as:

char *function_name(void)

which means that the function has no arguments at all. If the function
declaration occurs within the scope of an extern “C” declaration, the function
has non-C++ linkage and therefore cannot be overloaded. This means that if a
traditional K&R style declaration of a function appears in a header file and the
#include directive which accesses that header file is enclosed in extern “C” { },
then it will be impossible to redeclare that function with arguments.
66 Green Hills C User’s Guide, v. 1.8.9

Chapter
3

WRITING PORTABLE
CODE

3. Writing Portable Code
The C language has been implemented by many vendors on a large collection of machines
and systems. One important reason for using C is to simplify the task of building and
maintaining software on multiple platforms. But not all features of the C language cater to this
goal. C intentionally provides features which behave differently on different systems. For C
programs to be truly portable, the programmer must be careful to avoid these non-portable
features of the language.

Certain differences between C compilers are vendor specific differences. If all of the C
compilers you ever use come from a single vendor you can avoid these differences. Many
more of the differences however are particular to the processor and the operating system in
use. When porting between different platforms it may be impossible to avoid these
differences, except by careful coding.

COMPATIBILITY BETWEEN GREEN HILLS COMPILERS

All Green Hills C compilers follow the same interpretation of the C language,
as described in this manual. There are a few features and options which are not
available in all Green Hills C compilers. These features and options are
described in the Development Guide for each compiler. To ensure a C program
is portable between all Green Hills C compilers, we recommend using only
those features and options described in this manual and the texts mentioned in
the preface. Command line options may also be needed to adjust for differences
between the default behavior of each Green Hills C compiler.

For information on compatibility with Green Hills compilers for other
languages, see Chapter 2, “Mixing Languages”.

WORD SIZE DIFFERENCES

Green Hills compilers are available on machines with 32-bit and 64-bit word
size. Other C compilers have been written for machines with other word sizes.
Porting C programs between machines of different word sizes requires
particular care because most primary data types can be effected by word size.

RANGE OF REPRESENTABLE VALUES

The size of each basic numeric type controls the range of values which may be
represented by that type. The header files limits.h and float.h provide defined
symbols which represent the minimum and maximum values for all numeric
68 Green Hills C User’s Guide, v. 1.8.9

Byte Order Problems
data types in C. A portable program should use these symbols and never depend
on the use of values outside the allowed range.

If arithmetic operations cause overflow, underflow, or loss of precision, the
program may not detect the error or may behave differently on different
systems.

RELATIVE SIZES OF DATA TYPES

C places very weak requirements on the relative size of the basic types, but it is
not unusual for C programs to assume otherwise. For example, C only requires
that short be no larger than int and that int be no larger than long. It would be
legal for short, int, and long to all be the same size or for them all to be
different. With all 32-bit Green Hills C compilers short is 16 bits and int and
long are 32 bits. To assume int is twice as large as short, but the same size as
long is non-portable. With 64-bit Green Hills C compilers, short is 16 bits, and
int and long are either 32 or 64 bits. You can only be assured that long is not
smaller than int.

Another common non-portable assumption is that pointers are the same size as
int or long. Neither is guaranteed. With all 32-bit Green Hills C compilers,
pointers are 32 bits. But with 64-bit Green Hills C compilers, pointers may be
either 32 or 64 bits, independent of the size of int or long.

In C, all integer constants have type int unless marked with a type suffix. In
certain cases the use of a plain integer constant instead of a long integer
constant can be non-portable.

BYTE ORDER PROBLEMS

Since the success of the IBM/360, byte machines have been more popular than
word machines. The advantage of byte machines is their efficient processing of
character data. The general acceptance of byte machines has led to easier
program portability between machines.

There is, however, one major portability problem between byte machines. The
first successful byte machine, the IBM/360, placed the most significant byte of
a multiple byte integer value at the lowest address. Many byte machines such as
68000, RS/6000, SH, and SPARC have followed the IBM convention. The
second successful byte machine, the PDP-11, placed the least significant byte of
Green Hills Software, Inc. 69

3. Writing Portable Code
a multiple byte integer value at the lowest address. Intellectual descendants of
the PDP-11, such as the VAX, and i386/i486/Pentium and some RISC
processors, such as the V800, have followed the DEC convention. These two
groups seem to be so well entrenched that no agreement on byte ordering is
possible. A further complication arises because some processors, such as the
i960, M88000, PowerPC, and MIPS R3000/R4000, support both byte orders,
although a given system is normally built to use only one byte order.

Between machines with different byte ordering, programs which overlay
characters and integers in memory or which use character pointers to integer
variables and vice versa are often not portable.

Programs that declare a single variable with different integer types in different
modules may fail when ported to a machine with a different byte order.

ALIGNMENT REQUIREMENTS

Some systems will not load or store a 2 byte object unless that object is on an
even address. Other systems have a similar requirement for 4 or 8 byte objects.
Others may allow certain accesses, but require more time to perform them.
Therefore, alignment of data is both a matter of correctness and time efficiency.
Although increased alignment may improve performance, it also consumes
space, due to padding inserted to achieve alignment.

The alignment requirements on each system are chosen both to satisfy the
restrictions of the hardware and to achieve a reasonable balance between
performance and space. The alignment rules for each system differ and often
are not configurable. Therefore programs that make assumptions about the
relative position of data objects in memory or elements within structures or
arrays are not portable, even among the Green Hills C compilers.

The C language imposes these restrictions on size and alignment:

▲ The alignment of a struct, union, or array is equal to the maximum
alignment requirement of any of its members.

▲ The size of a struct, union, or array is always a multiple of the maximum
alignment requirement of any of its members.

▲ The offset of any member of a struct, union, or array is always a multiple of
its alignment requirement.
70 Green Hills C User’s Guide, v. 1.8.9

Structures, Unions, and Bit Fields
▲ All dynamic memory allocation routines provided with the compiler will
return a pointer aligned to the maximum alignment for any object on that
machine.

All Green Hills C compilers also satisfy these principles:

▲ The stack is maintained on an alignment suitable for any object.

▲ Parameters and local variables are allocated on the stack according to their
alignment requirement.

▲ Local variables are arranged on the stack to avoid unnecessary padding due
to alignment.

If a program does not use integer arithmetic for pointer computations and
ensures that all general purpose memory allocation routines return maximally
aligned pointers, then all references to dynamically allocated memory will be
properly aligned.

STRUCTURES, UNIONS, AND BIT FIELDS

The preceding issues of size, byte order, and alignment all effect the allocation
of data in memory. In particular, compound data structures such as structures,
unions, bit fields and arrays are very much effected by them.

UNIONS

A union in C allows the same memory location to be accessed as more than one
type. This is inherently non-portable. Suppose a union consists of an integer and
an array of four characters. Whether the first element of the array is the most
significant part of the integer or the least depends on byte order. It is not even
certain that the integer and the array of character have the same size.

These problems increase when integer, floating point and pointer fields are
combined and are even more severe when structures or bit fields are members
of unions.

STRUCTURES

The C language guarantees that fields in a structure are allocated in the order
declared.
Green Hills Software, Inc. 71

3. Writing Portable Code
The exact offset of each field from the base of the structure depends on the size
and alignment of the field itself and of those which precede it. The offset of the
first field is always 0, but padding is inserted as necessary to satisfy the
alignment requirement of each subsequent field, and may also be added at the
end of the structure to make its overall size a multiple of its alignment.

Any program which assumes the offset of a field within a structure or which
assumes that certain fields in two different structures always have the same
offset are non-portable.

BIT FIELDS

The allocation of bit fields in a structure is very dependent on alignment rules.
In addition, the exact layout of bits within a bit field varies between systems and
cannot be assumed by a portable program.

ASSUMPTIONS ABOUT FUNCTION CALLING CONVENTIONS

Early implementations of C used a very straightforward approach to function
calls. All parameters were pushed on the stack from right to left. All integral
types smaller than int were promoted to int and float was promoted to double.
Given this implementation, it was possible to write functions in C which
handled variable parameters, even before the varargs and stdarg facilities. But
such functions are non-portable, depending on an intimate knowledge of the
calling conventions.

Many modern C compilers pass some parameters in registers and may not
evaluate parameters from right to left. Integer and floating point variables, not
to mention structures, may have different rules. One non-portable assumption is
that a double may be passed to a function which expects two integers. Not only
does this assume a relationship between the size of the two types and a certain
ordering of bytes and words, but it assumes doubles and integers follow all of
the same rules.

A much more common assumption is that pointer and integers may be
interchanged when passing parameters. C does not guarantee that a pointer may
be assigned to an integer and back without loss of information, even if the two
are the same size. The only safe way to write a function which can correctly
accept either pointer or integer parameters is to use the varargs or stdarg
facility.
72 Green Hills C User’s Guide, v. 1.8.9

Pointer Issues
Even among integral types, a program may assume that int and long are
interchangeable. C programs written in such an environment may invoke printf
using the %d operator to refer to a long parameter. When this program is ported
to a system where long is larger than int it will fail. The correct way is to use
%ld for long parameters.

The same portability problems exist with respect to function return values. A
function which returns an int should never be used to return a pointer or long or
floating point value, even though it may work reliably on a particular system. A
common mistake here is to omit a declaration of a function that returns a
pointer, and then place a cast around the invocation of that function. The cast
cannot fix the error, it only prevents the compiler from reporting it.

POINTER ISSUES

Nearly all machines supported by Green Hills compilers are byte addressable,
but this is not a requirement of C. On some machines, a pointer to an int and a
pointer to a char are not interchangeable. ANSI C requires that void pointers
handle all pointer types, but the void pointer must be cast or assigned to its
original type before being used. Similarly C does not require that function
pointers and data pointers be interchangeable, but some C programs incorrectly
make this assumption.

C supports portable pointer arithmetic, provided it is used correctly. In ANSI C,
the difference of 2 pointers is only defined for cases where both pointers refer to
2 elements within the same array object. Even so, in unusual cases the
difference may be outside the range of ptrdiff_t (which is either int or long).
Subtraction or comparison of pointers to two separate objects may give
non-portable results due to differences in memory layout or because pointers
signed on one system and unsigned on another.

Pointer arithmetic should always be done directly on the pointers, not by casting
or assigning the pointers to integer types.

NULL POINTER

In all Green Hills C compilers, and most C compilers in general, the NULL
pointer has the value 0. But there are still two portability issues. Some older
programs depended on the contents of memory location 0 being 0. This is now a
Green Hills Software, Inc. 73

3. Writing Portable Code
well recognized programming error and some modern machine purposely give a
memory fault for any attempt to read or write to location 0.

A much more subtle problem is the size of NULL. On a machine where pointers
are larger than int, it is incorrect to use the constant 0 as a NULL pointer,
because 0 is of type int, which is smaller than a pointer. This matters when
passing NULL to a function which takes variable parameters or which is not
declared with a prototype.

CHARACTER SET DEPENDENCIES

Not all computer systems use the same characters. All computer systems
recognize letters, digits, and the standard punctuation characters. But there is
considerable variation among the less commonly used characters. Therefore,
programs which use the less common characters may not be portable.

Your Green Hills compiler uses the ASCII character set and the ASCII collating
sequence. Some language implementations use a different collating sequence,
such as EBCDIC.

Programs which manipulate character data, especially string sorting algorithms,
may be dependent on a particular character collating sequence. The collating
sequence is the order in which characters are defined by the implementation. If
one character appears before a second character in the collating sequence, then
the first character will be ‘‘less than” the second character when they are
compared. In the ASCII collating sequence, the lowercase letters “a” to “z”
appear as the contiguous integer values 97 to 122 (decimal). In other collating
sequences, such as EBCDIC, the lowercase letters are not contiguous.

To make character and string sorting programs portable, care must be taken to
avoid dependencies on the character collating sequence. If a program is
designed to operate with a collating sequence other than ASCII, it may be
necessary to modify string and character comparison code to operate with
ASCII.

FLOATING POINT RANGE AND ACCURACY

One of the most variable aspects of different machines is floating point
arithmetic, where the range, precision, accuracy and base can vary widely. This
can lead to many portability problems which can only be addressed
74 Green Hills C User’s Guide, v. 1.8.9

Operating System Dependencies
numerically. Your Green Hills compiler uses IEEE floating point
representation.

OPERATING SYSTEM DEPENDENCIES

Programs which access operating system resources, such as files, by their
system names are often not portable. The file and I/O device naming
conventions vary greatly among computer systems. In order to write portable
programs it is necessary to minimize the use of explicit file names in the
program. It is best if these names can be input to the program when the
program is run.

If a program contains explicit file names it may be necessary to change them to
names acceptable to the target system. Refer to your target operating system
documentation for a description of legal file names for your environment.

ASSEMBLY LANGUAGE INTERFACES

Programs which use embedded assembly code or interface to external assembly
will require all of the assembly code to be redone when the program is
transported to a new machine.

EVALUATION ORDER

None of the language specifications fully specify the order in which the various
components of an expression or statement must be evaluated, and they disallow
computations whose results depend on which permitted evaluation order is
used. Many illegal programs have gone undetected because they have only
been compiled with one compiler. Since your Green Hills compiler’s
evaluation order may not be identical to the evaluation order of other compilers,
some of these illegal programs which operate as expected with another compiler
may not operate the same way when compiled with your Green Hills compiler.

Some language implementations may evaluate the arguments to a function from
right to left, others from left to right.

Expressions with side effects, such as subroutine, procedure, or function calls,
may be executed in a different order by your Green Hills compiler and other
compilers. When a variable is modified as a side effect of an expression and its
value is also used at another point in the expression, it is not defined whether
Green Hills Software, Inc. 75

3. Writing Portable Code
the value used at either point in the expression is the value before or after
modification. Different values for the same variable could potentially be used
at different places in the expression depending on the order the compiler chose
for evaluation.

The operators ++, --, +=, etc., may be executed in a different order by your
Green Hills compiler and other compilers.

Your Green Hills compiler may allocate some pointer variables not declared
register to registers. This may allow the compiler to generate more efficient
sequences for post increment operators than other compilers. These sequences
may involve incrementing at a different position in the statement than with
other compilers. In particular, statements of the form:

*p++ = expression involving p

often evaluate differently under PCC than they do with a Green Hills compiler.

A particular case of evaluation order dependency is the use of the ?: operator in
an expression which is an argument to a function call. Your Green Hills
compiler evaluates all question mark operators before any other arguments, and
keeps the result in temporary storage. PCC evaluates the ?: operator at its
position in the argument list. The call:

foo(b?i:i+i, i++)

will usually evaluate differently under PCC than under your Green Hills
compiler.

MACHINE SPECIFIC ARITHMETIC

Certain arithmetic operators in C are intended to generate the most efficient
corresponding operation on the target machine. If all input values are within the
expected range, the results are portable, but out of range values may give
different results on different systems.

SHIFT

The shift operators in C have this characteristic. If the right-hand operand is
negative or exceeds the number of bits in the left-hard operand the behavior is
undefined. In Green Hills C compilers, the operands will be given to the
76 Green Hills C User’s Guide, v. 1.8.9

Illegal Assumptions about Compiler Optimizations
hardware as if the operands were legal and the result depends entirely on the
hardware. Some systems accept a negative shift and reverse the direction of the
shift, but many do not. Shifting by more than the number of bits is the same as
shifting by 1 less than the number of bits on some systems, but on others it has
very different results.

If the left-hand operand of a right shift is signed, C does not require the
compiler to propagate the sign bit. That means a correct C compiler is allowed
to yield a positive number when right shifting a negative number by one.

DIVISION

The division operator may round up or down when applied to signed integers if
one or both of them is negative. Division by 0 produces different results on
different machines.

The remainder operator always satisfies the rule

(a / b) * b + a % b == a

as long as b is not 0. Therefore if a or b is negative, the sign of the remainder
may or may not match the sign of the dividend, depending on the machine.

ILLEGAL ASSUMPTIONS ABOUT COMPILER OPTIMIZATIONS

Some programs illegally depend on the exact code that some particular
compiler generates. Such programs are particularly difficult to port to an
advanced optimizing compiler, such as your Green Hills compiler, because the
optimizer makes major changes in the code in order to make the program
smaller and/or faster. Described below are some of the most common illegal
assumptions made about code generation. Please familiarize yourself with the
optimizations described in Chapter 4, “Optimization”, before reading further.

IMPLIED REGISTER USAGE

Some programs rely on the exact register allocation scheme used by the
compiler. Such programs are completely illegal, and will never transport
without modification.

For example, C programs that rely on register variables being allocated
sequentially to pass hidden parameters will not work. Hidden returns (i.e. using
Green Hills Software, Inc. 77

3. Writing Portable Code
return and expecting to return the value of the last evaluated expression) will
not work either.

MEMORY ALLOCATION ASSUMPTIONS

Memory is allocated by your Green Hills compiler in a different way than by
the industry’s standard compilers and other companies’ compilers. This can
cause problems in porting programs which illegally depend on the memory
allocation peculiarities of other compilers:

▲ Some programs depend on the compiler allocating variables in memory in
the order that they are declared. Your Green Hills compiler will not
necessarily allocate variables in the order of declaration.

▲ Some programs depend on knowing that the compiler will allocate all
variables even if they are not used. Your Green Hills compiler may not
allocate unused variables.

▲ Some programs depend on knowing that certain variables will be allocated
in memory. Your Green Hills compiler will allocate certain variables to
registers that the standard compilers other compilers would always allocate
to memory.

Programs compiled with your Green Hills compiler must not make assumptions
regarding the order or allocation of variables in memory (except where the
language standard specifies it).

MEMORY OPTIMIZATION RESTRICTIONS

READ THIS SECTION CAREFULLY IF YOU ARE PORTING SYSTEM
CODE OR APPLICATIONS THAT USE SHARED MEMORY OR
SIGNALS.

Using the command line option -OM will enable the compiler to assume that
memory locations do not change asynchronously with respect to the running
program. In particular, when the compiler reads or writes some memory
location, it will assume that the same value is still there several instructions
later. To avoid the (potentially high) speed penalties involved in re-reading
memory, the compiler will attempt to find a copy of the value which is itself
still in a register, and use that instead.
78 Green Hills C User’s Guide, v. 1.8.9

Problems with Source Level Debuggers
This can easily cause problems for many parts of operating systems, device
drivers, memory mapped I/O locations, shared memory environments, multiple
process environments, interrupt driven routines, and when UNIX style signals
are enabled. In C, general optimizations may be used as described in the next
section.

MEMORY OPTIMIZATION IN C

An example of potential problems with memory optimizations is that many
UNIX device drivers need to use memory locations which are really I/O
registers that can change at any time. A typical example of a loop waiting for a
device register to change is:

while (!(*TSRADDR & (1 << TXSBIT)));

If memory optimizations are enabled while compiling this loop, the compiler
may generate code that reads the value pointed to by TSRADDR only once.
With -OLM, it is almost certain that this will be the case. When this happens,
the loop will execute either once or forever, depending on the value of the bit
when it is first tested, and the loop will be rendered either ineffective or fatal.

Depending on the situation, the compiler may be able to detect loops like the
above, and generate code that operates correctly even with -OM set. However,
if the loop body were to test more than one bit at the same address, the compiler
will contort the loop in an attempt to read memory as few times as possible.

The compiler assumes that you will use the volatile type qualifier when it is
available. This means that -O implies -OM whenever the ANSI modes of
compilation are used in C. If, for some reason, you are unable to use volatile,
and this is a real problem, you can add the option -Onomemory to your
command line to force memory optimization off. Note that -Onomemory also
implies -O.

PROBLEMS WITH SOURCE LEVEL DEBUGGERS

This section describes various problems relating to source level debuggers.

VARIABLE ALLOCATION

Once a variable is allocated to a register it will always reside in that register.
However, since other variables may share the register, it may not always
Green Hills Software, Inc. 79

3. Writing Portable Code
contain the current value of the variable. This may cause a source level
debugger to give incorrect results. If you ask for the value of a variable at a
point outside the range of its use, the compiler may have temporarily allocated
that register for some other purpose. Always check results just after they are
assigned, or when the current value is going to be used later. Near the end of a
function most of the local variables will no longer be in use, so it is more likely
that the register has been reallocated.

ADVANCED OPTIMIZATIONS

In general, Green Hills recommends that all optimizations be turned off if
source level debugging is to be performed. The following are examples of
specific problems that can be caused when optimizations are used in
conjunction with source level debuggers.

▲ The common subexpression elimination optimization causes the compiler to
try to precalculate expressions which are used more than once and save the
result in a register. During debugging, the programmer will not find the
expression itself, since it was evaluated and saved at an earlier time.

▲ Various loop and branch optimizations rearrange entire statements or blocks
of statements causing difficulties with source level debugging since there
will no longer be a direct correlation between source lines and executable
instructions.

PROBLEMS WITH COMPILER MEMORY SIZE

Your Green Hills compiler is an advanced optimizing compiler. It is much
better than the current generation of “optimizing” microprocessor compilers. In
accordance with its greater capability, it requires more memory. The compiler
requires 1 megabyte of memory just for the program. It is designed to work
best when 2 megabytes or more of memory are available. It will run in less
memory but with some degradation of performance or capability.

The compiler’s primary use of memory is for the program, static data structures,
global declarations, parse trees, and generated machine code. Global
declarations consist of the global constant, type, variable, and function
declarations. Memory usage increases when large numbers of declarations are
included in a compilation. Even unused global declarations must be stored
throughout the compilation. If memory size problems exist, try to reduce the
size of the include files by including just the declarations that are needed.
80 Green Hills C User’s Guide, v. 1.8.9

PCC Mode Incompatibilities
Memory is also needed for basic blocks. Every possible branch creates a new
block. Machine generated programs with very large switch statements or a very
large number of small if statements may increase memory usage.

Your Green Hills compiler is a one pass compiler. That is, it reads the source
program only once. Each function is converted into a parse tree as it is read.
When the end of the function is reached, the optimizer is called with the parse
tree as input. The optimizer modifies the parse tree and then passes it on to the
code generator. The code generator produces an internal representation of the
machine code to be output for the function. Another optimization phase is then
called to modify this machine code. Finally the optimized machine code for the
function is output. After the machine code is output, the memory being used for
the parse tree and machine code is released for use in compiling the next
function.

The maximum memory usage for parse trees and machine code is determined
by the size of the largest function in the program. If memory size problems
exist, turn off the optimizer and reduce the size of the largest function. A simple
function of less than 100 lines should not cause memory size problems.
However, procedures which are more than 1000 lines, or contain very complex
statements, can require several megabytes of memory to compile.

PCC MODE INCOMPATIBILITIES

The C preprocessor that is provided with PCC has many undocumented
features. Most of these undocumented features are implemented in your Green
Hills C compiler in PCC mode.

One little known feature of the C Preprocessor allows the results of two macro
expansions to be concatenated into a single token. For example:

#define x /
#define y *
x/**/y A comment */
int va1;

This program is preprocessed by PCC into the following legal program before
being compiled:

/* A comment */
int va1;
Green Hills Software, Inc. 81

3. Writing Portable Code
Due to the one pass nature of your Green Hills compiler it is not possible for its
built-in preprocessor to manufacture a token such as /*. In order to compile a
program with such constructs, it is necessary to run the compiler in two passes.
First, compile the program with the -E compile time option to produce the
preprocessed source, then compile the preprocessed source as you normally
would.

However, as a special case, the compiler can construct an identifier as:

#define O 2
int va2;
main() {
va/**/O = 1;
}

which becomes:

int va2;
main() {
va2 = 1;
}

DETECTION OF PORTABILITY PROBLEMS

Many of the problems associated with porting programs to your Green Hills C
compiler from other compilers can be detected with the UNIX utility program
lint(1). You should look for variables used before definition, routines using
return and return(x), nonportable character operations, evaluation order
undefined, and routines whose value is used but not set. lint is not able to detect
code that relies on the allocation order of memory variables, or that rely upon
the arithmetic characteristics of short data types. Furthermore, since lint does
not do actual data flow analysis, the absence of a message does not imply the
absence of a problem.
82 Green Hills C User’s Guide, v. 1.8.9

Chapter
4

OPTIMIZATION

4. Optimization
Along with providing standard optimizations available with other compilers, the Green Hills
compiler supports an advanced set of optimizations. Among these optimizations are
specialized suboptions which allow you to target specific types and areas of code for
improved performance.

This chapter describes the Green Hills compiler optimizations under three categories:

▲ Optimizations performed by default

▲ General optimizations enabled with the -O option

▲ Specialized optimizations enabled with the suboptions -OLAMISD

DEFAULT OPTIMIZATIONS

This section describes the optimizations that the compiler performs by default,
when no options are set:

▲ Constant Folding

▲ Register Allocation by Coloring

▲ Register Coalescing

▲ Loop Rotation

CONSTANT FOLDING

Constant folding optimization is performed when the compiler can determine at
compile-time that an expression is a constant. The compiler substitutes the
constant for any reference to the constant expression.

In these examples, the constant expression INT_MAX/2 has a value of 16383.

Initial C source code:

#define INT_MAX 32767
short subr(){
 int x;
 x=INT_MAX/2;
 return(x); }

Optimized C source code:

short subr(){
 int x;
84 Green Hills C User’s Guide, v. 1.8.9

Default Optimizations
 x = 16383;
 return(x); }

REGISTER ALLOCATION BY COLORING

Register allocation by coloring is used to permanently maintain a selected set of
local scalar variables in registers based on their frequency of reference and their
lifetimes. During program compilation, the optimizer uses data flow analysis to
determine the lifetime of each variable. The register allocator also uses this
information to assign different variables within a function to the same register if
the lifetimes of the variables do not overlap. This increases the opportunity for
allocating variables to registers.

With the local variables preallocated to registers, the compiler can optimize the
code significantly, since additional memory load and store instructions are not
required to reference the variables.

In these examples, the variables a and b are both assigned to the same register
since their lifetimes do not overlap (note that the code could be optimized still
further, but is left as is to simplify the examples).

EXAMPLES:

Initial C source code:

int subr(x)
int x;
{
 int a,b;
 a=x;
 b=x*2;
 return b;
}

Optimized C source code:

int subr(x)
int x;
{
 int a;
 a=x;
Green Hills Software, Inc. 85

4. Optimization
 a=x*2;
 return a;
}

For small functions, the compiler maintains all local variables in registers.
Scalars generally are considered for register allocation unless their values are
accessed with the address operator (&). This optimization is disabled with the
-nooverload option.

REGISTER COALESCING

With register coalescing optimization, the optimizer uses the destination
register as a work register when evaluating the associated expression and
organizes the instruction sequence so the result ends up in the destination
register. This optimization eliminates the additional register-to-register copies
required when using a temporary register.

Initial C source code:

int fun(a,b,c)
int a,b,c;
{
 int ret = a+b+c;
 return ret;
}

Optimized C source code:

int fun(a,b,c)
int a,b,c;
{
 return a+b+c;
}

LOOP ROTATION

Loop rotation optimization refers to locating the termination test and a
conditional branch at the bottom of the loop. Therefore, the loop only processes
one branch instruction on each iteration. Most compilers place the termination
test and an unconditional branch at the top of the loop and an additional
unconditional branch at the bottom.
86 Green Hills C User’s Guide, v. 1.8.9

General Optimizations Enabled with the -O Option
EXAMPLES:

Initial C source code:

int subr(i)
int i;
{
 while (i < 10)
 i *= i;
 return(i);
}

Optimized C source code:

int subr(i)
int i;
{
 goto L7;
 do {
 i *= i;
 L7:
 } while (i < 10);
 return(i);
}

In addition, if the compiler can determine that the loop is executed at least one
time, the loop is entered at the top. If not, the compiler generates an
unconditional branch at the top of the loop to the termination test.

GENERAL OPTIMIZATIONS ENABLED WITH THE -O OPTION

General optimizations are enabled with the -O option. When -O is selected, all
of the following optimizations are performed:

▲ Common Subexpression Elimination

▲ Peephole Optimization

▲ Pipeline Instruction Scheduling

▲ Static Address Elimination

▲ Dead Code Elimination

▲ Constant Propagation
Green Hills Software, Inc. 87

4. Optimization
▲ Tail Recursion

Certain -O optimizations can be controlled with -Ono options, each of which
disables a specific -O optimization but enables all others. For example, the
-Onocse option enables all -O optimizations except for common subexpression
elimination. These options are described in the appropriate optimization
sections.

STATIC ADDRESS ELIMINATION

With static address elimination optimization, the optimizer assigns frequently
used static variables to registers within the scope of the function. This
optimization eliminates the loads and stores required with memory allocation.
It is enabled with the -OM option.

In these examples, the address of the static variable x is maintained in register.

EXAMPLES

Initial C source code:

int subr(q)
int q;
{
 static int x=0;
 x++;
 q+=x;
 return(q);
}

Optimized C source code:

int subr(q)
int q;
{
 static int x=0;
 register int x_ = x;
 x_++;
 q+=x_;
 x=x_;
 return(q);
88 Green Hills C User’s Guide, v. 1.8.9

General Optimizations Enabled with the -O Option
}

Note that this optimization is performed not only for locally defined static
variables, but also for global variables, as shown in the following example:

Initial C source code:

int x = 0;

int subr(q)
int q;
{
 x++;
 q+=x;
 return q;
}

Optimized C source code:

int x=0;

int subr(q)
int q;
{
 register int x_ = x;
 x_++;
 q+=x_;
 x=x_;
 return(q);
}

PEEPHOLE OPTIMIZATION

Peephole optimization identifies common code patterns and replaces this code
with more efficient code patterns. This includes optimizations such as removal
of unreachable code, flow of control and algebraic simplifications. The
compiler only performs this optimization when local code analysis insures that
the results will be correct without further analysis of the surrounding code. This
optimization is disabled with the -Onopeep option.
Green Hills Software, Inc. 89

4. Optimization
Initial C source code:

int subr(x,y,z)
int x,y,z;
{
 y = x;
 z = y;
 return z;
}

Optimized C source code:

int subr(x,y,z)
int x,y,z;
{
 return x;
}

COMMON SUBEXPRESSION ELIMINATION

Common subexpression elimination is performed when a previously calculated
expression is part of a later expression and none of the variable values in the
subexpression have changed. The optimizer retains the value of the
subexpression in a register for reuse. This optimization is disabled with the
-Onocse option.

Initial C source code:

int subr(x,y)
int x,y;
{
 int a, b;
 x += a+b;
 y += a+b;
 if (y < 0)
 return(y);
 return(x);
}

Optimized C source code:

int subr(x,y)
90 Green Hills C User’s Guide, v. 1.8.9

General Optimizations Enabled with the -O Option
{
 int a, b, _v6;
 x+=(_v6=a+b);
 y+=_v6;
 if (y<0)
 return y;
 return x;
}

TAIL RECURSION

A procedure is considered tail recursive if the last statement executed is a
procedure call to itself followed by a return statement. This is sometimes simply
called a recursive procedure. Tail recursion optimization replaces the procedure
call with a branch instruction and eliminates the return statement.

Initial C source code:

int sum(n)
int n;
{
 if (n <= 1)
 return(1);
 else
 return(n+ sum(n-1));
}

Optimized C source code:

int sum(n)
int n;
{
 int _v3=0;
L1:
 if (n <= 1)
 return _v3+1;
 _v3 += n;
 _n--;
 goto L1;
}

Green Hills Software, Inc. 91

4. Optimization
DEAD CODE ELIMINATION

With dead code elimination, the optimizer does not generate assembly code for
statements computing values that are never used and therefore have no effect on
the program results.

In this example, the optimizer eliminates all code for processing the variable a
since it knows at compile-time that the variable a is zero and therefore any code
referencing it is not used.

Initial C source code:

#define F0 0
#define F2 2
int subr(x)
int x;
{
 int a,b,c;
 a=F0*x;
 b=F2*x;
 return ((a)? a : b);
}

Optimized C source code:

int subr(x)
int x;
{
 int b;
 b=2*x;
 return(b);
}

CONSTANT PROPAGATION

Constant propagation is the replacement of one or more variables with constants
over the course of a variable’s lifetime if the variable’s value is known and does
not change during that lifetime. The following examples show code optimized
with constant propagation:
92 Green Hills C User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMISD
C source code:

main()
{
 int i,a,b;
 a = 3;

 for (i=0;i<1000;i++)
 b += a; /* a is constant over the lifetime
 ; of the loop */
 printf("%d\n", b);
}

Optimized C source code:

main()
{
 int i,b;
 for (i=0; i<1000; i++)
 b+=3;
 printf(“%d\n”, b);
}

SPECIALIZED OPTIMIZATIONS SET WITH THE SUBOPTIONS -OLAMISD

The specialized optimizations are enabled using the -OL, -OA, -OM, -OI, -OS,
or -OD options. These optimizations enable the general optimization along
with the indicated suboptions. The optimizations provided by each option are
as follows:

-OL Loop Optimization:
Strength Reduction
Loop Invariant Removal
Loop Unrolling

-OA Algorithmic Optimization
-OM Memory Optimization
-OI Inlining Optimization
-OS Size Optimization
-OD Delete Optimization
Green Hills Software, Inc. 93

4. Optimization
You can combine these suboptions (L, A, M, I S, and D) in any order by
appending them to the -O option. For example, the -OLAMISD option turns
on all optimizations.

LOOP OPTIMIZATION WITH -OL

Loop optimization is selected with the -OL option. This option informs the
compiler that most computation is performed within the innermost loops.
Therefore, the compiler focuses most of the available machine resources on
optimizing that portion of code.

The following loop optimizations are performed:

▲ Strength Reduction

▲ Loop Invariant Removal

▲ Loop Unrolling.

You can also list specific functions for this optimization using the following
syntax:

-OL=func1,func2,...,funcn

The -Onounroll and -Ounroll8 options can be used with -OL to affect loop
unrolling. See section Register Caching Over Loops on page 96 for more
information.

STRENGTH REDUCTION

Strength reduction optimization is applied to arrays subscripted with the loop
index. Most compilers access the array element by multiplying the size of the
element by the loop index. The Green Hills compilers store the address of the
array in a register and add the size of the array element to the register on each
iteration of the loop.

Initial C source code:

subr()
{
 int i;
 int q[4];
 for (i=0;i<4;i++)
 q[i]=i;
94 Green Hills C User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMISD
}

Optimized C source code:

subr()
{
 int i;
 int q[4];
 int *_ptr;
 for (i=0, _ptr=q; i<4; i++)
 *_ptr++ = i;
}

Strength reduction also applies to multiplying a loop invariant with the loop
index. The optimizer replaces a multiply instruction or a call to the mul()
library function with add and shift instructions.

LOOP INVARIANT REMOVAL

Loop invariant removal enhances loop performance. Each loop is examined for
expressions or address calculations that do not change within the loop. These
computations are located outside the loop and their values are stored in
registers.

This optimization is particularly valuable for reducing the code generated to
access an element of an array when the array index does not change within the
loop.

Initial C source code:

subr()
{
 int i,j;
 int q[4],p[4];
 for (i=3;i>=0;i--)
 q[i]=i;
 for (j=0;j<4;j++)
 p[j]=q[i];
}

Green Hills Software, Inc. 95

4. Optimization
Optimized C source code:

subr()
{
 int i,j;
 int q[4],p[4];
 int *_ptr;
 for (i=3; i>=0; i--)
 q[i] = i;
 for (j=0, _ptr = &q[i]; j<4; j++)
 p[j] = *_ptr;
}

REGISTER CACHING OVER LOOPS

With register caching over loops optimization, the compiler duplicates the code
in the innermost loop up to a maximum of four times by default. This
optimization produces more straightline code, which removes much of the loop
overhead in testing for stop condition and branching. This allows better use of
the register allocator and more opportunity for instruction pipelining. It is most
effective when the innermost loop is relatively short causing minimal increase
in code size.

There are two options that can be used along with -OL to affect loop unrolling.
-Ounroll8 allows loops to be unrolled up to 8 times instead of the default
maximum of 4 times.’-Onounroll disables loop unrolling but enables the other
-OL options.

The following simple examples use a constant loop size of 100 and a maximum
loop index of four to show the effect of this optimization.

Initial C source code:

subr(a)
int a[];
{
 int i;
 for (i=0;i<100;i++)
 a[i]=i;
}

96 Green Hills C User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMISD
Optimized C source code:

subr(a)
int a[];
{
 int i;
 for (i=0;i<100;i+=4) {
 a[i]=i;
 a[i+1]=i+1;
 a[i+2]=i+2;
 a[i+3]=i+3;
 }
}

Calling the size of the loop n, suppose that n is large (auxiliary loop execution
time is negligible); then, the original loop takes n*(4 cycles per iteration) == 4n
cycles to complete. The unrolled loop takes n/4*(10 cycles per iteration) ==
2.5n cycles to complete. With n large, the unrolling has the effect of making the
loop execute in only 63% of the time required by the original loop.

ALGORITHMIC OPTIMIZATION WITH -OA

These optimizations assume the program implements a portable algorithm
which is not affected by the limitations of finite hardware. For example, these
optimizations may apply algebraic properties such as associativity without
respect to the possibility of overflow, underflow, round-of, loss of precision, or
division by zero.

Furthermore, these optimizations assume that the algorithm never makes use of
the characteristics of two’s complement integer arithmetic or IEEE floating
point arithmetic beyond that implementation independent rules of ANSI C. For
example, ANSI C states that the size of an int is implementation defined and in
most environments supported by Green HIlls compilers, an int is a 32-bit two’s
complement number. For example any program that depends on an int having
exactly 32-bit bits, rather than 35 bits, or which depends on two’s complement
arithmetic rather than signed magnitude or some other representation should
NOT be compiled with -OA.

For example,

unsigned char c = -1;
Green Hills Software, Inc. 97

4. Optimization
if (c == 255)
 foo(); /* with -OA this might not be called */
signed char s = -127;
if (c - 5 > 0) /* note that c-5 yields 4 because of overflow */
 bar(); /* with -OA this might not be called */

In ANSI C, the include file limits.h provides implementation defined bounds
for all integral types. Any code which depends on the result of an arithmetic
operation which exceeds these bounds should not be compiled with -OA.

Some programs achieve portability by intentionally forcing overflow in order to
determine the limitations of the hardware. The results of these tests are then
used to avoid overflow in the rest of the program. These overflow tests should
NOT be compiled with -OA.

ALGEBRAIC ALGORITHMIC OPTIMIZATION

With some systems there is an additional type of algorithmic optimization that
can be enabled with the -X915 option (note that -OA must also be specified for
this to work). With this optimization, whenever the compiler finds a multiply
across an add, such as X*(Y+Z), where X is a constant, it will distribute the
multiply across the add, so our previous example would become: X*Y+X*Z.
Even though this actually increases the number of calculations performed (from
two to three) it can actually increase the speed of the calculation due to better
register usage on some systems.

MEMORY OPTIMIZATION WITH -OM

Memory optimization is enabled with the -OM option. This allows the
compiler to optimize repeated memory reads by placing the value in a register.
Subsequent read operations then refer to the register rather than the actual
memory location. With this optimization the compiler assumes that memory
locations only change with explicit store instructions and therefore are not
affected by any external sources.

It is therefore not recommended for applications in which memory could by
externally affected: device drivers, operating systems, and shared memory.
This also applies in a non-virtual memory environment when interrupts are
enabled.

The -OM option is automatically set with the -O option in full ANSI or 90%
ANSI mode (the -ANSI or -ansi options), since the volatile keyword is defined
98 Green Hills C User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMISD
to explicitly identify objects that may change without the compiler’s knowledge
or control. If you wish to want to use -O without using -OM in one of these
modes, you may use the -Onomemory option. This option turns on -O, but
turns off memory optimization.

SPACE OPTIMIZATION WITH -OS

Space optimization is enabled with the -OS option. This tells the compiler to
perform all default and general optimizations that would increase efficiency but
not greatly increase code size. For instance, if you compiled your code with the
optimization option -OSL, the compiler would omit the loop unrolling phase.

INLINING WITH -OI

The term “inlining” refers to the process of substituting the contents of a
function or subroutine in place of the call to that function or subroutine. The
resulting code is faster, since the overhead of a jump-to-subroutine call has been
eliminated. Typically, a small function or subroutine that is frequently
executed, but is called from only a few locations within the program, is the best
candidate for inlining. This way, the maximum benefit can be obtained by
increasing efficiency in high usage areas, while not significantly increasing
program size. Note that this feature is not currently supported with C++. See
your Release Notes for more information.

The following program illustrates the basic principles of inlining. The main
program in this case contains a simple loop which calls the function sub(). The
call itself occurs only once in the program code, but the function is executed for
each iteration of the loop. The call is easily replaced by the routine code for sub
itself, eliminating both the need for parameter passing and the overhead of a
jump-to-subroutine. The reduced overhead per execution becomes a major
savings in program speed.

Initial C source code:

_ _inline sub(x) {
 printf(“x=%d\n”,x);
 return;
}
main() {
 int i;
Green Hills Software, Inc. 99

4. Optimization
 for (i=1;i<10;i++)
 sub(i);
}

Optimized C source code:

 sub(x) {
 printf("x=%d\n",x);
 return;
 }
 main() {
 int i;
 for (i=1;i<10;i++)
 printf("x=%d\n",i);
 }

Note that the code for sub has not been eliminated, although the main program
no longer contains a call to sub. The compiler generates code for each function,
whether or not it is inlined, so that it will be available to be called from other
modules and so that its address can be taken. While the size of the actual
generated code was not changed significantly, the execution speed of the main
program was improved by eliminating the jump-to-subroutine overhead.

USING THE INLINER

The Green Hills implementation of inlining is language independent within the
Green Hills family of compilers. Routines of one language may be freely
inlined into programs of another language. Also, inlining is performed across
modules: if a function falcon() to be inlined is defined in one module but used
in several, the compiler will be able to inline falcon() in all the modules in
which it is used.

For the sake of brevity, the word “function” in the following sections on
inlining is used to apply to FORTRAN subroutines as well.

SELECTING FUNCTIONS TO BE INLINED

There are three methods for selecting the functions to be inlined:
100 Green Hills C User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMISD
Manual Inlining
The _ _inline keyword may be inserted in the source code
immediately before the declaration of each function to be inlined.
This is referred to as manual inlining. Manual inlining is always
active even if no other optimizations or inlining methods have
been enabled.

Automatic Inlining
With automatic inlining, the compiler determines which functions
will be inlined. Automatic inlining is selected with the command
line option -OI.

Command Line Inlining
Command line inlining allows the user to specify the names of
certain functions to be inlined on the command line. This
resembles manual inlining in that the user determines whether or
not each function will be inlined. Command line inlining is
selected with the command line option -OI=name1,name2.

SINGLE-PASS AND TWO-PASS INLINING

Whenever a function is used in only one file, and is defined in that file before it
is used, and is manually marked for inlining with _ _inline, the function will be
inlined during the normal course of compilation. This is referred to as
single-pass inlining.

In order to inline a function which is not declared before it is used, or which is
called from a file other than the file in which it is declared, two-pass inlining is
required.

The command line options -OI and -OI= always enable two-pass inlining in
addition to determining the criteria for selecting the functions to be inlined.
Therefore, it may be necessary to specify the -OI or -OI= option to enable
two-pass inlining, even if every function is manually marked for inlining.

USING THE COMMAND LINE OPTIONS

-OI The -OI option indicates that automatic inlining should be
performed and that manual inlining should be performed in two
passes. The compiler will automatically select functions to be
inlined. In addition, each function which is manually marked with
_ _inline will be inlined, including those which are used before
Green Hills Software, Inc. 101

4. Optimization
they are declared in a file and those which are used in files in
which they are not declared. For example,

% gcc -OI main.c prog1.c prog2.c

will cause the compiler to be invoked twice for each of the three
source modules. First, each of the source files will be processed to
produce an inline file with a .inf extension. Then each source file
will be compiled again to produce an object file. On the second
pass, both the original source file and the three .inf inline files
will be used as input.

-OI=names The -OI=name option also indicates that command line inlining
should be performed and that manual inlining should be
performed in two passes. A list of names of functions to be inlined
may be specified after the -OI= option, separated by commas. In
addition, each function which is manually marked for inlining
with _ _inline will be inlined, including those which are used
before they are declared in a file and those which are used in files
in which they are not declared. If automatic inlining is also to be
performed the -OI option must be used as well.
The command line

% gcc -OI=sub,func main.c prog1.c prog2.c

will cause the functions sub() and func() to be inlined wherever
they are encountered, along with each function which is manually
marked for inlining with _ _inline.

-OI= The -OI= option without any arguments indicates that only
manual inlining should be performed in two passes.

TWO-PASS INLINING IMPLEMENTATION

When two-pass inlining is enabled, the compiler driver invokes the compiler
inliner once for each source module, creating an inline file for each module. All
of the functions in a single source file which are candidates for inlining are
stored in the corresponding inline file. The name of the inline file is formed by
taking the source filename and replacing the suffix with a .inf suffix.
102 Green Hills C User’s Guide, v. 1.8.9

Specialized Optimizations Set with the Suboptions -OLAMISD
Next, the compiler is invoked a second time for each source file. The original
source file along with all previously created .inf inline files will be used as
input. An object file will be generated for each source file, exactly as it would if
no inlining had been performed. The difference will be that certain calls to
functions will have been replaced with inline copies of those routines.
(Functions which are inlined will also have code generated for them, ensuring
full compatibility with conventional programming techniques.) Finally, all of
the object files will be linked normally.

INLINING OPTIMIZATION ENHANCEMENTS

Inlining is traditionally considered an optimization which increases program
size for the sake of improving program speed. Program size is increased
because a single function is generated in each place where it is called. Program
speed is improved because the branch-to-subroutine call is eliminated. In fact,
there are many ways in which inlining serves to reduce program size as well as
improve program speed. When a call is replaced by inlined code, the compiler
can usually avoid saving and restoring several registers before and after the call.
Parameters which normally must be passed on the stack to a called routine can
be accessed directly by the inlined routine in their original location.

Furthermore, because Green Hills compilers perform inlining before most
global optimizations, the process of inlining can significantly enhance the
opportunities for additional optimizations resulting in very efficient code.

For example, if one or more parameter values are constant, large portions of the
inlined routine may be reduced or eliminated at compile-time and loops which
normally execute a variable number of times may become constant.

Register allocation may improve because the overhead associated with a call is
eliminated. On most architectures, when a call to a routine exists within a
routine, the number of registers available for local variables and temporaries is
reduced. If all routine calls can be eliminated by inlining, the number of
registers available for variables and temporaries will be increased.

Pessimistic assumptions made by the compiler when compiling the caller may
not be necessary if no call is made. Normally the compiler must assume that
global variables may be changed when a call is performed. This prevents the
compiler from optimizing the values of expressions which contain global
Green Hills Software, Inc. 103

4. Optimization
variables across a call to a function. When the function is inlined, the call is
eliminated and the global variables may be optimized freely.

INLINING LIMITATIONS

The inlining optimization is subject to the following limitations:

▲ Source line number information related to inlined routines is deleted. When
executing a program under control of a source debugger, no source code will
be available for the inlined routine. Single stepping by source line will
cause the entire inlined call to be executed as a single statement. However,
you can debug the inlined call by stepping through the sequence of inlined
machine instructions at the point of the source-level call.

▲ Functions containing asm statements cannot be inlined.

▲ Routines written in assembly language cannot be inlined because they are
simply assembled to produce an object file. They cannot be processed by
the compiler inliner.

SELECTING OPTIMIZATIONS

This section provides a demonstration on using the UNIX system profiling
utility to take full advantage of the specialized optimizations available with the
Green Hills Compiler to improve the performance of your application.

The information that is generated by the profiler is commonly used to identify
time-critical or inefficient code. This data is also very useful to select the
appropriate optimizations for your particular application and specifically to
identify functions for inlining and loop optimizations.

The system profiler produces a profile of your application which contains
statistics relative to each function. Using the -p compiler option results in an
executable containing calls to the system routine “monitor”. When your
executable is run, these calls keep track of each function's performance. This
raw data is written to a file called mon.out. The profile utility, prof, interprets
the data in mon.out and generates a formatted report. The following list shows
the categories of information in the report and what each category means.

%time percentage of total run-time spent within a function
cumsecs cumulative seconds spent for processing a function
#call number of times a function is called
104 Green Hills C User’s Guide, v. 1.8.9

Selecting Optimizations
ms/call time in milliseconds per function call
name function name

When your code is linked, the compiler driver uses special profiled libraries to
generate your executable.
Green Hills Software, Inc. 105

4. Optimization
106 Green Hills C User’s Guide, v. 1.8.9

Chapter
A

KANJI CHARACTER
SUPPORT

.
ABOUT KANJI

Kanji is the Japanese name for one of the written forms of Japanese. Almost all
Kanji characters are taken from Chinese, although a few are specific to
Japanese.

Both Chinese and Kanji use one or more characters to represent a word. In
Chinese, each character is monosyllabic; in Japanese a Kanji character can be
monosyllabic, multisyllabic, or both, depending on the character. (Almost all
Kanji characters have multiple pronunciations.). There are over 30,000
characters in Chinese, but Kanji routinely uses only a portion of them. For
example, one can read a Japanese newspaper knowing less than 2,000 Kanji
characters. The computer representations for Kanji provide between 5,000 and
10,000 Kanji characters.

In Japanese, there is also a phonetic alphabet with less than 100 characters. Just
like English, this alphabet has cursive and block forms. They are called
Hiragana (cursive) and Katakana (block). Today Katakana characters are used
to spell foreign words and proper names phonetically.

GREEN HILLS SUPPORT FOR KANJI

Green Hills C, C++, and FORTRAN compilers (and MULTI) provide support
for Kanji characters in comments, character strings, and character constants.
Their use in variable names or other identifiers is not supported because of the
conflicts it would cause with syntactic rules requiring identifiers to begin with a
letter or underscore. Some Japanese vendors provide a Kanji preprocessor
which allows Kanji characters to be used in identifiers in C and FORTRAN.

Kanji fonts are available with X, allowing MULTI to support Kanji, and many
companies manufacture PC’s and Workstations with support for Kanji in both
the keyboard and display.

Green Hills run-time libraries also correctly process character data containing
Kanji characters. There are several different ways to represent Kanji characters.
The Kanji representation directly supported by Green Hills compilers uses a
pair of characters to represent a single Kanji character. The first character is
always in the range of 0xa0 to 0xfe and the second character is always in the
range of 0x80 to 0xfe.
A-2 Green Hills C User’s Guide, v. 1.8.9

Wide-Character vs. Multi-Byte Representation
The exact representation of Kanji is usually irrelevant to the compiler and
libraries, as long as neither byte conflicts with special values such as \0, \n, \r,
", \’, etc.

The C compiler allows a 2-byte Kanji character with single quotes. This is
easily done, as C allows two ASCII characters between single quotes.

WIDE-CHARACTER VS. MULTI-BYTE REPRESENTATION

In ANSI C, a new data type called ’wide characters’ was invented to handle
Kanji and other languages more systematically. A wide character is a character
which is represented in more bits than a typical character. There are wide
character strings also.

The difference between an old fashioned character string containing Kanji and a
wide character string containing Kanji is that the former is an array of bytes and
the latter is an array of shorts or longs. For this reason, the old fashioned
representation is called multi-byte. The old way used 2 units for Kanji, while
the new way uses bigger units.

The third character in a wide character string is always the third element, but in
a multi-byte character string it could be one element or two. What makes the old
way even more difficult is that the character could begin after the 2nd, 3rd, or
4th byte, depending upon whether there were Kanji or ASCII characters before
it in the string.

There are library routines to convert between wide character and multi-byte
character forms of characters and character strings. The Green Hills library
recognizes multi-byte Kanji character data and correctly converts it to and from
the wide character representation. This is done in the C locale because there is
not yet an accepted convention for naming Kanji-specific locales.
Green Hills Software, Inc. A-3

.
A-4 Green Hills C User’s Guide, v. 1.8.9

Index
A
Ada

address types 62
array types 62
C main() program for Ada 44
pointers types 62
string types 62

address types 62
algebraic algorithmic optimization 93, 97, 98
alignment

requirements 70
type double 16

alternate returns 50, 57
-ANSI 2
-ansi 2
ANSI C

library 36
limitations 26
mode 24
Permissive mode 3
predefined symbols 15
required symbols 15
standard P-2
strict 4

argument passing
C and Ada 61
C and FORTRAN 46
FORTRAN and C 53

arithmetic, machine specific 76
array

loop invariant removal 95
types 62

asm
C language support 3
Permissive ANSI support 4
statements 33, 104

assembly language interfaces 75
automatic inlining 101

B
bit fields

alignment and size 26
C language 25
Permissive ANSI support 4
signed 26
structure allocation 72

unsigned 26
branch instruction 91
Bsd 4.x 18
built-in functions

void__DI 35
void__EI 36
void_set_il 36

byte order 16, 69

C
C

memory optimization 79
restrictions on size and alignment 70

C++
header files 63
in C programs 64

#call 104
calling conventions 72
calling languages

C from Ada 60
C from FORTRAN 45
FORTRAN from C 53

cerr global object 65
character set dependencies 74
CHARACTER type 48, 55
cin global object 65
C language

dialects 2
library 36
modes 2

clog global object 65
C main() program for Pascal 43
code efficiency 26
command line inlining 101
COMMON blocks

information 52
naming conventions 53, 59

common subexpression elimination 87, 90
compiler

license 36
memory size problems 80
optimization 77

compile-time checking 6
COMPLEX*16 type 56
COMPLEX*8 type 56
COMPLEX type 49, 56
Green Hills Software, Inc. I-1

Index
conditional branch 86
const 3, 24, 25
constant

expressions 4
folding 84
propagation 87, 92

cout global object 65
C preprocessor output file 15
C routines 63
cumsecs 104

D
data general DG/UX 18
_ _DATE_ _ 15
dead code elimination 87, 92
debugger problems

advanced optimizations 80
variable allocation 79

#defined() 3
delete optimization 93
destination register 86
directives 3
division operator 77
%d operator 73
DOUBLE COMPLEX type 49, 56

E
-E 15, 82
#elif 3
embedded 17
empty structure 4
#endif 4
enum 3
enumerated types 30
#error 3
error 4, 25
evaluation order 75
examples

C main() program for C++ 42
C main() program for FORTRAN 43

F
_ _FILE_ _ 15
floating point format 16
floating point range 74

FORTRAN
CHARACTER type 48, 55
COMMON 52, 59
COMPLEX*16 type 56
COMPLEX*8 type 56
COMPLEX type 49, 56
DOUBLE COMPLEX type 49, 56
VMS compatibility mode 52, 59

function
calling conventions 72
prototype in C and C++ 65
prototypes 3

G
general optimizations 87
general symbols 16

_ _BigEndian 16
_ _Char_Is_Signed 17
_ _Char_Is_Unsigned 17
_ _ghs_ _ 16
_ _ghs_alignment 16
_ _ghs_packing 17
_ _ghs_pic 17
_ _ghs_pid 17
_ _ghs_sda 17
_ _ghs_tda 17
_ _ghs_zda 17
_ _IeeeFloat 16
_ _Int_Is_32 17
_ _Int_Is_64 17
_ _LANGUAGE_C_ _ 16
_ _LittleEndian 16
_ _LL_Is_64 17
_ _Long_Is_32 17
_ _Long_Is_64 17
_ _NoFloat 16
_ _PROTOTYPES_ _ 16
_ _Ptr_Is_32 17
_ _Ptr_Is_64 17
_ _Ptr_Is_Signed 17
_ _Ptr_Is_Unsigned 17
_ _Reg_Is_32 17
_ _Reg_Is_64 17
_ _SoftwareDouble 16
_ _SoftwareFloat 16
_ _Wchar_Is_Int_ _ 17
_ _Wchar_Is_Long_ _ 17
I-2 Green Hills C User’s Guide, v. 1.8.9

Index
_ _Wchar_Is_Short_ _ 17
_ _Wchar_Is_Signed 17
_ _Wchar_Is_Unsigned 17

_ _gh_initrec() 42
Green Hills library 45

H
Harrbison and Steele P-2
header files in C++ 63

I
I/O on single file in multiple languages 44
#ident 3
inefficient code,identifying with profiler 104
_ _inline 101
inlining

identifying functions 104
information 99
using the inliner 100

inlining methods
automatic 101
command line 101
manual 101
single-pass 101
two-pass 101, 102

inlining optimization 93, 103
instruction pipelining 96
interfacing Pascal and C 62
interrupt

routines 24
iostream library

cerr 65
cin 65
clog 65
cout 65

ISO C Standard P-2

J
Japanese Automotive C 34
-japanese_automotive_c 35

K
K+R

C features 3
information 15, 24
mode 2

-k+r 2
Kanji A-2

Green Hills support A-2
multi-byte representation A-3
wide-character representation A-3

Kernighan and Ritchie P-2

L
-language 41
language mode options 2
%ld operator 73
libansi 36
libind 7
library 36

Green Hills 45
initialization 42
native UNIX 45

_ _LINE_ _ 15
local scalar variables 85
loop

invariant analysis 93, 95
optimization 93, 104
rotation 86
unrolling 93, 94, 96

M
machine specific arithmetic 76
manual inlining 101
memory

alignment 25
allocation 78
size problems 80

memory-mapped I/O 24
memory optimization

in C 79
information 93, 98
restrictions 78
volatie type qualifier 24

Microsoft Windows 3.1 18
mixed language executable 40
monitor 104
mon.out 104
Green Hills Software, Inc. I-3

Index
ms/call 105
multi-byte representation A-3

N
name 105
named constant value 25
naming conventions, Pascal 62
native UNIX library 45
-noasm 33
-no_asm_warn 35
-noasmwarn 34
-nooverload 86
-no_short_enum 35
NULL pointer

dereferences 7
information 73

numeric constants 3

O
-O 87, 98
-OA 93, 97
-OD 93
-OI 93, 99, 101
-OI= 102
-OL 93, 94
old-fashioned

assignment 28
initialization 28
syntax 28

-OM 24, 78, 88, 93, 98
-Ono 88
-Onocse 88, 90
-Onomemory 79, 99
-Onopeep 89
-Onounroll 94, 96
operating system dependencies 75
operating system symbols

_ _bsd 18
_ _DGUX_ _ 18
_ _msw 18
_ _sco 18
_ _sun 18
_ _sysV 18
_ _sysV4 18
_ _sysV4pic 18
_ _unix_ _ 18

_ _VXWORKS 18
_ _windows 18

operators
division 77
shift 76

optimization
advanced 80
algorithmic 98
default 84
loop invariant analysis 95
loop unrolling 96
strength reduction 94

order evaluation 75
-OS 93, 99
-OSL 99
-Ounroll8 94, 96

P
-P 15
-p 104
padding bytes 25
PCC (Portable C Compiler) 2

mode incompatibilities 81
peephole optimization 87, 89
performance improvement 104
Permissive ANSI

information 15, 24
mode 3

pipeline instruction scheduling 87
pointer

checking 7
information 17
issues 73
NULL 73
types 62

portability problems 82
position independent code 17, 18
position independent data 17
pragma

asm 5
can_instantiate 14
do_not_instantiate 14
hdrstop 14
ident 11
inline 11
instantiate 14
intvect 35
I-4 Green Hills C User’s Guide, v. 1.8.9

Index
no_pch 14
pack 12
weak 12

-pragma_asm_inline 35
pragma endasm 5
pragma ghs

check 6
enddata 6
ifnodebug 8
ifnooptimize 8
includeonce 8
interrupt 8
intvect 12
nofloat interrupt 9
revertoptions 9
sda 9
section sect 9
startdata 6
zda 9

pragma ghs ifdebug 8
pragma ghs ifoptimize 8
pragma interface C 60
predefined symbols 3, 15
predefined symbols, target specific 18

i960 23
Intel x86 18
MIPS 20
Motorola 19
SH 22
SPARC 22
V800 22

preprocessor 3
prof 104
profiler 104
prototypes

for library functions 65
function in C and C++ 65
information 16
transition mode 3

R
READ 63
recursive 91
references

Harrbison and Steel, C, A Reference
Manual P-2

ISO C Standard P-2
Kernighan and Ritchie, The C Programming

Language P-2
registers

allocation by coloring 85
allocator 96
caching 96
coalescing 86
usage 77

requirements for alignment 70
restrictions on size and alignment 70
return types

simple 47, 55
routine

calling C from Ada 60
calling C from FORTRAN 45
calling FORTRAN from C 53
C language 63

run-time
checking 6
library 36

S
-s 62, 63
scalar variables 85, 86
SCO UNIX 18
semicolons 4
shift operator 76
-shortenum 30
signed 3
signed bit fields 26
-signedfield 26
single-pass inlining 101
size optimization 93
small data area optimization 17
Solaris 2.x 18
space optimization 99
standard optimizations 24
static address elimination 87, 88
static variables 88
stdarg 31, 32
stdarg.h 3
_ _STDC_ _ 15
straightline code 96
strength reduction 93, 94
Strict ANSI 15
Green Hills Software, Inc. I-5

Index
mode 4
string types 62
structure

assignment 25
parameters 25

structures 25, 29, 71
SunOS 4.x 18
symbol naming 51, 58
syntax, old-fashioned 28

T
tail recursion 88, 91
termination test 86
_ _TIME_ _ 15
%time 104
tiny data area optimization 17
Toyota Motor Corporation 34
Transition mode 3, 15, 24
two-pass inlining 101
type

char 17, 31
enum 30
enumerated 30
float 31
int 17, 30
long 17
short 31
wchar_t 17

type qualifiers
const 25
volatile 24

U
unions 25, 29, 71
UNIX

information 18
library 45
System V.3 18
System V.4 18

unsigned bit fields 26
-unsigned_char 35
-unsigned_field 35
-unsignedfield 26

V
varargs 31
varargs.h 3
variable

allocation 79
arguments 31
limitations 31

void 3
void _ _DI 35
void _ _EI 36
void_set_il 36
volatile 3, 24

W
warning 4, 34
wide-character representation A-3
Wind River VxWorks 18
word size 68
WRITE 63

X
-X174 63
-X402 52, 59
-X59 62
-X608 52, 59
-X915 98
-Xa 2
-Xc 2
-Xnooldfashioned 28
-Xs 2
-Xt 2

Z
-Z608 52, 59
zero data area optimization 17
I-6 Green Hills C User’s Guide, v. 1.8.9

	Green Hills C User’s Guide
	Preface
	About this Manual
	Supporting Documentation
	Typographical Conventions

	1 C Language Features
	C Language Modes
	K+R mode
	Transition mode
	Permissive ANSI mode
	Strict ANSI mode

	Pragma Directives
	#pragma asm #pragma endasm
	#pragma ghs check=(all,none,assignbound,bounds,nilderef, revert, switch,case,uninitvariable,useva...
	#pragma ghs ifdebug pragma
	#pragma ghs ifnodebug pragma
	#pragma ghs ifoptimize pragma
	#pragma ghs ifnooptimize pragma
	#pragma ghs includeonce
	#pragma ghs inline
	#pragma ghs interrupt
	#pragma ghs nofloat interrupt
	#pragma ghs revertoptions
	#pragma ghs sda=all #pragma ghs sda=size
	#pragma ghs section sect=”name”
	#pragma ghs startdata #pragma ghs enddata
	#pragma ghs startsda #pragma ghs endsda
	#pragma ghs starttda (certain processors only) #pragma ghs endtda
	#pragma ghs startzda #pragma ghs endzda
	#pragma ghs zda=all #pragma ghs zda=size
	#pragma ident “string”
	#pragma inline function-list (C only)
	#pragma intvect intfunc integer_constant (certain processors only)
	#pragma pack(n) #pragma pack()
	#pragma weak
	C++ Only Pragma
	#pragma hdrstop
	#pragma instantiate
	#pragma can_instantiate
	#pragma do_not_instantiate
	#pragma no_pch

	The C Preprocessor
	Preprocessor Output File
	Predefined Symbols in C
	Symbols Required by ANSI C
	Additional Symbols Provided by Green Hills C

	Target Processor Predefined Symbols

	Type Qualifiers
	volatile
	const

	Structure and Union Assignment and Comparisons
	Bit Fields
	ANSI C limitations
	Signed versus Unsigned Bit Fields
	Size and Alignment of Bit Fields

	Old-Fashioned Syntax
	Functions Returning Structures or Unions
	Enumerated Types
	Functions with Variable Arguments
	The varargs Facility
	Example:

	The stdarg Facility
	Example:

	asm Statement
	Japanese Automotive C
	C Run-time Library
	Compiler Limitations

	2 Mixing Languages
	How the Driver Builds a Mixed Language Executable
	The -language Option
	Example:

	Initialization of Libraries
	Note

	Main() Program Examples
	A C main() Program for C++
	A C main() Program for FORTRAN
	A C main() Program for Pascal
	A C main() Program for Ada

	Performing I/O on a Single File in Multiple Languages
	Native UNIX Libraries versus Green Hills Libraries
	Calling a C Routine from FORTRAN
	Argument Passing
	Return Types
	Simple Return Types
	CHARACTER
	COMPLEX and DOUBLE COMPLEX
	Alternate Returns

	Symbol Naming Conventions
	Calling C Routines From FORTRAN
	COMMON Blocks

	Calling a FORTRAN Routine from C
	Argument Passing
	Return Types
	Simple Return Types
	CHARACTER
	COMPLEX, COMPLEX*8, DOUBLE COMPLEX, COMPLEX*16
	Alternate Returns

	Symbol Naming Conventions
	COMMON Blocks

	Calling a C Routine from Ada
	Pragma Interface C
	Argument Passing
	Array and String Types
	Pointers and Address Types

	Interfacing Pascal and C
	Naming Conventions
	Redefining WRITE or READ

	C Routines and Header Files In C++
	Using C++ in C Programs
	Function Prototyping in C versus C++

	3 Writing Portable Code
	Compatibility Between Green Hills Compilers
	Word Size Differences
	Range of Representable Values
	Relative Sizes of Data Types

	Byte Order Problems
	Alignment Requirements
	Structures, Unions, and Bit Fields
	Unions
	Structures
	Bit Fields

	Assumptions about Function Calling Conventions
	Pointer Issues
	NULL Pointer
	Character Set Dependencies
	Floating Point Range and Accuracy
	Operating System Dependencies
	Assembly Language Interfaces
	Evaluation Order
	Machine Specific Arithmetic
	Shift
	Division

	Illegal Assumptions about Compiler Optimizations
	Implied Register Usage
	Memory Allocation Assumptions

	Memory Optimization Restrictions
	Memory Optimization in C

	Problems with Source Level Debuggers
	Variable Allocation
	Advanced Optimizations

	Problems with Compiler Memory Size
	PCC Mode Incompatibilities
	Detection of Portability Problems

	4 Optimization
	Default Optimizations
	Constant Folding
	Register Allocation by Coloring
	Examples:

	Register Coalescing
	Loop Rotation
	Examples:

	General Optimizations Enabled with the -O Option
	Static Address Elimination
	Examples

	Peephole Optimization
	Common Subexpression Elimination
	Tail Recursion
	Dead Code Elimination
	Constant Propagation

	Specialized Optimizations Set with the Suboptions -OLAMISD
	Loop Optimization with -OL
	Strength Reduction
	Loop Invariant Removal
	Register Caching Over Loops

	Algorithmic Optimization with -OA
	Algebraic Algorithmic Optimization

	Memory Optimization with -OM
	Space Optimization with -OS
	Inlining with -OI
	Using the Inliner
	Selecting Functions to be Inlined
	Single-Pass and Two-Pass Inlining
	Using the Command Line Options
	Two-Pass Inlining Implementation
	Inlining Optimization Enhancements
	Inlining Limitations

	Selecting Optimizations

	A Kanji Character Support
	About Kanji
	Green Hills Support for Kanji
	Wide-Character vs. Multi-Byte Representation

