--gnu
and --gnits
--cygnus
@dircategory GNU admin @direntry * automake: (automake). Making Makefile.in's
@dircategory Individual utilities @direntry * aclocal: (automake)Invoking aclocal. Generating aclocal.m4
Copyright (C) 1995, 96 Free Software Foundation, Inc.
This is the first edition of the GNU Automake documentation,
and is consistent with GNU Automake 1.3.
Published by the Free Software Foundation
59 Temple Place - Suite 330,
Boston, MA 02111-1307 USA
Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.
Automake is a tool for automatically generating `Makefile.in's from
files called `Makefile.am'. Each `Makefile.am' is basically a
series of make
macro definitions (with rules being thrown in
occasionally). The generated `Makefile.in's are compliant with the
GNU Makefile standards.
The GNU Makefile Standards Document (see section `Makefile Conventions' in The GNU Coding Standards) is long, complicated, and subject to change. The goal of Automake is to remove the burden of Makefile maintenance from the back of the individual GNU maintainer (and put it on the back of the Automake maintainer).
The typical Automake input files is simply a series of macro definitions. Each such file is processed to create a `Makefile.in'. There should generally be one `Makefile.am' per directory of a project.
Automake does constrain a project in certain ways; for instance it assumes that the project uses Autoconf (see section `The Autoconf Manual' in The Autoconf Manual), and enforces certain restrictions on the `configure.in' contents.
Automake requires perl
in order to generate the
`Makefile.in's. However, the distributions created by Automake are
fully GNU standards-compliant, and do not require perl
in order
to be built.
Mail suggestions and bug reports for Automake to [email protected].
There are a few basic ideas that will help understand how Automake works.
Automake works by reading a `Makefile.am' and generating a `Makefile.in'. Certain macros and targets defined in the `Makefile.am' instruct automake to generate more specialized code; for instances a `bin_PROGRAMS' macro definition will cause targets for compiling and linking to be generated.
The macro definitions and targets in the `Makefile.am' are copied
into the generated file. This allows you to add arbitrary code into the
generated `Makefile.in'. For instance the Automake distribution
includes a non-standard cvs-dist
target, which the Automake
maintainer uses to make distributions from his source control system.
Note that GNU make extensions are not recognized by Automake. Using such extensions in a `Makefile.am' will lead to errors or confusing behavior.
Automake tries to group comments with adjoining targets (or variable definitions) in an intelligent way.
A target defined in `Makefile.am' generally overrides any such
target of a similar name that would be automatically generated by
automake
. Although this is a supported feature, it is generally
best to avoid making use of it, as sometimes the generated rules are
very particular.
Similarly, a variable defined in `Makefile.am' will override any
definition of the variable that automake
would ordinarily create.
This feature is more often useful than the ability to override a target
definition. Be warned that many of the variables generated by
automake
are considered to be for internal use only, and their
names might change in future releases.
When examining a variable definition, Automake will recursively examine variables referenced in the definition. E.g., if Automake is looking at the content of `foo_SOURCES' in this snippet
xs = a.c b.c foo_SOURCES = c.c $(xs)
it would use the files `a.c', `b.c', and `c.c' as the contents of `foo_SOURCES'.
Automake also allows a form of comment which is not copied into the output; all lines beginning with `##' are completely ignored by Automake.
It is customary to make the first line of `Makefile.am' read:
## Process this file with automake to produce Makefile.in
automake
supports three kinds of directory hierarchy: "flat",
"shallow", and "deep".
A flat package is one in which all the files are in a single
directory. The `Makefile.am' for such a package by definition
lacks a SUBDIRS
macro. An example of such a package is
termutils
.
A deep package is one in which all the source lies in
subdirectories; the top level directory contains mainly configuration
information. GNU cpio is a good example of such a package, as is GNU
tar
. The top level `Makefile.am' for a deep package will
contain a SUBDIRS
macro, but no other macros to define objects
which are built.
A shallow package is one in which the primary source resides in
the top-level directory, while various parts (typically libraries)
reside in subdirectories. Automake is one such package (as is GNU
make
, which does not currently use automake
).
While Automake is intended to be used by maintainers of GNU packages, it does make some effort to accommodate those who wish to use it, but do not want to use all the GNU conventions.
To this end, Automake supports three levels of strictness---the strictness indicating how stringently Automake should check standards conformance.
The valid strictness levels are:
For more information on the precise implications of the strictness
level, see See section The effect of --gnu
and --gnits
.
Automake variables generally follow a uniform naming scheme that makes
it easy to decide how programs (and other derived objects) are built,
and how they are installed. This scheme also supports configure
time determination of what should be built.
At make
time, certain variables are used to determine which
objects are to be built. These variables are called primary
variables. For instance, the primary variable PROGRAMS
holds a
list of programs which are to be compiled and linked.
A different set of variables is used to decide where the built objects
should be installed. These variables are named after the primary
variables, but have a prefix indicating which standard directory should
be used as the installation directory. The standard directory names are
given in the GNU standards
(see section `Directory Variables' in The GNU Coding Standards).
Automake extends this list with pkglibdir
, pkgincludedir
,
and pkgdatadir
; these are the same as the non-`pkg'
versions, but with `@PACKAGE@' appended. For instance,
pkglibdir
is defined as $(datadir)/@PACKAGE@
.
For each primary, there is one additional variable named by prepending
`EXTRA_' to the primary name. This variable is used to list
objects which may or may not be built, depending on what
configure
decides. This variable is required because Automake
must statically know the entire list of objects to be built in order to
generate a `Makefile.in' that will work in all cases.
For instance, cpio
decides at configure time which programs are
built. Some of the programs are installed in bindir
, and some
are installed in sbindir
:
EXTRA_PROGRAMS = mt rmt bin_PROGRAMS = cpio pax sbin_PROGRAMS = @PROGRAMS@
Defining a primary variable without a prefix (eg PROGRAMS
) is an
error.
Note that the common `dir' suffix is left off when constructing the variable names; thus one writes `bin_PROGRAMS' and not `bindir_PROGRAMS'.
Not every sort of object can be installed in every directory. Automake will flag those attempts it finds in error. Automake will also diagnose obvious misspellings in directory names.
Sometimes the standard directories--even as augmented by Automake--- are not enough. In particular it is sometimes useful, for clarity, to install objects in a subdirectory of some predefined directory. To this end, Automake allows you to extend the list of possible installation directories. A given prefix (eg `zar') is valid if a variable of the same name with `dir' appended is defined (eg `zardir').
For instance, until HTML support is part of Automake, you could use this to install raw HTML documentation:
htmldir = $(prefix)/html html_DATA = automake.html
The special prefix `noinst' indicates that the objects in question should not be installed at all.
The special prefix `check' indicates that the objects in question
should not be built until the make check
command is run.
Possible primary names are `PROGRAMS', `LIBRARIES', `LISP', `SCRIPTS', `DATA', `HEADERS', `MANS', and `TEXINFOS'.
Sometimes a Makefile variable name is derived from some text the user
supplies. For instance program names are rewritten into Makefile macro
names. Automake canonicalizes this text, so that it does not have to
follow Makefile variable naming rules. All characters in the name
except for letters, numbers, and the underscore are turned into
underscores when making macro references. E.g., if your program is named
sniff-glue
, the derived variable name would be
sniff_glue_SOURCES
, not sniff-glue_SOURCES
.
Let's suppose you just finished writing zardoz
, a program to make
your head float from vortex to vortex. You've been using
autoconf
to provide a portability framework, but your
`Makefile.in's have been ad-hoc. You want to make them
bulletproof, so you turn to automake
.
The first step is to update your `configure.in' to include the
commands that automake
needs. The simplest way to do this is to
add an AM_INIT_AUTOMAKE
call just after AC_INIT
:
AM_INIT_AUTOMAKE(zardoz, 1.0)
Since your program doesn't have any complicating factors (e.g., it
doesn't use gettext
, it doesn't want to build a shared library),
you're done with this part. That was easy!
Now you must regenerate `configure'. But to do that, you'll need
to tell autoconf
how to find the new macro you've used. The
easiest way to do this is to use the aclocal
program to generate
your `aclocal.m4' for you. But wait... you already have an
`aclocal.m4', because you had to write some hairy macros for your
program. aclocal
lets you put your own macros into
`acinclude.m4', so simply rename and then run:
mv aclocal.m4 acinclude.m4 aclocal autoconf
Now it is time to write your `Makefile.am' for zardoz
.
zardoz
is a user program, so you want to install it where the
rest of the user programs go. zardoz
also has some Texinfo
documentation. Your `configure.in' script uses
AC_REPLACE_FUNCS
, so you need to link against `@LIBOBJS@'.
So here's what you'd write:
bin_PROGRAMS = zardoz zardoz_SOURCES = main.c head.c float.c vortex9.c gun.c zardoz_LDADD = @LIBOBJS@ info_TEXINFOS = zardoz.texi
Now you can run automake --add-missing
to generate your
`Makefile.in' and grab any auxiliary files you might need, and
you're done!
hello
is renowned for its classic simplicity and versatility.
This section shows how Automake could be used with the Hello package.
The examples below are from the latest GNU Hello, but all the
maintainer-only code has been stripped out, as well as all copyright
comments.
Of course, GNU Hello is somewhat more featureful than your traditional two-liner. GNU Hello is internationalized, does option processing, and has a manual and a test suite. GNU Hello is a deep package.
Here is the `configure.in' from GNU Hello:
dnl Process this file with autoconf to produce a configure script. AC_INIT(src/hello.c) AM_INIT_AUTOMAKE(hello, 1.3.11) AM_CONFIG_HEADER(config.h) dnl Set of available languages. ALL_LINGUAS="de fr es ko nl no pl pt sl sv" dnl Checks for programs. AC_PROG_CC AC_ISC_POSIX dnl Checks for libraries. dnl Checks for header files. AC_STDC_HEADERS AC_HAVE_HEADERS(string.h fcntl.h sys/file.h sys/param.h) dnl Checks for library functions. AC_FUNC_ALLOCA dnl Check for st_blksize in struct stat AC_ST_BLKSIZE dnl internationalization macros AM_GNU_GETTEXT AC_OUTPUT([Makefile doc/Makefile intl/Makefile po/Makefile.in \ src/Makefile tests/Makefile tests/hello], [chmod +x tests/hello])
The `AM_' macros are provided by Automake (or the Gettext library); the rest are standard Autoconf macros.
The top-level `Makefile.am':
EXTRA_DIST = BUGS ChangeLog.O SUBDIRS = doc intl po src tests
As you can see, all the work here is really done in subdirectories.
The `po' and `intl' directories are automatically generated
using gettextize
; they will not be discussed here.
In `doc/Makefile.am' we see:
info_TEXINFOS = hello.texi hello_TEXINFOS = gpl.texi
This is sufficient to build, install, and distribute the Hello manual.
Here is `tests/Makefile.am':
TESTS = hello EXTRA_DIST = hello.in testdata
The script `hello' is generated by configure
, and is the
only test case. make check
will run this test.
Last we have `src/Makefile.am', where all the real work is done:
bin_PROGRAMS = hello hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h system.h hello_LDADD = @INTLLIBS@ @ALLOCA@ localedir = $(datadir)/locale INCLUDES = -I../intl -DLOCALEDIR=\"$(localedir)\"
Here is another, trickier example. It shows how to generate two
programs (ctags
and etags
) from the same source file
(`etags.c'). The difficult part is that each compilation of
`etags.c' requires different cpp
flags.
bin_PROGRAMS = etags ctags ctags_SOURCES = ctags_LDADD = ctags.o etags.o: etags.c $(COMPILE) -DETAGS_REGEXPS -c etags.c ctags.o: etags.c $(COMPILE) -DCTAGS -o ctags.o -c etags.c
Note that ctags_SOURCES
is defined to be empty--that way no
implicit value is substituted. The implicit value, however, is used to
generate etags
from `etags.o'.
ctags_LDADD
is used to get `ctags.o' into the link line.
ctags_DEPENDENCIES
is generated by Automake.
The above rules won't work if your compiler doesn't accept both
`-c' and `-o'. The simplest fix for this is to introduce a
bogus dependency (to avoid problems with a parallel make
):
etags.o: etags.c ctags.o $(COMPILE) -DETAGS_REGEXPS -c etags.c ctags.o: etags.c $(COMPILE) -DCTAGS -c etags.c && mv etags.o ctags.o
Also, these explicit rules do not work if the de-ANSI-fication feature is used; supporting that requires a little more work:
etags._o: etags._c ctags.o $(COMPILE) -DETAGS_REGEXPS -c etags.c ctags._o: etags._c $(COMPILE) -DCTAGS -c etags.c && mv etags._o ctags.o
To create all the `Makefile.in's for a package, run the
automake
program in the top level directory, with no arguments.
automake
will automatically find each appropriate
`Makefile.am' (by scanning `configure.in'; see section Scanning `configure.in')
and generate the corresponding `Makefile.in'. Note that
automake
has a rather simplistic view of what constitutes a
package; it assumes that a package has only one `configure.in', at
the top. If your package has multiple `configure.in's, then you
must run automake
in each directory holding a
`configure.in'.
You can optionally give automake
an argument; `.am' is
appended to the argument and the result is used as the name of the input
file. This feature is generally only used to automatically rebuild an
out-of-date `Makefile.in'. Note that automake
must always
be run from the topmost directory of a project, even if being used to
regenerate the `Makefile.in' in some subdirectory. This is
necessary because automake
must scan `configure.in', and
because automake
uses the knowledge that a `Makefile.in' is
in a subdirectory to change its behavior in some cases.
automake
accepts the following options:
-a
--add-missing
AC_CANONICAL_HOST
. Automake is distributed with several of these
files; this option will cause the missing ones to be automatically added
to the package, whenever possible. In general if Automake tells you a
file is missing, try using this option.
--amdir=dir
--build-dir=dir
make
dist
; it should not be used otherwise.
--cygnus
--cygnus
for more information.
--foreign
--gnits
--gnu
and --gnits
for more
information.
--gnu
--gnu
and --gnits
for more
information. This is the default strictness.
--help
-i
--include-deps
--generate-deps
--include-deps
, --srcdir-name
, and
--build-dir
. Note that if this option is given, no other
processing is done.
--no-force
automake
creates all `Makefile.in's mentioned in
`configure.in'. This option causes it to only update those
`Makefile.in's which are out of date with respect to one of their
dependents.
-o dir
--output-dir=dir
--srcdir-name=dir
make dist
; it should not be used
otherwise.
-v
--verbose
--version
Automake scans the package's `configure.in' to determine certain
information about the package. Some autoconf
macros are required
and some variables must be defined in `configure.in'. Automake
will also use information from `configure.in' to further tailor its
output.
Automake also supplies some autoconf
macros to make the
maintenance easier. These macros can automatically be put into your
`aclocal.m4' using the aclocal
program.
The simplest way to meet the basic Automake requirements is to use the
macro AM_INIT_AUTOMAKE
(see section Autoconf macros supplied with Automake). But if you prefer, you
can do the required steps by hand:
PACKAGE
and VERSION
with
AC_SUBST
.
PACKAGE
should be the name of the package as it appears when
bundled for distribution. For instance, Automake defines PACKAGE
to be `automake'. VERSION
should be the version number of
the release that is being developed. We recommend that you make
`configure.in' the only place in your package where the version
number is defined; this makes releases simpler.
Automake doesn't do any interpretation of PACKAGE
or
VERSION
, except in `Gnits' mode (see section The effect of --gnu
and --gnits
).
AC_ARG_PROGRAM
if a program or script is installed.
AC_PROG_MAKE_SET
if the package is not flat.
AM_SANITY_CHECK
to make sure the build environment is sane.
AM_PROG_INSTALL
if any scripts (see section Executable Scripts) are
installed by the package. Otherwise, use AC_PROG_INSTALL
.
AM_MISSING_PROG
to see whether the programs aclocal
,
autoconf
, automake
, autoheader
, and makeinfo
are in the build environment. Here is how this is done:
missing_dir=`cd $ac_aux_dir && pwd` AM_MISSING_PROG(ACLOCAL, aclocal, $missing_dir) AM_MISSING_PROG(AUTOCONF, autoconf, $missing_dir) AM_MISSING_PROG(AUTOMAKE, automake, $missing_dir) AM_MISSING_PROG(AUTOHEADER, autoheader, $missing_dir) AM_MISSING_PROG(MAKEINFO, makeinfo, $missing_dir)
Here are the other macros which Automake requires but which are not run
by AM_INIT_AUTOMAKE
:
AC_OUTPUT
Makefile
are treated as `Makefile's. Other listed
files are treated differently. Currently the only difference is that a
`Makefile' is removed by make distclean
, while other files
are removed by make clean
.
Automake will also recognize the use of certain macros and tailor the generated `Makefile.in' appropriately. Currently recognized macros and their effects are:
AC_CONFIG_HEADER
AM_CONFIG_HEADER
, which is similar
to AC_CONFIG_HEADER
but does some useful Automake-specific work.
AC_CONFIG_AUX_DIR
AC_PATH_XTRA
AC_PATH_XTRA
into each `Makefile.in' that builds a C program
or library.
AC_CANONICAL_HOST
AC_CHECK_TOOL
AC_CANONICAL_SYSTEM
AC_CANONICAL_HOST
, but also defines the
`Makefile' variables `build_alias' and `target_alias'.
AC_FUNC_ALLOCA
AC_FUNC_GETLOADAVG
AC_FUNC_MEMCMP
AC_STRUCT_ST_BLOCKS
AC_FUNC_FNMATCH
AM_FUNC_STRTOD
AC_REPLACE_FUNCS
AC_REPLACE_GNU_GETOPT
AM_WITH_REGEX
automake -a
will not install the sources.
See section Building a library for more information.
LIBOBJS
LIBOBJS
, and will treat these additional files as if they were
discovered via AC_REPLACE_FUNCS
.
AC_PROG_RANLIB
AC_PROG_CXX
AM_PROG_LIBTOOL
libtool
(see section `The Libtool Manual' in The Libtool Manual).
AC_PROG_YACC
AC_DECL_YYTEXT
AC_PROG_LEX
ALL_LINGUAS
AM_C_PROTOTYPES
AM_GNU_GETTEXT
AM_MAINTAINER_MODE
configure
. If this is used, automake
will cause
"maintainer-only" rules to be turned off by default in the generated
`Makefile.in's. This macro is disallowed in `Gnits' mode
(see section The effect of --gnu
and --gnits
).
AC_SUBST
AC_CHECK_TOOL
AC_CHECK_PROG
AC_CHECK_PROGS
AC_PATH_PROG
AC_PATH_PROGS
Automake includes a number of Autoconf macros which can be used in your
package; some of them are actually required by Automake in certain
situations. These macros must be defined in your `aclocal.m4';
otherwise they will not be seen by autoconf
.
The aclocal
program will automatically generate `aclocal.m4'
files based on the contents of `configure.in'. This provides a
convenient way to get Automake-provided macros, without having to
search around. Also, the aclocal
mechanism is extensible for use
by other packages.
At startup, aclocal
scans all the `.m4' files it can find,
looking for macro definitions. Then it scans `configure.in'. Any
mention of one of the macros found in the first step causes that macro,
and any macros it in turn requires, to be put into `aclocal.m4'.
The contents of `acinclude.m4', if it exists, are also automatically included in `aclocal.m4'. This is useful for incorporating local macros into `configure'.
aclocal
accepts the following options:
--acdir=dir
--help
-I dir
--output=file
--print-ac-dir
aclocal
will search to
find the `m4' files. When this option is given, normal processing
is suppressed. This option can be used by a package to determine where
to install a macro file.
--verbose
--version
AM_CONFIG_HEADER
AM_CYGWIN32
configure
is being run in the
`Cygwin32' environment. (FIXME xref). If so, define output
variable EXEEXT
to `.exe'; otherwise define it to the empty
string. Automake recognizes this macro and uses it to generate
`Makefile.in's which will automatically work under `Cygwin32'.
In the `Cygwin32' environment, gcc
generates executables
whose names end in `.exe', even if this was not specified on the
command line. Automake adds special code to `Makefile.in' to
gracefully deal with this.
AM_FUNC_STRTOD
strtod
function is not available, or does not work
correctly (like the one on SunOS 5.4), add `strtod.o' to output
variable LIBOBJS
.
AM_FUNC_ERROR_AT_LINE
error_at_line
is not found, then add
`error.o' to LIBOBJS
.
AM_FUNC_MKTIME
mktime
function. If not found, add
`mktime.o' to `LIBOBJS'.
AM_FUNC_OBSTACK
AM_C_PROTOTYPES
AM_HEADER_TIOCGWINSZ_NEEDS_SYS_IOCTL
TIOCGWINSZ
requires `<sys/ioctl.h>', then
define GWINSZ_IN_SYS_IOCTL
. Otherwise TIOCGWINSZ
can be
found in `<termios.h>'.
AM_INIT_AUTOMAKE
AC_DEFINE
's `PACKAGE' and `VERSION'. This
can be avoided by passing in a non-empty third argument.
AM_PATH_LISPDIR
emacs
, and, if found, sets the output
variable lispdir
to the full path to Emacs' site-lisp directory.
AM_PROG_CC_STDC
CC
to make it so. This macro tries various
options that select ANSI C on some system or another. It considers the
compiler to be in ANSI C mode if it handles function prototypes correctly.
If you use this macro, you should check after calling it whether the C
compiler has been set to accept ANSI C; if not, the shell variable
am_cv_prog_cc_stdc
is set to `no'. If you wrote your source
code in ANSI C, you can make an un-ANSIfied copy of it by using the
ansi2knr
option.
AM_PROG_INSTALL
AC_PROG_INSTALL
, but also defines INSTALL_SCRIPT
.
AM_PROG_LEX
AC_PROG_LEX
with AC_DECL_YYTEXT
, but uses the
missing
script on systems that do not have lex. `HP-UX 10'
is one such system.
AM_SANITY_CHECK
AM_INIT_AUTOMAKE
.
AM_SYS_POSIX_TERMIOS
am_cv_sys_posix_termios
to
`yes'. If not, set the variable to `no'.
AM_TYPE_PTRDIFF_T
AM_WITH_DMALLOC
dmalloc
package. If the user configures with
`--with-dmalloc', then define WITH_DMALLOC
and add
`-ldmalloc' to LIBS
. The dmalloc
package can be
found at ftp://ftp.letters.com/src/dmalloc/dmalloc.tar.gz
AM_WITH_REGEX
configure
command line. If
specified (the default), then the `regex' regular expression
library is used, `regex.o' is put into `LIBOBJS', and
`WITH_REGEX' is defined.. If `--without-regex' is given, then
the `rx' regular expression library is used, and `rx.o' is put
into `LIBOBJS'.
Aclocal doesn't have any built-in knowledge of any macros, so it is easy to extend it with your own macros.
This is mostly used for libraries which want to supply their own
Autoconf macros for use by other programs. For instance the
gettext
library supplies a macro AM_GNU_GETTEXT
which
should be used by any package using gettext
. When the library is
installed, it installs this macro so that aclocal
will find it.
A file of macros should be a series of AC_DEFUN
's. Aclocal also
understands AC_REQUIRE
, so it is safe to put each macro in a
separate file.
A macro file's name should end in `.m4'. Such files should be installed in `$(datadir)/aclocal'.
In non-flat packages, the top level `Makefile.am' must tell
Automake which subdirectories are to be built. This is done via the
SUBDIRS
variable.
The SUBDIRS
macro holds a list of subdirectories in which
building of various sorts can occur. Many targets (eg all
) in
the generated `Makefile' will run both locally and in all specified
subdirectories. Note that the directories listed in SUBDIRS
are
not required to contain `Makefile.am's; only `Makefile's
(after configuration). This allows inclusion of libraries from packages
which do not use Automake (such as gettext
). The directories
mentioned in SUBDIRS
must be direct children of the current
directory. For instance, you cannot put `src/subdir' into
SUBDIRS
.
In a deep package, the top-level `Makefile.am' is often very short. For instance, here is the `Makefile.am' from the Hello distribution:
EXTRA_DIST = BUGS ChangeLog.O README-alpha SUBDIRS = doc intl po src tests
It is possible to override the SUBDIRS
variable if, like in the
case of GNU Inetutils
, you want to only build a subset of the
entire package. In your `Makefile.am' include:
SUBDIRS = @SUBDIRS@
Then in your `configure.in' you can specify:
SUBDIRS = "src doc lib po" AC_SUBST(SUBDIRS)
The upshot of this is that automake is tricked into building the package
to take the subdirs, but doesn't actually bind that list until
configure
is run.
SUBDIRS
can contain configure substitutions (eg `@DIRS@');
Automake itself does not actually examine the contents of this variable.
If SUBDIRS
is defined, then your `configure.in' must include
AC_PROG_MAKE_SET
.
The use of SUBDIRS
is not restricted to just the top-level
`Makefile.am'. Automake can be used to construct packages of
arbitrary depth.
A large part of Automake's functionality is dedicated to making it easy to build C programs and libraries.
In a directory containing source that gets built into a program (as opposed to a library), the `PROGRAMS' primary is used. Programs can be installed in `bindir', `sbindir', `libexecdir', `pkglibdir', or not at all (`noinst').
For instance:
bin_PROGRAMS = hello
In this simple case, the resulting `Makefile.in' will contain code
to generate a program named hello
. The variable
hello_SOURCES
is used to specify which source files get built
into an executable:
hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h system.h
This causes each mentioned `.c' file to be compiled into the corresponding `.o'. Then all are linked to produce `hello'.
If `prog_SOURCES' is needed, but not specified, then it defaults to
the single file `prog.c'. In the example above, the definition of
hello_SOURCES
is actually redundant.
Multiple programs can be built in a single directory. Multiple programs can share a single source file. The source file must be listed in each `_SOURCES' definition.
Header files listed in a `_SOURCES' definition will be included in the distribution but otherwise ignored. In case it isn't obvious, you should not include the header file generated by `configure' in an `_SOURCES' variable; this file should not be distributed. Lex (`.l') and yacc (`.y') files can also be listed; see section Yacc and Lex support.
Automake must know all the source files that could possibly go into a
program, even if not all the files are built in every circumstance.
Any files which are only conditionally built should be listed in the
appropriate `EXTRA_' variable. For instance, if
`hello-linux.c' were conditionally included in hello
, the
`Makefile.am' would contain:
EXTRA_hello_SOURCES = hello-linux.c
Similarly, sometimes it is useful to determine the programs that are to
be built at configure time. For instance, GNU cpio
only builds
mt
and rmt
under special circumstances.
In this case, you must notify automake
of all the programs that
can possibly be built, but at the same time cause the generated
`Makefile.in' to use the programs specified by configure
.
This is done by having configure
substitute values into each
`_PROGRAMS' definition, while listing all optionally built programs in
EXTRA_PROGRAMS
.
If you need to link against libraries that are not found by
configure
, you can use LDADD
to do so. This variable
actually can be used to add any options to the linker command line.
Sometimes, multiple programs are built in one directory but do not share
the same link-time requirements. In this case, you can use the
`prog_LDADD' variable (where prog is the name of the
program as it appears in some `_PROGRAMS' variable, and usually
written in lowercase) to override the global LDADD
. (If this
variable exists for a given program, then that program is not linked
using LDADD
.)
For instance, in GNU cpio, pax
, cpio
, and mt
are
linked against the library `libcpio.a'. However, rmt
is
built in the same directory, and has no such link requirement. Also,
mt
and rmt
are only built on certain architectures. Here
is what cpio's `src/Makefile.am' looks like (abridged):
bin_PROGRAMS = cpio pax @MT@ libexec_PROGRAMS = @RMT@ EXTRA_PROGRAMS = mt rmt LDADD = ../lib/libcpio.a @INTLLIBS@ rmt_LDADD = cpio_SOURCES = ... pax_SOURCES = ... mt_SOURCES = ... rmt_SOURCES = ...
`prog_LDADD' is inappropriate for passing program-specific linker flags (except for `-l' and `-L'). So, use the `prog_LDFLAGS' variable for this purpose.
It is also occasionally useful to have a program depend on some other target which is not actually part of that program. This can be done using the `prog_DEPENDENCIES' variable. Each program depends on the contents of such a variable, but no further interpretation is done.
If `prog_DEPENDENCIES' is not supplied, it is computed by Automake. The automatically-assigned value is the contents of `prog_LDADD', with most configure substitutions, `-l', and `-L' options removed. The configure substitutions that are left in are only `@LIBOBJS@' and `@ALLOCA@'; these are left because it is known that they will not cause an invalid value for `prog_DEPENDENCIES' to be generated.
Building a library is much like building a program. In this case, the
name of the primary is `LIBRARIES'. Libraries can be installed in
libdir
or pkglibdir
.
See section Building a Shared Library, for information on how to build shared libraries using Libtool and the `LTLIBRARIES' primary.
Each `_LIBRARIES' variable is a list of the libraries to be built. For instance to create a library named `libcpio.a', but not install it, you would write:
noinst_LIBRARIES = libcpio.a
The sources that go into a library are determined exactly as they are for programs, via the `_SOURCES' variables. Note that the library name is canonicalized (see section How derived variables are named), so the `_SOURCES' variable corresponding to `liblob.a' is `liblob_a_SOURCES', not `liblob.a_SOURCES'.
Extra objects can be added to a library using the `library_LIBADD'
variable. This should be used for objects determined by
configure
. Again from cpio:
libcpio_a_LIBADD = @LIBOBJS@ @ALLOCA@
Automake explicitly recognizes the use of @LIBOBJS@
and
@ALLOCA@
, and uses this information, plus the list of
LIBOBJS
files derived from `configure.in' to automatically
include the appropriate source files in the distribution (see section What Goes in a Distribution).
These source files are also automatically handled in the
dependency-tracking scheme, see See section Automatic dependency tracking.
@LIBOBJS@
and @ALLOCA@
are specially recognized in any
`_LDADD' or `_LIBADD' variable.
Building shared libraries is a relatively complex matter. For this reason, GNU Libtool (see section `The Libtool Manual' in The Libtool Manual) was created to help build shared libraries in a platform-independent way.
Automake uses Libtool to build libraries declared with the `LTLIBRARIES' primary. Each `_LTLIBRARIES' variable is a list of shared libraries to build. For instance, to create a library named `libgettext.a' and its corresponding shared libraries, and install them in `libdir', write:
lib_LTLIBRARIES = libgettext.la
Note that shared libraries must be installed, so `noinst_LTLIBRARIES' and `check_LTLIBRARIES' are not allowed.
For each library, the `library_LIBADD' variable contains the names of extra libtool objects (`.lo' files) to add to the shared library. The `library_LDFLAGS' variable contains any additional libtool flags, such as `-version-info' or `-static'.
Where an ordinary library might include @LIBOBJS@
, a libtool
library must use @LTLIBOBJS@
. This is required because the
object files that libtool operates on do not necessarily end in
`.o'. The libtool manual contains more details on this topic.
For libraries installed in some directory, automake
will
automatically supply the appropriate `-rpath' option. However, for
libraries determined at configure time (and thus mentioned in
EXTRA_LTLIBRARIES
), automake
does not know the eventual
installation directory; for such libraries you must add the
`-rpath' option to the appropriate `_LDFLAGS' variable by
hand.
See section `The Libtool Manual' in The Libtool Manual, for more information.
Occasionally it is useful to know which `Makefile' variables Automake uses for compilations; for instance you might need to do your own compilation in some special cases.
Some variables are inherited from Autoconf; these are CC
,
CFLAGS
, CPPFLAGS
, DEFS
, LDFLAGS
, and
LIBS
.
There are some additional variables which Automake itself defines:
INCLUDES
automake
already provides some `-I' options automatically. In particular it
generates `-I$(srcdir)' and a `-I' pointing to the directory
holding `config.h' (if you've used AC_CONFIG_HEADER
or
AM_CONFIG_HEADER
).
INCLUDES
can actually be used for other cpp
options
besides `-I'. For instance, it is sometimes used to pass arbitrary
`-D' options to the compiler.
COMPILE
LINK
Automake has somewhat idiosyncratic support for Yacc and Lex.
Automake assumes that the `.c' file generated by yacc (or lex) should be named using the basename of the input file. That is, for a yacc source file `foo.y', automake will cause the intermediate file to be named `foo.c' (as opposed to `y.tab.c', which is more traditional).
The extension of a yacc source file is used to determine the extension of the resulting `C' or `C++' file. Files with the extension `.y' will be turned into `.c' files; likewise, `.yy' will become `.cc'; `.y++', `c++'; and `.yxx', `.cxx'. Likewise, lex source files can be used to generate `C' or `C++'; the extensions `.l', `.ll', `.l++', and `.lxx' are recognized.
You should never explicitly mention the intermediate (`C' or `C++') file in any `SOURCES' variable; only list the source file.
The intermediate files generated by yacc (or lex) will be included in any distribution that is made. That way the user doesn't need to have yacc or lex.
If a yacc source file is seen, then your `configure.in' must define the variable `YACC'. This is most easily done by invoking the macro `AC_PROG_YACC'.
Similarly, if a lex source file is seen, then your `configure.in' must define the variable `LEX'. You can use `AC_PROG_LEX' to do this. Automake's lex support also requires that you use the `AC_DECL_YYTEXT' macro--automake needs to know the value of `LEX_OUTPUT_ROOT'.
Automake makes it possible to include multiple yacc (or lex) source
files in a single program. Automake uses a small program called
ylwrap
to run yacc
(or lex
) in a subdirectory.
This is necessary because yacc's output filename is fixed, and a
parallel make could conceivably invoke more than one instance of
yacc
simultaneously. ylwrap
is distributed with automake.
It should appear in the directory specified by `AC_CONFIG_AUX_DIR',
or the current directory if that macro is not used in
`configure.in'.
For yacc
, simply managing locking is insufficient. yacc
output also always uses the same symbol names internally, so it isn't
possible to link two yacc
parsers into the same executable.
We recommend using the following renaming hack used in gdb
:
#define yymaxdepth c_maxdepth #define yyparse c_parse #define yylex c_lex #define yyerror c_error #define yylval c_lval #define yychar c_char #define yydebug c_debug #define yypact c_pact #define yyr1 c_r1 #define yyr2 c_r2 #define yydef c_def #define yychk c_chk #define yypgo c_pgo #define yyact c_act #define yyexca c_exca #define yyerrflag c_errflag #define yynerrs c_nerrs #define yyps c_ps #define yypv c_pv #define yys c_s #define yy_yys c_yys #define yystate c_state #define yytmp c_tmp #define yyv c_v #define yy_yyv c_yyv #define yyval c_val #define yylloc c_lloc #define yyreds c_reds #define yytoks c_toks #define yylhs c_yylhs #define yylen c_yylen #define yydefred c_yydefred #define yydgoto c_yydgoto #define yysindex c_yysindex #define yyrindex c_yyrindex #define yygindex c_yygindex #define yytable c_yytable #define yycheck c_yycheck
For each define, replace the `c_' prefix with whatever you like.
These defines work for bison
, byacc
, and traditional
yacc
s. If you find a parser generator that uses a symbol not
covered here, please report the new name so it can be added to the list.
Automake includes full support for C++, and rudimentary support for other languages. Support for other languages will be improved based on demand.
Any package including C++ code must define the output variable
`CXX' in `configure.in'; the simplest way to do this is to use
the AC_PROG_CXX
macro.
A few additional variables are defined when a C++ source file is seen:
CXX
CXXFLAGS
CXXCOMPILE
CXXLINK
Although the GNU standards allow the use of ANSI C, this can have the effect of limiting portability of a package to some older compilers (notably SunOS).
Automake allows you to work around this problem on such machines by "de-ANSI-fying" each source file before the actual compilation takes place.
If the `Makefile.am' variable AUTOMAKE_OPTIONS
(section Changing Automake's Behavior) contains the option ansi2knr
then code to handle de-ANSI-fication is inserted into the generated
`Makefile.in'.
This causes each C source file in the directory to be treated as ANSI C.
If an ANSI C compiler is available, it is used. If no ANSI C compiler
is available, the ansi2knr
program is used to convert the source
files into K&R C, which is then compiled.
The ansi2knr
program is simple-minded. It assumes the source
code will be formatted in a particular way; see the ansi2knr
man
page for details.
De-ANSI-fication support requires the source files `ansi2knr.c' and
`ansi2knr.1' to be in the same package as the ANSI C source; these
files are distributed with Automake. Also, the package
`configure.in' must call the macro AM_C_PROTOTYPES
.
Automake also handles finding the ansi2knr
support files in some
other directory in the current package. This is done by prepending the
relative path to the appropriate directory to the ansi2knr
option. For instance, suppose the package has ANSI C code in the
`src' and `lib' subdirs. The files `ansi2knr.c' and
`ansi2knr.1' appear in `lib'. Then this could appear in
`src/Makefile.am':
AUTOMAKE_OPTIONS = ../lib/ansi2knr
If no directory prefix is given, the files are assumed to be in the current directory.
As a developer it is often painful to continually update the
`Makefile.in' whenever the include-file dependencies change in a
project. automake
supplies a way to automatically track
dependency changes, and distribute the dependencies in the generated
`Makefile.in'.
Currently this support requires the use of GNU make
and
gcc
. It might become possible in the future to supply a
different dependency generating program, if there is enough demand. In
the meantime, this mode is enabled by default if any C program or
library is defined in the current directory, so you may get a `Must
be a separator' error from non-GNU make.
When you decide to make a distribution, the dist
target will
re-run automake
with `--include-deps' and other options.
This will cause the previously generated dependencies to be inserted
into the generated `Makefile.in', and thus into the distribution.
This step also turns off inclusion of the dependency generation code, so
that those who download your distribution but don't use GNU make
and gcc
will not get errors.
When added to the `Makefile.in', the dependencies have all
system-specific dependencies automatically removed. This can be done by
listing the files in `OMIT_DEPENDENCIES'.
For instance all references to system header files are removed by
automake
. Sometimes it is useful to specify that a certain
header file should be removed. For instance if your `configure.in'
uses `AM_WITH_REGEX', then any dependency on `rx.h' or
`regex.h' should be removed, because the correct one cannot be
known until the user configures the package.
As it turns out, automake
is actually smart enough to handle the
particular case of the regular expression header. It will also
automatically omit `libintl.h' if `AM_GNU_GETTEXT' is used.
Automatic dependency tracking can be suppressed by putting
no-dependencies
in the variable AUTOMAKE_OPTIONS
.
If you unpack a distribution made by make dist
, and you want to
turn on the dependency-tracking code again, simply re-run
automake
.
The actual dependency files are put under the build directory, in a subdirectory named `.deps'. These dependencies are machine specific. It is safe to delete them if you like; they will be automatically recreated during the next build.
Automake can handle derived objects which are not C programs. Sometimes the support for actually building such objects must be explicitly supplied, but Automake will still automatically handle installation and distribution.
It is possible to define and install programs which are scripts. Such
programs are listed using the `SCRIPTS' primary name.
automake
doesn't define any dependencies for scripts; the
`Makefile.am' should include the appropriate rules.
automake
does not assume that scripts are derived objects; such
objects must be deleted by hand; see section What Gets Cleaned for more information.
automake
itself is a script that is generated at configure time
from `automake.in'. Here is how this is handled:
bin_SCRIPTS = automake
Since automake
appears in the AC_OUTPUT
macro, a target
for it is automatically generated.
Script objects can be installed in bindir
, sbindir
,
libexecdir
, or pkgdatadir
.
Header files are specified by the `HEADERS' family of variables.
Generally header files are not installed, so the noinst_HEADERS
variable will be the most used.
All header files must be listed somewhere; missing ones will not appear in the distribution. Often it is clearest to list uninstalled headers with the rest of the sources for a program. See section Building a program. Headers listed in a `_SOURCES' variable need not be listed in any `_HEADERS' variable.
Headers can be installed in includedir
, oldincludedir
, or
pkgincludedir
.
Automake supports the installation of miscellaneous data files using the `DATA' family of variables.
Such data can be installed in the directories datadir
,
sysconfdir
, sharedstatedir
, localstatedir
, or
pkgdatadir
.
By default, data files are not included in a distribution.
Here is how automake
installs its auxiliary data files:
pkgdata_DATA = clean-kr.am clean.am ...
Occasionally a file which would otherwise be called "source" (eg a C
`.h' file) is actually derived from some other file. Such files
should be listed in the BUILT_SOURCES
variable.
Built sources are also not compiled by default. You must explicitly mention them in some other `_SOURCES' variable for this to happen.
Note that, in some cases, BUILT_SOURCES
will work in somewhat
suprising ways. In order to get the built sources to work with
automatic dependency tracking, the `Makefile' must depend on
$(BUILT_SOURCES)
. This can cause these sources to be rebuilt at
what might seem like funny times.
Since Automake is primarily intended to generate `Makefile.in's for use in GNU programs, it tries hard to interoperate with other GNU tools.
Automake provides some support for Emacs Lisp. The `LISP' primary
is used to hold a list of `.el' files. Possible prefixes for this
primary are `lisp_' and `noinst_'. Note that if
lisp_LISP
is defined, then `configure.in' must run
AM_PATH_LISPDIR
(see section Autoconf macros supplied with Automake).
By default Automake will byte-compile all Emacs Lisp source files using
the Emacs found by AM_PATH_LISPDIR
. If you wish to avoid
byte-compiling, simply define the variable `ELCFILES' to be empty.
Byte-compiled Emacs Lisp files are not portable among all versions of
Emacs, so it makes sense to turn this off if you expect sites to have
more than one version of Emacs installed. Furthermore, many packages
don't actually benefit from byte-compilation. Still, we recommand that
you leave it enabled by default. It is probably better for sites with
strange setups to cope for themselves than to make the installation less
nice for everybody else.
If AM_GNU_GETTEXT
is seen in `configure.in', then Automake
turns on support for GNU gettext, a message catalog system for
internationalization
(see section `GNU Gettext' in GNU gettext utilities).
The gettext
support in Automake requires the addition of two
subdirectories to the package, `intl' and `po'. Automake
ensure that these directories exist and are mentioned in SUBDIRS
.
Furthermore, Automake checks that the definition of `ALL_LINGUAS' in `configure.in' corresponds to all the valid `.po' files, and nothing more.
Automake provides some automatic support for writing Guile modules.
Automake will turn on Guile support if the AM_INIT_GUILE_MODULE
macro is used in `configure.in'.
Right now Guile support just means that the AM_INIT_GUILE_MODULE
macro is understood to mean:
AM_INIT_AUTOMAKE
is run.
AC_CONFIG_AUX_DIR
is run, with a path of `..'.
As the Guile module code matures, no doubt the Automake support will grow as well.
Automake provides support for GNU Libtool (see section `The Libtool Manual' in The Libtool Manual) with the `LTLIBRARIES' primary. See section Building a Shared Library.
Automake provides some minimal support for Java compilation with the `JAVA' primary.
Any `.java' files listed in a `_JAVA' variable will be
compiled with JAVAC
at build time. By default, `.class'
files are not included in the distribution.
Currently Automake enforces the restriction that only one `_JAVA' primary can be used in a given `Makefile.am'. The reason for this restriction is that, in general, it isn't possible to know which `.class' files were generated from which `.java' files -- so it would be impossible to know which files to install where.
Currently Automake provides support for Texinfo and man pages.
If the current directory contains Texinfo source, you must declare it
with the `TEXINFOS' primary. Generally Texinfo files are converted
into info, and thus the info_TEXINFOS
macro is most commonly used
here. Note that any Texinfo source file must end in the `.texi' or
`.texinfo' extension.
If the `.texi' file @include
s `version.texi', then that
file will be automatically generated. `version.texi' defines three
Texinfo macros you can reference: EDITION
, VERSION
, and
UPDATED
. The first two hold the version number of your package
(but are kept separate for clarity); the last is the date the primary
file was last modified. The `version.texi' support requires the
mdate-sh
program; this program is supplied with Automake.
Sometimes an info file actually depends on more than one `.texi' file. For instance, in GNU Hello, `hello.texi' includes the file `gpl.texi'. You can tell Automake about these dependencies using the `texi_TEXINFOS' variable. Here is how Hello does it:
info_TEXINFOS = hello.texi hello_TEXINFOS = gpl.texi
By default, Automake requires the file `texinfo.tex' to appear in
the same directory as the Texinfo source. However, if you used
AC_CONFIG_AUX_DIR
in `configure.in', then `texinfo.tex'
is looked for there. Automake supplies `texinfo.tex' if
`--add-missing' is given.
If your package has Texinfo files in many directories, you can use the
variable TEXINFO_TEX
to tell automake where to find the canonical
`texinfo.tex' for your package. The value of this variable should
be the relative path from the current `Makefile.am' to
`texinfo.tex':
TEXINFO_TEX = ../doc/texinfo.tex
The option `no-texinfo.tex' can be used to eliminate the
requirement for `texinfo.tex'. Use of the variable
TEXINFO_TEX
is preferable, however, because that allows the
dvi
target to still work.
Automake generates an install-info
target; some people apparently
use this. By default, info pages are installed by `make install'.
This can be prevented via the no-installinfo
option.
A package can also include man pages. (Though see the GNU standards on
this matter, section `Man Pages' in The GNU Coding Standards.) Man pages are declared using the `MANS' primary.
Generally the man_MANS
macro is used. Man pages are
automatically installed in the correct subdirectory of mandir
,
based on the file extension.
By default, man pages are installed by `make install'. However,
since the GNU project does not require man pages, many maintainers do
not expend effort to keep the man pages up to date. In these cases, the
no-installman
option will prevent the man pages from being
installed by default. The user can still explicitly install them via
`make install-man'.
Here is how the documentation is handled in GNU cpio
(which
includes both Texinfo documentation and man pages):
info_TEXINFOS = cpio.texi man_MANS = cpio.1 mt.1
Texinfo source and info pages are all considered to be source for the purposes of making a distribution.
Man pages are not currently considered to be source, because it is not uncommon for man pages to be automatically generated.
Naturally, Automake handles the details of actually installing your
program once it has been built. All PROGRAMS
, SCRIPTS
,
LIBRARIES
, LISP
, DATA
and HEADERS
are
automatically installed in the appropriate places.
Automake also handles installing any specified info and man pages.
Automake generates separate install-data
and install-exec
targets, in case the installer is installing on multiple machines which
share directory structure--these targets allow the machine-independent
parts to be installed only once. The install
target depends on
both of these targets.
Automake also generates an uninstall
target, an
installdirs
target, and an install-strip
target.
It is possible to extend this mechanism by defining an
install-exec-local
or install-data-local
target. If these
targets exist, they will be run at `make install' time.
Variables using the standard directory prefixes `data', `info', `man', `include', `oldinclude', `pkgdata', or `pkginclude' (eg `data_DATA') are installed by `install-data'.
Variables using the standard directory prefixes `bin', `sbin', `libexec', `sysconf', `localstate', `lib', or `pkglib' (eg `bin_PROGRAMS') are installed by `install-exec'.
Any variable using a user-defined directory prefix with `exec' in the name (eg `myexecbin_PROGRAMS' is installed by `install-exec'. All other user-defined prefixes are installed by `install-data'.
Automake generates support for the `DESTDIR' variable in all install rules; see See section `Makefile Conventions' in The GNU Coding Standards.
The GNU Makefile Standards specify a number of different clean rules.
Generally the files that can cleaned are determined automatically by
Automake. Of course, Automake also recognizes some variables that can
be defined to specify additional files to clean. These variables are
MOSTLYCLEANFILES
, CLEANFILES
, DISTCLEANFILES
, and
MAINTAINERCLEANFILES
.
The dist
target in the generated `Makefile.in' can be used
to generate a gzip'd tar
file for distribution. The tar file is
named based on the `PACKAGE' and `VERSION' variables; more
precisely it is named `package-version.tar.gz'.
For the most part, the files to distribute are automatically found by
Automake: all source files are automatically included in a distribution,
as are all `Makefile.am's and `Makefile.in's. Automake also
has a built-in list of commonly used files which, if present in the
current directory, are automatically included. This list is printed by
`automake --help'. Also, files which are read by configure
(ie, the source files corresponding to the files specified in the
AC_OUTPUT
invocation) are automatically distributed.
Still, sometimes there are files which must be distributed, but which
are not covered in the automatic rules. These files should be listed in
the EXTRA_DIST
variable. Note that EXTRA_DIST
can only
handle files in the current directory; files in other directories will
cause make dist
runtime failures.
If you define SUBDIRS
, automake will recursively include the
subdirectories in the distribution. If SUBDIRS
is defined
conditionally (see section Conditionals), automake will normally include all
directories that could possibly appear in SUBDIRS
in the
distribution. If you need to specify the set of directories
conditionally, you can set the variable DIST_SUBDIRS
to the exact
list of subdirectories to include in the distribution.
Occasionally it is useful to be able to change the distribution before
it is packaged up. If the dist-hook
target exists, it is run
after the distribution directory is filled, but before the actual tar
(or shar) file is created. One way to use this is for distributing
files in subdirectories for which a new `Makefile.am' is overkill:
dist-hook: mkdir $(distdir)/random cp -p random/a1 random/a2 $(distdir)/random
Automake also generates a distcheck
target which can be help to
ensure that a given distribution will actually work. distcheck
makes a distribution, and then tries to do a VPATH
build.
Automake supports a two forms of test suite.
If the variable TESTS
is defined, its value is taken to be a list
of programs to run in order to do the testing. The programs can either
be derived objects or source objects; the generated rule will look both
in srcdir and `.'. Programs needing data files should look
for them in srcdir (which is both an environment variable and a
make variable) so they work when building in a separate directory
(@xref{Build Directories,,,autoconf}), and in particular for the
distcheck
target (see section What Goes in a Distribution).
The number of failures will be printed at the end of the run. If a given test program exits with a status of 77, then its result is ignored in the final count. This feature allows non-portable tests to be ignored in environments where they don't make sense.
The variable TESTS_ENVIRONMENT
can be used to set environment
variables for the test run; the environment variable srcdir
is
set in the rule. If all your test programs are scripts, you can also
set TESTS_ENVIRONMENT
to an invocation of the shell (eg
`$(SHELL) -x'); this can be useful for debugging the tests.
If `dejagnu' appears in AUTOMAKE_OPTIONS
, then the a
dejagnu
-based test suite is assumed. The value of the variable
DEJATOOL
is passed as the --tool
argument to
runtest
; it defaults to the name of the package.
The variable RUNTESTDEFAULTFLAGS
holds the --tool
and
--srcdir
flags that are passed to dejagnu by default; this can be
overridden if necessary.
The variables EXPECT
, RUNTEST
and RUNTESTFLAGS
can
also be overridden to provide project-specific values. For instance,
you will need to do this if you are testing a compiler toolchain,
because the default values do not take into account host and target
names.
In either case, the testing is done via `make check'.
Various features of Automake can be controlled by options in the
`Makefile.am'. Such options are listed in a special variable named
AUTOMAKE_OPTIONS
. Currently understood options are:
gnits
gnu
foreign
cygnus
gnits
option also implies
readme-alpha
and check-news
.
ansi2knr
path/ansi2knr
check-news
make dist
to fail unless the current version number appears
in the first few lines of the `NEWS' file.
dejagnu
dejagnu
-specific rules to be generated. See section Support for test suites.
dist-shar
dist-shar
target as well as the ordinary dist
target. This new target will create a shar archive of the
distribution.
dist-zip
dist-zip
target as well as the ordinary dist
target. This new target will create a zip archive of the distribution.
dist-tarZ
dist-tarZ
target as well as the ordinary dist
target. This new target will create a compressed tar archive of the
distribution; a traditional tar
and compress
will be
assumed. Warning: if you are actually using GNU tar
, then the
generated archive might contain nonportable constructs.
no-dependencies
no-installinfo
info
and install-info
targets will still be available. This option is disallowed at
`GNU' strictness and above.
no-installman
install-man
target will still
be available for optional installation. This option is disallowed at
`GNU' strictness and above.
no-texinfo.tex
readme-alpha
Unrecognized options are diagnosed by automake
.
There are a few rules and variables that didn't fit anywhere else.
etags
automake
will generate rules to generate `TAGS' files for
use with GNU Emacs under some circumstances.
If any C source code or headers are present, then tags
and
TAGS
targets will be generated for the directory.
At the topmost directory of a multi-directory package, a tags
target file will be generated which, when run, will generate a
`TAGS' file that includes by reference all `TAGS' files from
subdirectories.
Also, if the variable ETAGS_ARGS
is defined, a tags
target
will be generated. This variable is intended for use in directories
which contain taggable source that etags
does not understand.
Here is how Automake generates tags for its source, and for nodes in its Texinfo file:
ETAGS_ARGS = automake.in --lang=none \ --regex='/^@node[ \t]+\([^,]+\)/\1/' automake.texi
If you add filenames to `ETAGS_ARGS', you will probably also
want to set `TAGS_DEPENDENCIES'. The contents of this variable
are added directly to the dependencies for the tags
target.
Automake will also generate an ID
target which will run
mkid
on the source. This is only supported on a
directory-by-directory basis.
It is sometimes useful to introduce a new implicit rule to handle a file
type that Automake does not know about. If this is done, you must
notify GNU Make of the new suffixes. This can be done by putting a list
of new suffixes in the SUFFIXES
variable.
For instance, currently automake does not provide any Java support. If you wrote a macro to generate `.class' files from `.java' source files, you would also need to add these suffixes to the list:
SUFFIXES = .java .class
Automake supports a simple type of conditionals.
Before using a conditional, you must define it by using
AM_CONDITIONAL
in the configure.in
file. The
AM_CONDITIONAL
macro takes two arguments.
The first argument to AM_CONDITIONAL
is the name of the
conditional. This should be a simple string starting with a letter and
containing only letters, digits, and underscores.
The second argument to AM_CONDITIONAL
is a shell condition,
suitable for use in a shell if statement. The condition is evaluated
when configure
is run.
Conditionals typically depend upon options which the user provides to
the configure
script. Here is an example of how to write a
conditional which is true if the user uses the `--enable-debug'
option.
AC_ARG_ENABLE(debug, [ --enable-debug Turn on debugging], [case "${enableval}" in yes) debug=true ;; no) debug=false ;; *) AC_MSG_ERROR(bad value ${enableval} for --enable-debug) ;; esac],[debug=false]) AM_CONDITIONAL(DEBUG, test x$debug = xtrue)
Here is an example of how to use that conditional in `Makefile.am':
if DEBUG DBG = debug else DBG = endif noinst_PROGRAMS = $(DBG)
This trivial example could also be handled using EXTRA_PROGRAMS (see section Building a program).
You may only test a single variable in an if
statement. The
else
statement may be omitted. Conditionals may be nested to any
depth.
Note that conditionals in Automake are not the same as conditionals in GNU Make. Automake conditionals are checked at configure time by the `configure' script, and affect the translation from `Makefile.in' to `Makefile'. They are based on options passed to `configure' and on results that `configure' has discovered about the host system. GNU Make conditionals are checked at make time, and are based on variables passed to the make program or defined in the `Makefile'.
Automake conditionals will work with any make program.
--gnu
and --gnits
The `--gnu' option (or `gnu' in the `AUTOMAKE_OPTIONS'
variable) causes automake
to check the following:
Note that this option will be extended in the future to do even more
checking; it is advisable to be familiar with the precise requirements
of the GNU standards. Also, `--gnu' can require certain
non-standard GNU programs to exist for use by various maintainer-only
targets; for instance in the future pathchk
might be required for
`make dist'.
The `--gnits' option does everything that `--gnu' does, and checks the following as well:
automake
can automatically determine whether `README-alpha'
should be included.
--cygnus
Cygnus Solutions has slightly different rules for how a
`Makefile.in' is to be constructed. Passing `--cygnus' to
automake
will cause any generated `Makefile.in' to comply
with Cygnus rules.
Here are the precise effects of `--cygnus':
automake
cannot find. This assumption is an artifact
of how Cygnus packages are typically bundled.
runtest
, expect
,
makeinfo
and texi2dvi
.
--foreign
is implied.
check
target doesn't depend on all
.
GNU maintainers are advised to use `gnu' strictness in preference to the special Cygnus mode.
Automake's implicit copying semantics means that many problems can be
worked around by simply adding some make
targets and rules to
`Makefile.in'. automake
will ignore these additions.
There are some caveats to doing this. Although you can overload a
target already used by automake
, it is often inadvisable,
particularly in the topmost directory of a non-flat package. However,
various useful targets have a `-local' version you can specify in your
`Makefile.in'. Automake will supplement the standard target with
these user-supplied targets.
The targets that support a local version are all
, info
,
dvi
, check
, install-data
, install-exec
,
uninstall
, and the various clean
targets
(mostlyclean
, clean
, distclean
, and
maintainer-clean
). Note that there are no
uninstall-exec-local
or uninstall-data-local
targets; just
use uninstall-local
. It doesn't make sense to uninstall just
data or just executables.
For instance, here is one way to install a file in `/etc':
install-data-local: $(INSTALL_DATA) $(srcdir)/afile /etc/afile
Some targets also have a way to run another target, called a hook,
after their work is done. The hook is named after the principal target,
with `-hook' appended. The targets allowing hooks are
install-data
, install-exec
, dist
, and
distcheck
.
For instance, here is how to create a hard link to an installed program:
install-exec-hook: ln $(bindir)/program $(bindir)/proglink
Automake places no restrictions on the distribution of the resulting `Makefile.in's. We still encourage software authors to distribute their work under terms like those of the GPL, but doing so is not required to use Automake.
Some of the files that can be automatically installed via the
--add-missing
switch do fall under the GPL; examine each file
to see.
Here are some things that might happen in the future:
Jump to: _ - a - b - c - d - e - h - i - l - m - n - o - p - r - s - t
This document was generated on 7 November 1998 using the texi2html translator version 1.52.