<map>


namespace std {
template<class Key, class T, class Pred, class A>
    class map;
template<class Key, class T, class Pred, class A>
    class multimap;
//    TEMPLATE FUNCTIONS
template<class Key, class T, class Pred, class A>
    bool operator==(
        const map<Key, T, Pred, A>& lhs,
        const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator==(
        const multimap<Key, T, Pred, A>& lhs,
        const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator!=(
        const map<Key, T, Pred, A>& lhs,
        const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator!=(
        const multimap<Key, T, Pred, A>& lhs,
        const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator<(
        const map<Key, T, Pred, A>& lhs,
        const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator<(
        const multimap<Key, T, Pred, A>& lhs,
        const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator>(
        const map<Key, T, Pred, A>& lhs,
        const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator>(
        const multimap<Key, T, Pred, A>& lhs,
        const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator<=(
        const map<Key, T, Pred, A>& lhs,
        const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator<=(
        const multimap<Key, T, Pred, A>& lhs,
        const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator>=(
        const map<Key, T, Pred, A>& lhs,
        const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator>=(
        const multimap<Key, T, Pred, A>& lhs,
        const multimap<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    void swap(
        const map<Key, T, Pred, A>& lhs,
        const map<Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    void swap(
        const multimap<Key, T, Pred, A>& lhs,
        const multimap<Key, T, Pred, A>& rhs);
    };

Include the STL standard header <map> to define the container template classes map and multimap, and their supporting templates.

map


allocator_type · begin · clear · const_iterator · const_reference · const_reverse_iterator · count · difference_type · empty · end · equal_range · erase · find · get_allocator · insert · iterator · key_comp · key_compare · key_type · lower_bound · map · max_size · operator[] · rbegin · reference · referent_type · rend · reverse_iterator · size · size_type · swap · upper_bound · value_comp · value_compare · value_type


template<class Key, class T, class Pred = less<Key>,
    class A = allocator<T> >
    class map {
public:
    typedef Key key_type;
    typedef T referent_type;
    typedef Pred key_compare;
    typedef A allocator_type;
    typedef pair<const Key, T> value_type;
    class value_compare;
    typedef typename A::size_type size_type;
    typedef typename A::difference_type difference_type;
    typedef typename A::rebind<value_type>::other::reference
        reference;
    typedef typename A::rebind<value_type>::other::const_reference
        const_reference;
    typedef T0 iterator;
    typedef T1 const_iterator;
    typedef reverse_iterator<const_iterator>
        const_reverse_iterator;
    typedef reverse_iterator<iterator> reverse_iterator;
    map();
    explicit map(const Pred& comp);
    map(const Pred& comp, const A& al);
    map(const map& x);
    template<class InIt>
        map(InIt first, InIt last);
    template<class InIt>
        map(InIt first, InIt last,
            const Pred& comp);
    template<class InIt>
        map(InIt first, InIt last,
            const Pred& comp, const A& al);
    iterator begin();
    const_iterator begin() const;
    iterator end();
    iterator end() const;
    reverse_iterator rbegin();
    const_reverse_iterator rbegin() const;
    reverse_iterator rend();
    const_reverse_iterator rend() const;
    size_type size() const;
    size_type max_size() const;
    bool empty() const;
    A get_allocator() const;
    typename A::reference operator[](const Key& key);
    pair<iterator, bool> insert(const value_type& x);
    iterator insert(iterator it, const value_type& x);
    template<class InIt>
        void insert(InIt first, InIt last);
    iterator erase(iterator it);
    iterator erase(iterator first, iterator last);
    size_type erase(const Key& key);
    void clear();
    void swap(map x);
    key_compare key_comp() const;
    value_compare value_comp() const;
    iterator find(const Key& key);
    const_iterator find(const Key& key) const;
    size_type count(const Key& key) const;
    iterator lower_bound(const Key& key);
    const_iterator lower_bound(const Key& key) const;
    iterator upper_bound(const Key& key);
    const_iterator upper_bound(const Key& key) const;
    pair<iterator, iterator> equal_range(const Key& key);
    pair<const_iterator, const_iterator>
        equal_range(const Key& key) const;
protected:
    A allocator;
    };

The template class describes an object that controls a varying-length sequence of elements of type pair<const Key, T>. The first element of each pair is the sort key and the second is its associated value. The sequence is represented in a way that permits lookup, insertion, and removal of an arbitrary element with a number of operations proportional to the logarithm of the number of elements in the sequence (logarithmic time). Moreover, inserting an element invalidates no iterators, and removing an element invalidates only those iterators which point at the removed element.

The object orders the sequence it controls by calling a stored function object of type Pred. You access this stored object by calling the member function key_comp(). Such a function object must impose a total order on sort keys. For any element x that precedes y in the sequence, key_comp()(y.first, x.first) is false. (For the default function object less<Key>, sort keys never decrease in value.) Unlike template class multimap, an object of template class map ensures that key_comp()(x.first, y.first) is true. (Each key is unique.)

The object allocates and frees storage for the sequence it controls through a protected object named allocator, of class A. Such an allocator object must have the same external interface as an object of template class allocator. Note that allocator is not copied when the object is assigned.

map::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

map::begin

const_iterator begin() const;
iterator begin();

The member function returns a bidirectional iterator that points at the first element of the sequence (or just beyond the end of an empty sequence).

map::clear

void clear();

The member function calls erase( begin(), end()).

map::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant bidirectional iterator for the controlled sequence. It is described here as a synonym for the unspecified type T1.

map::const_reference

typedef typename A::rebind<value_type>::other::const_reference
    const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled sequence.

map::const_reverse_iterator

typedef reverse_iterator<const_iterator>
    const_reverse_iterator;

The type describes an object that can serve as a constant reverse bidirectional iterator for the controlled sequence.

map::count

size_type count(const Key& key) const;

The member function returns the number of elements x in the range [lower_bound(key), upper_bound(key)).

map::difference_type

typedef typename A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any two elements in the controlled sequence.

map::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

map::end

const_iterator end() const;
iterator end();

The member function returns a bidirectional iterator that points just beyond the end of the sequence.

map::equal_range

pair<iterator, iterator> equal_range(const Key& key);
pair<const_iterator, const_iterator>
    equal_range(const Key& key) const;

The member function returns a pair of iterators x such that x.first == lower_bound(key) and x.second == upper_bound(key).

map::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);
size_type erase(const Key& key);

The first member function removes the element of the controlled sequence pointed to by it. The second member function removes the elements in the interval [first, last). Both return an iterator that designates the first element remaining beyond any elements removed, or end() if no such element exists.

The third member function removes the elements with sort keys in the range [lower_bound(key), upper_bound(key)). It returns the number of elements it removes.

map::find

iterator find(const Key& key);
const_iterator find(const Key& key) const;

The member function returns an iterator that designates the earliest element in the controlled sequence whose sort key equals key. If no such element exists, the iterator equals end().

map::get_allocator

A get_allocator() const;

The member function returns allocator.

map::insert

pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator it, const value_type& x);
template<class InIt>
    void insert(InIt first, InIt last);

The first member function determines whether an element y exists in the sequence whose key matches that of x. (The keys match if !key_comp()(x. first, y.first) && !key_comp()(y.first, x.first).) If not, it creates such an element y and initializes it with x. The function then determines the iterator it that designates y. If an insertion occurred, the function returns pair(it, true). Otherwise, it returns pair(it, false).

The second member function returns insert(x), using it as a starting place within the controlled sequence to search for the insertion point. (Insertion can occur in amortized constant time, instead of logarithmic time, if the insertion point immediately follows it.) The third member function inserts the sequence of element values in the range [first, last).

map::iterator

typedef T0 iterator;

The type describes an object that can serve as a bidirectional iterator for the controlled sequence. It is described here as a synonym for the unspecified type T0.

map::key_comp

key_compare key_comp() const;

The member function returns the stored function object that determines the order of elements in the controlled sequence. The stored object detines the member function:

bool operator(const Key& x, const Key& y);

which returns true if x strictly precedes y in the sort order.

map::key_compare

typedef Pred key_compare;

The type describes a function object that can compare two sort keys to determine the relative order of any two elements in the controlled sequence.

map::key_type

typedef Key key_type;

The type describes the sort key object stored in each element of the controlled sequence.

map::lower_bound

iterator lower_bound(const Key& key);
const_iterator lower_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for which key_comp()(x. first, key) is false.

If no such element exists, the function returns end().

map::map

map();
explicit map(const Pred& comp);
map(const Pred& comp, const A& al);
map(const map& x);
template<class InIt>
    map(InIt first, InIt last);
template<class InIt>
    map(InIt first, InIt last,
        const Pred& comp);
template<class InIt>
    map(InIt first, InIt last,
        const Pred& comp, const A& al);

All constructors store an allocator object in allocator and initialize the controlled sequence. The allocator object is the argument al, if present. For the copy constructor, it is x.get_allocator(). Otherwise, it is A().

All constructors also store a function object that can later be returned by calling key_comp(). The function object is the argument comp, if present. For the copy constructor, it is x.key_comp()). Otherwise, it is Pred().

The first three constructors specify an empty initial controlled sequence. The fourth constructor specifies a copy of the sequence controlled by x. The last three constructors specify the sequence of element values [first, last).

map::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

map::operator[]

typename A::reference operator[](const Key& key);

The member function determines the iterator it as the return value of insert( value_type(key, T()). (It inserts an element with the specified key if no such element exists.) It then returns a reference to (*it). second.

map::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse bidirectional iterator that points just beyond the end of the controlled sequence. Hence, it designates the beginning of the reverse sequence.

map::reference

typedef typename A::rebind<value_type>::other::reference
    reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

map::referent_type

typedef T referent_type;

The type is a synonym for the template parameter T.

map::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member function returns a reverse bidirectional iterator that points at the first element of the sequence (or just beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

map::reverse_iterator

typedef reverse_iterator<iterator> reverse_iterator;

The type describes an object that can serve as a reverse bidirectional iterator for the controlled sequence.

map::size

size_type size() const;

The member function returns the length of the controlled sequence.

map::size_type

typedef typename A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

map::swap

void swap(map& str);

The member function swaps the controlled sequences between *this and str. If allocator == str.allocator, it does so in constant time; and it throws an exception only as a result of copying the stored function object of type Pred. Otherwise, it performs a number of element assignments and constructor calls proportional to the number of elements in the two controlled sequences.

map::upper_bound

iterator upper_bound(const Key& key);
const_iterator upper_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for which key_comp()(key, x.first) is true.

If no such element exists, the function returns end().

map::value_comp

value_compare value_comp() const;

The member function returns a function object that determines the order of elements in the controlled sequence.

map::value_compare

class value_compare
    : public binary_function<value_type, value_type,
        bool> {
public:
    bool operator()(const value_type& x,
        const value_type& y) const
        {return (comp(x.first, y.first)); }
protected:
    value_compare(key_compare pr)
        : comp(pr) {}
    key_compare comp;
    };

The type describes a function object that can compare the sort keys in two elements to determine their relative order in the controlled sequence. The function object stores an object comp of type key_type. The member function operator() uses this object to compare the sort-key components of two element.

map::value_type

typedef pair<const Key, T> value_type;

The type describes an element of the controlled sequence.

multimap


allocator_type · begin · clear · const_iterator · const_reference · const_reverse_iterator · count · difference_type · empty · end · equal_range · erase · find · get_allocator · insert · iterator · key_comp · key_compare · key_type · lower_bound · max_size · multimap · rbegin · reference · referent_type · rend · reverse_iterator · size · size_type · swap · upper_bound · value_comp · value_compare · value_type


template<class Key, class T, class Pred = less<Key>,
    class A = allocator<T> >
    class multimap {
public:
    typedef Key key_type;
    typedef T referent_type;
    typedef Pred key_compare;
    typedef A allocator_type;
    typedef pair<const Key, T> value_type;
    class value_compare;
    typedef typename A::size_type size_type;
    typedef typename A::difference_type difference_type;
    typedef typename A::rebind<value_type>::other::reference
        reference;
    typedef typename A::rebind<value_type>::other::const_reference 
       const_reference;
    typedef T0 iterator;
    typedef T1 const_iterator;
    typedef reverse_iterator<const_iterator>
        const_reverse_iterator;
    typedef reverse_iterator<iterator> reverse_iterator;
    multimap();
    explicit multimap(const Pred& comp);
    multimap(const Pred& comp, const A& al);
    multimap(const multimap& x);
    template<class InIt>
        multimap(InIt first, InIt last);
    template<class InIt>
        multimap(InIt first, InIt last,
            const Pred& comp);
    template<class InIt>
        multimap(InIt first, InIt last,
            const Pred& comp, const A& al);
    iterator begin();
    const_iterator begin() const;
    iterator end();
    iterator end() const;
    reverse_iterator rbegin();
    const_reverse_iterator rbegin() const;
    reverse_iterator rend();
    const_reverse_iterator rend() const;
    size_type size() const;
    size_type max_size() const;
    bool empty() const;
    A get_allocator() const;
    iterator insert(const value_type& x);
    iterator insert(iterator it, const value_type& x);
    template<class InIt>
        void insert(InIt first, InIt last);
    iterator erase(iterator it);
    iterator erase(iterator first, iterator last);
    size_type erase(const Key& key);
    void clear();
    void swap(multimap x);
    key_compare key_comp() const;
    value_compare value_comp() const;
    iterator find(const Key& key);
    const_iterator find(const Key& key) const;
    size_type count(const Key& key) const;
    iterator lower_bound(const Key& key);
    const_iterator lower_bound(const Key& key) const;
    iterator upper_bound(const Key& key);
    const_iterator upper_bound(const Key& key) const;
    pair<iterator, iterator> equal_range(const Key& key);
    pair<const_iterator, const_iterator>
        equal_range(const Key& key) const;
protected:
    A allocator;
    };

The template class describes an object that controls a varying-length sequence of elements of type pair<const Key, T>. The first element of each pair is the sort key and the second is its associated value. The sequence is represented in a way that permits lookup, insertion, and removal of an arbitrary element with a number of operations proportional to the logarithm of the number of elements in the sequence (logarithmic time). Moreover, inserting an element invalidates no iterators, and removing an element invalidates only those iterators which point at the removed element.

The object orders the sequence it controls by calling a stored function object of type Pred. You access this stored object by calling the member function key_comp(). Such a function object must impose a total order on sort keys. For any element x that precedes y in the sequence, key_comp()(y.first, x.first) is false. (For the default function object less<Key>, sort keys never decrease in value.) Unlike template class map, an object of template class multimap does not ensure that key_comp()(x.first, y.first) is true. (Keys need not be unique.)

The object allocates and frees storage for the sequence it controls through a protected object named allocator, of class A. Such an allocator object must have the same external interface as an object of template class allocator. Note that allocator is not copied when the object is assigned.

multimap::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.

multimap::begin

const_iterator begin() const;
iterator begin();

The member function returns a bidirectional iterator that points at the first element of the sequence (or just beyond the end of an empty sequence).

multimap::clear

void clear();

The member function calls erase( begin(), end()).

multimap::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant bidirectional iterator for the controlled sequence. It is described here as a synonym for the unspecified type T1.

multimap::const_reference

typedef typename A::rebind<value_type>::other::const_reference
    const_reference;

The type describes an object that can serve as a constant reference to an element of the controlled sequence.

multimap::const_reverse_iterator

typedef reverse_iterator<const_iterator>
    const_reverse_iterator;

The type describes an object that can serve as a constant reverse bidirectional iterator for the controlled sequence.

multimap::count

size_type count(const Key& key) const;

The member function returns the number of elements x in the range [lower_bound(key), upper_bound(key)).

multimap::difference_type

typedef typename A::difference_type difference_type;

The signed integer type describes an object that can represent the difference between the addresses of any two elements in the controlled sequence.

multimap::empty

bool empty() const;

The member function returns true for an empty controlled sequence.

multimap::end

const_iterator end() const;
iterator end();

The member function returns a bidirectional iterator that points just beyond the end of the sequence.

multimap::equal_range

pair<iterator, iterator> equal_range(const Key& key);
pair<const_iterator, const_iterator>
    equal_range(const Key& key) const;

The member function returns a pair of iterators x such that x.first == lower_bound(key) and x.second == upper_bound(key).

multimap::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);
size_type erase(const Key& key);

The first member function removes the element of the controlled sequence pointed to by it. The second member function removes the elements in the range [first, last). Both return an iterator that designates the first element remaining beyond any elements removed, or end() if no such element exists.

The third member removes the elements with sort keys in the range [lower_bound(key), upper_bound(key)). It returns the number of elements it removes.

multimap::find

iterator find(const Key& key);
const_iterator find(const Key& key) const;

The member function returns an iterator that designates the earliest element in the controlled sequence whose sort key equals key. If no such element exists, the iterator equals end().

multimap::get_allocator

A get_allocator() const;

The member function returns allocator.

multimap::insert

iterator insert(const value_type& x);
iterator insert(iterator it, const value_type& x);
template<class InIt>
    void insert(InIt first, InIt last);

The first member function inserts the element x in the controlled sequence, then returns the iterator that designates the inserted element. The second member function returns insert(x), using it as a starting place within the controlled sequence to search for the insertion point. (Insertion can occur in amortized constant time, instead of logarithmic time, if the insertion point immediately follows it.) The third member function inserts the sequence of element values in the range [first, last).

multimap::iterator

typedef T0 iterator;

The type describes an object that can serve as a bidirectional iterator for the controlled sequence. It is described here as a synonym for the unspecified type T0.

multimap::key_comp

key_compare key_comp() const;

The member function returns the stored function object that determines the order of elements in the controlled sequence. The stored object defines the member function:

bool operator(const Key& x, const Key& y);

which returns true if x strictly precedes y in the sort order.

multimap::key_compare

typedef Pred key_compare;

The type describes a function object that can compare two sort keys to determine the relative order of any two elements in the controlled sequence.

multimap::key_type

typedef Key key_type;

The type describes the sort key object stored in each element of the controlled sequence.

multimap::lower_bound

iterator lower_bound(const Key& key);
const_iterator lower_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for which key_comp()(x. first, key) is false.

If no such element exists, the function returns end().

multimap::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the object can control.

multimap::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

The member function returns a reverse bidirectional iterator that points just beyond the end of the controlled sequence. Hence, it designates the beginning of the reverse sequence.

multimap::multimap

multimap();
explicit multimap(const Pred& comp);
multimap(const Pred& comp, const A& al);
multimap(const multimap& x);
template<class InIt>
    multimap(InIt first, InIt last);
template<class InIt>
    multimap(InIt first, InIt last,
        const Pred& comp);
template<class InIt>
    multimap(InIt first, InIt last,
        const Pred& comp, const A& al);

All constructors store an allocator object in allocator and initialize the controlled sequence. The allocator object is the argument al, if present. For the copy constructor, it is x.get_allocator(). Otherwise, it is A().

All constructors also store a function object that can later be returned by calling key_comp(). The function object is the argument comp, if present. For the copy constructor, it is x.key_comp()). Otherwise, it is Pred().

The first three constructors specify an empty initial controlled sequence. The fourth constructor specifies a copy of the sequence controlled by x. The last three constructors specify the sequence of element values [first, last).

multimap::reference

typedef typename A::rebind<value_type>::other::reference
    reference;

The type describes an object that can serve as a reference to an element of the controlled sequence.

multimap::referent_type

typedef T referent_type;

The type is a synonym for the template parameter T.

multimap::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member function returns a reverse bidirectional iterator that points at the first element of the sequence (or just beyond the end of an empty sequence). Hence, it designates the end of the reverse sequence.

multimap::reverse_iterator

typedef reverse_iterator<iterator> reverse_iterator;

The type describes an object that can serve as a reverse bidirectional iterator for the controlled sequence.

multimap::size

size_type size() const;

The member function returns the length of the controlled sequence.

multimap::size_type

typedef typename A::size_type size_type;

The unsigned integer type describes an object that can represent the length of any controlled sequence.

multimap::swap

void swap(multimap& str);

The member function swaps the controlled sequences between *this and str. If allocator == str.allocator, it does so in constant time; and it throws an exception only as a result of copying the stored function object of type Pred. Otherwise, it performs a number of element assignments and constructor calls proportional to the number of elements in the two controlled sequences.

multimap::upper_bound

iterator upper_bound(const Key& key);
const_iterator upper_bound(const Key& key) const;

The member function returns an iterator that designates the earliest element x in the controlled sequence for which key_comp()(key, x.first) is true.

If no such element exists, the function returns end().

multimap::value_comp

value_compare value_comp() const;

The member function returns a function object that determines the order of elements in the controlled sequence.

multimap::value_compare

class value_compare
    : public binary_function<value_type, value_type,
        bool> {
public:
    bool operator()(const value_type& x,
        const value_type& y) const
        {return (comp(x.first, x.second)); }
protected:
    value_compare(key_compare pr)
        : comp(pr) {}
    key_compare comp;
    };

The type describes a function object that can compare the sort keys in two elements to determine their relative order in the controlled sequence. The function object stores an object comp of type key_type. The member function operator() uses this object to compare the sort-key components of two element.

multimap::value_type

typedef pair<const Key, T> value_type;

The type describes an element of the controlled sequence.

operator!=

template<class Key, class T, class Pred, class A>
    bool operator!=(
        const map <Key, T, Pred, A>& lhs,
        const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator!=(
        const multimap <Key, T, Pred, A>& lhs,
        const multimap <Key, T, Pred, A>& rhs);

The template function returns !(lhs == rhs).

operator==

template<class Key, class T, class Pred, class A>
    bool operator==(
        const map <Key, T, Pred, A>& lhs,
        const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator==(
        const multimap <Key, T, Pred, A>& lhs,
        const multimap <Key, T, Pred, A>& rhs);

The first template function overloads operator== to compare two objects of template class multimap. The second template function overloads operator== to compare two objects of template class multimap. Both functions return lhs.size() == rhs.size() && equal(lhs. begin(), lhs. end(), rhs.begin()).

operator<

template<class Key, class T, class Pred, class A>
    bool operator<(
        const map <Key, T, Pred, A>& lhs,
        const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator<(
        const multimap <Key, T, Pred, A>& lhs,
        const multimap <Key, T, Pred, A>& rhs);

The first template function overloads operator< to compare two objects of template class multimap. The second template function overloads operator< to compare two objects of template class multimap. Both functions return lexicographical_compare(lhs. begin(), lhs. end(), rhs.begin(), rhs.end()).

operator<=

template<class Key, class T, class Pred, class A>
    bool operator<=(
        const map <Key, T, Pred, A>& lhs,
        const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator<=(
        const multimap <Key, T, Pred, A>& lhs,
        const multimap <Key, T, Pred, A>& rhs);

The template function returns !(rhs < lhs).

operator>

template<class Key, class T, class Pred, class A>
    bool operator>(
        const map <Key, T, Pred, A>& lhs,
        const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator>(
        const multimap <Key, T, Pred, A>& lhs,
        const multimap <Key, T, Pred, A>& rhs);

The template function returns rhs < lhs.

operator>=

template<class Key, class T, class Pred, class A>
    bool operator>=(
        const map <Key, T, Pred, A>& lhs,
        const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    bool operator!=(
        const multimap <Key, T, Pred, A>& lhs,
        const multimap <Key, T, Pred, A>& rhs);

The template function returns !(lhs < rhs).

swap

template<class Key, class T, class Pred, class A>
    void swap(
        const map <Key, T, Pred, A>& lhs,
        const map <Key, T, Pred, A>& rhs);
template<class Key, class T, class Pred, class A>
    void swap(
        const multimap <Key, T, Pred, A>& lhs,
        const multimap <Key, T, Pred, A>& rhs);

The template function executes lhs.swap(rhs).


See also the Table of Contents and the Index.

Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by Hewlett-Packard Company. All rights reserved.