Go to the first, previous, next, last section, table of contents.
If the existing feature tests don't do something you need, you have to write new ones. These macros are the building blocks. They provide ways for other macros to check whether various kinds of features are available and report the results.
This chapter contains some suggestions and some of the reasons why the existing tests are written the way they are. You can also learn a lot about how to write Autoconf tests by looking at the existing ones. If something goes wrong in one or more of the Autoconf tests, this information can help you understand the assumptions behind them, which might help you figure out how to best solve the problem.
These macros check the output of the C compiler system. They do not cache the results of their tests for future use (see section Caching Results), because they don't know enough about the information they are checking for to generate a cache variable name. They also do not print any messages, for the same reason. The checks for particular kinds of C features call these macros and do cache their results and print messages about what they're checking for.
When you write a feature test that could be applicable to more than one software package, the best thing to do is encapsulate it in a new macro. See section Writing Autoconf Macros, for how to do that.
The macro AC_TRY_CPP
is used to check whether particular header
files exist. You can check for one at a time, or more than one if you
need several header files to all exist for some purpose.
#include
statements and declarations,
on which shell variable, back quote, and backslash substitutions are
performed. (Actually, it can be any C program, but other statements are
probably not useful.) If the preprocessor produces no error messages
while processing it, run shell commands action-if-true. Otherwise
run shell commands action-if-false.
This macro uses CPPFLAGS
, but not CFLAGS
, because
@option{-g}, @option{-O}, etc. are not valid options to many C
preprocessors.
Here is how to find out whether a header file contains a particular
declaration, such as a typedef, a structure, a structure member, or a
function. Use AC_EGREP_HEADER
instead of running grep
directly on the header file; on some systems the symbol might be defined
in another header file that the file you are checking `#include's.
egrep
regular expression
pattern, execute shell commands action-if-found, otherwise
execute action-if-not-found.
To check for C preprocessor symbols, either defined by header files or
predefined by the C preprocessor, use AC_EGREP_CPP
. Here is an
example of the latter:
AC_EGREP_CPP(yes, [#ifdef _AIX yes #endif ], is_aix=yes, is_aix=no)
egrep
regular expression pattern, execute shell commands
action-if-found, otherwise execute action-if-not-found.
This macro calls AC_PROG_CPP
or AC_PROG_CXXCPP
(depending
on which language is current, see section Language Choice), if it hasn't
been called already.
To check for a syntax feature of the C, C++ or Fortran 77 compiler, such
as whether it recognizes a certain keyword, use AC_TRY_COMPILE
to
try to compile a small program that uses that feature. You can also use
it to check for structures and structure members that are not present on
all systems.
For C and C++, includes is any #include
statements needed
by the code in function-body (includes will be ignored if
the currently selected language is Fortran 77). This macro also uses
CFLAGS
or CXXFLAGS
if either C or C++ is the currently
selected language, as well as CPPFLAGS
, when compiling. If
Fortran 77 is the currently selected language then FFLAGS
will be
used when compiling.
If the file compiles successfully, run shell commands action-if-found, otherwise run action-if-not-found.
This macro does not try to link; use AC_TRY_LINK
if you need to
do that (see section Examining Libraries).
To check for a library, a function, or a global variable, Autoconf
configure
scripts try to compile and link a small program that
uses it. This is unlike Metaconfig, which by default uses nm
or ar
on the C library to try to figure out which functions are
available. Trying to link with the function is usually a more reliable
approach because it avoids dealing with the variations in the options
and output formats of nm
and ar
and in the location of the
standard libraries. It also allows configuring for cross-compilation or
checking a function's runtime behavior if needed. On the other hand, it
can be slower than scanning the libraries once.
A few systems have linkers that do not return a failure exit status when
there are unresolved functions in the link. This bug makes the
configuration scripts produced by Autoconf unusable on those systems.
However, some of them can be given options that make the exit status
correct. This is a problem that Autoconf does not currently handle
automatically. If users encounter this problem, they might be able to
solve it by setting LDFLAGS
in the environment to pass whatever
options the linker needs (for example, @option{-Wl,-dn} on @sc{mips
risc/os}).
AC_TRY_LINK
is used to compile test programs to test for
functions and global variables. It is also used by AC_CHECK_LIB
to check for libraries (see section Library Files), by adding the library being
checked for to LIBS
temporarily and trying to link a small
program.
For C and C++, includes is any #include
statements needed
by the code in function-body (includes will be ignored if
the currently selected language is Fortran 77). This macro also uses
CFLAGS
or CXXFLAGS
if either C or C++ is the currently
selected language, as well as CPPFLAGS
, when compiling. If
Fortran 77 is the currently selected language then FFLAGS
will be
used when compiling. However, both LDFLAGS
and LIBS
will
be used during linking in all cases.
If the file compiles and links successfully, run shell commands action-if-found, otherwise run action-if-not-found.
If the file compiles and links successfully, run shell commands action-if-found, otherwise run action-if-not-found.
Sometimes you need to find out how a system performs at run time, such as whether a given function has a certain capability or bug. If you can, make such checks when your program runs instead of when it is configured. You can check for things like the machine's endianness when your program initializes itself.
If you really need to test for a run-time behavior while configuring,
you can write a test program to determine the result, and compile and
run it using AC_TRY_RUN
. Avoid running test programs if
possible, because this prevents people from configuring your package for
cross-compiling.
Use the following macro if you need to test run-time behavior of the system while configuring.
CFLAGS
or
CXXFLAGS
, CPPFLAGS
, LDFLAGS
, and LIBS
when
compiling.
If the C compiler being used does not produce executables that run on
the system where configure
is being run, then the test program is
not run. If the optional shell commands action-if-cross-compiling
are given, they are run instead. Otherwise, configure
prints
an error message and exits.
Try to provide a pessimistic default value to use when cross-compiling
makes run-time tests impossible. You do this by passing the optional
last argument to AC_TRY_RUN
. autoconf
prints a warning
message when creating configure
each time it encounters a call to
AC_TRY_RUN
with no action-if-cross-compiling argument
given. You may ignore the warning, though users will not be able to
configure your package for cross-compiling. A few of the macros
distributed with Autoconf produce this warning message.
To configure for cross-compiling you can also choose a value for those parameters based on the canonical system name (see section Manual Configuration). Alternatively, set up a test results cache file with the correct values for the host system (see section Caching Results).
To provide a default for calls of AC_TRY_RUN
that are embedded in
other macros, including a few of the ones that come with Autoconf, you
can call AC_PROG_CC
before running them. Then, if the shell
variable cross_compiling
is set to `yes', use an alternate
method to get the results instead of calling the macros.
Test programs should not write anything to the standard output. They
should return 0 if the test succeeds, nonzero otherwise, so that success
can be distinguished easily from a core dump or other failure;
segmentation violations and other failures produce a nonzero exit
status. Test programs should exit
, not return
, from
main
, because on some systems (old Suns, at least) the argument
to return
in main
is ignored.
Test programs can use #if
or #ifdef
to check the values of
preprocessor macros defined by tests that have already run. For
example, if you call AC_HEADER_STDC
, then later on in
`configure.ac' you can have a test program that includes an
ANSI C header file conditionally:
#if STDC_HEADERS # include <stdlib.h> #endif
If a test program needs to use or create a data file, give it a name
that starts with `conftest', such as `conftest.data'. The
configure
script cleans up by running `rm -rf conftest*'
after running test programs and if the script is interrupted.
Function declarations in test programs should have a prototype conditionalized for C++. In practice, though, test programs rarely need functions that take arguments.
#ifdef __cplusplus foo (int i) #else foo (i) int i; #endif
Functions that test programs declare should also be conditionalized for C++, which requires `extern "C"' prototypes. Make sure to not include any header files containing clashing prototypes.
#ifdef __cplusplus extern "C" void *malloc (size_t); #else char *malloc (); #endif
If a test program calls a function with invalid parameters (just to see
whether it exists), organize the program to ensure that it never invokes
that function. You can do this by calling it in another function that is
never invoked. You can't do it by putting it after a call to
exit
, because GCC version 2 knows that exit
never returns
and optimizes out any code that follows it in the same block.
If you include any header files, make sure to call the functions
relevant to them with the correct number of arguments, even if they are
just 0, to avoid compilation errors due to prototypes. GCC version 2
has internal prototypes for several functions that it automatically
inlines; for example, memcpy
. To avoid errors when checking for
them, either pass them the correct number of arguments or redeclare them
with a different return type (such as char
).
This section aims at presenting some systems and pointers to documentation. It may help you addressing particular problems reported by users.
Some operations are accomplished in several possible ways, depending on the UNIX variant. Checking for them essentially requires a "case statement". Autoconf does not directly provide one; however, it is easy to simulate by using a shell variable to keep track of whether a way to perform the operation has been found yet.
Here is an example that uses the shell variable fstype
to keep
track of whether the remaining cases need to be checked.
AC_MSG_CHECKING([how to get file system type]) fstype=no # The order of these tests is important. AC_TRY_CPP([#include <sys/statvfs.h> #include <sys/fstyp.h>], [AC_DEFINE(FSTYPE_STATVFS) fstype=SVR4]) if test $fstype = no; then AC_TRY_CPP([#include <sys/statfs.h> #include <sys/fstyp.h>], [AC_DEFINE(FSTYPE_USG_STATFS) fstype=SVR3]) fi if test $fstype = no; then AC_TRY_CPP([#include <sys/statfs.h> #include <sys/vmount.h>], [AC_DEFINE(FSTYPE_AIX_STATFS) fstype=AIX]) fi # (more cases omitted here) AC_MSG_RESULT([$fstype])
Autoconf-generated configure
scripts check for the C compiler and
its features by default. Packages that use other programming languages
(maybe more than one, e.g. C and C++) need to test features of the
compilers for the respective languages. The following macros determine
which programming language is used in the subsequent tests in
`configure.ac'.
Supported languages are:
CC
and CPP
and use extension
`.c' for test programs.
CXX
and CXXCPP
and use
extension `.C' for test programs.
F77
and use extension `.f' for
test programs.
AC_LANG
) on a stack, and
then select the language. Use this macro and AC_LANG_POP
in macros that need to temporarily switch to a particular language.
AC_LANG_PUSH
, and remove it from the stack.
If given, language specifies the language we just quit. It is a good idea to specify it when it's known (which should be the case...), since Autoconf will detect inconsistencies.
AC_LANG_PUSH(Fortran 77) # Perform some tests on Fortran 77. # ... AC_LANG_POP(Fortran 77)
AC_REQUIRE
(see section Prerequisite Macros) with an
argument of either AC_PROG_CPP
or AC_PROG_CXXCPP
,
depending on which language is current.
Go to the first, previous, next, last section, table of contents.